Suites numériques

Terminale S Lycée Charles PONCET

Septembre 2012

Table des matières

1		sonnement par récurrence	2
	1.1		2
	1.2	Exercices	2
2	Proj	priétés globales des suites numériques	3
	2.1	Suites majorées, suites minorées, suites bornées	3
	2.2	Suites majorées, suites minorées, suites bornées Sens de variation d'une suite numérique	3
3	Lim	iite d'une suite numérique	3
	3.1	Suites convergentes	3
	3.2	Suites divergentes	4
	3.3	Théorèmes sur les limites	4
	3.4	Cas des suites géométriques	
4	Lim	iite des suites monotones	6
	4.1	Suites monotones non bornées	6
	4.2	Suites monotones convergentes	6
		Le théorème de la convergence monotone	

1 Raisonnement par récurrence

1.1 Principe du raisonnement par récurrence

Propriété

Soit P(n) une propriété qui dépend d'un entier naturel n.

Pour démontrer que P(n) est vraie, quel que soit l'entier naturel n (ou quel que soit l'entier naturel n non nul), on démontre que :

- P(0) (ou P(1)) est vraie;
- la propriété P(n) est récurrente, c'est-à-dire, si P(n) est vraie pour un entier naturel n quelconque (ou pour un entier naturel n non nul quelconque), alors P(n+1) est vraie (propriété d'hérédité).

Si les deux conditions précédentes sont vérifiées, alors la propriété P(n) est vraie quel que soit l'entier naturel n (ou quel que soit l'entier naturel n non nul).

1.2 Exercices

- A. On considère la suite numérique (u_n) définie pour tout entier naturel n par $u_{n+1} = \frac{u_n}{u_n + 1}$ avec $u_0 = \frac{1}{2}$.
 - 1. Calculer les valeurs exactes de u₁, u₂, u₃...
 - 2. Conjecturer une formule donnant l'expression de u_n en fonction de l'entier naturel n.
 - 3. Démontrer, par récurrence, cette formule.
- B. 1. Démontrer que, quel que soit $q \neq 1$, $1+q=\frac{1-q^2}{1-q}$ et $1+q+q^2=\frac{1-q^3}{1-q}$.
 - 2. Démontrer que, quels que soient $q \neq 1$ et l'entier naturel $\mathfrak n$ non nul :

$$1 + q + q^2 + q^3 + \dots + q^n = \frac{1 - q^{n+1}}{1 - q}.$$

- 3. Retrouver cette formule en calculant S_n-qS_n , où $S_n=1+q+q^2+q^3+\cdots+q^n$.
- C. Démontrer, par récurrence, que si $S_n=1^2+2^2+3^2+\cdots+n^2$ alors :

$$S_n = \frac{n(n+1)(2n+1)}{6}.$$

- D. On désigne par a un nombre réel strictement positif.
 - 1. Démontrer par récurrence que, pour tout entier naturel \mathfrak{n} , $(1+\mathfrak{a})^\mathfrak{n}\geqslant 1+\mathfrak{n}\mathfrak{a}$.
 - 2. En déduire que , si q est un nombre réel strictement supérieur à 1, $\lim_{n\to+\infty}q^n=+\infty$.
 - 3. En déduire que , si q est un nombre réel tel que 0 < q < 1, $\lim_{n \to +\infty} q^n = 0$.
- E. Calculer $P(n) = n^2 + n + 11$ pour $n \in \{0; 1; 2; 3; ...\}$.

Que remarque-t-on? Cette propriété est-elle vraie quel que soit l'entier naturel n?

F. Démontrer par récurrence, que, pour tout entier naturel n, le nombre $3n^2 + 3n$ est divisible par 6.

2 Propriétés globales des suites numériques

2.1 Suites majorées, suites minorées, suites bornées

Définition 2.1.1

- Une suite (u_n) de nombres réels est majorée s'il existe une nombre réel M (appelé majorant) tel que, pour tout entier n, u_n ≤ M.
- Une suite (u_n) de nombres réels est minorée s'il existe une nombre réel m (appelé minorant) tel que, pour tout entier $n, u_n \ge m$.
- Une suite (u_n) de nombres réels est bornée si elle est à la fois majorée et minorée.
- Démontrer que la suite u définie pour tout entier naturel n par $u_n = \frac{3n+4}{2n+1}$ est bornée.

Pour cela, on déterminera deux nombre réels A et B, tels que, pour tout $n \in \mathbb{N}$, $u_n = A + \frac{B}{2n+1}$.

