Primitives d'une fonction numérique

Terminale S Lycée Charles PONCET

Janvier 2013

Table des matières

1	Not	Notion de primitives					
	1.1	Primitives d'une fonction sur un intervalle					
	1.2	Propriétés des primitives					
2	Recherche des primitives d'une fonction						
	2.1	Linéarité					
	2.2	Tableau des primitives des fonctions usuelles					
		Formules d'intégration					

Le symbole riangleq indique les exemples à traiter, des démonstrations à trouver. Le symbole riangleq indique des points importants, des pièges possibles, des notations particulières, etc.

1 Notion de primitives

1.1 Primitives d'une fonction sur un intervalle

Définition 1.1.1

Soit f une fonction définie sur un intervalle I de \mathbb{R} .

On appelle (fonction) primitive de f sur I toute fonction F dérivable sur I telle que F' = f.

Déterminer des primitives (définies sur \mathbb{R}) des fonctions $x \longmapsto f_1(x) = x^2$, $x \longmapsto f_2(x) = \sin(x)$ et $x \longmapsto f_3(x) = \cos(x)$.

1.2 Propriétés des primitives

On démontrera partiellement dans le chapitre sur le calcul intégral le théorème suivant :

Théorème 1.2.1 (théorème d'existence)

Toute fonction continue sur un intervalle I possède des primitives définies sur I.

Dans les exemples précédents, on a vu que les fonctions avaient plusieurs primitives, plus précisement :

Théorème 1.2.2

Si une fonction f possède une primitive F sur un intervalle I, alors f possède une infinité de primitives sur I.

De plus, l'ensemble des primitives de f sur I est l'ensemble des fonctions F + C où C est une fonction constante sur I.

Démontrer le théorème 1.2.2.

Déterminer l'ensemble des primitives, sur \mathbb{R} , de $x \longmapsto f_2(x) = \sin(x)$.

Déterminer l'ensemble des primitives, sur]0 ; $+\infty$ [, de $x \mapsto f_4(x) = \frac{1}{x^2}$.

Deux primitives d'une même fonction sur un intervalle I diffèrent d'une constante. Si F et F + C (avec C constante) sont ces deux primitives, la représentation graphique de F + C se déduit de celle de F par la translation de vecteur $C\vec{j}$, le plan étant muni du repère $(O; \vec{\imath}; \vec{\jmath})$.

Théorème 1.2.3

Soit f une fonction définie sur un intervalle I qui possède des primitives sur I. Il existe une seule primitive F de f sur I qui prend la valeur $y_0 \in \mathbb{R}$ en $x_0 \in I$, c'est-à-dire telle que $F(x_0) = y_0$.

Démontrer le théorème 1.2.3.

Déterminer la primitive de $x \mapsto f_2(x) = \sin(x)$ sur \mathbb{R} qui s'annule en 0 puis celle qui prend la valeur y_0 en $x_0 \in \mathbb{R}$.

2 Recherche des primitives d'une fonction

2.1 Linéarité

Théorème 2.1.1

- 1. Si f et g sont deux fonctions qui possèdent des primitives F et G sur un intervalle I alors F+G est une primitive de f+g sur I.
- 2. Si f est une fonction qui possède une primitive F sur un intervalle I et si k est une constante réelle alors kF est une primitive de kf sur I.
- \implies Déterminer la primitive de $x \longmapsto g(x) = \frac{x^4 1}{x^2} \sin (0); +\infty [\text{qui s'annule en 1}].$

2.2 Tableau des primitives des fonctions usuelles

F désigne une primitive de la fonction f définie sur l'un des intervalles indiqués dans la première colonne et C est une constante (réelle).

f est définie sur	f(x) =	F(x) =
	0	
	a (a constante réelle)	
	x	
	x ²	
	x^n avec $n \in \mathbb{N}$ et $n \geqslant 1$	
	$\frac{1}{x^2}$	
	x^n avec $n \in \mathbb{Z}$ et $n \leqslant -2$	
	$\frac{1}{\sqrt{x}}$	
	cos(x)	
	sin(x)	
	$\cos(\alpha x + b)$ avec $\alpha \neq 0$	
	$sin(ax + b)$ avec $a \neq 0$	
	e ^x	
	e^{ax+b} avec $a \neq 0$	
	$\frac{1}{x}$	
	$\frac{1}{ax+b} \text{ avec } a \neq 0$	

2.3 Formules d'intégration

Pour le tableau suivant, u désigne une fonction dérivable sur un intervalle I et C est une (fonction) constante sur I.

Fonction f	Primitives de f sur I	Condition éventuelle sur u
$\mathfrak{u}'\mathfrak{u}^\mathfrak{n}$ avec $\mathfrak{n}\in\mathbb{N}$ et $\mathfrak{n}\geqslant 1$		
$\frac{\mathfrak{u}'}{\mathfrak{u}^2}$		
$\mathfrak{u}'\mathfrak{u}^\mathfrak{n}$ avec $\mathfrak{n}\in\mathbb{Z}$ et $\mathfrak{n}\leqslant -2$		
$\frac{\mathfrak{u}'}{\sqrt{\mathfrak{u}}}$		
u'e ^u		
$\frac{\mathfrak{u}'}{\mathfrak{u}}$		

Exemples

Déterminer l'ensemble des primitives des fonctions f, g, h et k sur l'intervalle I correspondant.

$$\begin{split} f(x) &= x^2(x^3-1)^5 & I = \mathbb{R} \\ g(x) &= \frac{3x}{\sqrt{x^2-1}} & I =]1\;;\; +\infty[\\ h(x) &= \frac{x}{(x^2-4)^2} & I =]2\;;\; +\infty[\\ k(x) &= \frac{x+1}{(x^2+2x+5)^4} & I = \mathbb{R}. \end{split}$$