Géométrie vectorielle et analytique de l'espace

Terminale S Lycée Charles PONCET

Décembre 2012

Table des matières

1	Vect	teurs de l'espace
	1.1	Définition des vecteurs de l'espace
	1.2	Somme vectorielle
	1.3	Produit d'un nombre réel et d'un vecteur
	1.4	Caractérisation vectorielle d'une droite de l'espace
	1.5	Caractérisation vectorielle d'une droite de l'espace
	1.6	Vecteurs coplanaires
2	Rep	érage dans l'espace
	2.1	Base de l'espace
	2.2	Repère de l'espace
	2.3	Formules de géométrie analytique
3	Rep	résentations paramétriques
	3.1	Représentation paramétrique d'une droite
	2.2	Représentation paramétrique d'un plan

Le symbole indique les exemples à traiter, des démonstrations à trouver.

Le symbole • indique des points importants, des pièges possibles, des notations particulières, etc.

1 Vecteurs de l'espace 2

L'espace est muni d'une unité de longueur, lorsque cela est nécessaire.

1 Vecteurs de l'espace

1.1 Définition des vecteurs de l'espace

Les vecteurs de l'espace sont définis comme dans le plan.

Définition 1.1.1

Un vecteur \vec{u} non nul est défini par sa direction, son sens et sa norme notée $\|\vec{u}\|$.

 $Si \vec{u} = \overrightarrow{AB}$, le vecteur \vec{u} a pour direction celle de la droite (AB), son sens est de A vers B et $\|\vec{u}\| = AB$. Le vecteur nul, noté $\vec{0}$, est le vecteur dont la norme est nulle.

Lorsque $\vec{u} = \overrightarrow{AB}$, on dit que \overrightarrow{AB} est un représentant de \vec{u} . Pour tout point A de l'espace, $\overrightarrow{AA} = \vec{0}$.

Définition 1.1.2

Pour que deux vecteurs non nuls de l'espace soient égaux, il faut et il suffit qu'ils aient la même direction, le même sens et la même norme.

Propriété 1.1.1

A, B, C et D étant quatre points distincts deux à deux de l'espace :

- $\overrightarrow{AB} = \overrightarrow{CD}$ si, et seulement si, ABDC est un parallélogramme.
- $\overrightarrow{AB} = \overrightarrow{CD}$ si, et seulement si, [AD] et [BC] ont le même milieu.

1.2 Somme vectorielle

Définition 1.2.1

 $Si \vec{u}$ et \vec{v} sont deux vecteurs non nuls de l'espace alors $\vec{w} = \vec{u} + \vec{v}$ est défini par l'une des deux manières suivantes :

- Si A, B et C sont trois points de l'espace tels que $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{BC}$ alors $\vec{w} = \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$ (relation de Chasles 1).
- Si O, M, N sont trois points de l'espace tels que $\vec{u} = \overrightarrow{OM}$ et $\vec{v} = \overrightarrow{ON}$ alors $\vec{w} = \overrightarrow{OP}$ tel que OMPN soit un parallélogramme (règle du parallélogramme).
- Représenter graphiquement les deux définitions.

1.3 Produit d'un nombre réel et d'un vecteur

Définition 1.3.1

On considère un vecteur \vec{u} de l'espace et un nombre réel α .

- $Si \vec{u} = \vec{0}$ ou $si \alpha = 0$ alors $\alpha \vec{u} = \vec{0}$.
- $Si \vec{u} \neq \vec{0}$ et $si \alpha \neq 0$ alors $\alpha \vec{u}$ est le vecteur qui a la même direction que \vec{u} , le même sens que \vec{u} $si \alpha > 0$, le sens contraire $si \alpha < 0$ et $\|\alpha \vec{u}\| = |\alpha| \times \|\vec{u}\|$.

Définition 1.3.2

Deux vecteurs \vec{u} et \vec{v} de l'espace sont colinéaires si l'une des deux conditions suivantes est réalisées :

- Il existe un nombre réel k tel que $\vec{v} = k \vec{u}$.
- Il existe un nombre réel k' tel que $\vec{u} = k' \vec{v}$.

^{1.} Michel CHASLES (1793-1880) est un mathématicien français dont les travaux ont porté sur la géométrie projective et l'analyse harmonique.