2.2 Sens de variation d'une suite numérique

Définition 2.2.1 (sens de variation d'une suite numérique réelle)

- 1. Une suite numérique (u_n) est croissante si, pour tout entier n, $u_{n+1} \ge u_n$;
- 2. Une suite numérique (u_n) est strictement croissante si, pour tout entier n, $u_{n+1} > u_n$;
- 3. Une suite numérique (u_n) est décroissante si, pour tout entier $n,\,u_{n+1}\leqslant u_n$;
- 4. Une suite numérique (u_n) est strictement décroissante si, pour tout entier n, $u_{n+1} < u_n$;
- 5. Une suite numérique (u_n) est constante ou stationnaire si , pour tout entier n, $u_{n+1} = u_n$;
- 6. Une suite numérique est monotone si elle est soit croissante, soit décroissante, soit constante;
- 7. Une suite numérique est strictement monotone si elle est soit strictement croissante, soit strictement décroissante.
- Pour étudier le sens de variation d'une suite (u_n) on peut calculer $u_{n+1} u_n$ et étudier le signe de cette différence.
- Déterminer le sens de variation d'une suite arithmétique de raison r.
- Une suite numérique réelle ne peut être (strictement) monotone qu'à partir d'un certain rang.

Théorème 2.2.1 (sens de variation de la suite géométrique de terme général qⁿ)

Si q est un nombre réel strictement positif, la suite géométrique (q^n) est strictement croissante si q>1, constante si q=1 et strictement décroissante si 0< q<1.

 $u_n = q^n$. Calculer $u_{n+1} - u_n$ et conclure.

3 Limite d'une suite numérique

3.1 Suites convergentes

Définition 3.1.1

Une suite (u_n) converge vers le nombre réel ℓ si tout intervalle ouvert I contenant ℓ , contient tous les termes de (u_n) à partir d'un certain rang.

Cela signifie donc que, quel que soit l'intervalle ouvert I contenant ℓ , il existe une entier naturel N tel que, pour tout $n \geqslant N$, $u_n \in I$.

Théorème 3.1.1 (unicité de la limite)

Si une suite converge, sa limite ℓ est unique et on note $\lim_{n \to +\infty} u_n = \ell$.

Les suites de termes généraux $\frac{1}{n}$, $\frac{1}{n^2}$, $\frac{1}{n^p}$ (p étant un entier naturel non nul) et $\frac{1}{\sqrt{n}}$ convergent vers 0.

3.2 Suites divergentes

Définition 3.2.1

Une suite divergente est une suite qui ne converge pas.

Définition 3.2.2

Une suite (u_n) a pour limite $+\infty$ si tout intervalle ouvert I du type $]A; +\infty[$ (avec A un nombre réel strictement positif) contient tous les termes de (u_n) à partir d'un certain rang.

Cela signifie donc que, quel que soit le nombre réel A>0, il existe une entier naturel N tel que, pour tout $n\geqslant N$, $u_n>A$.

Définition 3.2.3

Une suite (u_n) *a pour limite* $-\infty$ *si la suite de terme général* $-u_n$ *a pour limite* $+\infty$.

• On note $\lim_{n \to +\infty} u_n = +\infty$ ou $\lim_{n \to +\infty} u_n = -\infty$.

Les suites de termes généraux n, n^2 , n^p (p étant un entier naturel non nul) et \sqrt{n} ont pour limites $+\infty$.

Il existent deux sortes de suites divergentes : celles qui ont une limite infinie et celles qui n'ont pas de limite, comme par exemple la suite de terme général $(-1)^n$.

3.3 Théorèmes sur les limites

Les théorèmes sur les opérations sur les limites sont analogues à ceux sur les opérations sur les limites des fonctions numériques.

On considère deux suites numériques (u_n) et (v_n) et deux nombres réels α et β .

3.3.1 Somme

$\lim_{n\to +\infty}\mathfrak{u}_n$	α	α	α	+∞	+∞	$-\infty$
$\lim_{n\to +\infty} \nu_n$	β	$+\infty$	$-\infty$	+∞	$-\infty$	$-\infty$
$\lim_{n\to+\infty}\left(u_n+v_n\right)$						

3.3.2 Produit par un nombre réel non nul

k désigne un nombre réel quelconque non nul.

