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Preface

This book is an introduction to the theory of Lie groups and Lie algebras, with emphasis on the
theory of semisimple Lie algebras. It can serve as a basis for a two semester graduate course or —
omitting some material — as a basis for a rather intensive one semester course. The book includes
a large number of exercises.

The material covered in the books ranges from basic definitions of Lie groups to the theory of
root systems and highest weight representations of semisimple Lie algebras; however, to keep book
size small, structure theory of semisimple and compact Lie groups is not covered.

Exposition follows the style of famous Serre’s textbook on Lie algebras [47]: we tried to make
the book more readable by stressing ideas of the proofs rather than technical details. In many
cases, details of the proofs are given in exercises (always providing sufficient hints so that good
students should have no difficulty completing the proof). In some cases, technical proofs are omitted
altogether; for example, we do not give proofs of Engel’s or Poincare–Birkhoff–Witt theorems, instead
providing an outline of the proof. Of course, in such cases we give references to books containing
full proofs.

It is assumed that the reader is familiar with basics of topology and differential geometry (mani-
folds, vector fields, differential forms, fundamental groups, covering spaces) and basic algebra (rings,
modules). Some parts of the book require knowledge of basic homological algebra (short and long
exact sequences, Ext spaces).

Errata for this book are available on the book web page at
http://www.math.sunysb.edu/~kirillov/liegroups/.
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Chapter 1

Introduction

In any algebra textbook, the study of group theory is usually mostly concerned with the theory of
finite, or at least finitely generated, groups. This is understandable: such groups are much easier to
describe. However, most groups which appear as groups of symmetries of various geometric objects
are not finite: for example, the group SO(3,R) of all rotations of three-dimensional space is not finite
and is not even finitely generated. Thus, much of material learned in basic algebra course does not
apply here; for example, it is not clear whether, say, the set of all morphisms between such groups
can be explicitly described.

The theory of Lie groups answers these questions by replacing the notion of a finitely generated
group by that of a Lie group — a group which at the same time is a finite-dimensional manifold. It
turns out that in many ways such groups can be described and studied as easily as finitely generated
groups — or even easier. The key role is played by the notion of a Lie algebra, the tangent space to
G at identity. It turns out that the group operation on G defines a certain bilinear skew-symmetric
operation on g = T1G; axiomatizing the properties of this operation gives a definition of a Lie
algebra.

The fundamental result of the theory of Lie groups is that many properties of Lie groups are
completely determined by the properties of corresponding Lie algebras. For example, the set of
morphisms between two (connected and simply connected) Lie groups is the same as the set of
morphisms between the corresponding Lie algebras; thus, describing them is essentially reduced to
a linear algebra problem.

Similarly, Lie algebras also provide a key to the study of the structure of Lie groups and their
representations. In particular, this allows one to get a complete classification of a large class of Lie
groups (semisimple and more generally, reductive Lie groups; this includes all compact Lie groups
and all classical Lie groups such as SO(n,R)) in terms of a relatively simple geometric objects,
so-called root systems. This result is considered by many mathematicians (including the author of
this book) to be one of the most beautiful achievements in all of mathematics. We will cover it in
Chapter 7.

To conclude this introduction, we will give a simple example which shows how Lie groups
naturally appear as groups of symmetries of various objects — and how one can use the theory of
Lie groups and Lie algebras to make use of these symmetries.

Let S2 ⊂ R3 be the unit sphere. Define the Laplace operator ∆sph : C∞(S2) → C∞(S2) by
∆sphf = (∆f̃)|S2 , where f̃ is the result of extending f to R3−{0} (constant along each ray), and ∆
is the usual Laplace operator in R3. It is easy to see that ∆sph is a second order differential operator
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12 1. Introduction

on the sphere; one can write explicit formulas for it in the spherical coordinates, but they are not
particularly nice.

For many applications, it is important to know the eigenvalues and eigenfunctions of ∆sph. In
particular, this problem arises in quantum mechanics: the eigenvalues are related to the energy
levels of a hydrogen atom in quantum mechanical description. Unfortunately, trying to find the
eigenfunctions by brute force gives a second-order differential equation which is very difficult to
solve.

However, it is easy to notice that this problem has some symmetry — namely, the group SO(3,R)
acting on the sphere by rotations. How one can use this symmetry?

If we had just one symmetry, given by some rotation R : S2 → S2, we could consider its action
on the space of complex-valued functions C∞(S2,C). If we could diagonalize this operator, this
would help us study ∆sph: it is a general result of linear algebra that if A,B are two commuting
operators, and A is diagonalizable, then B must preserve eigenspaces for A. Applying to to pair R,
∆sph, we get that ∆sph preserves eigenspaces for R, so we can diagonalize ∆sph independently in
each of the eigenspaces.

However, this will not solve the problem: for each individual rotation R, the eigenspaces will
still be too large (in fact, infinite-dimensional), so diagonalizing ∆sph in each of them is not very
easy either. This is not surprising: after all, we only used one of many symmetries. Can we use all
of rotations R ∈ SO(3,R) simultaneously?

This, however, presents two problems:

• SO(3,R) is not a finitely generated group, so apparently we will need to use infinitely (in
fact uncountably) many different symmetries and diagonalize each of them.

• SO(3,R) is not commutative, so different operators from SO(3,R) can not be diagonalized
simultaneously.

The goal of the theory of Lie groups is to give tools to deal with these (and similar) problems.
In short, the answer to the first problem is that SO(3,R) is in a certain sense finitely generated —
namely, it is generated by three generators, “infinitesimal rotations” around x, y, z axes (see details
in Example 3.10).

The answer to the second problem is that instead of decomposing the C∞(S2,C) into a direct
sum of common eigenspaces for operators R ∈ SO(3,R), we need to decompose it into “irreducible
representations” of SO(3,R). In order to do this, we need to develop the theory of representations
of SO(3,R). We will do this and complete the analysis of this example in Section 4.8.



Chapter 2

Lie Groups: Basic
Definitions

2.1. Reminders from differential geometry

This book assumes that the reader is familiar with basic notions of differential geometry, as covered
for example, in [49]. For reader’s convenience, in this section we briefly remind some definitions and
fix notation.

Unless otherwise specified, all manifolds considered in this book will be C∞ real manifolds; the
word “smooth” will mean C∞. All manifolds we will consider will have at most countably many
connected components.

For a manifold M and a point m ∈ M , we denote by TmM the tangent space to M at point
m, and by TM the tangent bundle to M . The space of vector fields on M (i.e., global sections
of TM) is denoted by Vect(M). For a morphism f : X → Y and a point x ∈ X, we denote by
f∗ : TxX → Tf(x)Y the corresponding map of tangent spaces.

Recall that a morphism f : X → Y is called an immersion if rank f∗ = dimX for every point x ∈
X; in this case, one can choose local coordinates in a neighborhood of x ∈ X and in a neighborhood
of f(x) ∈ Y such that f is given by f(x1, . . . xn) = (x1, . . . , xn, 0, . . . 0).

An immersed submanifold in a manifold M is a subset N ⊂ M with a structure of a manifold
(not necessarily the one inherited from M !) such that inclusion map i : N ↪→ M is an immersion.
Note that the manifold structure on N is part of the data: in general, it is not unique. However, it
is usually suppressed in the notation. Note also that for any point p ∈ N , the tangent space to N
is naturally a subspace of tangent space to M : TpN ⊂ TpM .

An embedded submanifold N ⊂ M is an immersed submanifold such that the inclusion map
i : N ↪→M is a homeomorphism. In this case the smooth structure on N is uniquely determined by
the smooth structure on M .

Following Spivak, we will use the word “submanifold” for embedded submanifolds (note that
many books use word submanifold for immersed submanifolds).

All of the notions above have complex analogs, in which real manifolds are replaced by complex
analytic manifolds and smooth maps by holomorphic maps. We refer the reader to [49] for details.

13



14 2. Lie Groups: Basic Definitions

2.2. Lie groups, subgroups, and cosets

Definition 2.1. A (real) Lie group is a set G with two structures: G is a group and G is a manifold.
These structures agree in the following sense: multiplication map G × G → G and inversion map
G→ G are smooth maps.

A morphism of Lie groups is a smooth map which also preserves the group operation: f(gh) =
f(g)f(h), f(1) = 1. We will use the standard notation Im f , Ker f for image and kernel of a
morphism.

The word “real” is used to distinguish these Lie groups from complex Lie groups defined below.
However, it is frequently omitted: unless one wants to stress the difference with complex case, it is
common to refer to real Lie groups as simply Lie groups.

Remark 2.2. One can also consider other classes of manifolds: C1, C2, analytic. It turns out that
all of them are equivalent: every C0 Lie group has a unique analytic structure. This is a highly
non-trivial result (it was one of Hilbert’s 20 problems), and we are not going to prove it (the proof
can be found in the book [39]). Proof of a weaker result, that C2 implies analyticity, is much easier
and can be found in [10, Section 1.6]. In this book, “smooth” will be always understood as C∞.

In a similar way, one defines complex Lie groups.

Definition 2.3. A complex Lie group is a set G with two structures: G is a group and G is a complex
analytic manifold. These structures agree in the following sense: multiplication map G × G → G

and inversion map G→ G are analytic maps.

A morphism of complex Lie groups is an analytic map which also preserves the group operation:
f(gh) = f(g)f(h), f(1) = 1.

Remark 2.4. Throughout this book, we try to treat both real and complex cases simultaneously.
Thus, most theorems in this book apply both to real and complex Lie groups. In such cases, we will
say “let G be real or complex Lie group. . . ” or “let G be a Lie group over K. . . ”, where K is the
base field: K = R for real Lie groups and K = C for complex Lie groups.

When talking about complex Lie groups, “submanifold” will mean “complex analytic submani-
fold”, tangent spaces will be considered as complex vector spaces, all morphisms between manifolds
will be assumed holomorphic, etc.

Example 2.5. The following are examples of Lie groups

(1) Rn, with the group operation given by addition

(2) R∗ = R \ {0}, ×
R+ = {x ∈ R | x > 0}, ×

(3) S1 = {z ∈ C : |z| = 1},×
(4) GL(n,R) ⊂ Rn2

. Many of the groups we will consider will be subgroups of GL(n,R) or
GL(n,C).

(5) SU(2) = {A ∈ GL(2,C) | AĀt = 1, detA = 1}. Indeed, one can easily see that

SU(2) =
{(

α β

−β̄ ᾱ

)
: α, β ∈ C, |α|2 + |β|2 = 1

}
.

Writing α = x1 + ix2, β = x3 + ix4, xi ∈ R, we see that SU(2) is diffeomorphic to S3 =
{x2

1 + · · ·+ x2
4 = 1} ⊂ R4.
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(6) In fact, all usual groups of linear algebra, such as GL(n,R), SL(n,R), O(n,R), U(n),
SO(n,R), SU(n), Sp(n,R) are (real or complex) Lie groups. This will be proved later (see
Section 2.7).

Note that the definition of a Lie group does not require that G be connected. Thus, any finite
group is a 0-dimensional Lie group. Since the theory of finite groups is complicated enough, it makes
sense to separate the finite (or, more generally, discrete) part. It can be done as follows.

Theorem 2.6. Let G be a real or complex Lie group. Denote by G0 the connected component of
identity. Then G0 is a normal subgroup of G and is a Lie group itself (real or complex, respectively).
The quotient group G/G0 is discrete.

Proof. We need to show that G0 is closed under the operations of multiplication and inversion.
Since the image of a connected topological space under a continuous map is connected, the inversion
map i must take G0 to one component of G, that which contains i(1) = 1, namely G0. In a similar
way one shows that G0 is closed under multiplication.

To check that this is a normal subgroup, we must show that if g ∈ G and h ∈ G0, then
ghg−1 ∈ G0. Conjugation by g is continuous and thus will take G0 to some connected component of
G; since it fixes 1, this component is G0.

The fact that the quotient is discrete is obvious. ¤

This theorem mostly reduces the study of arbitrary Lie groups to the study of finite groups and
connected Lie groups. In fact, one can go further and reduce the study of connected Lie groups to
connected simply-connected Lie groups.

Theorem 2.7. If G is a connected Lie group (real or complex ), then its universal cover G̃ has
a canonical structure of a Lie group (real or complex, respectively) such that the covering map
p : G̃ → G is a morphism of Lie groups whose kernel is isomorphic to the fundamental group of G:
Ker p = π1(G) as a group. Moreover, in this case Ker p is a discrete central subgroup in G̃.

Proof. The proof follows from the following general result of topology: if M,N are connected
manifolds (or, more generally, nice enough topological spaces), then any continuous map f : M → N

can be lifted to a map of universal covers f̃ : M̃ → Ñ . Moreover, if we choose m ∈ M,n ∈ N such
that f(m) = n and choose liftings m̃ ∈ M̃, ñ ∈ Ñ such that p(m̃) = m, p(ñ) = n, then there is a
unique lifting f̃ of f such that f̃(m̃) = ñ.

Now let us choose some element 1̃ ∈ G̃ such that p(1̃) = 1 ∈ G. Then, by the above theorem,
there is a unique map ı̃ : G̃→ G̃ which lifts the inversion map i : G→ G and satisfies ı̃(1̃) = 1̃. In a
similar way one constructs the multiplication map G̃× G̃→ G̃. Details are left to the reader.

Finally, the fact that Ker p is central follows from results of Exercise 2.2. ¤

Definition 2.8. A closed Lie subgroup H of a (real or complex) Lie group G is a subgroup which
is also a submanifold (for complex Lie groups, it is must be a complex submanifold).

Note that the definition does not require that H be a closed subset in G; thus, the word “closed”
requires some justification which is given by the following result.

Theorem 2.9.

(1) Any closed Lie subgroup is closed in G.

(2) Any closed subgroup of a Lie group is a closed real Lie subgroup.
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Proof. The proof of the first part is given in Exercise 2.1. The second part is much harder and
will not be proved here (and will not be used in this book). The proof uses the technique of Lie
algebras and can be found, for example, in [10, Corollary 1.10.7]. We will give a proof of a weaker
but sufficient for our purposes result later (see Section 3.6). ¤

Corollary 2.10.

(1) If G is a connected Lie group (real or complex ) and U is a neighborhood of 1, then U

generates G.

(2) Let f : G1 → G2 be a morphism of Lie groups (real or complex ), with G2 connected, such
that f∗ : T1G1 → T1G2 is surjective. Then f is surjective.

Proof. (1) Let H be the subgroup generated by U. Then H is open in G: for any element
h ∈ H, the set h · U is a neighborhood of h in G. Since it is an open subset of a manifold,
it is a submanifold, so H is a closed Lie subgroup. Therefore, by Theorem 2.9 it is closed,
and is nonempty, so H = G.

(2) Given the assumption, the inverse function theorem says that f is surjective onto some
neighborhood U of 1 ∈ G2. Since an image of a group morphism is a subgroup, and U

generates G2, f is surjective.

¤

As in the theory of discrete groups, given a closed Lie subgroup H ⊂ G, we can define the notion
of cosets and define the coset space G/H as the set of equivalence classes. The following theorem
shows that the coset space is actually a manifold.

Theorem 2.11.

(1) Let G be a (real or complex ) Lie group of dimension n and H ⊂ G a closed Lie subgroup of
dimension k. Then the coset space G/H has a natural structure of a manifold of dimension
n− k such that the canonical map p : G→ G/H is a fiber bundle, with fiber diffeomorphic
to H. The tangent space at 1̄ = p(1) is given by T1̄(G/H) = T1G/T1H.

(2) If H is a normal closed Lie subgroup then G/H has a canonical structure of a Lie group
(real or complex, respectively).

Proof. Denote by p : G→ G/H the canonical map. Let g ∈ G and ḡ = p(g) ∈ G/H. Then the set
g·H is a submanifold inG as it is an image ofH under diffeomorphism x 7→ gx. Choose a submanifold
M ⊂ G such that g ∈ M and M is transversal to the manifold gH, i.e. TgG = (Tg(gH)) ⊕ TgM

(this implies that dimM = dimG−dimH). Let U ⊂M be a sufficiently small neighborhood of g in
M . Then the set UH = {uh | u ∈ U, h ∈ H} is open in G (which easily follows from inverse function
theorem applied to the map U ×H → G). Consider Ū = p(U); since p−1(Ū) = UH is open, Ū is an
open neighborhood of ḡ in G/H and the map U → Ū is a homeomorphism. This gives a local chart
for G/H and at the same time shows that G→ G/H is a fiber bundle with fiber H. We leave it to
the reader to show that transition functions between such charts are smooth (respectively, analytic)
and that the smooth structure does not depend on the choice of g, M .

This argument also shows that the kernel of the projection p∗ : TgG → Tḡ(G/H) is equal to
Tg(gH). In particular, for g = 1 this gives an isomorphism T1̄(G/H) = T1G/T1H. ¤

Corollary 2.12. Let H be a closed Lie subgroup of a Lie group G.

(1) If H is connected, then the set of connected components π0(G) = π0(G/H). In particular,
if H,G/H are connected, then so is G.
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G/H

g

g

M

U

Figure 2.1. Fiber bundle G → G/H

(2) If G,H are connected, then there is an exact sequence of fundamental groups

π2(G/H) → π1(H) → π1(G) → π1(G/H) → {1}

This corollary follows from more general long exact sequence of homotopy groups associated
with any fiber bundle (see [17, Section 4.2]). We will later use it to compute fundamental groups of
classical groups such as GL(n,K).

2.3. Analytic subgroups and homomorphism
theorem

For many purposes, the notion of closed Lie subgroup introduced above is too restrictive. For
example, the image of a morphism may not be a closed Lie subgroup, as the following example
shows.

Example 2.13. Let G1 = R, G2 = T 2 = R2/Z2. Define the map f : G1 → G2 by
f(t) = (t mod Z, αt mod Z), where α is some fixed irrational number. Then it is well-known that
the image of this map is everywhere dense in T 2 (it is sometimes called the irrational winding on
the torus).

Thus, it is useful to introduce a more general notion of a subgroup. Recall the definition of
immersed submanifold (see Section 2.1).

Definition 2.14. An Lie subgroup in a (real or complex) Lie group H ⊂ G is an immersed sub-
manifold which is also a subgroup.

It is easy to see that in such a situation H is itself a Lie group (real or complex, respectively)
and the inclusion map i : H ↪→ G is a morphism of Lie groups.

Clearly, every closed Lie subgroup is a Lie subgroup, but converse is not true: the image of
the map R → T 2 constructed in Example 2.13 is a Lie subgroup which is not closed. It can be
shown if a Lie subgroup is closed in G, then it is automatically a closed Lie subgroup in the sense
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of Definition 2.8, which justifies the name. We do not give a proof of this statement as we are not
going to use it.

With this new notion of a subgroup we can formulate an analog of the standard homomorphism
theorems.

Theorem 2.15. Let f : G1 → G2 be a morphism of (real or complex ) Lie groups. Then H = Ker f
is a normal closed Lie subgroup in G1, and f gives rise to an injective morphism G1/H → G2,
which is an immersion; thus, Im f is a Lie subgroup in G2. If Im f is an (embedded) submanifold,
then it is a closed Lie subgroup in G2 and f gives an isomorphism of Lie groups G1/H ' Im f .

The easiest way to prove this theorem is by using the theory of Lie algebras which we will
develop in the next chapter; thus, we postpone the proof until the next chapter (see Corollary 3.30).

2.4. Action of Lie groups on manifolds and
representations

The primary reason why Lie groups are so frequently used is that they usually appear as symmetry
groups of various geometric objects. In this section, we will show several examples.

Definition 2.16. An action of a real Lie group G on a manifold M is an assignment to each g ∈ G
a diffeomorphism ρ(g) ∈ DiffM such that ρ(1) = id, ρ(gh) = ρ(g)ρ(h) and such that the map

G×M →M : (g,m) 7→ ρ(g).m

is a smooth map.

A holomorphic action of a complex Lie group G on a complex manifold M is an assignment to
each g ∈ G an invertible holomorphic map ρ(g) ∈ DiffM such that ρ(1) = id, ρ(gh) = ρ(g)ρ(h) and
such that the map

G×M →M : (g,m) 7→ ρ(g).m

is holomorphic.

Example 2.17.

(1) The group GL(n,R) (and thus, any its closed Lie subgroup) acts on Rn.

(2) The group O(n,R) acts on the sphere Sn−1 ⊂ Rn. The group U(n) acts on the sphere
S2n−1 ⊂ Cn.

Closely related with the notion of a group action on a manifold is the notion of a representation.

Definition 2.18. A representation of a (real or complex) Lie group G is a vector space V (complex
if G is complex, and either real or complex if G is real) together with a group morphism ρ : G →
End(V ). If V is finite-dimensional, we require that ρ be smooth (respectively, analytic), so it is a
morphism of Lie groups. A morphism between two representations V,W of the same group G is a
linear map f : V →W which commutes with the group action: fρV (g) = ρW (g)f .

In other words, we assign to every g ∈ G a linear map ρ(g) : V → V so that ρ(g)ρ(h) = ρ(gh).

We will frequently use the shorter notation g.m, g.v instead of ρ(g).m in the cases when there
is no ambiguity about the representation being used.

Remark 2.19. Note that we frequently consider representations on a complex vector space V , even
for a real Lie group G.

Any action of the group G on a manifold M gives rise to several representations of G on various
vector spaces associated with M :
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(1) Representation of G on the (infinite-dimensional) space of functions C∞(M) (in real case)
or the space of holomorphic functions O(M) (in complex case) defined by

(2.1) (ρ(g)f)(m) = f(g−1.m)

(note that we need g−1 rather than g to satisfy ρ(g)ρ(h) = ρ(gh)).

(2) Representation of G on the (infinite-dimensional) space of vector fields Vect(M) defined
by

(2.2) (ρ(g).v)(m) = g∗(v(g−1.m)).

In a similar way, we define the action of G on the spaces of differential forms and other
types of tensor fields on M .

(3) Assume that m ∈ M is a fixed point: g.m = m for any g ∈ G. Then we have a canonical
action of G on the tangent space TmM given by ρ(g) = g∗ : TmM → TmM , and similarly
for the spaces T ∗mM,

∧k
T ∗mM .

2.5. Orbits and homogeneous spaces

Let G be a Lie group acting on a manifold M (respectively, a complex Lie group acting on a complex
manifold M). Then for every point m ∈ M we define its orbit by Om = Gm = {g.m | g ∈ G} and
stabilizer by

(2.3) Gm = {g ∈ G | g.m = m}

Theorem 2.20. Let M be a manifold with an action of a Lie group G (respectively, a complex
manifold with an action of complex Lie group G). Then for any m ∈M the stabilizer Gm is a closed
Lie subgroup in G, and g 7→ g.m is an injective immersion G/Gm ↪→M whose image coincides with
the orbit Om.

Proof. The fact that the orbit is in bijection with G/Gm is obvious. For the proof of the fact that
Gm is a closed Lie subgroup, we could just refer to Theorem 2.9. However, this would not help
proving that G/Gm → M is an immersion. Both of these statements are easiest proved using the
technique of Lie algebras; thus, we postpone the proof until later time (see Theorem 3.29). ¤

Corollary 2.21. The orbit Om is an immersed submanifold in M , with tangent space TmOm =
T1G/T1Gm. If Om is a submanifold, then g 7→ g.m is a diffeomorphism G/Gm

∼−→ Om.

An important special case is when the action of G is transitive, i.e. when there is only one orbit.

Definition 2.22. A G-homogeneous space is a manifold with a transitive action of G.

As an immediate corollary of Corollary 2.21, we see that each homogeneous space is diffeomorphic
to a coset space G/H. Combining it with Theorem 2.11, we get the following result.

Corollary 2.23. Let M be a G-homogeneous space and choose m ∈M . Then the map G→M : g 7→
gm is a fiber bundle over M with fiber Gm.

Example 2.24.
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(1) Consider the action of SO(n,R) on the sphere Sn−1 ⊂ Rn. Then it is a homogeneous space,
so we have a fiber bundle

SO(n− 1,R) // SO(n,R)

²²
Sn−1

(2) Consider the action of SU(n) on the sphere S2n−1 ⊂ Cn. Then it is a homogeneous space,
so we have a fiber bundle

SU(n− 1) // SU(n)

²²
S2n−1

In fact, action of G can be used to define smooth structure on a set. Indeed, if M is a set (no
smooth structure yet) with a transitive action of a Lie group G, then M is in bijection with G/H,
H = StabG(m) and thus, by Theorem 2.11, M has a canonical structure of a manifold of dimension
equal to dimG− dimH.

Example 2.25. Define a flag in Rn to be a sequence of subspaces

{0} ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn = Rn, dimVi = i

Let Fn(R) be the set of all flags in Rn. It turns out that Fn(R) has a canonical structure of a
smooth manifold which is called the flag manifold (or sometimes flag variety). The easiest way to
define it is to note that we have an obvious action of the group GL(n,R) on Fn(R). This action is
transitive: by a change of basis, any flag can be identified with the standard flag

V st =
({0} ⊂ 〈e1〉 ⊂ 〈e1, e2〉 ⊂ · · · ⊂ 〈e1, . . . , en−1〉 ⊂ Rn

)

where 〈e1, . . . , ek〉 stands for the subspace spanned by e1, . . . , ek. Thus, Fn(R) can be identified
with the coset space GL(n,R)/B(n,R), where B(n,R) = StabV st is the group of all invertible
upper-triangular matrices. Therefore, Fn is a manifold of dimension equal to n2− n(n+1)

2 = n(n−1)
2 .

Finally, we should say a few words about taking the quotient by the action of a group. In many
cases when we have an action of a group G on a manifold M one would like to consider the quotient
space, i.e. the set of all G-orbits. This set is commonly denoted by M/G. It has a canonical quotient
space topology. However, this space can be very singular, even if G is a Lie group; for example,
it can be non-Hausdorff. For example, for the group G = GL(n,C) acting on the set of all n × n

matrices by conjugation the set of orbits is described by Jordan canonical form. However, it is
well-known that by a small perturbation, any matrix can be made diagonalizable. Thus, if X is a
diagonalizable matrix and Y is a non-diagonalizable matrix with the same eigenvalues as X, then
any neighborhood of the orbit of Y contains points from orbit of X.

There are several ways of dealing with this problem. One of them is to impose additional
requirements on the action, for example assuming that the action is proper. In this case it can be
shown that M/G is indeed a Hausdorff topological space, and under some additional conditions, it
is actually a manifold (see [10, Section 2]). Another approach, usually called Geometric Invariant
Theory, is based on using the methods of algebraic geometry (see [40]). Both of these methods go
beyond the scope of this book.
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2.6. Left, right, and adjoint action

Important examples of group action are the following actions of G on itself:

Left action: Lg : G→ G is defined by Lg(h) = gh

Right action: Rg : G→ G is defined by Rg(h) = hg−1

Adjoint action: Ad g : G→ G is defined by Ad g(h) = ghg−1

One easily sees that left and right actions are transitive; in fact, each of them is simply transitive.
It is also easy to see that the left and right actions commute and that Ad g = LgRg.

As mentioned in Section 2.4, each of these actions also defines the action of G on the spaces of
functions, vector fields, forms, etc. on G. For simplicity, for a tangent vector v ∈ TmG , we will
frequently write just g.v ∈ TgmG instead of technically more accurate but cumbersome notation
(Lg)∗v. Similarly, we will write v.g for (Rg−1)∗v. This is justified by Exercise 2.6, where it is shown
that for matrix groups this notation agrees with usual multiplication of matrices.

Since the adjoint action preserves the identity element 1 ∈ G, it also defines an action of G on
the (finite-dimensional) space T1G. Slightly abusing the notation, we will denote this action also by

(2.4) Ad g : T1G→ T1G.

Definition 2.26. A vector field v ∈ Vect(G) is left-invariant if g.v = v for every g ∈ G, and
right-invariant if v.g = v for every g ∈ G. A vector field is called bi-invariant if it is both left- and
right-invariant.

In a similar way one defines left- , right-, and bi-invariant differential forms and other tensors.

Theorem 2.27. The map v 7→ v(1) (where 1 is the identity element of the group) defines an
isomorphism of the vector space of left-invariant vector fields on G with the vector space T1G, and
similarly for right-invariant vector spaces.

Proof. It suffices to prove that every x ∈ T1G can be uniquely extended to a left-invariant vector
field on G. Let us define the extension by v(g) = g.x ∈ TgG. Then one easily sees that so defined
vector field is left-invariant, and v(1) = x. This proves existence of an extension; uniqueness is
obvious. ¤

Describing bi-invariant vector fields on G is more complicated: any x ∈ T1G can be uniquely
extended to a left-invariant vector field and to a right-invariant vector field, but these extensions
may differ.

Theorem 2.28. The map v 7→ v(1) defines an isomorphism of the vector space of bi-invariant
vector fields on G with the vector space of invariants of adjoint action:

(T1G)Ad G = {x ∈ T1G | Ad g(x) = x for all g ∈ G}.

The proof of this result is left to the reader. Note also that a similar result holds for other types
of tensor fields: covector fields, differential forms, etc.

2.7. Classical groups

In this section, we discuss the so-called classical groups, or various subgroups of the general linear
group which are frequently used in linear algebra. Traditionally, the name “classical groups” is
applied to the following groups:
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• GL(n,K) (here and below, K is either R, which gives a real Lie group, or C, which gives a
complex Lie group)

• SL(n,K)

• O(n,K)

• SO(n,K) and more general groups SO(p, q;R).

• Sp(n,K) = {A : K2n → K2n | ω(Ax,Ay) = ω(x, y)}. Here ω(x, y) is the skew-symmetric
bilinear form

∑n
i=1 xiyi+n − yixi+n (which, up to a change of basis, is the unique non-

degenerate skew-symmetric bilinear form on K2n). Equivalently, one can write ω(x, y) =
(Jx, y), where ( , ) is the standard symmetric bilinear form on K2n and

(2.5) J =
(

0 −In
In 0

)
.

Note that there is some ambiguity with the notation for symplectic group: the group we
denoted Sp(n,K) in some books would be written as Sp(2n,K).

• U(n) (note that this is a real Lie group, even though its elements are matrices with complex
entries)

• SU(n)

• Group of unitary quaternionic transformations Sp(n) = Sp(n,C) ∩ SU(2n). Another de-
scription of this group, which explains its relation with quaternions, is given in Exer-
cise 2.15.

This group is a “compact form” of the group Sp(n,C) in the sense we will describe
later (see Exercise 3.16).

We have already shown that GL(n) and SU(2) are Lie groups. In this section, we will show that
each of the classical groups listed above is a Lie group and will find their dimensions.

Straightforward approach, based on implicit function theorem, is hard: for example, SO(n,K)
is defined by n2 equations in Kn2

, and finding the rank of this system is not an easy task. We could
just refer to the theorem about closed subgroups; this would prove that each of them is a Lie group,
but would give us no other information — not even the dimension of G. Thus, we will need another
approach.

Our approach is based on the use of exponential map. Recall that for matrices, the exponential
map is defined by

(2.6) exp(x) =
∞∑
0

xk

k!
.

It is well-known that this power series converges and defines an analytic map gl(n,K) → gl(n,K),
where gl(n,K) is the set of all n× n matrices. In a similar way, we define the logarithmic map by

(2.7) log(1 + x) =
∞∑
1

(−1)k+1xk

k
.

