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To my students

As we express our gratitude, we must never forget that the highest
appreciation is not to utter words, but to live by them.

- John F. Kennedy.
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Foreword

To forget one’s purpose is the commonest form of stupidity - Nietzsche.

I have been asked, time and again, what the purpose is of learning
Abstract Algebra. I wrote this book to answer this perennial question.
Traditionally, Algebra books begin with definitions and theorems and
applications might appear as examples. Many students are not inclined
to learn without a purpose. The beautiful subject of Algebra closes
doors on them. The responses of many students to Abstract Algebra
remind me of Gordan’s reaction to the proof of the Hilbert’s basis
Theorem - This is not Mathematics. This is Theology.

The focus of this book is applications of Abstract Algebra to poly-
nomial systems. The first five chapters explore basic problems like
polynomial division, solving systems of polynomials, formulas for roots
of polynomials, and counting integral roots of equations. The sixth
chapter uses the concepts developed in the book to explore coding the-
ory and other applications.

This book could serve as a textbook for a beginning Algebra course,
a student takes immediately after a Linear Algebra course. Linear Al-
gebra is not a prerequisite but will provide the basis for the natural
progression to nonlinear Algebra. This book could also be used for
an elective course after an Abstract Algebra course to focus on appli-
cations. This book is suitable for third or fourth year undergraduate
students.

Maya Mohsin Ahmed
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Chapter 1

Polynomial Division.

Judge a man by his questions rather than by his answers – Voltaire.

If someone asks you whether you know how to divide polynomials
your first answer would be sure you do. You learned that in high
school or earlier. But now if the question is rephrased and you are
asked whether you know how to divide polynomials in more than one
variable, then to your surprise, you find you do not know the answer
unless you have taken a couple of courses in Abstract Algebra. In this
chapter we introduce Rings and Fields which are algebraic objects that
allow you to solve such problems.

1.1 Rings and Fields.

Definition 1.1.1. A ring is a nonempty set R equipped with two oper-
ations (usually written as addition and multiplication) that satisfy the
following axioms.

1. R is closed under addition: if a ∈ R and b ∈ R then a+ b ∈ R.

2. Addition is associative: if a, b, c ∈ R, then a+(b+c) = (a+b)+c.

3. Addition is commutative: if a, b ∈ R, then a+ b = b+ a

4. There is an additive identity (or zero element) 0R in R such that
a+ 0R = a = 0R + a for every a ∈ R.

5. For each a ∈ R there is an additive inverse (denoted by -a) in
R, that is the equation a + x = 0R has a solution in R. For
convenience we write b+ (−a) as b− a for a, b ∈ R.
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6. R is closed under multiplication: if a ∈ R, and b ∈ R then a · b ∈
R.

7. Multiplication is associative: if a, b, c ∈ R, then a·(b·c) = (a·b)·c.

8. Distributive laws of multiplication hold in R: if a, b, c ∈ R, then

a · (b+ c) = a · b+ a · c and

(a+ b) · c = a · c+ b · c.

Example 1.1.1.

1. The set of integers Z = {. . . ,−2,−1, 0, 1, 2, . . . } is a ring.

2. The set of rational numbers Q is a ring.

3. The set of complex numbers C is a ring.

4. Let k be a ring. The set of all polynomials in n variables with coef-
ficients in k , denoted by k[x1, x2, . . . , xn], with the usual operation
of addition and multiplication of polynomials, is a ring. Conse-
quently, C[x1, x2, . . . , xn], Q[x1, x2, . . . , xn], and Z[x1, x2, . . . , xn]
are rings.

A ring in which the operation of multiplication is commutative is
called a commutative ring. A ring with identity is a ring R that contains
an element 1R satisfying the axiom:

a · 1R = a = 1R · a for all a ∈ R.

Definition 1.1.2. An integral domain is a commutative ring R with
identity 1R ̸= 0R that satisfies the condition:

Whenever a, b ∈ R and ab = 0R, then a = 0R or b = 0R.

Example 1.1.2.

The sets Z and Q are integral domains.

Definition 1.1.3. A field is a commutative ring with identity in which
every nonzero element has an inverse.

Note that in a field F division is closed, i.e., if a, b ∈ F , then
a/b = ab−1 ∈ F .
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Example 1.1.3.

1. The sets Q and C are fields.

2. The set Z is not a field.

3. The set k[x1, x2, . . . , xn] is not a field.

Many results from elementary algebra are also true for rings.

Example 1.1.4. Let R be a ring. If a, b ∈ R, then a− (−b) = a+ b.
Proof. Since b− b = b+ (−b) = 0R, we get that the inverse of (−b)

−(−b) = b.

Therefore
a− (−b) = a+ b.

Similar properties of rings are explored in the exercises.

1.2 Polynomial division.

We first look at polynomial divisions that involve only one variable x.
The monomial of a polynomial with the highest degree is called the
leading monomial and the coefficient of the leading monomial is called
the leading coefficient. The leading term of a polynomial is the product
of the leading coefficient and the leading monomial. The degree of the
leading term is also the degree of the polynomial. The nonzero constant
polynomials have degree zero. The constant polynomial 0 does not have
a degree.

Theorem 1.2.1 (The Division Algorithm). Let f(x) and g(x) be poly-
nomials with real coefficients such that g(x) ̸= 0. Then there exists
unique polynomials q(x) and r(x) such that

f(x) = g(x)q(x) + r(x)

and degree r(x) < degree g(x).
The polynomial q(x) is called the quotient and the polynomial r(x)

is called the remainder.
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The proof of the division algorithm is dealt with in the exercises.

Example 1.2.1. If we divide f = x4 + x + 1 by g = x2 − 1, we get
r = 2x+ 1 as remainder. Observe that the degree of r is less than the
degree of g.

But the story changes when we work with polynomials involving
more than one variable. For example, determining which is the leading
term of the polynomial x2 + xy + y2 is not as straightforward as the
one variable case. Consequently, we need to establish an ordering of
terms for multivariable polynomials.

Let Zn
≥0 denote the set of n-tuples with nonnegative integer coordi-

nates and let k be a field. Consider the ring of polynomials k[x1, x2, . . . xn].
Observe that we can reconstruct the monomial xα = xα1

1 · · · xαn
1

from the n-tuple of exponents (α1, . . . , αn) ∈ Zn
≥0. In other words, there

is a one-to-one correspondence between monomials in k[x1, . . . , xn] and
Zn

≥0. This correspondence allows us to use any ordering > we establish
on the space Zn

≥0 as an ordering on monomials, that is,

α > β in Zn
≥0 implies xα > xβ in k[x1, . . . , xn].

Definition 1.2.1. A Monomial ordering on k[x1, . . . , xn] is any re-
lation > on Zn

≥0, or equivalently, any relation on the set of monomials
xα, α ∈ Zn

≥0, satisfying:

1. > is a total (or linear) ordering on Zn
≥0, which means that, for

every pair α, β ∈ Zn
≥0 exactly one of the three statements

α > β, α = β, β > α

should be true.

2. If α > β ∈ Zn
≥0, then α + γ > β + γ, whenever γ ∈ Zn

≥0.

3. > is a well-ordering in Zn
≥0, that is, every nonempty subset of Zn

≥0

has a smallest element under >.

We now look at some common monomial orderings.

Definition 1.2.2 (Lexicographic (or Lex) ordering). Let α =
(α1, . . . , αn) and β = (β1, . . . , βn) ∈ Zn

≥0. We say α >lex β if, in the
vector difference α − β ∈ Zn

≥0, the left-most nonzero entry is positive.

And we write xα >lex xβ if α >lex β.

12



Example 1.2.2. 1. Consider the polynomial f = x2 + xy + y2. We
have x2 >lex xy because (2, 0) >lex (1, 1): check that in the vector
difference (2, 0) − (1, 1) = (1,−1), the leftmost entry is positive.
Similarly, x2 >lex y2 since (2, 0) >lex (0, 2). Therefore, the lead-
ing term of the polynomial f with respect to the lexicographic
ordering is x2.

2. The leading term of the polynomial x+ y4 with respect to the lex
ordering is x.

Different monomial orderings give different leading terms for the
same polynomial and we make the choice of monomial ordering that
serves our purpose best.

Definition 1.2.3 (Graded lex order). Let α, β ∈ Zn
≥0 and let

|α| =
n∑

i=1

αi, |β| =
n∑

i=1

βi.

We say α >glex β if

|α| > |β| or |α| = |β| and α >lex β.

Example 1.2.3. 1. The leading term of the polynomial x2+xy+y2

with respect to graded lex order is still x2. This is because the
degrees of all other terms being the same, the condition x >lex y
determines the leading term.

2. The leading term of the polynomial x + y4 is y4 with respect to
the graded lex ordering.

We refer the reader to Chapter 2 in [17] for other monomial order-
ings and also for a detailed study of the same. Now that we have a
notion of monomial orderings, can we satisfactorily divide polynomials
with more than one variable? The answer still is no because there is
one more problem we must discuss. We do this with an example.

Example 1.2.4. Let us divide f = x2 + xy + 1 with the polynomial
g = xy − x with respect to the graded lex ordering.

The leading term of f is x2 and is not divisible by the leading term
xy of g. In the one variable case this would imply that f is not divisible
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by g. But in the case of multivariable polynomials f is still divisible
by g because the second term of f is divisible by the leading term of
g. So we ignore the leading term of f and perform division as shown
below.

q : 1

xy − x

√
x2 + xy + 1

xy − x

x2 + x+ 1

The quotient q = 1 and the remainder r = x2 + x+ 1 and we write
f = qg+ r. So the idea is to continue dividing till none of the terms of
f is divisible by the leading term of g. Observe that

lead term r >glex lead term g.

Recall that this cannot happen in one variable polynomial division.
To conclude, we list the two steps involved in dividing a multivari-

able polynomial f by a multivariable polynomial g:

1. Choose a monomial ordering.

2. Divide until none of the terms of the remainder is divisible by the
leading term of g.

Sometimes we need to divide a polynomial f by a set of polynomials
F= {f1, . . . , fn}, that is, write f as

f =
n∑
i

qifi + r where qi are quotients and r is the remainder.

For example, we want to know whether the solutions of a system
of polynomials in F = {f1, . . . , fn} are also roots of a polynomial f
(this question is formalized in Section 2.1). To answer this question,
we divide f by the set {f1, . . . , fn} to write f =

∑n
i qifi + r. If the

remainder r = 0, then the solutions of the system F are roots of f .
In the following example, we demonstrate the dependence of the

remainder on the order of division. The remainder is different when
the order of division is different.
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Example 1.2.5. Let F = {f1, f2} where f1 = xy − 1 and f2 = y2 − 1,
and let f = xy2 − y3 + x2 − 1. We divide the polynomial f first by f1
and then by f2 with respect to the graded lex ordering:

q1 : y
q2 : −y

xy − 1
y2 − 1

√
xy2 − y3 + x2 − 1
xy2 − y

−y3 + x2 + y − 1
−y3 + y

x2 − 1

Therefore,

f = q1f1 + q2f2 + r where r = x2 − 1, q1 = y, q2 = −y.

Now we change the order of division and divide f by f2 first and
then f1:

q1 : 0
q2 : x− y

y2 − 1
xy − 1

√
xy2 − y3 + x2 − 1
xy2 − x

−y3 + x2 + x− 1
−y3 + y

x2 + x− y − 1

This gives us

f = q1f1 + q2f2 + r where r = x2 + x− y − 1, q1 = 0, q2 = x− y.

Since the remainder is not unique, we cannot say at this point, whether
r = 0 for some q1 and q2. To get a unique remainder for a given
monomial ordering, no matter what the order of division is, we use
Gröbner bases which are discussed in the next section.

1.3 Gröbner bases.

Subsets of a ring need not be rings. For example, the set of even
integers is a ring whereas the set of odd integers is not (the sum of two
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odd integers is not odd). A subset of a ring that is also a ring is called
a subring.

Definition 1.3.1. A subring I of a ring R is an ideal provided:

Whenever r ∈ R and a ∈ I, then r · a ∈ I and a · r ∈ I.

Ideals bring the generalized notion of being closed under scalar mul-
tiplication we find in vector spaces to rings.

Example 1.3.1.

1. {0R} and R are ideals for every ring R.

2. The only ideals of a field R are {0R} and R. See Exercise 5.

3. The set of even integers is an ideal of the ring Z.

We now prove a result that is handy while proving a subset of a
ring is an ideal and help skip the many checks of the definition.

Proposition 1.3.1. A nonempty subset I of a ring R is an ideal if
and only if it has the following two properties:

1. if a, b ∈ I, then a− b ∈ I;

2. if r ∈ R and a ∈ I, then r · a ∈ I and a · r ∈ I.

Proof. Every ideal has these two properties by definition. Con-
versely suppose I has properties (1) and (2). Since I is a subset of R,
addition is associative and commutative, multiplication is associative,
and the distributive laws of multiplication hold in I as well. Therefore,
to prove I is a subring we only need to prove that I is closed under
addition and multiplication, 0R ∈ I, and that the additive inverse of
every element of I is also in I. Since I is nonempty there is some
element a ∈ I. Applying (1), we get a − a = 0R ∈ I. Now if a ∈ I,
then again by (1), 0r − a = −a ∈ I. Now, let a, b ∈ I. Since −b ∈ I,
a− (−b) = a+ b ∈ I. Thus I is closed under addition. If a, b ∈ I, then
a, b ∈ R since I is a subset of R. Consequently, Property (2) implies
that a · b ∈ I. Hence I is closed under multiplication. Thus, I is an
ideal.

In many cases, ideals tend to be infinite sets. So it is convenient to
describe ideals in terms of a finite set, whenever possible.
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Proposition 1.3.2. Let R be a ring and let F = {f1, . . . , fs} be a
subset of R. Then the set I = {

∑s
i=1 ai · fi : ai ∈ R} is an ideal.

I is called the ideal generated by the set F and is denoted I =<
f1, . . . , fs >.

Proof. We use Proposition 1.3.1 to prove I is an ideal. Let a, b ∈ I
such that a =

∑s
i=1 ai · fi and b =

∑s
i=1 bi · fi where ai, bi ∈ R for

i = 1 to s. Then a − b =
∑s

i=1(ai − bi) · fi ∈ I because (ai − bi) ∈ R
for all i since R is a ring. Thus I satisfies property (1) in Proposition
1.3.1. Again, since R is a ring, for r ∈ R, r · ai ∈ R for i = 1 to s.
Therefore, r · a =

∑s
i=1(rai) · fi ∈ I by definition of I. Similarly we

prove that a · r ∈ I. Thus I also satisfies property (2) of Proposition
1.3.1. Therefore, I is an ideal.

Example 1.3.2.

1. The zero ideal is generated by a single element: I =< 0R >= {0R}
for every ring R.

2. An ideal I can have different sets of generators. LetR = Q[x1, . . . , xn]
be the polynomial ring with rational coefficients. Then the ideal
I =< xy − 1, y2 − 1 >=< x− y, y2 − 1 > (see Exercise 8).

Is every ideal of ring R finitely generated? Not always, but in the
case of Noetherian rings this is true.

Definition 1.3.2. A ring R is a Noetherian ring if every ideal I of
R is finitely generated, i.e., I =< f1, . . . , fs > such that fi ∈ R for
i = 1 to s.

Theorem 1.3.1 (Hilbert’s Basis Theorem). If R is a Noetherian ring
then so is the polynomial ring R[x].

The Proof of the Hilbert’s basis Theorem is given in [7, 17] and is
beyond the scope of this book. An ideal that is generated by one ele-
ment is called a principal ideal. A principal ideal domain is an integral
domain in which every ideal is principal.

Example 1.3.3. The field k is finitely generated as an ideal (k =<
1 >). The only other ideal of k is < 0 >. In fact, both the ideals
of k are principal ideals and hence finitely generated. Thus, fields
are Noetherian. Therefore, Theorem 1.3 implies k[x1] is Noetherian
whenever k is a field. Applying the theorem subsequently we derive
k[x1, x2, . . . , xn] is Noetherian whenever k is a field
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A Gröbner basis of an ideal I is a set of generators of I, and we
now proceed to define it.

Let I ⊂ k[x1, . . . , xn] be an ideal other than {0}. Let LT(I) denote
the set of leading terms of elements of I, that is,

LT(I) = {cxα : there exists f ∈ I with LT(f) = cxα}.

We denote < LT(I) > to be the ideal generated by the elements of
LT(I).

Definition 1.3.3. Fix a monomial order. A finite subset G = {g1, . . . , gt}
of an ideal I is said to be Gröbner basis if

< LT(g1), . . . ,LT(gt) >=< LT(I) > .

In other words, a set {g1, . . . , gt} is a Gröbner basis of I if and only
if the leading term of any element of I is divisible by one of the LT(gi)
because the ideal < LT(I) > is generated by LT(gi).

In order to compute Gröbner bases, we define S-polynomials. For a
fixed monomial ordering, let LM(f) denote the leading monomial of a
polynomial f and let LT(f) denote the leading term of f .

Definition 1.3.4. 1. Let the leading monomials of polynomials f
and g be

LM(f) =
n∏

i=1

xi
αi and LM(g) =

n∏
i=1

xi
βi .

We call xγ the least common multiple (LCM) of LM(f) and
LM(g), if γ = (γ1, . . . , γn) such that γi = max (αi, βi) for each i.

2. The S-polynomial of f and g is the combination

S(f, g) =
xγ

LT (f)
· f − xγ

LT (g)
· g.

Observe that we construct a S-polynomial of the polynomials f and
g by eliminating the lead terms of f and g, and that the S-polynomial
always has a smaller lead term than the lead terms of f and g.

Example 1.3.4. We now return to Example 1.2.5. Consider the
graded lex ordering, then

LM(f1) = xy and LM(f2) = y2.
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The least common multiple of LM (f1) and LM(f2) is

xγ = xy2.

Therefore

S(f1, f2) =
xy2

xy
f1 −

xy2

y2
f2 = yf1 − xf2 (1.1)

= y(xy − 1)− x(y2 − 1) = x− y.

In his 1965 Ph.D. thesis, Bruno Buchberger created the theory of
Gröbner bases and named these objects after his advisor Wolfgang
Gröbner. We now provide his algorithm to compute a Gröbner basis
of an ideal.

Algorithm 1.3.1. (Buchberger’s Algorithm.)

• Input: A set of polynomials F = {f1, . . . , fs}

• Output: A Gröbner basis G = {g1, . . . , gt} associated to F .

• Method:

Choose a monomial ordering.

Start with G := F .

Repeat G′ := G

1. For each pair {p, q}, p ̸= q in G′ find S-polynomial S(p, q).

2. Divide S(p, q) by the set of polynomials G′.

3. If S ̸= 0 then G := G ∪ {S}

Until G = G′.

Observe that for each pair {p, q}, p ̸= q in the Gröbner basis G
the remainder after dividing the S-polynomial S(p, q) by G is always
zero. Gröbner bases for the same set of polynomials differ according
to the monomial order we choose in our algorithm. The proof of the
Buchberger’s Algorithm is found in [17].

Given a monomial ordering can we find a unique Gröbner basis?
The answer is yes and this basis also has the smallest number of poly-
nomials and is called reduced.
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Definition 1.3.5. A reduced Gröbner basis for a set of polynomials
F is a Gröbner basis G of F such that:

1. The leading coefficient is 1 for all p ∈ G.

2. For all p ∈ G, none of the terms of p is divisible by the leading
term of q for each q ∈ G− {p}.

To find the reduced Gröbner basis we need to modify Algorithm
1.3.1 a little. We now add one more step before repeating the loop.

Algorithm 1.3.2. (Computing a reduced Gröbner basis.)

• Input: A set of polynomials F = {f1, . . . , fs}

• Output: The reduced Gröbner basis G = {g1, . . . , gt} of F .

• Method:

Choose a monomial ordering.

Start with G := F .

Repeat G′ := G

1. For each pair {p, q}, p ̸= q in G′, find S-polynomial S(p, q).

2. Divide S(p, q) by the set of polynomials G′.

3. If S ̸= 0 then G := G ∪ {S}
4. Divide each p ∈ G by G− {p} to get p′. If p′ ̸= 0, replace p

by p′ in G. If p′ = 0 then G = G− {p}.

Until G = G′.

Example 1.3.5. We return to Example 1.2.5 and compute the reduced
Gröbner basis of the ideal generated by F with respect to the graded
lex ordering.

Initially the Gröbner basis G = F . We go to Step 1 in Algo-
rithm 1.3.2 and compute S(f1, f2). We have from Equation 1.1 that
S(f1, f2) = x− y. Let f3 = S(f1, f2). The remainder after dividing f3
by G is also f3. Since f3 ̸= 0, in accordance with Step 3, we add f3 to
G, that is G = {f1, f2, f3}. Now proceed to Step 4. The remainder is
zero when f1 is divided by {f2, f3}. Therefore G = {f2, f3}. Verify that
more polynomials cannot be eliminated from G and go back to the be-
ginning of the loop with G = {f2, f3}. In Step 1, f4 = S(f2, f3) = y3−x
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whose remainder is zero when we divide it by G. We now can exit
the loop and conclude that the reduced Gröbner basis with respect to
Graded lex ordering is

G = {x− y, y2 − 1}.

Gröbner bases can be computed using mathematical softwares like
Singular ( http://www.singular.uni-kl.de), CoCoA (http://cocoa.dima.unige.it),
and Macaulay2( http://www.math.uiuc.edu/Macaulay2). Here, we demon-
strate how to compute Gröbner bases using Singular.

Example 1.3.6. We use Singular to compute the reduced Gröbner
basis G of the ideal (xy − 1, y2 − 1) with respect to the graded lex
ordering. The command to compute Gröbner basis of an ideal I is
std(I). We get G = {x − y, y2 − 1}. A sample input output session of
Singular to compute a Gröbner basis is given below.

> ring r = 0, (x,y), Dp;

> ideal I = xy-1, y^2-1;

> std(I);

_[1]=x-y

_[2]=y2-1

> exit;

Auf Wiedersehen.

Lemma 1.3.1. Let r be the remainder we get when we divide f by a
Gröbner basis G of the ideal I =< F >. Then, r is also a remainder
when f is divided by F .

Proof. The S-polynomials are at first monomial combinations of
polynomials in F . Later, in the Buchberger’s algorithm, S-polynomials
include polynomials from G. But gi ∈ G are either S-polynomials
or remainders when S-polynomials are divided by polynomials in G.
Therefore, from the expression f =

∑
gi∈G aigi+r we get from dividing

f by G, we are always able to write f =
∑

fi∈F qifi+ r such that qi are
polynomials. And r remains the same.

Now we have all the tools to perform polynomial divisions by a set.
We demonstrate the process with an example. The Gröbner basis used
in the process is not required to be reduced, in general.

Example 1.3.7. Going back to Example 1.2.5, we divide f = xy2 −
y3 + x2 − 1 by F .
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From Example 1.3.5, we know that the Gröbner basis with respect
to the glex ordering of the ideal I =< F > is G = {x − y, y2 − 1}.
By Lemma 1.3.1, the remainder we get by dividing f by G is also a
remainder when f is divided by F .

We now show that the order of division do not matter when f is
divided by G.

When we divide f by x − y first and then by y2 − 1, we get the
remainder r = 0 as described below.

q1 : y2 + x+ y
q2 : 1

x− y
y2 − 1

√
xy2 − y3 + x2 − 1
xy2 − y3

x2 − 1
x2 − xy

xy − 1
xy − y2

y2 − 1
y2 − 1

0

We now change the order of division, that is, we divide f by g2
first and then g1 to demonstrate that the remainder remains the same.
When we divide a polynomial with a set of polynomials, just like in the
case of dividing a polynomial with a single polynomial, the remainder
has to be a polynomial such that none of its terms are divisible by any
polynomial in the set. For example after dividing f by g2 and g1 once,
we get a remainder y2 − 1. We need to divide y2 − 1 again with g2 to
get the actual remainder 0. The details are given below. Observe that
the quotients, unlike the remainder, depend on the order of division.
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q1 : x+ y + 1
q2 : x− y + 1

y2 − 1
x− y

√
xy2 − y3 + x2 − 1
xy2 − x

−y3 + x2 + x− 1
−y3 + y

x2 + x− y − 1
x2 − xy
xy + x− y − 1
xy − y2

y2 + x− y − 1
x− y

y2 − 1
y2 − 1

0

Consequently, we get

f = xy2 − y3 + x2 − 1 = (y2 + x+ y)f3 + f2. (1.2)

We also know from Equation 1.1 that f3 = S(f1, f2) = yf1 − xf2.
Therefore,

f = q1f1 + q2f2 + 0 where

q1 = y(y2 + x+ y) and

q2 = −x(y2 − x− y) + 1. (1.3)

A zero remainder implies that the solutions of F are roots of f .
It is easy to check that f , indeed, vanishes at the two solutions of F ,
namely, (1, 1) and (−1,−1).

We leave it as an exercise to prove that f ∈ I if and only if the
remainder we get when f is divided by G is zero.

In conclusion, the strategy we follow to divide a polynomial f by a
set of polynomials F to get a unique remainder is as follows:
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1. Compute Gröbner basis G = {g1, . . . , gt} of the ideal I =< F >.

2. Divide f by G to get a unique remainder r. Note that none of
the terms of r are divisible by any polynomial in G.

3. Trace the quotients qi, i = 1 to n from the S-polynomials to write
f = q1f1 + · · ·+ qnfn + r.

In this chapter, we saw that replacing a set of polynomials with
a Gröbner basis gave us a unique remainder. We will see some more
applications of Gröbner bases in later chapters.

Exercises.

1. Prove that the set of all n × n matrices with the usual opera-
tions of matrix multiplication and addition over real numbers is
a noncommutative ring with identity.

2. Prove that the set T of all continuous functions from R to R is a
ring with identity where addition and multiplication is defined as
follows. Let f, g ∈ T , the

(f + g)(x) = f(x) + g(x) and (fg)(x) = f(x)g(x).

3. Let R and S be rings. Define addition and multiplication on the
Cartesian product R× S by

(r, s) + (r′, s′) = (r + r′, s+ s′)
(r, s) · (r′, s′) = (r · r′, s · s′).

Prove that R × S is a ring. Also prove that if R and S are
commutative, then so is R×S, and that if R and S each have an
identity, then so does R× S.

4. Let R be a ring. Prove that for any element a, b, c ∈ R

(a) the equation a+ x = 0R has a unique solution;

(b) a+ b = a+ c implies b = c;

(c) a · 0R = 0R = 0R · a;
(d) (−a) · (−b) = a · b;
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(e) −(−a) = a.

5. Prove that the only ideals of a field R are < 0R > and R.

6. Prove that every ideal in Z is principal (Hint: show that I =<
c >, where c is the smallest integer in I).

7. If k is a field, show that k[x] is a principal ideal domain.

8. Prove that the ideals < xy − 1, y2 − 1 > and < x − y, y2 − 1 >
are the same. (Hint: Prove that both the ideals have the same
minimal Gröbner basis).

9. Let I be an ideal, prove that f ∈ I if and only if the remainder
we get when f is divided by a Gröbner basis of I is zero.

10. Use the principle of induction to prove the division algorithm
(Theorem 1.2.1).

11. Show that the remainder is zero when the polynomial x2y−xy2−
y2 + 1 is divided by the set {xy − 1, y2 − 1}.

12. Compute the Gröbner basis of the ideal < x − z4, y − z5 > with
respect to the lex and graded lex orderings.

13. Write a computer program to find the Gröbner basis of an ideal
w.r.t the lex ordering.
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Chapter 2

Solving Systems of
Polynomial Equations.

The greatest challenge to any thinker is stating the problem in a way
that will allow a solution – Bertrand Russell.

In this chapter, we look at solutions to systems of polynomial equa-
tions. Systems of polynomials are solved by eliminating variables. In
Linear Algebra, where all the polynomials involved are of degree one,
eliminating variables involved matrix operations. For systems of higher
order polynomials we use Gröbner bases to do the same.

2.1 Ideals and Varieties.

Let k be a field, and let f1, . . . , fs be polynomials in k[x1, . . . , xn].
In this section, we will consider two fundamental questions about the
system of equations defined by F = {f1, . . . , fs}:

1. Feasibility - When does the system defined by F have a solution
in kn?

2. Which are the polynomials that vanish on the solution set of F?

Solution sets of finite sets of polynomials are commonly known as
varieties:

Definition 2.1.1. Let k be a field. and let f1, . . . , fs be polynomials in
k[x1, . . . , xn]. The set

V (f1, . . . , fs) = {(a1, . . . , an) ∈ kn : fi(a1, . . . , an) = 0 for all 1 ≤ i ≤ s}
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is called the affine variety defined by f1, . . . , fs.

Example 2.1.1.

1. V (x2+ y2− 1) is the circle of radius 1 centered at the origin in C.

2. V (xy − 1, y2 − 1) = {(1, 1), (−1,−1)} in C.

3. Observe that a variety depends on the coefficient field: let f =
x3y − x2y − x3 + x2 − 2xy + 2y + 2x− 2, then

V (f) =

 {(
√
2, y), (−

√
2, y), (x, 1), (1, y)} in R,

{(x, 1), (1, y)} in Q.

Now we look at solutions of all the polynomials in an ideal I.

Definition 2.1.2. Let I ⊂ k[x1, . . . , xn] be an ideal. We denote by
V (I) the set

V (I) = {(a1, . . . , an) ∈ kn : f(a1, . . . , an) = 0 for all f ∈ I}.

Though I is usually infinite for infinite fields, computing V (I) is
equivalent to finding the roots of a finite set of polynomials. We prove
this fact next.

Theorem 2.1.1. V (I) is an affine variety. In particular, if I =<
f1, . . . , fs >, then V (I) = V (f1, . . . , fs).

Proof. By Hilbert’s Basis Theorem 1.3.1, I =< f1, . . . , fs > for
some generating set {f1, . . . , fs}. We now show that V (I) = V (f1, . . . , fs).

Let (a1, . . . , an) ∈ V (I), then since fi ∈ I, fi(a1, . . . , an) = 0 for all
i = 1 to s. Therefore,

V (I) ⊂ V (f1, . . . , fs). (2.1)

Now let (a1, . . . , an) ∈ V (f1, . . . , fs) and let f ∈ I. Since I =<
f1, . . . , fs >, we can write f =

∑s
i=1 hifi for some hi ∈ k[x1, . . . , xn].

But then

f(a1, . . . , an) =
s∑

i=1

hi(a1, . . . , an)fi(a1, . . . , an)

=
s∑

i=1

hi(a1, . . . , an) · 0 = 0.
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Therefore,

V (f1, . . . , fs) ⊂ V (I). (2.2)

Equations 2.1 and 2.2 prove that V (I) = V (f1, . . . , fs).
Theorem 2.1.1 implies that the solutions of a given set of polynomi-

als F are the same as the solutions of an ideal I generated by F . The
biggest advantage of passing from F to I =< F >, as we shall see, is
that we can replace F by a Gröbner basis for all practical purposes.

A field k is algebraically closed if every non-constant polynomial
in k[x] has a root in k. For example, R is not algebraically closed
because x2 + 1 has no roots in R. on the other hand, C is an alge-
braically closed field because of the fundamental theorem of algebra
(every non-constant polynomial in C[x] has a root in C). The next
theorem answers the feasibility question for algebraically closed fields.

Theorem 2.1.2 (The Weak Nullstellensatz). Let k be an algebraically
closed field and let I ⊂ k[x1, . . . , xn] be an ideal such that V (I) is empty,
then I = k[x1, . . . , xn].

The proof of this Theorem is beyond the scope of this book and we
refer the reader to [17] for a proof. The Weak Nullstellensatz implies
that every proper ideal has a solution in an algebraically closed field.
If the field is not algebraically closed, the Weak Nullstellensatz holds
one way, that is, if I = k[x1, . . . , xn], then V (I) is empty. The next
lemma is useful while checking whether I = k[x1, . . . , xn].

Lemma 2.1.1. Let k be a field, then I = k[x1, . . . , xn] if and only if
1 ∈ I.

Proof. If I = k[x1, . . . , xn] then 1 ∈ I. This is because k ⊂
k[x1, . . . , xn] and 1 ∈ k because k is a field.

Conversely, if 1 ∈ I, then a ·1 ∈ I for every a ∈ k[x1, . . . , xn] by def-
inition of an ideal. Therefore, k[x1, . . . , xn] ⊂ I. But I ⊂ k[x1, . . . , xn].
Thus, I = k[x1, . . . , xn].

Consequently, if we want to check whether a given system of polyno-
mials F = {f1, . . . , fs} has a solution, we compute the reduced Gröbner
basis G of the ideal I = (f1, . . . , fs). If G = {1} we conclude that F has
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no solution. We leave it as an exercise to prove that if I = k[x1, . . . , xn]
then the reduced Gröbner basis of I is {1} (Exercise 3).

In Section 1.2, we talked about how being able to write a polyno-
mial f as f =

∑s
i=1 qifi (that is, remainder is zero when f is divided

by {f1, . . . , fs}) meant that the f vanished on the solution set of the
system of equations fi = 0, i = 1..s. This is because f =

∑s
i=1 qifi

implies that f belongs to the ideal I =< f1, . . . , fs >. Moreover, by
Theorem 2.1.1, V (I) = V (f1, . . . , fs). Consequently, f ∈ I then f van-
ishes on V (f1, . . . , fs). Are these the only polynomials that vanish on
V (f1, . . . , fs)? Now, we explore this question.

The next lemma proves that the set of all polynomials that vanish
on a given variety V , denoted by I(V ), is an ideal.

Lemma 2.1.2. Let V ⊂ kn be an affine variety, and let

I(V ) = {f ∈ k[x1, . . . , xn] : f(a1, . . . , an) = 0 for all (a1, . . . , an) ∈ V },

then I(V) is an ideal of R = k[x1, . . . , xn].

Proof. We use Proposition 1.3.1 to prove I(V ) is an ideal. Let
f, g ∈ I(V ) and let (a1, . . . , an) ∈ V . Then

f(a1, . . . , an)− g(a1, . . . , an) = 0− 0 = 0. (2.3)

Therefore f − g ∈ I(V ). For every h ∈ R and f ∈ I(V ),

h(a1, . . . , an)f(a1, . . . , an) = h(a1, . . . , an) · 0 = 0. (2.4)

This implies that hf ∈ I(V ). Properties 2.3 and 2.4 implies I(V )
is an ideal.

From the discussion above Lemma 2.1.2, we know that I ⊂ I(V (I)).
Is I(V (I)) = I? The answer in general is no. It is usually a bigger
ideal that contains I. We now compute I(V (I)) for algebraically closed
fields.

Theorem 2.1.3 (Hilbert’s Nullstellensatz). Let k be an algebraically
closed field, and let f, f1, . . . , fs ∈ k[x1, . . . , xn]. Then f ∈ I(V (f1, . . . , fs))
if and only if there exists an integer m ≥ 1 such that

fm ∈< f1, . . . fs > .
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Proof. If fm ∈< f1, . . . fs >, then fm =
∑s

i=1Aifi for some
Ai ∈ k[x1, . . . , xn]. Consequently, f vanishes at every common zero
of polynomials f1, . . . , fs because fm vanishes at these zeroes. There-
fore f ∈ I(V (f1, . . . , fs)). Conversely, assume that f vanishes at every
common zero of the polynomials f1, . . . , fs. We must show that there
exists an integer m ≥ 1 and polynomials Ai, . . . , As such that

fm =
s∑

i=1

Aifi. (2.5)

To do this we introduce a new variable y and then consider the ideal

Ĩ =< f1, . . . fs, 1− fy >∈ k[x1, . . . , xn, y].

We claim that V (Ĩ) is empty. To see this let (a1, . . . , an, an+1) ∈
kn+1. There are only two possibilities. Either

1. (a1, . . . , an) is a common zero of f1, . . . , fs or

2. (a1, . . . , an) is not a common zero of f1, . . . , fs

In the first case, f(a1, . . . , an) = 0 by our assumption that f van-
ishes at every common zero of f1, . . . , fs. Therefore, the polynomial
1 − yf takes the value 1 − an+1f(a1, . . . , an) = 1 ̸= 0. This implies
(a1, . . . , an, an+1) ̸∈ V (Ĩ).

In the second case, for some t, 1 ≤ t ≤ s, ft(a1, . . . , an) ̸= 0.
We treat ft as a function of n + 1 variables that does not depend on
the last variable to conclude that ft(a1, . . . , an, an+1) ̸= 0. Therefore,
(a1, . . . , an, an+1) ̸∈ V (Ĩ). Since (a1, . . . , an, an+1) was arbitrary, we
conclude that V (Ĩ) is empty. This implies, by the Weak Nullstellensatz,
that 1 ∈ Ĩ. Therefore, for some polynomials pi, q ∈ k[x1, . . . , xn, y],

1 =
s∑

i=1

pi(x1, . . . , xn, y)fi + q(x1, . . . , xn, y)(1− yf). (2.6)

Now let 1−yf = 0, that is y = 1/f(x1, . . . , xn). Then Equation 2.6
implies that

1 =
s∑

i=1

pi(x1, . . . , xn, 1/f)fi.
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Multiply both sides of the equation by fm where m is chosen large
enough to clear denominators to get Equation 2.5, thereby proving the
theorem.

The Hilbert’s Nullstellensatz motivates the next definition.

Definition 2.1.3. Let I ⊂ k[x1, . . . , xn] be an ideal. The radical of I

denoted
√
I is the set

{f : fm ∈ I for some integer m ≥ 1}.

Theorem 2.1.4 (The Strong Nullstellensatz). Let k be an algebraically
closed field. If I is an ideal in k[x1, . . . , xn], then

I(V (I)) =
√
I.

Proof. f ∈
√
I implies that fm ∈ I for some m. Hence fm vanishes

on V (I), which implies f vanishes on V (I). Consequently, f ∈ I(V (I)).
Therefore √

I ⊂ I(V (I)) (2.7)

Conversely, suppose that f ∈ I(V (I)). Then, by definition, f van-
ishes on V (I). By Hilbert’s Nullstellenatz, there exists an integerm ≥ 1

such that fm ∈ I. But this implies that f ∈
√
I. Thus, we prove

I(V (I)) ⊂
√
I (2.8)

Equations 2.7 and 2.8 imply

I(V (I)) =
√
I.

Exercise 2 shows that
√
I is an ideal in k[x1, . . . , xn] containing I.

We do not discuss algorithms to compute radical ideals in this text. It
is a difficult problem nevertheless. We now illustrate how to compute
radical ideals using the Software Singular.

Example 2.1.2.

We compute
√
(J), where J =< xy− 1, y2 − 1 >. An input-output

Singular session for doing this is given below. For this computation we
load a Singular library called primdec.lib.
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> LIB "primdec.lib";

> ring r = 0, (x,y), Dp;

> ideal J = x*y -1, y^2-1;

> radical(J);

_[1]=y2-1

_[2]=xy-1

_[3]=x2-1

> exit;

Auf Wiedersehen.

In the next examples we compare J and
√
J .

Example 2.1.3. 1. In Example 2.1.2, we saw that when

J =< xy − 1, y2 − 1 >,
√
J =< x2 − 1, y2 − 1, xy − 1 > .

The reduced Gröbner basis of
√
J w.r.t the graded lex ordering

is {x − y, y2 − 1}. And we know from Example 1.3.6 that the

Gröbner basis of J is also {x − y, y2 − 1}. Therefore,
√
J = J .

So, in this example, I(V (J)) = J .

2. Let J =< x2, y2 >, then the variety V (J) = {(0, 0)}. We compute

I(V (J)) =
√
J =< x, y >. Note that < x, y > is strictly larger

than J , for instance, x ̸∈< x2, y2 >. Hence, J ⊂
√
J .

2.2 Elimination Theory.

As we know, solving systems of polynomial equations involves elimi-
nating variables. We begin by eliminating all the polynomials involving
variables x1, . . . , xl from the ideal I.

Definition 2.2.1. Given I = (f1, . . . , fs) ⊂ k[x1, . . . , xn], the l th
elimination ideal Il is the ideal of k[xl+1, . . . , xn] defined by

Il = I ∩ k[xl+1, . . . , xn].

We check that Il is an ideal of k[xl+1, . . . , xn] in Exercise 4. Note
that I = I0 is the 0 th elimination ideal.

For a fixed integer l such that 1 ≤ l ≤ n, we say a monomial
order > on k[x1, . . . , xn] is of l- elimination type provided that any
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monomial involving one of x1, . . . , xl is greater than all other monomials
in k[xl+1, . . . , xn]. For example, the lex monomial ordering, where x1 >
x2 · · · > xn, is a l- elimination type ordering. In the next theorem we
extract a Gröbner basis for the l th elimination ideal Il from a Gröbner
basis of I.

Theorem 2.2.1 (The Elimination Theorem). Let I ⊂ k[x1, . . . , xn] be
an ideal and let G be a Gröbner basis of I with respect to a l- elimination
type monomial ordering. Then, for every 0 ≤ l ≤ n, the set

Gl = G ∩ k[xl+1, . . . , xn]

is a Gröbner basis of the l th elimination ideal Il.

Proof. Since Gl ⊂ Il by construction, to show that Gl is a Gröbner
basis, it suffices to prove that

< LT(Il) >=< LT(Gl) > .

It is obvious that < LT(Gl) >⊂< LT(Il) >. To prove the other
inclusion < LT(Il) >⊂< LT(Gl) >, we show that if f ∈ Il, then
LT(f) is divisible by LT(g) for some g ∈ Gl. Since f ∈ I, and G is a
Gröbner basis of I, LT(f) is divisible by some g ∈ G. But f ∈ Il means
that LT(g) only involves variables xl+1, . . . , xn. Consequently, since the
monomial ordering is of l-elimination type, g ∈ k[xl+1, . . . , xn].

In section 2.1, we saw that the solutions of a set of polynomials
F are the same as the solutions of an ideal I generated by F . The
advantage of passing from a set to an ideal is that we can replace F
by any set of generators of I, to get the solution set of F . In the
next example, we demonstrate how to solve a system of polynomial
equations using l-elimination ideals.

Example 2.2.1. In this example, we solve the system of equations

x2 + y + z = 1,

x+ y2 + z = 1,

x+ y + z2 = 1,

x2 + y2 + z2 = 1.

Let

F = {x2 + y + z − 1, x+ y2 + z − 1, x+ y + z2 − 1, x2 + y2 + z2 − 1},
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and let I be the ideal generated by F , that is,

I =< x2 + y + z − 1, x+ y2 + z − 1, x+ y + z2 − 1, x2 + y2 + z2 − 1 > .

The reduced Gröbner basis G of I with respect to the lex ordering
x > y > z is

G = {z2 − z, 2yz + z4 + z2 − 2z, y2 − y − z2 + z, x+ y + z2 − 1}.

By Theorem 2.2.1 the Gröbner basis of elimination ideals I1 and I2
are

G1 = G ∩ k[y, z] = (z2 − z, 2yz + z4 + z2 − 2z, y2 − y − z2 + z),

and
G2 = G ∩ k[z] = (z2 − z),

respectively.
The Gröbner basis of I2 involves only the variable z. By Exercise

7, k[z] is a principal ideal domain. Therefore I2 is generated by one
element.

We now perform a backward substitution to solve the given system
of equations defined by G2. Solving z2 − z = 0, we get z = 0 or z = 1.

Next we solve the equations defined by the polynomials in the set
G2 −G1, that is,

2yz + z4 + z2 − 2z = 0

y2 − y − z2 + z = 0.

When z = 0, the above equations imply y = 0 or y = 1, on the other
hand, when z = 1, we get y = 0.

Finally, we solve the system of equations defined by G−G1, namely,

x+ y + z2 − 1 = 0. (2.9)

Consequently, when we substitute y = 0, z = 0 in Equation 2.9, we
get x = 1; when we substitute y = 1, z = 0 in Equation 2.9, we get
x = 0; and when we substitute y = 0, z = 1 in Equation 2.9, we get
x = 0.

Observe that the process leads us to the solutions of G. Recall that
V (G) = V (I) = V (F ). Therefore, the solution set of the given system
of equations is {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.
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Can we always extend a partial solution to the complete one? Not
always, but the next theorem tells us when such an extension is possible
for the field of complex numbers.