1 Vecteurs de l'espace 3

Le vecteur nul est colinéaire à tous les vecteurs de l'espace, puisque, pour tout vecteur \vec{u} de l'espace, $\vec{0} = 0 \vec{u}$.

Propriété 1.3.1

Trois points de l'espace A, B et C sont alignés si, et seulement si, \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires.

Propriété 1.3.2

On considère quatre points de l'espace A, B, C et D tels que $A \neq B$ et $C \neq D$.

Les droites (AB) et (CD) sont parallèles si, et seulement si, \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires.

1.4 Caractérisation vectorielle d'une droite de l'espace

Les propriétés sont identiques à celles vues en géométrie plane.

Propriété 1.4.1

A et B sont deux points distincts de l'espace.

Un point M de l'espace appartient à la droite (AB) si, et seulement si, il existe un nombre réel t tel que $\overrightarrow{AM} = t \overrightarrow{AB}$.

• En posant $\vec{u} = \overrightarrow{AB}$ la condition s'écrit $\overrightarrow{AM} = t \vec{u}$ et \vec{u} est un vecteur directeur de la droite (AB).

Propriété 1.4.2

Deux droites sont parallèles si, et seulement si, elles ont des vecteurs directeurs colinéaires.

1.5 Caractérisation vectorielle d'un plan de l'espace

Propriété et définition 1.5.1

On considère deux vecteurs \vec{u} et \vec{v} non colinéaires et un point A de l'espace.

L'ensemble des points M de l'espace tels qu'il existe deux nombres réels x et y vérifiant :

$$\overrightarrow{AM} = x \vec{u} + y \vec{v}$$

est un plan passant par A.

Les vecteurs \vec{u} et \vec{v} forment un couple de vecteurs directeurs du plan.

Démontrer la propriété 1.5.1.

Propriété 1.5.2

Pour que deux plans soient parallèles, il faut et il suffit qu'ils aient le même couple de vecteurs directeurs.

Démontrer la propriété 1.5.2.

1.6 Vecteurs coplanaires

Définition 1.6.1

Des vecteurs de l'espace sont coplanaires si leurs représentants de même origine A ont leurs extrémités dans un même plan passant par A.

Théorème 1.6.1

Trois vecteurs \vec{u} , \vec{v} et \vec{w} de l'espace sont coplanaires si, et seulement si, il existe trois nombres réels α , β et γ non tous nuls tels que $\alpha \vec{u} + \beta \vec{v} + \gamma \vec{w} = \vec{0}$.

Démontrer le théorème 1.6.1.

Corollaire 1.6.2

On considère trois vecteurs \vec{u} , \vec{v} et \vec{w} de l'espace et trois nombres réels α , β et γ .

Les vecteurs \vec{u} , \vec{v} et \vec{w} ne sont pas coplanaires si, et seulement si, l'égalité $\alpha \vec{u} + \beta \vec{v} + \gamma \vec{w} = \vec{0}$ implique $\alpha = \beta = \gamma = 0$.

La propriété du corollaire 1.6.2 est la négation de la propriété du théorème 1.6.1.

Corollaire 1.6.3

On considère trois vecteurs \vec{u} , \vec{v} et \vec{w} tels que \vec{u} et \vec{v} ne soient pas colinéaires.

Les vecteurs \vec{u} , \vec{v} et \vec{w} sont coplanaires si, et seulement si, il existe deux nombres réels \vec{u} et \vec{v} tels que \vec{v} = \vec{u} + \vec{v} .

Justifier le corollaire 1.6.3.

Propriété 1.6.4

Une droite d de vecteur directeur \vec{u} est parallèle à un plan P de vecteurs directeurs \vec{v}_1 et \vec{v}_2 si, et seulement si, \vec{u} , \vec{v}_1 et \vec{v}_2 sont trois vecteurs coplanaires.

2 Repérage dans l'espace

2.1 Base de l'espace

Propriété et définition 2.1.1

On considère trois vecteurs \vec{i} , \vec{j} et \vec{k} non coplanaires de l'espace.