So defined log is an analytic map defined in a neighborhood of 1 ∈ gl(n,K).

The following theorem summarizes properties of exponential and logarithmic maps. Most of the
properties are the same as for numbers; however, there are also some differences due to the fact that
multiplication of matrices is not commutative. All of the statements of this theorem apply equally
in real and complex cases.

Theorem 2.29.
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(1) log(exp(x)) = x; exp(log(X)) = X whenever they are defined.

(2) exp(x) = 1 + x+ . . . This means exp(0) = 1 and d exp(0) = id .

(3) If xy = yx then exp(x+y) = exp(x) exp(y). If XY = Y X then log(XY ) = log(X)+log(Y )
in some neighborhood of the identity. In particular, for any x ∈ gl(n,K), exp(x) exp(−x) =
1, so expx ∈ GL(n,K).

(4) For fixed x ∈ gl(n,K), consider the map K→ GL(n,K) : t 7→ exp(tx). Then exp((t+s)x) =
exp(tx) exp(sx). In other words, this map is a morphism of Lie groups.

(5) The exponential map agrees with change of basis and transposition:
exp(AxA−1) = A exp(x)A−1, exp(xt) = (exp(x))t.

Full proof of this theorem will not be given here; instead, we just give a sketch. First two
statements are just equalities of formal power series in one variable; thus, it suffices to check that
they hold for x ∈ R. Similarly, the third one is an identity of formal power series in two commuting
variables, so it again follows from well-known equality for x, y ∈ R. The fourth follows from the
third, and the fifth follows from (AxA−1)n = AxnA−1 and (At)n = (An)t.

Note that group morphisms K→ G are frequently called one-parameter subgroups in G. Thus,
we can reformulate part (4) of the theorem by saying that exp(tx) is a one-parameter subgroup in
GL(n,K).

How does it help us to study various matrix groups? The key idea is that the logarithmic map
identifies some neighborhood of the identity in GL(n,K) with some neighborhood of 0 in the vector
space gl(n,K). It turns out that it also does the same for all of the classical groups.

Theorem 2.30. For each classical group G ⊂ GL(n,K), there exists a vector space g ⊂ gl(n,K)
such that for some some neighborhood U of 1 in GL(n,K) and some neighborhood u of 0 in gl(n,K)
the following maps are mutually inverse

(U ∩G)
log

--
mm
exp

(u ∩ g)

Before proving this theorem, note that it immediately implies the following important corollary.

Corollary 2.31. Each classical group is a Lie group, with tangent space at identity T1G = g

and dimG = dim g. Groups U(n), SU(n), Sp(n) are real Lie groups; groups GL(n,K), SL(n,K),
SO(n,K), O(n,K), Sp(2n,K) are real Lie groups for K = R and complex Lie groups for K = C.

Let us prove this corollary first because it is very easy. Indeed, Theorem 2.30 shows that
near 1, G is identified with an open set in a vector space. So it is immediate that near 1, G is
locally a submanifold in GL(n,K). If g ∈ G then g · U is a neighborhood of g in GL(n,K), and
(g ·U)∩G = g · (U ∩G) is a neighborhood of g in G; thus, G is a submanifold in a neighborhood of
g.

For the second part, consider the differential of the exponential map exp∗ : T0g → T1G. Since
g is a vector space, T0g = g, and since exp(x) = 1 + x + . . . , the derivative is the identity; thus,
T0g = g = T1G.

Proof of Theorem 2.30. The proof is case by case; it can not be any other way, as “classical
groups” are defined by a list rather than by some general definition.

GL(n,K): Immediate from Theorem 2.29; in this case, g = gl(n,K) is the space of all matrices.
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SL(n,K): Suppose X ∈ SL(n,K) is close enough to identity. Then X = exp(x) for some x ∈
gl(n,K). The condition that X ∈ SL(n,K) is equivalent to detX = 1, or det exp(x) = 1.
But it is well-known that det exp(x) = exp(tr(x)) (which is easy to see by finding a basis
in which x is upper-triangular), so exp(x) ∈ SL(n,K) if and only if tr(x) = 0. Thus, in
this case the statement also holds, with g = {x ∈ gl(n,K) | trx = 0}.

O(n,K), SO(n,K): The group O(n,K) is defined by XXt = I. Then X,Xt commute. Writing
X = exp(x), Xt = exp(xt) (since exponential map agrees with transposition), we see that
x, xt also commute, and thus exp(x) ∈ O(n,K) implies exp(x) exp(xt) = exp(x+xt) = 1, so
x+xt = 0; conversely, if x+xt = 0, then x, xt commute, so we can reverse the argument to
get exp(x) ∈ O(n,K). Thus, in this case the theorem also holds, with g = {x | x+xt = 0}—
the space of skew-symmetric matrices.

What about SO(n,K)? In this case, we should add to the condition XXt = 1 (which
gives x + xt = 0) also the condition detX = 1, which gives tr(x) = 0. However, this last
condition is unnecessary, because x+ xt = 0 implies that all diagonal entries of x are zero.
So both O(n,K) and SO(n,K) correspond to the same space of matrices g = {x | x+ xt =
0}. This might seem confusing until one realizes that SO(n,K) is exactly the connected
component of identity in O(n,K); thus, neighborhood of 1 in O(n,K) coincides with the
neighborhood of 1 in SO(n,K).

U(n), SU(n): Similar argument shows that for x in a neighborhood of identity in gl(n,C),
expx ∈ U(n) ⇐⇒ x + x∗ = 0 (where x∗ = x̄t) and expx ∈ SU(n) ⇐⇒ x + x∗ =
0, tr(x) = 0. Note that in this case, x + x∗ does not imply that x has zeroes on the
diagonal: it only implies that the diagonal entries are purely imaginary. Thus, trx = 0
does not follow automatically from x + x∗ = 0, so in this case the tangent spaces for
U(n), SU(n) are different.

Sp(n,K): Similar argument shows that exp(x) ∈ Sp(n,K) ⇐⇒ x + J−1xtJ = 0 where J is
given by (2.5). Thus, in this case the theorem also holds.

Sp(n): Same arguments as above show that exp(x) ∈ Sp(n) ⇐⇒ x+J−1xtJ = 0, x+x∗ = 0.

¤

The vector space g = T1G is called the Lie algebra of the corresponding group G (this will be
justified later, when we actually define an algebra operation on it). Traditionally, the Lie algebra
is denoted by lowercase letters using Fraktur (Old German) fonts: for example, the Lie algebra of
group SU(n) is denoted by su(n).

Theorem 2.30 gives “local” information about classical Lie groups, i.e. the description of the
tangent space at identity. In many cases, it is also important to know “global” information, such as
the topology of the group G. In some low-dimensional cases, it is possible to describe the topology
of G by establishing a diffeomorphism of G with a known manifold. For example, we have shown
in Example 2.5 that SU(2) ' S3; it is shown in Exercise 2.10 that SO(3,R) ' SU(2)/Z2 and thus
is diffeomorphic to the real projective space RP3. For higher dimensional groups, the standard
method of finding their topological invariants such as fundamental groups is by using the results of
Corollary 2.12: if G acts transitively on a manifold M , then G is a fiber bundle over M with the
fiber Gm—stabilizer of point in M . Thus we can get information about fundamental groups of G
from fundamental groups of M , Gm. Details of this approach for different classical groups are given
in exercises (see Exercise 2.11, Exercise 2.12, Exercise 2.16).

The following tables summarize the results of Theorem 2.30 and computation of the fundamental
groups of classical Lie groups given in the exercises. For non-connected groups, π1(G) stands for the
fundamental group of the connected component of identity.
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G O(n,R) SO(n,R) U(n) SU(n) Sp(n)
g x+ xt = 0 x+ xt = 0 x+ x∗ = 0 x+ x∗ = 0, trx = 0 x+ J−1xtJ = x+ x∗ = 0

dimG n(n−1)
2

n(n−1)
2 n2 n2 − 1 n(2n+ 1)

π0(G) Z2 {1} {1} {1} {1}
π1(G) Z2 (n ≥ 3) Z2 (n ≥ 3) Z {1} {1}

Table 1. Compact classical groups. Here π0 is the set of connected components, π1 is the funda-
mental group (for disconnected groups, π1 is the fundamental group of the connected component
of identity), and J is given by (2.5).

G GL(n,R) SL(n,R) Sp(n,R)
g gl(n,R) trx = 0 x+ J−1xtJ = 0

dimG n2 n2 − 1 n(2n+ 1)
π0(G) Z2 {1} {1}
π1(G) Z2 (n ≥ 3) Z2 (n ≥ 3) Z

Table 2. Noncompact real classical groups

For complex classical groups, the Lie algebra and dimension are given by the same formula as
for real groups. However, the topology of complex Lie groups is different and is given in the table
below. We do not give a proof of these results, referring the reader to more advanced books such as
[32].

G GL(n,C) SL(n,C) O(n,C) SO(n,C)
π0(G) {1} {1} Z2 {1}
π1(G) Z {1} Z2 Z2

Table 3. Complex classical groups

Note that some of the classical groups are not simply-connected. As was shown in Theorem 2.7,
in this case the universal cover has a canonical structure of a Lie group. Of special importance
is the universal cover of SO(n,R) which is called the spin group and is denoted Spin(n); since
π1(SO(n,R)) = Z2, this is a twofold cover, so Spin(n) is a compact Lie group.

Exercises

2.1. Let G be a Lie group and H — a closed Lie subgroup.
(1) Let H be the closure of H in G. Show that H is a subgroup in G.
(2) Show that each coset Hx, x ∈ H, is open and dense in H.
(3) Show that H = H, that is, every Lie subgroup is closed.

2.2. (1) Show that every discrete normal subgroup of a connected Lie group is central (hint:
consider the map G→ N : g 7→ ghg−1 where h is a fixed element in N).

(2) By applying part (a) to kernel of the map G̃→ G, show that for any connected Lie group G,
the fundamental group π1(G) is commutative.

2.3. Let f : G1 → G2 be a morphism of connected Lie groups such that f∗ : T1G1 → T1G2 is an
isomorphism (such a morphism is sometimes called local isomorphism). Show that f is a covering
map, and Ker f is a discrete central subgroup.
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2.4. Let Fn(C) be the set of all flags in Cn (see Example 2.25). Show that

Fn(C) = GL(n,C)/B(n,C) = U(n)/T (n)

where B(n,C) is the group of invertible complex upper triangular matrices, and T (n) is the group
of diagonal unitary matrices (which is easily shown to be the n-dimensional torus (R/Z)n). Deduce
from this that Fn(C) is a compact complex manifold and find its dimension over C.

2.5. Let Gn,k be the set of all dimension k subspaces in Rn (usually called the Grassmanian). Show
that Gn,k is a homogeneous space for the group O(n,R) and thus can be identified with coset space
O(n,R)/H for appropriate H. Use it to prove that Gn,k is a manifold and find its dimension.

2.6. Show that if G = GL(n,R) ⊂ End(Rn) so that each tangent space is canonically identified
with End(Rn), then (Lg)∗v = gv where the product in the right-hand side is the usual product of
matrices, and similarly for the right action. Also, the adjoint action is given by Ad g(v) = gvg−1.

Exercises 2.8–2.10 are about the group SU(2) and its adjoint representation

2.7. Define a bilinear form on su(2) by (a, b) = 1
2 tr(ab

t
). Show that this form is symmetric, positive

definite, and invariant under the adjoint action of SU(2).

2.8. Define a basis in su(2) by

iσ1 =
(

0 i

i 0

)
iσ2 =

(
0 1
−1 0

)
iσ3 =

(
i 0
0 −i

)

Show that the map

(2.8)
ϕ : SU(2) → GL(3,R)

g 7→ matrix of Ad g in the basis iσ1, iσ2, iσ3

gives a morphism of Lie groups SU(2) → SO(3,R).

2.9. Let ϕ : SU(2) → SO(3,R) be the morphism defined in the previous problem. Compute explic-
itly the map of tangent spaces ϕ∗ : su(2) → so(3,R) and show that ϕ∗ is an isomorphism. Deduce
from this that Kerϕ is a discrete normal subgroup in SU(2), and that Imϕ is an open subgroup
in SO(3,R).

2.10. Prove that the map ϕ used in two previous exercises establishes an isomorphism SU(2)/Z2 →
SO(3,R) and thus, since SU(2) ' S3, SO(3,R) ' RP3.

2.11. Using Example 2.24, show that for n ≥ 1, we have π0(SU(n+1)) = π0(SU(n)), π0(U(n+1)) =
π0(U(n)) and deduce from it that groups U(n), SU(n) are connected for all n. Similarly, show
that for n ≥ 2, we have π1(SU(n+ 1)) = π1(SU(n)), π1(U(n+ 1)) = π1(U(n)) and deduce from it
that for n ≥ 2, SU(n) is simply-connected and π1(U(n)) = Z.

2.12. Using Example 2.24, show that for n ≥ 2, we have π0(SO(n + 1,R)) = π0(SO(n,R)) and
deduce from it that groups SO(n) are connected for all n ≥ 2. Similarly, show that for n ≥ 3,
π1(SO(n+ 1,R)) = π1(SO(n,R)) and deduce from it that for n ≥ 3, π1(SO(n,R)) = Z2.

2.13. Using Gram-Schmidt orthogonalization process, show that GL(n,R)/O(n,R) is diffeomorphic
to the space of upper-triangular matrices with positive entries on the diagonal. Deduce from this
that GL(n,R) is homotopic (as a topological space) to O(n,R).

2.14. Let Ln be the set of all Lagrangian subspaces in R2n with the standard symplectic form
ω defined in Section 2.7. (A subspace V is Lagrangian if dimV = n and ω(x, y) = 0 for any
x, y ∈ V .)

Show that the group Sp(n,R) acts transitively on Ln and use it to define on Ln a structure
of a smooth manifold and find its dimension.
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2.15. LetH = {a+bi+cj+dk | a, b, c, d ∈ R} be the algebra of quaternions, defined by ij = k = −ji,
jk = i = −kj, ki = j = −ik, i2 = j2 = k2 = −1, and let Hn = {(h1, . . . , hn) | hi ∈ H}. In
particular, the subalgebra generated by 1, i coincides with the field C of complex numbers.

Note that Hn has a structure of both left and right module over H defined by

h(h1, . . . , hn) = (hh1, . . . , hhn), (h1, . . . , hn)h = (h1h, . . . , hnh)

(1) Let EndH(Hn) be the algebra of endomorphisms of Hn considered as right H-module:

EndH(Hn) = {A : Hn → Hn | A(h + h′) = A(h) +A(h′), A(hh) = A(h)h}
Show that EndH(Hn) is naturally identified with the algebra of n×n matrices with quaternion
entries.

(2) Define an H–valued form ( , ) on Hn by

(h,h′) =
∑

i

hih
′
i

where a+ bi+ cj + dk = a− bi− cj − dk. (Note that uv = vu.)
Let U(n,H) be the group of “unitary quaternionic transformations”:

U(n,H) = {A ∈ EndH(Hn) | (Ah, Ah′) = (h,h′)}.
Show that this is indeed a group and that a matrix A is in U(n,H) iff A∗A = 1, where
(A∗)ij = Aji.

(3) Define a map C2n ' Hn by

(z1, . . . , z2n) 7→ (z1 + jzn+1, . . . , zn + jz2n)

Show that it is an isomorphism of complex vector spaces (if we consider Hn as a complex
vector space by z(h1, . . . hn) = (h1z, . . . , hnz)) and that this isomorphism identifies

EndH(Hn) = {A ∈ EndC(C2n) | A = J−1AJ}
where J is defined by (2.5). (Hint: use jz = zj for any z ∈ C to show that h 7→ hj is
identified with z 7→ Jz.)

(4) Show that under identification C2n ' Hn defined above, the quaternionic form ( , ) is identi-
fied with

(z, z′)− j〈z, z′〉
where (z, z′) =

∑
ziz

′
i is the standard Hermitian form in C2n and 〈z, z′〉 =

∑n
i=1(zi+nz

′
i −

ziz
′
i+n) is the standard bilinear skew-symmetric form in C2n. Deduce from this that the

group U(n,H) is identified with Sp(n) = Sp(n,C) ∩ SU(2n).

2.16. (1) Show that Sp(1) ' SU(2) ' S3.
(2) Using the previous exercise, show that we have a natural transitive action of Sp(n) on the

sphere S4n−1 and a stabilizer of a point is isomorphic to Sp(n− 1).
(3) Deduce that π1(Sp(n+ 1)) = π1(Sp(n)), π0(Sp(n+ 1)) = π0(Sp(n)).





Chapter 3

Lie Groups and Lie
algebras

3.1. Exponential map

We are now turning to the study of arbitrary Lie groups. Our first goal will be generalizing the
exponential map exp: g → G, g = T1G, which proved so useful in the study of matrix groups (see
Theorem 2.29), to general Lie groups. We can not use power series to define it because we don’t
have multiplication in g. However, it turns out that there is still a way to define such a map so that
most of the results about the exponential map for matrix groups can be generalized to arbitrary
groups, and this gives us a key to studying Lie groups. This definition is based on the notion of
one-parameter subgroup (compare with Theorem 2.29).

Proposition 3.1. Let G be a real or complex Lie group, g = T1G, and let x ∈ g. Then there exists
a unique morphism of Lie groups γx : K→ G such that

γ̇x(0) = x

where dot stands for derivative with respect to t. The map γx will be called the one-parameter
subgroup corresponding to x.

Proof. Let us first consider the case of a real Lie group. We begin with uniqueness. The usual
argument, used to compute derivative of ex in calculus, shows that if γ(t) is a one-parameter sub-
group, then γ̇(t) = γ(t) · γ̇(0) = γ̇(0) · γ(t). This is immediate for matrix groups; for general groups,
the same proof works if, as in Section 2.6, we interpret γ(t) · γ̇(0) as (Lγ(t))∗γ̇(0) and similarly for
the right action. This gives us a differential equation for γ: if vx is a left-invariant vector field on G
such that vx(1) = x, then γ is an integral curve for v. This proves uniqueness of γx(t).

For existence, let Φt : G→ G be the time t flow of the vector field vx (a priori, it is only defined
for small enough t). Since the vector field is left-invariant, the flow operator is also left-invariant:
Φt(g1g2) = g1Φt(g2). Now let γ(t) = Φt(1). Then γ(t+ s) = Φt+s(1) = Φs(Φt(1)) = Φs(γ(t) · 1) =
γ(t)Φs(1) = γ(t)γ(s) as desired. This proves existence of γ for small enough t. The fact that it can
be extended to any t ∈ R is obvious from γ(t+ s) = γ(t)γ(s).

The proof for complex Lie groups is similar but uses generalization of the usual results of the
theory of differential equations to complex setup (such as defining “time t flow” for complex time t).

¤
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Note that one-parameter subgroup may not be a closed Lie subgroup (as is easy to see from
Example 2.13); however, it will always be a Lie subgroup in G.

Definition 3.2. Let G be a real or complex Lie group, g = T1G. Then the exponential map
exp: g → G is defined by

exp(x) = γx(1)

where γx(t) is the one-parameter subgroup with tangent vector at 1 equal to x.

Note that the uniqueness of one-parameter subgroups immediately implies that γx(λt) = γλx(t)
for any λ ∈ K. Indeed, γx(λt) is a one-parameter subgroup with dγx(λt)

dt |t=0 = λx. Thus, γx(t) only
depends on the product tx ∈ g, so

γx(t) = γtx(1) = exp(tx).

Example 3.3. For G ⊂ GL(n,K), it follows from Theorem 2.29 that this definition agrees with the
exponential map defined by (2.6).

Example 3.4. Let G = R, so that g = R. Then for any a ∈ g, the corresponding one-parameter
subgroup is γa(t) = ta, so the exponential map is given by exp(a) = a.

Example 3.5. Let G = S1 = R/Z = {z ∈ C | |z| = 1} (these two descriptions are related by
z = e2πiθ, θ ∈ R/Z). Then g = R, and the exponential map is given by exp(a) = a mod Z (if we
use G = R/Z description) or exp(a) = e2πia (if we use G = {z ∈ C | |z| = 1}).

Note that the construction of the one-parameter subgroup given in the proof of Proposition 3.1
immediately gives the following result, formal proof of which is left as an exercise to the reader.

Proposition 3.6.

(1) Let v be a left-invariant vector field on G. Then the time t flow of this vector field is given
by g 7→ g exp(tx), where x = v(1).

(2) Let v be a right-invariant vector field on G. Then the time t flow of this vector field is
given by g 7→ exp(tx)g, where x = v(1).

The following theorem summarizes properties of the exponential map.

Theorem 3.7. Let G be a real or complex Lie group and g = T1G.

(1) exp(x) = 1 + x+ . . . (that is, exp(0) = 1 and exp∗(0) : g → T1G = g is the identity map).

(2) The exponential map is a diffeomorphism (for complex G, invertible analytic map) between
some neighborhood of 0 in g and a neighborhood of 1 in G. The local inverse map will be
denoted by log.

(3) exp((t+ s)x) = exp(tx) exp(sx) for any s, t ∈ K.

(4) For any morphism of Lie groups ϕ : G1 → G2 and any x ∈ g1, we have exp(ϕ∗(x)) =
ϕ(exp(x)).

(5) For any X ∈ G, y ∈ g, we have X exp(y)X−1 = exp(AdX.y), where Ad is the adjoint
action of G on g defined by (2.4).

Proof. The first statement is immediate from the definition. Differentiability (respectively, analyt-
icity) of exp follows from the construction of γx given in the proof of Proposition 3.1 and general
results about the dependence of a solution of a differential equation on initial condition. The fact
that exp is locally invertible follows from (1) and inverse function theorem.
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The third statement is again an immediate corollary of the definition (exp(tx) is a one-parameter
subgroup in G).

Statement 4 follows from the uniqueness of one-parameter subgroup. Indeed, ϕ(exp(tx)) is a one-
parameter subgroup in G2 with tangent vector at identity ϕ∗(exp∗(x)) = ϕ∗(x). Thus, ϕ(exp(tx)) =
exp(tϕ∗(x)).

The last statement is a special case of the previous one: the map Y 7→ XYX−1 is a morphism
of Lie groups G→ G. ¤

Comparing this with Theorem 2.29, we see that we have many of the same results. Notable excep-
tion is that we have no analog of the statement that if xy = yx, then exp(x) exp(y) = exp(y) exp(x).
In fact the statement does not make sense for general groups, as the product xy is not defined. A
proper analog of this statement will be proved later (Theorem 3.36).

Remark 3.8. In general, the exponential map is not surjective — see Exercise 3.1. However, it can
be shown that for compact Lie groups, the exponential map is surjective.

Proposition 3.9. Let G1, G2 be Lie groups (real or complex ). If G1 is connected, then any Lie
group morphism ϕ : G1 → G2 is uniquely determined by the linear map ϕ∗ : T1G1 → T1G2.

Proof. By Theorem 3.7, ϕ(expx) = exp(ϕ∗(x)). Since the image of the exponential map contains
a neighborhood of identity in G1, this implies that ϕ∗ determines ϕ in a neighborhood of identity
in G1. But by Corollary 2.10, any neighborhood of the identity generates G1. ¤
Example 3.10. Let G = SO(3,R). Then T1G = so(3,R) consists of skew-symmetric 3×3 matrices.
One possible choice of a basis in so(3,R) is

(3.1) Jx =




0 0 0
0 0 −1
0 1 0


 , Jy =




0 0 1
0 0 0
−1 0


 , Jz =




0 −1 0
1 0 0
0 0 0




We can explicitly describe the corresponding subgroups in G. Namely,

exp(tJx) =




1 0 0
0 cos t − sin t
0 sin t cos t




is rotation around x-axis by angle t; similarly, Jy, Jz generate rotations around y, z axes. The easiest
way to show this is to note that such rotations do form a one-parameter subgroup; thus, they must
be of the form exp(tJ) for some J ∈ so(3,R), and then compute the derivative to find J .

By Theorem 3.7, elements of the form exp(tJx), exp(tJy), exp(tJz) generate a neighborhood
of identity in SO(3,R). Since SO(3,R) is connected, by Corollary 2.10, these elements generate
the whole group SO(3,R). For this reason, it is common to refer to Jx, Jy, Jz as “infinitesimal
generators” of SO(3,R). Thus, in a certain sense SO(3,R) is generated by three elements.

3.2. The commutator

So far, we have considered g = T1G as a vector space with no additional structure. However, since
the exponential map locally identifies G with g, the multiplication in G defines a certain operation
in g. Namely, for sufficiently small x, y ∈ g, the product exp(x) exp(y) will be close to 1 ∈ G and
thus can be written in the form

exp(x) exp(y) = exp(µ(x, y))

for some smooth (for complex Lie groups, complex analytic) map µ : g × g → g defined in a neigh-
borhood of (0, 0). The map µ is sometimes called the group law in logarithmic coordinates.
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Lemma 3.11. The Taylor series for µ is given by

µ(x, y) = x+ y + λ(x, y) + . . .

where dots stand for the terms of order ≥ 3 and λ : g× g → g is a bilinear skew-symmetric (that is,
satisfying λ(x, y) = −λ(y, x)) map.

Proof. Any smooth map can be written in the form α1(x) +α2(y) +Q1(x) +Q2(y) + λ(x, y) + . . . ,
where α1, α2 are linear maps g → g, Q1, Q2 are quadratic, and λ is bilinear. Letting y = 0, we see that
µ(x, 0) = x, which gives α1(x) = x,Q1(x) = 0; similar argument shows that α2(y) = y,Q2(y) = 0.
Thus, µ(x, y) = x+ y + λ(x, y) + . . . .

To show that λ is skew-symmetric, it suffices to check that λ(x, x) = 0. But exp(x) exp(x) =
exp(2x), so µ(x, x) = x+ x. ¤

For reasons that will be clear in the future, it is traditional to introduce notation [x, y] = 2λ(x, y),
so we have

(3.2) exp(x) exp(y) = exp(x+ y +
1
2
[x, y] + . . . )

for some bilinear skew-symmetric map [ , ] : g× g → g. This map is called the commutator.

Thus, we see that for any Lie group, its tangent space at identity g = T1G has a canonical
skew-symmetric bilinear operation, which appears as the lowest non-trivial term of the Taylor series
for multiplication in G. This operation has the following properties.

Proposition 3.12.

(1) Let ϕ : G1 → G2 be a morphism of real or complex Lie groups and ϕ∗ : g1 → g2, where
g1 = T1G1, g2 = T1G2 — the corresponding map of tangent spaces at identity. Then ϕ∗
preserves the commutator:

ϕ∗[x, y] = [ϕ∗x, ϕ∗y] for any x, y ∈ g1

(2) The adjoint action of a Lie group G on g = T1G preserves the commutator: Ad g([x, y]) =
[Ad g.x,Ad g.y] for any x, y ∈ g.

(3)

(3.3) exp(x) exp(y) exp(−x) exp(−y) = exp([x, y] + . . . )

where dots stand for terms of degree three and higher.

Proof. The first statement is immediate from the definition of commutator (3.2) and the fact that
every morphism of Lie groups commutes with the exponential map (Theorem 3.7). The second
follows from the first and the fact that for any g ∈ G, the map Ad g : G → G is a morphism of Lie
groups.

The last formula is proved by explicit computation using (3.2). ¤

This theorem shows that the commutator in g is closely related with the group commutator in
G, which explains the name.

Corollary 3.13. If G is a commutative Lie group, then [x, y] = 0 for all x, y ∈ g.

Example 3.14. Let G ⊂ GL(n,K), so that g ⊂ gl(n,K). Then the commutator is given by
[x, y] = xy − yx. Indeed, using (3.3) and keeping only linear and bilinear terms, we can write
(1 + x+ . . . )(1 + y + . . . )(1− x+ . . . )(1− y + . . . ) = 1 + [x, y] + . . . which gives [x, y] = xy − yx.
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3.3. Jacobi identity and the definition of a Lie
algebra

So far, for a Lie group G, we have defined a bilinear operation on g = T1G, which is obtained
from the multiplication on G. An obvious question is whether the associativity of multiplication
gives some identities for the commutator. In this section we will answer this question; as one might
expect, the answer is “yes”.

By results of Proposition 3.12, any morphism ϕ of Lie groups gives rise to a map ϕ∗ of corre-
sponding tangent spaces at identity which preserves the commutator. Let us apply it to the adjoint
action defined in Section 2.6, which can be considered as a morphism of Lie groups

(3.4) Ad: G→ GL(g).

Lemma 3.15. Denote by ad = Ad∗ : g → gl(g) the map of tangent spaces corresponding to the map
(3.4). Then

(1) adx.y = [x, y]

(2) Ad(expx) = exp(adx) as operators g → g.

Proof. By definition of Ad, we have Ad g.y = d
dt |t=0

(
g exp(ty)g−1

)
. Thus, we see that ad is defined

by

adx.y =
d

ds

d

dt
exp(sx) exp(ty) exp(−sx)|t=s=0

On the other hand, by (3.3), exp(sx) exp(ty) exp(−sx) = exp(ty + ts[x, y] + . . . ). Combining
these two results, we see that adx.y = [x, y].

The second part is immediate from Theorem 3.7. ¤

Theorem 3.16. Let G be a real or complex Lie group, g = T1G and let the commutator [ , ] : g×g → g

be defined by (3.2). Then it satisfies the following identity, called Jacobi identity:

(3.5) [x, [y, z]] = [[x, y], z] + [y, [x, z]].

This identity can also be written in any of the following equivalent forms:

(3.6)

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0

adx.[y, z] = [adx.y, z] + [y, adx.z]

ad[x, y] = adx ad y − ad y adx.

Proof. Since Ad is a morphism of Lie groups G→ GL(g), by Proposition 3.12, ad: g → gl(g) must
preserve commutator. But the commutator in gl(g) is given by [A,B] = AB−BA (see Example 3.14),
so ad[x, y] = adx ad y − ad y adx, which proves the last formula of (3.6).

Equivalence of all forms of Jacobi identity is left as an exercise to the reader (see Exercise 3.3).
¤

Definition 3.17. A Lie algebra over a field K is a vector space g over K with a K-bilinear map
[ , ] : g× g → g which is skew-symmetric: [x, y] = −[y, x] and satisfies Jacobi identity (3.5).

A morphism of Lie algebras is a K-linear map f : g1 → g2 which preserves the commutator.

This definition makes sense for any field; however, in this book we will only consider real (K = R)
and complex (K = C) Lie algebras.
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Example 3.18. Let g be a vector space with the commutator defined by [x, y] = 0 for all x, y ∈ g.
Then g is a Lie algebra; such a Lie algebra is called commutative, or abelian, Lie algebra. This is
motivated by Corollary 3.13, where it was shown that for a commutative Lie group G, g = T1G is
naturally a commutative Lie algebra

Example 3.19. Let A be an associative algebra over K. Then the formula

[x, y] = xy − yx

defines on A a structure of a Lie algebra, which can be checked by a direct computation.

Using the notion of a Lie algebra, we can summarize much of the results of the previous two
sections in the following theorem.

Theorem 3.20. Let G be a real or complex Lie group. Then g = T1G has a canonical structure of a
Lie algebra over K with the commutator defined by (3.2); we will denote this Lie algebra by Lie(G).