Theorem 2.2.2 (The Extension Theorem). Let I =< f1, . . . , fs >⊂
C[x1, . . . , xn] and let I1 be the first elimination ideal of I. For each
1 ≤ i ≤ s, write fi in the form

fi = gi(x2, . . . , xn)x
Ni
1 + terms in which x1 has degree < Ni,

where Ni ≥ 0 and gi ∈ C[x2, . . . , xn] is nonzero. Suppose that
we have a partial solution (a2, . . . , an) ∈ V (I1). If (a2, . . . , an) ̸∈
V (g1, . . . , gs), then there exists a1 ∈ C such that (a1, . . . , an) ∈ V (I).

We will prove this theorem in Section 2.3. We illustrate this theorem
with an example.

Example 2.2.2.

In the case of the ideal

I =

⟨ f1 = x2 + y + z − 1,
f2 = x+ y2 + z − 1,
f3 = x+ y + z2 − 1,
f4 = x2 + y2 + z2 − 1

⟩
,

the coefficients gi of the highest powers of x in all the polynomials fi
are 1. By the Weak Nullstellensatz Theorem, V (g1, g2, g3, g4) = V (1)
is empty. Consequently, by Theorem 2.2.2, all the partial solutions can
be extended to a complete solution.

We look at another example where such an extension is not possible.

Example 2.2.3. Consider the ideal

I =< f1 = xy − 1, f2 = xz − 1 >⊂ k[x, y, z].

The reduced Gröbner basis G of I with respect to the graded lex or-
dering is G = {y− z, xz− 1}. Thus G1 = {y− z}. A partial solution is
y = z = 0. But, observe that coefficients of x of the polynomials f1, f2
simultaneously vanish at y = z = 0, that is, (0, 0) ∈ V (y, z). Therefore,
by the extension theorem this partial solution cannot be extended to
a complete solution of the system of equations F = {f1 = 0, f2 = 0}.
On the other hand, every partial solution (c, c) such that c ̸= 0 can be
extended to a complete solution (1/c, c, c) of F .
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Apart from solving systems of equations, elimination ideals are also
used to find implicit equations of a surface from its parametrization.
We present, without proof, a theorem that describes the method to do
this. The proof of this theorem is given in [17] and requires concepts
not discussed in this book.

Theorem 2.2.3 (Implicitization). 1. Let k be an infinite field. Let
f1, . . . , fn ∈ k[t1, . . . , tm] and let

x1 = f1(t1, . . . , tm)
...

xn = fn(t1, . . . , tm)

be a polynomial parametrization. Let I be the ideal

I =< x1 − f1, . . . , xn − fn >⊂ k[t1, . . . , tm, x1, . . . , xn]

and let Im = I ∩k[x1, . . . , xn] be the m th elimination ideal. Then
V (Im) is the smallest variety in kn containing the parametriza-
tion.

2. Let

x1 =
f1(t1, . . . , tm)

g1(t1, . . . , tm)
...

xn =
fn(t1, . . . , tm)

gn(t1, . . . , tm)

be a rational parametrization, where f1, . . . , fn, g1, . . . , gn are in
k[t1, . . . , tm]. Let I be the ideal

< g1x1−f1, ,̇gnxn−fn, 1−g1g2 · · · gnY >⊂ k[Y, t1, . . . , tm, x1, . . . , xn]

and let Im+1 = I ∩ k[x1, . . . , xn] be the (m+ 1) elimination ideal.
Then, V (Im+1) is the smallest variety containing this parametriza-
tion.

Example 2.2.4. In this example, we show that the surface defined by
the following parametric equations
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x =
1− t2

1 + t2
,

y =
2t

1 + t2
. (2.10)

lie on the circle

x2 + y2 = 1.

Let

I =< (1 + t2)x− (1− t2), (1 + t2)y − 2t, 1− (1 + t2)2Y > .

Then, the Gröbner basis G of I w.r.t the Lex ordering t > Y > x >
y is

G = {x2 + y2 − 1, 4Y − 2x+ y2 − 2, ty + x− 1, tx+ t− y}

The Gröbner basis of I2 is {x2 + y2 − 1} which is also the equation
of the circle. Therefore, Theorem 2.2.3 implies V (x2 + y2 − 1) is the
smallest variety containing the Parametrization 2.10. Observe that the
above Parametrization do not describe the whole circle because the
point (−1, 0) on the circle is not covered by this parametrization.

Example 2.2.5. In this example, we show that the surface defined by
the following polynomial parametrization

x = t1t2,

y = t1t
2
2,

z = t21. (2.11)

lie on surface x4 − y2z.
The Gröbner basis G of the ideal I =< x − t1t2, y − t1t

2
2, z − t21 >

with respect to the lex ordering t1 > t2 > x > y is

G = {x4−y2z, t2yz−x3, t2x−y, t22z−x2, t1y−t22z, t1x−t2z, t1t2−x, t12−z}.

This implies I2 =< x4 − y2z >. Therefore, by Theorem 2.2.3, the
smallest variety containing the Parametrization 2.11 is x4 − y2z.
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2.3 Resultants.

In this section, we introduce resultants which are used to determine
whether two polynomials have a common factor without having to fac-
torize the polynomials involved. We also use resultants to prove the
Extension Theorem from Section 2.2.

We begin with a lemma that discusses a key property of two poly-
nomials that have a common factor.

Lemma 2.3.1. Let f, g ∈ k[x1, . . . , xn] be of degrees l > 0 and m > 0,
respectively, in x1. Then f and g have a common factor with positive
degree in x1 if and only if there are polynomials A,B ∈ k[x1, x2, . . . , xn]
such that

1. A and B are not both zero.

2. A has degree at most m− 1 and B has degree at most l− 1 in x1.

3. Af + Bg = 0.

Proof. First assume f and g have a common factor h ∈ k[x1, . . . , xn]
with positive degree in x1. Then f = hf1 and g = hg1, where f1, g1 ∈
k[x1, . . . , xn]. Note that f1 has degree at most l − 1 in x1 and g1 has
degree at most m− 1 in x1. Then

g1 · f + (−f1) · g = g1 · hf1 − f1 · hg1 = 0.

Thus A = g1 and B = −f1 have the required properties.
Conversely, suppose that A and B have the above three properties.

By Property 1, we may assume B ̸= 0. Let

k(x2, . . . , xn) = {f
g
; f, g ∈ k[x2, . . . , xn], g ̸= 0}.

Check that k(x2, . . . , xn) is a field. If f and g have no common
factor of positive degree in x1, in k(x2, . . . , xn)[x1], then we use the
Euclidean Algorithm (see Section A.1) to find polynomials A′, B′ ∈
k(x2, . . . , xn)[x1] such that A′f + B′g = 1 . Now multiply by B and
use Bg = −Af to get

B = (A′f +B′g)B = A′Bf +B′Bg = A′Bf −B′Af = (A′B −B′A)f.
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Since B is nonzero and the degree of f is l, this equation shows that
B has degree at least l in x1, which contradicts Property 2. Hence there
must be a common factor of f and g in k(x2, . . . , xn)[x1]. By Exercise
7, f and g have a common factor in k[x1, . . . , xn] of positive degree in
x1, if and only if, they have a common factor in k(x2, . . . , xn)[x1] of
positive degree in x1. This proves the theorem.

To show that A and B in Lemma 2.3.1 actually exist, we write f
and g as polynomials in x1 with coefficients ai, bi ∈ k[x2, . . . , xn]:

f = a0x1
l + · · ·+ al, a0 ̸= 0,

g = b0x1
m + · · ·+ bm, b0 ̸= 0. (2.12)

Our goal is to find coefficients ci, di ∈ k[x2, . . . , xn] such that

A = c0x1
m−1 + · · ·+ cm−1,

B = d0x1
l−1 + · · ·+ dl−1, (2.13)

and

Af +Bg = 0. (2.14)

Consequently, comparing coefficients of x1 in Equation 2.14, we get
the following system of equations

aoc0 + b0d0 = 0 (coefficient of x1
l+m−1)

a1c0 + a0c1 + b1d0 + b0d1 = 0 (coefficient of xl+m−2
1 )

...

alcm−1 + bmdl−1 = 0 (coefficient of x0
1) (2.15)

Since there are l +m linear equations and l +m unknowns, there
is a nonzero solution if and only if the coefficient matrix has a zero
determinant. This leads to the following definition.

Definition 2.3.1. Given polynomials f, g ∈ k[x1, . . . , xn] of positive
degree in x1, write them in the form 2.12. Then the Sylvester matrix
of f and g with respect to x1 denoted Syl(f, g, x1) is the coefficient
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matrix of the system of equations given in 2.15. Thus, Syl(f, g, x1) is
the following (l +m)× (l +m) matrix:

Syl(f, g, x1) =



a0 b0
a1 a0 b1 b0

a1
. . . b1

. . .
...

. . . a0
...

. . . b0
... a1

... b1
al bm

al
... bm

...
. . . . . .

al bm


,

where the first m columns contain the coefficients of f , such that the
first i − 1 entries of the i th column are zeroes, 1 ≤ i ≤ m; the last l
columns contain the coefficients of g, such that the first j − 1 entries
of the m+ j th column are zeroes, 1 ≤ j ≤ l; and the empty spaces are
filled by zeros.

The resultant of f and g with respect to x1 denoted Res(f, g, x1)
is the determinant of the Sylvester matrix. Thus,

Res(f, g, x1) = det(Syl(f, g, x1)).

The resultant is defined in such a way that its vanishing detects
the presence of common factors. We prove this fact in the following
theorem.

Theorem 2.3.1. Let f, g ∈ k[x1, . . . , xn] have positive degree in x1,
then Res(f, g, x1) = 0 if and only if f and g have a common factor in
k[x1, . . . , xn] which has positive degree in x1.

Proof. The resultant is zero means that the determinant of the
coefficient matrix of Equations 2.15 is zero. This happen if and only if
there exists a nonzero solution to the system of equations 2.15. This
is equivalent to existence of polynomials A and B such that A and B
are not both zero, degree of A is less than degree of f and the degree
of B is less than the degree of g, in x1, and Af + Bg = 0. By Lemma
2.3.1, this happens if and only if f and g have a common factor in
k[x1, . . . , xn] which has positive degree in x1.
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Example 2.3.1. Consider the polynomials

f = x2y + x2 − 3xy2 − 3xy and g = x3y + x3 − 4y2 − 3y + 1.

To compute Res(f, g, x), write f and g as

f = (y + 1)x2 + (−3y2 − 3y)x,

g = (y + 1)x3 + (−4y2 − 3y + 1).

Res(f, g, x) = det


y + 1 0 0 y + 1 0

−3y2 − 3y y + 1 0 0 y + 1
0 −3y2 − 3y y + 1 0 0
0 0 −3y2 − 3y −4y2 − 3y + 1 0
0 0 0 0 −4y2 − 3y + 1


= −108y9 − 513y8 − 929y7 − 738y6 − 149y5 + 112y4 + 37y3

−14y2 − 3y + 1 ̸= 0.

Res(f, g, x) ̸= 0 implies that f and g have no common factor with
positive degree in x, by Theorem 2.3.1.

To compute Res(f, g, y), write f and g as

f = (−3x)y2 + (x2 − 3x)y + x2,

g = −4y2 + (x3 − 3)y + (x3 + 1).

Res(f, g, y) = det

 −3x 0 −4 0
x2 − 3x −3x x3 − 3 −4
x2 x2 − 3x x3 + 1 x3 − 3
0 x2 0 x3 + 1

 = 0.

Res(f, g, y) = 0 implies that f and g have a common factor with
positive degree in y, by Theorem 2.3.1. To verify this, we factorize f
and g to get f = x(y+1)(−3y+x) and g = (y+1)(−4y+1+x3). We
see that (y + 1) is indeed a common factor of f and g with a positive
degree in y.

Resultants can be computed using the Software Singular. A sample
input-output session is provided below.
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> ring r = 0, (x,y), dp;

> poly f = x^2*y-3*x*y^2+x^2-3*x*y;

> poly g = x^3*y+x^3-4*y^2-3*y+1;

> resultant(f,g,x);

-108y9-513y8-929y7-738y6-149y5+112y4+37y3-14y2-3y+1

> resultant(f,g,y);

0

>quit;

Auf Wiedersehen.

In the case of polynomials f and g with only one variable x, the
resultant Res(f, g, x) is usually denoted as Res(f, g).

Example 2.3.2. Let

f = x2 + x and g = x2 + 4x+ 4.

Res(f, g) = det


1 0 1 0
1 1 4 1
0 1 4 4
0 0 0 4

 = 4 ̸= 0.

Therefore the polynomials f and g are relatively prime.

Lemma 2.3.2. Let f, g ∈ k[x1, . . . , xn] be of positive degree in x1 with
coefficients ai, bi ∈ k[x2, . . . , xn], then Res(f, g, x1) ∈ k[x2, . . . , xn].

Proof. Since Res(f, g, x1) is a determinant involving only ai and bi,
it follows that Res(f, g, x1) ∈ k[x2, . . . , xn].

Lemma 2.3.3. Let f, g ∈ k[x1, . . . , xn] of positive degree in x1 with
coefficients ai, bi ∈ k[x2, . . . , xn]. Then

Af +Bg = Res(f, g, x1),

where A and B are polynomials in x1 whose coefficients are integer
polynomials in ai and bi.

Proof. The lemma is true when Res(f, g, x1) = 0, because we can
choose A = B = 0. Assume that Res(f, g, x1) ̸= 0. Write f and g in
the form of Equations 2.12. Let

A′ = c0x1
m−1 + · · ·+ cm−1,

B′ = d0x1
l−1 + · · ·+ dl−1, (2.16)
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where the coefficients ci, di ∈ k[x2, . . . , xn], such that

A′f +B′g = 1.

Comparing coefficients we get

aoc0 + b0d0 = 0 (coefficient of x1
l+m−1)

a1c0 + a0c1 + b1d0 + b0d1 = 0 (coefficient of xl+m−2
1 )

...

alcm−1 + bmdl−1 = 1 (coefficient of x0
1) (2.17)

These equations are the same as 2.15 except for the 1 on the right
hand side of the last equation. Thus, the coefficient matrix is the
Sylvester matrix of f and g. Therefore, Res(f, g, x1) ̸= 0 guarantees
that the System 2.17 has a unique solution. We use Cramer’s rule to
find this unique solution. Recall that the Cramer’s rule states that the
i-th unknown is a ratio of two determinants, where the denominator
is the determinant of the coefficient matrix and the numerator is the
determinant of the matrix where the i-th column of the coefficient
matrix has been replaced by the right hand side vector of the system.
For example, the first unknown c0 is given by

c0 =
1

Res(f, g, x1)
det



0 b0
0 a0 b1 b0

a1
. . . b1

. . .
...

. . . a0
...

. . . b0
... a1

... b1
0 al bm
...

. . .
...

. . .
...

1 al bm


.

Since a determinant is an integer polynomial in its entries, it follows
that

c0 =
an integer polynomial in ai, bi

Res(f, g, x1)
.

Similarly, we conclude that the denominator for ck and dk for ev-
ery k is always Res(f, g, x1) and the numerator is always an integer
polynomial in ai and bi.
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Since A′ = c0x1
m−1 + · · · + cm−1, we can pull out the common

denominator Res(f, g, x1) and write

A′ =
1

Res(f, g, x1)
A,

where A ∈ k[x1, . . . , xn], and the coefficients of A are integer poly-
nomials in ai, bi. Similarly, we can write

B′ =
1

Res(f, g, x1)
B,

where B ∈ k[x1, . . . , xn], and the coefficients of B are integer polyno-
mials in ai, bi.

Since A′f + B′g = 1, we can multiply through by Res(f, g, x1) to
obtain

Af +Bg = Res(f, g, x1).

Theorem 2.3.2. Let f, g ∈ k[x1, . . . , xn] have positive degree in x1,
then Res(f, g, x1) is in the first elimination ideal < f, g > ∩k[x2, . . . , xn].

Proof. By Lemma 2.3.3,

Af +Bg = Res(f, g, x1),

where A,B ∈ k[x1, . . . , xn]. Hence Res(f, g, x1) ∈< f, g >. Apply-
ing Lemma 2.3.2, we get Res(f, g, x1) ∈ k[x2, . . . , xn]. Consequently,
Res(f, g, x1) ∈< f, g > ∩k[x2, . . . , xn].

Over the complex numbers, two polynomials in C[x] have a common
factor if and only if f and g have a common root by Theorems A.2.2
and A.2.8. Thus, we get the following corollary.

Corollary 2.3.3. If f, g ∈ C[x], then Res(f, g, x) = 0 if and only if f
and g have a common root in C.

To prove the Extension Theorem, we first need to prove it for the
case of two polynomials, and then extend the result to the general case.
We begin by proving the following theorem which is used in the proof
of the Extension Theorem for two polynomials.
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Theorem 2.3.4. Given f, g ∈ C[x1, . . . , xn], write f and g in the form
of Equations 2.12, so that ai, bi ∈ C[x2, . . . , xn]. If Res(f, g, x1) van-
ishes at (c2, . . . cn) ∈ Cn−1, then either a0 or b0 vanishes at (c2, . . . , cn),
or there is a c1 ∈ C such that f and g vanish at (c1, c2, . . . cn) ∈ Cn.

Proof. Let c = (c2, . . . , cn) and let f(x1, c) = f(x1, c2, . . . , cn). It
suffices to show that f(x1, c) and g(x1, c) have a common root when
a0(c) and b0(c) are both nonzero. To prove this, write

f(x1, c) = ao(c)x
l
1 + · · ·+ al(c), ao(c) ̸= 0,

g(x1, c) = bo(c)x
m
1 + · · ·+ bm(c), bo(c) ̸= 0.

By hypothesis h = Res(f, g, x1) vanishes at c. Therefore

0 = h(c) = Res(f(x1, c), g(x1, c), x1).

Then Corollary 2.3.3 implies that f(x1, c) and g(x1, c) have a com-
mon root.

Theorem 2.3.5. [The Extension Theorem for two polynomials.] Let
I =< f, g >⊂ C[x1, . . . , xn] and let I1 be the first elimination ideal
of I. Write f and g in the form of Equations 2.12, so that ai, bi ∈
C[x2, . . . , xn]. Suppose we have a partial solution c = (c2, . . . , cn) ∈
V (I1), and if (c2, . . . , cn) ̸∈ V (a0, b0), then there exists c1 ∈ C such that
(c1, . . . , cn) ∈ V (I).

Proof. By Theorem 2.3.2, we know that Res(f, g, x1) ∈ I1, so that
the resultant vanishes at the partial solution c. If neither a0 nor b0
vanishes at c, then the required c1 exists by Theorem 2.3.4.

Now suppose a0(c) ̸= 0 but b0(c) = 0. Since xN
1 f ∈< f, g + xN

1 f >
and g = g+xN

1 f−xN
1 f , we conclude that g ∈< f, g+xN

1 f >. Therefore
< f, g >⊂< f, g + xN

1 f >. Clearly < f, g + xN
1 f >⊂< f, g >. Hence

< f, g >=< f, g + xN
1 f > . (2.18)

We choose N large enough so that x1
Nf has larger degree in x1 than g.

The leading coefficient of g + x1
Nf is a0, which is nonzero at c. This

allows us to use Theorem 2.3.4 to conclude that there is a c1 ∈ C such
that (c1, c) ∈ V (f, g + xN

1 f), and hence (c1, c) ∈ V (f, g) by 2.18.
Let f1, . . . , fs ∈ C[x1, . . . , xn], then the resultant for f1, . . . , fs,

s ≥ 3 is defined by introducing new variables u2, . . . , us and encoding
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f2, . . . , fs in to a single polynomial u2f2+· · ·+usfs ∈ C[u2, . . . , us, x1, . . . , xn].
By Theorem 2.3.2, Res(f1, u2f2+· · ·usfs, x1) lies in C[u2, . . . , us, x2, . . . , xn].
Therefore, to get polynomials in x2, . . . , xn, we expand the resultant in
terms of powers of u2, . . . , us, that is, we write

Res(f1, u2f2 + · · ·usfs, x1) =
∑
α

hα(x2, . . . , xn)u
α,

where uα = u2
α2 · · ·us

αs . The polynomials hα are called the gen-
eralized resultants of f1, . . . , fs. The generalized resultants are not of
much practical use, but we use it to prove the Extension Theorem.

Finally, we have the necessary tools to prove the Extension Theo-
rem, that is, a partial solution a can be extended if the leading terms
of f1, . . . , fs do not simultaneously vanish at a.

Proof of the Extension Theorem 2.2.2. Let a = (a2, . . . , an). We
seek a common root a1 of f1(x1, a), f2(x1, a), . . . , fs(x1, a). The case
s = 2 was proved in Theorem 2.3.5, which also covers the case s = 1
since V (f1) = V (f1, f1). It remains to prove the theorem when s ≥ 3.
Since a ̸∈ V (g1, . . . , gs), we may assume that g1(a) ̸= 0. Let hα ∈
C[x2, . . . , xn] be the generalized resultants of f1, . . . , fs, that is,

Res(f1, u2f2 + · · ·+ usfs, x1) =
∑
α

hαu
α. (2.19)

By Lemma 2.3.3,

Af1 +B(u2f2 + · · ·+ usfs) = Res(f1, u2f2 + · · ·+ usfs, x1), (2.20)

for some polynomials A,B ∈ C[u2, . . . , us, x1, . . . , xn].

WriteA =
∑

α Aαu
α andB =

∑
β Bβu

β, whereAα, Bβ ∈ C[x1, . . . , xn].

Set e2 = (1, 0, . . . , 0), . . . , es = (0, . . . , 0, 1), so that u2f2 + · · ·+ usfs =
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∑
i≥2 u

eifi. Then Equation 2.19 can be written as∑
α hαu

α = (
∑

α Aαu
α) f1 +

(∑
β Bβu

β
) (∑

i≥2 u
eifi

)
=

∑
α(Aαf1)u

α +
∑

i≥2,β Bβfiu
β+e1

=
∑

α(Aαf1)u
α +

∑
α

∑
i ≥ 2
β + ei = α

Bβfi

uα

=
∑

α

Aαf1 +
∑

i ≥ 2
β + ei = α

Bβfi

uα.

If we equate the coefficients of uα, we obtain

hα = Aαf1 +
∑

i ≥ 2
β + ei = α

Bβfi,

which proves that hα ∈ I, and hence in I1, for all α. Since a ∈ V (I1),
it follows that hα(a) = 0 for all α. Therefore, by 2.19, the resultant
h = Res(f1, u2f2 + · · ·+ usfs, x1) vanishes at a, that is,

h(a, u2, . . . , un) = 0.

Suppose we can assume about f2 that

g2(a) ̸= 0 and f2 has degree in x1 greater than f3, . . . , fs. (2.21)

Then, since

Res(f1(x1, a), u2f2(x1, a) + · · ·+ usfs(x1, a)) = 0,

the polynomials f1(x1, a), and u2f2(x1, a) + · · · + usfs(x1, a) have
a common factor d ∈ C[x1] of positive degree in x1 by Theorem 2.3.4.
Check that since d divides u2f2(x1, a) + · · · + usfs(x1, a), d divides
fi(x1, a) for i = 2 to s. Consequently, d is a common factor for all
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the polynomials f1, . . . , fs. Let a1 be a root of d (a1 exists because we
are working with complex numbers), then a1 is a common root of all
fi(x1, a). This proves the Extension Theorem when we can assume the
condition 2.21 to be true.

Finally, if 2.21 is not true for f2, . . . , fs, then we have to use a
different basis for I so that the condition 2.21 is true. Replace f2 by
f2 + xN

1 f1, where N is such that xN
1 f1 has a higher degree in x1 than

f2, f3, . . . , fs so that the leading coefficient of f2 + xN
1 f1 is g1. Check

that
I =< f1, f2 + xN

1 f1, f3, . . . , fs > .

Then, the previous argument gives us a1 as a common root of f1(x1, a)
and f2(x1, a) + xN

1 f1(x1, a), f3(x1, a), · · · , fs(x1, a). Consequently, a1
is a common root of f1(x1, a), f2(x1, a), f3(x1, a), · · · , fs(x1, a). This
completes the proof of the Extension Theorem.

Exercises.

1. Let V and W be affine varieties. Prove that V ⊂ W if and only
if I(W ) ⊂ I(V ).

2. If I is an ideal in k[x1, . . . , xn], prove that
√
I is an ideal in

k[x1, . . . , xn] containing I. Further prove that√√
I =

√
I.

3. Prove that if I = k[x1, . . . , xn] then the reduced Gröbner basis of
I is {1}.

4. Let I be an ideal of k[x1, . . . , xn]. Prove that Il = I∩k[xl+1, . . . , xn]
is an ideal of k[xl+1, . . . , xn].

5. Solve the following system of equations.

x2 + y + z = 1,
x+ y2 + z = 1,
x+ y + z2 = 1.

6. Find the implicit equations of the following parametrizations.
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(a) The tangent surface to the twisted cubic.

x = t+ u,
y = t2 + 2tu,
z = t3 + 3t2u.

(b) The Enneper surface.

x = 3u+ 3uv2 − u3,
y = 3v + 3u2v − v3,
z = 3u2 − 3v2.

(c) The Folium of Descartes.

x = 3t
1+t3

,

y = 3t2

1+t3
.

7. Suppose f, g ∈ k[x1, . . . , xn] have positive degree in x1. Then
prove that f and g have a common factor in k[x1, . . . , xn] of pos-
itive degree in x1 if and only if they have a common factor of
positive degree in x1 in k(x2, . . . , xn)[x1].

8. Find the resultant of the following polynomials. Do they have a
common factor?

(a) f = x3 + 11x2 + 36x+ 28 and g = x3 − 17x2 − 25x+ 1001.

(b) f = x3 + 13x2 + 48x+ 38 and g = x3 − 21x2 + 71x+ 429.

9. Find Res(f, g, x), Res(f, g, y), and Res(f, g, z), when

(a)

f = x2 + xy + xz − x− y − z,
g = x2z2 − y2z2 + xz3 − yz3 + x2y − y3 + xyz − y2z.

(b)
f = xy + y2 + xz + 2yz + z2 − 2x− 2y − 2z,
g = xz2 − yz2 + xy − y2.
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Chapter 3

Finding Roots of polynomials
in Extension Fields.

In the book of life, the answers aren’t in the back - Charles M. Schulz.

The fundamental theorem of algebra says that every polynomial
with real coefficients has a root in the field of complex numbers C. In
this chapter, we prove that for any polynomial with coefficients in an
arbitrary field, there is always an extension field which contains all the
roots of this polynomial.

3.1 Modular Arithmetic and Polynomial irreducibil-
ity in Q.

If A is a set, then any subset of A × A is called a relation of A. The
operation of division defines a relation among integers defined as below.

Definition 3.1.1. Let a, b, n be integers with n > 0. Then a is con-
gruent to b modulo n [written a ≡ b (mod n)], provided that n divides
a− b.

Example 3.1.1. 17 ≡ 2 (mod 5) because 5 divides 17 − 2 = 15.
Similarly, we check that 4 ≡ 28 (mod 6) and 3 ≡ −9 (mod 4).

Definition 3.1.2. Let a and n be integers with n > 0 . The congru-
ence class of a modulo n (denoted [a]) is the set of all those integers
that are congruent to a modulo n, that is,

[a] = {b|b ∈ Z and b ≡ a(mod n)}.
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We denote n divides a as n | a. Note that if n | a, then there is an
integer k such that a = kn. Therefore a ≡ b implies a = b + kn for
some k ∈ Z. In other words,

[a] = {a+ kn|k ∈ Z}.

Example 3.1.2. 1. When n = 5,

[17] = {17+5k|k ∈ Z} = {. . . ,−13,−8,−3, 2, 7, 12, 17, 22, 27, 32, . . . }.

2. When n = 7,

[17] = {17 + 7k|k ∈ Z} = {. . . ,−11,−4, 3, 10, 17, 24, 31, 38, . . . }.

We now look at several properties of the congruence modulo n re-
lation of integers.

Theorem 3.1.1. Let n be a positive integer. For all a, b, c ∈ Z,

1. a ≡ a (mod n) (≡ is reflexive);

2. if a ≡ b (mod n), then b ≡ a (mod n) (≡ is symmetric);

3. if a ≡ b (mod n) and b ≡ a (mod n), then a ≡ c (mod n) (≡ is
transitive).

Proof.

1. Since a− a = 0 and n | 0, we have a ≡ a (mod n).

2. a ≡ b (mod n) implies n | (a − b) by definition. But that means
n | (b− a). Hence b ≡ a (mod n).

3. if a ≡ b (mod n) and b ≡ a (mod n) then there are integers k and
t such that a− b = nk and b− c = nt. Therefore

(a− b) + (b− c) = nk + nt
(a− c) = n(k + t).

Thus n | a− c and therefore a ≡ c (mod n).

Theorem 3.1.2. a ≡ c (mod n) if and only if [a] = [c].
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Proof. Assume a ≡ c (mod n). To show that [a] = [c], we first show
[a] ⊂ [c]. Let b ∈ [a] then by definition b ≡ a (mod n). Since we assume
a ≡ c (mod n), we have b ≡ c (mod n) by transitivity. Thus b ∈ [c]
and we prove that [a] ⊂ [c]. Observe that the assumption a ≡ c (mod
n) implies c ≡ a (mod n) by symmetry. Therefore, to prove [c] ⊂ [a],
we just reverse the role of a and c in the above argument.

Conversely, assume [a] = [c]. Since a ≡ a (mod n) by reflexivity we
have a ∈ [a] = [c]. Therefore a ∈ [c] and hence a ≡ c (mod n).

Example 3.1.3. Since, 17 ≡ 2 (mod 5) we get [17] = [2].

Corollary 3.1.3. Two congruence classes modulo n are either disjoint
or identical.

Proof. If [a] and [c] are disjoint there is nothing to prove. Assume
that [a] ∩ [c] is nonempty. Let b ∈ [a] ∩ [c], then b ≡ a (mod n) and
b ≡ c (mod n). By symmetry we first get a ≡ b (mod n) and then by
transitivity a ≡ c (mod n). Finally, Theorem 3.1.2 implies [a] = [c].

Corollary 3.1.4. There are exactly n distinct congruence classes mod-
ulo n, namely, [0], [1], · · · , [n− 1].

Proof. We first prove that no two of 0, 1, 2, . . . , n− 1 are congruent
modulo n. Let s and t be integers such that 0 ≤ s < t < n. Then
0 < t − s < n and therefore, n does not divide t − s, that is t ̸≡ s
(mod n). Since no two of 0, 1, 2, . . . , n − 1 are congruent modulo n
we have that [0], [1], · · · , [n − 1] are all distinct. Next we show that
a ∈ Z is one of these n classes. By division algorithm, a = qn+ r such
that 0 ≤ r < n. Therefore a ≡ r (mod n) or in other words a ∈ [r].
Therefore, a is in one of the classes [0], [1], · · · , [n− 1].

Definition 3.1.3. The set of all congruence classes modulo n is de-
noted Zn.

Example 3.1.4. Z5 = {[0], [1], [2], [3], [4]} where

[0] = {. . . ,−15,−10,−5, 0, 5, 10, 15, . . . }, [1] = {. . . ,−14,−9,−4, 1, 6, 11, 16, . . . },

[2] = {. . . ,−13,−8,−3, 2, 7, 12, 17, . . . }, [3] = {. . . ,−12,−7,−2, 3, 8, 13, 18, . . . },

[4] = {. . . ,−11,−5,−1, 4, 9, 14, 19, . . . }.
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Definition 3.1.4. Addition and multiplication in Zn are defined by

[a] + [b] = [a+ b] and [a] · [b] = [a · b].

Example 3.1.5. In Z5 we have [3]+[4] = [7] = [2] = {. . . ,−8,−3, 2, 7, 12, . . . , }
and [3] · [2] = [6] = [1] = {. . . ,−9,−4, 1, 6, 11, . . . }.

Theorem 3.1.5. The set Zn with the addition and multiplication of
classes is a commutative ring with identity.

Proof. It is easily verified that [0] is the additive identity, [1] is the
multiplicative identity in Zn and that the additive inverse of a class
[a] is [−a]. All other properties are derived from the fact that Z is a
commutative ring.

Thus, sets transform to number-like objects on which we can per-
form arithmetic operations. Therefore, from now on, throughout the
book, brackets are dropped in the notation of congruence classes when-
ever the context is clear. For example, [a] · [b] is written as a · b.

Theorem 3.1.6. Zp is a field whenever p is a prime.

Proof. By Theorem 3.1.5, we know that Zp is a commutative ring
with identity. To show that Zp is a field we need to prove that if a ∈ Zp

such that a ̸= 0, then a has a multiplicative inverse x. Now, a ̸= 0
implies a ̸≡ 0 (mod p), that is, a is not divisible by p. Therefore,
the greatest common divisor (gcd) of a and p is 1. We use Euclid’s
algorithm to write ax + py = 1 (see Section A.1). This implies p
divides ax − 1. In other words, ax ≡ 1 (mod n). Therefore x is the
inverse of a in Zp. And the proof is now complete.

Given f ∈ Q[x], we can clear denominators and get cf ∈ Z[x] for
some nonzero integer c, such that cf(x) has the same degree as f(x).
This allows us to reduce factorization problems in Q[x] to factorization
problems in Z[x].

Theorem 3.1.7. Let f(x) ∈ Z[x], then f(x) factors as a product of
polynomials of degrees m and n in Q[x] if and only if f(x) factors as
a product of polynomials of degrees m and n in Z[x].

Proof. Clearly, if f(x) factorizes in Z[x], then f(x) factors in Q[x].
Conversely, suppose f(x) = g(x)h(x) in Q[x]. Let a and b be inte-
gers such that ag(x) and bh(x) have integer coefficients. Therefore,
abf(x) = (ag(x))(bh(x)) ∈ Z[x]. Now let p be a prime that divides
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ab, that is let ab = pt. Then by Exercise 4, p divides every coefficient
of ag(x) or p divides every coefficient of bh(x). Let us say p divides
every coefficient of ag(x). Then ag(x) = pk(x) such that k(x) ∈ Z[x].
Thus, we get ptf(x) = (pk(x))(bh(x)). Canceling p from both sides we
have tf(x) = k(x)bh(x). Now we repeat the argument with any prime
divisor of t. Continuing thus, we cancel every prime factor of ab till
the left side of the equation is ±f(x) and the right side is the product
of two polynomials in Z[x], one with the same degree as g(x) and the
other with the same degree as h(x).

Example 3.1.6. Let

f = (1/2)x2 − (5/4)x+ (1/2).

Then
4f = 2x2 − 5x+ 2 = (2x− 1)(x− 2) ∈ Z[x].

Hence

f =
1

4
(2x− 1)(x− 2) ∈ Q[x].

A polynomial f(x) ∈ k[x], where k is a ring, is said to be an associate
of g(x) ∈ k[x] if f(x) = cg(x) for some nonzero c ∈ k.

Definition 3.1.5. Let k be a field. A non-constant polynomial p(x) ∈
k[x] is said to be irreducible if its only divisors are its associates and
nonzero constant polynomials. A non-constant polynomial that is not
irreducible is said to be reducible.

Example 3.1.7. The polynomial x2 + 1 is irreducible in R (apply
Corollary A.2.4) but is reducible in C.

We use the fields Zp to determine irreducibility of polynomials in

Q. Let f(x) = anx
n + an−1x

n−1 + · · · + a1x + a0 ∈ Z[x], then f(x)
denotes the polynomial [an]x

n + [an−1]x
n−1 + · · ·+ [a1]x+ [a0] ∈ Zp[x].

Theorem 3.1.8. Let f(x) = anx
n + an−1x

n−1 + · · · + a1x + a0 be
a polynomial with integer coefficients, and let p be a positive prime
that does not divide an. If f(x) is irreducible in Zp[x], then f(x) is
irreducible in Q[x].

Proof. Suppose, on the contrary, that f(x) is irreducible in Zp[x]
and that f(x) is reducible in Q[x]. By Theorem 3.1.7, f(x) factors in
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Z[x]. Let f(x) = h(x)g(x) such that h(x) and g(x) are non-constant
polynomials in Z[x]. Since p does not divide an, it cannot divide the
leading coefficients of h(x) or g(x) (their product is an). Therefore, de-
gree of g(x) is the same as degree of g(x) and degree of h(x) is the same
as degree of h(x). In particular, g(x) and h(x) are not constant polyno-
mial in Zp[x]. By Exercise 6, we have f(x) = g(x)h(x) in Z[x] implies

that f(x) = g(x)h(x) in Zp[x]. This contradicts the irreducibility of

f(x) in Zp[x]. Therefore f(x) is irreducible in Q[x].

The advantage of using this theorem for proving irreducibility is that
for each nonnegative integer n there are only finitely many polynomials
of degree n in Zp[x]. In fact, there are pn+1−pn polynomials of degree n
in Zp[x] (see Exercise 7). So we determine whether a given polynomial
is irreducible by checking the finite number of possible factors.

Example 3.1.8. To show that f(x) = x5 + 8x4 + 3x2 + 4x + 7 is
irreducible in Q[x], we reduce f(x) mod 2 and we get f(x) = x5+x2+1
in Z2[x]. f(x) has no roots in Z2[x] because f(0) ̸= 0 and f(1) ̸= 0 (see
Theorem A.2.1). Therefore f(x) has no linear factors (see Theorem
A.2.2). The only quadratic polynomials in Z2[x] are x2, x2 + x, x2 +
1, x2 + x+ 1. We use long division to show none of these polynomials
divide f(x). f(x) cannot have factors of degree 3 or 4 because then the
other factor has to be either linear or quadratic which is not possible.
Therefore f(x) is irreducible in Z2[x]. This implies f(x) is irreducible
in Q[x].

If a polynomial f(x) is reducible mod p, then it does not imply that
f(x) is reducible in Q[x]. Consequently, application of Theorem 3.1.8
can be time consuming because we need to find the right p to prove
irreducibility.

Example 3.1.9. To prove that f(x) = 7x3 + 6x2 + 4x + 6 is irre-
ducible in Q[x], we use p = 5. Check that f(x) is reducible in Z2[x]
and Z3[x]. Now f(x) = 2x3 + x2 + 4x + 1 has no roots in Z5[x] be-
cause f(0), f(1), f(2), f(3), f(4) do not evaluate to zero. Thus, f(x) is
irreducible in Z5[x] (by Corollary A.2.4) and hence in Q[x].

The number of irreducible polynomials of a given degree n in Zp[x]
is also known.
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Proposition 3.1.1. The number of irreducible polynomials of degree
n in Zp[x] is

1

n

∑
d/n

µ(d)pn/d

where

µ(d) =

 1 for d = 1
0 if d has a square factor
(−1)r if d has r distinct prime factors.

The proof of Proposition 3.1.1 is available in [19].

Example 3.1.10. In Z2[x], there is exactly 1 irreducible polynomial
of degree 2 because

1

2

∑
d/2

µ(d)p2/d =
1

2

(
µ(1)22 + µ(2)21

)
=

1

2
(4− 2) = 1.

Note that x2+x+1 is irreducible because it has no roots by Corollary
A.2.4. Thus x2 + x + 1 is the only irreducible polynomial of degree 2
in Z2 .

In Section A.2 we list other irreducibility tests for polynomials. In
the next section we use irreducible polynomials to construct extension
fields.

3.2 Field Extensions.

Let k be a field. Given a polynomial f in k[x] our goal is to find
a field containing k in which f has a root. To do this we need to
study congruence relations in the polynomial ring k[x]. Congruency is
a recurring theme in this chapter that allows us to construct new fields.

Definition 3.2.1. Let k be a field and f(x), g(x), p(x) ∈ k[x], and let
p(x) be a nonzero polynomial. Then f(x) is congruent to g(x) modulo
p(x), written as

f(x) ≡ g(x)(mod p(x)),

provided that p(x) divides f(x)− g(x).
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Example 3.2.1. It is easy to verify that x2 ≡ −1 (mod x2 + 1),
x3 + 2x+ 1 ≡ x+ 1 (mod x2 + 1), and x4 − 1 ≡ 0 (mod x2 + 1).

We state some properties of this congruence modulo relation with-
out proof. The proofs of Theorems 3.2.1, 3.2.2, 3.2.3, 3.2.6, 3.2.7, and
Corollary 3.2.4 are similar to proofs in the previous section, and are
assigned as exercises.

Theorem 3.2.1. Let k be a field and let p(x) be a nonzero polynomial
in k[x]. Then the relation of congruence modulo p(x) is

1. reflexive: f(x) ≡ f(x)(mod p(x));

2. symmetric: if f(x) ≡ g(x)(mod p(x)), then g(x) ≡ f(x)(mod p(x));

3. transitive: if f(x) ≡ g(x)(mod p(x)) and g(x) ≡ h(x)(mod p(x)),
then f(x) ≡ h(x)(mod p(x)).

Theorem 3.2.2. Let k be a field and p(x) a nonzero polynomial in
k[x]. If f(x) ≡ g(x)(mod p(x)) and h(x) ≡ k(x)(mod p(x)), then

1. f(x) + h(x) = g(x) + k(x) (mod p(x)),

2. f(x)h(x) = g(x)k(x) (mod p(x)).

Example 3.2.2. Since x2 ≡ −1 (mod x2 +1) and x3 +2x+1 ≡ x+1
(mod x2 + 1) we get

(x2) + (x3 + 2x+ 2) ≡ −1 + (x+ 1) = x(mod x2 + 1)

and

(x2)(x3 + 2x+ 2) ≡ (−1)(x+ 1) = −x− 1(mod x2 + 1).

Definition 3.2.2. Let k be a field and f(x), p(x) ∈ k[x] such that p(x)
is a nonzero polynomial. The congruence class of f(x) modulo p(x) is
denoted [f(x)] and consists of all polynomials in k[x] that are congruent
to f(x) modulo p(x), that is

[f(x)] = {g(x); g(x) ∈ k[x] and g(x) ≡ f(x)(mod p(x))}.

In other words

[f(x)] = {f(x) + q(x)p(x); q(x) ∈ k[x]}.
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Example 3.2.3. The congruence class of x + 1 modulo x2 + 1 is the
set

[x+ 1] = {(x+ 1) + q(x)(x2 + 1); q(x) ∈ k[x]}.

Note that the set [x + 1] contains all the polynomials that has the
remainder x+ 1 when divided by x2 + 1.

Theorem 3.2.3. f(x) ≡ g(x)(mod p(x)) if and only if [f(x)] = [g(x)].

Corollary 3.2.4. Two congruence classes modulo p(x) are either dis-
joint or identical.

Corollary 3.2.5. Let k be a field and let p(x)be a nonzero polynomial
of degree n in k[x]. Consider the set S such that

S = {r(x) : r(x) ∈ k[x] and degree of r(x) is less than n}.

Then, if f(x) ∈ k[x], [f(x)] = [r(x)] for some r(x) ∈ S. Moreover the
congruence classes of different polynomials in S are distinct.

Proof. Two different polynomials in S cannot be congruent mod-
ulo p(x) because their difference has degree less than n and hence
is not divisible by p(x). Therefore different polynomials in S must
be in different congruence classes by Theorem 3.2.3. Now given a
polynomial f(x) ∈ k[x] we can use the division algorithm to write
f(x) = q(x)p(x) + r(x) where r(x) has degree less than n. Note that
f(x) ≡ r(x)(mod p(x)). Therefore, f(x) ∈ k[x] implies [f(x)] = [r(x)]
for some r(x) ∈ S.

The set of all congruence classes modulo p(x) is denoted by k[x]/(p(x)).

Example 3.2.4. Consider R[x]/(x2 + 1). The possible remainders on
division by x2 + 1 are polynomials of the form a+ bx where a, b ∈ R.

R[x]/(x2 + 1) = {[a+ bx] : a, b ∈ R} = {[0], [x], [2x+ 5], [1/5x+ 3], . . . }.

Consequently, R[x]/(x2 + 1) is an infinite set.