Pour tout vecteur \vec{u} de l'espace, il existe un unique triplet (x; y; z) de nombres réels tel que :

$$\vec{\mathbf{u}} = \mathbf{x}\,\vec{\mathbf{i}} + \mathbf{y}\,\vec{\mathbf{j}} + z\,\vec{\mathbf{k}}.$$

Un triplet de vecteurs non coplanaires de l'espace est une base de l'espace.

2.2 Repère de l'espace

Définition 2.2.1

Un repère de l'espace est un quadruplet $(0; \vec{\imath}; \vec{\jmath}; \vec{k})$ où 0 est un point de l'espace (appelé origine du repère) et $(\vec{\imath}; \vec{\jmath}; \vec{k})$ une base de l'espace c'est-à-dire un triplet de trois vecteurs non coplanaires.

Lorsque les droites passant par O et de vecteurs directeurs $\vec{\imath}$, $\vec{\jmath}$, et \vec{k} sont deux à deux perpendiculaires et $\|\vec{\imath}\| = \|\vec{\jmath}\| = \|\vec{k}\| = 1$ on dit que le repère $(O; \vec{\imath}; \vec{\jmath}; \vec{k})$ est *orthonormal*.

Propriété et définition 2.2.1

L'espace étant muni d'un repère $(0; \vec{\imath}; \vec{\jmath}; \vec{k})$, pour tout vecteur \vec{u} de l'espace, il existe un unique triplet de nombres réels (x; y; z) tel que $\vec{u} = x\vec{\imath} + y\vec{\jmath} + z\vec{k}$.

Le triplet (x; y; z) est le triplet des coordonnées de \vec{u} .

Les coordonnées d'un point M de l'espace sont celles du vecteur \overrightarrow{OM} .

Si le point M a pour coodonnées (x ; y ; z), x est l'abscisse, y l'ordonnée et z la cote du point M.

2.3 Formules de géométrie analytique

Propriété 2.3.1

On considère, dans l'espace muni d'un repère $(0; \vec{\imath}; \vec{\jmath}; \vec{k})$, les vecteurs \vec{u} et \vec{u}' de coordonnées (x; y; z) et (x'; y'; z').

- $\vec{u} = \vec{u}'$ si, et seulement si, x = x', y = y' et z = z'.
- Le vecteur $\vec{u} + \vec{u}'$ a pour coordonnées (x + x'; y + y'; z + z').
- Pour tout nombre réel α , le vecteur $\alpha \vec{u}$ a pour coordonnées $(\alpha x ; \alpha y ; \alpha z)$.
- Si le repère $\left(O\;;\;\vec{\iota}\;;\;\vec{\jmath}\;;\;\vec{k}\right)$ est orthonormal, $\|\vec{u}\|=\sqrt{x^2+y^2+z^2}.$

Propriété 2.3.2

On considère, dans l'espace muni d'un repère $(0; \vec{\imath}; \vec{\jmath}; \vec{k})$, les points A et B de coordonnées $(x_A; y_A; z_A)$ et $(x_B; y_B; z_B)$.

- les points A et B sont confondus si, et seulement si, $x_A = x_B$, $y_A = y_B$ et $z_A = z_B$.
- Le vecteur \overrightarrow{AB} a pour coordonnées $(x_B x_A; y_B y_A; z_B z_A)$.
- Le point I est le milieu du segment [AB] si, et seulement si, ses coordonnées sont $\left(\frac{x_A + x_B}{2}; \frac{y_A + y_B}{2}; \frac{z_A + z_B}{2}\right)$.
- $\bullet \ \ \textit{Si le repère} \left(O\ ;\ \vec{\iota}\ ;\ \vec{\jmath}\ ;\ \vec{k}\right) \ \textit{est orthonormal,} \ AB = \sqrt{\left(x_B x_A\right)^2 + \left(y_B y_A\right)^2 + \left(z_B z_A\right)^2}.$

3 Représentations paramétriques

Pour ce paragraphe, l'espace muni d'un repère $(O; \vec{\imath}; \vec{\jmath}; \vec{k})$.

3.1 Représentation paramétrique d'une droite

Exemple

On considère les points A(1; 0; 0), B(0; 0; 1) et M(x; y; z). Une condition nécessaire et suffisante pour que $M \in (AB)$ est qu'il existe une nombre réel t unique tel que $\overrightarrow{AM} = t \overrightarrow{AB}$.