Every morphism of Lie groups ϕ : G1 → G2 defines a morphism of Lie algebras ϕ∗ : g1 → g2,
so we have a map Hom(G1, G2) → Hom(g1, g2); if G1 is connected, then this map is injective:
Hom(G1, G2) ⊂ Hom(g1, g2).

3.4. Subalgebras, ideals, and center

In the previous section, we have shown that for every Lie group G the vector space g = T1G has a
canonical structure of a Lie algebra, and every morphism of Lie groups gives rise to a morphism of
Lie algebras.

Continuing the study of this correspondence between groups and algebras, we define analogs of
Lie subgroups and normal subgroups.

Definition 3.21. Let g be a Lie algebra over K. A subspace h ⊂ g is called a Lie subalgebra if it
is closed under commutator, i.e. for any x, y ∈ h, we have [x, y] ∈ h. A subspace h ⊂ g is called an
ideal if for any x ∈ g, y ∈ h, we have [x, y] ∈ h.

It is easy to see that if h is an ideal, then g/h has a canonical structure of a Lie algebra.

Theorem 3.22. Let G be a real or complex Lie group with Lie algebra g.

(1) Let H be a Lie subgroup in G (not necessarily closed). Then h = T1H is a Lie subalgebra
in g.

(2) Let H be a normal closed Lie subgroup in G. Then h = T1H is an ideal in g, and
Lie(G/H) = g/h.

Conversely, if H is a closed Lie subgroup in G, such that H,G are connected and
h = T1H is an ideal in g, then H is normal.

Proof. It easily follows from uniqueness statement for one-parameter subgroups that if x ∈ T1H,
then exp(tx) ∈ H for all t ∈ K. Using formula (3.3) for commutator, we see that for x, y ∈ h,
left-hand side is in H; thus, [x, y] must be in T1H = h.

Similarly, if H is a normal subgroup, then exp(x) exp(y) exp(−x) ∈ H for any x ∈ g, y ∈ h, so
the left-hand side of (3.3) is again in H. Identity Lie(G/H) = g/h follows from Theorem 2.11.

Finally, if h is an ideal in g, then it follows from Ad(exp(x)) = exp(adx) (Lemma 3.15) that
for any x ∈ g, Ad(exp(x)) preserves h. Since expressions of the form exp(x), x ∈ g, generate G
(Corollary 2.10), this shows that for any g ∈ G, Ad g preserves h. Since by Theorem 3.7,

g exp(y)g−1 = exp(Ad g.y), g ∈ G, y ∈ g,
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we see that for any y ∈ h, g exp(y)g−1 ∈ H. Since expressions exp y, y ∈ h, generate H, we see that
ghg−1 ∈ H for any h ∈ H. ¤

3.5. Lie algebra of vector fields

In this section, we illustrate the theory developed above in the example of the group Diff(M) of
diffeomorphisms of a manifold M . For simplicity, throughout this section we only consider the case
of real manifolds; however, all results also hold for complex manifolds.

The group Diff(M) is not a Lie group (it is infinite-dimensional), but in many ways it is similar
to Lie groups. For example, it is easy to define what a smooth map from some group G to Diff(M)
is: it is the same as an action of G on M by diffeomorphisms. Ignoring the technical problem with
infinite-dimensionality for now, let us try to see what is the natural analog of the Lie algebra for the
group Diff(M). It should be the tangent space at the identity; thus, its elements are derivatives of
one-parameter families of diffeomorphisms.

Let ϕt : M →M be a one-parameter family of diffeomorphisms. Then, for every point m ∈M ,
ϕt(m) is a curve in M and thus d

dtϕ
t(m) ∈ TmM is a tangent vector to M at m. In other words,

d
dtϕ

t is a vector field on M . Thus, it is natural to define the Lie algebra of Diff(M) to be the space
Vect(M) of all smooth vector fields on M .

What is the exponential map? If ξ ∈ Vect(M) is a vector field, then exp(tξ) should be a one-
parameter family of diffeomorphisms whose derivative is vector field ξ. So this is the solution of the
differential equation

d

dt
ϕt(m)|t=0 = ξ(m).

In other words, ϕt is the time t flow of the vector field ξ. We will denote it by

(3.7) exp(tξ) = Φt
ξ.

This may not be defined globally, but for the moment, let us ignore this problem.

What is the commutator [ξ, η]? By (3.3), we need to consider Φt
ξΦ

s
ηΦt

−ξΦ
s
−η. It is well-known

that this might not be the identity (if a plane flies 500 miles north, then 500 miles west, then 500
miles south, then 500 miles east, then it does not necessarily lands at the same spot it started—
because Earth is not flat). By analogy with (3.3), we expect that this expression can be written in
the form 1 + ts[ξ, η] + . . . for some vector field [ξ, η]. This is indeed so, as the following proposition
shows.

Proposition 3.23.

(1) Let ξ, η ∈ Vect(M) be vector fields on M . Then there exists a unique vector field which we
will denote by [ξ, η] such that

(3.8) Φt
ξΦ

s
ηΦt

−ξΦ
s
−η = Φts

[ξ,η] + . . . ,

where dots stand for the terms of order 3 and higher in s, t.

(2) The commutator (3.8) defines on the space of vector fields a structure of an (infinite-
dimensional) real Lie algebra.

(3) The commutator can also be defined by any of the following formulas:

[ξ, η] =
d

dt
(Φt

ξ)∗η(3.9)

∂[ξ,η]f = ∂η(∂ξf)− ∂ξ(∂ηf), f ∈ C∞(M)(3.10)
[∑

fi∂i,
∑

gj∂j

]
=

∑

i,j

(gi∂i(fj)− fi∂i(gj))∂j(3.11)
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where ∂ξ(f) is the derivative of a function f in the direction of the vector field ξ, and
∂i = ∂

∂xi for some local coordinate system {xi}.

The first two parts are, of course, to be expected, by analogy with finite-dimensional situation.
However, since Diff(M) is not a finite-dimensional Lie group, we can not just refer to Theorem 3.20
but need to give a separate proof. Such a proof, together with the proof of the last part, can be
found in any good book on differential geometry, for example in [49].

Remark 3.24. In many books the definition of commutator of vector fields differs by sign from the
one given here. Both versions define on the space of vector fields a structure of Lie algebra, so it
is a matter of choice which of the definitions to use. However, in our opinion the definition here —
which naturally arises from the multiplication in the diffeomorphism group — is more natural, so
we use it. Thus, when using results from other books, be sure to double-check which definition of
commutator they use for vector fields.

The reason for the appearance of the minus sign is that the action of a diffeomorphism Φ: M →
M on functions on M is given by (Φf)(m) = f(Φ−1m) (note the inverse!); thus, the derivative
∂ξf = − d

dtΦ
t
ξf . For example, if ξ = ∂x is the constant vector field on R, then the flow on points is

given by Φt : x 7→ x+ t, and on functions it is given by (Φtf)(x) = f(x− t), so ∂xf = − d
dtΦ

tf .

Theorem 3.25. Let G be a finite-dimensional Lie group acting on a manifold M , so we have a
map ρ : G→ Diff(M). Then

(1) This action defines a linear map ρ∗ : g → Vect(M).

(2) The map ρ∗ is a morphism of Lie algebras: ρ∗[x, y] = [ρ∗(x), ρ∗(y)], where the commutator
in the right-hand side is the commutator of vector fields.

If Diff(M) were a Lie group, this result would be a special case of Proposition 3.12. Since
Diff(M) is not a Lie group, we need to give a separate proof, suitably modifying the proof of
Proposition 3.12. We leave this as an exercise to the reader.

We will refer to the map ρ∗ : g → Vect(M) as action of g by vector fields on M .

Example 3.26. Consider the standard action of GL(n,R) on Rn. Considering Rn as a manifold
and forgetting the structure of a vector space, we see that each element a ∈ gl(n,R) defines a vector
field on Rn. An easy calculation shows that this vector field is given by va(x) =

∑
aijxj∂i, where

x1, . . . xn are the coordinates of a point x in the standard basis of Rn, and ∂i = ∂
∂xi

.

Another important example is the action of G on itself by left multiplication.

Proposition 3.27. Consider the action of a Lie group G on itself by left multiplication: Lg.h = gh.
Then for every x ∈ g, the corresponding vector field ξ = L∗x ∈ Vect(G) is the right-invariant vector
field such that ξ(1) = x.

Proof. Consider the one-parameter subgroup exp(tx) ⊂ G. By Proposition 3.6, for any g ∈ G, we
have L∗x(g) = d

dt |t=0(exp(tx)g) = xg. ¤

Corollary 3.28. The isomorphism g ' {right-invariant vector fields on G} defined in Theorem 2.27
is an isomorphism of Lie algebras.

An analog of this statement for left-invariant fields is given in Exercise 3.4.
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3.6. Stabilizers and the center

Having developed the basic theory of Lie algebras, we can now go back to proving various results
about Lie groups which were announced in Chapter 2, such as proving that the stabilizer of a point
is a closed Lie subgroup.

Theorem 3.29. Let G be a Lie group acting on a manifold M (respectively, a complex Lie group
holomorphically acting on a complex manifold M), and let m ∈M .

(1) The stabilizer Gm = {g ∈ G | gm = m} is a closed Lie subgroup in G, with Lie algebra
h = {x ∈ g | ρ∗(x)(m) = 0}, where ρ∗(x) is the vector field on M corresponding to x.

(2) The map G/Gm →M given by g 7→ g.m is an immersion. Thus, the orbit Om = G ·m is
an immersed submanifold in M , with tangent space TmO = g/h.

Proof. As in the proof of Theorem 2.30, it suffices to show that in some neighborhood U of 1 ∈ G
the intersection U ∩Gm is a submanifold with tangent space T1Gm = h.

It easily follows from (3.10) that h is closed under commutator, so it is a Lie subalgebra in g. Also,
since for x ∈ h, the corresponding vector field ξ = ρ∗(x) vanishes at m, we have ρ(exp(th))(m) =
Φt

ξ(m) = m, so exp(th) ∈ Gm.

Now let us choose some vector subspace (not a subalgebra!) u ⊂ g which is complementary to
h: g = h ⊕ u. Since the kernel of the map ρ∗ : g → TmM is h, the restriction of this map to u is
injective. By implicit function theorem, this implies that the map u → M : y 7→ ρ(exp(y))(m) is
injective for sufficiently small y ∈ u, so exp(y) ∈ Gm ⇐⇒ y = 0.

Since in a sufficiently small neighborhood U of 1 in G, any element g ∈ U can be uniquely
written in the form exp(y) exp(x), y ∈ u, x ∈ h (which follows from inverse function theorem), and
exp(y) exp(x)m = exp(y)m, we see that g ∈ Gm ⇐⇒ g ∈ exp(h). Since exp h is a submanifold in a
neighborhood of 1 ∈ G, we see that Gm is a submanifold.

The same proof also shows that we have an isomorphism T1(G/Gm) = g/h ' u, so injectivity
of the map ρ∗ : u→ TmM shows that the map G/Gm →M is an immersion. ¤

This theorem immediately implies a number of corollaries. In particular, we get the following
result which was announced in Theorem 2.15.

Corollary 3.30. Let f : G1 → G2 be a morphism of real or complex Lie groups, and f∗ : g1 → g2—
the corresponding morphism of Lie algebras. Then Ker f is a closed Lie subgroup with Lie algebra
Ker f∗, and the map G1/Ker f → G2 is an immersion. If Im f is a submanifold and thus a closed
Lie subgroup, we have a Lie group isomorphism Im f ' G1/Ker f .

Proof. Consider the action of G1 on G2 given by ρ(g).h = f(g)h, g ∈ G1, h ∈ G2. Then the
stabilizer of 1 ∈ G2 is exactly Ker f , so by the previous theorem, it is a closed Lie subgroup with
Lie algebra Ker f∗, and G1/Ker f ↪→ G2 is an immersion. ¤

Corollary 3.31. Let V be a representation of a group G, and v ∈ V . Then the stabilizer Gv is a
closed Lie subgroup in G with Lie algebra {x ∈ g | x.v = 0}.
Example 3.32. Let V be a vector space over K with a bilinear form B, and let

O(V,B) = {g ∈ GL(V ) | B(g.v, g.w) = B(v, w) for all v, w}
be the group of symmetries of B. Then it is a Lie group over K with the Lie algebra

o(V,B) = {x ∈ gl(V ) | B(x.v, w) +B(v, x.w) = 0 for all v, w}
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Indeed, define the action of G on the space of bilinear forms by (gF )(v, w) = F (g−1.v, g−1.w).
Then O(V,B) is exactly the stabilizer of B, so by Corollary 3.31, it is a Lie group. Since the
corresponding action of g is given by (xF )(v, w) = −F (x.v, w) − F (v, x.w) (which follows from
Leibniz rule), we get the formula for o(V,B).

As special cases, we recover the usual groups O(n,K) and Sp(n,K).

Example 3.33. Let A be a finite-dimensional associative algebra over K. Then the group of all
automorphisms of A

Aut(A) = {g ∈ GL(A) | (ga) · (gb) = g(a · b) for all a, b ∈ A}
is a Lie group with Lie algebra

(3.12) Der(A) = {x ∈ gl(A) | (x.a)b+ a(x.b) = x.(ab) for all a, b ∈ A}
(this Lie algebra is called the algebra of derivations of A).

Indeed, if we consider the space W of all linear maps A⊗A→ A and define the action of G by
(g.f)(a⊗ b) = gf(g−1a⊗ g−1b) then AutA = Gµ, where µ : A⊗A→ A is the multiplication. So by
Corollary 3.31, Aut(A) is a Lie group with Lie algebra Der(A).

The same argument also shows that for a finite-dimensional Lie algebra g, the group

(3.13) Aut(g) = {g ∈ GL(g) | [ga, gb] = g[a, b] for all a, b ∈ g}
is a Lie group with Lie algebra

(3.14) Der(g) = {x ∈ gl(g) | [x.a, b] + [a, x.b] = x.[a, b] for all a, b ∈ g}
called the Lie algebra of derivations of g. This algebra will play an important role in the future.

Finally, we can show that the center of G is a closed Lie subgroup.

Definition 3.34. Let g be a Lie algebra. The center of g is defined by

z(g) = {x ∈ g | [x, y] = 0 ∀y ∈ g}.

Obviously, z(g) is an ideal in g.

Theorem 3.35. Let G be a connected Lie group. Then its center Z(G) is a closed Lie subgroup
with Lie algebra z(g).

Proof. Let g ∈ G, x ∈ g. It follows from the identity exp(Ad g.tx) = g exp(tx)g−1 that g commutes
with all elements of one-parameter subgroup exp(tx) iff Ad g.x = x. Since for a connected Lie group,
elements of the form exp(tx) generate G, we see that g ∈ Z(G) ⇐⇒ Ad g.x = x for all x ∈ g. In
other words, Z(G) = Ker Ad, where Ad: G→ GL(g) is given by the adjoint action. Now the result
follows from Corollary 3.30. ¤

The quotient group G/Z(G) is usually called the adjoint group associated with G and denoted
AdG:

(3.15) AdG = G/Z(G) = Im(Ad: G→ GL(g))

(for connected G). The corresponding Lie algebra is

(3.16) ad g = g/z(g) = Im(ad: g → gl(g)).
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3.7. Campbell–Hausdorff formula

So far, we have shown that the multiplication in a Lie group G defines the commutator in g = T1G.
However, the definition of commutator (3.2) only used the lowest non-trivial term of the group law
in logarithmic coordinates. Thus, it might be expected that higher terms give more operations on g.
However, it turns out that it is not so: the whole group law is completely determined by the lowest
term, i.e. by the commutator. The following theorem gives the first indication of this.

Theorem 3.36. Let x, y ∈ g be such that [x, y] = 0. Then exp(x) exp(y) = exp(x + y) =
exp(y) exp(x).

Proof. The most instructive (but not the easiest; see Exercise 3.12) way of deducing this theorem is
as follows. Let ξ, η be right-invariant vector fields corresponding to x, y respectively, and let Φt

ξ,Φ
t
η

be time t flows of these vector fields respectively (see Section 3.5). By Corollary 3.28, [ξ, η] = 0. By
(3.9), it implies that d

dt (Φ
t
ξ)∗η = 0, which implies that (Φt

ξ)∗η = η, i.e. the flow of ξ preserves field
η. This, in turn, implies that Φt

ξ commutes with the flow of field η, so Φt
ξΦ

s
ηΦ−t

ξ = Φs
η. Applying

this to point 1 ∈ G and using Proposition 3.6, we get exp(tx) exp(sy) exp(−tx) = exp(sy), so
exp(tx), exp(sy) commute for all values of s, t.

In particular, this implies that exp(tx) exp(ty) is a one-parameter subgroup; computing the
tangent vector at t = 0, we see that exp(tx) exp(ty) = exp(t(x+ y)). ¤

In fact, similar ideas allow one to prove the following general statement, known as Campbell–
Hausdorff formula.

Theorem 3.37. For small enough x, y ∈ g one has

exp(x) exp(y) = exp(µ(x, y))

for some g-valued function µ(x, y) which is given by the following series convergent in some neigh-
borhood of (0, 0):

(3.17) µ(x, y) = x+ y +
∑

n≥2

µn(x, y)

where µn(x, y) is a Lie polynomial in x, y of degree n, i.e. an expression consisting of commutators
of x, y, their commutators, etc., of total degree n in x, y. This expression is universal: it does not
depend on the Lie algebra g or on the choice of x, y.

It is possible to write the expression for µ explicitly (see, e.g., [10]). However, this is rarely
useful, so we will only write the first several terms:

(3.18) µ(x, y) = x+ y +
1
2
[x, y] +

1
12

(
[x, [x, y]] + [y, [y, x]]

)
+ . . .

The proof of this theorem is rather long. The key idea is writing the differential equation for
the function Z(t) = µ(tx, y); the right-hand side of this equation will be a power series of the form∑
ant

n(adx)ny. Solving this differential equation by power series gives the Campbell–Hausdorff
formula. Details of the proof can be found, for example, in [10, Section 1.6].

Corollary 3.38. The group operation in a connected Lie group G can be recovered from the com-
mutator in g = T1G.

Indeed, locally the group law is determined by Campbell–Hausdorff formula, and G is generated
by a neighborhood of 1.
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Note, however, that by itself this corollary does not allow us to recover the group G from its Lie
algebra g: it only allows us to determine the group law provided that we already know the structure
of G as a manifold.

3.8. Fundamental theorems of Lie theory

Let us summarize the results we have so far about the relation between Lie groups and Lie algebras:

(1) Every real or complex Lie group G defines a Lie algebra g = T1G (respectively, real or
complex), with commutator defined by (3.2); we will write g = Lie(G). Every morphism
of Lie groups ϕ : G1 → G2 defines a morphism of Lie algebras ϕ∗ : g1 → g2. For connected
G1, the map

Hom(G1, G2) → Hom(g1, g2)

ϕ 7→ ϕ∗

is injective. (Here Hom(g1, g2) is the set of Lie algebra morphisms.)

(2) As a special case of the previous, every Lie subgroup H ⊂ G defines a Lie subalgebra h ⊂ g.

(3) The group law in a connected Lie group G can be recovered from the commutator in g;
however, we do not yet know whether we can also recover the topology of G from g.

However, this still leaves a number of questions:

(1) Given a morphism of Lie algebras g1 → g2, where g1 = Lie(G1), g2 = Lie(G2), can this
morphism be always lifted to a morphism of the Lie groups?

(2) Given a Lie subalgebra h ⊂ g = Lie(G), does there always exist a corresponding Lie
subgroup H ⊂ G?

(3) Can every Lie algebra be obtained as a Lie algebra of a Lie group?

As the following example shows, in this form the answer to question 1 is negative.

Example 3.39. Let G1 = S1 = R/Z, G2 = R. Then the Lie algebras are g1 = g2 = R with zero
commutator. Consider the identity map g1 → g2 : a 7→ a. Then the corresponding morphism of Lie
groups, if exists, should be given by θ 7→ θ; on the other hand, it must also satisfy f(Z) = {0}.
Thus, this morphism of Lie algebras can not be lifted to a morphism of Lie groups.

In this example the difficulty arose because G1 was not simply-connected. It turns out that
this is the only difficulty: after taking care of this, the answers to all the questions posed above are
positive. The following theorems give precise statements.

Theorem 3.40. For any real or complex Lie group G, there is a bijection between connected Lie
subgroups H ⊂ G and Lie subalgebras h ⊂ g, given by H → h = Lie(H) = T1H.

Theorem 3.41. If G1, G2 are Lie groups (real or complex ) and G1 is connected and simply con-
nected, then Hom(G1, G2) = Hom(g1, g2), where g1, g2 are Lie algebras of G1, G2 respectively.

Theorem 3.42 (Lie’s third theorem). Any finite-dimensional real or complex Lie algebra is iso-
morphic to a Lie algebra of a Lie group (respectively, real or complex ).

Theorems 3.40—3.42 are the fundamental theorems of Lie theory; their proofs are discussed
below. In particular, combining these theorems with the previous results, we get the following
important corollary.
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Corollary 3.43. For any real or complex finite-dimensional Lie algebra g, there is a unique (up to
isomorphism) connected simply-connected Lie group G (respectively, real or complex ) with Lie(G) =
g. Any other connected Lie group G′ with Lie algebra g must be of the form G/Z for some discrete
central subgroup Z ⊂ G.

Proof. By Theorem 3.42, there is a Lie group with Lie algebra g. Taking the universal cover of
the connected component of identity in this group (see Theorem 2.7), we see that there exists a
connected, simply-connected G with Lie(G) = g. By Theorem 3.41, if G′ is another connected
Lie group with Lie algebra g, then there is a group homomorphism G → G′ which is locally an
isomorphism; thus, by results of Exercise 2.3, G′ = G/Z for some discrete central subgroup Z.

Uniqueness of simply-connected group G now follows from π1(G/Z) = Z (Theorem 2.7). ¤

This corollary can be reformulated as follows.

Corollary 3.44. The categories of finite-dimensional Lie algebras and connected, simply-connected
Lie groups are equivalent.

We now turn to the discussion of the proofs of the fundamental theorems.

Proof of Theorem 3.42. Proof of this theorem is rather complicated and full details will not be
given here. The basic idea is to show that any Lie algebra is isomorphic to a subalgebra in gl(n,K)
(this statement is known as Ado theorem), after which we can use Theorem 3.40. However, the
proof of Ado theorem is long and requires a lot of structure theory of Lie algebras, some of which
will be given in the subsequent chapters. The simplest case is when the Lie algebra has no center
(that is, adx 6= 0 for all x), then x 7→ adx gives an embedding g ⊂ gl(g). Proof of the general case
can be found, e.g., in [24]. ¤

Proof of Theorem 3.41. We will show that this theorem follows from Theorem 3.40. Indeed, we
already discussed that any morphism of Lie groups defines a morphism of Lie algebras and that
for connected G1, the map Hom(G1, G2) → Hom(g1, g2) is injective (see Theorem 3.20). Thus, it
remains to show that it is surjective, i.e. that every morphism of Lie algebras f : g1 → g2 can be
lifted to a morphism of Lie groups ϕ : G1 → G2 with ϕ∗ = f .

Define G = G1 × G2. Then the Lie algebra of G is g1 × g2. Let h = {(x, f(x)) | x ∈ g1} ⊂ g.
This is a subalgebra: it is obviously a subspace, and [(x, f(x)), (y, f(y))] = ([x, y], [f(x), f(y)]) =
([x, y], f([x, y])) (the last identity uses that f is a morphism of Lie algebras). Theorem 3.40 implies
that there is a corresponding connected Lie subgroup H ↪→ G1 × G2. Composing this embedding
with the projection p : G1 × G2 → G1, we get a morphism of Lie groups π : H → G1, and π∗ : h =
Lie(H) → g1 is an isomorphism. By results of Exercise 2.3, π is a covering map. On the other
hand, G1 is simply-connected, and H is connected, so π must be an isomorphism. Thus, we have
an inverse map π−1 : G1 → H.

Now construct the map ϕ : G1 → G2 as a composition G1
π−1

−−→ H ↪→ G1 × G2 → G2. By
definition, it is a morphism of Lie groups, and ϕ∗ : g1 → g2 is the composition x 7→ (x, f(x)) 7→ f(x).
Thus, we have lifted f to a morphism of Lie groups. ¤

Remark 3.45. In fact, the arguments above can be reversed to deduce Theorem 3.40 from Theo-
rem 3.41. For example, this is the way these theorems are proved in [41].

Proof of Theorem 3.40. We will be give the proof in the real case; proof in the complex case is
similar.
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The proof we give here is based on the notion of integrable distribution. For reader’s convenience,
we give the basic definitions here; details can be found in [49] or [55].

A k-dimensional distribution on a manifold M is a k-dimensional subbundle D ⊂ TM . In other
words, at every point p ∈M we have a k-dimensional subspace Dp ⊂ TpM , which smoothly depends
on p. This is a generalization of a well-known notion of direction field, commonly used in the theory
of ordinary differential equations. For a vector field v wil will write v ∈ D if for every point p we
have v(p) ∈ Dp.

An integral manifold for a distribution D is a k-dimensional submanifold X ⊂ M such that
at every point p ∈ X, we have TpX = Dp. Again, this is a straightforward generalization of the
notion of an integral curve. However, for k > 1, existence of integral manifolds (even locally) is not
automatic. We say that a distribution D is completely integrable if for every p ∈ M , locally there
exists an integral manifold containing p (it is easy to show that such an integral manifold is unique).

The following theorem gives a necessary and sufficient criterion of integrability of a distribution.

Theorem 3.46 (Frobenius integrability criterion). A distribution D on M is completely integrable
if and only if for any two vector fields ξ, η ∈ D, one has [ξ, η] ∈ D.

Proof of this theorem can be found in many books on differential geometry, such as [49] and
[55], and will not be repeated here.

Integrability is a local condition: it guarantees existence of an integral manifold in a neighbor-
hood of a given point. It is natural to ask whether this local integral manifold can be extended to
give a closed submanifold of M . The following theorem gives the answer.

Theorem 3.47. Let D be a completely integrable distribution on M . Then for every point p ∈ M ,
there exists a unique connected immersed integral submanifold N ⊂ M of D which contains p and
is maximal, i.e. contains any other connected immersed integral submanifold containing p.

Note, however, that the integral submanifold needs not be closed: in general, it is not even an
embedded submanifold but only an immersed one.

As before, we refer the reader to [49], [55] for the proof.

Let us now apply this theory to constructing, for a given Lie group G and subalgebra h ⊂ g, the
corresponding Lie subgroup H ⊂ G.

Notice that if such an H exists, then at every point p ∈ H, TpH = (T1H)p = h.p (as in
Section 2.6, we use notation v.p as a shorthand for (Rp−1)∗v). Thus, H will be an integral manifold
of the distribution Dh defined by Dh

p = h.p. Let us use this to construct H.

Lemma 3.48. For every point g ∈ G, there is locally an integral manifold of the distribution Dh

containing g, namely H0 · g, where H0 = expu for some neighborhood u of 0 in h.

This lemma can be easily proved using Frobenius theorem. Indeed, the distribution Dh is
generated by right-invariant vector fields corresponding to elements of h. Since h is closed under [ , ],
and commutator of right invariant vector fields coincides with the commutator in g (Corollary 3.28),
this shows that the space of fields tangent to Dh is closed under the commutator, and thus Dh is
completely integrable.

To get an explicit description of the integral manifold, note that by Proposition 3.6, the curve
etxg for x ∈ h is the integral curve for a right invariant vector field corresponding to x and thus this
curve must be in the integral manifold. Thus, for small enough x ∈ h, exp(x)g is in the integral
manifold passing through g. Comparing dimensions we get the statement of the lemma.
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Alternatively, this lemma can also be proved without use of Frobenius theorem but using
Campbell–Hausdorff formula instead.

Now that we have proved the lemma, we can construct the immersed subgroup H as the maximal
connected immersed integral manifold containing 1 (see Theorem 3.47). The only thing which
remains to be shown is that H is a subgroup. But since the distribution Dh is right-invariant, right
action of G on itself sends integral manifolds to integral manifolds; therefore, for any p ∈ H, H ·p will
be an integral manifold for Dh containing p. Since H itself also contains p, we must have H · p = H,
so H is a subgroup.

¤

3.9. Complex and real forms

An interesting application of the correspondence between Lie groups and Lie algebras is the interplay
between real and complex Lie algebras and groups.

Definition 3.49. Let g be a real Lie algebra. Its complexification is the complex Lie algebra
gC = g ⊗R C = g ⊕ ig with the obvious commutator. In this situation, we will also say that g is a
real form of gC.

In some cases, complexification is obvious: for example, if g = sl(n,R), then gC = sl(n,C). The
following important example, however, is less obvious.

Example 3.50. Let g = u(n). Then gC = gl(n,C).

Indeed, this immediately follows from the fact that any complex matrix can be uniquely written
as a sum of skew-hermitian (i.e., from u(n)) and hermitian (iu(n)) matrices.

These notions can be extended to Lie groups. For simplicity, we only consider the case of
connected groups.

Definition 3.51. Let G be a connected complex Lie group, g = Lie(G) and let K ⊂ G be a closed
real Lie subgroup in G such that k = Lie(K) is a real form of g. Then K is called a real form of G.

It can be shown (see Exercise 3.15) that if g = Lie(G) is the Lie algebra of a connected simply-
connected complex Lie group G, then every real form k ⊂ g can be obtained from a real form K ⊂ G

of the Lie group.

Going in the opposite direction, from a real Lie group to a complex one, is more subtle: there
are real Lie groups that can not be obtained as real forms of a complex Lie group (for example, it is
known that the universal cover of SL(2,R) is not a real form of any complex Lie group). It is still
possible to define a complexification GC for any real Lie group G; however, in general G is not a
subgroup of GC. Detailed discussion of this can be found in [15, Section I.7].

Example 3.52. The group G = SU(n) is a compact real form of the complex group SL(n,C).

The operation of complexification, which is trivial at the level of Lie algebras, is highly non-
trivial at the level of Lie groups. Lie groups G and GC may be topologically quite different: for
example, SU(n) is compact while SL(n,C) is not. On the other hand, it is natural to expect —
and is indeed so, as we will show later — that g and gC share many algebraic properties, such as
semisimplicity. Thus, we may use, for example, compact group SU(n) to prove some results about
non-compact group SL(n,C). Moreover, since sl(n,R)C = sl(n,C), this will also give us results about
non-compact real group SL(n,R). We will give an application of this to the study of representations
of Lie groups in the next chapter.
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3.10. Example: so(3,R), su(2), and sl(2,C).

In this section, we bring together various explicit formulas related to Lie algebras so(3,R), su(2),
sl(2,C). Most of these results have appeared before in various examples and exercises; this section
brings them together for reader’s convenience. This section contains no proofs: they are left to the
reader as exercises.

Basis and commutation relations. A basis in so(3,R) is given by matrices

(3.19) Jx =




0 0 0
0 0 −1
0 1 0


 , Jy =




0 0 1
0 0 0
−1 0 0


 , Jz =




0 −1 0
1 0 0
0 0 0




The corresponding one-parameter subgroups in SO(3,R) are rotations: exp(tJx) is rotation by angle
t around x-axis, and similarly for y, z.