Example 3.2.5. The possible remainders on division by the polyno-
mial x2+x+1 ∈ Z2[x] are polynomials of the form ax+b with a, b ∈ Z2.
There are only four possible remainders (see Exercise 14). Therefore

Z2[x]/(x
2 + x+ 1) = {[0], [1], [x], [x+ 1]}.
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Definition 3.2.3. Let k be a field and let p(x)be a non-constant poly-
nomial in k[x]. Addition and multiplication in k[x]/(p(x)) are defined
by

[f(x)] + [g(x)] = [f(x) + g(x)],

[f(x)][g(x)] = [f(x)g(x)].

Example 3.2.6. In R[x]/(x2 + 1)

[x+ 1] + [x− 1] = [2x].

[x+ 1][x− 1] = [x2 − 1] = [−2].

Theorem 3.2.6. Let k be a field and let p(x) be a non-constant poly-
nomial in k[x]. Then the set k[x]/(p(x)) of congruence classes modulo
p(x) is a commutative ring with identity.

Theorem 3.2.7. Let k be a field and let p(x) be an irreducible polyno-
mial in k[x]. Then k[x]/(p(x)) is a field.

Example 3.2.7. The polynomial p(x) = x2 + 1 is irreducible in R[x]
because it has no roots in R (see Theorem A.2.7). Therefore, by The-
orem 3.2.7, R[x]/(x2 + 1) is a field.

If F and K are fields such that F ⊆ K, we say that K is an
extension field of F . Next, we prove that if k is a field and p(x) is an
irreducible polynomial in k[x], then k[x]/(p(x)) is an extension field of
k that contains a root of p(x). To do this we introduce the concept of
isomorphisms.

Definition 3.2.4. Let f be a function from a set X to a set Y . Then

1. f is surjective (or onto) if for every y ∈ Y there is a x ∈ X such
that f(x) = y.

2. f is injective (or one-to-one) if x ̸= x′ implies f(x) ̸= f(x′).

3. f is a bijection if it is both injective and surjective.

Definition 3.2.5. Let R and S be rings. A function f : R → S is
called a homomorphism if it satisfies the condition

f(a+ b) = f(a) + f(b) and f(ab) = f(a)f(b) for all a, b ∈ R.
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Definition 3.2.6. Let R and S be rings. A function f : R → S is
called an isomorphism if f is a bijective homomorphism. The ring
R is said to be isomorphic to S (in symbols R ∼= s) if there is an
isomorphism from R to S.

What is the purpose of isomorphisms? Two isomorphic sets are
considered essentially same for all practical purposes.

Example 3.2.8. 1. Z6 is not isomorphic to Z12 because the orders
of the two rings are different.

2. Consider the field K of 2× 2 matrices of the form(
a b

−b a

)
We prove that K is isomorphic to the field C of complex numbers.
Define a function f : K → C by the rule

f

(
a b

−b a

)
= a+ bi.

To prove that f is injective suppose that

f

(
a b

−b a

)
= f

(
r s

−s r

)
.

Then a+ bi = r + si in C. By the rules of equality in C we must
have a = r and b = s. Therefore(

a b
−b a

)
=

(
r s

−s r

)
.

Consequently, f is injective. The function is surjective because
any complex number a+ bi is the image under f of the matrix(

a b
−b a

)
in K. Finally
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f

[(
a b

−b a

)
+

(
c d

−d c

)]
= f

(
a+ c b+ d

−b− d a+ c

)
= (a+ c) + (b+ d)i

= (a+ bi) + (c+ di)

= f

(
a b

−b a

)
+ f

(
c d

−d c

)
and

f

[(
a b

−b a

)(
c d

−d c

)]
= f

(
ac− bd ad+ bc

−ad− bc ac− bd

)
= (ac− bd) + (ad+ bc)i

= (a+ bi)(c+ di)

= f

(
a b

−b a

)
f

(
c d

−d c

)
.

Therefore, f is an isomorphism.

3. An element a in a ring R with identity is called a unit if there
exists u ∈ R such that au = 1R = ua. In the ring Z8 has four
units 1, 3, 5, 7. The ring Z4×Z2 has only two units, namely (1, 1, )
and (3, 1). Therefore Z8 is not isomorphic to Z4 × Z2.

In the next theorem we show that the field k[x]/(p(x)) contains an
isomorphic copy of the field k. Though we do not prove that k[x]/(p(x))
contains the field k itself it is mathematically correct to conclude that
k[x]/(p(x)) is an extension field of k. As we explore this field of math-
ematics further we realize that most theorems here are proved up to
isomorphisms.

Theorem 3.2.8. Let k be a field and let p(x) be an irreducible polyno-
mial in k[x]. Then k[x]/(p(x)) is an extension field of k that contains
a root of p(x).

Proof. By Theorem 3.2.7, k[x]/(p(x)) is a field. Let k∗ be the subset
of k[x]/(p(x)) consisting of the congruence classes of all the constant
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polynomials, that is k∗ = {[c]; c ∈ k}. Define a map ϕ : k → k∗ by
ϕ(c) = [c]. Clearly ϕ is surjective by definition. Since

ϕ(a+ b) = [a+ b] = [a] + [b] = ϕ(a) + ϕ(b) and

ϕ(ab) = [ab] = [a][b] = ϕ(a)ϕ(b)

ϕ is a homomorphism. To see that ϕ is injective suppose ϕ(a) = ϕ(b).
Then [a] = [b] which implies p(x) divides a − b. But the degree of
p(x) ≥ 1 and degree of a− b is zero. Therefore, a− b = 0. Thus a = b
and ϕ is injective. Therefore ϕ is an isomorphism. Hence k[x]/(p(x))
is an extension field of k.

Let p(x) = anx
n + · · · + a1x + a0. Recall, that k[x]/(p(x)) denotes

all the remainders possible when divided by p(x). Therefore, p(x) ∈ [0]
and if a ∈ k then a ∈ [a] in k[x]/(p(x)). Now

p([x]) = an[x]
n + · · ·+ a1[x] + a0

= [an][x]
n + · · ·+ [a1][x] + [a0]

= [anx
n + · · ·+ a1x+ a0]

= [p(x)]

= [0k]

Therefore, [x] is a root of p(x) in k[x]/(p(x)).

Example 3.2.9. By Theorem 3.2.8 we get that R[x]/(x2+1) is a field
that contains a root [x] (denoted usually by i) of x2 + 1.

Next we show that R[x]/(x2+1) is the same as the field of complex
numbers C.

Theorem 3.2.9. The field R[x]/(x2 + 1) is isomorphic to the field of
complex numbers C.

We know from Example 3.2.4 that R[x]/(x2+1) = {[a+ bx] : a, b ∈
R}. Let f : R[x]/(x2 + 1) → C such that f([a + bx]) = a + bi. We
show that f is an isomorphism. Suppose f([a+bx]) = f([c+dx]), then
a+bi = c+di. Consequently, a = c and b = d. Therefore f is injective.
If a+ bi ∈ C, then f([a+ bx]) = a+ bi. Therefore f is surjective. Next

63



we show that f is a homomorphism.

f([a+ bx]) + f([c+ dx]) = (a+ bi) + (c+ di) = (a+ c) + (b+ d)i

= f([(a+ c) + (b+ d)x])

= f([a+ bx] + [c+ dx]).

f([a+ bx])f([c+ dx]) = (a+ bi)(c+ di)
= (ac− bd) + (bc+ ad)i
= f([(ac+ bdx2) + (bc+ ad)x]) since [x2] = [−1]
= f([a+ bx][c+ dx]).

Thus R[x]/(x2 + 1) ∼= C.

3.3 Quotient Rings.

Definition 3.3.1. Let I be an ideal in a ring R and let a, b ∈ R. Then
a is congruent to b modulo I [written a ≡ b (mod I)], provided a−b ∈ I.

Congruence in Z and polynomial rings are specific examples of con-
gruence modulo an ideal.

Example 3.3.1.

1. a ≡ b (mod n) is the same as a ≡ b (mod I), where I =< n > is
the principal ideal generated by n in Z. Note that a− b ∈< n >
if and only if n divides a− b.

2. Similarly, x3 + 2x + 1 ≡ x + 1 (mod x2 + 1) is the same as
x3+2x+1 ≡ x+1 (mod I) where I =< x2+1 > is the principal
ideal generated by x2 + 1 in the polynomial ring Q[x].

Theorem 3.3.1. Let I be an ideal in a ring R. Then the relation of
congruence modulo I is

1. reflexive: a ≡ a (mod I) for every a ∈ R;

2. symmetric: if a ≡ b (mod I), then b ≡ a (mod I);

3. transitive: if a ≡ b (mod I) and b ≡ c (mod I), then a ≡ c (mod
I).
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Theorem 3.3.2. Let I be an ideal in a ring R. If a ≡ b (mod I) and
c ≡ d (mod I), then

1. a+ c ≡ b+ d (mod I);

2. ac ≡ bd (mod I).

Let I be an ideal in a ring R and if a ∈ R, then the congruence
class of a modulo I is the set of all elements of R that are congruent
to a modulo I, that is, the set

{b ∈ R : b ≡ a(mod I)}

= {b ∈ G : b− a ∈ I}

= {b ∈ G : b = a+ i, for some i ∈ I}

= {i+ a : i ∈ I}.

As a consequence the congruence class of a modulo I is denoted
a + I and is called a coset of I in R. The set of all cosets of I is
denoted by R/I.

Theorem 3.3.3. Let I be an ideal in a ring R and let a, c ∈ R. Then
a ≡ c (mod I) if and only if a+ I = c+ I.

Corollary 3.3.4. Let I be an ideal in a ring R. Then two cosets of I
are either disjoint or identical.

Theorem 3.3.5. Let I be an ideal in a ring R. If a + I = b + I and
c+ I = d+ I in R/I, then

(a+ c) + I = (b+ d) + I and ac+ I = bd+ I.

Theorem 3.3.6. Let I be an ideal in a ring R, then R/I is a ring with
addition and multiplication of cosets as defined above.

Proofs of Theorems 3.3.1, 3.3.2, 3.3.3, 3.3.5, 3.3.6, and Corollary
3.3.4 are similar to the proofs we provided for Z in Section 3.1 and are
assigned as exercises.

The ring R/I is called a quotient ring.
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Example 3.3.2. 1. If R = Z8 and I =< 2 >, then

R/I = {0 + I, 1 + I}.

2. If R = Z2[x] and I =< x2 + x+ 1 >, then

R/I = {0 + I, 1 + I, x+ I, (x+ 1) + I}.

A quotient ring preserves many properties of the original ring R.

Theorem 3.3.7. Let I be an ideal in a ring R. Then

1. If R is commutative, then R/I is a commutative ring.

2. If R has an identity, then so does the ring R/I.

Proof.

1. If R is commutative and a, c ∈ R, then ac = ca. Consequently, in
R/I we have (a + I)(c + I) = ac + I = ca + I = (c + I)(a + I).
Hence R/I is commutative.

2. The identity in R/I is the coset 1R + I because (a+ I)(1R + I) =
a1R + I = a+ I and similarly (1R + I)(a+ I) = a+ I.

Let f : R → S be a homomorphism of rings, then the kernel of f is
the set K = {r ∈ R|f(r) = 0S}.

Theorem 3.3.8. Let f : R → S be a homomorphism of rings, then
the kernel K is an ideal in R.

Proof. If a, b ∈ K, then f(a − b) = f(a) − f(b) = 0S − 0S = 0S.
Therefore a − b ∈ K. If r ∈ R and a ∈ K, then f(ra) = f(r)f(a) =
f(r)0S = 0S and f(ar) = f(a)f(r) = 0Sf(r) = 0S. Therefore ra ∈ K
and ar ∈ K. Thus, by Proposition 1.3.1, K is an ideal of R.

Theorem 3.3.9. Let f : R → S be a homomorphism of rings with
kernel K. Then K = (0R) if and only if f is injective.

Proof. Suppose K = (0R) and f(a) = f(b). Then since f is a
homomorphism, f(a − b) = f(a) − f(b) = 0S. Hence a − b is in the
kernel K. Consequently, a − b = 0R which implies a = b. Therefore
f is injective. Conversely, let f be injective and let f(c) = 0S. Since
f(0R) = 0S (see Exercise 10), we get f(c) = f(0R). Therefore c = 0R
by injectivity. Hence the kernel consists of the single element 0R.
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Theorem 3.3.10. Let I be an ideal in a ring R. Then the map π :
R → R/I given by π(r) = r + I is a surjective homomorphism with
kernel I.

Proof. The map π is surjective because given any coset r+I ∈ R/I,
π(r) = r + I. π is a homomorphism because

π(r + s) = (r + s) + I = (r + I) + (s+ I) = π(r) + π(s) and

π(rs) = rs+ I = (r + I)(s+ I) = π(r)π(s).

Now π(r) = 0R + I if and only if r+ I = 0R + I which occurs if only if
r ≡ 0R (mod I), that is, if and only if r ∈ I. Therefore I is the kernel
of π.

We now prove the First Isomorphism Theorem which is a very useful
tool to prove isomorphism of rings.

Theorem 3.3.11. (First Isomorphism Theorem) Let f : R → S be a
surjective homomorphism of rings with kernel K. Then the quotient
ring R/K is isomorphic to S.

Proof. Consider the map ϕ : R/K → S such that ϕ(r+K) = f(r).
If r+K = t+K then r−t ∈ K by Theorem 3.3.3. Therefore f(r−t) =
0S. Since f is a homomorphism, f(r − t) = f(r) − f(t) = 0S, which
implies f(r) = f(t). Hence ϕ is a well defined function independent of
how the coset is written. Since f is surjective, for s ∈ S there is some
r ∈ R such that f(r) = s. Thus ϕ is surjective because s = f(r) =
ϕ(r + K). If ϕ(r + K) = ϕ(c + K) then f(r) = f(c) which implies
0S = f(r) − f(c) = f(r − c). Hence r − c ∈ K, which implies that
r + K = c + K (again by Theorem 3.3.3). Therefore ϕ is injective.
Finally ϕ is a homomorphism because

ϕ[(c+K) + (d+K)] = ϕ[(c+ d) +K] = f(c+ d) = f(c) + f(d)

= ϕ(c+K) + ϕ(d+K)

and

ϕ[(c+K)(d+K)] = ϕ(cd+K) = f(cd) = f(c)f(d)

= ϕ(c+K)ϕ(d+K).

Therefore, ϕ : R/K → S is an isomorphism.
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Example 3.3.3. We use the First Isomorphism to show that Z[x]/ <
x >∼= Z. Let f : Z[x] → Z be such that each polynomial p(x) is
mapped to its constant term cp. If c ∈ Z then f(x+ c) = c. Therefore
f is surjective. Verify that the constant term of p(x) + q(x) is cp +
cq and the constant term of p(x)q(x) is cpcq. Therefore f(p + q) =
f(p) + f(q) and f(pq) = f(p)f(q). Hence f is a homomorphism. The
polynomials with a zero constant term are precisely those that have x
as a factor. Therefore kernel of f is the ideal < x >. Applying the
First Isomorphism we derive that Z[x]/ < x >∼= Z.

Like before we use quotient rings to construct new fields.

Definition 3.3.2. An ideal M in a ring R is said to be maximal if
M ̸= R and whenever J is an ideal such that M ⊆ J ⊆ R, then M = J
or J = R.

Example 3.3.4. We prove that (3) is a maximal ideal in Z. Suppose
J is an ideal such that (3) ⊆ J ⊆ Z. If J ̸= (3) then there exists a ∈ J
such that 3 does not divide a, that is 3 and a are relatively prime.
Therefore the greatest common divisor of a and 3 is 1. Hence by the
Euclidean Algorithm (see Section A.1) there are u, v ∈ Z such that
3u + av = 1. Since 3, a ∈ J , it follows that 1 ∈ J . Therefore J = Z
proving that J is maximal.

Theorem 3.3.12. Let M be an ideal in a commutative ring R with
identity. Then M is a maximal ideal if and only if the quotient ring
R/M is a field.

Proof. Suppose R/M is a field and M ⊆ J ⊆ R for some ideal J .
If M ̸= J , then there exists a ∈ J with a ̸∈ M . By Theorem 3.3.3,
a+M = 0R+M , if and only if, a ∈ M . Hence a+M ̸= 0R+M . Since
R/M is a field, a+M has inverse b+M such that (a+M)(b+M) =
ab +M = 1R +M . This implies ab ≡ 1R (mod M) which means that
ab − 1R = m for some m ∈ M . Since a, b ∈ J it follows that 1R ∈ J .
Consequently, J = R. Therefore M is a maximal ideal.

Conversely, suppose that M is a maximal ideal. R/M is a commu-
tative ring with identity by Theorems 3.3.6 and 3.3.7. Consequently,
R/M is a field if every nonzero element of R/M has a multiplicative
inverse. If a + M is a nonzero element in R/M , then by Theorem
3.3.3, a ̸∈ M . The set J = {m + ra : r ∈ R and m ∈ M} is an ideal
in R that contains M by Exercise 12. Furthermore, a = 0R + 1Ra is
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in J so that M ̸= J . By maximality we must have J = R. Hence
1R ∈ J which implies that 1R = m + ca for some m ∈ M and c ∈ R.
Note that ca − 1R = m ∈ M which implies ca ≡ 1R (mod M). Hence
ca + M = 1R + M . Consequently the coset c + M is the inverse of
a+M in R/M :

(c+M)(a+M) = ca+M = 1R +M.

Therefore R/M is a field.

Example 3.3.5. Now we can prove that (3) is a maximal ideal in Z by
a different method than the one used in Example 3.3.4. By Theorem
3.1.6, Z/(3) = Z3 is a field. Hence, Theorem 3.3.12 proves that (3) is
a maximal ideal in Z.

3.4 Splitting fields of polynomials.

In this section, given a polynomial p ∈ F [x] such that F is a field, we
show that an extension field K ⊇ F exists such that p splits completely
as linear factors. We also classify all the finite fields up to isomorphism.

Let R be a ring with identity. Then R is said to have characteristic
n if n is the smallest positive integer such that n1R = 0R.

Example 3.4.1. The ring Z5 has characteristic 5.

Theorem 3.4.1. Let R be a ring with identity.

1. The set P = {k1R|k ∈ Z} is a subring of R.

2. If R has characteristic 0 then P ∼= Z.

3. If R has characteristic n > 0 then P ∼= Zn.

Proof. Define f : Z → R by f(k) = k1R. Then f is a homomor-
phism because

f(k + t) = (k + t)1R = k1R + t1R = f(k) + f(t);

and
f(kt) = (kt)1R = (k1R)(t1R) = f(k)f(t).

The image of f is the set P therefore P is a ring (see Exercise 13).
Consequently f can be considered as a surjective homomorphism from
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Z to P . Then by the First Isomorphism Theorem we get P ∼= Z/kerf .
If R has characteristic 0 then the only integer k such that k1R = 0 is
k = 0. So that the kernel of f is the ideal < 0 > in Z and

P ∼= Z/ < 0 >∼= Z.

If R has characteristic n > 0 then we prove that Kernel of f is the
principal ideal < n >. Suppose that k1R = 0R. Divide k by n to write
k = nq + r where 0 ≤ r < n. Then

r1R = r1R + 0R
= r1R + n1R, since n1R = 0R
= r1R + nq1R
= (r + nq)1R
= k1R
= 0R.

Since r < n and n is the smallest positive integer such that n1R = 0R
(by definition of the characteristic) we must have r = 0. Therefore
k = nq implying that k ∈< n >. Therefore Ker f = < n >. Therefore
P ∼= Z/ < n >= Zn.

If a field F has characteristic zero then Theorem 3.4.1 implies that
F has a copy of Z and therefore is infinite.

Corollary 3.4.2. Every finite field F has characteristic p for some
prime p.

Proof. Suppose the characteristic of F is n and n is not a prime
number. Then n = kt where k and t are positive integers such that
k < n and t < n. Then

0F = (kt)1R = (k1R)(t1R).

This implies either (k1R) = 0 or (t1R) = 0 (see Exercise 19) con-
tradicting the fact that n is the smallest integer such that n1R = 0R.
Therefore, the characteristic of F is a prime number.

Let K be an extension field of F . Let w, u1, . . . , un be elements of
K. If w ∈ K can be written in the form w = a1u1 + a2u2 + · · ·+ anun

with each ai ∈ F , we say that w is a linear combination of u1, . . . , un.
If every element of K is a linear combination of u1, . . . , un, we say that
the set (u1, . . . , un) spans K over F .
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Example 3.4.2. The set {1, i} spans C over R.

A subset {u1, . . . , un} of K is said to be linearly independent over
F provided that whenever

c1u1 + c2u2 + · · ·+ cnun = 0F

with each ci ∈ F , then ci = 0F for every i. A set that is not linearly
independent is said to be linearly dependent. A set {u1, . . . , um} is
linearly dependent over F if there exists elements b1, . . . , bm in F not
all zero such that b1u1 + · · ·+ bmum = 0F .

Example 3.4.3. 1. The set {1 + i, 2i, 2 + 8i} is linearly dependent
over R since

2(1 + i) + 3(2i)− (2 + 8i) = 0.

2. The set {1, i} is linearly independent over R.

A subset {u1, . . . , un} of K is said to be a basis of K over F if it
spans K and is linearly independent over F .

Example 3.4.4. The set {1, i} is a basis of C over R.

If K has a finite basis over F then K is said to be finite dimensional
over F . The dimension of K over F is the number of elements in any
basis of K and is denoted [K : F ]. In the exercises you will show that
if S = {u1, . . . , un} spans K over F then some subset of S is a basis of
K over F . The order of a field is the number of elements in the field.
We now look at the order of a field.

Theorem 3.4.3. A finite field F has order pn, where p is the charac-
teristic of F and n = [F : Zp].

Proof. By Theorem 3.4.1, since F has characteristic p, Zp ⊂ F .
Hence, there is certainly a finite set of elements that spans F over
Zp (the set F itself for example). Consequently F has a finite basis
(u1, . . . , un) over Zp (see Exercise 20). Every element of F can be
uniquely written in the form

c1u1 + c2u2 + · · ·+ cnun (3.1)

with each ci ∈ Zp. Since there are p possibilities for each ci there are
precisely pn distinct linear combinations of the form 3.1. So the order
of F is pn.
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If u1, u2, . . . , un are elements of an extension field K of F , then we
denote F (u1, u2 . . . , un) to be smallest subfield ofK that contains F and
all the ui. F (u1, u2 . . . , un) is said to be a finitely generated extension
of F generated by u1, . . . , un. An extension field F (u) generated by
one element is called a simple extension.

An element u of an extension field K over F is algebraic over F if
it is the root of a nonzero polynomial in F [x].

Definition 3.4.1. The minimal polynomial of an element u ∈ K over
F is an irreducible monic polynomial p(x) such that p(u) = 0F . More-
over if u is a root of g(x) ∈ F [x], then p(x) divides g(x).

Example 3.4.5. The minimal polynomial of i ∈ C is x2 + 1 over R.

In the exercises you will show that a minimal polynomial of an
algebraic element over a field F always exist and is unique.

Theorem 3.4.4. Let K be an extension field of F and u ∈ K an
algebraic element over F with minimal polynomial p(x) of degree n.
Then {1F , u, u2, . . . , un−1} is a basis of F (u) over F and therefore
[F (u) : F ] = n.

Proof. Let ϕ : F [x] → F (u) be such that ϕ(f(x)) = f(u). Every
constant polynomial c is mapped to itself by ϕ and ϕ(x) = u. So Image
of ϕ (Imϕ) is a field that contains both F and u. But since F (u) is
the smallest field that contains both F and u, F (u) ⊆ Imϕ. But by
the definition of ϕ and since F (u) is a field we have that Imϕ ⊆ F (u).
Therefore Imϕ = F (u). Therefore every nonzero element in F (u) is of
the form f(u) for some f(x) ∈ F [x]. Dividing f(x) by p(x) we write
f(x) = q(x)p(x) + r(x) such that degree of r(x) is less than n. Conse-
quently f(u) = q(u)p(u) + r(u) = q(u)0F + r(u) = r(u). Hence f(u)
has degree less than n. Therefore the set {1F , u, u2, . . . , un−1} spans
F (u) over F . To show that this set is linearly independent suppose
that c0 + c1u+ · · ·+ cn−1u

n−1 = 0F with each ci ∈ F . Then u is a root
of this polynomial and therefore p(x) divides this polynomial which has
degree less than n. This is possible only when c0+ c1u+ · · ·+ cn−1u

n−1

is the zero polynomial, that is, each ci = 0F . Thus, {1F , u, u2, . . . , un−1

is a basis of F (u).
In the Exercises you will prove that F (u) ∼= F [x]/(p(x)) by showing

that ϕ in Theorem 3.4.4 is an isomorphism. As a consequence if u and
v are roots of the same minimal polynomial then F (u) ∼= F (v).
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Let E,F be fields and let σ : F → E be an isomorphism. Then
it can be easily verified that the map that sends a polynomial p(x) =
c0+ c1x+ · · ·+ cnx

n in F [x] to σ(p(x) = σ(c0)+σ(c1)x+ · · ·+σ(cn)x
n

is an isomorphism. That is σ extends F ∼= E to F [x] ∼= E[x]. If p(x) is
irreducible, then σ(p(x) is also irreducible (see Exercise 32). The next
step is to show that σ extends to an isomorphism between extension
fields.

Theorem 3.4.5. Let σ : F → E be an isomorphism of fields. Let u be
an algebraic element in some extension field of F with minimal poly-
nomial p(x) ∈ F [x]. Let σ(p(x)) be the irreducible polynomial obtained
by applying σ to the coefficients of p(x) and let v be a root of σ(p(x)).
Then σ extends to an isomorphism of fields F (u) and E(v).

Proof. By Exercise 25, F [x]/(p(x)) ∼= F (u) and E[x]/(σ(p(x))) ∼=
E(v). Since σ is an isomorphism, the maximal ideal (p(x)) gets mapped
to the maximal ideal σ(p(x)). Therefore the Kernel of the composition
of the surjective functions

F [x] → E[x] → E[x]/(σ(p(x))) → E(v).

is (p(x)). By the First Isomorphism Theorem F [x]/p(x) ∼= E(v).
Thus F (u) ∼= E(v).

If f(x) factors in K[x] as

f(x) = c(x− u1)(x− u2) . . . (x− un)

then we say that f(x) splits over the field K. In other words, K
contains all the roots of f(x).

Definition 3.4.2. If F is a field and f(x) ∈ F [x], then an extension
field K of F is said to be a splitting field of f(x) over F provided
that

1. f(x) splits over K, say f(x) = c(x− u1)(x− u2) · · · (x− un) and

2. K = F (u1, u2, . . . , un).

Example 3.4.6. 1. The polynomials f(x) = 2x4+x3−21x2−14x+
12 factorizes as (x+3)(x− 1

2
)(2x2 − 4x− 8) over Q. The roots of

the factor 2x2 − 4x− 8 are 1±
√
5 (apply quadratic formula). So

the splitting field of f(x) over Q is Q(
√
5).
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2. The splitting field of f(x) = x2 + 1 over R is R(i) = C (see
Exercise 18), where i =

√
−1. But the splitting field of f(x) over

Q is Q(i) which is a much smaller field than C.
By Theorem A.2.7 f(x) is irreducible in R[x] if and only if f(x) is a
first degree polynomial or a second degree polynomial such that its
discriminant is negative. Consequently the splitting field of f(x)
is either R or R(i) = C. This gives us the Fundamental Theorem
of Algebra, that is, every polynomial with real coefficients has a
root in C.

Next we prove that splitting fields always exist.

Theorem 3.4.6. Let F be a field and let f(x) be a non-constant poly-
nomial of degree n in F [x]. Then there exits a splitting field K of f(x)
over F such that [K : F ] ≤ n!.

Proof. The proof is by induction on the degree of f(x). If f(x) has
degree 1 then F is the splitting field of f(x) and [F : F ] = 1 < 1!. Sup-
pose the theorem is true for all polynomials of degree less than n and
that f(x) has degree n. Every polynomial is a product of irreducible
factors therefore f(x) has an irreducible factor in F [x]. Multiplying
this factor by the inverse of its leading coefficient we get a monic ir-
reducible factor p(x) of f(x). By Theorem 3.2.8 there is an extension
field that contains a root u of p(x) and hence of f(x). Moreover p(x)
is necessarily the minimal polynomial of u. Consequently by Theorem
3.4.4 [F (u) : F ] = deg p(x) ≤ deg f(x) = n. Now f(x) factorizes
as f(x) = (x − u)g(x) for some g(x) ∈ F (u)[x]. Since g(x) has de-
gree n − 1, the induction hypothesis gives us a splitting field K of
g(x) over F (u) such that [K : F (u)] ≤ (n− 1)!. In K[x], g(x) = c(x−
u1) · · · (x−un−1) and hence f(x) = c(x−u)(x−u1) · · · (x−un−1). Since
K = F (u)(u1, . . . , un−1) = F (u, u1, . . . , un−1), K is a splitting field of
f(x) over F such that [K : F ] = [K : F (u)][F (u) : F ] ≤ n(n−1)! = n!.
This completes the inductive step and hence the proof of the Theo-
rem.

Two splitting fields of a polynomial are isomorphic. The standard
way to prove this fact is by proving a stronger result that an isomor-
phism σ between fields F and E extends to an isomorphism of splitting
fields. Then by setting F = E and σ to be the identity map we get
that any two splitting fields of a polynomial are isomorphic.
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Theorem 3.4.7. Let σ : F → E be an isomorphism of fields, f(x) a
non-constant polynomial in F [x] and σf(x) the corresponding polyno-
mial in E[x]. If K is a splitting field of f(x) over F and L is a splitting
field of σf(x) over E, then σ extends to an isomorphism K ∼= L.

Proof. The proof is by induction on the degree of f(x). If deg
f(x) = 1, then K = F . σ(f(x)) also has degree 1 and therefore
E = L. Thus σ provides the isomorphism of the splitting fields too.
Now suppose the Theorem is true for polynomials of degree n− 1 and
f(x) has degree n. As in Theorem 3.4.6, f(x) has a monic irreducible
factor p(x). Let u be a root of p(x) and v be a root of σ(p(x)). Then
by Theorem 3.4.5 F (u) ∼= E(v). Now f(x) = (x−u)g(x) and degree of
g(x) = n− 1. Therefore by the induction hypothesis the isomorphism
F (u) ∼= E(v) can be extended to an isomorphism K ∼= L where K
is the splitting field of g(x) over F (u) and L is the splitting field of
σ(g(x)) over E(v). Consequently K and L are also splitting fields of
f(x) and σ(f(x)) and this proves the Theorem.

A polynomial f(x) is said to be separable if it has no repeated roots
in any splitting field. The derivative of

f(x) = c0 + c1x+ c2x
2 + · · ·+ cnx

n ∈ F [x]

is
f ′(x) = c1 + 2C2x+ 3C3x

2 + · · ·ncnxn−1 ∈ F [x].

When F = R this is the usual derivative of calculus.

Lemma 3.4.1. Let F be a field and f(x) ∈ F [x]. If f(x) and f ′(x)
are relatively prime in F [x] then f(x) is separable.

Proof. LetK be a splitting field of f(x) and suppose on the contrary
f(x) is not separable. Then f(x) must have a repeated root u in K.
Hence f(x) = (x− u)2g(x) for some g(x) ∈ K[x] and by Exercise 26

f ′(x) = (x− u)2g′(x) + 2(x− u)g(x).

Therefore f ′(u) = 0F and u is a root of f ′(x). Consequently, the
minimal polynomial of u divides both f(x) and f ′(x). Therefore f(x)
and f ′(x) are not relatively prime which is a contradiction. Hence f(x)
is separable.

Theorem 3.4.8. Let F be a field of characteristic zero. Then every
irreducible polynomial in F [x] is separable.
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Proof. An irreducible polynomial p(x) ∈ F [x] is nonconstant and
hence

p(x) = cxn + (lower degree terms), withc ̸= 0F and n ≥ 1.

Then

p′(x) = (nc)xn−1 + (lower degree terms), withnc ̸= 0F .

Therefore p′(x) is a nonzero polynomial of lower degree than p(x).
Since p(x) is irreducible, p(x) and p′(x) are relatively prime. Hence
p(x) is separable by Lemma 3.4.1.

The Theorem is false if F does not have characteristic 0.

Example 3.4.7. Consider the polynomial f(x) = x2−y in Z2(y) where
y is an indeterminate. Then f(x) is irreducible because it has no roots
in Z2(y). Since f ′(x) = 0, f(x) is not separable by Lemma 3.4.1.

Corollary 3.4.9. Let F be a field. Then an irreducible polynomial
f(x) ∈ F [x] is separable if f ′(x) ̸= 0.

Proof. The proof is similar to the proof of Theorem 3.4.8.

Theorem 3.4.10. Let K be an extension field of Zp and n a positive
integer. Then K has order pn if and only if K is a splitting field of
xpn − x over Zp.

Proof. Assume K is a splitting field of xpn − x ∈ Zp[x]. Since
f ′(x) = pnxpn−1−1 = −1, f(x) is separable by Lemma 3.4.1. Moreover,
the set E consisting of the pn distinct roots of f(x) is a subfield of K
by Exercise 27. Since K is a splitting field, K is the smallest field
containing the set E of roots. Hence, K = E, which implies K has
order pn.

Conversely, suppose K has order pn. Theorem 4.5.8 implies that
every nonzero element c of K satisfies cp

n−1
= 1K . Therefore c is a root

of xpn − x. 0K is also a root of xpn − x. Hence, the pn elements of K
are all the possible roots of xpn − x. Therefore K is the splitting field
of xpn − x.

Corollary 3.4.11. For each positive prime p and positive integer n,
there exists a field of order pn.
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Proof. A splitting field of xpn − x over Zp exists by Theorem 3.4.6
It has order pn by Theorem 3.4.10.

Example 3.4.8. Let p = 2, n = 2 in Corollary 3.4.11. Since

x4 − x = x(x+ 1)(x2 + x+ 1) ∈ Z2,

the splitting field of x4 − x is Z2/(x
2 + x+ 1) = {[0], [1], [x], [x+ 1]}.

Corollary 3.4.12. Two finite fields of the same order are isomorphic.

Proof. IfK and L are fields of order pn, then both are splitting fields
of xpn − x over Zp, by Theorem 3.4.10. Hence they are isomorphic by
Theorem 3.4.7.

Finite fields have many applications in many areas including combi-
natorics, cryptography, projective geometry, and experimental design.
We use finite fields to count mutually orthogonal Latin squares and to
generate algebraic codes in Chapter 6.

Exercises.

1. A relation T ⊂ A×A on a set A is called an equivalence relation
provided that T is reflexive ((a, a) ∈ T , for every a ∈ A), sym-
metric (if (a, b) ∈ T , then (b, a) ∈ T ), and transitive (if (a, b) ∈ T
and (b, c) ∈ T , then (a, c) ∈ T ). Let ∼ be an equivalence relation
on a set A. Then the equivalence class of a ∈ A, denoted [a], is
the set

[a] = {b|b ∈ A and b ∼ a}.

Prove that if a, b ∈ A then a ∼ b if and only if [a] = [b] and
that any two equivalence classes are either disjoint or identical.
Note that the congruence modulo relations in this chapter are
equivalence relations.

2. Show that

39 mod 181 = 39, 181 mod 39 = 25, 39 mod 39 = 0,
−17 mod 55 = 38, 0 mod 39 = 0, 25 mod 5 = 0,
−13 mod 5 = 2, 1 mod 39 = 1, 39 mod 13 = 0.
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3. Prove the Freshman’s dream: Let p be a prime and R a commuta-
tive ring with identity of characteristic p. Then for every a, b ∈ R
and every positive integer n,

(a+ b)p
n

= ap
n

+ bp
n

.

4. Let f(x), g(x), h(x) ∈ Z[x] with f(x) = g(x)h(x). If p is a prime
that divides every coefficient of f(x), then either p divides every
coefficient of g(x) or p divides every coefficient of h(x).

5. Prove that f(x) is an associate of g(x) if and only if g(x) is an
associate of f(x).

6. Verify that f(x) = g(x)h(x) in Z[x] implies that f(x) = g(x)h(x)
in Zp[x].

7. Prove that there are pn+1 − pn polynomials of degree n in Zp[x].

8. Determine whether the two rings are isomorphic.

(a) Q and R.
(b) R× R and C.
(c) Z4 × Z4 and Z16.

(d) Z6 and Z2 × Z3.

9. Let f : C → C be the complex conjugation map given by f(a +
bi) = a− bi. Show that f is an isomorphism.

10. Let f : R → S be a homomorphism of rings. Prove that f(0R) =
0S. Also prove that f(−a) = −f(a) for every a ∈ R.

11. Prove that f, g : R → R given by f(x) = x+1 and g(x) = 2x are
not isomorphisms.

12. Let R be a commutative ring with identity and let M be an ideal
of R. Prove that the set J = {m + ra|r ∈ R and m ∈ M} is an
ideal in R that contains M .

13. If R and S are rings and f : R → S is a homomorphism, prove
that f(R) = {f(a) ∈ S|a ∈ R} is a subring of S.

14. Let p(x) ∈ Zn[x] be a polynomial of degree k. Prove that there
are nk distinct congruence classes in Zn[x]/(p(x)).
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15. Let I = {0, 3} in Z6. Verify that I is an ideal and show that
Z6/I ∼= Z3.

16. Let I be an ideal in a noncommutative ring R such that ab−ba ∈ I
for all a, b ∈ R. Prove that R/I is commutative.

17. Use the First Isomorphism Theorem to show that Z20/ < 5 >∼=
Z5.

18. Prove that the field R(i) is C, where i =
√
−1.

19. Let F be a field and let a, b ∈ F . If ab = 0F prove that either
a = 0 or b = 0.

20. Prove that if S = {u1, . . . , un} spans K over F then some subset
of S is a basis of K over F .

21. Let K be an extension field of F . Prove that any two finite bases
of K over F have the same number of elements.

22. Let F,K, and L be fields such that F ⊆ K ⊆ L. If [K : F ]
and [L : K] are finite, then prove that L is a finite dimensional
extension of F and [L : F ] = [L : K][K : F ].

23. Let K and L be finite dimensional extension field of F and let
f : K → L be an isomorphism such that f(c) = c for every c ∈ F .
Prove that [K : F ] = [L : F ].

24. Prove that a minimal polynomial of an algebraic element over a
field F always exist and is unique.

25. In Theorem 3.4.4 show that ϕ is an isomorphism between F (u)
and F [x]/(p(x)).

26. Let k be a field and let f, g ∈ k[x]. Prove that the following rules
hold for derivatives: (f + g)′(x) = f ′(x) + g′(x) and (fg)′(x) =
f(x)g′(x) + g(x)f ′(x)

27. Let K be a splitting field of xpn − x ∈ Zp[x]. Prove that the set
E consisting of all the pn distinct roots of the polynomial xpn −x
is a subfield of K.

28. Prove that if K is a finite dimensional extension field of F , then
K is an algebraic extension of F .
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29. Prove that if K is a finitely generated separable extension field of
F , then K = F (u) for some u ∈ K.

30. Prove that if K = F (u1, . . . , un) is a finitely generated extension
field of F and each ui is algebraic over F , then K is a finite
dimensional algebraic extension of F .

31. Let f(x) be an irreducible polynomial in Zp[x] such that degree
of f(x) divides n. Show that the polynomial f(x) is a factor of
xpn − x in Zp[x].

32. Let σ : F → E be an isomorphism of fields, and let σ(p(x)) denote
the polynomial obtained by applying σ to the coefficients of p(x).
Show that σ(p(x)) is irreducible.
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Chapter 4

Formulas to find roots of
polynomials.

There is something to complete in this demonstration. I do not have
the time - Evariste Galois.

Most of us know how to solve a polynomial of degree 2 using the
quadratic formula. It is natural to ask whether there are such formulas
for polynomials of degrees greater than 2. In this chapter, we provide
formulas for finding roots of polynomials of degrees 3 and 4, and prove
that no formulas can exist for polynomials of degrees greater than 4.

4.1 Groups.

In this section, we introduce groups which are algebraic structures sim-
ilar to rings but with only a single operation. We use groups later in
the chapter to analyze roots of polynomial equations.

Definition 4.1.1. A group is a nonempty set G equipped with an op-
eration ∗ that satisfies the following properties.

1. Closure: If a ∈ G and b ∈ G, then a ∗ b ∈ G.

2. Associativity: a ∗ (b ∗ c) = (a ∗ b) ∗ c, for all a, b, c ∈ G.

3. There is an element e ∈ G (called the identity element) such that
a ∗ e = a = e ∗ a for every a ∈ G.
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4. For each a ∈ G, there is an element a−1 ∈ G (called the inverse
of a) such that a ∗ a−1 = e = a−1 ∗ a.

A group G is said to abelian if its operation ∗ is commutative, that
is,

a ∗ b = b ∗ a for all a, b ∈ G.

Generally, for groups the multiplicative notation is used. Whenever
the operation is addition we switch to suitable notation. For example
we replace −a as inverse of a instead of a−1 and so on.

Example 4.1.1. 1. We prove that the set G = {1,−1, i,−i} ∈ C is
a group under multiplication by checking the four axioms in the
definition of a group. From the operation table for G given below
we verify that 1 is the multiplicative identity, every element has
an inverse and that closure and associativity holds in G. Thus G
is a group. We also check that G is commutative from the same
table.

· 1 -1 i -i

1 1 -1 i -1
-1 -1 1 -i i
i i -i -1 1
-i -i i 1 -1

Table 4.1: The operation table of G.

2. It is easy to verify that every ring is an abelian group under
addition. Also check that the nonzero elements of a field form an
abelian group under multiplication.

3. Let G1, G2, . . . , Gn be groups. We define a coordinate-wise oper-
ation on the Cartesian product G1 ×G2 × · · · ×Gn:

(a1, a2, . . . , an)(b1, b2, . . . , bn) = (a1b1, a2b2, . . . , anbn).

Check that G1 ×G2 × · · · ×Gn is a group under this operation.

4. From Example 3, we know that in the ring Z8, the set of units
U8 = {1, 3, 5, 7}. U8 is a group under multiplication (see operation
table in Example 4.1.2).
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Just like in the case of rings, isomorphisms play a critical role and
isomorphic groups are considered to be essentially the same.

Definition 4.1.2. Let G and H be groups. A function f : G → H
is a homomorphism if f(a ∗ b) = f(a) ∗ f(b) for all a, b ∈ G. The
group G is said to be isomorphic to the group H if there is a bijective
homomorphism from G to H.

Example 4.1.2. We show that the multiplicative group U8 = {1, 3, 5, 7}
of units in Z8 is isomorphic to the additive group Z2×Z2. Let the func-
tion f : U8 → Z2 × Z2 be such that

f(1) = (0, 0), f(3) = (1, 0), f(5) = (0, 1), f(7) = (1, 1).

f is bijective by its definition. We determine that f is a ho-
momorphism from the operation tables of the two groups, that is,
f(ab) = f(a)f(b) for a, b ∈ U8. Thus U8

∼= Z2 × Z2.

U8 Z2 × Z2

◦ 1 3 5 7

1 1 3 5 7
3 3 1 7 5
5 5 7 1 3
7 7 5 3 1

+ (0,0) (1,0) (0,1) (1,1)

(0,0) (0,0) (1,0) (0,1) (1,1)
(1,0) (1,0) (0,0) (1,1) (0,1)
(0,1) (0,1) (1,1) (0,0) (1,0)
(1,1) (1,1) (0,1) (1,0) (0,0)

Next, we look at groups of permutations.

Definition 4.1.3. A permutation of the set G of n elements is an
ordered arrangement of the n elements.

Let Sn denote the set of all permutations of the set {1, 2, . . . , n}.

Example 4.1.3. The set S3 of permutations of the set S = {1, 2, 3} is

S3 = {123, 231, 312, 213, 321, 132} .

We now describe a recursive algorithm to generate all the permu-
tations of {1, 2, . . . , n}.

Algorithm 4.1.1 (Generating permutations). 1. Write down each
permutation of {1, 2, . . . , n− 1}, n times.
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2. Interlace n with these permutations from left to right to get Sn.

Example 4.1.4. We derive the permutations of the set {1, 2} from the
permutation of the set {1} using Algorithm 4.1.1.