$\lim_{n\to +\infty} \mathfrak{u}_n$	α	+∞	$-\infty$
$\lim_{n\to +\infty} \left(ku_n\right)$			

3.3.3 Produit

$\lim_{n\to +\infty} u_n$	α	$\alpha \neq 0$	$\alpha \neq 0$	0	$+\infty$	+∞	$-\infty$
$\lim_{n\to +\infty} \nu_n$	β	$+\infty$	$-\infty$	+∞ ou -∞	$+\infty$	$-\infty$	$-\infty$
$\lim_{n\to +\infty} \left(u_n \times v_n\right)$							

3.3.4 Quotient

$\lim_{n\to +\infty} \mathfrak{u}_n$	α	$\alpha \neq 0$	0	α	+∞	$-\infty$	+∞ ou -∞
$\lim_{n\to +\infty} \nu_n$	$\beta \neq 0$	0	0	+∞ ou -∞	β	β	+∞ ou -∞
$\lim_{n\to +\infty}\frac{u_n}{\nu_n}$							

Conclusion

Il y a quatre cas où on ne peut pas conclure : « $\infty - \infty$ », « $0 \times \infty$ », « $\frac{0}{0}$ » et « $\frac{\infty}{\infty}$ », ce sont des *formes indéterminées*.

3.3.5 Théorèmes de comparaison

Ce sont des théorèmes analogues à ceux pour les fonctions numériques et se démontrent de la même façon.

Théorème 3.3.1

On considère deux suites (u_n) et (v_n) telles qu'à partir d'un certain rang, $u_n \leq v_n$.

- $\bullet \ \ \textit{Si} \lim_{n \to +\infty} u_n = +\infty \ \textit{alors} \lim_{n \to +\infty} \nu_n = +\infty.$
- $Si \lim_{n \to +\infty} v_n = -\infty \text{ alors } \lim_{n \to +\infty} u_n = -\infty.$

Théorème 3.3.2 (théorème des « gendarmes »)

On considère trois suites (u_n) , (v_n) et (w_n) telles qu'à partir d'un certain rang, $v_n \le u_n \le w_n$ et un nombre réel ℓ .

- $Si \lim_{n \to +\infty} v_n = \ell \ et \lim_{n \to +\infty} w_n = \ell \ alors \lim_{n \to +\infty} u_n = \ell.$

3.4 Cas des suites géométriques

Théorème 3.4.1

q est un nombre réel non nul.

•
$$Si \ q > 1 \ alors \lim_{n \to +\infty} q^n = +\infty.$$

- $Si\ 0 < q < 1\ ou\ -1 < q < 0$, $c'est-\grave{a}-dire\ 0 < |q| < 1$, $alors\ \lim_{n \to +\infty} q^n = 0$.
- Le théorème 3.4.1 a été démontré dans l'exercice D page 2 (pour q > 1 et pour 0 < q < 1).
- Peut-on donner un sens à $1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n} + \dots$?

4 Limite des suites monotones

4.1 Suites monotones non bornées

Théorème 4.1.1

- Si une suite (u_n) est croissante et non majorée alors $\lim_{n\to +\infty} u_n = +\infty$.
- Si une suite (u_n) est décroissante et non minorée alors $\lim_{n\to +\infty} u_n = -\infty$.
- Démontrer le théorème 4.1.1 en utilisant la définition d'une suite qui a pour limite $+\infty$ et en écrivant que (\mathfrak{u}_n) n'est pas majorée, c'est-à-dire que, pour tout réel M, donc, en particulier, pour tout réel M>0, il existe un entier \mathfrak{n}_0 tel que $\mathfrak{u}_{\mathfrak{n}_0}>M$.
 - Si (u_n) est décroissante et non minorée, considérer la suite (v_n) de terme général $v_n = -u_n$.

4.2 Suites monotones convergentes

Théorème 4.2.1

- Si une suite (u_n) est croissante et converge vers le nombre réel ℓ alors elle est majorée par ℓ .
- Si une suite (u_n) est décroissante et converge vers le nombre réel ℓ alors elle est minorée par ℓ .
- Démontrer le théorème 4.2.1 en utilisant un raisonnement par l'absurde.

4.3 Le théorème de la convergence monotone

Théorème 4.3.1 (théorème admis)

- Toute suite croissante et majorée converge.
- Toute suite décroissante et minorée converge.
- Démontrer que la suite (u_n) dont les premiers termes sont $u_1 = 0.2$, $u_2 = 0.23$, $u_3 = 0.235$, $u_4 = 0.2357$, $u_5 = 0.235711$, ... converge. (On cherchera également la définition du terme général de cette suite.)
- La limite de (u_n) est la constante de COPELAND-ERDŐS (Arthur Herbert COPELAND, mathématicien américain, 1898-1970 et Paul ERDŐS, mathématicien hongrois, 1913-1996).

Exercice d'application

On considère la suite u définie par $u_0=0$ et pour tout entier $n\in\mathbb{N}$, $u_{n+1}=\sqrt{12+u_n}$.

- 1. Calculer u_1 , u_2 .
 - Démontrer, par récurrence, que, pour tout entier $n \in \mathbb{N}$, $0 \le u_n < 4$.
- 2. Déterminer le sens de variation de la suite u.
- 3. Justifier que la suite u converge et déterminer sa limite.