The commutation relations are given by

(3.20) [Jx, Jy] = Jz, [Jy, Jz] = Jx, [Jz, Jx] = Jy.

A basis in su(2) is given by so-called Pauli matrices multiplied by i:

(3.21) iσ1 =
(

0 i

i 0

)
, iσ2 =

(
0 1
−1 0

)
, iσ3 =

(
i 0
0 −i

)
.

The commutation relations are given by

(3.22) [iσ1, iσ2] = −2iσ3, [iσ2, iσ3] = −2iσ1, [iσ3, iσ1] = −2iσ2.

Since sl(2,C) = su(2)⊗ C, the same matrices can also be taken as a basis of sl(2,C). However,
it is customary to use the following basis in sl(2,C):

(3.23) e =
(

0 1
0 0

)
, f =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
.

In this basis, the commutation relations are given by

(3.24) [e, f ] = h, [h, e] = 2e, [h, f ] = −2f.

Invariant bilinear form. Each of these Lie algebras has an AdG-invariant symmetric bilinear
form. In each case, it can be defined by (x, y) = − tr(xy) (of course, it could also be defined without
the minus sign). For so(3,R), this form can also be rewritten as (x, y) = tr(xyt); for su(n), as
(x, y) = tr(xȳt), which shows that in these two cases this form is positive definite. In terms of bases
defined above, it can be written as follows:

• so(3,R): elements Jx, Jy, Jz are orthogonal to each other, and (Jx, Jx) = (Jy, Jy) =
(Jz, Jz) = 2

• su(2): elements iσk are orthogonal, and (iσk, iσk) = 2.

• sl(2,C): (h, h) = −2, (e, f) = (f, e) = −1, all other products are zero.
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Isomorphisms. We have an isomorphism of Lie algebras su(2) ∼−→ so(3,R) given by

(3.25)

iσ1 7→ −2Jx

iσ2 7→ −2Jy

iσ3 7→ −2Jz.

It can be lifted to a morphism of Lie groups SU(2) → SO(3,R), which is a twofold cover (see
Exercise 2.8).

The inclusion su(2) ⊂ sl(2,C) gives an isomorphism su(2)C ' sl(2,C). In terms of basis, it is
given by

(3.26)

iσ1 7→ i(e+ f)

iσ2 7→ e− f

iσ3 7→ ih.

Combining these two isomorphisms, we get an isomorphism so(3,R)C = so(3,C) ∼−→ sl(2,C)

(3.27)

Jx 7→ − i
2
(e+ f)

Jy 7→ 1
2
(f − e)

Jz 7→ − ih
2
.

Exercises

3.1. Consider the group SL(2,R). Show that the element X =
(−1 1

0 −1

)
is not in the image of

the exponential map. (Hint: if X = exp(x), what are the eigenvalues of x?).

3.2. Let f : g → G be any smooth map such that f(0) = 1, f∗(0) = id; we can view such a map
as a local coordinate system near 1 ∈ G. Show that the the group law written in this coordinate
system has the form f(x)f(y) = f(x+ y+B(x, y) + . . . ) for some bilinear map B : g⊗ g → g and
that B(x, y)−B(y, x) = [x, y].

3.3. Show that all forms of Jacobi identity given in (3.5), (3.6) are equivalent.

3.4. Show that if we denote, for x ∈ g, by ξx the left-invariant vector field on G such that ξx(1) = x

(cf. Theorem 2.27), then [ξx, ξy] = −ξ[x,y].

3.5. (1) Prove that R3 with the commutator given by the cross-product is a Lie algebra. Show
that this Lie algebra is isomorphic to so(3,R).

(2) Let ϕ : so(3,R) → R3 be the isomorphism of part (1). Prove that under this isomorphism,
the standard action of so(3) on R3 is identified with the action of R3 on itself given by the
cross-product:

a · ~v = ϕ(a)× ~v, a ∈ so(3), ~v ∈ R3

where a · ~v is the usual multiplication of a matrix by a vector.
This problem explains common use of cross-products in mechanics (see, e.g. [1]): angular

velocities and angular momenta are actually elements of Lie algebra so(3,R) (to be precise, angular
momenta are elements of the dual vector space, (so(3,R))∗, but we can ignore this difference).
To avoid explaining this, most textbooks write angular velocities as vectors in R3 and use cross-
product instead of commutator. Of course, this would completely fail in dimensions other than 3,
where so(n,R) is not isomorphic to Rn even as a vector space.



46 3. Lie Groups and Lie algebras

3.6. Let Pn be the space of polynomials with real coefficients of degree ≤ n in variable x. The Lie
group G = R acts on Pn by translations of the argument: ρ(t)(x) = x + t, t ∈ G. Show that the
corresponding action of the Lie algebra g = R is given by ρ(a) = a∂x, a ∈ g, and deduce from this
the Taylor formula for polynomials:

f(x+ t) =
∑

n≥0

(t∂x)n

n!
f.

3.7. Let G be the Lie group of all maps A : R→ R having the form A(x) = ax+ b, a 6= 0. Describe
explicitly the corresponding Lie algebra. [There are two ways to do this problem. The easy way
is to embed G ⊂ GL(2,R), which makes the problem trivial. More straightforward way is to
explicitly construct some basis in the tangent space, construct the corresponding one-parameter
subgroups, and compute the commutator using (3.3). The second way is recommended to those
who want to understand how the correspondence between Lie groups and Lie algebras works.]

3.8. Let SL(2,C) act on CP1 in the usual way:
[
a b

c d

]
(x : y) = (ax+ by : cx+ dy).

This defines an action of g = sl(2,C) by vector fields on CP1. Write explicitly vector fields
corresponding to h, e, f in terms of coordinate t = x/y on the open cell C ⊂ CP1.

3.9. Let G be a Lie group with Lie algebra g, and Aut(g), Der(g) be as defined in Example 3.33.
(1) Show that g 7→ Ad g gives a morphism of Lie groups G → Aut(G); similarly, x 7→ adx is a

morphism of Lie algebras g → Der g. (The automorphisms of the form Ad g are called inner
automorphisms; the derivations of the form adx, x ∈ g are called inner derivations.)

(2) Show that for f ∈ Der g, x ∈ g, one has [f, adx] = ad f(x) as operators in g, and deduce
from this that ad(g) is an ideal in Der g.

3.10. Let {Hα}α∈A be some family of closed Lie subgroups in G, with the Lie algebras hα =
Lie(Hα). Let H =

⋂
αHα. Without using the theorem about closed subgroup, show that H is a

closed Lie subgroup with Lie algebra h =
⋂

α hα.

3.11. Let Jx, Jy, Jz be the basis in so(3,R) described in Section 3.10. The standard action of
SO(3,R) on R3 defines an action of so(3,R) by vector fields on R3. Abusing the language, we will
use the same notation Jx, Jy, Jz for the corresponding vector fields on R3. Let ∆sph = J2

x +J2
y +J2

z ;
this is a second order differential operator on R3, which is usually called the spherical Laplace
operator, or the Laplace operator on the sphere.
(1) Write ∆sph in terms of x, y, z, ∂x, ∂y, ∂z.
(2) Show that ∆sph is well defined as a differential operator on a sphere S2 = {(x, y, z) | x2 +

y2 + z2 = 1}, i.e., if f is a function on R3 then (∆sphf)|S2 only depends on f |S2 .
(3) Show that the usual Laplace operator ∆ = ∂2

x + ∂2
y + ∂2

z can be written in the form
∆ = 1

r2 ∆sph + ∆radial, where ∆radial is a differential operator written in terms of r =√
x2 + y2 + z2 and r∂r = x∂x + y∂y + z∂z.

(4) Show that ∆sph is rotation invariant: for any function f and g ∈ SO(3,R), ∆sph(gf) =
g(∆sphf). (Later we will describe a better way of doing this.)

3.12. Give an alternative proof of Theorem 3.36, using Lemma 3.15.

3.13. (1) Let g be a three-dimensional real Lie algebra with basis x, y, z and commutation re-
lations [x, y] = z, [z, x] = [z, y] = 0 (this algebra is called Heisenberg algebra). With-
out using Campbell-Hausdorff formula, show that in the corresponding Lie group, one has
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exp(tx) exp(sy) = exp(tsz) exp(sy) exp(tx) and construct explicitly the connected, simply
connected Lie group corresponding to g.

(2) Generalize the previous part to the Lie algebra g = V ⊕ Rz, where V is a real vector space
with non-degenerate skew-symmetric form ω and the commutation relations are given by
[v1, v2] = ω(v1, v2)z, [z, v] = 0.

3.14. This problem is for readers familiar with mathematical formalism of classical mechanics.
Let G be a real Lie group and A— a positive definite symmetric bilinear form on g; such a

form can also be considered as a linear map g → g∗.
(1) Let us extend A to a left invariant metric on G. Consider mechanical system describing free

motion of a particle on G, with kinetic energy given by A(ġ, ġ) and zero potential energy.
Show that equations of motion for this system are given by Euler’s equations:

Ω̇ = ad∗ v.Ω

where v = g−1ġ ∈ g, Ω = Av ∈ g∗, and ad∗ is the coadjoint action:

〈ad∗ x.f, y〉 = −〈f, adx.y〉 x, y ∈ g, f ∈ g∗.

(For G = SO(3,R), this system describes motion of a solid body rotating around its center
of gravity — so called Euler’s case of rotation of a solid body. In this case, A describes the
body’s moment of inertia, v is angular velocity, and Ω is angular momentum, both measured
in the moving frame. Details can be found in [1]).

(2) Using the results of the previous part, show that if A is a bi-invariant metric on G, then
one-parameter subgroups exp(tx), x ∈ g are geodesics for this metric.

3.15. Let G be a complex connected simply-connected Lie group, with Lie algebra g = Lie(G), and
let k ⊂ g be a real form of g.
(1) Define the R-linear map θ : g → g by θ(x + iy) = x − iy, x, y ∈ k. Show that θ is an

automorphism of g (considered as a real Lie algebra), and that it can be uniquely lifted to
an automorphism θ : G→ G of the group G (considered as a real Lie group).

(2) Let K = Gθ. Show that K is a real Lie group with Lie algebra k.

3.16. Let Sp(n) be the unitary quaternionic group defined in Section 2.7. Show that sp(n)C =
sp(n,C). Thus Sp(n) is a compact real form of Sp(n,C).

3.17. Let so(p, q) = Lie(SO(p, q)). Show that its complexification is so(p, q)C = so(p+ q,C).

3.18. Let

S =
(

0 −1
1 0

)
∈ SL(2,C).

(1) Show that S = exp
(

π
2 (f − e)

)
, where e, f ∈ sl(2,C) are defined by (3.23).

(2) Compute AdS in the basis e, f, h.

3.19. Let G be a complex connected Lie group.
(1) Show that g 7→ Ad g is an analytic map G→ gl(g).
(2) Assume that G is compact. Show that then Ad g = 1 for any g ∈ G.
(3) Show that any connected compact complex group must be commutative.
(4) Show that if G is a connected complex compact group, then the exponential map gives an

isomorphism of Lie groups
g/L ' G

for some lattice L ⊂ g (i.e. a free abelian group of rank equal to 2 dim g).





Chapter 4

Representations of Lie
Groups and Lie
Algebras

In this section, we will discuss the representation theory of Lie groups and Lie algebras — as far as
it can be discussed without using the structure theory of semisimple Lie algebras. Unless specified
otherwise, all Lie groups, algebras, and representations are finite-dimensional, and all representations
are complex. Lie groups and Lie algebras can be either real or complex; unless specified otherwise,
all results are valid both for real and complex case.

4.1. Basic definitions

Let us start by recalling the basic definitions.

Definition 4.1. A representation of a Lie group G is a vector space V together with a morphism
ρ : G→ GL(V ).

A representation of a Lie algebra g is a vector space V together with a morphism ρ : g → gl(V ).

A morphism between two representations V,W of the same group G is a linear map f : V →W

which commutes with the action of G: fρ(g) = ρ(g)f . In a similar way one defines a morphism of
representations of a Lie algebra. The space of all G-morphisms (respectively, g-morphisms) between
V and W will be denoted by HomG(V,W ) (respectively, Homg(V,W )).

Remark 4.2. Morphisms between representations are also frequently called intertwining operators
because they “intertwine” action of G in V and W .

Notion of a representation is completely parallel to the notion of module over an associative ring
or algebra; the difference of terminology is due to historical reasons. In fact, it is also usual to use
the word “module” rather than “representation” for Lie algebras: a module over Lie algebra g is the
same as a representation of g. We will use both terms interchangeably.

Note that in this definition we did not specify whether V and G, g are real or complex. Usually
if G (respectively, g) is complex, then V should also be taken a complex vector space. However, it
also makes sense to take complex V even if G is real: in this case we require that the morphism
G→ GL(V ) be smooth, considering GL(V ) as 2n2-dimensional real manifold. Similarly, for real Lie
algebras we can consider complex representations requiring that ρ : g → gl(V ) be R-linear.

49
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Of course, we could also restrict ourselves to consideration of real representations of real groups.
However, it turns out that introduction of complex representations significantly simplifies the theory
even for real groups and algebras. Thus, from now on, all representations will be complex unless
specified otherwise.

The first important result about representations of Lie groups and Lie algebras is the following
theorem.

Theorem 4.3. Let G be a Lie group (real or complex ) with Lie algebra g.

(1) Every representation ρ : G → GL(V ) defines a representation ρ∗ : g → gl(V ), and every
morphism of representations of G is automatically a morphism of representations of g.

(2) If G is connected, simply-connected, then ρ 7→ ρ∗ gives an equivalence of categories of
representations of G and representations of g. In particular, every representation of g can
be uniquely lifted to a representation of G, and HomG(V,W ) = Homg(V,W ).

Indeed, part (1) is a special case of Theorem 3.20, and part (2) follows from Theorem 3.41.

This is an important result, as Lie algebras are, after all, finite dimensional vector spaces, so
they are easier to deal with. For example, this theorem shows that a representation of SU(2) is the
same as a representation of su(2), i.e. a vector space with three endomorphisms X,Y, Z, satisfying
commutation relations XY − Y X = Z, Y Z − ZY = X, ZX −XZ = Y .

This theorem can also be used to describe representations of a group which is connected but
not simply-connected: indeed, by Corollary 3.43 any such group can be written as G = G̃/Z for
some simply-connected group G̃ and a discrete central subgroup Z ⊂ G. Thus, representations of
G are the same as representations of G̃ satisfying ρ(Z) = id. An important example of this is when
G = SO(3,R), G̃ = SU(2) (see Exercise 4.1).

Lemma 4.4. Let g be a real Lie algebra, and gC its complexification as defined in Definition 3.49.
Then any complex representation of g has a unique structure of representation of gC, and
Homg(V,W ) = HomgC(V,W ). In other words, categories of complex representations of g, gC are
equivalent.

Proof. Let ρ : g → gl(V ) be the representation of g. Extend it to gC by ρ(x+iy) = ρ(x)+iρ(y). We
leave it to the reader to check that so defined ρ is complex-linear and agrees with the commutator. ¤
Example 4.5. The categories of finite-dimensional representations of SL(2,C), SU(2), sl(2,C) and
su(2) are all equivalent. Indeed, by results of Section 3.10, sl(2,C) = (su(2))C, so categories of
their finite-dimensional representations are equivalent; since Lie groups SU(2), SL(2,C) are simply-
connected, they have the same representations as the corresponding Lie algebras.

This, in particular, allows us to reduce the problem of study of representations of a non-compact
Lie group SL(2,C) to the study of representations of a compact Lie group SU(2). This is useful
because, as we will show below, representation theory of compact Lie groups is especially nice.

Remark 4.6. This only works for finite-dimensional representations; the theory of infinite-dimensional
representations of SL(2,C) is very different from that of SU(2).

The following are some examples of representations which can be defined for any Lie group G

(and thus, for any Lie algebra g).

Example 4.7. Trivial representation: V = C, ρ(g) = id for any g ∈ G (respectively, ρ(x) = 0 for
any x ∈ g).

Example 4.8. Adjoint representation: V = g, ρ(g) = Ad g (respectively, ρ(x) = adx). See (2.4),
Lemma 3.15 for definition of Ad, ad.
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4.2. Operations on representations

In this section, we discuss basic notions of representation theory of Lie groups and Lie algebras,
giving examples of representations, operations on representations such as direct sum and tensor
product, and more.

Subrepresentations and quotients.

Definition 4.9. Let V be a representation of G (respectively g). A subrepresentation is a vector
subspace W ⊂ V stable under the action: ρ(g)W ⊂ W for all g ∈ G (respectively, ρ(x)W ⊂ W for
all x ∈ g).

It is easy to check that if G is a connected Lie group with Lie algebra g, then W ⊂ V is a
subrepresentaion for G if and only if it is a subrepresentation for g.

It is trivial to check that if W ⊂ V is a subrepresentation, then the quotient space V/W has
a canonical sructure of a representation. It will be called factor representation, or the quotient
representation.

Direct sum and tensor product.

Lemma 4.10. Let V,W be representations of G (respectively, g). Then there is a canonical structure
of a representation on V ∗, V ⊕W , V ⊗W .

Proof. Action of G on V ⊕W is given by ρ(g)(v +w) = ρ(g)v + ρ(g)w (for g ∈ G, v ∈ V , w ∈W )
and similarly for g.

For tensor product, we define ρ(g)(v⊗w) = ρ(g)v⊗ ρ(g)w. However, the action of g is trickier:
indeed, naive definition ρ(x)(v⊗w) = ρ(x)v⊗ ρ(x)w (for x ∈ g) does not define a representation (it
is not even linear in x). Instead, if we write x = γ̇(0) for some one-parameter subgroup γ(t) in the
Lie group G with γ(0) = 1, then

ρ(x)(v ⊗w) =
d

dt
|t=0(γ(t)v ⊗ γ(t)w) = (γ̇(0)v ⊗ γ(0)w) + (γ(0)v ⊗ γ̇(t)w) = ρ(x)v ⊗w + v ⊗ ρ(x)w

by using Leibniz rule. Thus, we define for x ∈ g

ρ(x)(v ⊗ w) = ρ(x)v ⊗ w + v ⊗ ρ(x)w.

It is easy to show, even without using the Lie group G, that so defined action is indeed a represen-
tation of g on V ⊗W .

To define the action ofG, g on V ∗, we require that the natural pairing V ⊗V ∗ → C be a morphism
of representations, considering C as the trivial representation. This gives, for v ∈ V, v∗ ∈ V ∗,
〈ρ(g)v, ρ(g)v∗〉 = 〈v, v∗〉, so action of G in V ∗ is given by ρV ∗(g) = ρ(g−1)t, where for A : V → V ,
we denote by At the adjoint operator V ∗ → V ∗.

Similarly, for the action of g we get 〈ρ(x)v, v∗〉+ 〈v, ρ(x)v∗〉 = 0, so ρV ∗(x) = −(ρV (x))t. ¤

As an immediate corollary, we see that for a representation V , any tensor space V ⊗k ⊗ (V ∗)⊗l

has a canonical structure of a representation.

Example 4.11. For any Lie algebra g, the dual vector space g∗ has a canonical structure of a
representation of g, given by

〈ad∗ x.f, y〉 = −〈f, adx.y〉, f ∈ g∗, x, y ∈ g.

This representation is called the coadjoint representation and plays an important role in representa-
tion theory: for example, for a large class of Lie algebras there is a bijection between (some) G–orbits
in g∗ and finite-dimensional irreducible representations of g (see [30]).
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Example 4.12. Let V be a representation of G (respectively, g). Then the space End(V ) ' V ⊗V ∗
of linear operators on V is also a representation, with the action given by g : A 7→ ρV (g)AρV (g−1)
for g ∈ G (respectively, x : A 7→ ρV (x)A − AρV (x) for x ∈ g). More generally, the space of linear
maps Hom(V,W ) between two representations is also a representation with the action defined by
g : A 7→ ρW (g)AρV (g−1) for g ∈ G (respectively, x : A 7→ ρW (x)A−AρV (x) for x ∈ g).

Similarly, the space of bilinear forms on V is also a representation, with action given by

gB(v, w) = B(g−1v, g−1w), g ∈ G
xB(v, w) = −(B(x.v, w) +B(v, x.w)), x ∈ g.

Proof of these formulas is left to the reader as an exercise.

Invariants.

Definition 4.13. Let V be a representation of a Lie group G. A vector v ∈ V is called invariant if
ρ(g)v = v for all g ∈ G. The subspace of invariant vectors in V is denoted by V G.

Similarly, let V be a representation of a Lie algebra g. A vector v ∈ V is called invariant if
ρ(x)v = 0 for all x ∈ g. The subspace of invariant vectors in V is denoted by V g.

We leave it to the reader to prove that if G is a connected Lie group with the Lie algebra g,
then for any representation V of G, we have V G = V g.

Example 4.14. Let V,W be representations and Hom(V,W ) be the space of linear maps V →W ,
with the action of G defined as in Example 4.12. Then (Hom(V,W ))G = HomG(V,W ) is the space
of intertwining operators. In particular, this shows that V G = (Hom(C, V ))G = HomG(C, V ), with
C considered as a trivial representation.

Example 4.15. Let B be a bilinear form on a representation V . Then B is invariant under the
action of G defined in Example 4.12 iff

B(gv, gw) = B(v, w)

for any g ∈ G, v, w ∈ V . Similarly, B is invariant under the action of g iff

B(x.v, w) +B(v, x.w) = 0

for any x ∈ g, v, w ∈ V .

We leave it to the reader to check that B is invariant iff the linear map V → V ∗ defined by
v 7→ B(v,−) is a morphism of representations.

4.3. Irreducible representations

One of the main problems of the representation theory is the problem of classification of all repre-
sentations of a Lie group or a Lie algebra. In this generality, it is an extremely difficult problem and
for a general Lie group, no satisfactory answer is known. We will later show that for some special
classes of Lie groups (namely compact Lie groups and semisimple Lie groups, to be defined later)
this problem does have a good answer.

The most natural approach to this problem is to start by studying simplest possible represen-
tations, which would serve as building blocks for more complicated representations.

Definition 4.16. A non-zero representation V of G or g is called irreducible or simple if it has no
subrepresentations other than 0, V . Otherwise V is called reducible.

Example 4.17. Space Cn, considered as a representation of SL(n,C), is irreducible.
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If a representation V is reducible, then it has a non-trivial subrepresentation W and thus, V
can be included in a short exact sequence 0 → W → V → V/W → 0; thus, in a certain sense it is
built out of simpler pieces. The natural question is whether this exact sequence splits, i.e. whether
we can write V = W ⊕ (V/W ) as a representation. If so then repeating this process, we can write
V as a direct sum of irreducible representations.

Definition 4.18. A representation is called completely reducible or semisimple if it is isomorphic to
a direct sum of irreducible representations: V ' ⊕

Vi, Vi irreducible.

In such a case one usually groups together isomorphic summands writing V ' ⊕
niVi, ni ∈

Z+, where Vi are pairwise non-isomorphic irreducible representations. The numbers ni are called
multiplicities.

However, as the following example shows, not every representation is completely reducible.

Example 4.19. Let G = R, so g = R. Then a representation of g is the same as a vector space
V with a linear map R → End(V ); obviously, every such map is of the form t 7→ tA for some
A ∈ End(V ) which can be arbitrary. The corresponding representation of the group R is given by
t 7→ exp(tA). Thus, classifying representations of R is equivalent to classifying linear maps V → V

up to a change of basis. Such a classification is known (Jordan normal form) but non-trivial.

If v is an eigenvector of A then the one-dimensional space Cv ⊂ V is invariant under A and thus
a subrepresentation in V . Since every linear operator in a complex vector space has an eigenvector,
this shows that every representation of R is reducible, unless it is one-dimensional. Thus, the only
irreducible representations of R are one-dimensional.

Now one easily sees that writing a representation given by t 7→ exp(tA) as a direct sum of
irreducible ones is equivalent to diagonalizing A. So a representation is completely reducible iff
A is diagonalizable. Since not every linear operator is diagonalizable, not every representation is
completely reducible.

Thus, more modest goals of the representation theory would be answering the following ques-
tions:

(1) For a given Lie group G, classify all irreducible representations of G.

(2) For a given representation V of a Lie group G, given that it is completely reducible, find
explicitly the decomposition of V into direct sum of irreducibles.

(3) For which Lie groups G all representations are completely reducible?

One tool which can be used in decomposing representations into direct sum is the use of central
elements.

Lemma 4.20. Let ρ : G → GL(V ) be a representation of G (respectively, g) and A : V → V a
diagonalizable intertwining operator. Let Vλ ⊂ V be the eigenspace for A with eigenvalue λ. Then
each Vλ is a subrepresentation, so V =

⊕
Vλ as a representation of G (respectively g).

The proof of this lemma is trivial and is left to the reader. As an immediate corollary, we get
the following result.

Lemma 4.21. Let V be a representation of G and let Z ∈ Z(G) be a central element of G such
that ρ(Z) is diagonalizable. Then as a representation of G, V =

⊕
Vλ, where Vλ is the eigenspace

for ρ(Z) with eigenvalue λ. Similar result also holds for central elements in g.

Of course, there is no guarantee that Vλ will be an irreducible representation; moreover, in many
cases the Lie groups we consider have no central elements at all.
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Example 4.22. Consider action of GL(n,C) on Cn ⊗ Cn. Then the permutation operator P : v ⊗
w 7→ w ⊗ v commutes with the action of GL(n,C), so the subspaces S2Cn,Λ2Cn of symmetric
and skew-symmetric tensors (which are exactly the eigenspaces of P ) are GL(n,C)-invariant and
Cn ⊗ Cn = S2Cn ⊕ Λ2Cn as a representation. In fact, both S2Cn,Λ2Cn are irreducible (this is not
obvious but can be proved by a lengthy explicit calculation; better way of proving this will be given
in Exercise 8.4). Thus, Cn ⊗ Cn is completely reducible.

4.4. Intertwining operators and Schur’s lemma

Recall that an intertwining operator is a linear map V →W which commutes with the action of G.
Such operators frequently appear in various applications. A typical example is quantum mechanics,
where we have a vector space V (describing the state space of some mechanical system) and the
Hamiltonian operator H : V → V . Then saying that this whole system has a symmetry described
by a group G is the same as saying that we have an action of G on V which leaves H invariant,
i.e. gHg−1 = H for any g ∈ G. This exactly means that H is an intertwining operator. A real-life
example of such situation (spherical Laplace operator) will be described in Section 4.9.

These examples motivate the study of intertwining operators. For example, does G-invariance
of an operator helps computing eigenvalues and eigenspaces?

The first result in this direction is the following famous lemma.

Lemma 4.23 (Schur Lemma).

(1) Let V be an irreducible complex representation of G. Then the space of intertwining op-
erators HomG(V, V ) = C id: any endomorphism of an irreducible representation of G is
constant.

(2) If V and W are irreducible complex representations which are not isomorphic then
HomG(V,W ) = 0.

Similar result holds for representations of a Lie algebra g.

Proof. We note that if Φ: V →W is an intertwining operator, then KerΦ, Im Φ are subrepresenta-
tions in V , W respectively. If V is irreducible, either Ker Φ = V (in which case Φ = 0) or KerΦ = 0,
so Φ is injective. Similarly, if W is irreducible, either Im Φ = 0 (so Φ = 0) or ImΦ = W , Φ is
surjective. Thus, either Φ = 0 or Φ is an isomorphism.

Now part (2) follows immediately: since V,W are not isomorphic, Φ must be zero. To prove
part (1), notice that the above argument shows that any non-zero intertwiner V → V is invertible.
Now let λ be an eigenvalue of Φ. Then Φ − λ id is not invertible. On the other hand, it is also an
intertwiner, so it must be zero. Thus, Φ = λ id. ¤

Example 4.24. Consider the group GL(n,C). Since Cn is irreducible as a representation of
GL(n,C), every operator commuting with GL(n,C) must be scalar. Thus, the center Z(GL(n,C)) =
{λ · id, λ ∈ C×}; similarly, the center of the Lie algebra is z(gl(n,C)) = {λ · id, λ ∈ C}.

Since Cn is also irreducible as a representation of SL(n,C), U(n), SU(n), SO(n,C), similar
argument can be used to compute the center of each of these groups. The answer is

Z(SL(n,C)) = Z(SU(n)) = {λ · id, λn = 1} z(sl(n,C)) = z(su(n)) = 0

Z(U(n)) = {λ · id, |λ| = 1} z(u(n)) = {λ · id, λ ∈ iR}
Z(SO(n,C)) = Z(SO(n,R)) = {±1} z(so(n,C)) = z(so(n,R)) = 0.

As an immediate corollary of Schur’s lemma, we get the following result.
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Corollary 4.25. Let V be a completely reducible representation of Lie group G (respectively, Lie
algebra g). Then

(1) If V =
⊕
Vi, Vi — irreducible, pairwise non-isomorphic, then any intertwining operator

Φ: V → V is of the form Φ =
⊕
λi idVi .

(2) If V =
⊕
niVi =

⊕
Cni ⊗ Vi, Vi — irreducible, pairwise non-isomorphic, then any inter-

twining operator Φ: V → V is of the form Φ =
⊕

(Ai ⊗ idVi
), Ai ∈ End(Cni).

Proof. For part (1), notice that any operator V → V can be written in a block form: Φ =
⊕

Φij ,
Φij : Vi → Vj . By Schur’s lemma, Φij = 0 for i 6= j and Φii = λi idVi

. Part (2) is proved similarly. ¤

This result shows that indeed, if we can decompose a representation V into irreducible ones, this
will give us a very effective tool for analysing intertwining operators. For example, if V =

⊕
Vi, Vi 6'

Vj , then Φ =
⊕
λi idVi

, so one can find λi by computing Φ(v) for just one vector in Vi. It also shows
that each eigenvalue λi will appear with multiplicity equal to dimVi. This is exactly what we did
in the baby example in the introduction, where we had G = Zn.

Another useful corollary of Schur’s lemma is the following result.

Proposition 4.26. If G is a commutative group, then any irreducible complex representation of
G is one-dimensional. Similarly, if g is a commutative Lie algebra, then any irreducible complex
representation of g is one-dimensional.

Indeed, since G is commutative, every ρ(g) commutes with the action of G, so ρ(g) = λ(g) id.

Example 4.27. Let G = R. Then its irreducible representations are one-dimensional (this had
already been dicussed before, see Example 4.19). In fact, it is easy to describe them: one-dimensional
representations of the corresponding Lie algebra g = R are a 7→ λa, λ ∈ C. Thus, irreducible
representations of R are Vλ, λ ∈ C, where each Vλ is a one-dimensional complex space with the
action of R given by ρ(a) = eλa.

In a similar way, one can describe irreducible representations of S1 = R/Z: they are exactly
those representations of R which satisfy ρ(a) = 1 for a ∈ Z. Thus, irreducible representations of S1

are Vk, k ∈ Z, where each Vk is a one-dimensional complex space with the action of S1 given by
ρ(a) = e2πika. In the realization S1 = {z ∈ C | |z| = 1} the formula is even simpler: in Vk, z acts by
zk.

4.5. Complete reducibility of unitary
representations. Representations of finite
groups

In this section, we will show that a large class of representations is completely reducible.