1 2
2 1

Again, applying Algorithm 4.1.1, we get that the permutations of
the set {1, 2, 3} are

1 2 3
1 3 2

3 1 2
2 1 3
2 3 1

3 2 1

Observe that a permutation is a bijective function f from the set G
to itself. We now introduce the cycle notation of permutations which
we use henceforth. Let a1, a2, . . . , ak, k ≥ 1 be distinct elements of the
set {1, 2, . . . , n}. Then (a1, a2, . . . , ak) denotes the permutation in Sn

that maps a1 to a2, a2 to a3, . . . , ak to a1 and maps every other element
of {1, 2, . . . , n} to itself. (a1, a2, . . . , ak) is called a cycle of length k or
a k-cycle.

Example 4.1.5. In the cycle notation the identity permutation 123 ∈
S3 can be written either as (1), (2), or (3), but the usual convention is
to denote the identity by (1) or e. The permutation 213 = (12), and
so on. Thus, in the cycle notation,

S3 = {(1), (123), (132), (12), (13), (23)} .

The product of permutations is the composition of permutations as
functions.

Example 4.1.6. In S4 the product (243)(1243) is (1423) and (123)(12) =
(13).

Two cycles are said to be disjoint if they have no elements in com-
mon. We leave it as an exercise to show that every permutation in Sn

is a product of disjoint cycles.
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Example 4.1.7. In S8 the permutation 51724638 is the same as (1542)(37).

Lemma 4.1.1. Every permutation in Sn is a product of transpositions.

Proof. Every permutation is a product of cycles by Exercise 6. Any
cycle (a1a2 · · · ak) is a product of transpositions:

(a1a2 · · · ak) = (a1ak)(a1ak−1) · · · (a1a3)(a1a2).

There are n! = 1 · 2 · · · · · n elements in Sn and Sn is a nonabelian
group with the operation of product of permutations (see Exercise 2).
Check that the set of all permutations of a set G with n elements is
isomorphic to Sn. Shortly, we prove that every group is isomorphic to
a group of permutations.

Definition 4.1.4. A subset K of a group G is a subgroup of G if K is
itself a group under the operation in G.

Example 4.1.8. 1. Since every ring R is a group under addition,
every subring is a subgroup of R. In particular, every ideal R is
a subgroup of R.

2. The six subgroups of the group S3 are

{e}, {e, (12)}, {e, (13)}, {e, (23)}, {e, (123), (132)}, and S3.

3. A permutation is said to be even if it can be written as a product
of even number of transpositions. Otherwise it is called an odd
permutation. The set of all even permutations of Sn, denoted by
An, is a subgroup.

The next result helps us skip a couple of steps while checking
whether a subset of a group is a subgroup.

Theorem 4.1.1. A nonempty subset H of a group G is a subgroup of
G provided that

1. if a, b ∈ H, then ab ∈ H and

2. if a ∈ H then a−1 ∈ H.
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Proof. By definition H ⊂ G is a subgroup of G if H is a group.
Now Properties 1 and 2 are the closure and inverse axioms for a group.
Associativity holds in H because H is a subset of G. So we only have
to prove that the identity e ∈ H. Since H is nonempty, there exists
an element c ∈ H. Now c−1 ∈ H by Property 2 and cc−1 = e ∈ H by
Property 1. Therefore H is a group and hence a subgroup of G.

Note that to prove that a finite subset is a subgroup you need to
only check for closure (see Exercise 31).

Theorem 4.1.2. Let G and H be groups and let f : G → H be a
homomorphism. Then Im f is a subgroup of H. If f is injective then
G ∼= Im f .

Proof. The identity eH is in Im f because

f(eG)f(eG) = f(eGeG) = f(eG) = eHf(eG). (4.1)

Since H is a group, f(eG)
−1 exists. Multiplying Equation 4.1 by

f(eG)
−1 on both sides, we get f(eG) = eH . Therefore Im f is nonempty.

Since f is a homomorphism, f(a)f(b) = f(ab). Hence Im f is closed.
Now

f(a−1)f(a) = f(a−1a) = f(eG) = eH .

Similarly, we prove that f(a)f(a−1) = eH . Therefore, f(a
−1) = f(a)−1.

Thus the inverse of f(a) is also in Im f . Therefore Im f is a subgroup
of H by Theorem 4.1.1. Now f is a surjective function from G to Im
f . Consequently, if f is also an injective homomorphism, then f is an
isomorphism.

The number of elements in a group is called the order of the group.
We denote the order of a group G as |G|. An element a in a group is
said to have finite order if ak = e for some positive integer k. The order
of an element a is the smallest positive integer n such that an = e. The
order of a is denoted by |a|. The element a is said to have infinite order
if ak ̸= e for every positive integer k.

Example 4.1.9. 1. |Sn| = n!.

2. In the group G = {±1,±i} under multiplication of complex num-
bers, |G| = 4. The order of i is 4 because i2 = −1, i3 = −i, i4 = 1.
Similarly −i has order 4. Whereas −1 has order 2. Finally, 1,
which is the multiplicative identity, has order 1.

86



3. In the additive group Z5, 3 has order 5 because:

3+ 3 = 1, 3+ 3+3 = 4, 3+ 3+3+3 = 2, 3+ 3+3+3+3 = 0.

But in the additive group of integers Z, 3 has infinite order.

Now we are ready to show that every group is isomorphic to a
permutation group.

Theorem 4.1.3 (Cayley’s Theorem). Every group is isomorphic to a
group of permutations. Moreover, every finite group G of order n is
isomorphic to a subgroup of the symmetric group Sn.

Proof. Let A(G) be the set of all permutations of the set G. By
Exercise 12, A(G) is a group with composition as the group operation.
A(G) is also the set of all bijective functions from G to G. Let a ∈ G
and let the map ϕa : G → G be such that ϕa(x) = ax. Then ϕa ∈ A(G)
by Exercise 26. Now define f : G → A(G) by f(a) = ϕa. Now
f(ab)(x) = ϕab(x) = ab(x). On the other hand f(a) ◦ f(b) = (ϕa ◦
ϕb)(x) = ϕa(ϕb(x)) = ϕa(bx) = abx. Therefore f(ab) = f(a) ◦ f(b).
Thus f is a homomorphism. Consequently, Im f is a subgroup of A(G)
by Theorem 4.1.2. Suppose f(a) = f(b), then ϕa(x) = ϕb(x) for all
x ∈ G. Consequently, a = ae = ϕa(e) = ϕb(e) = be = b. Hence f is
injective. Therefore G ∼= Im f by Theorem 4.1.2.

If G has n elements, then A(G) is isomorphic to Sn by Exercise 2.
But since G is isomorphic to a subgroup of A(G) it follows that G is
isomorphic to a subgroup of Sn.

Thus, in effect, permutation groups are the only groups up to iso-
morphism. This representation of a group is sometimes useful because
permutations are concrete objects and calculations are straightforward.
But usually other isomorphic representations of a group lead to a bet-
ter understanding about the basic underlying structure of the group as
we shall see in following sections.

4.2 Cyclic groups.

In this section we study groups that are generated by a single element.
The next theorem deals with the properties of the order of an element
in a group. These properties are useful in determining the inherent
structure of the group.
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Theorem 4.2.1. Let G be a group and let a ∈ G.

1. If a has infinite order, then the elements ak, with k ∈ Z, are all
distinct.

2. If a has finite order n then ak = e if and only if n divides k.
Moreover, ai = aj if and only if i ≡ j (mod n).

3. If a has order n and n = td with d > 0, then at has order d.

Proof.

1. Suppose ai = aj with i > j. The multiplying both sides by a−j

shows that ai−j = e. Since i − j > 0 we get a has finite order
which is a contradiction. Therefore the elements ak, with k ∈ Z,
are all distinct.

2. If n divides k, say k = nt, then ak = ant = (an)t = et = e.
Conversely suppose that ak = e. Then divide k by n to get
k = nq + r such that 0 ≤ r ≤ n. Consequently

e = ak = anq+r = (an)qar = eqar = ear = ar.

By the definition of order, n is the smallest positive integer with
an = e. Therefore r = 0 implying k = nq. Hence n divides k.

Like before, ai = aj if and only if ai−j = e. And ai−j = e if and
only if n divides i− j, that is, if and only if i ≡ j (mod n).

3. Now (at)
d
= atd = an = e. Consequently to show that d is the

order of at we need to show that d is the smallest integer such
that (at)

d
= e. Let k be any positive integer such that (at)

k
= e,

then atk = e, Since n is the order of a, by Part 2, n divides
tk. Therefore tk = nr = (td)r for some integer r. This implies
k = dr. Since k and d are positive integers and d divides k we get
d ≤ k. Thus, we conclude that at has order d.

Theorem 4.2.2. Let G be a group and let a ∈ G. Let < a > denote
the set of all powers of a, that is

< a >= {an|n ∈ Z} = {. . . , a−2, a−1, a0, a1, a2, . . . }.

Then, < a > is a subgroup of G.
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Proof. The product of any two elements of < a > is in < a >
because aiaj = ai+j. The inverse of ak is a−k, and a−k is also in < a >.
Therefore < a > is a subgroup by Theorem 4.1.1.

The group < a > is called the cyclic subgroup generated by a. If the
subgroup < a > is the entire group G, we say that G is a cyclic group.
Observe that cyclic groups are necessarily abelian.

Example 4.2.1. 1. In S3, the cyclic subgroup < (123) > is

< (123) >= {e, (123), (132)}.

2. In the additive group Z8, the cyclic subgroup < 2 >= {2, 4, 6, 0}.
The cyclic subgroup < 1 > is the entire group Z8 and therefore
Z8 is a cyclic group. Generalizing, Zn =< 1 > is cyclic.

3. The group Z =< 1 > and therefore is a cyclic group.

4. We prove that the group Zm×Zn is cyclic if and only if gcd(m,n) =
1. Observe that the order of Zm × Zn is mn. Let gcd(m,n) =
d > 1. Then m = dr and n = ds for some integers r and s. Thus
drs < d2rs = mn. If (a, b) ∈ Zm × Zn, then

drs(a, b) = (drsa, drsb) = (msa, nrb) = (0, 0).

Thus the order of (a, b) is a divisor of drs and hence is strictly less
than mn. Thus Zm × Zn is not cyclic when Let gcd(m,n) ̸= 1.
When the gcd(m,n) = 1,

Zm × Zn =< (1, 1) > .

Theorem 4.2.3. Let G be a group and let a ∈ G.

1. If a has infinite order, then < a > is an infinite subgroup consist-
ing of the distinct elements ak with k ∈ Z.

2. If a has finite order n, then < a > is a subgroup of order n and
< a >= {e = a0, a1, . . . , an−1}.

Proof.

1. This follows from Part 1 of Theorem 4.2.1.
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2. Part 2 of Theorem 4.2.1 says that ai = aj if and only if i ≡ j
(mod n). Every integer is in the congruency class of one of the
integers in {0, 1, . . . , n − 1} (see Section 3.1). Since no two in-
tegers 0, 1, . . . , n − 1 are congruent modulo n, ai ̸= aj if i, j ∈
{0, 1, . . . , n − 1}. Therefore < a >= {a0, a1, . . . , an−1}. Conse-
quently, < a > is a subgroup of order n.

The next theorem shows that cyclic groups have a nice classification
up to isomorphism.

Theorem 4.2.4. Every infinite cyclic group is isomorphic to Z. Every
finite cyclic group of order n is isomorphic to Zn.

Proof. Let G =< a > be an infinite cyclic group. Define f : Z → G
by f(i) = ai. The map f is surjective by definition of a cyclic group. f
is injective by Part 1 of Theorem 4.2.3. f is a homomorphism because
f(i+ j) = ai+j = aiaj = f(i)f(j). Thus f is an isomorphism.

Now suppose G =< a > and a has finite order n. Then G =
{a0, a1, . . . , an−1} by Part 2 of Theorem 4.2.3. Let f : Zn → G be
such that f(i) = ai. f is injective by definition and f is a surjective
homomorphism just like above. Therefore, f is an isomorphism from
Zn to G.

Subgroups can be generated by more than one element. Let G be
a group and a1, . . . , an ∈ G. Consider the set

< a1, a2, . . . , an >= {
n∏

i=1

ai
ri : ri ∈ Z, ri ≥ 0}.

We leave it as an exercise to verify that < a1, a2, . . . , an > is a
subgroup of G.

Example 4.2.2. 1. The subgroup< (12), (123) > is the entire group
S3 because

(123)2 = (132), (123)3 = e, (123)(12) = (13), (123)2(12) = (23).

2. The 6 transpositions of S4 can be generated by the three trans-
positions (12), (13), and (14) as shown below.

(13)−1(12)(13) = (13)(12)(13) = (23)
(14)−1(12)(14) = (14)(12)(14) = (24)
(14)−1(13)(14) = (14)(13)(14) = (34)
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Since every permutation is a product of transpositions (Lemma
4.1.1), we get < (12), (13), (14) >= S4.

4.3 Normal Subgroups and Quotient Groups.

In this section, we prove the First Isomorphism Theorem for groups.
We begin with congruence relations in a group.

Definition 4.3.1. Let K be a subgroup of a group G and let a, b ∈ G.
Then a is congruent to b modulo K [written a ≡ b (mod K)] provided
that ab−1 ∈ K.

Example 4.3.1. 1. In Z8, 3 ≡ 1 (mod 2) because 3−1 = 2 ∈< 2 >.

2. In S3, (12) ≡ (13) (mod< (123) >) because (12)(13)−1 = (12)(13) =
(132) ∈< (123) >.

Theorem 4.3.1. Let K be a subgroup of a group G. Then the relation
of congruence modulo K is

• reflexive: a ≡ a (mod K) for all a ∈ G;

• symmetric: if a ≡ b (mod K), then b ≡ a (mod K);

• transitive: if a ≡ b (mod K) and b ≡ c (mod K), then a ≡ c (mod
K).

If K is a subgroup of G and if a ∈ G, then the congruence class
of a modulo K is the set of all elements of G that are congruent to a
modulo K, that is, the set

{b ∈ G : b ≡ a(mod K)} = {b ∈ G : ba−1 ∈ K}
= {b ∈ G : b = ka, for some k ∈ K}
= {ka : k ∈ K}.

As a consequence the congruence class of a modulo K is denoted
Ka and is called a right coset of K in G. The set of all congruence
classes modulo K is denoted G/K. A left coset of K is denoted by aK
and is defined as aK = {ak : k ∈ K}. If G is abelian, then Ka = aK.

Example 4.3.2. 1. In S3

< (123) > (12) = {e(12), (123)(12), (132)(12)} = {(12), (13), (23)}.
Check that the only right cosets of the subgroup < (123) > are
< (123) > e and < (123) > (12).
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2. In Z8,

< 2 > +1 = {0 + 1, 2 + 1, 4 + 1, 6 + 1} = {1, 3, 5, 7}.

Similarly, < 2 > +2 = {0, 2, 4, 6}. Check that the only right
cosets of the subgroup < 2 > are < 2 > +0 and < 2 > +1.

Theorem 4.3.2. Let K be a subgroup of a group G and let a, c ∈ G.
Then a ≡ c (mod K) if and only if Ka = Kc.

Corollary 4.3.3. Let K be a subgroup of a group G. Then two right
cosets of K are either disjoint or identical.

Proofs of Theorems 4.3.1, 4.3.2, and Corollary 4.3.3 are similar to
the proofs provided for congruence classes in Z in Section 3.1 and we
do not discuss it further.

Theorem 4.3.4. Let K be a subgroup of a group G.

1. G is union of the right cosets of K.

2. If K is finite, any two right cosets of K have the same number of
elements.

Proof.

1. Let a ∈ G, then a ∈ Ka. Therefore, every element of G is in one
of the cosets of K. Moreover, every coset of K contains elements
of G. Hence G = ∪a∈GKa.

2. Define f : K → Ka by f(x) = xa. Let y ∈ Ka, then y = xa for
some x ∈ K. Therefore, f(x) = y. Consequently, f is surjective.
If f(x) = f(y), then xa = ya and therefore x = y. Thus, f is
injective. Consequently f is a bijection. Therefore |K| = |Ka|
for every right coset Ka of K.

Recall from Section 3.3 that the set of cosets of an ideal is a ring.
But the set of cosets of a subgroup need not be a group. Let N be a
subgroup of a group G. The set of right cosets G/N is called a quotient
group if G/N is a group. We prove, shortly, that G/N is a group if and
only if N is a normal subgroup.

Definition 4.3.2. A subgroup N of a group G is said to be normal if
Na = aN for every a ∈ G.
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Example 4.3.3. 1. Let N =< (123) > be the cyclic group gener-
ated by (123) in S3. Then the only two right cosets of N in S3 are
Ne and N(12). Therefore N is a normal subgroup of S3 because

Ne = {e, (123), (132)} = eN
N(12) = {(12), (13), (23)} = (12)N.

2. Every subgroup of an abelian group is normal.

3. < e > is a normal subgroup for every group.

4. Let H = An be the subgroup of even permutations of Sn. Then,
Ha = H = aH if a is an even cycle. By Exercise 11, |An| = 1

2
|Sn|.

Therefore, by Theorem 4.3.4, H has exactly two right cosets. Let
a be an odd cycle. Then the two right cosets of H are He and
Ha. Similarly, the two left cosets are eH and aH. Consequently,
Ha = aH for all a ∈ Sn. Thus An is a normal subgroup of Sn.

Lemma 4.3.1. If N is a normal subgroup of G then for each a ∈ G,
a−1Na = N .

Proof. We first show that a−1Na ⊆ N . Let x ∈ a−1Na, then
x = a−1na for some n ∈ N . Since N is normal Na = aN for every
a ∈ G. Therefore na = an′ for some n′ ∈ N . Consequently,

x = a−1na = a−1an′ = n′ ∈ N.

Therefore a−1Na ⊆ N .
Next we need to show N ⊆ a−1Na. Let n ∈ N . Since N is normal,

na−1 = a−1n′ for some n′ ∈ N . Therefore

n = na−1a = a−1n′a.

Hence n ∈ a−1Na. This implies N ⊆ a−1Na. Thus, a−1Na = N .

Theorem 4.3.5. Let N be a normal subgroup of G. If a ≡ b (mod N),
and c ≡ d (mod N), then ac ≡ bd (mod N).

Proof. Since a ≡ b (mod N), ab−1 ∈ N . Therefore ab−1 = n1 for
some n1 ∈ N . Similarly cd−1 = n2 for some n2 ∈ N . By Exercise 1,
(bd)−1 = d−1b−1. Consequently, ac(bd)−1 = acd−1b−1 = an2b

−1. The
element an2 is in aN . Since N is normal aN = Na. Therefore an2 =
n3a for some n3 ∈ N . Thus ac(bd)−1 = an2b

−1n3ab
−1 = n3n1 ∈ N .

Consequently ac ≡ bd (mod N).

93



Theorem 4.3.6. Let N be a normal subgroup of a group G. If Na =
Nb and Nc = Nd in G/N , then Nac = Nbd.

Proof. By Theorem 4.3.2, Na = Nb implies a ≡ b (mod N) and
Nc = Nd implies c ≡ d (mod N). Consequently, ac ≡ bd (mod
N) by Theorem 4.3.5. Hence, applying Theorem 4.3.2 again, we get
Nac = Nbd.

Theorem 4.3.7. If N is a normal subgroup of G, then G/N is a group
under the operation defined by (Na)(Nc) = Nac. If G is an abelian
group then so is G/N .

Proof. The operation in G/N is well defined by Theorem 4.3.6.
Since NaNe = Nae = Nea = NeNa, the coset N = Ne is the iden-
tity element in G/N . The inverse of Na is Na−1 because NaNa−1 =
Naa−1 = Ne = Na−1a = Na−1Na. Associativity in G/N follows
from associativity in G: (Na)(NbNc) = NaNbc = Nabc = N(ab)c =
(NaNb)Nc. Therefore G/N is a group. If G is abelian, then commu-
tativity follows in G/N from the commutativity in G: NaNb = Nab =
Nba = NbNa.

Example 4.3.4. Examples of Quotient groups:

1.
Z8/ < 2 >= {< 2 > +0, < 2 > +e}.

2.
S3/ < 123 >= {< (123) > e,< (123) > (12)}.

The next theorem shows that there is a surjection between sub-
groups of a group G and the subgroups of its quotient group G/N .

Theorem 4.3.8. Let N be a normal subgroup of a group G. If T is any
subgroup of G/N , then there is a subgroup H of G such that N ⊂ H
and T = H/N .

Proof. Let H = {a ∈ G|Na ∈ T}, then H is a subgroup of G by
Exercise 17. Let a ∈ N , then Na = Ne ∈ T , so that a ∈ H. Therefore
N ⊆ H. Now the quotient group H/N consists of all cosets Na such
that a ∈ H. Therefore T = H/N by the definition of H.

Definition 4.3.3. Let f : G → H be a homomorphism of groups.
Then the kernel of f is the set {a ∈ G|f(a) = eH}.
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Theorem 4.3.9. Let f : G → H be a homomorphism of groups with
kernel K. Then K is a normal subgroup of G.

Proof. If c, d ∈ K, then f(c) = eH and f(d) = eH by definition of
the kernel. Hence f(cd) = f(c)f(d) = eHeH = eH . Therefore cd ∈ K
and K is closed. If c ∈ K then f(c−1) = f(c)−1 = eH

−1 = eH .
Therefore c−1 ∈ K. It follows that K is a subgroup by Theorem
4.1.1. To show K is a normal subgroup of G, we must prove that
for each a ∈ G, a−1Ka = K. Let a ∈ G and c ∈ K. Then f(a−1ca) =
f(a−1)f(c)f(a) = f(a−1)eHf(a) = f(a)−1f(a) = eH . Thus a

−1ca ∈ K.
Consequently, K is normal.

Theorem 4.3.10. If N is a normal subgroup of a group G, then the
map π : G → G/N given by π(a) = Na is a surjective homomorphism
with Kernel N .

Proof. Translate the proof of Theorem 3.3.10 to this case.

Theorem 4.3.11. [First Isomorphism Theorem] Let f : G → H be a
surjective homomorphism of groups with kernel K. Then the quotient
group G/K is isomorphic to H.

Proof. Define ϕ : G/K → H by ϕ(Ka) = f(a) and Show that
ϕ is an isomorphism. The proof is similar to the proof of the First
Isomorphism Theorem for rings (see Theorem 3.3.11).

Example 4.3.5. Let R∗ denote the multiplicative group of nonzero
real numbers and let R∗∗ denote the multiplicative group of positive
real numbers. Let f : R∗ → R∗∗ be such that f(x) = x2. Then the
kernel of f is < 1,−1 >. Let y ∈ R∗∗, then f(

√
y) = y. Therefore

f is surjective. Hence by the First Isomorphism Theorem we get that
R∗/ < −1, 1 >∼= R∗∗.

4.4 Basic properties of finite groups.

In this section we relate the order of a finite group to the orders of its
subgroups and elements.

If H is a subgroup of a group G then the number of distinct right
cosets of H in G is called the index of H in G and is denoted by [G : H].
If G is a finite group then [G : H] is finite. If G is infinite then [G : H]
can be either finite or infinite.
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Example 4.4.1. 1. Under addition, the group Z is a normal sub-
group of the abelian group Q. If 0 < c < a < 1, then a − c is
not an integer. Therefore Z+a and Z+ c are distinct elements of
Q/Z by Theorem 4.3.2. Since there are infinitely many rational
numbers between 0 and 1, the index [Q : Z] is infinite. But the
order of Z + m

n
is n because n(Z + m

n
) = Z +m = Z = e. Thus

every element of Q/Z has finite order.

2. Consider the subgroup N =< (123) > of S3. The index [S3 :
N ] = 2 by Exercise 4.3.3.

Theorem 4.4.1 (Lagrange’s Theorem). If H is a subgroup of a finite
group G, then the order of H divides the order of G; in particular
|G| = [G : H]|H|.

Proof. Let [G : H] = n. Let Ha1, . . . , Han be the n distinct cosets
of H. By Theorem 4.3.4, G = Ha1 ∪ Ha2 ∪ · · · ∪ Han. Therefore
|G| = |Ha1|+|Ha2|+· · ·+|Han|. Again, by Theorem 4.3.4, |Hai| = |H|
for every i. Therefore |G| = n|H| = [G : H]|H|.

Corollary 4.4.2. Let G be a finite group.

1. If a ∈ G, then the order of a divides the order of G.

2. If |G| = k, then ak = e for every a ∈ G.

3. If N is a normal subgroup of G, then |G/N | = |G|/|N |.

Proof.

1. If a ∈ G has order n then the cyclic subgroup < a > of G has
order n by Theorem 4.2.3. Consequently, by Lagrange’s Theorem,
n divides |G|.

2. If a has order n, then by Part 1, n divides k. Therefore k = nt
for some t ∈ Z. Then ak = ant = (an)t = et = e.

3. |G/N | is the number of distinct right cosets of N in G. Hence

|G/N | = [G : N ].

By Lagrange’s Theorem |G| = [G : N ]|N |. Therefore |G/N | =
|G|/|N |.
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We use Lagrange’s theorem to show that every group of prime order
is cyclic.

Theorem 4.4.3. Let p be a positive prime integer. Every group of
order p is cyclic and isomorphic to Zp.

Proof. If G is a group of order p and a is any nonidentity element
of G, then the cyclic subgroup < a > is a group of order greater than
1. Since the order of the group < a > must divide p by Theorem 4.4.1,
and p is prime, order of < a >= p. Thus < a >= G. Since G is a
cyclic group of order p, G ∼= Zp by Theorem 4.2.4.

If a prime p divides |G| for a group G, then does G have an element
of order p? Cauchy’s Theorem says that there is always such an ele-
ment. We prove Cauchy’s Theorem in two steps, first for finite abelian
groups, and then for all finite groups.

Theorem 4.4.4 (Cauchy’s Theorem for Abelian Groups.). If G is a
finite abelian group and if p is a prime that divides the order of G.
Then G has an element of order p

Proof. The proof is by induction on the order of G. The the-
orem is true for |G| = 2 because in this case the nonidentity ele-
ment must have order 2. Assume the theorem is true for all abelian
groups of order less than n and suppose that |G| = n. Let a be any
nonidentity element of G, then |a| is divisible by some prime q, say
|a| = qt, then |at| = q. Therefore if q = p the theorem is proved.
Let q ̸= p and let N be the cyclic subgroup < at >. N is normal
because G is abelian. Consequently, since N has order q, by Corollary
4.4.2 the quotient group G/N has order |G|/|N | = n/q < n. Conse-
quently by the induction hypothesis the theorem is true for G/N . Now
|G| = |N ||G/N | = q|G/N | by Theorem 4.4.1. Since p divides |G|, and
q ̸= p, p divides |G/N |. Therefore G/N contains an element of order
p, say Nc. Since Ncp = (Nc)p = Ne, cp ∈ N . Because N has order q,
(cp)q = cpq = e. Therefore the order of c divides pq. Now order of c ̸= 1
because otherwise Nc would have order 1 instead of p in G/N . The or-
der of c is not q because then (Nc)q = Ncq = Ne in G/N which means
p which is the order of Nc divides q. This is not possible since q ia
prime and p ̸= q. Therefore the order of c is either p or pq: in the later
case cq has order p. Therefore the theorem is true for abelian groups
of order n and hence by induction for all finite abelian groups.
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To prove Cauchy’s theorem for all finite groups, we need to develop
some additional concepts. Let G be a group and a, b ∈ G. We say a is
conjugate to b if there exists x ∈ G such that b = x−1ax.

Example 4.4.2. (12) is conjugate to (23) in S3 because

(132)−1(12)(132) = (123)(12)(132) = (23).

Let G be a group, The conjugacy class of an element a ∈ G consists
of all the elements in G that are conjugate to a. We leave it as an
exercise to show that G is a union of its distinct conjugacy classes.

Example 4.4.3. 1. For any x ∈ S3, x
−1(12)x is either (12), (13), or

(23):
e−1(12)e = e(12)e = (12),
(12)−1(12)(12) = (12)(12)(12) = (12),
(23)−1(12)(23) = (23)(12)(23) = (13),
(13)−1(12)(13) = (13)(12)(13) = (23),

(132)−1(12)(132) = (123)(12)(132) = (23),

(123)−1(12)(123) = (132)(12)(123) = (13).

Therefore the conjugacy class of (12) in S3 is {(12), (13), (23)}.
Verify that there are three distinct conjugacy classes in S3:

{e}, {(123), (132)}, and {(12), (13), (23)}.

Observe that

S3 = {e} ∪ {(123), (132)} ∪ {(12), (13), (23)}.

2. Verify that the distinct conjugacy classes of S4 are

{e}
{(1234), (1243), (1324), (1342), (1423), (1432)}
{(12)(34), (13)(24), (14)(23)}
{(12), (13), (14), (23), (24), (34)}
{(123), (132), (124), (142), (134), (143), (234), (243)}

The centralizer of an element a in a group G is denoted by C(a)
and consists of all elements in G that commute with a, that is,

C(a) = {g ∈ G|ga = ag}.
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Example 4.4.4.

C((123)) = {(1), (123), (132)} in S3.

C(a) is a subgroup of G (see Exercise 33).

Theorem 4.4.5. Let G be a group and a ∈ G. The number of elements
in the conjugacy class of a is [G : C(a)], and divides |G|.

Proof. We first show that x and y produce the same conjugate of a
if and only if x and y are in the same coset of c(a):

x−1ax = y−1ay ⇔ a = xy−1ayx−1

⇔ a = (yx−1)
−1
a(yx−1)

⇔ (yx−1)a = a(yx−1)
⇔ yx−1 ∈ C(a)
⇔ C(a)y = C(a)x.

Therefore the number of distinct conjugates of a is the same as the
number of distinct cosets of C(a), namely [G : C(a)], which divides |G|
by the Lagrange’s Theorem 4.4.1.

Let G be a group and let C1, C2, . . . , Cr be the distinct conjugacy
classes of G. Then

|G| = |C1 ∪ C2 ∪ · · · ∪ Ct| = |C1|+ |C2|+ · · ·+ |Ct|. (4.2)

Let ai be an element in Ci then by Theorem 4.4.5

|G| = [G : C(a1)|+ [G : C(a2)] + · · ·+ [G : C(at)]. (4.3)

The equation (in either version 4.2 or 4.3) is called the class equation
of the group G.

Example 4.4.5. The class equation for the group S3 is

|S3| = |{e}|+ |{(123), (132)}|+ |{(12), (13), (23)}|.

The center of a group G is the set Z(G) consisting of those elements
of G that commute with every element of G, that is,

Z(G) = {c ∈ G|cx = xc for every x ∈ G}.

Verify that Z(G) is a subgroup of G.
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Example 4.4.6. 1. If G is an abelian group then the center of G,
Z(G) = G.

2. Check that Z(S3) =< e >.

3. Consider the Dihedral subgroup of S4

D4 =

{
ρ = (1234), ρ2 = (13)(24), ρ3 = (1432), ρ4 = e,
τ = (12)(34), τρ = (24), τρ2 = (14)(23), τρ3 = (13)

}
.

Every element of D4 is of the form τmρn where m and n are
integers such that m,n ≥ 0. Therefore to show that ρ2 commutes
with every element ofD4, it suffices to show that it commutes with
ρ and τ . Now ρρ2 = ρ3 = ρ2ρ. Since the inverse of ρ2 is itself,
(ρ2)

−1
τρ2 = ρ2τρ2 = (13)(24)(12)(34)(13)(24) = (12)(34) = τ ,

that is τρ2 = ρ2τ . Consequently, ρ2 ∈ Z(D4). Verify that no
other nonidentity element of D4 is in Z(D4). Therefore Z(D4) =
{e, ρ2}.

Note that Z(G) is the union of one-element conjugacy classes and
the class equation can be written as

|G| = |Z(G)|+ |C1|+ |C2|+ · · ·+ |Cr|, (4.4)

where C1, . . . , Cr are the distinct conjugacy classes ofG that contain
more than one element. Moreover, |Ci| divides |G|, for i = 1 to r.

Theorem 4.4.6. If N is a subgroup of Z(G), then N is a normal
subgroup of G.

Proof. Let a ∈ G and n ∈ N , then na = an because n ∈ Z(G).
Thus Na = aN for all a ∈ G which implies N is normal.

Theorem 4.4.7 (First Sylow Theorem). Let G be a finite group. If p
is a prime and pk divides |G|, then G has a subgroup of order pk.

Proof. The proof is by induction on the order of G. If |G| = 1, then
p0 is the only prime power that divides |G|, and G itself is a subgroup
of order p0. Suppose that |G| > 1 and assume inductively that the
theorem is true for all groups of order less than |G|. Combining the
forms of the class Equation 4.3 and 4.4, we get

|G| = |Z(G)|+ [G : C(a1)] + [G : C(a2)] + · · ·+ [G : C(ar)],
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where [G : C(ai)] > 1 for each i. Moreover, |Z(G)| ≥ 1 because
e ∈ Z(G) and |C(ai)| < |G| otherwise [G : C(ai)] = 1.

Suppose p does not divide [G : C(aj)] for some j. Then since pk

divides |G|, pk must divide |C(aj)| because, by Lagrange’s Theorem,
|G| = |C(aj)|[G : C(aj)]. Since the subgroup C(aj) has order less than
|G|, the induction hypothesis implies that C(aj), and hence G, has a
subgroup of order pk.

On the other hand, if p divides [G : C(ai)] for every i then since
p divides |G|, p must divide |Z(G)| because |Z(G)| = |G| −

∑r
i=1[G :

C(ai)]. Since Z(G) is abelian, Z(G) contains an element c of order p
by Theorem 4.4.4. Let N be the cyclic group generated by C then N
is normal in G by Theorem 4.4.6. Consequently |G/N | = |G|/p is less
than |G| and divisible by pk−1. By the induction hypothesis G/N has
a subgroup T of order pk−1. By Theorem 4.3.8, there is a subgroup H
of G such that N ⊆ H and T = H/N . Now by Lagrange’s Theorem
|H| = |N ||H/N | = |N ||T | = ppk−1 = pk. So G has a subgroup of order
pk in this case too.

Corollary 4.4.8 (Cauchy’s Theorem). If G is a finite group whose
order is divisible by a prime p, then G contains an element of order p.

Proof. Since p divides |G|, Theorem 4.4.7 implies that |G| has a
subgroup K of order p. Since K is cyclic by Theorem 4.4.3, K has a
generator which is an element of order p in G.

4.5 Finite Abelian Groups.

A major goal of group theory is to classify all finite groups up to iso-
morphism. We do not cover the group classification problem in great
detail in this book. The interested reader may refer to [19], [20], and
the references therein for a detailed study. However, in this section, we
classify all finite abelian groups up to isomorphism.

If G is an abelian group and if p is a prime, then G(p) denotes the
set of elements in G whose order is some power of p:

G(p) = {a ∈ G : |a| = pn for some n ≥ 0}.

Lemma 4.5.1. G(p) is a subgroup of G.

Proof.
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Let a, b ∈ G(p) and let the order of a and b be pn and pm respectively.
Let n > m and let n = m + r where r ≥ 0, then pn = pmpr. Now

(ab)p
n

= ap
n
bp

n
= eG(b

pm)
pr

= (eG)
pr = eG. Thus the order of ab

divides pn by Theorem 4.2.1. Therefore the order is some power of
p and hence ab ∈ G(p). Hence G(p) is closed. If a ∈ G(p), then
a−1 ∈ G(p), because ap

n
= eG implies (a−1)p

n
= eG. Therefore G(p) is

a subgroup of G by Theorem 4.1.1.

Theorem 4.5.1. Let G be an abelian group and let a ∈ G be an element
of finite order. Then a = a1a2 · · · ak with ai ∈ G(pi) where p1, · · · , pk
are distinct primes that divide the order of a.

Proof. The proof is by induction on the number of distinct primes
that divide the order of a. If |a| is divisible only by the single prime
p1, then the order of a is a power of p1 and hence a ∈ G(p1). So the
theorem is true for k = 1. Assume inductively that the theorem is
true for all elements whose order is divisible by at most k − 1 distinct
primes and that |a| is divisible by the distinct primes p1, . . . pk. Then
|a| = pr11 · · · prkk with each ri > 0. Let m = pr12 · · · prkk and n = pr11 so
that |a| = mn. Since the gcd (m,n) = 1, by Theorem A.1.1 there are
integers u, v such that 1 = mu+ nv. Consequently

a = a1 = a(mu+nv) = amuanv.

Since (amu)p
r1
1 = (amn)u = euG = eG, order of a

mu divides pr11 . There-
fore amu ∈ G(p1). Similarly, (anv)m = eG. Therefore the order of anv

divides m. But m has only k− 1 distinct prime divisors. Therefore by
the induction hypothesis anv = a2 · · · ak with ai ∈ G(pi). Let a1 = amu.
Then a = a1 · · · ak with ai ∈ G(pi).

Theorem 4.5.2. If N1, . . . , Nk are normal subgroups of a group G such
that every element of G can be written uniquely in the form a1a2 . . . ak
with ai ∈ Ni, then G ∼= N1 ×N2 × · · · ×Nk.

Proof. Let f : N1×N2×· · ·×Nk → G be such that f(a1, a2, . . . , ak) =
a1a2 · · · ak. Then f is an isomorphism between N1×N2× · · ·×Nk and
G (see Exercise 20).

Theorem 4.5.3. If M and N are normal subgroups of a group G such
that G = MN and M ∩N =< eG >, then G ∼= M ×N .
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Proof. By hypothesis every element of G is of the formmn withm ∈
M and n ∈ N . Now suppose that an element had two representations,
say m1n1 = m2n2, with m1,m2 ∈ M and n1, n2 ∈ N . Then multiplying
on the left by m−1

2 and on the right by n−1
1 , that is, m−1

2 m1n1n
−1
1 =

m−1
2 m2n2n

−1
1 shows that m−1

2 m1 = n2n
−1
1 . But m−1

2 m1 ∈ M and
n2n

−1
1 ∈ N and M ∩N =< eG >. Hence m−1

2 m1 = eG = n2n
−1
1 . This

implies m1 = m2 and n1 = n2. Therefore every element of G can be
written uniquely in the form mn such that m ∈ M and n ∈ N . Hence,
by Theorem 4.5.2, G ∼= M ×N .

Theorem 4.5.4. If G is a finite abelian group, then

G ∼= G(p1)×G(p2)× · · · ×G(pt),

where p1, . . . , pt are the distinct primes that divide the order of the
group.

Proof. If a ∈ G, then |a| divides |G|, by Corollary 4.4.2. By The-
orem 4.5.1, a = a1a2 · · · at with ai ∈ G(pi) (aj = 1 if a prime pj
does not divide |a|). To prove this expression is unique, suppose that
a1 · · · at = b1 · · · bt, with ai, bi ∈ G(pi). Since G is abelian

a1b
−1
1 = b2a

−1
2 b3a

−1
3 · · · bta−1

t .

For each i, bia
−1
i ∈ G(pi) and hence has order prii with ri ≥ 0. If

m = pr22 · · · prtt , then (bia
−1
i )m = eG for i ≥ 2 so that

(a1b
−1
1 )

m
= (b2a

−1
2 )

m
(b3a

−1
3 )

m · · · (bta−1
t )

m
= eG.

Consequently the order of a1b
−1
1 must divide m. Since a1b

−1
1 ∈

G(p1), this is possible only if the order of a1b
−1
1 is 1, that is a1b1−1 = eG.

Therefore a1 = b1. Similar arguments for i = 2, . . . , t show that ai = bi
for every i. Therefore every element can be uniquely written in the
form a = a1a2 · · · at with ai ∈ G(pi). Consequently, by Theorem 4.5.2,
G ∼= G(p1)×G(p2)× · · · ×G(pt).

An element a of a p-group G is called an element of maximal order
if |g| ≤ |a| for every g ∈ G. In other words, if |a| = pn, and g ∈ G, then

|g| = pj with j ≤ n. Since pn = pn−jpj, gp
n
= (gp

j
)
pn−j

= e for every
g ∈ G. Elements of maximal order always exist in a finite p-group.

Lemma 4.5.2. Let G be a finite abelian p-group and let a be an element
of maximal order in G. Then there is a subgroup K of G such that
G ∼=< a > ×K.
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Proof. Consider those subgroups H of G such that < a > ∩H =<
eG >. There is at least one such subgroup H =< eG > and since G
is finite there is a largest subgroup K with this property. To show
that G ∼=< a > ×K, we need only show that G =< a > K by
Theorem 4.5.3. Suppose this is not the case, then there exists b ∈ G
such that b ̸= eG and b ̸∈< a > K. Let q be the smallest integer
such that bp

q ∈< a > K. Such a q exists because G is a p-group and
bp

j
= eG = eGeG ∈< a > K for some j > 0. Then

c = bp
q−1 ̸∈< a > K (4.5)

and cp = bp
q ∈< a > K. Let

cp = atk where t ∈ Z and k ∈ K. (4.6)

If a has order pn then xpn = eG for all x ∈ G because a has maximal
order. Consequently by Equation 4.6

eG = cp
n

= (cp)p
n−1

= (atk)
pn−1

= (at)p
n−1

kpn−1

.

Therefore (at)p
n−1

= k−pn−1 ∈< a > ∩K =< eG > and thus

(a)tp
n−1

= eG. Consequently pn (order of a) divides tpn−1 and it follows
that p divides t. Let t = mp for some m then cp = ampk. Therefore
k = cpa−pm = (ca−m)

p
. Let

d = ca−m, (4.7)

then dp ∈ K but d ̸∈ K (otherwise c ∈< a > K, which is a
contradiction to Equation 4.5). Verify that H = {xdz|x ∈ K, z ∈ Z}
is a subgroup of G with K ⊆ H. Since d = eGd ∈ H and d ̸∈ K, H
is larger than K. But K is the largest group such that < a > ∩K =<
eG >, therefore < a > ∩H ̸=< eG >. Let w ̸= eG ∈< a > ∩H, then

w = as = k1d
r such that k1 ∈ K and r, s ∈ Z. (4.8)

Now p does not divide r, for if r = py the eG ̸= w = as = k1d
py ∈<

a > ∩K which is a contradiction. Consequently gcd (p, r) = 1 and by
Theorem A.1.1 there are integers u, v such that pu+ rv = 1. Hence

c = c1 = cpu+rv = (cp)u(cr)v

= (atk)u((dam)r)
v
by Equations 4.6 and 4.7

= (atk)u(dramr)v

= (atk)u((ask−1
1 )amr)

v
by Equation 4.8

= a(tu+vs+mr)kuk−v
1 ∈< a > K.
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This contradicts Equation 4.5. Therefore G =< a > K and hence
G =< a > ×K by Theorem 4.5.3.

Theorem 4.5.5 (The fundamental theorem of finite abelian groups).
Every finite abelian group G is a product of cyclic groups each of prime
power order.

Proof. By Theorem 4.5.4, G is the product of its subgroups G(p),
one for each prime p that divides |G|. Each G(p) is a p-group. So to
complete the proof it suffices to show that every finite abelian p-group
H is a product of cyclic groups each of prime power order. We prove
this by induction on the order of H. The assertion is true when |H| = 2
by Theorem 4.2.3. Assume inductively that it is true for all groups
whose order is less than |H| and let a be an element of maximal order
pn in H. Then H ∼=< a > ×K by Lemma 4.5.2. By induction K is a
direct sum of cyclic groups, each of prime power order. Consequently,
the same is true of < a > ×K. Hence, H is a product of cyclic groups
each of prime power order.

Lemma 4.5.3. If (m, k) = 1, then Zm × Zk
∼= Zmk.

Proof. The order of (1, 1) in Zm×Zk is the smallest positive integer
t such that 0 = t(1, 1) = (t, t). Thus t ≡ 0 (mod m) and t ≡ 0
(mod k) so that m|t and k|t. But gcd (m, k) = 1 implies that mk|t.
Therefore mk ≤ t. Since mk(1, 1) = (mk,mk) = (0, 0), we must have
mk = t = |(1, 1)|. Therefore, Zm × Zk which is a group of order mk,
is a cyclic group generated (1, 1). Consequently, by Theorem 4.2.4,
Zm × Zk is isomorphic to Zmk.