- a. Calculer les coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{AM} .
- b. Calculer en fonction de t les coordonnées (x ; y ; z) du point M pour qu'il vérifie la condition nécessaire et suffisante précédente.

Ces trois égalités constituent une représentation paramétrique de la droite (AB).

Propriété 3.1.1

Une représentation paramétrique de la droite d passant par M_0 de coordonnées $(x_0; y_0; z_0)$ et de

$$\textit{vecteur directeur } \vec{u} \neq \vec{0} \textit{ de coordonnées } (a \; ; \; b \; ; \; c) \textit{ est } \begin{cases} x = x_0 + ta \\ y = y_0 + tb \textit{ avec } t \in \mathbb{R}. \\ z = z_0 + tc \end{cases}$$

Démontrer la propriété 3.1.1 en utilisant la même méthode que pour la droite (AB) de l'exemple.

Propriété 3.1.2

On considère les nombres réels x_0 , y_0 , z_0 , a, b et c tels que $(a; b; c) \neq (0; 0; 0)$.

L'ensemble des points M dont les coordonnées $(x \; ; \; y \; ; \; z)$ vérifient $\begin{cases} x = x_0 + t\alpha \\ y = y_0 + tb \; avec \; t \in \mathbb{R} \; est \\ z = z_0 + tc \end{cases}$

la droite d passant par M_0 de coordonnées $(x_0; y_0; z_0)$ et de vecteur directeur \overrightarrow{u} de coordonnées (a; b; c).

- Le nombre réel t est le *paramètre* du point M.
- Démontrer la propriété 3.1.2.

3.2 Représentation paramétrique d'un plan

Exemple

On considère les points A(1; 0; -1), B(0; -1; 1), C(-3; 0; 0) et M(x; y; z).

- a. Déterminer les coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{AC} .
- b. Justifier que les points A, B et C définissent un plan.
- c. Une condition nécessaire et suffisante pour que $M \in (ABC)$ est qu'il existe un couple de nombres réels (t; t') unique tel que $\overrightarrow{AM} = t \overrightarrow{AB} + t' \overrightarrow{AC}$.

Calculer en fonction de t et t' les coordonnées (x; y; z) du point M pour qu'il vérifie la condition nécessaire et suffisante précédente.

Ces trois égalités constituent une représentation paramétrique du plan (ABC).

Propriété 3.2.1

Une représentation paramétrique du plan P passant par M_0 de coordonnées $(x_0; y_0; z_0)$ et de vecteurs directeurs \vec{u} de coordonnées $(\alpha; b; c)$ et \vec{u}' de coordonnées $(\alpha'; b'; c')$ est $\begin{cases} x = x_0 + t\alpha + t'\alpha' \\ y = y_0 + tb + t'b' \\ z = z_0 + tc + t'c' \end{cases}$ avec $t \in \mathbb{R}$ et $t' \in \mathbb{R}$.

Démontrer la propriété 3.2.1 en utilisant la même méthode que pour le plan (ABC) de l'exemple.

Propriété 3.2.2

On considère les nombres réels x_0 , y_0 , z_0 , a, b, c, a', b' et c' tels que (a;b;c) et (a';b';c') ne soient pas proportionnels.

L'ensemble des points M dont les coordonnées (x ; y ; z) vérifient $\begin{cases} x = x_0 + t\alpha + t'\alpha' \\ y = y_0 + tb + t'b' \text{ avec } t \in \mathbb{R} \\ z = z_0 + tc + t'c' \end{cases}$

et $t' \in \mathbb{R}$ est le plan P passant par M_0 de coordonnées $(x_0\,;\,y_0\,;\,z_0)$ et de vecteurs directeurs \vec{u} de coordonnées $(a\,;\,b\,;\,c)$ et \vec{u}' de coordonnées $(a'\,;\,b'\,;\,c')$.

- Le couple de nombres réels (t ; t') est le *couple de paramètres* du point M.
- Démontrer la propriété 3.2.2.

Suite de l'exemple

Calculer t en fonction de y, t' en fonction de y et z puis déterminer une équation de la forme ux + vy + wz + h = 0 vérifiée par tous les points M du plan (ABC).

Cette équation est une *équation cartésienne* du plan (ABC).