Definition 4.28. A complex representation V of a real Lie group G is called unitary if there is
a G-invariant inner product: (ρ(g)v, ρ(g)w) = (v, w), or equivalently, ρ(g) ∈ U(V ) for any g ∈ G.
(The word “inner product” means a positive definite Hermitian form.)

Similarly, a representation V of a real Lie algebra g is called unitary if there is an inner product
which is g-invariant: (ρ(x)v, w) + (v, ρ(x)w) = 0, or equivalently, ρ(x) ∈ u(V ) for any x ∈ g

Example 4.29. Let V = F (S) be the space of complex valued functions on a finite set S. Let G
be a finite group acting by permutations on S; then it also acts on V by (2.1). Then (f1, f2) =∑

s f1(s)f2(s) is an invariant inner product, so such a representation is unitary.

The following result explains why unitary representations are so important.
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Theorem 4.30. Each unitary representation is completely reducible.

Proof. The proof goes by induction on dimension. Either V is irreducible, and we’re done, or V
has a subrepresentation W . Then V = W ⊕W⊥, and W⊥ is a subrepresentation as well. Indeed:
if w ∈ W⊥, then (gw, v) = (w, g−1v) = 0 for any v ∈ W (since g−1v ∈ W ), so gw ∈ W⊥. Similar
argument applies to representations of Lie algebras. ¤

Theorem 4.31. Any representation of a finite group is unitary.

Proof. Let B(v, w) be some inner product in V . Of course, it may not be G-invariant, so B(gv, gw)
may be different from B(v, w). Let us “average” B by using group action:

B̃(v, w) =
1
|G|

∑

g∈G

B(gv, gw).

Then B̃ is positive definite (it is a sum of positive definite forms), and it is G-invariant:

B̃(hv, hw) =
1
|G|

∑

g∈G

B(ghv, ghw) =
1
|G|

∑

g′∈G

B(g′v, g′w)

by making subsitution gh = g′ and noticing that as g runs over G, so does g′. ¤

Combining this with Theorem 4.30, we immediately get the main result of this section.

Theorem 4.32. Every representation of a finite group is completely reducible.

Note that this theorem does not give an explicit recipe for decomposing a representation into
direct sum of irreducibles. We will return to this problem later.

4.6. Haar measure on compact Lie groups

In the previous section we have proved complete reducibility of representations of a finite group G.
The natural question is whether this proof can be generalized to Lie groups.

Analyzing the proof, we see that the key step was averaging a function over the group: f̃ =
1
|G|

∑
f(g) for a complex-valued function on a group. It seems reasonable to expect that in the case

of Lie groups, we should replace the sum by suitably defined integral over G.

Definition 4.33. A right Haar measure on a real Lie group G is a Borel measure dg which is
invariant under the right action of G on itself.

Right invariance implies (and, in fact, is equivalent to) the identity
∫
f(gh) dg =

∫
f(g) dg for

any h ∈ G and integrable function f . In a similar way one defines left Haar measure on G.

To construct such a measure, we start by constructing an invariant volume form on G.

Theorem 4.34. Let G be a real Lie group.

(1) G is orientable; moreover, orientation can be chosen so that the right action of G on itself
preserves the orientation.

(2) If G is compact, then for a fixed choice of right-invariant orientation on G there exists a
unique right-invariant top degree differential form ω such that

∫
G
ω = 1.

(3) The differential form ω defined in the previous part is also left-invariant and invariant up
to a sign under i : g 7→ g−1: i∗ω = (−1)dim Gω.
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Proof. Let us choose some non-zero element in Λng∗, n = dimG. Then it can be uniquely extended
to a right-invariant differential form ω̃ on G (see Theorem 2.27). Since this form is non-vanishing
on G, this shows that G is orientable.

If G is compact, the integral I =
∫

G
ω̃ is finite. Define ω = ω̃

I . Then ω is right-invariant
and satisfies

∫
G
ω = 1, thus proving existence statement of part (2). Uniqueness is obvious: by

Theorem 2.27, space of right-invariant forms is identified with Λng∗, which is one-dimensional; thus
any right-invariant form ω′ is has the form cω, and

∫
G
ω′ = 1 implies c = 1.

To prove that ω is also left-invariant, it suffices to check that it is invariant under coadjoint
action (cf. Theorem 2.28). But Λng∗ is a one-dimensional representation of G. Thus, this result
immediately follows from the following lemma.

Lemma 4.35. Let V be a one-dimensional real representation of a compact Lie group G. Then for
any g ∈ G, |ρ(g)| = 1.

Indeed, if |ρ(g)| < 1, then ρ(gn) → 0 as n→∞. But ρ(G) is a compact subset in R×, so it can
not contain a sequence with limit 0. In a similar way, |ρ(g)| > 1 also leads to a contradiction.

To prove invariance under i : g 7→ g−1, notice that since ω is left-invariant, it is easy to see that
i∗(ω) is a right-invariant form on G; thus, it suffices to check that ω and i∗(ω) are equal up to a sign
at 1 ∈ G. But i∗ : g → g is given by x 7→ −x (which follows from i(exp(tx)) = exp(−tx)). Thus, on
Λng, i∗ = (−1)n, so i∗(ω) = (−1)nω. ¤

We can now prove existence of bi-invariant measure on compact Lie groups.

Theorem 4.36. Let G be a compact real Lie group. Then it has a canonical Borel measure dg which
is both left- and right-invariant and invariant under g 7→ g−1 and which satisfies

∫
G
dg = 1. This

measure is called the Haar measure on G and is usually denoted by dg.

Proof. Choose an orientation of G and a bi-invariant volume form ω as in Theorem 4.34. Then
general results of measure theory imply that there exists a unique Borel measure dg on G such that
for any continuous function f , we have

∫
G
f dg =

∫
G
f ω. Invariance of dg under left and right action

and under g 7→ g−1 follows from invariance of ω. ¤

It is not difficult to show that the Haar measure is unique (see, e.g., [32, Section VIII.2]).

Remark 4.37. In fact, bi-invariant Haar measure exists not only for every Lie group but also for
every compact topological group (with some technical restrictions). However, in full generality this
result is much harder to prove.

Example 4.38. Let G = S1 = R/Z. Then the Haar measure is the usual measure dx on R/Z.

Note that in general, explicitly writing the Haar measure on a group is not easy—for example,
because in general there is no good choice of coordinates on G. Even in those cases when a coordinate
system on G can be described explicitly, the Haar measure is usually given by rather complicated
formulas. The only case where this measure can be written by a formula simple enough to be useful
for practical computations is when we integrate conjugation-invariant functions (also called class
functions).

Example 4.39. Let G = U(n) and let f be a smooth function on G such that f(ghg−1) = f(h).
Then ∫

U(n)

f(g)dg =
1
n!

∫

T

f




t1
t2

. . .
tn


 ∏

i<j

|ti − tj |2dt
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where

T =








t1
t2

. . .
tn


 , tk = eiϕk





is the subgroup of diagonal matrices and dt = 1
(2π)n dϕ1 . . . dϕn is the Haar measure on T .

This is a special case of Weyl Integration Formula. The statement of this theorem in full
generality and the proof can be found, for example, in [5] or in [32]. The proof requires a fair
amount of the structure theory of compact Lie groups and will not be given here.

The main result of this section is the following theorem.

Theorem 4.40. Any finite-dimensional representation of a compact Lie group is unitary and thus
completely reducible.

Proof. The proof is almost identical to the proof for the finite group: let B(v, w) be some positive
definite inner product in V and “average” it by using group action:

B̃(v, w) =
∫

G

B(gv, gw) dg

where dg is the Haar measure on G. Then B̃(v, v) > 0 (it is an integral of a positive function) and
right invariance of Haar measure shows that B(hv, hw) = B(v, w).

Complete reducibility now follows from Theorem 4.30. ¤

4.7. Orthogonality of characters and Peter-Weyl
theorem

In the previous section, we have established that any representation of a compact Lie group is
completely reducible: V ' ⊕

niVi, where ni ∈ Z+, Vi are pairwise non-isomorphic irreducible
representations. However, we have not yet discussed how one can explicitly decompose a given
representation in a direct sum of irreducibles, or at least find the multiplicities ni. This will be
discussed in this section. Throughout this section, G is a compact real Lie group with Haar measure
dg.

Let vi be a basis in a representation V . Writing the operator ρ(g) : V → V in the basis vi, we get
a matrix-valued function on G. Equivalently, we can consider each entry ρij(g) as a scalar-valued
function on G. Such functions are called matrix coefficients (of the representation V ).

Theorem 4.41.

(1) Let V , W be non-isomorphic irreducible representations of G. Choose bases vi ∈ V , i =
1 . . . n and wa ∈ W , a = 1 . . .m. Then for any i, j, a, b, the matrix coefficients ρV

ij(g), ρ
W
ab

are orthogonal: (ρV
ij(g), ρ

W
ab ) = 0, where ( , ) is the inner product on C∞(G,C) given by

(4.1) (f1, f2) =
∫

G

f1(g)f2(g) dg.

(2) Let V be an irreducible representation of G and let vi ∈ V be an orthonormal basis with
respect to a G-invariant inner product (which exists by Theorem 4.40). Then the matrix
coefficients ρV

ij(g) are pairwise orthogonal, and each has norm squared 1
dim V :

(4.2) (ρV
ij(g), ρ

V
kl) =

δikδjl

dimV

Proof. The proof is based on the following easy lemma.
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Lemma 4.42.

(1) Let V , W be non-isomorphic irreducible representations of G and f a linear map V →W .
Then

∫
G
gfg−1 dg = 0.

(2) If V is an irreducble representation and f is a linear map V → V , then∫
gfg−1 dg = tr(f)

dim V id.

Indeed, let f̃ =
∫

G
gfg−1 dg. Then f̃ commutes with action of G: hf̃h−1 =

∫
G

(hg)f(hg)−1 dg =
f̃ . By Schur’s lemma, f̃ = 0 for W 6= V and f̃ = λ id for W = V. Since tr(gfg−1) = tr f , we see
that tr f̃ = tr f , so λ = tr(f)

dim V id. This proves the lemma.

Now let vi, wa be orthonormal bases in V,W . Choose a pair of indices i, a and apply this lemma
to the map Eai : V →W given by Eai(vi) = wa, Eaivj = 0, j 6= i. Then we have

∫

G

ρW (g)Eaiρ
V (g−1) dg = 0.

Rewriting this in the matrix form and using ρ(g−1) = ρ(g)t (which follows from unitarity of ρ(g)),
we get that for any b, j, ∫

ρW
ba (g)ρV

ji(g) dg = 0

which proves the first part of the theorem in the case when the bases are orthonormal; general case
immediately follows.

To prove the second part, apply the lemma to a matrix unit Eki : V → V to get
∑

l,j

Elj

∫
ρV

lk(g)ρV
ji(g) dg =

trEki

dimV
id

which immediately yields the second part of the theorem. ¤

So irreducible representations give us a way of constructing an orthonormal set of functions on
the group. Unfortunately, they depend on the choice of basis. However, there is one particular
combination of matrix coefficients that does not depend on the choice of basis.

Definition 4.43. A character of a representation V is the function on the group defined by

χV (g) = trV ρ(g) =
∑

ρV
ii (g).

It is immediate from the definition that the character does not depend on the choice of basis in
V . It also has a number of other properties, listed below; proof of them is left to the reader as an
exercise.

Lemma 4.44.

(1) Let V = C be the trivial representation. Then χV = 1.

(2) χV⊕W = χV + χW .

(3) χV⊗W = χV χW

(4) χV (ghg−1) = χV (h).

(5) Let V ∗ be the dual of representation V . Then χV ∗ = χV .

The orthogonality relation for matrix coefficients immediately implies the following result for
the characters.

Theorem 4.45.
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(1) Let V , W be non-isomorphic complex irreducible representations of a compact real Lie
group G. Then the characters χV , χW are orthogonal with respect to inner product (4.1):
(χV , χW ) = 0.

(2) For any irreducible representation V , (χV , χV ) = 1.

In other words, if we denote by Ĝ the set of isomorphism classes of irreducible representations
of G, then the set {χV , V ∈ Ĝ} is an orthonormal family of functions on G.

This immediately implies a number of corollaries.

Corollary 4.46. Let V be a complex representation of a compact real Lie group G. Then

(1) V is irreducible iff (χV , χV ) = 1.

(2) V can be uniquely written in the form V ' ⊕
niVi, Vi — pairwise non-isomorphic irre-

ducible representations, and the multiplicities ni are given by ni = (χV , χVi
).

In principle, this theorem gives a way of computing multiplicites ni. In real life, it is only usable
for finite groups and some special cases. Much more practical ways of finding multiplicities will be
given later when we develop weight decomposition for representations of semisimple Lie algebras
(see Section 8.6).

Finally, let us return to the matrix coefficients of representations. One might ask whether it is
possible to give a formulation of of Theorem 4.41 in a way that does not require a choice of basis.
The answer is “yes”. Indeed, let v ∈ V , v∗ ∈ V ∗. Then we can define a function on the group
ρv∗,v(g) by

ρv∗,v(g) = 〈v∗, ρ(g)v〉.
This is a generalization of a matrix coefficient: if v = vj , v∗ = v∗i , we recover matrix coefficient
ρij(g).

This shows that for any representation V , we have a map

m : V ∗ ⊗ V → C∞(G,C)

v∗ ⊗ v 7→ 〈v∗, ρ(g)v〉.
The space V ∗ ⊗ V has additional structure. First, we have two commuting actions of G on it,

given by action on the first factor and on the second one; in other words, V ∗ ⊗ V is a G-bimodule.
In addition, if V is unitary, then the inner product defines an inner product on V ∗ (the simplest way
to define it is to say that if vi is an orthonormal basis in V , then the dual basis v∗i is an orthonormal
basis in V ∗). Define an inner product on V ∗ ⊗ V by

(4.3) (v∗1 ⊗ w1, v
∗
2 ⊗ w2) =

1
dimV

(v∗1 , v
∗
2)(w1, w2).

Theorem 4.47. Let Ĝ be the set of isomorphism classes of irreducible representations of G. Define
the map

(4.4) m :
⊕

Vi∈ bG
V ∗i ⊗ Vi → C∞(G,C)

by m(v∗ ⊗ v)(g) = 〈v∗, ρ(g)v〉. (Here
⊕

is the algebraic direct sum, i.e. the space of finite linear
combinations.) Then

(1) The map m is a morphism of G-bimodules:

m((gv∗)⊗ v) = Lg(m(v∗ ⊗ v))

m(v∗ ⊗ gv) = Rg(m(v∗ ⊗ v)),
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where Lg, Rg are the left and right actions of G on C∞(G,C): (Lgf)(h) = f(g−1h),
(Rgf)(h) = f(hg).

(2) The map m preserves the inner product, if we define the inner product in
⊕
V ∗i ⊗ Vi by

(4.3) and inner product in C∞(G) by (4.1).

Proof. The first part is obtained by explicit computation:

(Rgm(v∗ ⊗ v))(h) = m(v∗ ⊗ v)(hg) = 〈v∗, ρ(hg)v〉 = 〈v∗, ρ(h)ρ(g)v〉 = m(v∗ ⊗ gv)(h)

(Lgm(v∗ ⊗ v))(h) = m(v∗ ⊗ v)(g−1h) = 〈v∗, ρ(g−1)ρ(h)v〉 = 〈gv∗, ρ(h)v〉 = m(gv∗ ⊗ v)(h)

The second part immediately follows from Theorem 4.41.

¤

Corollary 4.48. The map m is injective.

It turns out that this map is also surjective if we replace the algebraic direct sum by an ap-
propriate completion: every function on the group can be approximated by a linear combination of
matrix coefficients. Precise statement is known as Peter–Weyl theorem.

Theorem 4.49. The map (4.4) gives an isomorphism
⊕̂

Vi∈ bG
V ∗i ⊗ Vi → L2(G, dg)

where
⊕̂

is the Hilbert space direct sum, i.e. the completion of the algebraic direct sum with respect
to the metric given by inner product (4.3), and L2(G, dg) is the Hilbert space of complex-valued
square-integrable functions on G with respect to the Haar measure, with the inner product defined by
(4.1).

The proof of this theorem requires some non-trivial analytic considerations and goes beyond the
scope of this book. Interested reader can find it in [48] or [32].

Corollary 4.50. The set of characters {χV , V ∈ Ĝ} is an orthonormal basis (in the sense of Hilbert
spaces) of the space (L2(G, dg))G of conjugation-invariant functions on G.

Example 4.51. Let G = S1 = R/Z. As we have already discussed, the Haar measure on G is
given by dx and the irreducible representations are parametrized by Z: for any k ∈ Z, we have
one-dimensional representation Vk with the action of S1 given by ρ(a) = e2πika (see Example 4.27).
The corresponding matrix coefficient is the same as character and is given by χk(a) = e2πika.

Then the orthogonality relation of Theorem 4.41 gives
∫ 1

0

e2πikxe2πilx dx = δkl,

which is the usual orthogonality relation for exponents. Peter-Weyl theorem in this case just says
that the exponents e2πikx, k ∈ Z, form an orthonormal basis of L2(S1, dx) which is one of the
main statements of the theory of Fourier series: every L2 function on S1 can be written as a series
f(x) =

∑
k∈Z cke

2πikx which converges in L2 metric. For this reason, the study of the structure of
L2(G) can be considered as a generalization of harmonic analysis.

4.8. Representations of sl(2,C)

In this section we will give a complete description of the representation theory of the Lie algebra
sl(2,C). This an instructive example; moreover, these results will be used as a basis for analysis of
more complicated Lie algebras later.
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Throughout this section, all representations are complex and finite-dimensional unless specified
otherwise. For brevity, for a vector v in a representation V and x ∈ sl(2,C), we will write xv instead
of more accurate but cumbersome notation ρ(x)v.

Theorem 4.52. Any representation of sl(2,C) is completely reducible.

Proof. By Lemma 4.4, representations of sl(2,C) are the same as representations of su(2) which in
turn are the same as representations of SU(2). Since the group SU(2) is compact, by Theorem 4.40,
every representation is completely reducible. ¤

Remark 4.53. It is also possible to give a purely algebraic proof of complete reducibilty; one such
proof, in a much more general situation, will be given later in Section 6.3.

Thus, our primary goal will be the classification of irreducible representations.

Recall that sl(2,C) has a basis e, f, h with the commutation relations

(4.5) [e, f ] = h, [h, e] = 2e, [h, f ] = −2f

(see Section 3.10). As was proved earlier, this Lie algebra is simple (Example 5.38).

The main idea of the study of representations of sl(2,C) is to start by diagonalizing the operator
h.

Definition 4.54. Let V be a representation of sl(2,C). A vector v ∈ V is called vector of weight
λ, λ ∈ C, if it is an eigenvector for h with eigenvalue λ:

hv = λv.

We denote by V [λ] ⊂ V the subspace of vectors of weight λ.

The following lemma plays the key role in the study of representations of sl(2,C).

Lemma 4.55.

eV [λ] ⊂ V [λ+ 2]

fV [λ] ⊂ V [λ− 2].

Proof. Let v ∈ V [λ]. Then

hev = [h, e]v + ehv = 2ev + λev = (λ+ 2)ev

so ev ∈ V [λ+ 2]. The proof for f is similar. ¤

Theorem 4.56. Every finite-dimensional representation V of sl(2,C) can be written in the form

V =
⊕

λ

V [λ]

where V [λ] is defined in Definition 4.54. This decomposition is called the weight decomposition of
V .

Proof. Since every representation of sl(2,C) is completely reducible, it suffices to prove this for
irreducible V . So assume that V is irreducible. Let V ′ =

∑
λ V [λ] be the subspace spanned by

eigenvectors of h. By well-known result of linear algebra, eigenvectors with different eigenvalues are
linearly independent, so V ′ =

⊕
V [λ]. By Lemma 4.55, V ′ is stable under the action of e, f and h.

Thus, V ′ is a subrepresentation. Since we assumed that V is irreducible, and V ′ 6= 0 (h has at least
one eigenvector), we see that V ′ = V . ¤
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Our main goal will be classification of ireducible finite-dimensional representations. So from
now on, let V be an irreducible representation of sl(2,C).

Let λ be a weight of V (i.e., V [λ] 6= 0) which is maximal in the following sense:

(4.6) Reλ ≥ Reλ′ for every weight λ′ of V .

Such a weight will be called a “highest weight of V ”, and vectors v ∈ V [λ] will be called highest
weight vectors. It is obvious that every finite-dimensional representation has at least one non-zero
highest weight vector.

Lemma 4.57. Let v ∈ V [λ] be a highest weight vector in V .

(1) ev = 0.

(2) Let

vk =
fk

k!
v, k ≥ 0

Then we have

(4.7)

hvk = (λ− 2k)vk,

fvk = (k + 1)vk+1,

evk = (λ− k + 1)vk−1, k > 0

Proof. By Lemma 4.55, ev ∈ V [λ+ 2]. But by definition of a highest weight vector, V [λ+ 2] = 0.
This proves the first part.

To prove the second part, note that the formula for the action of f is immediate from the
definition, and formula for the action of h follows from Lemma 4.55. Thus, we need to prove the
formula for the action of e.

The proof goes by induction. For k = 1 we have

ev1 = efv = [e, f ]v + fev = hv = λv

(using ev = 0).

The induction step is proved by

evk+1 =
1

k + 1
efvk =

1
k + 1

(hvk + fevk) =
1

k + 1
(
(λ− 2k)vk + (λ− k + 1)fvk−1

)

=
1

k + 1
(λ− 2k + (λ− k + 1)k)vk = (λ− k)vk.

¤

Of course, since V is finite-dimensional, only finitely many of vk are non-zero. However, it is
convenient to consider V as a quotient of infinite-dimensional vector space with basis vk. This is
done as follows.

Lemma 4.58. Let λ ∈ C. Define Mλ to be the infinite-dimensional vector space with basis v0, v1, . . . .

(1) Formulas (4.7) and ev0 = 0 define on Mλ the structure of an (infinite-dimensional) rep-
resentation of sl(2,C).

(2) If V is an irreducible finite-dimensional representation of sl(2,C) which contains a non-
zero highest weight vector of highest weight λ, then V = Mλ/W for some subrepresentation
W .

Proof. The first part is done by explicit calculation which is essentially equivalent to the calculation
used in the proof of Lemma 4.57. The second part immediately follows from Lemma 4.57. ¤
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Now we can prove the main theorem.

Theorem 4.59.

(1) For any n ≥ 0, let Vn be the finite-dimensional vector space with basis v0, v1, . . . , vn. Define
the action of sl(2,C) by

(4.8)

hvk = (n− 2k)vk,

fvk = (k + 1)vk+1, k < n; fvn = 0

evk = (n+ 1− k)vk−1, k > 0; ev0 = 0.

Then Vn is an irreducible representation of sl(2,C); we will call it the irreducible represen-
tation with highest weight n.

(2) For n 6= m, representation Vn, Vm are non-isomorphic.

(3) Every finite-dimensional irreducible representation of sl(2,C) is isomorphic to one of rep-
resentations Vn.

Proof. Consider the infinite-dimensional representation Mλ defined in Lemma 4.58. If λ = n is a
non-negative integer, consider the subspace M ′ ⊂Mn spanned by vectors vn+1, vn+2, . . . . Then this
subspace is actually a subrepresentation. Indeed, it is obviously stable under the action of h and f ;
the only non-trivial relation to check is that evn+1 ⊂M ′. But evn+1 = (n+ 1− (n+ 1))vn = 0.

Thus, the quotient space Mn/M
′ is a finite-dimensional representation of sl(2,C). It is obvious

that it has basis v0, . . . , vn and that the action of sl(2,C) is given by (4.8). Irreducibility of this
representation is also easy to prove: any subrepresentation must be spanned by some subset of
v, v1, . . . , vn, but it is easy to see that each of them generates (under the action of sl(2,C)) the
whole representation Vn. Therefore, Vn is an irreduible finite-dimensional representation of sl(2,C).
Sonce dimVn = n+ 1, it is obvious that Vn are pairwise non-isomorphic.

To prove that every irreducible representation is of this form, let V be an irreducible represen-
tation of sl(2,C) and let v ∈ V [λ] be a highest weight vector. By Lemma 4.58, V is a quotient of
Mλ; in other words, it is spanned by vectors vk = fk

k! v.

Since vk have different weights, if they are non-zero, then they must be linearly independent.
On the other hand, V is finite-dimensional; thus, only finitely many of vi are non-zero. Let n be
maximal such that vn 6= 0, so that vn+1 = 0. Obviously, in this case v0, . . . , vn are all non-zero and
since they have different weight, they are linearly independent, so they form a basis in V .

Since vn+1 = 0, we must have evn+1 = 0. On the other hand, by(4.7), we have evn+1 = (λ−n)vn.
Since vn 6= 0, this implies that λ = n is a non-negative integer. Thus, V is a representation of the
form discussed in part (1).

¤

The following picture illustrates action of sl(2,C) in Vn:

vn tt
n

1

22 vn−1
rr n−1

2

44 . . .
uu

2

n−1

55 v1
uu 1

n
55 v0

Figure 4.1. Action of sl(2,C) in the irreducible representation Vn. Top arrows show the action
of f , bottom arrows show the action of e.
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Irreducible representations Vn can also be described more explicitly, as symmetric powers of the
usual two-dimensional representation (see Exercise 4.12).

As a corollary, we immediately get some useful information about any finite-dimensional repre-
sentation of sl(2,C).

Theorem 4.60. Let V be a finite-dimensional complex representation of sl(2,C).

(1) V admits a weight decomposition with integer weights:

V =
⊕

n∈Z
V [n]

(2) dimV [n] = dimV [−n]. Moreover, for n ≥ 0 the maps

en : V [n] → V [−n]

fn : V [−n] → V [n]

are isomorphisms.

Proof. Since every representation is completely reducible, it suffices to prove this in the case when
V = Vn is an irreducible representation. In this case, it follows from Theorem 4.59. ¤

By results of Section 4.1, this also implies similar statements for representations of Lie algebra
so(3,R) and the group SO(3,R). These results are given in Exercise 4.13.

4.9. Spherical Laplace operator and hydrogen
atom

In this section, we apply our knowledge of representation theory of Lie groups and Lie algebras to
the study of Laplace operator on the sphere, thus answering the question raised in the introduction.
The material of this section will not be used in the rest of the book, so it can be safely skipped.
However, it is a very illustrative example of how one uses representation theory in the study of
systems with a symmetry.

Let ∆ = ∂2
x +∂2

y +∂2
z be the usual Laplace operator in R3. We would like to split it into “radial”

and “spherical” part, which can be done as follows.

Notice that R3 − {0} can be identified with the direct product

(4.9)

R3 − {0} ' S2 × R+

~x 7→ (u, r)

u =
~x

|~x| ∈ S
2, r = |~x| ∈ R+.

The following well-known lemma shows how ∆ can be rewritten in coordinates u, r.

Lemma 4.61.

(1) When rewritten in coordinates u, r, we have

∆ =
1
r2

∆sph + ∆radial

where ∆sph is a differential operator on S2 and ∆radial is a differential operator on R+.
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(2) We have

(4.10)
∆radial = ∂2

r +
2
r
∂r

∆sph = J2
x + J2

y + J2
z

where

Jx = y∂z − z∂y

Jy = z∂x − x∂z

Jz = x∂y − y∂x

are vector fields corresponding to the generators of Lie algebra so(3,R) (see Exercise 3.11).

Sketch of proof. Since for any r > 0, the vector fields Jx, Jy, Jz are tangent to the sphere of
radius r, the operator ∆sph defined by (4.10) is well defined as a differential operator on the sphere.
Identity ∆ = 1

r2 ∆sph + ∆radial can be shown by explicit calculation (see Exercise 3.11). ¤

One can introduce usual coordinates on the sphere and write ∆sph in these coordinates. Such an
expression can be found in any book on multivariable calculus, but it is very messy; more importantly,
it will be useless for our purposes. For this reason it is not given here.

The main question we want to answer is as follows:

(4.11) Find eigenvalues of ∆sph acting on functions on S2

The motivation for this problem comes from physics. Namely, quantum mechanical description
of a particle moving in a central force field (for example, an electron in the hydrogen atom) is given
by Schrödinger equation

ψ̇ = iHψ

where ψ = ψ(t, ~x), ~x ∈ R3, is the wave-function which describes the state of the system and

H = −∆ + V (r)

is the Hamiltonian, or the energy operator; here V (r) is the potential, which describes the central
force field. Solving the Schrödinger equation is essentially equivalent to diagonalizing the Hamilton-
ian. The usual approach to this problem is to use separation of variables, writing

(4.12) ψ(~x) =
∑

fi(r)gi(u)

where r ∈ R+, u ∈ S2 are given by (4.9), and gi are eigenfunctions for ∆sph. Substituting this in the
equation Hψ = λψ gives a second-order differential equation on fi(r). For many potentials V (r),
one can explicitly solve this equation, thus giving eigenfunctions of the Hamiltonian — in particular,
the energy levels for the hydrogen atom. Details can be found, for example, in [34].

Returning to question (4.11), we notice that the straightforward approach, based on introducing
coordinates on the sphere and writing the corresponding partial differential equation, is rather
complicated. Instead, we will use the symmetries of the sphere, as was outlined in the introduction.
We have an obvious action of the group G = SO(3,R) on the sphere S2 which therefore defines an
action of G on the space of functions on S2, by g.f(x) = f(g−1(x)).

Lemma 4.62. ∆sph : C∞(S2) → C∞(S2) commutes with the action of SO(3,R).

Proof. This can be shown in several ways. The easiest way is to note that it is well known that
the Laplace operator ∆ is rotation invariant. Obviously, the radial part ∆radial is also rotation
invariant; thus, ∆sph = r2(∆−∆radial) is also rotation invariant.
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An alternative way of showing rotational invariance of ∆sph is by using equality ∆sph = J2
x +

J2
y + J2

z . Indeed, it suffices to show that in any representation V of SO(3,R), the operator C =
ρ(Jx)2 + ρ(Jy)2 + ρ(Jz)2 commutes with the action of SO(3,R). By results of Section 4.2, it is
equivalent to checking that for any a ∈ g, we have [ρ(a), C] = 0. This can be easily shown by
explicit calculation. We do not give this computation here, as in the next chapter we will develop
the theory of universal enveloping algebras which provides a natural language for computations of
this sort; in particular, we will show that C is a central element in the universal enveloping algebra
Uso(3,R). Later we will show that the fact that C is central can be derived from general theory of
Casimir elements, thus making the above computation unnecessary. See Exercise 6.1 for details. ¤

Therefore, by general results of Section 4.4, the best way to study ∆sph would be to decompose
the space of functions on S2 into irreducible representations of SO(3,R). As usual, it is more conve-
nient to work with complex representations, so we consider the space of complex-valued functions.

There are some obvious technical problems: the space of functions is infinite dimensional. To
avoid dealing with convergence questions and other analytical difficulties, let us consider the space
of polynomials

(4.13) Pn =
{

Complex-valued functions on S2 which can be written as
polynomials in x, y, z of total degree ≤ n

}
.

One easily sees that each Pn is a finite-dimensional representation of SO(3,R) which is also ∆sph-
invariant. Thus, we can use the theory of finite-dimensional representations to decompose Pn into
irreducible representations and then use this to find the eigenvalues of ∆sph in Pn. Since

⋃
Pn = P

is the space of all polynomial functions on S2, which is everywhere dense in C∞(S2), diagonalizing
∆sph in P is essentially equivalent to diagonalizing ∆sph in C∞ (precise statement will be given
below).