Theorem 4.5.6. Let n = pn1
1 pn2

2 · · · pnt
t be such that p1, . . . pt are dis-

tinct primes, then Zn
∼= Zp1n1 × · · · × Zptnt .

Proof. The theorem is true for groups of order 2. Assume induc-
tively that it is true for groups of order less than n. Apply Lemma 4.5.3,
with m = pn1

1 and k = pn2
2 · · · pnt

t to get Zn
∼= Zp

n1
1
×Zk. Consequently,

the induction hypothesis shows that Zk = Zp2n2 × · · · × Zptnt .
Combining Theorems 4.5.5 and 4.5.6 yields a different way of writing

a finite abelian group as a product of cyclic groups.

Example 4.5.1. Consider the group

Z2 × Z2 × Z4 × Z8 × Z3 × Z3 × Z5 × Z25 × Z125.
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Arrange the prime power orders of the cyclic factors by size, with one
row for each prime:

2 2 22 23

3 3
5 52 53

Now rearrange the cyclic factors of G using the columns of this
array and apply Theorem 4.5.6.

Z2 × (Z2 × Z5)× (Z4 ××Z3 × Z25)× (Z8 × Z3 × Z125).

That is
G ∼= Z2 × Z10 × Z300 × Z3000

Observe that the order of each factor divides the order of the next one.

Generalizing Example 4.5.1 we get

Theorem 4.5.7. Every finite abelian group is the product of cyclic
groups of orders m1,m2, . . . ,mt, where

m1|m2,m2|m3, . . . ,mt−1|mt.

We now look at finite abelian groups related to fields.

Theorem 4.5.8. Let F be a field and G a finite subgroup of the mul-
tiplicative group F ∗ of nonzero elements. Then G is cyclic.

Proof. Since G is a finite abelian group, Theorem 4.5.7 implies
that G = Zm1 × · · · × Zmt where each mi divides mt. Consequently
every element g of G must satisfy gmt = 1F and hence is a root of the
polynomial xmt − 1F . Since G has order m1m2 · · ·mt and xmt − 1F has
at most mt roots (see Corollary A.2.3) we must have t = 1. Therefore
G ∼= Zmt .

Theorem 4.5.9. Let K be a finite field and F a subfield. Then K is
a simple extension of F .

Proof. By Theorem 4.5.8, the multiplicative group of nonzero el-
ements of K is cyclic. If u is the generator of this group, then the
subfield F (u) contains 0F and all powers of u and hence contains every
element of K. Therefore K = F (u).

106



Theorem 4.5.10. Let p be a positive prime. For each positive integer
n, there exists an irreducible polynomial of degree n in Zp[x].

Proof. There is an extension field K of Zp of order pn by Corollary
3.4.11. By Theorem 4.5.9, K = Zp(u) for some u ∈ K. By Theorem
3.4.4, the minimal polynomial of u in Zp[x] is irreducible of degree
[K : Zp]. Finally, Theorem 3.4.3 shows that [K : Zp] = n.

4.6 Galois theory.

A simple radical extension of a field F is the extension field we obtain
by adjoining the nth root of an element a ∈ F .

Definition 4.6.1. An element u which is algebraic over F can be solved
for in terms of radicals if u is an element of a field K which can be
obtained by a succession of simple radical extensions, that is,

F = K0 ⊂ K1 ⊂ · · · ⊂ Ki ⊂ Ki+1 ⊂ · · · ⊂ Ks = K (4.9)

where Ki+1 = Ki( ni
√
ai) for some ai ∈ Ki, i = 0, 1, . . . , s − 1. Here

ni
√
ai denotes a root of the polynomial xni − ai. Such a field K is called

a root extension of F .

Definition 4.6.2. A polynomial f(x) can be solved by radicals if all
its roots can be solved for in terms of radicals.

In other words f(x) is solvable by radicals if each of its roots is
obtained by successive field operations (addition, subtraction, multi-
plication, and division) and root extractions. Consequently, if f(x) is
solvable by radicals, then there are formulas to find roots of f(x). We
prove every polynomial of degree less than or equal to four is solvable
by radicals. We also prove this is not true for polynomials of degrees 5
or higher using theory developed by Evariste Galois and hence called
Galois theory.

Let K be an extension field of F . An F -automorphism of K is an
isomorphism σ : K → K that fixes F element wise (that is, σ(c) = c
for c ∈ F ). The set of all F -automorphisms of K is denoted by GalFK.

Theorem 4.6.1. If K is an extension field of F , then GalFK is a group
under the operation of composition of functions. GalFK is called the
Galois group of K over F .
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Proof. If σ, τ ∈ GalFK then σ◦τ is an isomorphism fromK toK, by
Exercise 43. For each c ∈ F , (σ◦τ)(c) = σ(τ(c)) = σ(c) = c. Therefore
σ ◦ τ ∈ GalFK. Hence GalFK is closed. Composition of functions is
associative and the identity function is the identity element of GalFK.
If σ ∈ GalFK, then σ−1 is an isomorphism from K to K, by Exercise
44. Moreover, σ−1(c) = c for every c ∈ F . Therefore σ−1 ∈ GalFK.
Thus GalFK is a group.

Example 4.6.1. The complex conjugation map σ : C → C given by
σ(a + bi) = a − bi is an automorphism of C by Exercise 9 in Section
3.4. For every real number a, σ(a) = a. Consequently σ ∈ GalRC.

Theorem 4.6.2. Let K be an extension field of F and f(x) ∈ F [x]. If
u ∈ K is a root of f(x) and σ ∈ GalFK, then σ(u) is a root of f(x).

Proof. If f(x) = c0+c1x+· · ·+cnx
n, then c0+c1u+· · ·+cnu

n = 0F .
Since σ is a homomorphism and σ(ci) = ci for each ci ∈ F ,

0F = σ(0F ) = σ(c0 + c1u+ · · ·+ cnu
n)

= σ(c0) + σ(c1)σ(u) + · · ·+ σ(cn)σ(u
n)

= c0 + c1σ(u) + · · ·+ cnσ(u)
n = f(σ(u)).

Therefore σ(u) is a root of f(x).

Theorem 4.6.3. Let K be a splitting field of some polynomial over F
and let u, v ∈ K. Then there exists σ ∈ GalFK such that σ(u) = v if
and only if u and v have the same minimal polynomial in F [x].

Proof. If u and v have the same minimal polynomial over F , then
by Theorem 3.4.5 there is an isomorphism σ : F (u) → F (v) such that
σ(u) = v and σ fixes F element wise. SinceK is a splitting field of some
polynomial over F , it is a splitting field of the same polynomial over
both F (u) and F (v). Therefore σ extends to an F -automorphism of K
by Theorem 3.4.7. That is σ ∈ GalFK and σ(u) = v. The converse is
an immediate consequence of Theorem 4.6.2.

Example 4.6.2. By Example 4.6.1, we have GalRC has at least two
elements, the identity map e, and the complex conjugation map σ. We
prove that these are the only elements of GalRC. Let τ ∈ GalRC. Since
i is a root of x2 + 1, τ(i) = ±i by Theorem 4.6.2. If τ(i) = i, then

τ(a+ bi) = τ(a) + τ(b)τ(i) = a+ bi.
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Therefore τ = e. On the other hand, if τ(i) = −i, then

τ(a+ bi) = τ(a) + τ(b)τ(i) = a+ b(−i) = a− bi.

Consequently, τ = σ. Thus GalRC = {e, σ} is a group of order 2 and
hence is isomorphic to Z2 by Theorem 4.4.3.

Theorem 4.6.4. Let K = F (u1, . . . , un) be an algebraic extension field
of F . If σ, τ ∈ GalFK and σ(ui) = τ(ui) for each i = 1, 2, . . . , n, then
σ = τ . In other words, an automorphism in GalFK is completely
determined by its action on u1, . . . , un.

Proof. Let β = τ−1 ◦ σ, then β ∈ GalFK. The theorem is proved if
we show that β is the identity map e because β = e = τ−1 ◦ σ implies
τ = σ. Since σ(ui) = τ(ui) for every i,

β(ui) = (τ−1 ◦ σ)(ui) = τ−1(σ(ui)) = τ−1(τ(ui)) = e(ui) = ui.

Let v ∈ F (u1). By Theorem 3.4.4 there exist ci ∈ F such that v =
c0 + c1u1 + · · · + cm−1u

m−1
1 , where m is the degree of the minimal

polynomial of u1 over F . Since β is a homomorphism that fixes u1 and
every element of F ,

β(v) = β(c0 + c1u1 + · · ·+ cm−1u
m−1
1 )

= β(c0) + β(c1)β(u1) + · · ·+ β(cm−1)β(u1)
m−1

= c0 + c1u1 + · · ·+ cm−1u
m−1
1 = v.

Thus β(v) = v for every v ∈ F (u1). Repeating this argument by
replacing F with F (u1) and u1 with u2, we show that β(v) = v for
every v ∈ F (u1, u2). After a finite number of such repetitions we prove
that β(v) = v for every v ∈ F (u1, . . . , un). Therefore β is the identity
function.

Corollary 4.6.5. If K is the splitting field of a separable polynomial
f(x) of degree n in F [x], then GalFK is isomorphic to a subgroup of
Sn.

Proof. By separability f(x) has n distinct roots in K, say u1, . . . un.
Consider sn to be the group of permutations of the set R = {u1, . . . un}.
If σ ∈ GalFK, then σ(u1), . . . , σ(u2) are roots of f(x) by Theorem
4.6.2. Moreover, since σ is injective, σ(ui) are all distinct, and hence is
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a permutation of the set R. In other words, the restriction of σ to the
set (denoted σ|R) is a permutation of R. Define a map θ : GalFK → Sn

by θ(σ) = σ|R. It is easily verified that σ is a homomorphism of
groups. Since K is the splitting field of F , K = F (u1, . . . un). If σ|R =
τ |R, then σ(ui) = τ(ui) for every i, hence σ = τ by Theorem 4.6.4.
Therefore, θ is an injective homomorphism. Consequently GalFK is
isomorphic to Im θ which is a subgroup of Sn.

Lemma 4.6.1. If f(x) ∈ F (x) and K is a splitting field of f , then the
order of GalFK = [K : F ].

Proof. This result follows from the Fundamental Theorem of Galois
theory (Theorem 4.7.6) which is proved in Section 4.7.

Definition 4.6.3. If f(x) ∈ F (x), then the Galois group of the poly-
nomial f(x) is GalFK, where K is the splitting field of f(x) over F .

If f(x) is irreducible, then given any two roots of f(x) there is an
automorphism in the Galois group G of f(x) that maps the first root
to the second by Theorem 4.6.3. Such a group is said to be transitive
on roots of f(x), that is you can get from any given root to another
by applying some element of G. The fact that the Galois group of a
polynomial f(x) must be transitive on the roots of irreducible factors
of f(x) often helps in determining the structure of the Galois group.

Example 4.6.3. Let f(x) = (x2 − 3)(x2 − 5). The splitting field of
f(x) is Q(

√
3,
√
5). The roots of the minimal polynomial x2 − 3 are

θ1 =
√
3 and θ2 = −

√
3. Consequently, any automorphism σ ∈ G takes√

3 to either
√
3 or −

√
3 by Theorem 4.6.2. Similarly, σ takes

√
5 to

either θ3 =
√
5 or θ4 = −

√
5, the roots of x2 − 5. Since σ is completely

determined by its action on
√
3 and

√
5 by Theorem 4.6.4, there are at

most four choices for σ:

√
3

e−→
√
3√

5 −→
√
5

√
3

(12)−→ −
√
3√

5 −→
√
5

√
3

(34)−→
√
3√

5 −→ −
√
5

√
3

(12)(34)−→ −
√
3√

5 −→ −
√
5

Consequently G = {e, (12), (34), (12)(34)} ⊂ S4. Check that G ∼=
Z2 × Z2.

Example 4.6.4. Let f(x) = (x3 − 2). The roots of f(x) are 3
√
2, ω 3

√
2,

and ω2 3
√
2, where ω is a root of the equation x3 − 1. The minimal
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polynomial of ω is x2+x+1. Consequently, the splitting field of f(x),
Q( 3

√
2, ω), has degree 6. Let σ and τ be automorphisms defined by

3
√
2

σ−→ ω 3
√
2

ω −→ ω

3
√
2

τ−→ 3
√
2

ω −→ ω2 = −ω − 1

The elements of Q( 3
√
2, ω) are linear combinations of the basis

{1, 3
√
2, (

3
√
2)

2
, ω, ω

3
√
2, ω(

3
√
2)

2
}.

Like before, the action of σ and τ on Q( 3
√
2, ω) can be determined

completely by their action on the basis elements.
For example:

σ(ω
3
√
2) = σ(ω)σ(

3
√
2) = ω(ω

3
√
2)) = (−ω − 1)

3
√
2.

Verify that
σ3 = τ 2 = e, and στ = τσ2.

Hence the Galois group of f(x) is S3 by Exercise 10.

Definition 4.6.4. A group G is said to be solvable if it has a chain
of subgroups

G = G0 ⊇ G1 ⊇ G2 ⊇ · · · ⊇ Gn−1 ⊇ Gn =< e > (4.10)

such that each Gi is a normal subgroup of the preceding group Gi−1

and the quotient group Gi−1/Gi is abelian.

Example 4.6.5. In this example, we prove that S3 is a solvable group.
Consider the chain

S3 ⊃< (123) >⊃ (e).

The subgroup < e > is normal in < (123) >, and < (123) > is
normal in S3 (see Example 4.3.3). The group < (123) > /e has order
3 by Corollary 4.4.2. Since 3 is a prime number, < (123) > /e is
isomorphic to Z3 by Theorem 4.4.3, and hence is abelian. Similarly,
the group S3/ < (123) > has order 2, and is therefore isomorphic to
Z2. Thus S3/ < (123) >is abelian. Hence S3 is a solvable group.

Theorem 4.6.6. Let N be a normal subgroup of a group G. Then
G/N is abelian if and only if aba−1b−1 ∈ N for all a, b ∈ G.
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Proof
G/N is abelian if and only if

Nab = NaNb = NbNa = Nba for all a, b ∈ G.

Now, Nab = Nba implies ab(ba)−1 ∈ N . Since ab(ba)−1 = aba−1b−1,
the result follows.

Theorem 4.6.7. For n ≥ 5 the group Sn is not solvable.

Proof Suppose on the contrary that Sn is solvable and that

Sn = G0 ⊇ G1 ⊇ G2 ⊇ · · · ⊇ Gn−1 ⊇ Gt =< (1) >

is a chain of subgroups such that each Gi is a normal subgroup of
Gi−1 and the quotient group Gi−1/Gi is abelian.

Let (rst) be any 3-cycle in Sn and let u, v be any elements of the
set {1, 2, . . . , n} other than r, s, and t. u, v exist because n ≥ 5. Since
Sn/G1 is abelian, Theorem 4.6.6 (with a = (tus), b = (srv)) shows
that G1 must contain (tus)(srv)(tus)−1(srv)−1. Since(tus)−1 = tsu
and (srv)−1 = svr, we get

(tus)(srv)(tus)−1(srv)−1 = (tus)(srv)(tsu)(svr) = (rst).

Therefore G1 contains all the 3-cycles of Sn. We can repeat this argu-
ment to conclude that Gi contains all the 3-cycles for i = 0, . . . , t. This
means the identity subgroup Gt contains all the 3-cycles which leads
to a contradiction. Therefore Sn is not solvable.

Theorem 4.6.8. 1. Homomorphic images and quotient groups of
solvable groups are solvable.

2. Subgroups of a solvable group are solvable.

Proof.

1. Let G be a solvable group. Then G has a chain of subgroups

G = G0 ⊇ G1 ⊇ G2 ⊇ · · · ⊇ Gn−1 ⊇ Gn =< e > (4.11)

such that each Gi is a normal subgroup of the preceding group
Gi−1 and the quotient group Gi−1/Gi is abelian. Let f : G → H

112



be a homomorphism of groups and let Hi = f(Gi). Consider the
chain of subgroups

H = H0 ⊇ H1 ⊇ H2 ⊇ · · · ⊇ Hn−1 ⊇ Hn =< e > . (4.12)

Verify that Hi is a normal subgroup of Hi−1 for each i. To see that
Hi−1/Hi is abelian, let a, b ∈ Hi−1. Then there exist c, d ∈ Gi−1

such that f(c) = a and f(d) = b. Since Gi−1/Gi is abelian,
cdc−1d−1 ∈ Gi by Theorem 4.6.6. Therefore

aba−1b−1 = f(c)f(d)f(c−1)f(d−1) = f(cdc−1d−1) ∈ f(Gi) = Hi.

Consequently, Hi−1/Hi is abelian by Theorem 4.6.6. Thus H is
solvable. A Quotient group ofG is homomorphic toG by Theorem
4.3.10, and hence is solvable.

2. Let H be a subgroup of a solvable group G and let

G = G0 ⊇ G1 ⊇ G2 ⊇ · · · ⊇ Gn−1 ⊇ Gn =< e > (4.13)

be a solvable series for G. Consider the groups Hi = H ∩Gi and
the chain

H = H0 ⊇ H1 ⊇ H2 ⊇ · · · ⊇ Hn−1 ⊇ Hn =< e > . (4.14)

Verify that Hi is a normal subgroup of Hi−1 for each i. To show
thatHi−1/Hi is abelian, consider the map f : Hi−1/Hi → Gi−1/Gi

given by f(Hix) = Gix. Suppose Hix = Hiy, then xy−1 ∈ Hi.
Since Hi = H ∩ Gi, xy−1 ∈ Gi. Consequently, Gix = Giy
which implies f(Hix) = f(Hiy). Thus f is well defined. Sup-
pose f(Hix) = f(Hiy), then Gix = Giy which implies xy−1 ∈ Gi.
Since Hix,Hiy ∈ Hi−1/Hi, x, y ∈ Hi−1 ⊆ H. Consequently,
since H is a subgroup, xy−1 ∈ H. Thus xy−1 ∈ H ∩ Gi = Hi.
Therefore Hix = Hiy. Hence f is an injective map. Verify that
f is a homomorphism. Finally, since Gi−1/Gi is abelian, and
Hi−1 = H ∩Gi−1, we get Hi−1/Hi is abelian. Thus H is solvable.
Therefore subgroups of a solvable group are solvable.

Finally, we state Galois’ criterion for solvability of a polynomial by
radicals. We prove this theorem in Section 4.7.
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Theorem 4.6.9. (Galois’ criterion) Let F be a field of characteristic
zero and f(x) ∈ F [x]. Then f(x) = 0 is solvable by radicals if and only
if the Galois group of f(x) is solvable.

Example 4.6.6. Consider the equation f(x) = x6 − 4x3 + 4. Since
f(x) = x6 − 4x3 + 4 = (x3 − 2)2, the roots of f(x) are θ1 = 3

√
2,

θ2 =
3
√
2ω, and θ3 =

3
√
2ω2, where ω = (−1+

√
3i)/2 is a complex root

of 1 (ω3 = 1). Clearly, f(x) is solvable by radicals. We will now verify
that the Galois group G is solvable by showing that G is S3 which is
solvable (see Example 4.6.5).

Check that Q( 3
√
2, ω) is the splitting field of f(x). By Theorem

4.6.3 there is an automorphism σ ∈ G such that σ(θ1) = θ2. A root of
f(x) is mapped to another root by G by Theorem 4.6.2. Therefore σ
takes θ3 to itself or to θ1. Therefore σ can be either the permutation
(12) or (123) in S3. Thus G contains the permutations (12) and (123).
Therefore G is S3 by Exercise 8.

Example 4.6.7. By Example 4.6.3, we know that the Galois group G
of the polynomial f(x) = (x2 − 3)(x2 − 5) is isomorphic to Z2 × Z2.
Hence G is abelian. Consequently, the chain e ⊂ G shows that G is a
solvable group.

Example 4.6.8. In this example, we prove that f(x) = 2x5 − 10x− 5
is not solvable by radicals. Eisenstein’s criterion (Theorem A.2.6) with
p = 5 implies that the polynomial f(x) is irreducible. The splitting
field of f(x) has degree divisible by 5 by Theorem 3.4.4. Consequently
the order of the Galois group G of f is divisible by 5 by Lemma 4.6.1.
Therefore G has an element of order 5 by Corollary 4.4.8. The only
elements of order 5 in S5 are the 5-cycles. Therefore G contains a
5-cycle.

The roots of the derivative f ′(x) = 10x4 − 10 are ±1,±i. If f(x)
had 4 real roots, then by the mean value theorem, f ′(x) must have 3
real roots. Consequently, since f ′(x) has only two real roots, f(x) has
at most 3 real roots. f(x) has real roots in the intervals (−2, 0), (0, 1),
and (1, 2) because f(−2) < 0, f(0) > 0, f(1) < 0, and f(2) > 0, that
is, f(x) has exactly three real roots. Let τ ∈ G denote the automor-
phism of complex conjugation. Then τ fixes the three real roots and
interchanges the two complex roots of f(x). Thus τ is a transposition.
Exercise 8 shows that the only subgroup of S5 that contains both a
5-cycle and a transposition is S5 itself. Therefore G ∼= S5. Since S5 is
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not a solvable group by Theorem 4.6.7, Galois’ criterion implies that
f(x) is not solvable by radicals.

Definition 4.6.5. Let r1, r2, . . . rn be the roots of a polynomial f(x).
Then the discriminant of f is

∏
i<j (ri − rj)

2.

Observe that the discriminant vanishes if and only if there is a
repeated root.

Consider a general polynomial f(x) = anx
n+an−1x

n−1+an−2x
n−2+

. . .+a1x+a0. We leave it as an exercise to show that the discriminant
D(f) of f(x) is

D(f) = (−1)
1
2
n(n−1) 1

an
R(f, f ′, x),

where R(f, f ′, x) is the resultant of f(x) and its derivative f ′(x).

Example 4.6.9. The discriminant of the polynomial f(x) = x5−x−1
is

1 0 0 0 5 0 0 0 0
0 1 0 0 0 5 0 0 0
0 0 1 0 0 0 5 0 0
0 0 0 1 0 0 0 5 0
−1 0 0 0 −1 0 0 0 5
−1 −1 0 0 0 −1 0 0 0
0 −1 −1 0 0 0 −1 0 0
0 0 −1 −1 0 0 0 −1 0
0 0 0 −1 0 0 0 0 −1

= 2869.

Let f(x) ∈ Q[x]. In determining the Galois group of f(x), we
may assume f(x) ∈ Z[x] and f(x) is separable. Therefore the the
discriminantD of f(x) is not zero. For a prime p, consider the reduction
f(x) ≡ f(x) (mod p). If p divides D then f(x) has discriminant D = 0
in Zp. Therefore f(x) is not separable. If p does not divideD, then f(x)
is a separable polynomial and can factored in to distinct irreducibles.

Theorem 4.6.10. Let f(x) ∈ Z[x] be separable polynomial, and let p
be a prime. Consider the reduction f(x) ≡ f(x) (mod p). If f(x) is
separable, that is, p does not divide the discriminant of f(x), then the
Galois group of f(x) over Zp is a permutation group isomorphic to a
subgroup of the Galois group of f(x) over Q.
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Corollary 4.6.11. Let f(x) ∈ Z[x] be separable polynomial, and let p
be a prime. Consider the reduction f(x) ≡ f(x) (mod p). If f(x) is
separable, that is, p does not divide the discriminant of f(x), then the
Galois group of f(x) over Q contains an element with cycle decompo-
sition (n1, n2, . . . nk) where n1, . . . , nk are the degrees of the irreducible
factors of f(x).

The proofs of Theorem 4.6.10 and Corollary 4.6.11 are a conse-
quence of Corollary 4.6.5 and some elementary number theory. The
interested reader may refer to [25] for proofs.

Example 4.6.10. By Example 4.6.3, the discriminant of f(x) = x5 −
x − 1 is 2869 = 19 × 151. To apply Corollary 4.6.11, we reduce f(x)
mod p, where p is a prime and p ̸∈ {19, 151}. Since x5 − x − 1 ≡
(x2+x+1)(x3+x2+1) (mod 2), by Corollary 4.6.11, the Galois group
of f(x) over Q, G, has a (2, 3) cycle. Cubing this element we see that
G has a transposition. The polynomial f(x) has no roots mod 3 and
therefore has no linear factors. Consequently, if f(x) is a reducible
polynomial, then it has an irreducible quadratic factor. There are 3
irreducible polynomials of degree 2 in Z3[x], namely, x2 +1, x2 + x+2,
and x2+2x+2, none of which divide f(x). Thus f(x) is an irreducible
polynomial in Z3[x]. Hence there is a 5-cycle inG. Since S5 is generated
by a 5-cycle and any transposition (see Exercise 9), G = S5 which is
not solvable. Therefore f(x) is not solvable by radicals.

Proposition 4.6.1. There exist infinitely many polynomials f(x) ∈
Z[x] with Sn as the Galois group.

Proof. By Theorem 4.5.10, for each positive integer n, there exists
an irreducible polynomial of degree n in Zp[x]. Consequently, let f1(x)
be an irreducible polynomial of degree n in Z2[x]. Let f2(x) ∈ Z3[x] be
a polynomial of degree n, such that, f2(x) is a product of an irreducible
polynomial of degree 2, say g(x), and irreducible polynomials of odd
degree. For example, if n is odd then f2(x) can be the product of
g(x), x, and an irreducible polynomial of degree n − 3. If n is even,
f2(x) can be a product of g(x) and an irreducible polynomial of degree
n− 2. Similarly, let f3 ∈ Z5[x] be the product of x with an irreducible
polynomial of degree n− 1. Finally, let f(x) ∈ Z[x] be any polynomial
with

f(x) ≡ f1(x)(mod 2)
≡ f2(x)(mod 3)
≡ f3(x)(mod 5).
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By the Chinese Remainder Theorem, such an f(x) exists (see Exercise
2 in Section 6.4).

We now apply Corollary 4.6.11. The reduction of f(x) mod 2 shows
that f(x) is irreducible in Z[x], hence the Galois group is transitive on
the n roots of f(x). Raising the element given by the factorization of
f(x) mod 3 to a suitable odd power shows that the Galois group con-
tains a transposition. The factorization of f(x) mod 5 shows that the
Galois group contains an n− 1 cycle. By Exercise 9 the only transitive
subgroup of Sn that contains an n− 1 cycle and a transposition is Sn.
Therefore, it follows that the Galois group is Sn.

By Theorem 4.6.7, Sn is not solvable for n ≥ 5. Consequently,
Proposition 4.6.1 shows that there can be no general formulas for poly-
nomials with degrees greater than 4. We now demonstrate that Galois
groups of polynomials with coefficients in fields with characteristic zero,
and degrees less than 5, are always solvable. We also provide formulas
to find their roots.

Let k be a field with characteristic zero. Let f(x) ∈ k[x] and let G
be its Galois group.

1. Let f(x) be linear of the form

f(x) = x− a.

Then x = a is the only root of f(x) and G is trivial.

2. Let f(x) be a quadratic polynomial of the form

f(x) = x2 + bx+ c.

If the discriminant of f(x), namely
√
b2 − 4c, is a perfect square

(f(x) is reducible), then G is trivial. If f(x) is irreducible, then G
is Z2. The quadratic formula is given by

x =
−b±

√
b2 − 4c

2
.

3. Let f(x) be a polynomial of degree 3.

(a) Let f(x) be reducible. If f(x) splits in to three linear factors,
then G is trivial. If f(x) splits in to a linear factor and a
quadratic factor, then G is Z2.
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(b) Let f(x) be irreducible, then G is either A3 or S3.

Let f(x) be of the form

f(x) = x3 + ax2 + bx+ c. (4.15)

Let

p =
1

3
(3b− a2), q =

1

27
(2a3 − 9ab+ 27c), and D = −4p3 − 27q2.

(4.16)
Then the roots of the Equation 4.15 are

x1 =
A+B − a

3
,

x2 =
t2A+ tB − a

3
,

x3 =
tA+ t2B − a

3
. (4.17)

where

A =
3

√
−27

2
q +

3

2

√
−3D, B =

3

√
−27

2
q − 3

2

√
−3D, and t = −1

2
+
1

2

√
−3.

(4.18)

Example 4.6.11. (a) For the equation x3 − x2 + 3x + 5 = 0,
p = 2.66, q = 5.92, D = −1023.99, A = 1.46, and B = −5.46
(see Equations 4.16 and 4.18). Finally, Equations 4.17 imply
that the roots are x1 = −1, x2 = 1− 2i, and x3 = 1 + 2i.

(b) Similarly, p = −9.33, q = 5.92, D = 2303.99, A = 4 + 3.46i,
and B = 4− 3.46i for the equation x3 +5x2 − x− 5 = 0 and
its roots are x1 = 1, x2 = −1, and x3 = −5.

4. Let f(x) be a polynomial of degree 4 of the form

f(x) = x4 + ax3 + bx2 + cx+ d. (4.19)

The resolvent cubic equation, g(y) of Equation 4.19 is

y3 − 2py2 + (p2 − 4r)y + q2 (4.20)
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where

p =
−3a2 + 8b

8
, q =

a3 − 4ab+ 8c

8
,

r =
−3a4 + 16a2b− 64ac+ 256d

256
.

(a) Let g(y) be reducible. If g(y) splits in to three linear factors,
then G =< e, (12)(34), (13)(24), (14)(23) >. If g(y) splits in
to a linear factor and a quadratic factor, then G is either D4

or the cyclic group {e, (1234), (13)(24), (1432)}.
(b) If g(y) is irreducible, then G is either A4 or S4.

To solve the quartic equation 4.19, we first compute the roots y1,
y2, and y3, of the resolvent cubic equation 4.20. Then the roots
of the Equation 4.19 are

x1 =

√
−y1 +

√
−y2 +

√
−y3

2
,

x2 =

√
−y1 −

√
−y2 −

√
−y3

2
,

x3 =
−
√
−y1 +

√
−y2 −

√
−y3

2
,

x4 =
−
√
−y1 −

√
−y2 +

√
−y3

2
. (4.21)

Example 4.6.12. To solve the quartic equation x4−4x3+8.25x2−
8.5x + 3.25 = 0, we first solve the cubic equation x3 − 4.5x2 +
5.0625x = 0. We use the cubic formula to find the roots y1 = 0,
y2 = 2.25, and y3 = 2.25. Consequently, by Equations 4.21,
the roots of the quartic equation are x1 = 1, x2 = 1, x3 =
1− 1.5i, and x4 = 1 + 1.5i.

We refer the reader to [19] or [25] for details of these computations.

4.7 Proof of Galois’ Criterion for solvability.

In this section we present a proof of Galois’ Criterion for solvability of
polynomials by radicals.
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Definition 4.7.1. An algebraic extension field K of F is normal pro-
vided that whenever an irreducible polynomial in f(x) has one root in
K, then it splits over K, that is, f(x) has all its roots in K.

The next theorem proves that a splitting field of a polynomial is
always a normal extension.

Theorem 4.7.1. The field K is a splitting field over the field F of some
polynomial in F [x] if and only if K is a finite dimensional, normal
extension of F .

Proof. IfK is the splitting field of f(x) ∈ F [x], thenK = F (u1, . . . , un)
where ui are roots of f(x). Consequently, [K : F ] is finite by Exer-
cise 30 in Chapter 3. Let p(x) be an irreducible polynomial in F [x]
with a root v ∈ K. Let L be the splitting field of p(x) over K. To
prove that p(x) splits over K, we need to show that every root of p(x)
in L is actually in K. Let w ̸= v ∈ L be any root of p(x). Then
there is a σ ∈ GalFK such that σ(v) = w by Theorem 4.6.3, that
is , F (v) ∼= F (w). Consequently, since K is a splitting field of the
polynomial f(x) over F (v) and K(w) is a splitting field of f(x) over
F (w), σ extends to an isomorphism between K and K(w) by Theorem
3.4.7, such that, v is mapped to w and the elements of F remain fixed.
Therefore [K : F ] = [K(w) : F ] by Exercise 23 in Chapter 3. By The-
orem 3.4.4, [K(w) : K] is finite. Consequently, since [K : F ] is finite,
Exercise 22 in Chapter 3 implies

[K : F ] = [K(w) : F ] = [K(w) : K][K : F ].

Canceling [K : F ] from both sides we get [K(w) : K] = 1, that is,
K(w) = K. Thus every root of p(x) is in K which means that K is
normal over F .

Conversely, assume K is finite dimensional, normal extension of
F with basis {u1, . . . , un}. Then K = F (u1, . . . , un). Each ui is al-
gebraic over F by Exercise 28 in Chapter 3. Let the minimal poly-
nomial of ui be pi(x). Since each pi(x) splits over K by normality,
f(x) = p1(x) · · · pn(x) also splits over K. Therefore K is the splitting
field of f(x).

An element u in an extension field K of F is said to be separable
over F if u is a root of a separable polynomial in F [x]. The extension
field K is said to be a separable extension if every element of K is
separable over F .
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Theorem 4.7.2. Let F be a field of characteristic zero, then every
algebraic extension field K of F is a separable extension.

Proof. By Theorem 3.4.8, the minimal polynomial of each u ∈ K
is separable. Hence u is separable. Consequently, K is a separable
extension.

Definition 4.7.2. A field K is said to be Galois over F if K is a finite
dimensional, normal, separable extension field of F .

Let K be an extension field of F . A field E such that F ⊆ E ⊆ K
is called an intermediate field of the extension. Since K is also an
extension of E the Galois group GalEK consists of all automorphisms
of K that fix E element wise. Since F ⊆ E, every automorphism in
GalEK automatically fixes each element of F . Therefore, GalEK is a
subset (and hence subgroup) of GalFK.

Theorem 4.7.3. Let K be an extension field of F . If H is a subgroup
of GalFK, let

EH = {k ∈ K|σ(k) = k for every σ ∈ H}

Then EH is an intermediate field of the extension. The field EH is
called the fixed field of the subgroup H.

Proof. If c, d ∈ EH and σ ∈ H, then

σ(c+ d) = σ(c) + σ(d) = c+ d and σ(cd) = σ(c)σ(d) = cd.

ThereforeEH is closed under addition and multiplication. Since σ(0F ) =
0F and σ(1F ) = 1F for every automorphism, 0F and 1F are in EH . For
any nonzero c ∈ EH and any σ ∈ H,

σ(−c) = −σ(c) = −c and σ(c−1) = σ(c)−1 = c−1.

Consequently, EH contains the inverses of all the nonzero elements.
Hence EH is a subfield of K. Since H is a subgroup of GalFK, σ(c) = c
for every c ∈ F and σ ∈ H. Therefore F ⊆ EH .

Lemma 4.7.1. Let K be a finite dimensional extension field of F . If
H is a subgroup of the Galois group GalFK and EH is the fixed field
of H, then K is a simple, normal, separable extension of EH .
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Proof. Each u ∈ K is algebraic over F by Exercise 28 in Chapter 3
and hence algebraic over E. Every automorphism in H must map u to
some root of the minimal polynomial of u. Let u1, . . . ut be the distinct
images of u under automorphisms in H and let f(x) = (x − u1)(x −
u2) · · · (x − ut). Since ui are distinct, f(x) is a separable polynomial.
Since every automorphism σ ∈ H permutes u1, . . . , ut,

σf(x) = (x− σ(u1))(x− σ(u2)) · · · (x− σ(ut)) = f(x).

Consequently, every automorphism fixes the coefficients of f(x), hence
the coefficients are in EH . Since u is a root of f(x), u is separable over
EH . Hence K is a separable extension of EH . Since f(x) splits in K[x],
K is normal over EH by Theorem 4.7.1. Since K is finitely generated
over F , K is finitely generated over EH . Hence K = EH(u) for some
u ∈ K by Exercise 29 in Chapter 3. Therefore K is simple.

Theorem 4.7.4. Let K be a finite-dimensional extension field of F .
If H is a subgroup of the Galois group GalFK and E is a fixed field
of H, then H = GalEK and |H| = [K : E]. Therefore the Galois
correspondence is surjective.

Proof. Lemma 4.7.1 shows that K = E(u) for some u ∈ K. If the
minimal polynomial p(x) of u over E has degree n, then [K : E] = n
by Theorem 3.4.4. The Galois group GalEK is completely determined
by its action on u by Theorem 4.6.4 and u is always mapped to another
root of p(x) by an automorphism in GalEK by Theorem 4.6.2. This
implies that the number of distinct automorphisms in GalEK is at
most n, that is, |GalEK| ≤ n. Now H ⊆ GalEK by definition of fixed
field E. Therefore

|H| ≤ |GalEK| ≤ n = [K : E].

Let f(x) be as in Lemma 4.7.1. Then H contains at least t auto-
morphisms (the number of distinct images of u under H). Since u is a
root of f(x), p(x) divides f(x). Hence

|H| ≥ t = deg f(x) ≥ deg p(x) = n = [K : E].

Combining the inequalities, we get

|H| ≤ |GalEK| ≤ [K : E] ≤ |H|.

Therefore |H| = |GalEK| = [K : E], and hence H = GalEK.
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Theorem 4.7.5. Let K be a Galois extension of F and E an interme-
diate field. Then E is a fixed field of the subgroup GalEK. Therefore
the Galois correspondence is injective for Galois extensions.

Proof. The fixed field E0 of GalEK contains E by definition. To
show that E0 ⊆ E we prove the contra positive: If u ̸∈ E then u ̸∈ E0.
K is a Galois extension of the intermediate field by Exercises 34 and
35. K is an algebraic extension of E by Exercise 28 in Chapter 3.
Consequently u is algebraic over E with minimal polynomial p(x) ∈
E[x] of degree ≥ 2 (if degree p(x) = 1, then u ∈ E). The roots of
p(x) are distinct by separability and all of then are in K by normality.
Let v be a root of p(x) different from u. Then there exists σ ∈ GalEk
such that σ(u) = v by Theorem 4.6.3. Therefore u ∈ E0 and hence
E0 = E.

Lemma 4.7.2. Let K be a finite dimensional normal extension field
of F and E an intermediate field which is normal over F . Then there
is a surjective homomorphism of groups θ : GalFK → GalFE whose
kernel is GalEK.

Proof. Let σ ∈ GalFK and u ∈ E. Then u is algebraic over F
with minimal polynomial p(x). Since E is a normal extension of F ,
p(x) splits in E[x], that is, all the roots of p(x) are in E. Since σ(u)
is a root of p(x) by Theorem 4.6.2, σ(u) ∈ E. Therefore σ(E) ⊆ E for
every σ ∈ GalFK. Thus the restriction of σ to E is an F -isomorphism
from E to σ(E). Hence [E : F ] = [σ(E) : F ] by Exercise 23 in Chapter
3. Since F ⊆ σ(E) ⊆ E, [E : F ] = [E : σ(E)][σ(E) : F ] by Exercise
22 in Chapter 3. Thus [E : σ(E)] = 1. Therefore E = σ(E) and σ
restricted to E is an automorphism in GalFE. Denote σ restricted to
E by σ|E. Let θ : GalFK → GalFE be such that θ(σ) = σ|E. Check
that θ is a homomorphism of groups with kernel GalEK. To show
that θ is surjective, note that K is a splitting field of a polynomial
f(x) by Theorem 4.7.1. K is also the splitting field of f(x) over E.
Consequently every τ ∈ GalFE can be extended to an F -automorphism
σ ∈ GalFK by Theorem 3.4.7. This means that σ|E = τ , that is ,
θ(σ) = τ . Therefore θ is surjective.

Theorem 4.7.6. [Fundamental Theorem of Galois Theory] If K is a
Galois extension field of F , then

1. There is a bijection between the set S of all intermediate fields of
the extension and the set T of all subgroups of the Galois group
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GalFK, given by assigning each intermediate field E to the sub-
group Gal(K/E). Furthermore,

[K : E] = |GalEK| and [E : F ] = [GalFK : GalEK].

2. An intermediate field E is a normal extension of F if and only if
the corresponding group GalEK is a normal subgroup of GalFK,
and in this case Gal(E/F ) = GalFK/GalEK.

Proof. There is a bijection between the set S of all intermediate
fields of the extension and the set T of all subgroups of the Galois group
GalFK, given by assigning each intermediate field E to the subgroup
GalEK by Theorems 4.7.4 and 4.7.5. By Theorem 4.7.4, [K : E] =
|GalEK|. In particular if F = E, then [K : F ] = |GalFK|. By
Exercise 22 in Chapter 3, [K : F ] = [K : E][E : F ]. Consequently, by
applying Lagrange’s Theorem 4.4.1, we get

[K : E][E : F ] = [K : F ] = |GalFK| = |GalEK|[GalFK : GalEK].

Dividing the equation by [K : E] = GalEK shows that

[E : F ] = [GalFK : GalEK].

To prove part 2, assume that GalEK is a normal subgroup of
GalFK. Let p(x) be an irreducible in F [x] with a root u in E. To
show that E is a normal extension field we must show that p(x) splits
in E[x]. Since K is normal over F , p(x) splits in K[x]. So we need
only show that each root v of p(x) is in E. There is an automorphism
σ ∈ GalFK such that σ(u) = v by Theorem 4.6.3. If τ ∈ GalEK, then
since GalEK is normal, τ ◦ σ = σ ◦ τ1 for some τ1 ∈ GalEK. Since
u ∈ E, τ(v) = τ(σ(u)) = σ(τ1(u)) = σ(u) = v. Hence v is fixed by
every element τ ∈ GalEK and therefore is in E (see Theorem 4.7.5).
Thus E is a normal extension of F .

Conversely, assume that E is a normal extension of F . Then E
is finite dimensional over F by part 1. By Lemma 4.7.2, there is a
surjective homomorphism of groups θ : GalFK → GalFE with kernel
GalEK. Then GalEK is a normal subgroup of GalFK by Theorem
4.3.9, and GalFK/GalEK ∼= GalFE by the First Isomorphism Theo-
rem 4.3.11.
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Example 4.7.1. Let f(x) = (x2 − 3)(x2 − 5). The splitting field of
f(x) is Q(

√
3,
√
5). By Example 4.6.3 we know that

Gal(Q(
√
3,
√
5)/Q) = {e, σ, τ, στ},

such that
√
3

e−→
√
3√

5 −→
√
5

√
3

σ−→ −
√
3√

5 −→
√
5

√
3

τ−→
√
3√

5 −→ −
√
5

√
3

στ−→ −
√
3√

5 −→ −
√
5

By the Fundamental Theorem, corresponding to each subgroup of
Gal(Q(

√
3,
√
5)/Q), there is a fixed subfield of Q(

√
3,
√
5).

For example, the subfield corresponding to the subgroup {e, σ} is
the set of elements fixed by the map

σ : a+ b
√
3 + c

√
5 + d

√
5 → a− b

√
3 + c

√
5− d

√
5

which is the set of elements a+c
√
5, that is, the field Q(

√
5). Similarly,

we can determine the fixed fields for other subgroups ofGal(Q(
√
3,
√
5)/Q):

Subgroup Fixed Field

{e} Q(
√
3,
√
5)

{e, σ} Q(
√
5)

{e, τ} Q(
√
3)

{e, στ} Q(
√
15)

{e, σ, τ, στ} Q

See Figure 4.1.

Definition 4.7.3. The extension K/F is said to be cyclic if it is Galois
with a cyclic Galois group.

Definition 4.7.4. Let K1 and K2 be two subfields of a field K. Then
the composite field of K1 and K2, denoted K1K2 is the smallest subfield
of K containing both K1 and K2.

Note that K1K2 is the intersection of all the subfields of K contain-
ing both K1 and K2.

Proposition 4.7.1. Let K1 and K2 be Galois extensions of a field F ,
then the composite K1K2 is Galois over F .
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{e, σ, τ, στ}
Q

Q(
√
5)Q(

√
3)

Q(
√
15)

Q(
√
3,

√
5)

{e}

{e, τ} {e, στ} {e, σ}

Figure 4.1: The Galois correspondence of subgroups and subfields.

Proof. If K1 is the splitting field of the separable polynomial f1(x)
and K2 is the splitting field of the separable polynomial f2(x) then the
composite is the splitting field for the square free part of the polynomial
f1(x)f2(x), hence is Galois over F .

Proposition 4.7.2. Let F be a field of characteristic not dividing n
such that F contains all the n-th roots of unity. Then the extension
F ( n

√
a), for a ∈ F , is cyclic over F of degree dividing n.

Proof. The extension K = F ( n
√
a) is Galois over F if F contains

the n-th roots of unity since it is the splitting field for xn − a. For any
σ ∈ GalFK, σ( n

√
a) is another root of xn − a. Hence σ( n

√
a) = ωσ

n
√
a

where ωσ is some n-th root of unity. Let Gn denote the group of n-th
roots of unity. Since F contains Gn, every n-th root of unity is fixed
by GalFK. Hence for τ, σ ∈ GalFK,

στ( n
√
a) = σ(ωτ

n
√
a) = ωτσ(

n
√
a) = ωτωσ

n
√
a = ωσωτ

n
√
a

which shows that ωστ = ωσωτ . Therefore the map f : GalFK → Gn

such that f(σ) = ωσ is a homomorphism. The kernel of f is precisely
the identity and hence f is injective. Consequently, since Gn is cyclic
GalFK is cyclic. Since the image of f is a subgroup, |GalFK| divides
n. Consequently, by Theorem 4.7.6, K has degree dividing n.
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Definition 4.7.5. Let F be a field of characteristic not dividing n
such that F contains all the n-th roots of unity. Let K be any cyclic
extension of degree n over F . Let σ be the generator of the cyclic group
GalFK. For u ∈ K and any n-th root of unity ω, define the Lagrange
resolvent (u, ω) ∈ K by

(u, ω) = u+ ωσ(u) + ω2σ2(u) + · · ·+ ωn−1σn−1(u).

Proposition 4.7.3. Let F be a field of characteristic not dividing n
such that F contains all the n-th roots of unity. Let K be a cyclic
extension of F , then K is of the form F ( n

√
a) for some a ∈ F .

Proof. Let σ be the generator of the cyclic group GalFK and let
u ∈ K and ω be a n-th root of unity. Since ω ∈ F , if we apply σ to
the Lagrange resolvent (u, ω) we get

σ((u, ω)) = σ(u) + ωσ2(u) + ω2σ3(u) + · · ·+ ωn−1σn(u).

Since σn = 1 in GalFK and ωn = 1 in Gn (the group of n-th roots
of unity), we get

σ((u, ω)) = σ(u) + ωσ2(u) + ω2σ3(u) + · · ·+ ωn−1σn(u)

= ω−1(ωσ(u) + ω2σ2(u) + · · ·+ ωn−1σn−1(u) + wnσn(u))

= ω−1(ωσ(u) + ω2σ2(u) + · · ·+ ωn−1σn−1(u) + u)

= ω−1(u, ω). (4.22)

Therefore
σ(u, ω)n = (ω−1)n(u, ω)n = (u, ω)n.

Since (u, ω)n is fixed by GalFK, (u, ω)n ∈ F for any u ∈ K. By
the linear independence of the automorphisms 1, σ, σ2, . . . , σn−1, there
is an element u ∈ K with (u, σ) ̸= 0. Iterating Equation 4.22 we get
σi((u, ω)) = (ω−i)(u, ω) and we see that σi does not fix (u, ω) for any
i < n. Hence (u, ω) cannot lie in any proper subfield of K, so K =
F ((u, ω)). Since (u, ω)n = a ∈ F we have F ( n

√
a) = F ((u, ω)) = K.

The Galois closure K of a field F is the minimal Galois extension
of F in the sense that if L is a Galois extension of F then K ⊆ L.

Theorem 4.7.7. If u is contained in a root extension K as in Equation
4.9, then u is contained in a root extension which is Galois over F and
where each intermediate extension is cyclic.
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Proof. Let L be the Galois closure ofK over F . For any σ ∈ GalFL,
we derive the chain of subfields from Equation 4.9

F = σK0 ⊂ σK1 ⊂ · · · ⊂ σKi ⊂ σKi+1 ⊂ · · · ⊂ σKs = σK.

Since σ( ni
√
ai) is a root of xni − σ(ai), it follows that σKi+1 =

σKi(σ( ni
√
ai)), that is, σKi+1 is a simple radical extension of σKi.

Therefore σ(K) is solvable by radicals. Hence L which is the com-
posite of all the fields σ(K) such that σ ∈ GalFL is also solvable by
radicals (see Exercises 36 and 37). Therefore u is contained in a Galois
root extension L and there are subfields Li of L

F = L0 ⊂ L1 ⊂ · · · ⊂ Li ⊂ Li+1 ⊂ · · · ⊂ Lr = L (4.23)

such that Li+1 is a simple radical extension of Li.
We now adjoin the ni-th roots of unity to F to obtain a field F ′. This

extension is derived as a chain of subfields such that each individual
extension is cyclic (adjoin one root at a time).

Form the composite of F ′ with the root extension 4.23

F ⊆ F ′ = F ′L0 ⊂ F ′L1 ⊂ · · · ⊂ F ′Li ⊂ F ′Li+1 ⊂ · · · ⊂ F ′Lr = F ′L.

Since F ′ and L are Galois over F , the composite F ′L is Galois
over F by Theorem 4.7.1. F ′Li+1 is a simple radical extension of F ′Li

and since F ′Li contains the roots of unity F ′Li+1 is also cyclic by
Proposition 4.7.2. Therefore F ′L is a root extension of F where each
intermediate extension is cyclic.

Proposition 4.7.4. Suppose K/F is a Galois extension and F ′/F is
any extension. Then KF ′/F ′ is a Galois extension, with Galois group

Gal(KF ′/F ′) ∼= Gal(K/K ∩ F ′)

isomorphic to a subgroup of Gal(K/F ).

Proof. If K/F is Galois, then K is the splitting field of some sep-
arable polynomial f(x) ∈ F [x]. Then KF ′/F ′ is the splitting field
of f(x) viewed as a polynomial in F ′(x), hence this extension is Ga-
lois. Consider the map ϕ : Gal(KF ′/F ′) → Gal(K/F ) such that
ϕ(σ) → σ|K. Check that this map defined by restricting an automor-
phism σ to the subfield K is a well defined homomorphism. Since an
element in Gal(KF ′/F ′) acts as the identity on F ′), the elements in the
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kernel of ϕ are trivial on both K and F ′) and hence on their composite.
So Ker ϕ = {σ ∈ Gal(KF ′/F ′)| σ|K = 1}, contains only the identity
automorphism. Hence ϕ is injective.

Let H denote the image of ϕ in Gal(K/F ) and let KH denote the
corresponding fixed subfield of K containing F . Since every element
in H fixes F ′, K ∩ F ′ ⊆ KH . Since, any σ ∈ Gal(KF ′/F ′) fixes
F ′ and acts on KH ⊆ K via its restriction σ|K ∈ H, fixes KH by
definition. Therefore, the KHF

′ is fixed by Gal(KF ′/F ′). By the
Fundamental Theorem, KHF

′ = F ′. Consequently, KH ⊆ F ′, which
gives the reverse inclusion KH ⊆ K ∩ F ′. Hence KH = K ∩ F ′. By
Fundamental Theorem, H = Gal(KF ′/F ′).

Theorem 4.7.8. Let G be a finite solvable group. Then G has a chain
of subgroups

G = G0 ⊇ G1 ⊇ G2 ⊇ · · · ⊇ Gn−1 ⊇ Gn =< e > (4.24)

such that each Gi is a normal subgroup of the preceding group Gi−1 and
the quotient group Gi−1/Gi is cyclic.

Proof. Proof is by induction on the order of G. The theorem is
true when |G| = 1. Let |G| > 1. Assume the theorem holds for all
solvable groups of order less than |G|. Let N be a normal subgroup
of G such that N ̸=< e >. Such a subgroup exists because G is a
solvable group of order greater than 1. Theorem 4.6.8 implies G/N is a
solvable group. By Lagrange’s Theorem 4.4.1, |G/N | < |G|. Hence the
induction hypothesis applies on G/N and there is a chain of subgroups
Ti of G/N such that

G/N = T0 ⊇ T1 ⊇ T2 ⊇ · · · ⊇ Tr−1 ⊇ Tr = N (4.25)

such that Ti is a normal subgroup of the preceding group Ti−1 and the
quotient group Ti−1/Ti is cyclic. By Theorem 4.3.8, for each Ti, there
is a subgroup Gi of G such that N ⊂ Gi and Ti = Gi/N . Thus we get
a chain of subgroups Gi of G

G = G0 ⊇ G1 ⊇ G2 ⊇ · · · ⊇ Gr−1 ⊇ Gr = N. (4.26)

Appending the subgroup < e > to the end gives us a chain of
subgroups

G = G0 ⊇ G1 ⊇ G2 ⊇ · · · ⊇ Gr−1 ⊇ N ⊇< e > (4.27)
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such that each Gi is a normal subgroup of the preceding group Gi−1.
By Exercise 19, the quotient group Gi−1/Gi is isomorphic to Ti−1/Ti,
and hence is cyclic. Therefore by induction the theorem holds for all
solvable groups.

Finally, we can prove Galois’ criterion for solvability of polynomials,
that is, for a polynomial f(x) ∈ F [x], where F is a field of characteristic
zero, f(x) is solvable by radicals if and only if the Galois group G of
f(x) is solvable.

Proof of Theorem 4.6.9. Suppose first that f(x) can be solved by
radicals. Then each root of f(x) is contained in an extension as in
Theorem 4.7.7. The composite L of such extensions is also Galois
by Proposition 4.7.1. Let Gi be the subgroups corresponding to the
subfields Ki, i = 0, 1, . . . , s − 1. Since Gal(Ki+1/Ki) = Gi/Gi+1 for
each i it follows that the Galois Group G = Gal(L/F ) is a solvable
group. The field L contains the splitting field of f(x) so the Galois
group of f(x) is a quotient group of a solvable group G and hence is
solvable by Theorem 4.6.8.

Suppose now that the Galois group G of f(x) is a solvable group
and let K be the splitting field of f(x). Taking the fixed fields of the
subgroups in the Chain 4.24 for G gives a chain

F = K0 ⊂ K1 ⊂ · · · ⊂ Ki ⊂ Ki+1 ⊂ · · · ⊂ Ks = K

where Ki+1/Ki for each i is a cyclic extension of degree ni. Let
F ′ be an extension field over F , that contains all the roots of unity of
order ni, i = 0, . . . , s − 1. Form the composite fields K ′

i = F ′Ki. We
obtain a sequence of extensions

F ⊆ F ′ = F ′K0 ⊆ F ′K1 ⊆ · · · ⊆ F ′Ki ⊆ F ′Ki+1 ⊆ · · · ⊆ F ′Ks = F ′K.

The extension F ′Ki+1/F
′Ki is cyclic of degree dividing ni, i = 0, . . . , s−

1 by Proposition 4.7.4.
Since we now have appropriate roots of unity in the base fields, each

of these cyclic extensions is a simple radical extension by Proposition
4.7.3. Each of these roots of f(x) is therefore contained in the root
extension F ′K so that f(x) can be solved by radicals.

Exercises.

1. Let G be a group and let a, b ∈ G. Prove that (ab)−1 = b−1a−1.
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2. Prove that Sn is a nonabelian group with the operation of product
of permutations, and that the order of Sn is n!. Also Prove that
the set of all permutations of a setG with n elements is isomorphic
to Sn.

3. Find the inverse of (1324) ∈ S4.

4. Find the inverse of (15342) ∈ S5.

5. Find the order of (12)(345) in S5.

6. Find the order of (123)(456) in S6.

item Prove that every permutation in Sn is the product of disjoint
cycles.

7. Prove that (12) and (1234) generate S4.

8. Prove that the only subgroup G of Sn that contains both a n-
cycle and a transposition is Sn itself. (Hint: Relabel to show that
(12 · · ·n) is in G. Then show that G contains all the transposi-
tions. Finally use Lemma 4.1.1).

9. Prove that the only transitive subgroup of Sn that contains both
a n− 1-cycle and a transposition is Sn itself.

10. Let Dn ⊆ Sn be defined by

Dn =< r, s|rn = s2 = e, rs = sr−1 > .

(a) Show that D3 = S3.

(b) Compute the orders of D4 and D5.

11. Show that the order of the group of even permutations, An, is
n!/2.

12. Show that the set A(G) of all bijective functions from G to G is
a group with composition as the group operation.

13. Prove that the set of units U8 in Z8 is a group under multiplica-
tion.

14. Show that the group U15 is generated by the elements 7 and 11.

15. Show that the group U18 is cyclic.

131



16. Show that the additive group Z2 × Z3 is cyclic.

17. Let N be a normal subgroup of a group G and let T be a subgroup
of G/N . Prove that H = {a ∈ G|Na ∈ T} is a subgroup of G.

18. Prove that a subgroup with index 2 is a normal subgroup.

19. LetK andN be normal subgroups of a groupG withN ⊆ K ⊆ G.
Then K/N is a normal subgroup of G/N , and the quotient group
(G/N)/(K/N) is isomorphic to G/K.

20. Let N1, . . . , Nk be normal subgroups of a group G such that ev-
ery element of G can be written uniquely in the form a1a2 . . . ak
with ai ∈ Ni. Let f : N1 × N2 × · · · × Nk → G be such that
f(a1, a2, . . . , ak) = a1a2 · · · ak. Then prove that f is an isomor-
phism between N1 ×N2 × · · · ×Nk and G.

21. Prove that N = {1, 17} is a normal subgroup of U32.

22. Prove that U32/N is isomorphic to U16.

23. Consider S4, the group of permutations of the set {1, 2, 3, 4}.
Show that K = {e, (12)(34), (13)(24), (14)(23)} is a normal sub-
group of S4.

24. Write the operation table for S4/K.

25. Let G be a group such that all its subgroups are normal. If
a, b ∈ G, Show that there is an integer k such that ab = bak.

26. Let G be a group. For a ∈ G let the map ϕa : G → G be such
that ϕa(x) = ax. Then prove that ϕa is a bijection from G to G.

27. Prove that every abelian group of order pq is isomorphic to Zpq,
where p and q are distinct primes.

28. Prove that every group of order 4 is isomorphic to either Z4 or
Z2 × Z2.

29. Prove that every group of order 6 is isomorphic to either S3 or
Z6.

30. Explain why the two groups are not isomorphic:
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(a) Z6 and S3

(b) Z and R
(c) Z4 × Z2 and D4

(d) Z4 × Z2 and Z2 × Z2 × Z2

31. Let H be a nonempty finite subset of a group G. If H is closed
under the operation in G prove that H is a subgroup of G.

32. Let G be a group.

(a) Show that the conjugacy relation on G is reflexive, symmet-
ric, and transitive.

(b) Two conjugacy classes are either disjoint or identical.

(c) The group G is a union of its distinct conjugacy classes.

33. If G is a group and a ∈ G, prove that the centralizer of a is a
subgroup of G.

34. Let K be a splitting field of f(x) over F . If E is a field such that
F ⊆ E ⊆ K, show that K is a splitting field of f(x) over E.

35. If K is separable over F and E is a field such that F ⊆ E ⊆ K,
show that K is separable over E.

36. Prove that the composite of two root extensions is also a root
extension.

37. Prove that the Galois closure L of a field K is the composite of
all the fields σ(K) where σ ∈ GalFL.

38. Use the cubic formula to find the roots of the following equations.

(a) x3 − 3x2 + 28x− 26

(b) x3 − 7.75x2 + 18.375x− 13.5

39. Use the quartic formula to find the roots of the following equa-
tions.

(a) x4 − 3x3 + 11x2 − 27x+ 18

(b) x4 − 8x3 + 22.75x2 − 27x+ 11.25
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40. Prove that the subgroup < e, (12)(34), (13)(24), (14)(23) ⊂ S4 is
isomorphic to Z2 × Z2 (Hint: every element has order 2).

41. Prove that the group S4 is solvable. (Hint: use the chain of
subgroups < e >⊂< e, (12)(34), (13)(24), (14)(23) >⊂ A4 ⊂ S4).

42. Prove that the Galois group of a polynomial f(x) ∈ F [x] is a
subgroup of An if and only if the discriminant D ∈ F is a square
of an element of F .

43. If σ, τ ∈ GalFK, then prove that σ ◦ τ is an isomorphism from K
to K.

44. If σ ∈ GalFK, then prove that σ−1 is an isomorphism from K to
K.

45. Determine the Galois group G of the polynomial f(x) = (x2 −
2)(x2 − 3). Draw the Galois correspondence of the subgroups of
G and the subfields of the splitting field of f(x).

46. Draw the Galois correspondence of the subgroups of the Galois
group of f(x) = x3 − 2 and the subfields of Q( 3

√
2, ω), where ω is

a root of x3 − 1.
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Chapter 5

Constructing and
Enumerating integral roots
of systems of polynomials.

Either write something worth reading or do something worth writing.

Benjamin Franklin

Solving linear systems of equations is dealt with in Linear Algebra.
Abstract Algebra techniques come in to play when we restrict our so-
lutions to be integral, that is, every coordinate of a solution vector is
an integer. Finding only integral solutions of a linear system is a much
more complex problem than finding all its solutions. In this chapter, we
describe how to construct and enumerate integral roots of systems of
linear equations as lattice points inside polyhedral cones. We illustrate
this method by constructing and enumerating magic squares.

5.1 Magic Squares.

A magic square is a square matrix whose entries are nonnegative inte-
gers, such that the sum of the numbers in every row, in every column,
and in each diagonal is the same number called the magic sum. See Fig-
ure 5.1 for examples of some ancient magic squares. We refer the reader
to [4] or [6] to read more about the history of magic squares. Con-
structing and enumerating magic squares and other variations of magic
squares are classical problems of interest. The well-known squares in
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 4     9    2   

3     5      7

8      1     6

A

7     12    1   14

2    13    8    11

16    3   10    5

9      6   15    4

B C

16    3    2    13  

5     10   11   8  

9     6     7    12

4    15   14   1

Figure 5.1: (A) Loh-Shu (China, 2858-2738 B.C.), (B) Jaina (India, 12 th
century), and (C) the Dürer (Germany, 1514) Magic squares.

Figure 5.2 were constructed by Benjamin Franklin. In a letter to Peter
Collinson he describes the properties of the 8× 8 square F1 as follows:

1. The entries of every row and column add to a common sum called
the magic sum.

2. In every half-row and half-column the entries add to half the
magic sum.

3. The entries of the main bent diagonals (see Figure 5.4) and all
the bent diagonals parallel to it (see Figure 5.5) add to the magic
sum.

4. The four corner entries together with the four middle entries add
to the magic sum.

Henceforth, when we say row sum, column sum, bent diagonal sum,
and so forth, we mean that we are adding the entries in the correspond-
ing configurations. Franklin mentions that the square F1 has five other
curious properties but fails to list them. He also says, in the same let-
ter, that the 16×16 square F3 has all the properties of the 8×8 square,
but that in addition, every 4× 4 subsquare adds to the common magic
sum. More is true about this square F3. Observe that every 2 × 2
subsquare in F3 adds to one-fourth the magic sum. The 8× 8 squares
have magic sum 260 while the 16× 16 square has magic sum 2056. For
a detailed study of these three “Franklin” squares, see [2], [6], and [28].

We define 8 × 8 Franklin squares to be squares with nonnegative
integer entries that have the properties (1) - (4) listed by Benjamin
Franklin and the additional property that every 2×2 subsquare adds to
one-half the magic sum (see Figure 5.3). The 8×8 squares constructed
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F1

64    2   51   13   60   6    55    9

16   50   3    61   12  54    7    57

F2

58       39      26       7       250    231    218    199   186     167   154    135    122    103     90      71

198     219   230     251     6        27     38       59     70       91     102    123   134    155    166    187

60       37      28       5       252    229   220     197   188     165    156    133   124    101     92      69 

201     216    233    248     9        24     41      56      73       88     105    120    137    152   169    184

 55      42      23       10     247    234   215     202   183    170    151     138    119    106     87     74      

203     214    235    246     11      22     43       54      75      86     107    118    139    150    171   182         

53       44      21       12     245    236   213     204   181     172   149    140     117   108     85     76   

205     212   237    244     13      20      45      52      77      84      109    116   141    148     173   180

 51      46      19       14     243    238    211   206     179    174    147    142    115    110    83      78

207     210    239   242      15     18      47      50      79      82     111     114    143    146   175    178       

 49       48     17       16     241   240     209    208    177    176    145   144     113   112      81     80

196     221   228    253      4       29      36      61      68       93    100     125    132    157    164   189

 62       35     30       3      254     227    222    195    190    163    158    131   126     99      94     67          

194     223   226    255      2       31  34       63      66      95      98     127    130   159    162    191 

 64      33      32        1      256   225     224    193   192     161   160    129    128      97      96    65   

F3

53   60    5   12   21  28   37   44 

200    217    232     249    8        25      40      57     72       89     104     121    136    153   168    18552   61   4    13   20  29   36   45

14    3   62   51   46  35   30   19

11    6   59   54   43  38   27   22

55   58   7    10   23  26   39   42

9      8   57   56   41  40   25   24

16    1   64   49   48  33   32   17

50   63   2    15   18  31   34   47

32   34  19   45   28  38   23   41

17   47  30   36   21  43   26   40

 1    63  14   52    5   59   10   56

33   31  46   20   37  27   42   24

48   18  35   29   44  22   39   25

49   15  62    4    53  11   58    8

Figure 5.2: Squares constructed by Benjamin Franklin.

by Franklin have this extra property (this might be one of the unstated
curious properties to which Franklin was alluding in his letter). It is
worth noticing that the fourth property listed by Benjamin Franklin
becomes redundant with the assumption of this additional property.

Similarly, we define 16× 16 Franklin squares to be 16× 16 squares
that have nonnegative integer entries with the property that all rows,
columns, and bent diagonals add to the magic sum, the half-rows and
half-columns add to one-half the magic sum, and the 2× 2 subsquares
add to one-fourth the magic sum. The 2×2 subsquare property implies
that every 4× 4 subsquare adds to the common magic sum.

The property of the 2× 2 subsquares adding to a common sum and
the property of bent diagonals adding to the magic sum are “continuous
properties.” By this we mean that, if we imagine the square as the
surface of a torus (i.e., if we glue opposite sides of the square together),
then the bent diagonals and the 2 × 2 subsquares can be translated
without effect on the corresponding sums (see Figure 5.5).
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= Magic sum

= Magic sum= Magic sum

= Magic sum = Magic sum

= half  the Magic sum

= Magic sum= half the Magic sum = half  the Magic sum

= Magic sum

Figure 5.3: Defining properties of the 8× 8 Franklin squares [6].

When the entries of a n× n magic square (or Franklin square) are
1, 2, 3, . . . , n2, it is called a natural square. Observe that the squares
in Figures 5.1 and 5.2 are natural squares. Nevertheless, in this chap-
ter, our study is not restricted to natural squares. In the following
sections, we develop algebraic methods to construct and enumerate all
such squares.

5.2 Polyhedral cones.

A set P of vectors in Rn is called a polyhedron if P = {y : Ay ≤ b} for
some matrix A and vector b. A bounded polyhedron is called a polytope.
A nonempty set C of points in Rn is a cone if au + bv belongs to C
whenever u and v are elements of C and a and b are nonnegative real
numbers. A cone is pointed if the origin is its only vertex (or minimal
face; see [32]). A cone C is polyhedral if C = {y : Ay ≤ 0} for some
matrix A, i.e, if C is the intersection of finitely many half-spaces. If,
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Figure 5.4: The four main bent diagonals [28].
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Figure 5.5: Continuous properties of Franklin squares.

in addition, the entries of the matrix A are rational numbers, then C
is called a rational polyhedral cone. A point y in the cone C is called
an integral point if all its coordinates are integers.

For the purposes of constructing and enumerating magic squares, we
regard n×nmagic squares as either n×nmatrices or vectors in Rn2

and
apply the normal algebraic operations to them. We also consider the
entries of an n×n magic square as variables yij (1 ≤ i, j ≤ n). If we set
the first row sum equal to all other mandatory sums, then magic squares
become nonnegative integral solutions to a system of linear equations
Ay = 0, where A is an (2n + 1) × n2 matrix each of whose entries is
0, 1, or -1. It is easy to verify that the sum of two magic squares is a
magic square and that nonnegative integer multiples of magic squares
are magic squares. Therefore, the set of magic squares is the set of all
integral points inside a polyhedral cone CMn = {y : Ay = 0, y ≥ 0} in
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Rn2
, where A is the coefficient matrix of the defining linear system of

equations. Observe that CMn is a pointed cone.
Like in the case of magic squares, we consider the entries of an n×n

Franklin square as variables yij (1 ≤ i, j ≤ n) and set the first row sum
equal to all other mandatory sums. Thus, Franklin squares become
nonnegative integral solutions to a system of linear equations Ay = 0,
where A is an (n2 + 8n− 1)× n2 matrix each of whose entries is 0, 1,
or -1. The cone of Franklin squares is also pointed.

Example 5.2.1. 1. The equations defining 3×3 magic squares are:

y11 + y12 + y13 = y21 + y22 + y23
y11 + y12 + y13 = y31 + y32 + y33
y11 + y12 + y13 = y11 + y21 + y31
y11 + y12 + y13 = y12 + y22 + y32
y11 + y12 + y13 = y13 + y23 + y33
y11 + y12 + y13 = y11 + y22 + y33
y11 + y12 + y13 = y13 + y22 + y31

Therefore, 3× 3 magic squares are nonnegative integer solutions
to the system of equations Ay = 0 where:

A =



1 1 1 −1 −1 −1 0 0 0
1 1 1 0 0 0 −1 −1 −1
0 1 1 −1 0 0 −1 0 0
1 0 1 0 −1 0 0 −1 0
1 1 0 0 0 −1 0 0 −1
0 1 1 0 −1 0 0 0 −1
1 1 0 0 −1 0 −1 0 0


and y =



y11
y12
y13
y21
y22
y23
y31
y32
y33


2. In the case of 4× 4 magic squares, there are three linear relations

equating the first row sum to all other row sums and four more
equating the first row sum to column sums. Similarly, equating
the two diagonal sums to the first row sum generates two more
linear equations. Thus, there are a total of 9 linear equations that
define the cone of 4× 4 magic squares. The coefficient matrix A
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has rank 8 and therefore the cone CM4 of 4× 4 magic squares has
dimension 16− 8 = 8.

3. In the case of the 8 × 8 Franklin squares, there are seven linear
relations equating the first row sum to all other row sums and
eight more equating the first row sum to column sums. Similarly,
equating the eight half-row sums and the eight half-column sums
to the first row sum generates sixteen linear equations. Equating
the four sets of parallel bent diagonal sums to the first row sum
produces another thirty-two equations. We obtain a further sixty-
four equations by setting all the 2×2 subsquare sums equal to the
first row sum. Thus, there are a total of 127 linear equations that
define the cone of 8× 8 Franklin squares. The coefficient matrix
A has rank 54 and therefore the cone of 8 × 8 Franklin squares
has dimension 10.

5.3 Hilbert bases of Polyhedral cones

In 1979, Giles and Pulleyblank introduced the notion of a Hilbert basis
of a cone [21]. For a given cone C, its set SC = C ∩ Zn of integral
points is called the semigroup of the cone C.

Definition 5.3.1. A Hilbert basis for a cone C is a finite set of points
HB(C) in its semigroup SC such that each element of SC is a linear
combination of elements from HB(C) with nonnegative integer coeffi-
cients.

Example 5.3.1. The integral points inside and on the boundary of
the parallelepiped in R2 with vertices (0, 0), (3, 2), (1, 3) and (4, 5) in
Figure 5.6 form a Hilbert basis of the cone generated by the vectors
(1, 3) and (3, 2).

The minimal Hilbert basis of a cone is defined to be the smallest
finite set S of integral points with the property that any integral point
can be expressed as a linear combination with nonnegative integer coef-
ficients of the elements of S. An integral point of a cone C is irreducible
if it is not a linear combination with integer coefficients of other inte-
gral points. The cone generated by a set X of vectors is the smallest
cone containing X and is denoted by cone X; so

cone X = {λ1x1 + ....+ λkxk|k ≥ 0;x1, . . . , xk ∈ X;λ1, . . . , λk ≥ 0}.
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(4,5)

(3,2)

(1,3)

(0,0)

Figure 5.6: A Hilbert Basis of a two dimensional cone.

Theorem 5.3.1. Each rational polyhedral cone C is generated by a
Hilbert basis. If C is pointed, then there is a unique minimal integral
Hilbert basis generating C (minimal relative to taking subsets).

Proof. Let C be a rational polyhedral cone, generated by b1, b2, ..., bk.
Without loss of generality b1, b2, ..., bk are integral vectors. Let a1, a2, ..., at
be all the integral vectors in the polytope P :

P = {λ1b1 + ....+ λkbk|0 ≤ λi ≤ 1 (i = 1, .., k)}

Then a1, a2, ..., at generate C as b1, b2, ..., bk occur among a1, a2, ..., at
and as P is contained in C. We will now show that a1, a2, ..., at also
form a Hilbert basis. Let b be an integral vector in C. Then there are
µ1, µ2, ..., µk ≥ 0 such that

b = µ1b1 + µ2b2 + · · ·+ µkbk. (5.1)

Let ⌊µi⌋ denote the floor of µi, then

b = ⌊µ1⌋b1+⌊µ2⌋b2+· · ·+⌊µk⌋bk+(µ1−⌊µ1⌋)b1+(µ2−⌊µ2⌋)b2+· · ·+(µk−⌊µk⌋)bk.

Now the vector

b− ⌊µ1⌋b1 − · · · − ⌊µk⌋bk = (µ1 − ⌊µ1⌋)b1 + · · ·+ (µk − ⌊µk⌋)bk (5.2)

occurs among a1, a2, ..., at as the left side of the Equation 5.2 is
clearly integral and the right side belong to P . Since also b1, b2, ..., bk
occur among a1, a2, ..., at, it follows that 5.1 decomposes b as a non-
negative integral combination of a1, a2, ..., at. So a1, a2, ..., at form a
Hilbert basis.
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Next suppose C is pointed. Consider H the set of all irreducible
integral vectors. Then it is clear that any Hilbert basis must contain
H. So H is finite because it is contained in P . To see that H itself
is a Hilbert basis generating C, let b be a vector such that bx > 0 if
x ∈ C\{0} (b exists because C is pointed). Suppose not every integral
vector in C is a nonnegative integral combination of vectors in H. Let
c be such a vector, with bc as small as possible (this exists, as c must
be in the set P). As c is not in H, c = c1 + c2 for certain nonzero
integral vectors c1 and c2 in C. Then bc1 < bc and bc2 < bc. Therefore
c1 and c2 are nonnegative integral combinations of vectors in H, and
therefore c is also.

The minimal Hilbert basis of a pointed cone is unique and hence-
forth, when we say the Hilbert basis, we mean the minimal Hilbert
basis. All the elements of the minimal Hilbert basis are irreducible.
Since magic squares are integral points inside a cone, Theorem 5.3.1
implies that every magic square is a nonnegative integer linear combi-
nation of irreducible magic squares.

We use the software 4ti2 to compute Hilbert bases (see [26]; software
implementation 4ti2 is available from http://www.4ti2.de). Algorithms
to compute Hilbert bases are discussed in Appendix A.

Example 5.3.2. 1. The minimal Hilbert basis of the 3 × 3 magic
squares is given in Figure 5.7. A Hilbert basis construction of the
Loh-shu magic square is given in Figure 5.8.

2. The minimal Hilbert basis of the polyhedral cone of 4× 4 magic
squares is given in Figure 5.9. Two different Hilbert basis con-
structions of the Jaina magic square is given in Figures 5.10 and
5.11. Thus, Hilbert basis constructions are not unique.

 1     0    2

2      1    0

0     2     1

2      0    1

0      1    2

1      2    0

 0    2     1

2      1    0

1      0    2

 1    2     0

0     1     2

2     0     1

 1     1    1

 1     1    1

 1     1    1

Figure 5.7: The minimal Hilbert Basis of 3× 3 Magic squares.

Example 5.3.3. Let Sn denote the group of n×n permutation matrices
acting on n×nmatrices. Let (ri, rj) denote the operation of exchanging
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1     0     2

 1     1    1
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 4    9     2

3     5     7

8      1    6

Figure 5.8: A Hilbert basis construction of the Loh-Shu magic square.
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Figure 5.9: The minimal Hilbert Basis of 4× 4 Magic squares.

rows i and j of a square matrix, and let (ci, cj) denote the analogous
operation on columns. Let G be the subgroup of S8 generated by

{(c1, c3), (c5, c7), (c2, c4), (c6, c8), (r1, r3), (r5, r7), (r2, r4), (r6, r8)}.

The Hilbert basis of the polyhedral cone of 8 × 8 Franklin squares
is generated by the action of the group G on the three squares T1, T2,
and T3 in Figure 5.12 and their counterclockwise rotations through
90 degree angles. Not all squares generated by these operations are
distinct. Let R denote the operation of rotating a square 90 degrees in
the counterclockwise direction. Observe that R2·T1 is the same as T1
and R3·T1 coincides with R·T1. Similarly, R2·T2 is just T2, and R3·T2
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Figure 5.10: A Hilbert basis construction of the Jaina magic square.
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Figure 5.11: Another Hilbert basis construction of the Jaina magic square.

is the same as R·T2. Also T1 and R·T1 are invariant under the action
of the group G. Therefore the Hilbert basis of the polyhedral cone of
8×8 Franklin squares consists of the ninety-eight Franklin squares: T1
and R·T1; the thirty-two squares generated by the action of G on T2
and R·T2; the sixty-four squares generated by the action of G on T3
and its three rotations R·T3, R2·T3, and R3·T3.

Two different Hilbert basis constructions of the Franklin squares F2
are provided in Figures 5.13 and 5.14.

5.4 Toric Ideals.

In this section, we demonstrate with the example of magic squares how
to avoid repetitions while enumerating integer solutions of equations.
We map integral points to monomials and then apply algebraic methods
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T1 T2 T3
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Figure 5.12: Generators of the Hilbert basis of 8× 8 Franklin squares.

to eliminate duplicate solutions.
LetA = {a1, a2, ..., ar} be a subset of Zn, ai = (ai1, ai2, . . . , ain), and

ϕ be the unique ring homomorphism between the rings k[x1, x2, . . . , xr]
and k[t±1

1 , t±1
2 , . . . , t±1

n ] such that ϕ(xi) = tai , the monomial defined by

tai =
∏

j=1,...,n

t
aij
j .

The kernel of ϕ is an ideal of k[x1, x2, . . . , xr] called the toric ideal
of A and is denoted by IA.

We now demonstrate how to use toric ideals while enumerating
magic squares. Different combinations of the elements of a Hilbert
basis sometimes produce the same magic square. Figures 5.10 and 5.11
exhibit two different Hilbert basis constructions of the Jaina magic
square. This is due to algebraic dependencies among the elements
of the Hilbert basis. Repetitions have to be avoided when counting
squares. We solve this problem by using toric ideals of the Hilbert
bases.

Let HB(CMn) = {h1, h2, . . . hr} be a Hilbert basis for the cone of
n×nmagic squares. Denote the entries of the square hp by y

p
ij, and let k

be any field. Let ϕ be the ring homomorphism between the polynomial
rings k[x1, x2, . . . , xr] and k[t11, t12, . . . , t1n, t21, t22, . . . t2n, . . . , tn1, tn2, . . . , tnn]
such that ϕ(xp) = thp , the monomial defined by

thp =
∏

i,j=1,...,n

t
ypij
ij .

Since the entries of hi are all nonnegative, we are dealing with only
polynomial rings in this case. Observe that, in general, the definition
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 1     1     0    0     1     1    0    0

 1     0     1    0     1    0     1    0 

 1     0     1    0     1    0     1    0 

 1     0     1    0     1    0     1    0 

 1     0     1    0     1    0     1    0 

0      1     0     1    0     1    0     1

0      1     0     1    0     1    0     1

0      1     0     1    0     1    0     1

0      1     0     1    0     1    0     1

=

17   47  30   36   21  43   26  40 

32   34  19   45   28  38   23  41

33   31  46   20   37   27  42   24

48   18  35   29   44  22   39  25

49   15  62    4    53   11  58   8 

64    2    51  13   60   6    55   9 

 1   63    14  52    5   59   10   56

16   50    3   61   12   54   7    57

h1 h2 h3

h4 h5 h6

h7 h8 F2

Figure 5.13: Constructing Benjamin Franklin’s 8× 8 square F2.

of the toric ideal is not restricted to polynomial rings alone. See [1],
[9], or [39] for a detailed study of toric ideals.

Monomials in k[x1, x2, . . . , xr] correspond to magic squares under
this map, and multiplication of monomials corresponds to addition of
magic squares. For example, the monomial x5

1x
200
3 corresponds to the

magic square 5h1 + 200h3. Different combinations of Hilbert basis ele-
ments that give rise to the same magic square can then be represented
as polynomial equations. Thus, from the two different Hilbert basis
constructions of the Jaina magic square represented in Figures 5.10
and 5.11, we learn that

h1 + 4 · h3 + 2 · h4 + 8 · h5 + 3 · h6 + 12 · h7 + 4 · h8 =
h3 + 8 · h5 + h6 + 11 · h7 + h8 + h14 + 2 · h15 + 2 · h17 + h20

In k[x1, x2, . . . , xr], this algebraic dependency of Hilbert basis elements
translates to

x1x
4
3x

2
4x

8
5x

3
6x

12
7 x4

8 − x3x
8
5x6x

11
7 x8x14x

2
15x

2
17x20 = 0.

Consider the set of all polynomials in k[x1, x2, . . . , xr] that are mapped
to the zero polynomial under ϕ. This set, which corresponds to all the
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0      1     1     1     1    1    0    1

2     0      1    0     1    0     2    0

0      1     1     1     1    1    0    1

0      1     1     1     1    1    0    1

1     1     0     1     0     1    1    1

2     0      1    0     1    0     2    0

0      1     1     1     1    1    0    1

1     1     0     1     0     1    1    1

 1     0     2     0    2     0    1    0   

1     1     0     1     0     1    1    1

0      1     1     1     1    1    0    1

0      1     1     1     1    1    0    1

1     1     0     1     0     1    1    1

1     1     0     1     0     1    1    1

1     1     0     1     0     1    1    1

 1     0     2     0    2     0    1    0   

 1     0     2     0    2     0    1    0   

1     1     0     1     0     1    1    1

0      1     1     1     1    1    0    1

0      1     1     1     1    1    0    1

1     1     0     1     0     1    1    1

1     1     0     1     0     1    1    1

1     1     0     1     0     1    1    1

 1     0     2     0    2     0    1    0   

0      1     1    0     1    1    0     0

 1     0     1    0     1    0     1    0 

0      1     1    0     1    1    0     0

0      1     1    0     1    1    0     0

0      1     1    0     1    1    0     0

 1     0     1    0     1    0     1    0 

 1     0     1    0     1    0     1    0 

 1     0     1    0     1    0     1    0 

2 + + +

0      1     0     1    0     1    0     1

 1     0     1    0     1    0     1    0 

 1     0     1    0     1    0     1    0 

 1     0     1    0     1    0     1    0 

 1     0     1    0     1    0     1    0 

0      1     0     1    0     1    0     1

0      1     0     1    0     1    0     1

0      1     0     1    0     1    0     1

 1     1     1    0     1     1    1    0

1      0     1    1     1     0    1     1

0      2     0    1     0     2    0     1

1      0     1    1     1     0    1     1

 1     1     1    0     1     1    1    0

 0     1     1     1    0    1     1    1

2      0    1     0     2     0    1    0

 0     1     1     1    0    1     1    1

 0     1     1     1    0    1     1    1

2      0    1     0     2     0    1    0

 0     1     1     1    0    1     1    1

1      1    0     1     1     1    0    1

 0     1    1     0     0    1     1    0

1      0    0     1     1    0      0    1

 0     1    1     0     0    1     1    0

1      0    0     1     1    0      0    1

 0     1    1     0     0    1     1    0

1      0    0     1     1    0      0    1

 0     1    1     0     0    1     1    0

1      0    0     1     1    0      0    1

 0     1     1    0     0    0     1     1

 0     1     1    0     0    0     1     1

 0     1     1    0     0    0     1     1

1      0     0    1     1     1    0    0

 0     1     1    0     0    0     1     1

1      0     0    1     1     1    0    0

1      0     0    1     1     1    0    0

1      0     0    1     1     1    0    0

+ 32 + 12

0      1     0     1    0     1    0     1

0      1     0     1    0     1    0     1

 1     0     1    0     1    0     1    0 

 1     0     1    0     1    0     1    0 

 1     0     1    0     1    0     1    0 

 1     0     1    0     1    0     1    0 

0      1     0     1    0     1    0     1

0      1     0     1    0     1    0     1

=

17   47  30   36   21  43   26   40

32   34  19   45   28   38  23  41  

33   31  46   20   37   27  42   24

48   18  35   29   44   22  39   25

49  15   62    4    53   11  58    8     

64    2    51  13   60    6   55    9  

 1    63   14  52    5   59   10  56

16   50   3    61   12   54   7   57

+ 4 + 4++ 3

1      0     1    1     1     0    1     1

0      2     0    1     0     2    0     1

1      0     1    1     1     0    1     1

1      1    0     1     1     1    0    1

h11h9 h10 h12

h13 h14 h4 h3

h15 h2 F2

Figure 5.14: Another construction of Benjamin Franklin’s 8× 8 square F2.

algebraic dependencies of Hilbert basis elements is IHB(CMn )
, the toric

ideal of HB(CMn). Consequently, the monomials in the quotient ring
RCMn

= k[x1, x2, · · · , xr]/IHB(CMn )
are in one-to-one correspondence

with magic squares.

Example 5.4.1. For example, in the case of 3 × 3 magic squares,
there are 5 Hilbert basis elements (see Figure 5.7) and hence there are
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5 variables x1, x2, x3, x4, x5 which gets mapped by ϕ as follows:

x1 7→

 1 0 2
2 1 0
0 2 1

 7→ t11t13
2t21

2t22t32
2t33

x2 7→

 2 0 1
0 1 2
1 2 0

 7→ t11
2t13t22t23

2t31t32
2

x3 7→

 0 2 1
2 1 0
1 0 2

 7→ t12
2t13t21

2t22t31t33
2

x4 7→

 1 2 0
0 1 2
2 0 1

 7→ t11t12
2t22t23

2t31
2t33

x5 7→

 1 1 1
1 1 1
1 1 1

 7→ t11t12t13t21t22t23t31t32t33

We use the Software CoCoA [16] to compute the toric ideal

IHB(CM3
) = (x1x4 − x2

5, x2x3 − x1x4).

Algorithms to compute toric ideals are provided in Appendix A.
Thus, the monomials in the ring

RCM3
=

Q[x1, x2, x3, x4, x5]

(x1x4 − x2
5, x2x3 − x1x4)

are in one-to-one correspondence with the 3× 3 magic squares.

5.5 Hilbert Functions.

Definition 5.5.1. A module over a ring R (or R-module) is a set M
and a mapping µ : R ×M → M such that, if we write af for µ(a, f),
where a ∈ R and f ∈ M , the following axioms are satisfied.

1. M is an abelian group under addition.

2. For all a ∈ R and all f, g ∈ M , a(f + g) = af + ag.
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3. For all a, b ∈ R and all f ∈ M , (a+ b)f) = af + bf .

4. For all a, b ∈ R and all f ∈ M , (ab)f) = a(bf).

5. If 1 is the multiplicative identity in R, 1f = f for all f ∈ M .

Example 5.5.1. 1. An ideal I of R is an R-module. Consequently,
R itself is an R-module.

2. If R is a field k then a R-module is a k vector space.

3. The set of all m × 1 column vectors in Rm is a R-module with
component wise addition and scalar multiplication, that is, let
a1, a2, . . . , am, b1, b2, . . . , bm, c ∈ R, then

a1
a2
...
am

+


b1
b2
...
bm

 =


a1 + b1
a2 + b2

...
am + bm

 , c


a1
a2
...
am

 =


ca1
ca2
...

cam

 .

Let M,N be R-modules. A mapping f : M → N is an R-module
homomorphism if

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

for all a ∈ R and all x, y ∈ M .
A submodule M ′ of M is a subgroup of M which is closed under

multiplication by elements of R. The abelian group M/M ′ inherits a
R-module structure from M defined by a(x + M ′) = ax + M ′. The
R-module M/M ′ is called a quotient module of M .