Thus, our immediate goal is to decompose Pn into direct sum of irreducible representations of
SO(3,R). To do this, note that by results of Exercise 4.13, irreducible representations of SO(3,R)
are of the form V2k, k ∈ Z+. Thus, we can write

Pn =
⊕

ckV2k.

To find coefficients ck, we need to find the character of Pn, i.e., the dimensions of eigenspaces for Jz

(recall that under the isomorphism so(3,R)C ' sl(2,C) constructed in Section 3.10, Jz is identified
with ih/2). . We can do it by explicitly constructing an eigenbasis in Pn.

Lemma 4.63. The following set of functions form a basis of Pn:

fp,k = zp
(√

1− z2
)|k|

eikϕ, p ∈ Z+, k ∈ Z, p+ |k| ≤ n

where ϕ is defined by x = ρ cosϕ, y = ρ sinϕ, ρ =
√
x2 + y2.

Proof. Let u = x+ iy = ρeiϕ, v = x− iy = ρe−iϕ. Then any polynomial in x, y, z can be written as
a polynomial in z, u, v. Since on the sphere we have 1− z2 = x2 + y2 = uv, every monomial zkulvm

can be written as a monomial which involves only u or v but not both. Thus, every element of Pn

can be written as a linear combination of monomials

zp,

zpuk = zpρkeikϕ = fp,k,

zpvk = zpρke−ikϕ = fp,−k

with p, k ∈ Z+, p+ k ≤ n. Thus, elements fp,k span Pn.
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To show that they are linearly independent, assume that
∑

ap,kfp,k =
∑

k

ak(z)eikϕ = 0, ak(z) =
∑

p

ap,kz
p(

√
1− z2

)|k|
.

By uniqueness of Fourier series, we see that for every k ∈ Z, z ∈ (−1, 1), we have ak(z) = 0 which
easily implies that for every p, k, ap,k = 0. ¤

We can now find the dimensions of the eigenspaces for Jz. Since Jz is the generator of rotations
around z axis, it is easy to see that in the cylindrical coordinates z, ρ, ϕ, Jz = ∂

∂ϕ . Thus,

Jzfp,k = ikfp,k

so Pn[2k] = Span(fp,k)0≤p≤n−|k| and thus dimPn[2k] = n+1−k. Using the formula for multiplicities
from Exercise 4.11, we see that

(4.14) Pn ' V0 ⊕ V2 ⊕ · · · ⊕ V2n.

Now the computation of the eigenvalues of spherical Laplace operator is easy. Namely, by Exercise 4.4
J2

x + J2
y + J2

z acts in Vl by −l(l + 2)/4. Thus, we get the following result.

Theorem 4.64. The eigenvalues of the spherical Laplace operator ∆sph in the space Pn are

(4.15) λk = −k(k + 1), k = 0, . . . , n

and multiplicity of λk is equal to dimV2k = 2k + 1.

Finally, we can formulate the final result about eigenfunctions in C∞(S2).

Theorem 4.65. Each eigenfunction of ∆sph is polynomial. The eigenvalues are given by (4.15),
and multiplicity of λk is equal to 2k + 1.

Proof. Consider the space L2(S2,C) of complex-valued L2 functions on S2. Since action of SO(3)
preserves the volume form, it also preserves the inner product in L2(S2,C). It shows that operators
Jx, Jy, Jz are skew-Hermitian, and thus, ∆sph is Hermitian, or self-adjoint.

Let En ⊂ Pn be the orthogonal complement to Pn−1. Then En is SO(3)-invariant, and it follows
from (4.14) that as an SO(3)-module En ' V2n, so ∆sph acts on En by λn. On the other hand, since
the space of polynomials is dense in L2, we have

L2(S2,C) =
⊕

n≥0

En

(direct sum of Hilbert spaces). Thus, if ∆sphf = λf for some function f ∈ C∞(S2) ⊂ L2(S2), then
either λ 6= λn for all n, which forces (f,En) = 0 for all n, so f = 0, or λ = λn, so (f,Ek) = 0 for all
k 6= n, so f ∈ En. ¤

Exercises

4.1. Let ϕ : SU(2) → SO(3,R) be the cover map constructed in Exercise 2.8.
(1) Show that Kerϕ = {1,−1} = {1, eπih}, where h is defined by (3.23).
(2) Using this, show that representations of SO(3,R) are the same as representations of sl(2,C)

satisfying eπiρ(h) = id.

4.2. Let V = C2 be the standard 2-dimensional representation of the Lie algebra sl(2,C), and let
SkV be the symmetric power of V .
(1) Write explicitly the action of e, f, h ∈ sl(2,C) (see Section 3.10) in the basis ei

1e
k−i
2 .

(2) Show that S2V is isomorphic to the adjoint representation of sl(2,C).
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(3) By results of Section 4.1, each representation of sl(2,C) can be considered as a representation
of so(3,R). Which of representations SkV can be lifted to a representation of SO(3,R)?

4.3. Show that ΛnCn ' C as a representation of sl(n,C). Does it also work for gl(n,C)?

4.4. Let V be a representation of sl(2,C), and let C ∈ End(V ) be defined by

C = ρ(e)ρ(f) + ρ(f)ρ(e) +
1
2
ρ(h)2.

(1) Show that C commutes with the action of sl(2,C): for any x ∈ sl(2,C), we have [ρ(x), C] = 0.
[Hint: use that for any a, b, c ∈ End(V ), one has [a, bc] = [a, b]c+ b[a, c].]

(2) Show that if V = Vk is an irreducible representation with highest weight k, then C is a scalar
operator: C = ck id. Compute the constant ck.

(3) Recall that we have an isomorphism so(3,C) ' sl(2,C) (see Section 3.10). Show that this
isomorphism identifies operator C above with a multiple of ρ(Jx)2 + ρ(Jy)2 + ρ(Jz)2.

The element C introduced here is a special case of more general notion of Casimir element which
will be discussed in Section 6.3.

4.5. (1) Let V,W be irreducible representations of a Lie group G. Show that (V ⊗W ∗)G = 0 if
V is non-isomorphic to W , and that (V ⊗ V ∗)G is canonically isomorphic to C.

(2) Let V be an irreducible representation of a Lie algebra g. Show that V ∗ is also irreducible,
and deduce from this that the space of g-invariant bilinear forms on V is either zero or
1-dimensional.

4.6. For a representation V of a Lie algebra g, define the space of coinvaraints by Vg = V/gV ,
where gV is the subspace spanned by xv, x ∈ g, v ∈ V .
(1) Show that if V is completely reducible, then the composition V g ↪→ V → Vg is an isomor-

phism.
(2) Show that in general, it is not so. (Hint: take g = R and an appropriate representation V .)

4.7. Let g be a Lie algebra, and ( , ) — a symmetric ad-invariant bilinear form on g. Show that
the element ω ∈ (g∗)⊗3 given by

ω(x, y, z) = ([x, y], z)

is skew-symmetric and ad-invariant.

4.8. Prove that if A : Cn → Cn is an operator of finite order: Ak = I for some k, then A is
diagonalizable. [Hint: use theorem about complete reducibility of representations of a finite
group]

4.9. Let C be the standard cube in R3: C = {|xi| ≤ 1}, and let S be the set of faces of C (thus,
S consists of 6 elements). Consider the 6-dimensional complex vector V space of functions on S,
and define A : V → V by

(Af)(σ) =
1
4

∑

σ′
f(σ′)

where the sum is taken over all faces σ′ which are neighbors of σ (i.e., have a common edge with
σ). The goal of this problem is to diagonalize A.
(1) Let G = {g ∈ O(3,R) | g(C) = C} be the group of symmetries of C. Show that A commutes

with the natural action of G on V .
(2) Let z = −I ∈ G. Show that as a representation of G, V can be decomposed in the direct

sum

V = V+ ⊕ V−, V± = {f ∈ V | zf = ±f}.
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(3) Show that as a representation of G, V+ can be decomposed in the direct sum

V+ = V 0
+ ⊕ V 1

+, V 0
+ = {f ∈ V+ |

∑
σ

f(σ) = 0}, V 1
+ = C · 1

where 1 denotes the constant function on S whose value at every σ ∈ S is 1.
(4) Find the eigenvalues of A on V−, V 0

+, V
1
+.

[Note: in fact, each of V−, V 0
+, V

1
+ is an irreducible representation of G, but you do not need this

fact.]

4.10. Let G = SU(2). Recall that we have a diffeomorphism G ' S3 (see Example 2.5).
(1) Show that the left action of G on G ' S3 ⊂ R4 can be extended to an action of G by linear

orthogonal transformations on R4.
(2) Let ω ∈ Ω3(G) be a left-invariant 3-form whose value at 1 ∈ G is defined by

ω(x1, x2, x3) = tr([x1, x2]x3), xi ∈ g

(see Exercise 4.7). Show that ω = ±4dV where dV is the volume form on S3 induced by the
standard metric in R4 (hint: let x1, x2, x3 be some orthonormal basis in su(2) with respect
to 1

2 tr(ab̄t)). (Sign depends on the choice of orientation on S3.)
(3) Show that 1

8π2ω is a bi-invariant form on G such that for appropriate choice of orientation
on G, 1

8π2

∫
G
ω = 1

4.11. Show that if V is a finite-dimensional representation of sl(2,C), then V ' ⊕
nkVk, and

nk = dimV [k]− dimV [k + 2]. Show also that
∑
n2k = dimV [0],

∑
n2k+1 = dimV [1].

4.12. Show that the symmetric power representation SkC2, considered in Exercise 4.2, is isomorphic
to the irreducible representation Vk with highest weight k.

4.13. Prove an analog of Theorem 4.60 for complex representations of so(3,R), namely
(1) Every finite-dimensional representation of so(3,R) admits a weight decomposition:

V =
⊕

n∈Z
V [n]

where V [n] = {v ∈ V | Jzv = in
2 v}.

(2) A representation V of so(3,R) can be lifted to a representation of SO(3,R) iff all weights are
even: V [k] = 0 for all odd k (cf. with Exercise 4.1).

In physical literature, the number j = weight/2 is called the spin; thus, instead of talking say, of
representation with highest weight 3, physicicts would talk about spin 3/2 representation. In this
language, we see that a representation V of so(3,R) can be lifted to a representation of SO(3,R)
iff the spin is integer.

4.14. Complete the program sketched in Section 4.9 to find the eigenvalues and multiplicities of
the operator

H = −∆− c

r
, c > 0

in L2(R3,C) (this operator describes the hydrogen atom).



Chapter 5

Structure Theory of Lie
Algebras

In this section, we will start developing the structure theory of Lie algebras, with the goal of getting
eventually the full classification for semisimple Lie algebras and their representations.

In this chapter, g will always stand for a finite-dimensional Lie algebra over the ground field K
which can be either R or C (most results will apply equally in both cases and in fact for any field of
characteristic zero). We will not be using the theory of Lie groups.

5.1. Universal enveloping algebra

In a Lie algebra g, in general there is no multiplication: the products of the form xy, x, y ∈ g, are
not defined. However, if we consider a representation ρ : g → gl(V ), then the product ρ(x)ρ(y) is
well-defined in such a representation — and in fact, as we will see later, operators of this kind can
be very useful in the study of representations. Moreover, commutation relation in g imply some
relations on the operators of this form. For example, commutation relation [e, f ] = h in sl(2,C)
implies that in any representation of sl(2,C) we have ρ(e)ρ(f) − ρ(f)ρ(e) = ρ(h), or equivalently,
ρ(e)ρ(f) = ρ(h) + ρ(f)ρ(e). These relations do not depend on the choice of representation ρ.

Motivated by this, we define the “universal” associative algebra generated by products of oper-
ators of the form ρ(x), x ∈ g.

Definition 5.1. Let g be a Lie algebra over a field K. The universal enveloping algebra of g, denoted
by Ug, is the associative algebra with unit over K with generators i(x), x ∈ g, subject to relations
i(x+ y) = i(x) + i(y), i(cx) = ci(x), c ∈ K, and

(5.1) i(x)i(y)− i(y)i(x) = i([x, y]).

To simplify the notation, we (and everyone else) will usually write simply x ∈ Ug instead of i(x).
This will be justified later (see Corollary 5.13) when we show that the map i : g → Ug is injective
and thus g can be considered as a subspace in Ug.

If we dropped relation (5.1), we would get the associative algebra generated by elements x ∈ g

with no relations other than linearity and associativity. By definition, this is exactly the tensor
algebra of g:

(5.2) Tg =
⊕

n≥0

g⊗n.

71
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Thus, one can alternatively describe the universal enveloping algebra as the quotient of the tensor
algebra:

(5.3) Ug = Tg/(xy − yx− [x, y]), x, y ∈ g.

Example 5.2. Let g be a commutative Lie algebra. Then Ug is generated by elements x ∈ g

with relations xy = yx. In other words, Ug = Sg is the symmetric alebra of g, which can also
be described as the algebra of polynomial functions on g∗. Choosing a basis xi in g we see that
Ug = Sg = K[x1, . . . , xn].

Note that in this example, the universal enveloping algebra is infinite-dimensional. In fact, Ug

is always infinite-dimensional (unless g = 0). We will return to the discussion of the size of Ug in
the next section.

Example 5.3. The universal enveloping algebra of sl(2,C) is the associative algebra over C gener-
ated by elements e, f, h with the relations ef − ef = h, he− eh = 2e, hf − fh = −2f .

It should be noted that even when g ⊂ gl(n,K) is a matrix algebra, multiplication in Ug is
different from multiplication of matrices. For example, let e be the standard generator of sl(2,C).
Then e2 = 0 as a 2 × 2 matrix, but e2 6= 0 in Ug — and for a good reason: there are many
representations of sl(2,C) in which ρ(e)2 6= 0.

The following theorem shows that Ug is indeed universal in a certain sense, which justifies the
name.

Theorem 5.4. Let A be an associative algebra with unit over K and let ρ : g → A be a linear
map such that ρ(x)ρ(y) − ρ(y)ρ(x) = ρ([x, y]). Then ρ can be uniquely extended to a morphism of
associative algebras Ug → A.

Corollary 5.5. Any representation of g (not necessarily finite-dimensional) has a canonical struc-
ture of a Ug-module. Conversely, every Ug-module has a canonical structure of a representation of
g.

In other words, categories of representations of g and of Ug-modules are equivalent.

As a useful application of this result, we can use Ug to construct various operators acting in
representations of g — in particular to construct intertwining operators.

Example 5.6. Let C = ef + fe+ 1
2h

2 ∈ Usl(2,C). Then

eC = e2f + efe+
1
2
eh2 = e(fe+ h) + (fe+ h)e+

1
2
(he− 2e)h

= efe+ fe2 +
1
2
heh+ eh+ he− eh = efe+ fe2

1
2
h(he− 2e) + he = efe+ fe2

1
2
h2e

= Ce.

The idea of this calculation is to move e to the right, using the relations ef = fe+ h, eh = he− 2e
to interchange it with f, h. Similar calculations also show that fC = Cf , hC = Ch. Thus, C is
central in Ug.

In particular, this implies that in every representation V of sl(2,C), the element ρ(C) : V →
V commutes with the action of sl(2,C) and thus is an intertwining operator. By Schur lemma
(Lemma 4.23), this shows that C acts by a constant in every irreducible representation. And if V is
not irreducible, eigenspaces of V are subrepresentations, which could be used to decompose V into
irreducible representations (see Lemma 4.21).

Element C is called the Casimir operator for sl(2,C). We will discuss its generalization for other
Lie algebras in Proposition 6.15.
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Proposition 5.7.

(1) The adjoint action of g on g can be uniquely extended to an action of g on Ug which
satisfies Leibniz rule: adx.(ab) = (adx.a)b + a(adx.b), x ∈ g, a, b ∈ Ug. Moreover,
adx.a = xa− ax.

(2) Let Zg = Z(Ug) be the center of universal enveloping algebra. Then Zg coincides with the
space of invariants of Ug with respect to the adjoint action of g:

Zg = (Ug)ad g.

Proof. Define adjoint action of x ∈ g on Ug by adx.a = xa− ax. Clearly, for a ∈ g this coincides
with the usual definition of adjoint action. To see that it is indeed an action, we need to verify that
ad[x, y].a = adx(ad y.a)− ad y(adx.a), or

[x, y]a− a[x, y] =
(
x(ya− ay)− (ya− ay)x

)− (
y(xa− ax)− (xa− ax)y

)

which is given by explicit calculation.

Leibniz rule follows from

xab− abx = (xa− ax)b+ a(xb− bx).

This proves the first part. The second part follows immediately: C ∈ Ug is central iff it
commutes with all the generators, i.e. if Cx = xC for any x ∈ g. The last condition is equivalent to
adx.C = 0. ¤

5.2. Poincare-Birkhoff-Witt theorem

In this section, g is a finite-dimensional Lie algebra over the field K and Ug is the universal enveloping
algebra of g.

We had already mentioned that Ug is infinite-dimensional. In this section, we will give a more
precise statement.

Unlike polynomial algebra, Ug is not graded: if we try to define degree by deg(x1 . . . xk) = k, xi ∈
g, then we run into problem with the defining relation (5.1): we would have deg(xy) = deg(yx) = 2,
but deg(xy− yx) = deg([x, y]) = 1. Instead, we have a weaker structure: we can define filtration on
Ug by letting, for any k ≥ 0,

(5.4) Ukg = Subspace in Ug spanned by products x1 . . . xp, p ≤ k.

This defines a filtration on Ug: we have

K = U0g ⊂ U1g ⊂ . . . , Ug =
⋃
Upg

The following proposition gives some properties of this filtration.

Proposition 5.8.

(1) Ug is a filtered algebra: if x ∈ Upg, y ∈ Uqg, then xy ∈ Up+qg.

(2) If x ∈ Upg, y ∈ Uqg, then xy − yx ∈ Up+q−1g.

(3) Let x1, . . . , xn be an ordered basis in g. Then monomials

(5.5) xk1
1 . . . xkn

n ,
∑

ki ≤ p

span Upg. Note that we fix the order of basis elements.
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Proof. Part (1) is obvious. To prove the second part, note that for p = 1, we have

x(y1 . . . yq)− (y1 . . . yq)x =
∑

i

y1 . . . [x, yi] . . . yq ∈ Uqg

In particular, this implies that for any x ∈ g, y ∈ Uqg, we have xy ≡ yx mod Uqg.

Now we can argue by induction in p: if the statement is true for some p, then

x1 . . . xp+1y ≡ x1 . . . xpyxp+1 ≡ yx1 . . . xpxp+1 mod Up+q−1g.

Part (3) is again proved by induction in p. Indeed, for p = 1 it is obvious. To establish the
induction step, notice that Up+1g is generated by elements of the form xy, x ∈ g, y ∈ Upg. By
induction assumption, y can be written as linear combination of monomials of the form (5.5). But
by part (2),

xi(xk1
1 . . . xkn

n )− xk1
1 . . . xki+1

i . . . xkn
n ∈ Upg.

Using the induction assumption again, we see that xi(xk1
1 . . . xkn

n ) can again be written as linear
combination of monomials of the form (5.5), with

∑
ki ≤ p+ 1. ¤

Corollary 5.9. Each Upg is finite-dimensional.

Corollary 5.10. The associated graded algebra

(5.6) GrUg =
⊕

p

Upg/Up−1g

is commutative.

We can now formulate the main result of this section.

Theorem 5.11 (Poincaré–Birkhoff–Witt). Let x1, . . . , xn be an ordered basis is g. Then monomials
of the form (5.5) form a basis in Upg.

The proof of this theorem is not given here; it can be found, for example, in [9], [22], [24]. Here
is the main idea of the proof. Since we already know that monomials of the form (5.5) generate
Upg (see Proposition 5.8), it suffices to show that they are linearly independent. To show this, we
construct a representation in which the operators corresponding to these monomials are linearly
independent.

Namely, we consider (infinite-dimensional) vector space V with basis given by (5.5) (no restric-
tion on

∑
ki). The action is uniquely defined by the requirement that ρ(xi).xj1 . . . xjn = xixj1 . . . xjn

if i ≤ j1 ≤ j2 . . . . For example, this forces ρ(x1).x2 = x1x2.

This requirement also determines ρ(xi).xj1 . . . xjn if i > j1. For example, to define ρ(x2).x1, we
note that it must be equal to ρ(x2)ρ(x1).1 = ρ(x1)ρ(x2).1 + ρ([x2, x1]).1 = x1x2 +

∑
aixi, where ai

are defined by [x1, x2] =
∑
aixi.

The difficult part is to check that it is indeed an action, i.e., that it satisfies ρ(x)ρ(y)−ρ(y)ρ(x) =
ρ[x, y], which is done by an explicit calculation using the Jacobi identity.

Note that this theorem would fail without the Jacobi identity: if [ , ] : g⊗ g → g is an antisym-
metric map not satisfying Jacobi identity, then the algebra defined by (5.1) can be trivial (i.e., all
i(x) = 0).

This theorem can also be reformulated in a coordinate-independent way.

Theorem 5.12 (Poincaré–Birkhoff–Witt). The graded algebra GrUg defined by (5.6) is naturally
isomorphic to the symmetric algebra Sg. The isomorphism is given by

(5.7)
Spg → Grp Ug

a1 . . . ap 7→ a1 . . . ap mod Up−1g
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and the inverse isomorphism is given by

(5.8)

Grp Ug → Spg

a1 . . . ap 7→ a1 . . . ap,

a1 . . . al 7→ 0, l < p

When written in this form, this theorem may seem trivial. The non-triviality is hidden in the
statement that the maps (5.7), (5.8) are well-defined.

Poincaré–Birkhoff–Witt (or PBW for short) theorem has a number of useful corollaries. Here
are some of them; proofs are left as an easy exercise to the reader.

Corollary 5.13. The natural map g → Ug is injective.

Corollary 5.14. Let g1, g2 ⊂ g be subalgebras such that g = g1 ⊕ g2 as a vector space (we do not
require that g1, g2 commute). Then the multiplication map

Ug1 ⊗ Ug2 → Ug

is a vector space isomorphism.

Corollary 5.15. Algebra Ug has no zero divisors.

Notice that while Theorem 5.12 establishes an isomorphism between GrUg and Sg, this isomor-
phism clearly can not be extended to an isomorphism of algebras Ug

∼−→ Sg unless g is commutative.
The following result is the best one can get in this direction for general g.

Theorem 5.16. The map Sg → Ug given by

(5.9) sym(x1 . . . xp) =
1
p!

∑

s∈Sp

xs(1) . . . xs(p)

is an isomorphism of g-modules.

This isomorphism will be later used in the construction of so-called Harish–Chandra isomorphism
(see Section 8.8).

5.3. Ideals and commutant

Recall that a subalgebra of g is a vector subspace closed under the commutator, and an ideal is a
vector subspace h such that [x, y] ∈ h for any x ∈ g, y ∈ h. This definition is the natural analog of an
ideal in an associative algebra. Note, however, that because of skew-symmetry of the commutator
there is no difference between left and right ideals: every right ideal is also automatically a left ideal.

As in the theory of associative algebras, if h is an ideal of g then the quotient space g/h has a
canonical structure of a Lie algebra, and we have the following trivial result, proof of which is left
to the reader as an exercise.

Lemma 5.17. If f : g1 → g2 is a morphism of Lie algebras, then Ker f is an ideal in g1, Im f is a
subalgebra in g2, and f gives rise to an isomorphism of Lie algebras g/Ker f ' Im f .

In addition, here is another important result about ideals, proof of which is left as an easy
exercise to the reader.

Lemma 5.18. Let I1, I2 be ideals in g. Define

I1 + I2 = {x+ y | x ∈ I1, y ∈ I2}
[I1, I2] = Subspace spanned by [x, y], x ∈ I1, y ∈ I2.

Then I1 ∩ I2, I1 + I2, [I1, I2] are ideals in g.
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One of the first ways to study Lie algebras is by analyzing how close the Lie algebra is to a
commutative Lie algebra. There are several ways of making it precise.

First, we might look at how large the center z(g) = {x ∈ g | [x, y] = 0 for all y ∈ g} is. However,
it turns out that it is more effective to study commutative quotients of g.

Definition 5.19. The commutant of a Lie algebra g is the ideal [g, g].

The following lemma explains the importance of the commutant.

Lemma 5.20. The quotient g/[g, g] is an abelian Lie algebra. Moreover, [g, g] is the smallest ideal
with this property: if g/I is abelian for some ideal I ⊂ g, then I ⊃ [g, g].

Commutant gives us another way of measuring how far a Lie algebra is from being commutative:
the smaller [g, g] (and the larger g/[g, g]), the closer g is to being commutative. For example, for
commutative g, we have [g, g] = 0.

Example 5.21. The commutant [gl(n,K), gl(n,K)] = [sl(n,K), sl(n,K)] = sl(n,K). Indeed, it is
obvious that for any z = [x, y] we have tr z = 0. On the other hand, for i 6= j we have Eii − Ejj =
[Eij , Eji] and 2Eij = [Eii − Ejj , Eij ], which shows that Eii − Ejj , Eij ∈ [sl(n,K), sl(n,K)]. Since
these elements span sl(n,K) we see that [gl(n,K), gl(n,K)] = [sl(n,K), sl(n,K)] = sl(n,K).

5.4. Solvable and nilpotent Lie algebras

We now can define an important class of Lie algebras.

Definition 5.22. For a Lie algebra g, define the series of ideals Dig (called the derived series) by
D0g = g and

Di+1g = [Dig, Dig].

It immediately follows from Lemma 5.18, Lemma 5.20, that each Di is an ideal in g and
Dig/Di+1g is abelian.

Proposition 5.23. The following conditions are equivalent:

(1) Dng = 0 for large enough n.

(2) There exists a sequence of subalgebras a0 = g ⊃ a1 ⊃ · · · ⊃ ak = {0} such that ai+1 is an
ideal in ai and the quotient ai/ai+1 is abelian.

(3) For large enough n, every commutator of the form

[. . . [[x1, x2], [x3, x4]] . . . ]

(2n terms, arranged in a binary tree of length n) is zero.

Proof. Equivalence of (1) and (3) is obvious. Implication (1) =⇒ (2) is also clear: we can take
ai = Dig. To prove (2) =⇒ (1), note that if ai satisfies the conditions of the proposition, then by
Lemma 5.20, we have ai+1 ⊃ [ai, ai]. Thus, reasoning by induction, we see that ai ⊃ Dig. ¤

Definition 5.24. Lie algebra g is called solvable if it satisfies any of the equivalent conditions of
Proposition 5.23.

Informally, a solvable Lie algebra is an “almost commutative” Lie algebra: it is an algebra that
can be obtained by successive extensions of commutative algebras.

This is not the only way of making the notion of “almost commutative” Lie algebra precise.
Another class of Lie algebras can be defined as follows.
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Definition 5.25. For a Lie algebra g, define a series of ideals Dig ⊂ g (called lower central series)
by D0g = g and

Di+1g = [g, Dig].

Proposition 5.26. The following conditions are equivalent:

(1) Dng = 0 for large enough n.

(2) There exists a sequence of ideals a0 = g ⊃ a1 ⊃ · · · ⊃ ak = {0} such that [g, ai] ⊂ ai+1.

(3) For large enough n, every commutator of the form

[. . . [[x1, x2], x3], x4] . . . xn]

(n terms) is zero.

Proof. Equivalence of (1) and (3) is obvious. Implication (1) =⇒ (2) is also clear: we can take
ai = Dig. To prove (2) =⇒ (1), note that if ai satisfies the conditions of the proposition, then by
induction, we see that ai ⊃ Dig. ¤

Definition 5.27. Lie algebra g is called nilpotent if it satisfies any of the equivalent conditions of
Proposition 5.26.

Example 5.28. Let b ⊂ gl(n,K) be the subalgebra of upper triangular matrices, and n be the
subalgebra of all strictly upper triangular matrices. Then b is solvable, and n is nilpotent.

To prove it, let us first generalize it. Namely, if F is a flag in a finite-dimensional vector space
V :

F = ({0} ⊂ V1 ⊂ V2 ⊂ . . . Vn = V )

with dimVi < dimVi+1 (we do not require that dimVi = i), then define

b(F) = {x ∈ gl(V ) | xVi ⊂ Vi for all i},
n(F) = {x ∈ gl(V ) | xVi ⊂ Vi−1 for all i}.

By taking F to be the standard flag in Kn (see Example 2.25) we recover the Lie algebras b, n defined
above.

We claim that n(F) is nilpotent. Indeed, define more general algebras

ak(F) = {x ∈ gl(V ) | xVi ⊂ Vi−k for all i}
so that b(F) = a0, n(F) = a1. Then it is obvious that for x ∈ ak, y ∈ al, we have xy ∈ ak+l (here
xy is the usual product in End(V )); thus, [ak, al] ⊂ ak+l, so Din ⊂ ai+1. This proves nilpotency of
n(F).

To show solvability of b (for the standard flag F), note that even though for x, y ∈ b we can only
say that xy ∈ b, for the commutator we have a stronger condition: [x, y] ∈ n = a1. Indeed, diagonal
entries of xy and yx coincide. Thus, D1b ⊂ n = a1. From here it easily follows by induction that
Di+1b ⊂ a2i .

Note, finally, that b is not nilpotent: D2b = [b, D1b] = D1b = n, which can be easily deduced
from [x,Eij ] = (λi − λj)Eij if x is a diagonal matrix with entries λi.

The following theorem summarizes some basic properties of solvable and nilpotent Lie algebras.

Theorem 5.29.

(1) A real Lie algebra g is solvable (respectively, nilpotent) iff its complexification gC is solvable
(respectively, nilpotent).
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(2) If g is solvable, then any subalgebra and quotient of g are also solvable. If g is nilpotent,
then any subalgebra, quotient of g is also nilpotent.

(3) If g is nilpotent, then g is solvable.

(4) If I ⊂ g is an ideal such that both I, g/I are solvable, then g is solvable.

Proof. Parts (1), (2) are obvious if we use definition of solvable algebra in the form “any commutator
of the form . . . is zero”, and similarly for nilpotent. Part (3) follows from inclusion Dig ⊂ Dig, which
can be easily proved by induction.

Finally, to prove part (4), denote by ϕ the canonical projection g → g/I. Then ϕ(Dng) =
Dn(g/I) = 0 for some n. Thus, Dng ⊂ I. Therefore, Dn+kg ⊂ DkI, so Dn+kg = 0 for large enough
k. ¤

5.5. Lie’s and Engel’s theorems

The main result of this section is the following theorem.

Theorem 5.30 (Lie’s theorem about representations of a solvable Lie algebra). Let ρ : g → gl(V )
be a complex representation of a solvable Lie algebra g (real or complex ). Then there exists a basis
in V such that in this basis, all operators ρ(x) are upper-triangular.

This theorem is a generalization of a well-known result that any operator in a complex vector
space can be brought to an upper-triangular form by a change of basis.

The key step in the proof of the theorem is the following result.

Proposition 5.31. Let ρ : g → gl(V ) be a complex representation of a solvable Lie algebra g. Then
there exists a vector v ∈ V which is a common eigenvector of all ρ(x), x ∈ g.