Example 5.5.2. If f : M → N is a R-module homomorphism, the
kernel of f is a submodule of M ; the image of f (denoted by Im(f)) is
a submodule of N ; the cokernel of f , N/Im(f), is a quotient module
of N .

A graded ring is a ring R together with a family (Rn)n≥0 of sub-

groups of the additive subgroup of R such that R =
⊕∞

n=0Rn and
RmRn ⊆ Rm+n for all m,n ≥ 0. If R is a graded ring, a graded R-
module is an R-module M together with a family (Mn)n≥0 of subgroups
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of M such that M =
⊕∞

n=0Mn and RmMn ⊆ Mm+n for all m,n ≥ 0.
Let xi ∈ M be such that every element of a R-module M can be writ-
ten as a finite linear combination of xi with coefficients in R, then the
xi are said to be a set of generators of M . A R-module is said to be
finitely generated if it has a finite set of generators.

Let RCMn
(s) be the set of all homogeneous polynomials of degree s

in the ring RCMn
. Then RCMn

(s) is a k-vector space, and RCMn
(0) = k.

The dimension dimk(RCMn
(s)) of RCMn

(s) is precisely the number of
monomials of degree s in RCMn

. Since R = k[x1, x2, ..., xr] is a graded
Noetherian ring, and RCMn

is a finitely generated graded R-module,
RCMn

can be decomposed into a direct sum of its graded components
RCMn

=
⊕

RCMn
(s). The function H(RCMn

, s) = dimk(RCMn
(s)) is

the Hilbert function of RCMn
and the Hilbert-Poincaré series of RCMn

is the formal power series

HRCMn
(t) =

∞∑
s=0

H(RCMn
, s)ts.

In other words, the Hilbert-Poincare series is the generating function
of the Hilbert function. See Appendix A for a discussion on generating
functions.

If the variables xi of a polynomial ring k[x1, x2, . . . , xr] are as-
signed nonnegative weights wi, then the weighted degree of a monomial
xα1
1 · · · xαr

r is
∑r

i=1 αi · wi. If we take the weight of the variable xi to
be the magic sum of the corresponding Hilbert basis element hi, then
dimk(RCMn

(s)) is exactly the number of magic squares of magic sum s.

Lemma 5.5.1. Let Mn(s) denote the number of n × n magic squares
with magic sum s. Let the weight of a variable xi in the ring R =
k[x1, x2, ..., xr] be the magic sum of the corresponding element of the
Hilbert basis hi. With this grading of degrees on the monomials of R,
the number of distinct magic squares of magic sum s, Mn(s), is given
by the value of the Hilbert function H(RCMn

, s).

Example 5.5.3. For example, in the case of 3× 3 magic squares, be-
cause all the elements of the Hilbert basis have sum 3, all the variables
are assigned degree 3, and

M3(s) = H(RCM3
, s).
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A sequence of R-modules and R-homomorphisms

· · · −→ Mi−1
fi−→ Mi

fi+1−→ Mi+1 −→ · · ·

is said to be exact at Mi if Im(fi) = Ker(fi+1).

Example 5.5.4. 1. The sequence 0 → M ′ f→ M is exact if and only
if f is injective.

2. The sequence M
g→ M ′′ → 0 is exact if and only if g is surjective.

3. The sequence 0 → M ′ f→ M
g→ M ′′ → 0 is exact if and only if

f is injective, g is surjective, and g induces an isomorphism of
Coker(f) = M/f(M ′) onto M ′′. A sequence of this type is called
a short exact sequence.

Let C be a class of R-modules and let H be a function on C with
values in Z. The function H is called additive if for each short exact
sequence

0 −→ M ′ f−→ M
g−→ M ′′ −→ 0

in which all the terms belong to C, we have

H(M ′)−H(M) +H(M ′′) = 0.

Proposition 5.5.1 (proposition 2.11, [7]). Let 0 → M0 → M1 →
· · · → Mn → 0 be an exact sequence of R-modules in which all the
modules Mi and the kernels of all the homomorphisms belong to C.
Then for any additive function H on C we have

n∑
i=0

(−1)iH(Mi) = 0.

Proof. The proof follows because every exact sequence can be split
into short exact sequences: if Ni = Im(fi) = Ker(fi+1), we have short
exact sequences 0 → Ni → Mi → Ni+1 → 0 for each i. �

Theorem 5.5.1 (Hilbert-Serre Theorem). Let k be a field, R := k[x1, x2, ..., xr],
and let x1, x2, ..., xr be homogeneous of degrees di > 0. Let M be a
finitely generated R-module. Let H be an additive function, then the
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Hilbert Poincaré series of M (with respect to H), HM(t) is a rational
function of the form:

HM(t) =
p(t)

Πr
i=1(1− tdi)

,

where p(t) ∈ Z[t].

Proof.
Since R := k[x1, x2, ..., xr] is a graded Noetherian ring, we can write

R =
⊕∞

n=0Rn such that RmRn ⊆ Rm+n for all m,n ≥ 0. Let M =⊕
Mn, where Mn are the graded components of M , then Mn is finitely

generated as a R0-module. The proof of the theorem is by induction
on r, the number of generators of R over R0. Start with r = 0; this
means that Rn = 0 for all n > 0, so that R = R0, and M is a finitely-
generated R0 module, hence Mn = 0 for all large n. Thus HM(t) is a
polynomial in this case. Now suppose r > 0 and the theorem true for
r − 1. For any R-module homomorphism ϕ of M into N , we have an
an exact sequence,

0→ker(ϕ)→M
ϕ→ N→coker(ϕ)→0,

where ker(ϕ)→M is the inclusion map and N→coker(ϕ) = N/im(ϕ)
is the natural homomorphism onto the quotient module. Multiplication
by xr is an R-module homomorphism of Mn into Mn+dr , hence it gives
an exact sequence, say

0→Kn→Mn
xr→ Mn+dr→Ln+dr→0. (5.3)

Let K =
⊕

n Kn, L =
⊕

n Ln. These are both finitely generated R-
modules and both are annihilated by xr, hence they areR0[x1, . . . , xr−1]-
modules. Applying H to 5.3 we have

H(Kn)−H(Mn) +H(Mn+dr)−H(Ln+dr) = 0;

multiplying by tn+dr and summing with respect to n we get

(1− tdr)H(M, t) = H(L, t)− tdrH(K, t) + g(t),

where g(t) is a polynomial. Applying the inductive hypothesis the
result now follows. �
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By invoking the Hilbert-Serre theorem, we conclude that the Hilbert-
Poincaré series for magic squares is a rational function of the form
HRCMn

(t) = p(t)/Πr
i=1(1− tdegxi), where p(t) belongs to Z[t]. We use

the Software CoCoA [16] to compute Hilbert-Poincaré series. Algo-
rithms to compute this series are discussed in Appendix A. We also
refer the reader to [1], [7], [10], or [33] for information about the Hilbert-
Poincaré series.

Example 5.5.5. 1. In the case of 4× 4 magic squares, the Hilbert-
Poincaré series is given by

∑∞
s=0M4(s)t

s = t8+4t7+18t6+36t5+50t4+36t3+18t2+4t+1
(1−t)4(1−t2)4

=

1 + 8t+ 48t2 + 200t3 + 675t4 + 1904t5 + 4736t6 + 10608t7 + 21925t8 + . . .

Observe that the number of magic squares of magic sum is 0, 1, 2, 3, 4, . . .
is 1, 8, 48, 200, 675, . . . respectively.

2. Let F8(s) denote the number of 8×8 Franklin squares with magic
sum s, then the Hilbert-Poincaré series is given by∑∞

s=0 F8(s)t
s =

{(t36 − t34 + 28 t32 + 33 t30 + 233 t28 + 390 t26 + 947 t24 + 1327 t22 + 1991 t20

+1878 t18 + 1991 t16 + 1327 t14 + 947 t12 + 390 t10 + 233 t8 + 33 t6 + 28 t4

−t2 + 1)}/{(t2 − 1)7(t6 − 1)3(t2 + 1)6}

= 1 + 34 t4 + 64 t6 + 483 t8 + 1152 t10 + 4228 t12 + 9792 t14 + 25957 t16 + · · ·

5.6 Ehrhart Polynomials.

A polytope P is called rational if each vertex of P has rational coordi-
nates. The dilation of a polytope P by an integer s is defined to be the
polytope sP = {sα : α ∈ P} (see Figure 5.15 for an example).

Let i(P , s) denote the number of integer points inside the polytope
sP. If α ∈ Qm, let den α be the least positive integer q such that
qα ∈ Zm.
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(1,2) (2,2)

(2,1)(1,1)

(2,2) (4,2)

(2,4) (4,4)

Figure 5.15: Dilation of a polytope.

Theorem 5.6.1. Let P be a rational convex polytope of dimension
d in Rm with vertex set V . Set F (P , t) = 1 +

∑
n≥1i(P , s)ts. Then

F (P , t) is a rational function, which can be written with denominator∏
α∈V (1− tden α).

The proof of Theorem 5.6.1 involves Combinatorics and is not in the
scope of this book. We refer the reader to [33] for a proof. To extract
explicit formulas from the generating function we need to define the
concept of quasi-polynomials.

Definition 5.6.1. A function f : N 7→ C is a quasi-polynomial if there
exists an integer N > 0 and polynomials f0, f1, ..., fd such that

f(n) = fi(n) if n ≡ i(modN).

The integer N is called a quasi-period of f .

For example, the formula for the number of 4× 4 magic squares of
magic sum s is a quasi-polynomial with quasi-period 2. We now state
some properties of quasi-polynomials.

Proposition 5.6.1. The following conditions on a function f : N 7→ C
and integer N > 0 are equivalent:

1. f is a quasi-polynomial of quasi-period N .

2.
∑

n≥0f(n)x
n = P (x)

Q(x)
,

where P (x) and Q(x) ∈ C[x], every zero α of Q(x) satisfies αN =
1 (provided P (x)/Q(x) has been reduced to lowest terms) and deg
P < deg Q.
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3. For all n ≥ 0,

f(n) =
∑k

i=1
Pi(n)γ

n
i

where each Pi is a polynomial function of n and each γi satisfies
γN
i = 1. The degree of Pi(n) is one less than the multiplicity of the

root γ−1
i in Q(x) provided P (x)/Q(x) has been reduced to lowest

terms.

A proof of Theorem 5.6.1 is given in [33] and is not discussed here be-
cause of its combinatorial nature. Theorem 5.6.1 together with Propo-
sition 5.6.1 imply that i(P , s) is a quasi-polynomial and is generally
called the Ehrhart quasi-polynomial of P . A polytope is called an in-
tegral polytope when all its vertices have integral coordinates. i(P , s) is
a polynomial if P is an integral polytope (see [33]).

Verify that F (P , t) is the same as HRCMn
(t) in Section 5.5. Recall

that the coefficient of ts is the number of magic squares of magic sum
s. This information along with Proposition 5.6.1 enable us to recover
the Hilbert functions M4(s) and F8(s) from their respective Hilbert-
Poincaré series by interpolation.

Example 5.6.1. 1.

M4(s) =



1
480

s7 + 7
240

s6 + 89
480

s5 + 11
16
s4 + 779

480
s3 + 593

240
s2 + 1051

480
s+ 13

16
,

when s is odd,

1
480

s7 + 7
240

s6 + 89
480

s5 + 11
16
s4 + 49

30
s3 + 38

15
s2 + 71

30
s+ 1,

when s is even.
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2.

F8(s) =



23
627056640

s9 + 23
17418240

s8 + 167
6531840

s7 + 5
15552

s6 + 2419
933120

s5 + 1013
77760

s4 + 701
22680

s3

− 359
10206

s2 − 177967
816480

s+ 241
17496

if s ≡ 2 (mod 12) and s ̸= 2,

23
627056640

s9 + 23
17418240

s8 + 167
6531840

s7 + 5
15552

s6 + 581
186624

s5 + 1823
77760

s4 + 6127
45360

s3

+ 10741
20412

s2 + 113443
102060

s+ 3211
2187

if s ≡ 4 (mod 12),

23
627056640

s9 + 23
17418240

s8 + 167
6531840

s7 + 5
15552

s6 + 2419
933120

s5 + 1013
77760

s4 + 701
22680

s3

− 5
378

s2 − 3967
10080

s− 13
8

if s ≡ 6 (mod 12),

23
627056640

s9 + 23
17418240

s8 + 167
6531840

s7 + 5
15552

s6 + 581
186624

s5 + 1823
77760

s4 + 6127
45360

s3

+ 11189
20412

s2 + 167203
102060

s+ 5771
2187

if s ≡ 8 (mod 12),

23
627056640

s9 + 23
17418240

s8 + 167
6531840

s7 + 5
15552

s6 + 2419
933120

s5 + 1013
77760

s4 + 701
22680

s3

− 583
10206

s2 − 608047
816480

s− 20239
17496

if s ≡ 10 (mod 12),

23
627056640

s9 + 23
17418240

s8 + 167
6531840

s7 + 5
15552

s6 + 581
186624

s5 + 1823
77760

s4 + 6127
45360

s3

+ 431
756

s2 + 1843
1260

s+ 1
if s ≡ 0 (mod 12),

0
otherwise.

Summary.

To conclude the method to construct and enumerate nonnegative inte-
ger solutions of a linear system of equations Ax = b is as follows:

1. If b is the 0-vector, then

(a) Compute the Hilbert basis H = {h1, . . . , hr} of the cone
Ax = 0. The Hilbert basis enables us to construct solutions.

(b) Associate variable yi to a Hilbert basis element hi, and com-
pute the toric ideal I of the Hilbert basis.
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(c) Compute the Hilbert Poincare series of the ring k[y1, . . . , yr]/I
to enumerate the integer solutions.

(d) Interpolate using the coefficients of the series to get formulas
for the number of nonnegative solutions.

2. If b is not the 0-vector, then introduce a new variable s and solve
the system Ax − bs = 0 using the steps in 1. Set s = 1 in the
solutions of Ax− bs = 0 to get the solutions of Ax = b.

Exercises.

1. Prove Pick’s Theorem: Let A be the area of a simply closed lat-
tice polygon. Let B denote the number of lattice points on the
Polygon edges and I the number of points in the interior of the
polygon, then A = I + 1/2B − 1.

2. A labeling of a graph G is an assignment of a nonnegative integer
to each edge of G. A magic labeling of magic sum r of G is a
labeling such that for each vertex v of G the sum of the labels of
all edges incident to v is the magic sum r (loops are counted as
incident only once). Graphs with a magic labeling are also called
magic graphs. Let G be the complete graph on 3 vertices.

(a) Use the methods in this chapter to construct and enumerate
magic labelings of a graph G.

(b) Prove that the perfect matchings ofG are the minimal Hilbert
basis elements of the cone of magic labelings of G of magic
sum 1. Count the number of perfect matchings of G.

3. Show that the number of 3× 3 magic squares

M3(s) =


2
9
s2 + 2

3
s+ 1 if 3 divides s,

0 otherwise.
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Chapter 6

Miscellaneous Topics in
Applied Algebra.

If I saw further than other men, it was because I stood on the shoulders
of giants - Isaac Newton.

In this chapter, we look at some miscellaneous applications of the
concepts developed in this book. In the following sections, we count
and generate orthogonal Latin squares, prove the Chinese Remainder
Theorem, encrypt and decrypt messages, and generate error correcting
codes.

6.1 Counting Orthogonal Latin squares.

In 1781 Euler proposed the problem of seating 36 officers of six different
ranks from six different regiments in an array such that each row and
each column contains one officer of each rank and one officer from each
regiment. In this section, we relate this problem to Latin squares.

Definition 6.1.1. A Latin square of order n is an n×n array in which
each one of n symbols occurs once in each row and once in each column.

We denote the n symbols as 0, 1, . . . , n− 1.

Theorem 6.1.1. For each n ≥ 2 the n× n array defined by

L(i, j) = i+ j mod n

is a Latin square.
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Proof. Suppose the symbols in positions (i, j) and (i, j′) are the
same. Then

i+ j = L(i, j) = L(i, j′) = i+ j′.

Since Zm contains an element −i, we add −i to both sides of the above
equation to get j = j′. Hence each symbol occurs at most once in row
i. Consequently, since there are n symbols and n columns, each symbol
occurs exactly once. A similar argument holds for columns. Thus L is
a Latin square.

Example 6.1.1. By Theorem 6.1.1

L =

0 1 2 3 4 5
1 2 3 4 5 0
2 3 4 5 0 1
3 4 5 0 1 2
4 5 0 1 2 3
5 0 1 2 3 4

is a Latin square of order 6.

Theorem 6.1.1 shows that there is always at least one Latin square
of any given order.

A pair of Latin squares L1 and L2 of the same order are orthogonal
if for each pair of symbols (k, k′), there is just one position (i, j) for
which

L1(i, j) = k and L2(i, j) = k′.

Thus, Euler’s problem of seating 36 officers is equivalent to finding
two orthogonal Latin squares L1 and L2 of order 6, such that L1 is
the Latin square with the ranks as symbols, and the symbols of L2 are
the regiments. Consequently, when the two squares are superimposed,
the cell (i, j) contains an officer of rank i and from regiment j, thereby
solving the arrangement problem. Euler correctly conjectured there
was no solution to this problem and Gaston Tarry proved this in 1901.
We will show that pairs of orthogonal squares with orders that are
powers of a prime number always exist. Before that we provide an
upper limit to the number of orthogonal squares possible for any order.

Theorem 6.1.2. There cannot exist a set of more than q− 1 mutually
orthogonal Latin squares of order q.
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Proof. Suppose there exists a set of m mutually orthogonal Latin
squares of order q. By renaming the symbols we can transform each
square to the standard form such that the initial row is occupied by
the symbols 0, 1, . . . , q− 1 in order. Thus in each square, the cell (0, j)
contains the symbol j, where 0 ≤ j ≤ q− 1. The standardized squares
are mutually orthogonal. Since the cell (0, 0) contains the symbol 0,
the symbol in the cell (1, 0) must be different from 0 for each of the m
standardized squares. When two different squares are superimposed,
the pair of symbols (j, j) occurs in the cell (0, j). Hence the symbols
in the cell (1, 0) of these two squares must be different. Thus the cells
(1, 0) of the m standardized orthogonal Latin squares are occupied by
different nonzero symbols. Since there are only q− 1 nonzero symbols,
m ≤ q − 1.

By Corollary 3.4.11, we know that for each positive prime p and
positive integer r, the splitting field of xpr −x is a field of order q = pr.
Denote this field by Fq and its elements by αi.

Theorem 6.1.3. Let q = pr such that p is a prime number. Take a
q × q square Lt, and in the cell (i, j) of this square, put the integer u
given by

αu = αtαi + αj, (6.1)

where αt is a nonzero element of Fq. Lt defines a Latin square.
Furthermore, when t ̸= t′, the Latin squares Lt and Lt′ are orthogonal.
There are q − 1 mutually orthogonal Latin squares of order q.

Proof. To prove that Lt is Latin square, we need to show that the
symbols 0, 1, . . . , n− 1 occur in each row and column exactly once. In
the row i the symbol u occurs in the column j given by

αj = αu − αtαi.

In the column j the symbol u occurs in the row i given by

αi =
αu − αj

αt

.

Thus Lt is a Latin square. Consequently, we get q−1 Latin squares
from Formula 6.1 corresponding to the nonzero values of αt. Let Lt

and Lt′ , t ̸= t′, be two of these Latin squares. When superimposed the
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symbol u of the first square occurs together with the symbol u′ of the
second square in the cell (i, j) if and only if

αu = αtαi + αj,

αu′ = αt′αi + αj.

Solving these two equations we get

αi =
αu − αu′

αt − αt′
, αj =

αtαu′ − αt′αu

αt − αt′
.

Thus Lt and Lt′ are mutually orthogonal Latin squares.
Since there cannot exist a set of more than q−1 mutually orthogonal

Latin squares of order q by Theorem 6.1.2, we have exactly q− 1 Latin
squares when q is a power of a prime number.

Example 6.1.2. By Exercise 3.4.8, the four elements of the field F4

are

α0 = 0, α1 = 1, α2 = x, α3 = x2 = x+ 1.

The three mutually orthogonal Latin squares L1, L2, L3 are:

[L1] [L2] [L3]
αu = α1αi + αj αu = α2αi + αj αu = α3αi + αj

0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0

,

0 1 2 3
2 3 0 1
3 2 1 0
1 0 3 2

,

0 1 2 3
3 2 1 0
1 0 3 2
2 3 0 1

.

Corollary 6.1.4. Let p be a prime number. Let t be a non-zero element
of Zp. Then the rule

Lt(i, j) = ti+ j such that i, j ∈ Zp

defines a Latin square. Furthermore, when t ̸= t′, the Latin squares
Lt and Lt′ are orthogonal. There are p − 1 mutually orthogonal Latin
squares of order p.

Proof. When q = p , Fp = Zp, therefore αu = ti + j in Theorem
6.1.3.
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Example 6.1.3. When p = 3 the two mutually orthogonal squares are

L1 =
0 1 2
1 2 0
2 0 1

, L2 =
0 1 2
2 0 1
1 2 0

.

Is it possible to construct orthogonal pairs of Latin squares when q
is not a prime power? We already said that there are no such pairs for
order 6. Bose, Parker, and Shrikande succeeded in constructing a pair
of orthogonal Latin squares for n = 10. Whether there are more such
pairs for order 10 and higher is an open problem in combinatorics. See
[12] for an in-depth study of Latin squares.

6.2 Chinese Remainder Theorem.

The Chinese Remainder Theorem is a famous result in number theory
that was known to Chinese mathematicians in the first century A.D.
The Chinese Remainder Theorem, supposedly, helped bandits divide
their gold coins in ancient China. Let us consider an example.

A band of 17 bandits steal a certain quantity of gold coins. When
they try to evenly distribute the coins amongst themselves, they end
up with 3 left over. A fight breaks out over the remaining coins and
one pirate is killed. The 16 bandits left alive attempt to once again
divide the coins up between themselves. However, this time, there are
10 coins left over. Being the greedy bandits they are, another fight
ensues, and another pirate is killed. Figuring that the third time is a
charm, the 15 remaining bandits try once again to evenly distribute the
coins. This time, they are successful. What is the minimum amount
of coins they could have stolen?

To solve this problem, denote the number of gold coins by x. Then
a solution to the bandit’s problem is a solution of the system of con-
gruence equations

x ≡ 3( mod 17)

x ≡ 10( mod 16)

x ≡ 0( mod 15) (6.2)

We solve such systems of congruence equations using the Chinese
Remainder Theorem.
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Theorem 6.2.1 (Chinese Remainder Theorem). Let m1,m2, . . . ,mr be
pairwise relatively prime positive integers and let m = m1m2m3 · · ·mr.
Let a1, . . . , ar be integers. Consider the system of congruence equations

x ≡ a1(mod m1)
x ≡ a2(mod m2)

...
x ≡ ar(mod mr).

Let Mk = m/mk and let Mk denote the inverse of Mk modulo mk, then

x = a1M1M1 + a2M2M2 + · · ·+ arMrMr

is a unique solution modulo m.

Proof. If j ̸= k, then mk divides Mj. Therefore,

ajMjMj ≡ 0 mod mk, when j ̸= k.

Consequently,

x ≡ akMkMk ≡ ak · 1 = ak mod mk.

Hence x is a solution of the system of congruence equations. If z is
any other solution of the system, then for each i = 1, 2, . . . , r,

z ≡ ai( mod mi) and x ≡ ai( mod mi).

By transitivity z ≡ x (mod mi). Thus mi divides z − x for each i and
hence m1m2 · · ·mr divides z − x. Hence z ≡ x (mod m1m2 · · ·mr).

Conversely, if z ≡ x (mod m1m2 · · ·mr), then m1m2 · · ·mr divides
z − x. Consequently, since m1,m2, · · · ,mr are relatively prime num-
bers, mi divides z − x for each i. Hence z ≡ x (mod mi) for each i.
Consequently, x ≡ ai (mod mi) implies z ≡ ai (mod mi), for each i, by
transitivity. Therefore z is a solution of the given system.

Example 6.2.1. We return to the bandits problem.

x ≡ 3(mod 17)

x ≡ 10(mod 16)

x ≡ 0(mod 15) (6.3)
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Here,

a1 = 3, a2 = 10, a3 = 0, m1 = 17, m2 = 16, m3 = 15, m = 4080,

and

M1 = 16× 15 = 240, M2 = 17× 15 = 255, M3 = 17× 16 = 272.

We need to find the inverse of M1 mod m1. Now M1 = 240 ≡ 2
mod 17. Since the gcd(2, 17) = 1, we use the Euclid’s algorithm to
write

17− 8× 2 = 1.

Reducing this equation modulo 17, we see that the inverse of 2 mod 17
is −8 ≡ 9 mod 17. This implies that the inverse of 240 mod 17 is 9,
that is, M1 = 9. Similarly, we show that M2 = 15 and M3 = 8.

By the Chinese Remainder Theorem, we get

x = a1M1M1 + a2M2M2 + a3M3M3

= 3× 240× 9 + 10× 255× 15×+0× 272× 8
= 44730 ≡ 3930 mod m.

So the minimum number of gold coins stolen by the bandits is 3930.

We illustrate an alternate method of multiplying numbers using the
Chinese remainder Theorem. Every computer has a limit on the size of
integers called the word size. Computer arithmetic with integers larger
than the word size requires time consuming multiprecision techniques.
In such scenarios, the alternate method of addition and multiplication
using the Chinese Remainder Theorem is quite efficient.

Suppose we want to find the product of the numbers t1, t2, . . . , tn.
Let m1, . . . ,mr be pairwise relatively prime positive integers. We
choose m1, . . . ,mr such that the product of these numbers is larger
than the result we want to derive so that the solution is unique and
the method is well defined. The method proceeds as follows.

1. Represent each integer tk as an element of Zm1 ×Zm2 × · · ·×Zmr

by reducing tk modulo mi for each i.

2. Represent the product as an element of Zm1 × Zm2 × · · · × Zmr

thereby making the product the solution to a system of congru-
ence equations.
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3. Use the Chinese Remainder Theorem to solve the system.

We illustrate this procedure with an example.

Example 6.2.2. In this example, we multiply the numbers 219 and
172 using Chinese Remainder Theorem. We begin by choosing sev-
eral numbers that are pairwise relatively prime, and are such that the
product of all these numbers are larger than the product of 219 and
172. For this example, we chose 4, 7, 11, 15, 13. Next we reduce the two
numbers and their product modulus each prime:

219 ≡ 3 mod 4
219 ≡ 2 mod 7
219 ≡ 10 mod 11
219 ≡ 11 mod 13
219 ≡ 9 mod 15

172 ≡ 0 mod 4
172 ≡ 4 mod 7
172 ≡ 7 mod 11
172 ≡ 3 mod 13
172 ≡ 7 mod 15

219× 172 ≡ 0 mod 4
219× 172 ≡ 8 ≡ 1 mod 7
219× 172 ≡ 70 ≡ 4 mod 11
219× 172 ≡ 33 ≡ 7 mod 13
219× 172 ≡ 63 ≡ 3 mod 15

In other words, the integer 219 = (3, 2, 10, 11, 9) and 172 = (0, 4, 7, 3, 7)
in Z4 × Z7 × Z11 × Z13 × Z15. Moreover, 219× 172 is a solution of the
system

x ≡ 0 mod 4

x ≡ 1 mod 7

x ≡ 4 mod 11

x ≡ 7 mod 13

x ≡ 3 mod 15 (6.4)

We use the Chinese Remainder Theorem to solve this system of
congruences and get x = 37668 as the solution. We know that 219 ×
172 < 4 × 7 × 11 × 13 = 60060. Also no two numbers between 0
and 60060 can be congruent modulo 60060. Therefore, we must have
219× 172 = 37668.

The procedure to add large numbers using Chinese Remainder The-
orem is very similar to multiplication and is explored in the exercises.

6.3 Cryptology

Codes have been used since ancient times by friends, merchants, and
armies to transmit secret messages. For example, in Julius Caesar’s
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coding system, each letter is shifted three letters forward in the alpha-
bet and the last three letters are send to the first three letters.

Message: A B C D E F G H I J K L M N O P
Code: D E F G H I J K L M N O P Q R S

Message: Q R S T U V W X Y Z
Code: T U V W X Y Z A B C

The steps to implement Caesar’s code are as follows.

1. Replace each alphabet by an integer from 0 to 25:

A B C D E F G H I J K L M N O
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

P Q R S T U V W X Y Z
15 16 17 18 19 20 21 22 23 24 25

2. The Caesar’s encryption is a function f from the set of numbers
representing the alphabets of the message to the set of integers
{0, 1, 2, . . . , 25}, such that, f(p) = p+ 3 mod 26.

Example 6.3.1. In Caesar’s code, the message YOU ARE IN XANADU
is coded as follows.

Y O U A R E I N X A N A D U

p : 24 14 20 0 17 4 8 13 23 0 13 0 3 20

(p+ 3) mod 26 : 1 17 23 3 20 7 11 17 0 3 16 3 6 23

B R X D U H Y R A D Q D G W

Thus, the message YOU ARE IN XANADU becomes BRX DUH YR
ADQDGW.

To decrypt the message, we use the inverse function f−1(y) = y− 3
mod 26.
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Example 6.3.2. Decrypt the message ZHOFRPH.

Code: Z H O F R P H
p : 25 7 14 5 17 15 7
(p− 3) mod 26 : 22 4 11 2 14 12 4
Message: W E L C O M E

In the generalized Caesar’s code, a is an integer which is relatively
prime to 26, and the message is encrypted using the function f(p) =
ap + b mod 26, where b is any integer. The choice of a ensures that f
has an inverse.

Example 6.3.3. When f(p) = 7p+3 mod 26, the messageWELCOME
is coded as

Message: W E L C O M E
p : 22 4 11 2 14 12 4
7p+ 3 mod 26 : 1 5 2 17 23 9 5
Code: B F C R X J F

Caesar’s code is easy to break, and is not useful when high security
is desired. In recent times, the coding system developed by R. Rivest,
A. Shamir, and L. Adleman, called the RSA system, is popularly used.
Its security depends on the difficulty of factoring large integers. We
describe this coding system now.

Algorithm 6.3.1 (The RSA Algorithm).

1. Let M be the message to be encrypted. Choose two large primes
p and q. Let n = pq and t = (p − 1)(q − 1). Choose a lock
L such that gcd(L, t) = 1. We also require gcd(M, p) = 1 and
gcd(M, q) = 1 for the algorithm to work. But, since p and q are
very large, this follows automatically.

2. Encrypt the message M to get the code C as follows:

C = ML mod n.

3. Determine the key K which is the inverse of L mod t.

4. Decrypt C to get M as follows:

M = CK mod n.
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Example 6.3.4. Encode HOWDY using the RSA method with p = 3,
q = 11, and L = 3.

Like before we associate integers from the set {0, 1, . . . , 25} to the
alphabets of the message:

message: H O W D Y
M : 7 14 22 3 24

Here n = pq = 3times11 = 33. Note that gcd(L, (p − 1)(q − 1)) = 1.
Hence L is a valid lock. Compute ML mod n:

73 ≡ 13 mod 33
143 ≡ 5 mod 33
223 ≡ 22 mod 33
33 ≡ 27 mod 33
243 ≡ 30 mod 33

Consequently, the encrypted code C is

C : 13 05 22 27 30.

Example 6.3.5. The following message was encoded using the RSA
method with p = 3, q = 11, and L = 3.

18 5 5 27 3 5 1

We now decode the message. Here t = (p−1)(q−1) = 20. The key
K is the inverse of L mod t. Since gcd(3, 20) = 1, we use the Euclid’s
algorithm to write 1 = 7× 3− 20. Consequently, the inverse of 3 mod
20 is 7, that is, K = 7. Compute CK mod n:

187 ≡ 6 mod 33
57 ≡ 14 mod 33
277 ≡ 3 mod 33
37 ≡ 9 mod 33
17 ≡ 1 mod 33

C : 18 5 5 27 3 5 1
M : 6 14 14 3 9 14 1

G O O D J O B

Thus the message was GOOD JOB.
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We could use more than 1 letter blocks to make encryption more
secure. This is explored in the next example.

Example 6.3.6. Encrypt the message STOP using RSA with p = 43,
q = 59, and lock L = 13. Use two letter blocks.

Note that gcd(L, (p− 1)(q− 1)) = 1, so that L is a valid lock. Here
n = 43× 59 = 2537. Hence

C = M13 mod 2537.

The integer representation of STOP is 18, 19, 14, 15. Since we are
using two letter blocks, STOP is represented as 1819, 1415. Conse-
quently, STOP is encrypted as 2081 2182, since

181913 mod 2537 = 2081, 141513 mod 2537 = 2182.

To prove the RSA Algorithm, we have to look at a theorem known
as Fermat’s Little Theorem.

Theorem 6.3.1 (Fermat’s Little Theorem). If p is a prime and a is
an integer not divisible by p, then

ap−1 ≡ 1 mod p.

Furthermore, for every integer a,

ap ≡ a mod p.

Proof. If p is a prime and a is an integer not divisible by p, then p
does not divide ka for any k such that 0 < k < p. Therefore, each of the
numbers 1, 2a, · · · , (p−1)amust be congruent to one of 1, 2, 3, . . . , p−1.
If ra ≡ sa mod p, then since gcd(a, p)=1, we get that r ≡ s mod p.
This is not possible because no two of the numbers 1, 2, . . . p − 1 are
congruent modulo p. Therefore, in some order, a, 2a, . . . , (p − 1)a are
congruent to 1, 2, 3, . . . , p− 1, that is,

a · 2a · 3a · · · (p− 1)a ≡ 1 · 2 · · · (p− 1) mod p.

Hence
ap−1 · 1 · 2 · · · (p− 1) ≡ 1 · 2 · · · (p− 1) mod p.

Since p does not divide 1 · 2 · · · (p − 1), we get ap−1 ≡ 1 mod p. To
prove that for every integer a, ap ≡ a mod p, first consider the case
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when p divides a. Then, p divides ap − a. Hence ap ≡ a mod p.
Now if p does not divide a, then by Fermat’s little Theorem ap−1 ≡
1 mod p. Multiply the congruence equation on both sides by a to get
ap ≡ a mod p.

Finally, we prove the RSA algorithm.
Proof of the RSA algorithm:
Since gcd(L, (p−1)(q−1)) = 1, the inverseK of Lmod (p−1)(q−1)

exists and
LK ≡ 1 mod (p− 1)(q − 1).

Therefore for some integer t, LK = 1 + t(p− 1)(q − 1). Now

CK = (ML)
K
= MLK = M1+t(p−1)(q−1) mod n.

Assume gcd(M, p) = 1 and gcd(M, q) = 1, then by Fermat’s Little
Theorem:

Mp−1 ≡ 1 mod p,

M q−1 ≡ 1 mod q

Ck ≡ M1+t(p−1)(q−1) = M · (Mp−1)
t(q−1) ≡ M · 1 ≡ M mod p.

Ck ≡ M1+t(p−1)(q−1) = M · (M q−1)
t(p−1) ≡ M · 1 ≡ M mod q.

Since gcd(p, q) = 1, we get CK ≡ M mod pq by the Chinese remainder
Theorem.

6.4 Algebraic codes.

When a message is transmitted over a long distance there may be some
interference, and the message may not be received exactly as it is sent.
In such cases, we need to be able to detect and, if possible, correct
errors. In this section, we discuss these issues for messages represented
in the binary alphabet {0, 1}.

Let B(n) denote the Cartesian product Z2 × Z2 × Z2 × · · · × Z2 of
n copies of Z2. Verify that with coordinate-wise addition B(n) is an
additive group of order 2n. In this section, the elements of B(n) will be
written as strings of 0’s and 1’s of length n. When B(n) is listed such
that the successor of an n-tuple differs from it in only one position,
then B(n) is called a Gray code of order n. The following algorithm
generates a Gray code of order n.
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Algorithm 6.4.1 (Gray Code Algorithm). 1. The Gray code of or-
der 1 is

0
1

2. Suppose n > 1 and the Gray code of order n − 1 is already con-
structed. To construct the Gray code of order n, we first list the
(n− 1)-tuples of 0s and 1s in the order of the Gray code of order
n− 1, and attach a 0 at the beginning of each (n− 1)-tuple. We
then list the (n − 1)-tuples in the order which is reverse of that
given by the Gray code of n− 1, and attach a 1 at the beginning.

Example 6.4.1. Gray code of order 2 is

00
01
11
10

and the Gray code of order 3 is

000
001
011
010
110
111
101
100

We refer the reader to [13] for the connection of Gray codes to unit
cubes and other details.

A code C ∈ B(n) is linear if whenever a and b are in C, then
a + b ∈ C. Equivalently, a (n, k) binary linear code C is a subgroup
of B(n) of order 2k. The elements of C are called codewords. Only
codewords are transmitted, but any element of B(n) can be a received
word.

Example 6.4.2. C = {0000, 1111} is a (4, 1) code since C is a sub-
group of order 21 of the group B(4) = Z2 × Z2 × Z2 × Z2.
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Definition 6.4.1. The Hamming weight of an element u of B(n) is
the number of nonzero coordinates in u, and it is denoted Wt(u).

Example 6.4.3. For the codeword u = 010110, Wt(u) = 3, and for
the codeword v = 110110, Wt(v) = 4.

Definition 6.4.2. Let u, v ∈ B(n). The Hamming distance between
u and v, denoted d(u, v), is the number of coordinates in which u and
v differ.

Example 6.4.4. For the codewords u = 010110 and v = 110110, the
Hamming distance d(u, v) = 1.

Lemma 6.4.1. If u, v, w ∈ B(n), then d(u, v) = Wt(u − v), and
d(u, v) ≤ d(u,w) + d(w, v).

Proof. A coordinate of u−v is nonzero if and only if u and v differ in
that coordinate. So the number of nonzero coordinates in u−v, namely
Wt(u − v), is the same as the number of coordinates in which u and
v differ. Therefore d(u, v) = Wt(u− v). We prove d(u, v) ≤ d(u,w) +
d(w, v) by proving Wt(u − v) ≤ Wt(u − w) + Wt(w − v). For this
purpose, suppose that the i-th coordinate of u− v, ui − vi, is nonzero,
and the i-th coordinate of u− w, ui − wi, is zero. Consequently, since
ui = wi, wi−vi, the i-th component of w−v is ui−vi, which is nonzero
by our assumption. Thus (ui−wi)+(wi−vi) is nonzero whenever ui−vi
is nonzero. Therefore Wt(u− v) ≤ Wt(u− w) +Wt(w − v).

If a codeword u is transmitted and the word w is received, then the
number of errors in the transmission is the Hamming distance d(u,w).
Assuming there are only few transmission errors, a received word is
decoded as the codeword that is nearest to it in Hamming distance
and this process is called nearest-neighbor decoding. A linear code is
said to correct t-errors if every codeword that is transmitted with t or
fewer errors is correctly decoded by nearest-neighbor decoding.

Theorem 6.4.1. A linear code corrects t errors if and only if the Ham-
ming distance between any two codewords is at least 2t+ 1.

Proof. Assume that the distance between any two codewords is at
least 2t + 1. If the codeword u is transmitted with t or fewer errors
and received as w, then d(u,w) ≤ t. If v is any other codeword, then
d(u, v) ≥ 2t+ 1 by hypothesis. Therefore by Lemma 6.4.1

2t+ 1 ≤ d(u, v) ≤ d(u,w) + d(w, v) ≤ t+ d(w, v).
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Subtracting t from both sides of 2t+ 1 ≤ t+ d(w, v), we get d(w, v) ≥
t+1. Since d(u,w) ≤ t, u is the closest codeword to w, so the nearest-
neighbor decoding correctly decodes w as u. Hence the code corrects
t-errors. The proof of the converse is Exercise 9.

A linear code is said to detect t-errors if it detects that a received
word with at least one and not more than t errors is not a codeword.

Theorem 6.4.2. A linear code detects t errors if and only if the Ham-
ming distance between any two codewords is at least t+ 1.

Proof. Assume that the distance between any two codewords is at
least t+ 1. If the codeword u is transmitted with at least one, but not
more than t errors, and received as w, then

0 < d(u,w) ≤ t, and hence d(u,w) < t+ 1.

So w cannot be a codeword. Therefore the code detects t errors. The
proof of the converse is Exercise 10.

Corollary 6.4.3. A linear code detects 2t errors and corrects t errors
if and only if the Hamming weight of every nonzero codeword is at least
2t+ 1.

Proof. Let w be a nonzero codeword. Since Wt(w) = Wt(w− 0) =
d(w, 0), the minimum hamming distance between any two codewords
is the minimum Hamming weight of all the nonzero codewords. The
proof then follows by Theorems 6.4.1 and 6.4.2.

A k× n standard generator matrix is a k× n matrix G with entries
in Z2 of the form

1 0 0 · · · 0 0 a11 · · · a1n−k

0 1 0 · · · 0 0 a21 · · · a2n−k
...

...
...

...
...

...
...

0 0 0 · · · 1 0 a(k−1)1 · · · a(k−1)n−k

0 0 0 · · · 0 1 ak1 · · · akn−k

 = [Ik|A]

where Ik is the k × k identity matrix and A is a k × (n− k) matrix.

Example 6.4.5. The 3× 6 matrix

G =

 1 0 0 0 1 1
0 1 0 1 0 1
0 0 1 1 1 0


is a generator matrix.
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Theorem 6.4.4. If G is a k × n standard generator matrix, then
{uG|u ∈ B(k)} is a (n, k) code.

Proof. Define a function f : B(k) → B(n) by f(u) = uG. Since

f(u+ v) = (u+ v)G = uG+ vG = f(u) + f(v),

f is a homomorphism of groups. Verify that the first k-coordinates
of u and uG are the same. Therefore f is injective. Consequently
Im f is isomorphic to B(k) and hence has order 2k. Therefore Im
f = {uG|u ∈ B(k)} is a (n, k) code.

Example 6.4.6. Suppose we want to code the message “Hello World”,
then we choose B(3) because this group is sufficient to represent all the
letters in our message.

Symbols Message words
Blank space
H
E
L
0
W
R
D

000
001
011
010
110
111
101
100

We use the matrix G in Example 6.4.5 to generate a (6, 3) code.
For example, Let u = 011, then

uG =
[
0 1 1

]  1 0 0 0 1 1
0 1 0 1 0 1
0 0 1 1 1 0

 =
[
0 1 1 0 1 1

]
.
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Operating with G on all the message words in B(3), we get

Message words Codewords
000
001
011
010
110
111
101
100

000000
001110
011011
010101
110110
111000
101101
100011

Since all the code words have Hamming weight at least 3, this code
can correct single errors. The message “Hello World” will be coded as

001110 H
011011 E
010101 L
010101 L
110110 0
000000
111000 W
110110 O
101101 R
010101 L
100011 D

For (n, k) codes with large k, brute force method of searching for
the nearest neighbor is impractical. So we develop more systematic
decoding techniques. We now look at a decoding technique based on
the cosets of the code C. We form a coset decoding table. Its rows
are the cosets of C, with C itself as the first row. A coset leader of a
coset is an element of the smallest weight in the coset. Each row of
the decoding table is of the form e + C, where e is the coset leader.
The coset leader is always listed first in the row. The decoding rule is:
decode a received word w as the codeword at the top of the column in
which w appears.

Example 6.4.7. Consider the (6, 3) code from Example 6.4.6:

C = {000000, 001110, 011011, 010101, 110110, 111000, 101101, 100011}.
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Then the coset decoding table of C is

000000 001110 011011 010101 110110 111000 101101 100011
100000 101110 111011 110101 010110 011000 001101 000011
010000 011110 001011 000101 100110 101000 111101 110011
001000 000110 010011 011101 111110 110000 100101 101011
000100 001010 011111 010001 110010 111100 101001 100111
000010 001100 011001 010111 110100 111010 101111 100001
000001 001111 011010 010100 110111 111001 101100 100010
101010 100100 110001 111111 011100 010010 000111 001001

The received words 011110 (third row) is decoded as 001110, the
word 101000 (again third row) is decoded as 111000, whereas the word
111111 (eighth row) is decoded as 010101 using the decoding rule.