Proof. The proof goes by induction in dimension of g. Since g is solvable, [g, g] 6= g. Let g′ ⊂ g be
a subspace which contains [g, g] and has codimension 1 in g: g = g′ ⊕ Cx. Then g′ is an ideal in g;
thus, g′ is solvable.

By induction assumption, there exists v ∈ V which is a common eigenvector for all ρ(h), h ∈ g′:
ρ(h)v = λ(h)v. Consider the vector space W spanned by v0 = v, v1 = ρ(x)v, v2 = (ρ(x))2v, . . . .

We claim that W is stable under action of any h ∈ g′; moreover,

(5.10) hvk = λ(h)vk +
∑

l<k

akl(h)vl.

This is easily proved by induction: indeed,

(5.11) hvk = hxvk−1 = xhvk−1 + [h, x]vk−1 = λ(h)xvk−1 + λ([h, x])vk−1 + . . .

Thus, W is stable under the action of g.

Let n be the smallest integer such that vn+1 is in the subspace generated by v0, v1, . . . , vn. Then
v0, v1, . . . , vn is a basis in W . By (5.10), in this basis any ρ(h) is upper-triangular, with λ(h) on the
diagonal. In particular, this implies that trW ρ(h) = (n+ 1)λ(h).

Since trW [ρ(x), ρ(h)] = 0, this implies that λ([h, x]) = 0 for any h ∈ g′. The same calculation
as in (5.11), shows that this implies hvk = λ(h)vk. Therefore, any vector w ∈ W is a common
eigenvector for all h ∈ g′. Choosing w to be an eigenvector for x, we get the statement of the
proposition. ¤

This proposition immediately implies Lie’s theorem.
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Proof of Theorem 5.30. Proof goes by induction in dimV . By Proposition 5.31, there exists a
common eigenvector v for all x ∈ g. Consider the space V/Cv. By induction assumption, there
exists a basis v1, v2, . . . in V/Cv such that the action of g in this basis of V/Cv is upper-triangular.
For each of these vectors, choose a preimage ṽi ∈ V . Then one immediately sees that the action of
any x ∈ g in the basis v, ṽ1, ṽ2, . . . is upper-triangular. ¤

This theorem gives a number of useful corollaries.

Corollary 5.32.

(1) Any irreducible complex representation of a solvable Lie algebra is 1-dimensional.

(2) If a complex Lie algebra g is solvable, then there exists a sequence 0 ⊂ I1 ⊂ · · · ⊂ In = g,
where each Ik is an ideal in g and Ik+1/Ik is one dimensional.

(3) g is solvable if and only if [g, g] is nilpotent.

Proof. Part (1) is obvious from Proposition 5.31; part (2) is immediately obtained if we apply Lie’s
theorem to the adjoint representation and note that a subrepresentation of the adjoint representation
is the same as an ideal in g.

To prove part (3), note that implication in one direction is obvious. Indeed, if [g, g] is nilpotent,
then it is also solvable; since g/[g, g] is commutative (and thus solvable), by Theorem 5.29, g itself
is solvable.

Conversely, assume that g is solvable. Without loss of generality, we may assume that g is
complex. Apply Lie’s theorem to the adjoint representation. By Theorem 5.30, ad g ⊂ b (algebra
of upper-triangular matrices) in some basis of g; thus, by results of Example 5.28, the algebra
[ad g, ad g] = ad[g, g] ⊂ n is nilpotent, so ad[x1, [. . . [xn−1, xn] . . . ] = 0 for sufficiently large n and all
xi ∈ [g, g]. Thus, [y, [x1, [. . . [xn−1, xn] . . . ] = 0 for sufficiently large n and all xi, y ∈ [g, g]. ¤

One also might ask if there is an analog of Lie’s theorem for nilpotent Lie algebras. Of course,
since every nilpotent Lie algebra is automatically solvable (Theorem 5.29), Lie’s theorem shows that
in any representation of a nilpotent algebra, operators ρ(x) are upper-triangular in a certain basis.
One wonders whether one has a stronger result — for example, whether operators ρ(x) can be made
strictly upper–triangular. Here the answer is obviously negative: it suffices to take a commutative
Lie algebra which acts diagonally in Cn.

The proper analog of Lie’s theorem for nilpotent Lie algebras is given by the following result.

Theorem 5.33. Let V be a finite-dimensional vector space, either real or complex, and let g ⊂ gl(V )
be a Lie subalgebra which consists of nilpotent operators. Then there exists a basis in V such that
all operators x ∈ g are strictly upper-triangular.

The proof of this theorem will not be given here; interested reader can find it in [46], [24], or
[22]. It is not very difficult and in fact is rather similar to the proof of Lie’s theorem; the only reason
it is not given here is because it does not give any new insight.

As an immediate corollary, we get the following theorem.

Theorem 5.34 (Engel’s theorem). A Lie algebra g is nilpotent if and only if for every x ∈ g, the
operator adx ∈ End(g) is nilpotent.

Proof. One direction is obvious: if g is nilpotent then by definition, [x, [x, . . . [x, y . . . ] = (adx)n.y =
0 for large enough n.
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Conversely, if adx is nilpotent for every x, then by the previous theorem, there exists a sequence
of subspaces 0 ⊂ g1 ⊂ g2 · · · ⊂ gn = g such that adx.gi ⊂ gi−1. This shows that each gi is an ideal
in g and moreover, [g, gi] ⊂ gi−1. Thus, g is nilpotent. ¤

5.6. The radical. Semisimple and reductive
algebras

So far, we have defined the notion of a solvable Lie algebra; informally, a solvable Lie algebra is the
one which is close to being abelian. In this section, we will describe the opposite extreme case, Lie
algebras which are as far as possible from being abelian (they are called semisimple) and show that
in a reasonable sense, any Lie algebra is built out of a solvable and semisimple one.

Definition 5.35. A Lie algebra g is called semisimple if it contains no nonzero solvable ideals.

Note that this in particular implies that the center z(g) = 0.

A special case of semisimple Lie algebras is given by simple ones.

Definition 5.36. A Lie algebra g is called simple if it is not abelian and contains no ideals other
than 0 and g.

The condition that g should not be abelian is included to rule out the one-dimensional Lie
algebra: there are many reasons not to include it in the class of simple Lie algebras. One of these
reasons is the following lemma.

Lemma 5.37. Any simple Lie algebra is semisimple.

Proof. If g is simple, then it contains no ideals other than 0 and g. Thus, if g contains a nonzero
solvable ideal, then it must coincide with g, so g must be solvable. But then [g, g] is an ideal which
is strictly smaller than g (because g is solvable) and nonzero (because g is not abelian). This gives
a contradiction. ¤

Example 5.38. The Lie algebra sl(2,C) is simple. Indeed, recall that adh is diagonal in the basis
e, f, h, with eigenvalues 2,−2, 0 (see Section 3.10). Any ideal in g must be stable under adh. Now
we can use the following easy to prove result from linear algebra: if A is a diagonalizable operator
in a finite-dimensional vector space, with distinct eigenvalues: Avi = λivi, λi 6= λj , then the only
subspaces invariant under A are those spanned by some of the eigenvectors vi. Applying this to
adh, we see that any ideal in sl(2,C) must be spanned as a vector space by a subset of {e, f, h}.

But if an ideal I contains h, then [h, e] = 2e ∈ I, [h, f ] = −2f ∈ I, so I = sl(2,C). If I contains
e, then [e, f ] = h ∈ I, so again I = sl(2,C). Similarly, if f ∈ I, then I = sl(2,C). Thus, sl(2,C)
contains no non-trivial ideals.

In the next section, we will generalize this result and show that classical Lie algebras such as
sl(n,C), su(n), sp(n,C), so(n,C) are semisimple.

For a general Lie algebra g, which is neither semisimple nor solvable, we can try to “separate”
the solvable and semisimple parts.

Proposition 5.39. In any Lie algebra g, there is a unique solvable ideal which contains any other
solvable ideal. This solvable ideal is called the radical of g and denoted by rad(g).

Proof. Uniqueness is obvious. To show existence, note that if I1, I2 are solvable ideals, then so is
I1 + I2. Indeed, it contains solvable ideal I1 and the quotient (I1 + I2)/I1 = I2/(I1 ∩ I2) is also
solvable since it is a quotient of I2. Thus, by Theorem 5.29, I1 + I2 is also solvable. By induction,
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this shows that any finite sum of solvable ideals is also solvable. Thus, we can let rad(g) =
∑
I,

where the sum is taken over all solvable ideals (finite-dimensionality of g shows that it suffices to
take a finite sum). ¤

Using this definition, we can rewrite the definition of a semisimple Lie algebra as follows: g is
semisimple iff rad(g) = 0.

Theorem 5.40. For any Lie algebra g, the quotient g/ rad(g) is semisimple. Conversely, if b is a
solvable ideal in g such that g/b is semisimple, then b = rad(g).

Proof. Assume that g/ rad(g) contains a solvable ideal I. Consider the ideal Ĩ = π−1(I) ⊂ g, where
π is the canonical map g → g/ rad(g). Then Ĩ ⊃ rad(g) and Ĩ/ rad(g) = I is solvable. Thus, by
Theorem 5.29, Ĩ is solvable, so Ĩ = rad(g), I = 0.

Proof of the second statement is left to the reader as an exercise. ¤

This theorem shows that any Lie algebra can be included in a short exact sequence 0 → b →
g → gss → 0, where b is solvable and gss is semisimple. In fact, one has a much stronger result.

Theorem 5.41 (Levi theorem). Any Lie algebra can be written as a direct sum

(5.12) g = rad(g)⊕ gss

where gss is a semisimple subalgebra (not necessarily an ideal! ) in g. Such a decomposition is called
the Levi decomposition for g.

This theorem will not be proved here. A proof can be found in standard textbooks on Lie
algebras, such as [46] or [24]. We only mention here that the key step in the proof is showing
vanishing of a certain cohomology group; we will say more about this in Section 6.3.

Example 5.42. Let G = SO(3,R)oR3 be the Poincare group, i.e. the group of all maps R3 → R3

which have the form x 7→ Ax + b, A ∈ SO(3,R), b ∈ R3. The corresponding Lie algebra is g =
so(3,R)⊕R3, where the commutator is given by [(A1, b1), (A2, b2)] = ([A1, A2], A1b2−A2b1). Thus,
R3 is an ideal and so(3,R) is a subalgebra. Since R3 is abelian and so(3,R) is semisimple (which
follows from semisimplicity of so(3,R)C ' sl(2,C), see Example 5.38), we see that g = so(3,R)⊕R3

is exactly the Levi decomposition.

Another instructive example of Levi decomposition is the Levi decomposition for parabolic
subalgebras; a special case is given in Exercise 5.3.

As in the theory of associative algebras, there is a relation between the radical of g and kernels
of irreducible representations.

Theorem 5.43. Let V be an irreducible complex representation of g. Then any h ∈ rad(g) acts in
V by scalar operators: ρ(h) = λ(h) id. Also, any h ∈ [g, rad(g)] acts by zero.

Proof. By Proposition 5.31, there is a common eigenvector in V for all h ∈ rad(g): ρ(h).v = λ(h)v
for some λ : rad(g) → C. Define Vλ = {w ∈ V | ρ(h)w = λ(h)w for all h ∈ rad(g)}. Then the same
argument as in the proof of Proposition 5.31 shows that for any x ∈ g, one has ρ(x)(Vλ) ⊂ Vλ. Thus,
Vλ is a subrepresentation; since it is non-zero and V is irreducible, we must have V = Vλ, which
proves the first statement of the theorem. The second statement immediately follows from the first
one. ¤

From the point of view of representation theory, having non-zero elements which act by zero in
any irreducible representation significantly complicates the theory. Thus, it is natural to consider a
class of algebras for which [g, rad(g)] = 0.
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Definition 5.44. A Lie algebra is called reductive if rad(g) = z(g), i.e. if g/z(g) is semisimple.
(Recall that z(g) is the center of g.)

Of course, any semisimple Lie algebra is reductive (because then rad(g) = z(g) = 0), but converse
is not true: for example, any Lie algebra which is a direct sum of an abelian and semisimple algebras

(5.13) g = z⊕ gss, [z, gss] = 0

is reductive. In fact, it follows from Levi theorem that any reductive Lie algebra must have such
form. Later we will give an alternative proof of this result, which does not use Levi theorem (see
Theorem 6.24).

In the next section we will show that many classical Lie algebras such as gl(n,C) or u(n) are
reductive.

5.7. Invariant bilinear forms and semisimplicity
of classical Lie algebras

So far, we have only one example of a semisimple Lie algebra, namely sl(2,C) (see Example 5.38),
and the proof of its semisimplicity was done by brute force, by analyzing all possibilities for an ideal.
It is clear that such a proof would be difficult to generalize to higher-dimensional Lie algebras: we
need better tools.

The standard approach to the study of semisimplicity is based on the notion of invariant bilinear
form. Recall that a bilinear form B on g is called invariant if

B(adx.y, z) +B(y, adx.z) = 0

for any x, y, z ∈ g (see Example 4.15). The following lemma shows the importance of such forms.

Lemma 5.45. Let B be an invariant bilinear form on g, and I ⊂ g an ideal. Let I⊥ be the orthogonal
complement of I with respect to B: I⊥ = {x ∈ g | B(x, y) = 0 for all y ∈ I}. Then I⊥ is also an
ideal in g. In particular, KerB = g⊥ is an ideal in g.

The proof of this lemma is trivial and left to the reader. Note, however, that in general we can
not write g = I ⊕ I⊥, as it is quite possible that I ∩ I⊥ 6= 0, even for a non-degenerate form B.

Example 5.46. Let g = gl(n,C) and define the form by B(x, y) = tr(xy). Then it is a symmetric
invariant bilinear form on g. Indeed, symmetry is well-known and invariance follows from the
following identity

tr([x, y]z + y[x, z]) = tr(xyz − yxz + yxz − yzx) = tr(xyz − yzx) = 0.

In fact, there is an even easier proof: since tr(gxg−1gyg−1) = tr(gxyg−1) = tr(xy) for any g ∈
GL(n,C), we see that this form is invariant under the adjoint action of GL(n,C) which is equivalent
to the invariance under the action of gl(n,C).

This example can be easily generalized.

Proposition 5.47. Let V be a representation of g and define a bilinear form on g by

(5.14) BV (x, y) = trV (ρ(x)ρ(y)).

Then BV is a symmetric invariant bilinear form on g.

The proof is identical to the proof in Example 5.46.

However, this form can be degenerate or even zero. It turns out, however, that there is a close
relation between non-degeneracy of such forms and semisimplicity of g.
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Theorem 5.48. Let g be a Lie algebra with a representation V such that the form BV defined by
(5.14) is non-degenerate. Then g is reductive.

Proof. It suffices to show that [g, rad(g)] = 0. Let x ∈ [g, rad(g)]; then, by Theorem 5.43, x acts by
zero in any irreducible representation Vi and thus x ∈ KerBVi

. But if we have a short exact sequence
of representations 0 → V1 →W → V2 → 0, then BW = BV1 +BV2 (see Exercise 5.1). Thus, arguing
by induction it is easy to see that for any representation V , we would have x ∈ KerBV . Since by
assumption BV is non-degenerate, this shows x = 0. ¤

As an immediate corollary, we have the following important result.

Theorem 5.49. All classical Lie algebras of Section 2.7 are reductive. Algebras sl(n,K), so(n,K)
(n > 2), su(n), sp(n,K) are semisimple; algebras gl(n,K) and u(n) have one-dimensional center:
gl(n,K) = K · id⊕sl(n,K), u(n) = iR · id⊕su(n). (As before, K is either R or C.)

Proof. For each of these subalgebras, consider the trace form BV where V is the defining repre-
sentation (Kn for gl(n,K), sl(n,K), so(n,K); Cn for su(n), u(n) and K2n for sp(n,K)). Then this
form is non-degenerate. Indeed, for gl(n) it follows because B(x, y) =

∑
xijyji which is obviously

non-degenerate; for sl(n) it follows from the result for gl(n) and decomposition gl(n) = K · id⊕sl(n),
with the two summands being orthogonal with respect to the form B.

For so(n), we have B(x, y) =
∑
xijyji = −2

∑
i>j xijyij so it is again non-degenerate. Similarly,

for u(n) we have B(x, y) = − trxyt = −∑
xijyij ; in particular, B(x, x) = −∑ |xij |2, so this form

is negative definite and in particular, non-degenerate. Therefore, its restriction to su(n) ⊂ u(n) is
also negative definite and thus non-degenerate.

The non-degeneracy of this form for sp(n,K) is left as an exercise (Exercise 5.4).

Thus, by Theorem 5.48 we see that each of these Lie algebras is reductive. Since the center of
each of them is easy to compute (see Example 4.24), we get the statement of the theorem. ¤

5.8. Killing form and Cartan’s criterion

In the previous section, we have shown that for any representation V of a Lie algebra g, the bilinear
form BV (x, y) = tr(ρ(x)ρ(y)) is symmetric and invariant. An important special case is when we
take V to be the adjoint representation.

Definition 5.50. The Killing form is the bilinear form on g defined by K(x, y) = tr(adx ad y).

The notation K(x, y) can be ambiguous: if we have a subalgebra h ⊂ g, then K(x, y), x, y ∈ h,
can mean either trace in g or trace in h. In such cases we will write Kh for Killing form of h and
Kg for the restriction of Killing form of g to h. Note, however, that if I is an ideal in g, then KI

coincides with the restriction of Kg to I (see Exercise 5.1).

It follows from Proposition 5.47 that the Killing form is a symmetric invariant form on g.

Example 5.51. Let g = sl(2,C). Then in the basis e, h, f , the operators ad e, adh, ad f are given
by

ad e =




0 −2 0
0 0 1
0 0 0


 adh =




2 0 0
0 0 0
0 0 −2


 ad f =




0 0 0
−1 0 0
0 2 0




so an explicit computation shows that the Killing form is given by K(h, h) = 8,K(e, f) = K(f, e) =
4, and K(h, e) = K(h, f) = 0. Thus, K(x, y) = 4 tr(xy). This is not surprising: we already know
that sl(2,C) is simple, and by Exercise 4.5, this implies that the invariant bilinear form, if exists, is
unique up to a factor.
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The following two theorems show that non-degeneracy of Killing form is closely related to
semisimplicity of g.

Theorem 5.52 (Cartan’s criterion of solvability). Lie algebra g is solvable iff K([g, g], g) = 0, i.e.
K(x, y) = 0 for any x ∈ [g, g], y ∈ g.

Theorem 5.53 (Cartan’s criterion of semisimplicity). Lie algebra is semisimple iff the Killing form
is non-degenerate.

The proof of these theorems is based on Jordan decomposition, i.e. the decomposition of a
linear operator in a sum of a semisimple (which, for operators in finite-dimensional complex vector
spaces, is the same as diagonalizable) and nilpotent ones. We state here some results about this
decomposition. Their proof, which is pure linear algebra, is given in Section 5.9.

Theorem 5.54. Let V be a finite-dimensional complex vector space.

(1) Any linear operator A can be uniquely written as a sum of commuting semisimple and
nilpotent operators:

(5.15) A = As +An, AsAn = AnAs, An nilpotent, As semisimple

(2) For an operator A : V → V , define adA : End(V ) → End(V ) by adA.B = AB−BA. Then

(adA)s = adAs

and adAs can be written in the form adAs = P (adA) for some polynomial P ∈ tC[t]
(depending on A).

(3) Define As to be the operator which has the same eigenspaces as As but complex conjugate
eigenvalues: if Asv = λv, then Asv = λ̄v. Then adAs can be written in the form adAs =
Q(adA) for some polynomial Q ∈ tC[t] (depending on A).

Using this theorem, we can now give the proof of Cartan’s criterion.

Proof of Theorem 5.52. First, note that if g is a real Lie algebra, then g is solvable iff gC is
solvable (Theorem 5.29), and K([g, g], g) = 0 iff K([gC, gC], gC) = 0 (obvious). Thus, it suffices to
prove the theorem for complex Lie algebras. So from now on we assume that g is complex.

Assume that g is solvable. Then by Lie’s theorem, there is a basis in g such that all adx
are upper-triangular. Then in this basis, operators ad y, y ∈ [g, g] are strictly upper-triangular, so
tr(adx ad y) = 0.

To prove the opposite direction, we first prove the following lemma.

Lemma 5.55. Let V be a complex vector space and g ⊂ gl(V ) — a Lie subalgebra such that for any
x ∈ [g, g], y ∈ g we have tr(xy) = 0. Then g is solvable.

Proof. Let x ∈ [g, g]. By Theorem 5.54, it can be written in the form x = xs + xn. Consider now
tr(xxs) where xs is as in Theorem 5.54. On one hand, we see that tr(xxs) =

∑
λiλi =

∑ |λi|2,
where λi are eigenvalues of x. On the other hand, if x =

∑
[yi, zi], then

tr(xxs) = tr(
∑

[yi, zi]xs) =
∑

tr(yi[zi, xs]) = −
∑

tr(yi[xs, zi])

By Theorem 5.54, [xs, zi] = adxs.zi = Q(adx).zi ∈ [g, g]. Thus by assumption tr(xxs) = 0. On the
other hand, tr(xxs) =

∑ |λi|2. Therefore, all eigenvalues of x are zero and x is nilpotent. By one of
the versions of Engel’s theorem (Theorem 5.33), this implies that [g, g] is nilpotent, so g is solvable.
This completes the proof of Lemma 5.55. ¤



5.9. Jordan decomposition 85

Now the proof of Theorem 5.52 easily follows. Indeed, if K(g, [g, g]) = 0, then by Lemma 5.55,
ad(g) ⊂ gl(g) is solvable. Thus, both z(g), and g/z(g) = ad(g) are solvable. By Theorem 5.29, this
implies that g is solvable. ¤

Proof of Theorem 5.53. If K is non-degenerate, then by Theorem 5.48, g is reductive. On the
other hand, if x ∈ z(g), then adx = 0, so x ∈ KerK. Thus, z(g) = 0, so g is semisimple.

Conversely, assume that g is semisimple. Consider I = KerK; by Lemma 5.45, I is an ideal in
g. Since restriction of K to I coincides with the Killing form of I (Exercise 5.1), the Killing form
of I is zero and thus, by previous theorem, I is solvable. But g is semisimple, so I = 0. Thus, K is
non-degenerate. ¤

5.9. Jordan decomposition

In this section, we give the proof of the Jordan decomposition for linear operators, which was used
in Section 5.8, and several related results.

Throughout this section, V is a finite-dimensional complex vector space.

Definition 5.56. An operator A : V → V is called nilpotent if An = 0 for sufficiently large n.

An operator A : V → V is called semisimple if any A-invariant subspace has an A-invariant
complement: if W ⊂ V , AW ⊂W , then there exists W ′ ⊂ V such that V = W ⊕W ′, AW ′ ⊂W ′.

Lemma 5.57.

(1) An operator A : V → V is semisimple iff it is diagonalizable.

(2) Let A : V → V be semisimple, and W ⊂ V stable under A: AW ⊂ W . Then restrictions
of A to W and to V/W are semisimple operators.

(3) Sum of two commuting semisimple operators is semisimple. Sum of two commuting nilpo-
tent operators is nilpotent.

Proof. If A is semisimple, let v1 be an eigenvector of A; then V = Cv1 ⊕W for some A-invariant
subspace W . Note let v2 be an eigenvector for A|W ; repeating in this way, we get an eigenbasis
for A. Conversely, suppose that A is diagonalizable; then one can write V =

⊕
Vλi , where λi are

distinct eigenvalues of A and Vλi is the corresponding eigenspace. Then any A-invariant subspace
W also splits into direct sum: W =

⊕
(W ∩ Vλi). Indeed, if pi ∈ C[t] is the polynomial such that

p(λi) = 1, p(λj) = 0 for i 6= j, then pi(A) is the projector V → Vλi , and thus any vector w ∈W can
be written as w =

∑
i wi, wi = pi(A)w ∈W ∩Vλi . Therefore, W =

⊕
Wi, Wi = W ∩Vλi . Choosing

in each Vλi a subspace W⊥
i so that Vλi = Wi⊕W⊥

i , we see that V = W ⊕W⊥, where W⊥ = ⊕W⊥
i .

The same argument also shows that if W ⊂ V is A-invariant, then A|W is diagonalizable and
therefore semisimple, thus proving the second part.

Finally, the last part is a well-known result of linear algebra.

¤

Remark 5.58. Over R, not every semisimple operator is diagonalizable; however, the second and
third parts of the theorem remain true over R.

Theorem 5.59. Any linear operator A : V → V can be uniquely written as a sum of commuting
semisimple and nilpotent operators:

(5.16) A = As +An, AsAn = AnAs, An nilpotent, As semisimple

Moreover, As, An can be written as polynomials of A: As = p(A), An = A − p(A) for some
polynomial p ∈ C[t] depending on A.
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Decomposition (5.16) is called the Jordan decomposition of A.

Proof. It is well-known from linear algebra that one can decompose V in the direct sum of gener-
alized eigenspaces: V =

⊕
V(λ), where λ runs over the set of distinct eigenvalues of A and V(λ) is

the generalized eigenspace with eigenvalue λ: restriction of A− λ id to V(λ) is nilpotent.

Define As by As|V(λ) = λ id, and An by An = A−As. Then it is immediate from the definition
that As is semisimple and An is nilpotent. It is also easy to see that they commute: in fact, As

commutes with any operator V(λ) → V(λ). This shows existence of Jordan decomposition.

Let us also show that so defined As, An can be written as polynomials in A. Indeed, let p ∈ C[t]
be defined by system of congruences

p(t) ≡ λi mod (t− λi)ni

where λi are distinct eigenvalues of A and ni = dimV(λi). By Chinese remainder theorem, such
a polynomial exists. Since (A − λi)ni = 0 on V(λi), we see that p(A)|V(λ) = λ = As|V(λ) . Thus,
As = p(A).

Finally, let us prove uniqueness. Let As, An be as defined above. Assume that A = A′s + A′n is
another Jordan decomposition. Then As +An = A′s +A′n. Since A′s, A

′
n commute with each other,

they commute with A; since As = p(A), we see that As, An commute with A′s, A
′
n. Consider now

the operator As − A′s = A′n − An. On one hand, it is semisimple as a difference of two commuting
semisimple operators. On the other hand, it is nilpotent as a difference of two commuting nilpotent
operators (see Lemma 5.57). Thus, all its eigenvalues are zero; since it is semisimple, it shows that
it is a zero operator, so As = A′s, An = A′n. ¤

The proof also shows that it is possible to choose a basis in V such that in this basis, As is
diagonal and An is strictly upper-triangular, and that if 0 is an eigenvalue of A, then p(0) = 0.

Theorem 5.60. Let A be an operator V → V . Define adA : End(V ) → End(V ) by adA.B =
AB −BA. Then (adA)s = adAs, and adAs can be written in the form adAs = P (adA) for some
polynomial P ∈ C[t] such that P (0) = 0.

Proof. Let A = As + An be the Jordan decomposition for A. Then adA = adAs + adAn, and it
is immediate to check that adAs, adAn commute.

Choose a basis in V such that in this basis, As is diagonal, An is strictly upper-triangular. Then
it also gives a basis of matrix units Eij in End(V ). In this basis, the action of adAs is diagonal:
adAs.Eij = (λi − λj)Eij , as is easily verified by a direct computation. Using this basis, it is also
easy to check that adAn is nilpotent (see Exercise 5.7). Thus, adA = adAs + adAn is the Jordan
decomposition for adA, so (adA)s = adAs.

By Theorem 5.59 applied to operator adA, we see that (adA)s can be written in the form
(adA)s = P (adA) for some polynomial P ∈ C[t]; moreover, since 0 is an eigenvalue of adA (e.g.,
adA.A = 0), we see that P (0) = 0. ¤

Theorem 5.61. Let A be an operator V → V . Define As to be the operator which has the same
eigenspaces as As but complex conjugate eigenvalues: if Asv = λv, then Asv = λ̄v. Then adAs can
be written in the form adAs = Q(adA) for some polynomial Q ∈ tC[t] (depending on A).

Proof. Let {vi} be a basis of eigenvectors for As: Asvi = λivi so that Asvi = λivi. Let Eij be the
corresponding basis in End(V ); then, as discussed in the proof of Theorem 5.60, in this basis adAs

is given by adAs.Eij = (λi − λj)Eij , and adAs.Eij = (λi − λj)Eij .
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Choose a polynomial f ∈ C[t] such that f(λi − λj) = λi − λj (in particular, f(0) = 0); such a
polynomial exists by interpolation theorem. Then adAs = f(adAs) = f(P (adA)) where P is as in
Theorem 5.60. ¤

Exercises

5.1.
(1) Let V be a representation of g and W ⊂ V be a subrepresentation. Then BV = BW +BV/W ,

where BV is defined by (5.14).
(2) Let I ⊂ g be an ideal. Then the restriction of the Killing form of g to I coincides with the

Killing form of I.

5.2. Show that for g = sl(n,C), the Killing form is given by K(x, y) = 2n tr(xy).

5.3. Let g ⊂ gl(n,C) be the subspace consisting of block-triangular matrices:

g =
{(

A B

0 D

)}

where A is a k × k matrix, B is a k × (n− k) matrix, and D is a (n− k)× (n− k) matrix.
(1) Show that g is a Lie subalgebra (this is a special case of so-called parabolic subalgebras).

(2) Show that radical of g consists of matrices of the form
(
λ · I B

0 µ · I
)

, and describe g/ rad(g).

5.4. Show that the bilinear form tr(xy) on sp(n,K) is non-degenerate.

5.5. Let g be a real Lie algebra with a positive definite Killing form. Show that then g = 0. [Hint:
g ⊂ so(g).]

5.6. Let g be a simple Lie algebra.
(1) Show that the invariant bilinear form is unique up to a factor. [Hint: use Exercise 4.5.]
(2) Show that g ' g∗ as representations of g.

5.7. Let V be a finite-dimensional complex vector space and let A : V → V be an upper-triangular
operator. Let F k ⊂ End(V ), −n ≤ k ≤ n be the subspace spanned by matrix units Eij with
i− j ≤ k. Show that then adA.F k ⊂ F k−1 and thus, adA : End(V ) → End(V ) is nilpotent.





Chapter 6

Complex Semisimple Lie
Algebras

In this chapter, we begin the study of semisimple Lie algebras and their representations. This is
one of the highest achievements of the theory of Lie algebras, which has numerous applications (for
example, to physics), not to mention that it is also one of the most beautiful areas of mathematics.

Throughout this chapter, g is a finite-dimensional semisimple Lie algebra (see Definition 5.35);
unless specified otherwise, g is complex.

6.1. Properties of semisimple Lie algebras

Cartan’s criterion of semimplicity, proved in Section 5.8, is not very convenient for practical com-
putations. However, it is extremely useful for theoretical considerations.

Proposition 6.1. Let g be a real Lie algebra and gC — its complexification (see Definition 3.49).
Then g is semisimple iff gC is semisimple.

Proof. Immediately follows from Cartan’s criterion of semisimplicity. ¤

Remark 6.2. This theorem fails if we replace the word “semisimple” by “simple”: there exist simple
real Lie algebras g such that gC is a direct sum of two simple algebras.