We prove in the next theorem that a coset decoding is the nearest
neighbor decoding.

Theorem 6.4.5. Let C be an (n, k) code. The decoding for C using
its coset decoding table is nearest neighbor decoding.

Proof. If w ∈ B(n), then w = e+ v, where e is a coset leader and v
is a codeword at the top of the column containing w. Coset decoding
decodes w as v. Therefore, we must show that v is nearest to w. If
u ∈ C is any other codeword, then w − u is an element of w + C. But
w+C = e+C, because e = w− v ∈ w+C. By construction, the coset
leader e has the smallest weight in its coset, so Wt(w − u) ≥ Wt(e).
Therefore, by Lemma 6.4.1

d(w, u) = Wt(w − u) ≥ Wt(e) = Wt(w − v) = d(w, v).

Thus v is the nearest codeword to w.

Again when n is large, the coset decoding tables are difficult to
construct. So we discuss other methods. For an (n, k) code with k× n
standard generator matrix G = [Ik|A], the parity-check matrix of the

code is the n× (n− k) matrix H =
[

A
In−k

]
.

Example 6.4.8. For the standard generator matrix G in Example
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6.4.5, the parity matrix

H =


0 1 1
1 0 1
1 1 0
1 0 0
0 1 0
0 0 1


Theorem 6.4.6. Let C be an (n, k) code with standard generator ma-
trix G and parity-check matrix H. Then an element w in B(n) is a
codeword if and only if wH = 0.

Proof. Define a function f : B(n) → B(n − k) by f(w) = wH.
Verify that f is a homomorphism. Let K be the kernel of f . Note that
w ∈ K if and only if wH = 0. We can prove the theorem if we show
that K = C. By the definition of the generator matrix, every element
of C is of the form uG for some u ∈ B(k). But (uG)H = u(GH) = 0
because GH is the zero matrix by Exercise 11. Therefore C ⊆ K. Since
C is a group of order 2k, it suffices to show that order of K is also 2k

to conclude that C = K. f is surjective because if v = v1v2 · · · vn−k ∈
B(n−k), then v = f(u), where u = 000 · · · 0v1v2vn−k ∈ B(n). Applying
the First Isomorphism Theorem we get B(n − k) ∼= B(n)/K. By
Lagrange’s Theorem 4.4.1

2n = |B(n)| = |K||B(n) : K| = |K||B(n)/K|
= |K||B(n− k)| = |K|2n−k.

Dividing the first and last terms of this equation by 2n−k we get |K| =
2k.

Corollary 6.4.7. Let C be a linear code with parity-check matrix H
and let u, v ∈ B(n). Then u and v are in the same coset of C if and
only if uH = vH.

Proof. By Theorem 6.4.6 u − v ∈ C if and only if (u − v)H = 0 if
and only if uH = vH.

If w ∈ B(n), then wH is called the syndrome of w. We now describe
a procedure for decoding called syndrome decoding.

Algorithm 6.4.2 (Syndrome Decoding). 1. If w is a received word,
compute the syndrome wH of w.
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2. Find the coset leader e with the same syndrome (that is eH =
wH).

3. Decode w as w − e.

Example 6.4.9. The Syndrome table for a (6, 3) code is given below.

Syndrome 000 011 101 110 100 010 001 111
Coset Leader 000000 100000 010000 001000 000100 000010 000001 101010

For the received word w = 010111, the syndrome wH = 010 corre-
sponds to coset e = 000010. Therefore w is decoded as the codeword
w − e = 010101. So instead of the entire coset table, we need only the
coset leaders in the syndrome decoding technique.

For correcting only single errors the parity check matrix decoding,
which we describe next, is the best method because there is no need to
compute cosets or find coset leaders.

Algorithm 6.4.3 (Parity check matrix decoding). 1. If w is the re-
ceived word, compute its syndrome wH.

2. If wH = 0, decode w as w.

3. If wH ̸= 0, and wH is the ith row of H, then decode w as w− ei,
where ei is a vector such that the i-th entry of ei is 1 and all other
entries of ei are zero.

4. If wH ̸= 0 and wH is not a row of H, do not decode and request
a re-transmission.

Example 6.4.10. Consider the (6, 3) code with the Parity matrix H
in Example 6.4.8. The syndrome of the received word w = 011111 is

wH =
[
0 1 1 1 1 1

]


0 1 1
1 0 1
1 1 0
1 0 0
0 1 0
0 0 1

 = 100,

which is the fourth row of H. Therefore the w is decoded as w −
(000100) = 011011.
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For the received word v = 101010, the syndrome of v is

vH =
[
1 0 1 0 1 0

]


0 1 1
1 0 1
1 1 0
1 0 0
0 1 0
0 0 1

 = 111.

Since vH is not a row of H, v is not decoded and a re-transmission
is requested.

The next theorem proves that the Parity check matrix decoding
corrects single error.

Theorem 6.4.8. Let C be a linear code with parity-check matrix H.
If every row of H is nonzero and no two are the same, then the parity
check decoding corrects all single errors.

Proof. By Corollary 6.4.3, to prove that the code corrects one error,
we need to show that the minimum weight of the codewords wmin ≥ 3.
Suppose C contains a codeword u with wt(u) = 1. Then u has just one
bit equal to 1, suppose it is in the position i. Since uH is the i-th row of
H, the condition uH = 0 implies the i-th row of H consists entirely of
zeroes. This contradicts our assumption. Hence C contains no words
of weight 1. Suppose C contains a codeword v with Wt(v) = 2, then v
has a 1 in the positions i and j only. Let hi, hj denote the i-th and j-th
row of H. Then vH = hi + hj. The condition vH = 0 implies hi = hj

which contradicts the hypothesis. Hence C contains no words of weight
less than or equal to 2. When a codeword u is transmitted with exactly
one error in coordinate i and received as w, then w − u = ei. Hence
ei = w− u ∈ w+C, so ei must be the coset leader for w. Therefore w
is correctly decoded as w − ei = u.

Let a word a of length n be denoted by a0a1, · · · an−1. A code C is
said to be cyclic if it is a linear code and if

a0a1 . . . an−1 implies an−1a0a1 . . . an−2 ∈ C.

Cyclic codes are popular because it is possible to implement these codes
using simple devices known as shift registers. Moreover, cyclic codes
can be constructed and investigated by means of rings and polynomials.
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The word â = an−1a0a1 . . . an−2 is the first cyclic shift of the word
a. If C is a cyclic code then the words obtained by performing any
number of cyclic shifts on a are also in C.

The key to the algebraic treatment of cyclic codes is the correspon-
dence between the words and polynomials which is given in the next
theorem.

Theorem 6.4.9. The function f : Z2[x]/(x
n − 1) → B(n) given by

f(a0 + a1x + · · · + an−1x
n−1) = a0a1 · · · an−1 is an isomorphism as

additive groups.

The proof of Theorem 6.4.9 is left as an exercise.

In this correspondence, the first cyclic shift f (1)(x) of a polynomial
f(x) = a0 + a1x+ · · ·+ an−1x

n−1 is

f (1)(x) = an−1 + a0x+ · · ·+ an−2x
n−1

= x(ao + a1x+ · · ·+ an−1x
n−1)− an−1(x

n − 1)

= xf(x)− an−1(x
n − 1).

Thus f (1)(x) ≡ xf(x) mod (xn − 1). Let R(n) denote the ring
Z2[x]/ < (xn − 1) >, then this fact leads to the following theorem.

Theorem 6.4.10. A code C in B(n) is cyclic if and only if it corre-
sponds to an ideal IC in R(n).

Proof. Since IC corresponds to a linear code, if a(x), b(x) ∈ IC , then
a(x)+ b(x) ∈ IC . Since x

ia(x) represent successive cyclic shifts of a(x),
xia(x) ∈ IC . Any polynomial p(x) ∈ R(n) is the sum of the number of
powers of xi. Since IC is linear, p(x)a(x) ∈ IC . Hence IC is an ideal by
Proposition 1.3.1.

Conversely, if IC is an ideal, then by definition, if a(x), b(x) ∈ IC ,
then a(x) + b(x) ∈ IC . Hence IC represents a linear code. Moreover,
since IC is an ideal, xa(x) ∈ IC , which implies C is a cyclic code.

Observe that if f(x) ∈ R(n), then deg f(x) < n, by definition.

Example 6.4.11. Let f(x) = 1 + x + x2 ∈ Z2[x]/ < (x3 − 1) >,
then a cyclic code corresponding to the ideal < f(x) > is generated as
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described below.

p(x) p(x)f(x) mod(x3 − 1) Word
0 0 000
1 1 + x+ x2 111
x 1 + x+ x2 111
1 + x 0 000
x2 1 + x+ x2 111
x2 + 1 0 000
x2 + x 0 000
x2 + x+ 1 1 + x+ x2 111

The ideal < 1 + x + x2 > has only two elements {0, 1 + x + x2} in
R(3) = Z2[x]/ < (x3 − 1) >, and the corresponding code

C = {000, 111}.

Theorem 6.4.11. Let C be a cyclic code and let IC be its corresponding
ideal in R(n). Then there is a polynomial f(x) ∈ R(n) such that IC =<
f(x) >.

Proof. If C is the trivial code, then IC contains only the zero polyno-
mial, hence IC =< 0 >. If not, then IC contains a non-zero polynomial
f(x) of least degree. Suppose g(x) is any element of IC , then by the
Division Algorithm, we have

g(x) = q(x)f(x) + r(x)

where either degree of r(x) is less than degree of f(x) or r(x) = 0.
Because both f(x) and g(x) are in IC , and since IC is an ideal, it
follows that

q(x)f(x)− g(x) = r(x) ∈ IC .

Consequently, r(x) = 0, since f(x) is a polynomial of least degree in
IC . Recall that the zero polynomial has no degree. Thus

IC =< f(x) > .

In general, a cyclic code C generated by < f(x) > will have many
generators, but only one of them will have the least degree (Exercise
14). We shall refer to the unique polynomial as the canonical generator
of C.
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Theorem 6.4.12. The canonical generator f(x) of a cyclic code C in
B(n) is a divisor of xn − 1 in Z2[x].

Proof. Using the division algorithm for Z2[x], we get

xn − 1 = f(x)h(x) + r(x),

such that either r(x) = 0 or the degree of r(x) is less than f(x).
Consequently, since xn−1 = 0, r(x) = f(x)h(x) in Z2[x]/ < (xn−1) >.
Thus r(x) ∈< f(x) > which contradicts the fact that f(x) has the least
degree in C unless r(x) = 0. Therefore xn − 1 = f(x)h(x) in Z2[x],
that is f(x) divides xn − 1.

Example 6.4.12. The generator 1+ x+ x2 of the code C in Example
6.4.11 is a canonical generator because

x3 − 1 = (1 + x)(1 + x+ x2).

Theorem 6.4.13. Let C be a cyclic code and let IC =< f(x) >, where
f(x) is a canonical generator of C. Let xn − 1 = f(x)h(x), where
h = h0 + h1x+ · · ·hkx

k, and let

HT =


hk hk−1 hk−2 · · · h0 0 0 · · · 0
0 hk hk−1 · · · h1 h0 0 · · · 0
0 0 hk · · · h2 h1 h0 · · · 0
...

...
...

...
...

...
0 0 0 · · · hk hk−1 hk−2 · · · h0


Then H is a parity check matrix for C.

Proof. Let p(x) = fx)g(x) be any element of IC , where

g(x) = g0 + g1x+ · · ·+ gn−1x
n−1.

Multiplying both sides by f(x) we get

p(x) = g0f(x) + g1xf(x) + · · ·+ gn−1x
n−1f(x).

Let p be the word in C corresponding to p(x). Then

p = g0f + g1f
(1) + · · ·+ gn−1f

(n−1), (6.5)

where f (i) denotes the i-th cyclic shift of the word corresponding to f .
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If H is a parity check matrix, then pH = 0 for every p ∈ C. Conse-
quently, by Equation 6.5, it is sufficient to prove that f (i)H = 0 for 0 ≤
i ≤ n− 1. Equating the coefficients of the equation xn− 1 = f(x)h(x),
we get

f0h1 + f1h0 = 0 (coefficient of x)
f0h2 + f1h1 + f2h0 = 0 (coefficient of x2)
...
fn−k−1hk + fn−khk−1 = 0 (coefficient of xn−1)

Also since the coefficients of 1 and xn are both 1, we get

f0h0 + fn−khk = 0.

Since the degree of h(x) is k and degree of f(x) is n−k, the coefficients
hk+1, . . . , hn−1 and fn−k+1, · · · , fn−1 are all zero. Hence the above n
equations can be written as

hkfn−k+j + hk−1fn−k+j+1 + · · ·+ h0fn+j = 0,

where j = 0, 1, . . . , n − 1. For suitable values of j, these are precisely
the expressions which occur in the evaluation of f (i)H. Hence f (i)H =
0.

Thus to describe the cyclic codes of length n we must find the factors
of xn − 1 in Z2[x].

Example 6.4.13. Consider cyclic codes of length 7. Recall that x8−x
is the product of all irreducible polynomials of degrees that divide 3
(see Exercise 31, Chapter 3). Therefore

x7 − 1 = (1 + x)(1 + x+ x3)(1 + x2 + x3).

The equation shows that there are just eight divisors of x7−1 in Z2[x]:
they are the trivial divisors 1 and x7 − 1 together with

1 + x, 1 + x+ x3, 1 + x2 + x3,
(1 + x)(1 + x+ x3), (1 + x)(1 + x2 + x3), (1 + x+ x3)(1 + x2 + x3).

Each of these divisors generate a cyclic code and these are the only
cyclic codes of length 7.
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If C =< f(x) = (1 + x+ x3) >, then h(x) = (1 + x)(1 + x2 + x3) =
1 + x+ x2 + x4. Hence

HT =

 1 1 1 0 1 0 0
0 1 1 1 0 1 0
0 0 1 1 1 0 1

 .

Let w = 1101000 be the codeword corresponding to f(x) = 1+ x+
x3, then

wH =
[
1 1 0 1 0 0 0

]


1 0 0
1 1 0
1 1 1
0 1 1
1 0 1
0 1 0
0 0 1


=

[
0 0 0 0 0 0 0

]
.

Theorem 6.4.14. A cyclic code of length n and designed distance 2t+1
corrects t errors.

The proof of this theorem is not in the scope of this book. The
reader may refer to [31] for more about cyclic codes.

Exercises.

1. List all the mutually orthogonal Latin squares of orders 5, 7, 8,
and 9.

2. Let f1(x), f2(x), . . . fk(x) ∈ Z[x] be polynomials of the same de-
gree d. Let n1, n2, . . . , nk be integers which are relatively prime
in pairs (i.e (ni, nj) = 1 for all i ̸= j). Prove that there exists a
polynomial f(x) ∈ Z[x] of degree such that

f(x) ≡ f1(x)( mod n1)
f(x) ≡ f2(x)( mod n2)

...
f(x) ≡ fk(x)( mod nk)

3. Solve the system of congruence equations given below.
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(a)
x ≡ 2(mod 3)
x ≡ 3(mod 5)
x ≡ 2(mod 7)

(b)
x ≡ 3(mod 4)
x ≡ 6(mod 7)
x ≡ 6(mod 11)
x ≡ 1(mod 13)

4. Use the Chinese Remainder Theorem to add the numbers 219 and
172.

5. Bill Gates decided to donate some computers to M University. He
decided to divide the computers equally among the 5 important
departments. But there were 2 computers left. Then, he decided
to divide it equally among 6 departments. Again, there were 2
computers left. Next, he divided it equally among 7 departments.
Lo and behold, again, there were two computers left. Finally, he
decided to divide the computers among all the 11 departments.
And Vow! No computers were left. Find the number of computers
Bill Gates is planning to donate.

6. Decode the message

47 15 20 49 23 1

which was encoded using the RSA algorithm with the prime num-
bers p = 5, q = 13, and the lock L = 11.

7. Decode the message

349 447 202 349 107 591 536

which was encoded using the RSA algorithm with the prime num-
bers p = 23, q = 31, and the lock L = 233.

8. Decode the message

61 60 112 22 25 80 123

which was encoded using the RSA algorithm with the prime num-
bers p = 7, q = 23, and the lock L = 61.
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9. Prove that if a code corrects t errors, then the Hamming distance
between any two codewords is at least 2t + 1 (Hint: If u, v are
codewords and d(u, v) ≤ 2t, construct a word w that differs from
u in exactly t coordinates and from v in t or fewer coordinates).

10. Prove that if a code detects t errors, then the Hamming distance
between any two codewords is at least t+ 1.

11. If G = [Ik|A] is the standard generator matrix for a linear code

and H =
[

A
In−k

]
is its parity check matrix, then prove that GH

is the zero matrix.

12. Prove that the ideal < 1+ x2 > has four elements in Z2/(x
3 − 1).

13. Prove that the function f : Z2[x]/(x
n − 1) → B(n) given by

f(a0 + a1x+ · · ·+ an−1x
n−1) = a0a1 · · · an−1 is an isomorphism as

additive groups.

14. Show that the canonical generator of a cyclic code is unique.

15. What is the number of cyclic codes of length 15?

16. Describe the cyclic code of length 15 generated by the polynomial
1 + x+ x2.

17. What is the number of cyclic codes of length 31?
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Appendix A

I examined my own heart and discovered that I would not care to be
happy on condition of being an imbecile - Voltaire.

A.1 The Euclidean Algorithm.

Definition A.1.1. Let a and b be integers, not both 0. The greatest
common divisor (gcd) of a and b is the largest integer d that divides
both a and b. In other words, d is the gcd of a and b provided that

1. d divides a and d divides b

2. if c divides a and c divides b, then c ≤ d.

The greatest common divisor of a and b is denoted by (a, b).

Theorem A.1.1. Let a and b be integers, not both 0 and let d be the
greatest common divisor. Then there exist integers u and v such that
d = au+ bv.

Proof. Let S = {am + bn ∈ Z : m,n ∈ Z}. S is nonempty
because a2 + b2 = aa + bb ∈ S. Moreover, since both a and b are
not simultaneously zero, a2 + b2 > 0. Therefore, S contains positive
integers. Let d be the smallest positive integer in S, then d is of the
form d = au+ bv for some integers u and v. We will prove that d is the
gcd of a and b. Divide a by d to write a = dq + r, such that q, r ∈ Z
and 0 ≤ r < d. Consequently,

r = a− dq = a− (au+ bv)q = a(1− uq) + b(−vq).

Thus r is an integer combination of a and b, therefore r ∈ S. Con-
sequently, the condition 0 ≤ r < d, and the fact that d is the smallest
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positive integer in S implies r = 0. Thus, d divides a. A similar argu-
ment proves that d divides b. Hence d is a common divisor of a and b.
Let c be any other common divisor of a and b. Then a = cr and b = cs
for some integers r and s. Therefore

d = au+ bv = (cr)u+ (cs)v = c(ru+ sv).

Therefore c divides d. Hence c ≤ |d|. Since d is positive |d| = d. Hence
c ≤ d. Therefore d is the gcd of a and b.

Lemma A.1.1. If a, b, q, r ∈ Z and a = bq + r, then (a, b) = (b, r).

Proof. If c is a common divisor of a and b, then a = cs and b = ct
for some s, t ∈ Z. Consequently,

r = a− bq = cs− (ct)q = c(s− tq).

Hence c divides r, which implies that c is also a common divisor of b
and r. Conversely, if e is a common divisor of b and r, then b = ex and
r = ey for some x, y ∈ Z. Then

a = bq + r = (ex)q + ey = e(xq + y).

Thus e divides a, so that e is a common divisor of a and b. Thus
the set S of common divisors of a and b is the same as the set T of
common divisors of b and r. Hence the largest element in S, namely
(a, b), is the same as the largest element in T , namely (b, r).

Theorem A.1.2. [The Euclidean Algorithm] Let a and b be positive
integers with a ≥ b. If b divides a, then (a, b) = b. If b does not divide
a, then apply the division algorithm repeatedly as follows:

a = bq0 + r0, 0 < r0 < b
b = r0q1 + r1, 0 ≤ r1 < r0
r0 = r1q2 + r2, 0 ≤ r2 < r1
r1 = r2q3 + r3, 0 ≤ r3 < r2
r2 = r3q4 + r4, 0 ≤ r4 < r3

...

The process ends when a remainder 0 is obtained. This must occur
after a finite number of steps because the sequence ri strictly decreases.
That is, for some integer t

rt−2 = rt−1qt + rt, 0 < rt < rt−1

rt−1 = rtqt+1 + 0
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The last nonzero remainder rt is the greatest common divisor of a and
b.

Proof. If b divides a, then a = bq + 0, so that (a, b) = (b, 0) = b
by Lemma A.1.1. If a is not divisible by b, then apply Lemma A.1.1
repeatedly to each division to get

(a, b) = (b, r0) = (r0, r1) = · · · = (rt−1, rt) = (rt, 0) = rt.

Example A.1.1. In this example, we compute (312, 272) using Eu-
clid’s Algorithm.

312 = 272× 1 + 40 (A.1)

272 = 40× 6 + 32 (A.2)

40 = 32× 1 + 8 (A.3)

32 = 8× 4 + 0

Thus (312, 272) = 8. We use back substitution to write 8 as an
integer combination of 312 and 272 as follows.

8 = 40− 32× 1 (by Equation A.3)
= 40− 32
= 40− (272− 40× 6) (by Equation A.2)
= 7× 40− 272
= 7(312− 272)− 272 (by Equation A.1)
= 7× 312− 8× 272

Thus, we write 8 = 7× 312− 8× 272.
The Euclidean algorithm carries over to k[x], where k is a field.

Definition A.1.2. Let k be a field and f(x), g(x) ∈ k[x], not both zero.
The greatest common divisor (gcd) of f(x) and g(x) is the monic
polynomial d(x) of highest degree that divides both f(x) and g(x).

Example A.1.2. Consider the polynomials

f = x4 − 15x3 + 73x2 − 129x+ 70,
g = 2x3 − 9x2 + 13x− 6.
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Apply the Euclidean Algorithm:

f = g
(
1
2
x− 21

4

)
+
(
77
4
x2 − 231

4
x+ 77

2

)
g =

(
77
4
x2 − 231

4
x+ 77

2

) (
8
77
x− 12

77

)
+ 0

Hence, the last non zero remainder is
(
77
4
x2 − 231

4
x+ 77

2

)
. Since the

gcd of f and g is a monic polynomial, we multiply this remainder by
(4/77) to get:

(f, g) =
4

77

(
77

4
x2 − 231

4
x+

77

2

)
= x2 − 3x+ 2.

A.2 Polynomial irreducibility.

In this section, we list a few results (without proof) that help us deter-
mine irreducibility of a polynomial. The interested reader can refer to
[24] for proofs of the results presented in this section.

Theorem A.2.1 (The Remainder Theorem). Let k be a field, f(x) ∈
k[x], and a ∈ k. The remainder when f(x) is divided by the polynomial
x− a is f(a).

Example A.2.1. Consider the polynomial f(x) = x3 − 8x2 + x + 42.
The remainder, when f(x) is divided by (x+2), is 0, but the remainder,
when f(x) is divided by x − 2, is 20. Verify that f(−2) = 0 and
f(2) = 20.

Theorem A.2.2 (The Factor Theorem). Let k be a field, f(x) ∈ k[x],
and a ∈ k. Then a is a root of the polynomial f(x) if and only if x− a
is a factor of f(x) ∈ k[x].

Example A.2.2. x+2 is a factor of the polynomial f(x) = x3−8x2+
x+ 42. Hence −2 is a root of f(x).

Corollary A.2.3. Let k be a field and f(x) a nonzero polynomial of
degree n in k[x]. Then f(x) has at most n roots in k.

Corollary A.2.4. Let k be a field and f(x) ∈ k[x], with deg f(x) ≥ 2.

1. If f(x) is irreducible in k[x], then f(x) has no roots in k.
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2. If f(x) has degree 2 or 3 and has no roots in k then f(x) is
irreducible in k[x].

Example A.2.3. To show that x3 + x+ 1 is irreducible in Z5[x], you
need only verify that none of 0, 1, 2, 3, 4 ∈ Z5 is a root.

Theorem A.2.5 (Rational Root Test). Let f(x) = anx
n+an−1x

n−1+
· · ·+a1x+a0 be a polynomial with integer coefficients. If r ̸= 0 and the
rational number r/s (in lowest terms) is a root of f(x), then r divides
a0 and s divides an.

Example A.2.4. Consider the polynomial f(x) = 4x4 − 12x3 + x2 −
4x + 3. By Theorem A.2.5, r/s is a root of f(x) if and only r divides
3 and s divides 4. Therefore r = ±1,±3 and s = ±1,±2,±4. So the
possible roots of f(x) are

1,−1, 3,−3,
1

2
,−1

2
,
3

2
,−3

2
,
1

4
,−1

4
,
3

4
,−3

4
.

We substitute each of these values in f(x), and we find that only
f(1/2) = 0 and f(3) = 0. So these are the only roots of f(x) in this
list. By the Factor Theorem A.2.2, (x− 3) and (x− 1/2) are factors of
f(x). Verify with long division that

f(x) = 2(x− 1

2
)(x− 3)(2x2 + x+ 1).

Theorem A.2.6 (Eisenstein’s Criterion). Let f(x) = anx
n+an−1x

n−1+
· · ·+ a1x+ a0 be a nonconstant polynomial with integer coefficients. If
there is a prime p such that p divides each of a0, a1, . . . , an−1 but p does
not divide an and p2 does not divide a0, then f(x) is irreducible in Q[x].

Example A.2.5. 1. The polynomial x7+6x5−15x4+3x2−9x+12
is irreducible in Q[x] by Eisenstein’s criterion with p = 3.

2. The polynomial xn + 5 is irreducible in Q[x] for each n ≥ 1 by
Eisenstein’s criterion with p = 5. Thus there are irreducible poly-
nomials of every degree in Q[x].

Finally, we discuss irreducible polynomials in R[x] and C[x].

Theorem A.2.7. A polynomial f(x) is irreducible in R[x], if and only
if, f(x) is a first-degree polynomial or

f(x) = ax2 + bx+ c with b2 − 4ac < 0.
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Theorem A.2.8. A polynomial is irreducible in C[x], if and only if,
it has degree 1.

A.3 Generating Functions.

Let h0, h1, . . . , hn, . . . be an infinite sequence of numbers. Its generating
function is defined to be the infinite series

g(x) = h0 + h1x+ h2x
2 + · · ·+ hnx

n + · · ·

Example A.3.1. 1. The generating function of the infinite sequence

1, 1, 1, . . . , 1, . . .

is
g(x) = 1 + x+ x2 + · · ·+ xn + · · ·

g(x) is a geometric series and hence

g(x) =
1

1− x
, for |x| < 1.

2. Similarly, the generating function of 1,−1, 1,−1, . . . , (−1)n, . . . is

1

1 + x
= 1− x+ x2 − x3 + · · ·+ (−1)nxn + . . .

3. The generating function of 1, 1
1!
, 1
2!
, . . . 1

n!
, . . . is

ex = 1 +
1

1!
x+

1

2!
x2 + · · ·+ 1

n!
xn + . . .

Proposition A.3.1. There are
(
n+r−1

r

)
r-combinations from a set with

n elements when repetition of elements is allowed.

Proof. Each r combination of a set with n elements can be rep-
resented by a list of n − 1 bars and r stars. The number of ways of
choosing r positions to place r stars from the n+r−1 possible positions
is (

n+ r − 1

r

)
=

(
n+ r − 1

n− 1

)
.
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Example A.3.2. How many ways are there to select five bills from a
cash box containing $1 bills, $2 bills, $5 bills, $10 bills, $20 bills, $50
bills, and $ 100 bills?

Imagine a cash box with 7 compartments. Selecting five bills corre-

$1$100 $50 $20 $10 $5 $2

sponds to placing 5 stars and 6 dividers between them. For example,
we choose one 50 dollar bill and 4 one dollar bills as shown below. Thus

** ***

the number of ways of selecting five bills is the same as the number
of selecting five positions to place five stars among the 11 possible po-
sitions. Thus there are

(
11
5

)
ways to choose five bills from a cash box

with seven types of bills.

Example A.3.3. How many solutions does the equation

x1 + x2 + x3 = 11

have, where x1, x2 and x3 are nonnegative integers?
A solution corresponds to choosing 11 items of 3 types with x1 items

of the first type, x2 items of the second type, and x3 items of the third
type. Hence the answer is(

11 + 3− 1

11

)
=

(
13

11

)
=

(
13

2

)
= 78.

Example A.3.4. Example: How many solutions does the equation

x1 + x2 + x3 = 11

have, where x1 ≥ 1, x2 ≥ 2, and x3 ≥ 3?
Like before, a solution corresponds to choosing 11 items of the 3

types, but now x1 ≥ 1, x2 ≥ 2, and x3 ≥ 3. So choose 1 item of the
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first type, 2 items of the second type, and 3 items of the third type.
Then the remaining 5 items can be chosen in(

5 + 3− 1

5

)
=

(
7

5

)
=

(
7

2

)
= 21.

Consider the sequence h0, h1, h2 . . . , hn, . . . where hn equals the
number of nonnegative integral solutions of

x1 + x2 + · · ·+ xk = n.

Then by the above argument of sticks and stars, we have

hn =

(
n+ k − 1

n

)
, (n ≥ 0).

Proposition A.3.2. The generating function of hn is

g(x) =
∑∞

n=0

(
n+ k − 1

n

)
xn.

Proof. We will first show that

1

(1− x)k
=

∑∞

n=0

(
n+ k − 1

n

)
xn.

Observe that

1

(1−x)k
= 1

1−x
× 1

1−x
× · · · × 1

1−x
( k factors)

= (1 + x+ x2 + · · · )(1 + x+ x2 + · · · ) · · ·
· · · (1 + x+ x2 + · · · )

=
(∑∞

x1=0 x
x1
) (∑∞

x2=0 x
x2
)
· · ·

(∑∞
xk=0 x

xk
)
.

Now xx1xx2 · · · xxk = xn provided x1 + x2 + · · ·+ xk = n.
Thus the coefficient of xn equals the number of nonnegative integral

solutions of this equation, that is
(
n+k−1

n

)
. Consequently,

g(x) =
1

(1− x)k
=

∑∞

n=0

(
n+ k − 1

n

)
xn.
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Example A.3.5. Determine the number of ways of making n cents
with pennies, nickels, dimes, quarters, and half-dollar pieces.

Answer: The number hn equals the number of nonnegative integral
solutions of the equation

x1 + 5x2 + 10x3 + 25x4 + 50x5 = n.

We create one factor for each type of coin, where the exponents are
the allowable numbers in the n-combinations for that type of coin.The
generating function is

g(x) = (1 + x+ x2 + · · · )(1 + x5 + x10 + · · · )(1 + x10 + x20 + . . . )×
(1 + x25 + x50 + . . . )(1 + x50 + x100 + . . . )

= 1
1−x

1
1−x5

1
1−x10

1
1−x25

1
1−x50

We can use Maple to expand this generating function using the
following command.

series((1/(1-x))*(1/(1-x^5))*(1/(1-x^10))*(1/(1-x^25))*(1/(1-x^50)),x=0,50);

A.4 Algorithms to compute Hilbert bases.

We describe an algorithm to compute the Hilbert basis of a cone CA =
{x : Ax = 0,x ≥ 0}.

Let A be an m×n matrix. We introduce 2n+m variables t1, t2, ..tm,
x1, .., xn, y1, y2, .., yn and fix any elimination monomial order such that

{t1, t2, ..tm} > {x1, .., xn} > {y1, y2, .., yn}.

Let IA denote the kernel of the map

C[x1, . . . , xn, y1, . . . , yn] → C[t1, . . . , tm, t−1
1 , . . . , t−1

m , y1, . . . , yn],

xj → yj

m∏
i=1

t
aij
i

and yj → yj for each j = 1, . . . , n.
We can compute a Hilbert basis of CA as follows.
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Algorithm A.4.1. 1. Compute the reduced Gröbner basis G for the
ideal IA with respect to the monomial ordering given above.

2. The Hilbert basis of CA consists of all vectors β such that xβ −yβ

appears in G.

Example A.4.1. Let

A =

[
1 −1
−2 2

]
To handle computations with negative exponents we introduce a

new variable t and consider the lexicographic ordering

t > t1 > t2 > x1 > x2 > y1 > y2.

Then the given map acts as follows

x1 → y1t
1
1t

−2
2

x2 → y2t
−1
1 t22

Set tt1t2 − 1 = 0 and the Kernel of the map is given by IA =
(x1 − y1t

3
1t

2, x2 − y2t
3
2t, t1t2t− 1).

We compute the Gröbner basis of IA with respect to the above
ordering and get:

IA = (x1x2 − y1y2, t1y1−t22x1, t1x2−t22y2, t
3
2ty2−x2, t

3
2tx1−y1, t1t2t−1)

Therefore, the Hilbert basis is {(1, 1)}.

See [18] and [39] for more details about this algorithm. See [26] for
more effective algorithms to compute the Hilbert basis.

A.5 Algorithms to compute toric ideals.

Computing toric ideals is the biggest challenge we face in applying the
methods we developed in Chapter 5. Many algorithms to compute toric
ideals exist and we present a few of them here.

Let A = {a1, a2, ..., an} be a subset of Zd. The additive group gen-
erated by A is a lattice, that is, the group is generated by linearly
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independent vectors. The set of linearly independent vectors that gen-
erate the lattice is called a basis of the lattice. See [32] for more details
about lattices.

Consider the map

π : k[x] 7→ k[t±1] (A.4)

xi 7→ tai (A.5)

Recall that the kernel of π is the toric ideal of A denoted by
IA. The most basic method to compute IA would be the elimina-
tion method. Though this method is computationally expensive and
not recommended, it serves as a starting point. Note that every vector
u ∈ Zn can be written uniquely as u = u+ − u− where u+ and u− are
non-negative and have disjoint support.

Example A.5.1. For the given vector u = (−1,−1, 1), u+ = (0, 0, 1)
and u− = (1, 1, 0). Thus, u can be written as u = (0, 0, 1)− (1, 1, 0).

We describe an algorithm to compute toric ideals given in [39].

Algorithm A.5.1.

1. Introduce n+ d+ 1 variables t0, t1, .., td, x1, x2, ..., xn.

2. Consider any elimination order with {ti; i = 0, . . . , d} > {xj; j =
1, . . . , n}. Compute the reduced Gröbner basis G for the ideal

(t0t1t2...td − 1, x1t
a1− − ta1+, ...., xnt

an− − tan+).

3. G ∩ k[x] is the reduced Gröbner basis for IA with respect to the
chosen elimination order.

If the lattice points ai have only non-negative coordinates, the vari-
able t0 is unnecessary and we can use the ideal (xi − tai : i = 1, . . . , n)
in the second step of the Algorithm A.5.1.

To reduce the number of variables involved in the Gröbner basis
computations, it is better to use an algorithm that operates entirely
in k[x1, . . . , xn]. We now present such an algorithm for homogeneous
ideals. Observe that all the toric ideals we face in our computations in
Chapter 5 are homogeneous.
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The saturation of an ideal J denoted by (J : f∞) is defined to be

(J : f∞) = {g ∈ k[x] : f rg ∈ J for some r ∈ N}.

Let ker(A) ∈ Zn denote the integer kernel of the d×n matrix with
column vectors ai. With any subset C of the lattice ker(A) we associate
a ideal of IA:

JC := (Xu+ −Xu−
: u ∈ C).

We now describe another algorithm to compute the toric ideal IA
from [39].

Algorithm A.5.2.

1. Find any lattice basis L for ker(A).

2. Let JL := (Xu+ −Xu−
: u ∈ L).

3. Compute a Gröbner basis of (JL : (x1x2 · · · xn)
∞) which is also a

Gröbner basis of the toric ideal IA.

Example A.5.2. Let A = {(1, 1), (2, 2), (3, 3)}. Consider the matrix
whose columns are the vectors of A[

1 2 3
1 2 3

]
.

Then kerA = {[−2, 1, 0], [−3, 0, 1]}. We use the software Maple
to compute a lattice basis of kerA: {[−1,−1, 1], [−2, 1, 0]}. Therefore
JL = (x3 − x1x2, x2 − x2

1) and

(JL : (x1x2x3)
∞) = (x3 − x1x2, x2 − x2

1, x
2
2 − x1x3)

which is also IA (see Algorithm A.5.2). Note that many available com-
puter algebra packages including CoCoA [16] can compute saturation
of ideals.

From the computational point of view, computing (JL : (x1x2 · · · xn)
∞)

is the most demanding step. The algorithms implemented in CoCoA
try to make this step efficient [9]. For example, one way to compute
(JL : (x1x2 · · · xn)

∞), would be to eliminate t from the ideal H :=
JL + (tx1x2 · · · xn − 1) but this destroys the homogeneity of the ideal.
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It is well-known that computing with homogeneous ideals have many
advantages. Therefore, it is better to introduce a variable u whose de-
gree is the sum of the degrees of the variables xi, i = 1, . . . , n. We then
compute the Gröbner basis of the ideal H := JL + (x1x2 · · · xn − u).
Then a Gröbner basis for (JL : (x1x2 · · · xn)

∞) is obtained by simply
substituting u = x1x2 · · · xn in the Gröbner basis of H.

Another trick to improve the efficiency of the computation of satu-
ration ideals is to use the fact

(JL : (x1x2 · · · xn)
∞) = ((. . . ((JL : x∞

1 ) : x∞
2 ) . . . ) : x∞

n ).

Therefore we can compute the saturations sequentially one variable
at a time. See [10] for other tricks. We refer the reader to [39] for
details and proofs of the concepts needed to develop these algorithms
and other algorithms.

A.6 Algorithms to compute Hilbert Poincaré se-
ries.

In this section, we will describe a pivot-based algorithm to compute the
Hilbert Poincaré series. Variations of this algorithm is implemented in
CoCoA [16].

Let k be a field and R := k[x1, x2, ..., xr] be a graded Noetherian
ring. let x1, x2, ..., xr be homogeneous of degrees k1, k2, .., kr (all > 0).
LetM be a finitely generated R-module. Let H be an additive function
on the class of R-modules with values in Z. Then by the Hilbert-Serre
theorem, we have

HM(t) =
p(t)

Πr
i=1(1− tdegxi)

.

where p(t) ∈ Z[t].
Let I be an ideal of R, we will denote

HR/I(t) =
< I >

Πr
i=1(1− tdegxi)

.

Observe that we only need to calculate the numerator < I > since the
denominator is already known.
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Let y be a monomial of degree (d1, ..., dr) called the pivot. The
degree of the pivot is d =

∑r
i=1 di. The ideal quotient (J : f) of an

ideal J ⊂ k[x1, . . . , xr] and f ∈ k[x1, . . . , xr] is

(J : f) = {g ∈ k[x] : fg ∈ J}.

It is proved in [10] that

HR/I(t) = HR/(I,y)(t) + td(HR/(I:y))(t),

which implies

< I >=< I, y > +td < I : y > . (A.6)

When I is a homogeneous ideal,

HR/I(t) = HR/in(I)(t),

where in(I) denotes the ideal of initial terms of I (see Chapter 1).
The pivot y is usually chosen to be a monomial that divides a gen-

erator of I so that the total degrees of (I, y) and (I : y) are lower than
the total degree of I. The computation proceeds inductively.

Example A.6.1. Let R = k[x1, x2, . . . , xn] be the polynomial ring.
Let R =

⊕
d∈NRd where each Rd is minimally generated as a k-vector

by all the
(
n+d−1

d

)
monomials of degree d. Therefore,

HR/(0)(t) = HR(t) =
∞∑
d=0

dimRdt
d =

∞∑
d=0

(
n+ d− 1

d

)
td = 1/(1− t)n.

Therefore we get< 0 >= 1. We will use this information to compute
HR/(I)(t), where I = (x1, x2, . . . , xn).

Let J = (x2, . . . , xn). Then, (J : x1) = J . Therefore by Equation
A.6, we get

< (J, x1) >= (1− tdegx1) < J > .

That is,

< x1, x2, . . . , xn >= (1− tdegx1) < x2, . . . , xn > .

Now, choosing the pivot x2, x3, . . . , xn subsequently we get

< x1, x2, . . . , xn >=
∏

i=1,...,n

(1− tdegxi) < 0 > .
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Now since < 0 >= 1, we get < x1, x2, . . . , xn >=
∏

i=1,...,n(1 −
tdegxi).

Therefore HR/(x1,x2,...,xn)(t) = 1.

See [10] for more information about computing the Hilbert Poincare
series.
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Appl. Algebra, 119/3, (1997), 237–253.

[11] Biggs, N.L., Discrete Mathematics, Revised edition, Oxford Uni-
versity Press Inc., New York, 1985.

[12] Bose, R.C., Manvel, B., Introduction to Combinatorial Theory,
John Wiley and Sons, Inc., USA, 1984.

[13] Brualdi, A.R., Introductory Combinatorics, 4th ed., Pearson Pren-
tice Hall, Upper Saddle River, N.J., 2004.

[14] Brualdi, A. R. and Gibson, P., Convex polyhedra of doubly stochas-
tic matrices: I, II, III, Journal of combinatorial Theory, A22,
(1977), 467-477.

[15] Carlitz, L., Enumeration of symmetric arrays, Duke Math. J., 33,
(1966), 771-782.

[16] Capani, A., Niesi, G., and Robbiano, L., CoCoA, A System for Do-
ing Computations in Commutative Algebra, available via anony-
mous ftp from cocoa.dima.unige.it (2000).

[17] Cox, D., Little, J., and O’Shea, D., Ideals, varieties, and Algo-
rithms, Springer Verlag, Undergraduate Text, 2nd Edition, 1997.

[18] , Using Algebraic Geometry, Springer-Verlag, New York,
1998.

[19] Dummit, D. S. and Foote, R. M., Abstract Algebra, Prentice Hall,
New Jersey, 1991.

[20] Fraleigh, J.B., A First Course in Abstract Algebra, second edition,
Addison-Wesley Publishing Company, Inc., World student series
edition, 1976.

[21] Giles, F.R. and Pulleyblank, W.R., Total dual integrality and in-
teger polyhedra, Linear Algebra Appl., 25, (1979), 191-196.

[22] Gupta, H., Enumeration of symmetric matrices, Duke Math. J.,
35, (1968), 653-659.

206



[23] Halleck, E.Q., Magic squares subclasses as linear Diophantine sys-
tems, Ph.D. dissertation, Univ. of California San Diego, (2000),
187 pages.

[24] Hungerford, T. W., Abstract Algebra, An Introduction, Saunders
College Publishing, New York, 1990.

[25] Lang, S., Algebra, third edition, Addison Wesley Longman, Inc,
1993.

[26] Hemmecke, R., On the computation of Hilbert bases of cones,
in Proceedings of First International Congress of Mathemati-
cal Software, A. M. Cohen, X.S. Gao, and N. Takayama, eds.,
Beijing, (2002); software implementation 4ti2 is available from
http://www.4ti2.de.

[27] MacMahon, P.A., Combinatorial Analysis, Chelsea, 1960.

[28] Pasles, P. C., The lost squares of Dr. Franklin: Ben Franklin’s
missing squares and the secret of the magic circle, Amer. Math.
Monthly, 108, (2001), 489-511.

[29] , Franklin’s other 8-square, J. Recreational Math., 31,
(2003), 161-166.

[30] L. D. Patel, The secret of Franklin’s 8 × 8 magic square,
J.Recreational Math., 23, (1991), 175-182.

[31] Pretzel, O., Error-Correcting Codes and Finite Fields, Oxford Uni-
versity Press Inc., New York, 1992.

[32] Schrijver, A., Theory of Linear and Integer Programming, Wiley-
Interscience, 1986.

[33] Stanley, R.P., Enumerative Combinatorics, Volume I, Cambridge,
1997.

[34] , Combinatorics and commutative algebra, Progress in
Mathematics, 41, Birkhaüser Boston, MA, 1983.
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Leading term, 11

Magic square, 135
Maximal ideal, 68
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