Theorem 6.3. Let g be a semisimple Lie algebra, and I ⊂ g — an ideal. Then there is an ideal I ′

such that g = I ⊕ I ′.

Proof. Let I⊥ be the orthogonal complement with respect to the Killing form. By Lemma 5.45,
I⊥ is an ideal. Consider the intersection I ∩ I⊥. It is an ideal in g with zero Killing form (by
Exercise 5.1). Thus, by Cartan criterion, it is solvable. By definition of a semisimple Lie algebra,
this means that I ∩ I⊥ = 0, so g = I ⊕ I⊥. ¤

Corollary 6.4. A Lie algebra is semisimple iff it is a direct sum of simple Lie algebras.

Proof. Any simple Lie algebra is semisimple by Lemma 5.37, and it is immediate from Cartan
criterion that direct sum of semisimple Lie algebras is semisimple. This proves one direction.

Opposite direction — that each semisimple algebra is a direct sum of simple ones — easily
follows by induction from the previous theorem. ¤

Corollary 6.5. If g is a semisimple Lie algebra, then [g, g] = g.

89
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Indeed, for a simple Lie algebra it is clear because [g, g] is an ideal in g which can not be zero
(otherwise, g would be abelian).

Proposition 6.6. Let g = g1 ⊕ · · · ⊕ gk be a semisimple Lie algebra, with gi being simple. Then
any ideal I in g is of the form I =

⊕
i∈J gi for some subset J ⊂ {1, . . . , k}.

Note that it is not an “up to isomorphism” statement: I is not just isomorphic to sum of some
of gi but actually equal to such a sum as a subspace in g.

Proof. The proof goes by induction in k. Let πk : g → gk be the projection. Consider πk(I) ⊂ gk.
Since gk is simple, either πk(I) = 0, in which case I ⊂ g1 ⊕ · · · ⊕ gk−1 and we can use induction
assumption, or πk(I) = gk. Then [gk, I] = [gk, πk(I)] = gk. Since I is an ideal, I ⊃ gk, so I = I ′⊕gk

for some subspace I ′ ⊂ g1 ⊕ · · · ⊕ gk−1. It is immediate that then I ′ is an ideal in g1 ⊕ · · · ⊕ gk−1

and the result again follows from the induction assumption. ¤

Corollary 6.7. Any ideal in a semisimple Lie algebra is semisimple. Also, any quotient of a
semisimple Lie algebra is semisimple.

Finally, recall that we have denoted by Der g the Lie algebra of all derivations of g (see (3.14))
and by Aut g the group of all automorphisms of g (see Example 3.33).

Proposition 6.8. If g is a semisimple Lie algebra, and G—a connected Lie group with Lie algebra
g, then Der g = g, and Aut g/AdG is discrete, where AdG = G/Z(G) is the adjoint group associated
with G (see (3.15) ).

Proof. Recall that for any x ∈ g, adx : g → g is a derivation. This gives a natural morphism of Lie
algebras g → Der g. Since the center z(g) = 0, this morphism is injective, so g is a subalgebra in
Der g.

Definition of derivation immediately shows that for any derivation δ and x ∈ g, we have
ad(δ(x)) = [δ, adx] as operators g → g. Thus, g ⊂ Der g is an ideal.

Let us now extend the Killing form of g to Der g by letting K(δ1, δ2) = trg(δ1δ2) and consider
the orthogonal complement I = g⊥ ⊂ Der g. Since K is invariant, I is an ideal; since restriction
of K to g is non-degenerate, I ∩ g = 0. Thus, Der g = g ⊕ I; since both g, I are ideals, we have
[I, g] = 0, which implies that for every δ ∈ I, x ∈ g, we have ad(δ(x)) = [δ, adx] = 0, so δ(x) = 0.
Thus, I = 0.

Since Aut g is a Lie group with Lie algebra Der g (see Example 3.33), the second statement of
the theorem immediately follows from the first one. ¤

6.2. Relation with compact groups

In Section 5.8, we have shown that the Killing form of g is non-degenerate if and only if g is
semisimple. However, in the case of real g, one might also ask whether the Killing form is positive
definite, negative definite, or neither. More generally, the same question can be asked about the
trace form in any representation: BV (x, y) = trV (xy).

It turns out that the answer to this question is closely related to the question of compactness of
the corresponding Lie group.

Example 6.9. Let g = u(n) be the Lie algebra of the unitary group, i.e. the Lie algebra of
skew-Hermitian matrices. Then the form (x, y) = tr(xy) is negative definite.

Indeed, tr(xy) = − tr(xyt), and tr(x2) = − tr(xxt) = −∑ |xij |2 ≤ 0, with equality only for
x = 0.
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Theorem 6.10. Let G be a compact real Lie group. Then g = Lie(G) is reductive, and the Killing
form of g is negative semidefinite, with KerK = z(g) (the center of g); the Killing form of the
semisimple part g/z(g) is negative definite.

Conversely, let g be a semisimple real Lie algebra with a negative definite Killing form. Then g

is a Lie algebra of a compact real Lie group.

Proof. If G is compact, then by Theorem 4.40, every complex representation ρ : G→ GL(V ) of G
is unitary, so ρ(G) ⊂ U(V ), ρ(g) ⊂ u(V ) (where U(V ) is the group of unitary operators V → V ). By
Example 6.9, this implies that the trace form BV (x, y) is negative semidefinite, with KerBV = Ker ρ.

Applying this to the complexified adjoint representation V = gC, we see that the Killing form
is negative semidefinite, with KerK = z(g).

Conversely, assume that g is a real Lie algebra with negative definite Killing form K. Let G be
a connected Lie group with Lie algebra g. Then B(x, y) = −K(x, y) is positive definite and AdG
invariant. This shows that Ad(G) ⊂ SO(g) (the orthogonal group). Since Ad(G) is the connected
component of unity of the group Aut g (see Proposition 6.8), and Aut g ⊂ GL(g) is a closed Lie
subgroup (see Example 3.33), Ad(G) is a closed Lie subgroup in the compact group SO(g). Thus,
Ad(G) is a compact Lie group. Since Ad(G) = G/Z(G), we have Lie(Ad(G)) = g/z(g) = g, which
proves the theorem. ¤
Remark 6.11. In fact, one can prove a stronger result: if g is a real Lie algebra with negative
definite Killing form, then any connected Lie group with Lie algebra g is compact. In particular,
the simply-connected Lie group with Lie algebra g is compact.

One might also ask for which real Lie algebras the Killing form is positive definite. Unfortunately,
it turns out that there are not many such algebras.

Lemma 6.12. If g is a real Lie algebra with a positive definite Killing form, then g = 0.

The proof of this lemma is given as an exercise (Exercise 5.5).

Finally, let us discuss the relation between complex semisimple Lie algebras and compact groups.
It turns out that the only compact complex Lie groups are tori (see Exercise 3.19). Instead, we could
take real compact Lie groups and corresponding Lie algebras, then consider their complexifications.
By Theorem 6.10, such complex Lie algebras will be reductive. A natural question is whether
any reductive complex Lie algebra can be obtained in this way. The following theorem (which for
simplicity is stated only for semisimple Lie algebras) provides the answer.

Theorem 6.13. Let g be a complex semisimple Lie algebra. Then there exists a real subalgebra k

such that g = k⊗C and k is a Lie algebra of a compact Lie group K. The Lie algebra k is called the
compact real form of g; it is unique up to conjugation.

If G is a connected complex Lie group with Lie algebra g, then the compact group K can be
chosen so that K ⊂ G. In this case, K is called the compact real form of the Lie group G.

The proof of this theorem will not be given here. Interested readers can find a discussion of this
theorem in [15, Section I.7] or in [32].

Example 6.14. For g = sl(n,C), G = SL(n,C), the compact form is k = su(n), K = SU(n).

6.3. Complete reducibility of representations

In this section, we will show one of fundamental results of the theory of semisimple Lie algebras:
every representation of a semisimple Lie algebra is completely reducible. Throughout this section,
g is a semisimple complex Lie algebra and V — a finite-dimensional complex representation of g.
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This result can be proved in several ways. Historically, the first proof of this result was given by
H. Weyl using the theory of compact groups. Namely, if g is a semisimple complex Lie algebra, then
by Theorem 6.13 g can be written as a complexification of a real Lie algebra k = Lie(K) for some
compact connected, simply connected group K. Then complex representations of g, k and K are the
same, and by Theorem 4.40, every representation of K is completely reducible. This argument is
commonly called “Weyl’s unitary trick”.

However, there is a completely algebraic proof of complete reducibility. It uses some basic ho-
mological algebra: obstruction to complete reducibility is described by a certain type of cohomology,
and we will show that this cohomology vanishes. To do so, we will use a special central element in
the universal enveloping algebra, called the Casimir element.

Proposition 6.15. Let g be a Lie algebra, and B — a non-degenerate invariant symmetric bilinear
form on g. Let xi be a basis of g, and xi — the dual basis with respect to B. Then the element

CB =
∑

xix
i ∈ Ug

does not depend on the choice of the basis xi and is central. It is called the Casimir element
determined by form B.

In particular, if g is semisimple and K is the Killing form, then the element CK ∈ Ug is called
simply the Casimir element.

Proof. Independence of choice of basis follows from the fact that the element I =
∑
xi⊗xi ∈ g⊗g

is independent of the choice of basis: under the identification g⊗ g ' g⊗ g∗ = End(g) given by the
form B, this element becomes the identity operator in End(g).

This also shows that I =
∑
xi⊗xi is ad g–invariant: indeed, identification g⊗g ' g⊗g∗ = End(g)

is a morphism of representations, and the identity operator commutes with the action of g and thus
is ad g invariant.

Since the multiplication map g ⊗ g → Ug is a morphism of representations, we see that CB =∑
xix

i is ad g–invariant and thus central (see Proposition 5.7). ¤

Example 6.16. Let g = sl(2,C) with the bilinear form defined by (x, y) = tr(xy). Then the Casimir
operator is given by C = 1

2h
2 +fe+ef (compare with Example 5.6, where centrality of C was shown

by a direct computation).

Remark 6.17. Note that if g is simple, then by Exercise 4.5, the invariant bilinear form is unique
up to a constant: any such form is a multiple of the Killing form. Thus, in this case the Casimir
element is also unique up to a constant.

Proposition 6.18. Let V be a non-trivial irreducible representation of a semisimple Lie algebra g.
Then there exists a central element CV ∈ Z(Ug) which acts by a non-zero constant in V and which
acts by zero in the trivial representation.

Proof. Let BV (x, y) = trV (ρ(x)ρ(y); by Proposition 5.47, this form is an invariant bilinear form.
If BV is non-degenerate, then let CV = CBV be the Casimir element of g defined by form BV .
Obviously, CV acts by zero in C. Since V is irreducible, by Schur lemma CV acts in V by a
constant: CV = λ idV . On the other hand, tr(CV ) =

∑
tr(xix

i) = dim g, because by definition of
B, tr(xix

i) = B(xi, x
i) = 1. Thus, λ = dim g

dim V 6= 0, which proves the proposition in this special case.

In general, let I = KerBV ⊂ g. Then it is an ideal in g, and I 6= g (otherwise, by Lemma 5.55,
ρ(g) ⊂ gl(V ) is solvable, which is impossible as it is a quotient of a semisimple Lie algebra and
thus itself semisimple). By results of Theorem 6.3, g = I ⊕ g′ for some non-zero ideal g′ ⊂ g. By
Proposition 6.6, g′ is semisimple, and restriction of BV to g′ is non-degenerate. Let CV be the
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Casimir element of g′ corresponding to the form BV . Since I, g′ commute, CV will be central in
Ug, and the same argument as before shows that it acts in V by dim g′

dim V 6= 0, which completes the
proof. ¤

Remark 6.19. In fact, a stronger result is known: if we let C be the Casimir element defined by
the Killing form, then C acts by a non-zero constant in any nontrivial irreducible representation.
However, this is slightly more difficult to prove.

Now we are ready to prove the main result of this section.

Theorem 6.20. Any complex finite-dimensional representation of a semisimple Lie algebra g is
completely reducible.

Proof. The proof assumes some familiarity with basic homological algebra, such as the notion of
functors Exti(V,W ). We refer the reader to [21] for an overview. They are defined for representations
of Lie algebras in the same way as for modules over an associative algebra. In fact, the same definition
works for any abelian category, i.e. a category where morphisms form abelian groups and where we
have the notion of image and kernel of a morphism satisfying the usual properties.

In particular, the standard argument of homological agebra shows that for fixed V1, V2 equiv-
alence classes of extensions 0 → V1 → W → V2 → 0 are in bijection with Ext1(V2, V1). Thus, our
goal is to show that Ext1(V2, V1) = 0 for any two representations V1, V2. This will be done in several
steps. For convenience, we introduce the notation H1(g, V ) = Ext1(C, V ).

Lemma 6.21. For any irreducible representation V , one has H1(g, V ) = 0.

Proof. To prove that Ext1(C, V ) = 0 it suffices to show that every short exact sequence of the form
0 → V →W → C→ 0 splits. So let us assume that we have such an exact sequence.

Let us consider separately two cases: V is a non-trivial irreducible representation and V = C.

If V is a non-trivial irreducible representation, consider the Casimir element CV as defined in
Proposition 6.18. Since it acts in C by zero and in V by a non-zero constant λ, its eigenvalues in
W are 0 with multiplicity 1 and λ with multiplicity dimV . Thus, W = V ⊕W 0, where W 0 is the
eigenspace for CV with eigenvalue 0 (which must be one-dimensional). Since CV is central, W 0 is a
subrepresentation; since the kernel of the projection W → C is V , it gives an isomorphism W 0 ' C.
Thus, W ' V ⊕ C.

If V = C is a trivial representation, so we have an exact sequence 0 → C → W → C → 0,
then W is a two-dimensional representation such that the action of ρ(x) is strictly upper triangular
for all x ∈ g. Thus, ρ(g) is nilpotent, so by Corollary 6.7, ρ(g) = 0. Thus, W ' C ⊕ C as a
representation. ¤

This lemma provides the crucial step; the rest is simple homological algebra.

Lemma 6.22. H1(g, V ) = 0 for any representation V .

Proof. If we have a short exact sequence of representations 0 → V1 → V → V2 → 0, then we have
a long exact sequence of Ext groups; in particular,

· · · → H1(g, V1) → H1(g, V ) → H1(g, V2) → . . .

Thus, if H1(g, V1) = H1(g, V2) = 0, then H1(g, V ) = 0. Since for irreducible representations we have
proved that H1(g, V ) = 0, it is easy to show by induction in dimension that for any representation,
H1(g, V ) = 0. ¤
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We are now ready to prove Theorem 6.20. Let 0 → V1 → W → V2 → 0 be a short exact
sequence of g-modules. We need to show that it splits.

Let us apply to this sequence the functor X 7→ HomC(V2, X) = V ∗2 ⊗ X (considered as a
g-module, see Example 4.12). Obviously, this gives a short exact sequence of g-modules

0 → HomC(V2, V1) → HomC(V2,W ) → HomC(V2, V2) → 0

Now, let us apply to this sequence the functor of g-invariants: X 7→ Xg = Homg(C, X). Applying
this functor to HomC(A,B) gives (HomC(A,B))g = Homg(A,B) (see Example 4.14).

This functor is left exact but in general not exact, so we get a long exact sequence

0 → Homg(V2, V1) → Homg(V2,W ) → Homg(V2, V2) → Ext1(C, V ∗2 ⊗ V1) = H1(g, V ∗2 ⊗ V1) → . . .

But since we have already proved that H1(g, V ) = 0 for any module V , we see that in fact we do
have a short exact sequence

0 → Homg(V2, V1) → Homg(V2,W ) → Homg(V2, V2) → 0

In particular, this shows that there exists a morphism f : V2 → W which, when composed with
projection W → V2, gives identity morphism V2 → V2. This gives a splitting of exact sequence
0 → V1 →W → V2 → 0. This completes the proof of Theorem 6.20. ¤

Remark 6.23. The same proof can be rewritten without using the language of Ext groups; see, for
example, [46]. This would make it formally accessible to readers with no knowledge of homological
algebra. However, this does not change the fact that all arguments are essentially homological in
nature; in fact, such a rewriting would obscure the ideas of the proof rather than make them clearer.

The groups Ext1(V,W ) and in particular, H1(g, V ) = Ext1(C, V ) used in this proof are just the
beginning of a well-developed cohomology theory of Lie algebras. In particular, one can define higher
cohomology groups Hi(g, V ) in a very similar way. The same argument with the Casimir element
can be used to show that for a non-trivial irreducible representation V , one has Hi(g, V ) = 0 for
i > 0. However, it is not true for the trivial representation: Hi(g,C) can be non-zero. For example,
it can be shown that if G is a connected, simply connected compact real Lie group, and g = Lie(G),
then Hi(g,R) = Hi(G,R), where Hi(G,R) are the usual topological cohomology (which can be
defined, for example, as De Rham cohomology). We refer the reader to [12] for an introduction to
this theory.

Complete reducibility has a number of useful corollaries. One of them is the following result,
announced in Section 5.6.

Theorem 6.24. Any reductive Lie algebra can be written as a direct sum (as a Lie algebra) of a
semisimple and commutative ideals:

g = z⊕ gss, z commutative, gss semisimple.

Proof. Consider adjoint representation of g. Since the center z(g) acts by zero in adjoint represen-
tation, the adjoint action descends to an action of g′ = g/z(g). By definition of a reductive algebra,
g′ is semisimple. Thus, g considered as a representation of g′ is completely reducible. Since z ⊂ g

is stable under adjoint action, it is a subrepresentation. By complete reducibility, we can write
g = z⊕ I for some I ⊂ g such that adx.I ⊂ I for any x ∈ g. Thus, I is an ideal in g, so g = z⊕ I as
Lie algebras. Obviously, I ' g/z = g′ is semisimple. ¤

In a similar way one can prove Levi theorem (Theorem 5.41). We do not give this proof here,
referring the reader to [46], [41], [24]. Instead, we just mention that in the language of homological
algebra, Levi theorem follows from vanishing of cohomology H2(g,C).



6.4. Semisimple elements and toral subalgebras 95

6.4. Semisimple elements and toral subalgebras

Recall that the main tool used in the study of representations of sl(2,C) in Section 4.8 was the
weight decomposition, i.e. decomposing a representation of sl(2,C) into direct sum of eigenspaces
for h. In order to generalize this idea to other Lie algebras, we need to find a proper analog of h.

Looking closely at the proofs of Section 4.8, we see that the key property of h were the commu-
tation relations [h, e] = 2e, [h, f ] = −2f which were used to to show that e, f shift the weight. In
other words, adh is diagonal in the basis e, f, h. This justifies the following definition.

Definition 6.25. An element x ∈ g is called semisimple if adx is a semisimple operator g → g (see
Definition 5.56).

An element x ∈ g is called nilpotent if adx is a nilpotent operator g → g.

It is easy to show (see Exercise 6.2) that for g = gl(n,C) this definition coincides with the usual
definition of a semisimple (diagonalizable) operator.

Of course, we do not yet know if such elements exist for any g. The following theorem, which
generalizes Jordan decomposition theorem (Theorem 5.59), answers this question.

Theorem 6.26. If g is a semisimple complex Lie algebra, then any x ∈ g can be uniquely written
in the form

x = xs + xn

where xs is semisimple, xn is nilpotent, and [xs, xn] = 0. Moreover, if for some y ∈ g we have
[x, y] = 0, then [xs, y] = 0.

Proof. Uniqueness immediately follows from uniqueness of Jordan decomposition for adx (Theo-
rem 5.59): if x = xs + xn = x′s + x′n, then (adx)s = adxs = adx′s, so ad(xs − x′s) = 0. But by
definition, a semisimple Lie algebra has zero center, so this implies xs − x′s = 0.

To prove existence, let us write g as direct sum of generalized eigenspaces for adx: g =
⊕

gλ,
(adx− λ id)n|gλ

= 0 for nÀ 0.

Lemma 6.27. [gλ, gµ] ⊂ gλ+µ.

Proof. By Jacobi identity, (adx − λ − µ)[y, z] = [(adx − λ)y, z] + [y, (adx − µ)z]. Thus, if y ∈
gλ, z ∈ gµ, then induction gives

(adx− λ− µ)n[y, z] =
∑

k

(
n

k

)
[(adx− λ)ky, (adx− µ)n−kz]

which is zero for n > dim gλ + dim gµ. ¤

Let adx = (adx)s + (adx)n be the Jordan decomposition of operator adx (see Theorem 5.59),
so that (adx)s|gλ

= λ. Then the lemma implies that (adx)s is a derivation of g. By Proposition 6.8,
any derivation is inner, so (adx)s = adxs for some xs ∈ g; thus, (adx)n = ad(x − xs). This
proves existence of Jordan decomposition for x. It also shows that if adx.y = 0, then (adx)s.y =
(adxs).y = 0.

¤

Corollary 6.28. In any semisimple complex Lie algebra, there exist non-zero semisimple elements.

Proof. If any semisimple element is zero, then, by Theorem 6.26, any x ∈ g is nilpotent. By
Engel’s theorem (Theorem 5.34), this implies that g is nilpotent and thus solvable, which contradicts
semisimplicity of g. ¤
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Our next step would be considering not just one semisimple element but a family of commuting
semisimple elements.

Definition 6.29. A subalgebra h ⊂ g is called toral if it is commutative and consists of semisimple
elements.

Theorem 6.30. Let g be a complex semisimple Lie algebra, h ⊂ g a toral subalgebra, and let ( , )
be a non-degenerate invariant symmetric bilinear form on g (for example, the Killing form). Then

(1) g =
⊕

α∈h∗ gα, where gα is a common eigenspace for all operators adh, h ∈ h, with eigen-
value α:

adh.x = 〈α, h〉x, h ∈ h, x ∈ gα.

In particular, h ⊂ g0.

(2) [gα, gβ ] ⊂ gα+β.

(3) If α+ β 6= 0, then gα, gβ are orthogonal with respect to the form ( , ).

(4) For any α, the form ( , ) gives a non-degenerate pairing gα ⊗ g−α → C.

Proof. By definition, for each h ∈ h, the operator adh is diagonalizable. Since all operators adh
commute, they can be simultaneously diagonalized, which is exactly the statement of the first part
of the theorem. Of course, since g is finite-dimensional, gα = 0 for all but finitely many α ⊂ h∗.

The second part is in fact a very special case of Lemma 6.27. However, in this case it can be
proved much easier: if y ∈ gα, z ∈ gβ , then

adh.[y, z] = [adh.y, z] + [y, adh.z] = 〈α, h〉[y, z] + 〈β, h〉[y, z] = 〈α+ β, h〉[y, z].

For the third part, notice that if x ∈ gα, y ∈ gβ , h ∈ h, then invariance of the form shows that
([h, x], y) + (x, [h, y]) = (〈h, α〉 + 〈h, β〉)(x, y) = 0; thus, if (x, y) 6= 0, then 〈h, α + β〉 = 0 for all h,
which implies α+ β = 0.

The final part immediately follows from the previous part. ¤

For future use, we will also need some information about the zero eigenvalue subspace g0.

Lemma 6.31. In the notation of Theorem 6.30, we have

(1) Restriction of the form ( , ) to g0 is non-degenerate.

(2) Let x ∈ g0 and let x = xs +xn be the Jordan decomposition of x (see Theorem 6.26). Then
xs, xn ∈ g0.

(3) g0 is a reductive subalgebra in g.

Proof. Part (1) is a special case of the last part in Theorem 6.30.

To prove part (2), note that if x ∈ g0, then [x, h] = 0 for all h ∈ h. But then, by Theorem 6.26,
[xs, h] = 0, so xs ∈ g0.

To prove the last part, consider g as a representation of g0. Then the trace form (x1, x2) =
trg(adx1 adx2) on g0 is exactly the restriction of the Killing form Kg to g0 and by part (1) is
non-degenerate. But by one of the forms of Cartan’s criterion (Theorem 5.48), this implies that g

is reductive.

¤
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6.5. Cartan subalgebra

Our next goal is to produce as large a toral subalgebra in g as possible. The standard way of
formalizing this is as follows.

Definition 6.32. Let g be a complex semisimple Lie algebra. A Cartan subalgebra h ⊂ g is a toral
subalgebra which coincides with its centralizer: C(h) = {x | [x, h] = 0} = h.

Remark 6.33. This definition should only be used for semisimple Lie algebras: for general Lie
algebras, Cartan subalgebras are defined in a different way (see, e.g., [47]). However, it can be
shown that for semisimple algebras our definition is equivalent to the usual one. (Proof in one
direction is given in Exercise 6.3.)

Example 6.34. Let g = sl(n,C) and h = {diagonal matrices with trace 0}. Then h is a Cartan
subalgebra. Indeed, it is obviously commutative, and every diagonal element is semisimple (see
Exercise 6.2), so it is a toral subalgebra. On the other hand, choose h ∈ h to be a diagonal matrix
with distinct eigenvalues. By a well-known result of linear algebra, if [x, h] = 0, and h has distinct
eigenvalues, then any eigenvector of h is also an eigenvector of x; thus, x must also be diagonal.
Thus, C(h) = h.

We still need to prove existence of Cartan subalgebras.

Theorem 6.35. Let h ⊂ g be a maximal toral subalgebra, i.e. a toral subalgebra which is not properly
contained in any other toral subalgebra. Then h is a Cartan subalgebra.

Proof. Let g =
⊕

gα be the decomposition of g into eigenspaces for adh as in Theorem 6.30. We
will show that g0 = C(h) is toral; since it contains h, this would imply that C(h) = h, as desired.

First, note that for any x ∈ g0, operator adx|g0 is nilpotent: otherwise, adx|g0 would have
non-zero eigenvalues. Then the semisimple part xs (which, by Lemma 6.31, is also in g0) would be a
semisimple element satisfying (adxs)|g0 6= 0 and thus xs /∈ h. On the other hand, [h, xs] = 0 (since
xs ∈ g0), so h⊕ C · xs would be a toral subalgebra, which contradicts maximality of h.

By Engel’s theorem (Theorem 5.34), this implies that g0 is nilpotent. On the other hand, by
Lemma 6.31, g0 is reductive. Therefore, it must be commutative.

Finally, to show that any x ∈ g0 is semisimple, it suffices to show that for any such x, the
nilpotent part xn = 0 (recall that by Lemma 6.31, xn ∈ g0). But since adxn is nilpotent and g0 is
commutative, for any y ∈ g0, adxn ad y is also nilpotent, so trg(adxn ad y) = 0. Since the Killing
form on g0 is non-degenerate (Lemma 6.31), this implies xn = 0. Thus, we see that g0 = C(h) is a
toral subalgebra which contains h. Since h was chosen to be maximal, C(h) = h. ¤

Corollary 6.36. In every complex semisimple Lie algebra g, there exists a Cartan subalgebra.

Later (see Section 6.7) we will give another way of constructing Cartan subalgebras and will
prove that all Cartan subalgebras are actually conjugate in g. In particular, this implies that they
have the same dimension. This dimension is called the rank of g:

(6.1) rank(g) = dim h.

Example 6.37. Rank of sl(n,C) is equal to n− 1.

6.6. Root decomposition and root systems

From now on, we fix a complex semisimple Lie algebra g and a Cartan subalgebra h ⊂ g.

Theorem 6.38.
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(1) We have the following decomposition for g, called the root decomposition

(6.2) g = h⊕
⊕

α∈R

gα,

where

(6.3)
gα = {x | [h, x] = 〈α, h〉x for all h ∈ h}
R = {α ∈ h∗ − {0} | gα 6= 0}

The set R is called the root system of g, and subspaces gα are called the root subspaces.

(2) [gα, gβ ] ⊂ gα+β (here and below, we let g0 = h).

(3) If α+ β 6= 0, then gα, gβ are orthogonal with respect to the Killing form K.

(4) For any α, the Killing form gives a non-degenerate pairing gα ⊗ g−α → C. In particular,
restriction of K to h is non-degenerate.

Proof. This immediately follows from Theorem 6.30 and g0 = h, which is the definition of Cartan
subalgebra. ¤

Theorem 6.39. Let g1 . . . gn be gi are simple Lie algebras and let g =
⊕

gi.

(1) Let hi ⊂ gi be Cartan subalgebras of gi and Ri ⊂ h∗i the corresponding root systems of gi.
Then h =

⊕
hi is a Cartan subalgebra in g and the corresponding root system is R = tRi.

(2) Each Cartan subalgebra in g must have the form h =
⊕

hi where hi ⊂ gi is a Cartan
subalgebra in gi.

Proof. The first part is obvious from the definitions. To prove the second part, let hi = πi(h), where
πi : g → gi is the projection. It is immediate that for x ∈ gi, h ∈ h, we have [h, x] = [πi(h), x]. From
this it easily follows that hi is a Cartan subalgebra. To show that h =

⊕
hi, notice that obviously

h ⊂ ⊕
hi; since

⊕
hi is toral, by definition of Cartan subalgebra we must have h =

⊕
hi. ¤

Example 6.40. Let g = sl(n,C), h = diagonal matrices with trace 0 (see Example 6.34). Denote
by ei : h → C the functional which computes ith diagonal entry of h:

ei :




h1 0 . . .

0 h2 . . .

. . .

0 . . . hn


 7→ hi

Then one easily sees that
∑
ei = 0, so

h∗ =
⊕

Cei/C(e1 + · · ·+ en).

It is easy to see that matrix units Eij are eigenvectors for adh, h ∈ h: [h,Eij ] = (hi − hj)Eij =
(ei − ej)(h)Eij . Thus, the root decomposition is given by

R = {ei − ej | i 6= j} ⊂
⊕

Cei/C(e1 + · · ·+ en)

gei−ej = CEij .

The Killing form on h is given by

(h, h′) =
∑

i 6=j

(hi − hj)(h′i − h′j) = 2n
∑

i

hih
′
i = 2n tr(hh′).
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From this, it is easy to show that if λ =
∑
λiei, µ =

∑
µiei ∈ h∗, and λi, µi are chosen so that∑

λi =
∑
µi = 0 (which is always possible), then the corresponding form on h∗ is given by

(α, µ) =
1
2n

∑

i

λiµi.

The root decomposition is the most important result one should know about semisimple Lie
algebras — much more important than the definition of semisimple algebras (in fact, this could
be taken as the definition, see Exercise 6.4). Our goal is to use this decomposition to get as
much information as possible about the structure of semisimple Lie algebras, eventually getting
full classification theorem for them.

From now on, we will denote by ( , ) a non-degenerate symmetric invariant bilinear form on g.
Such a form exists: for example, one can take ( , ) to be the Killing form (in fact, if g is simple,
then any invariant bilinear form is a multiple of the Killing form, see Exercise 4.5). However, in
most cases it is more convenient to use a different normalization, which we will introduce later, in
Exercise 8.7.

Since the restriction of ( , ) to h is non-degenerate (see Theorem 6.38), it defines an isomorphism
h

∼−→ h∗ and a non-degenerate bilinear form on h∗, which we will also denote by ( , ). It can be
explicitly defined as follows: if we denote for α ∈ h∗ by Hα the corresponding element of h, then

(6.4) (α, β) = 〈Hα, β〉 = (Hα,Hβ)

for any α, β ∈ h∗.

Lemma 6.41. Let e ∈ gα, f ∈ g−α and let Hα be defined by (6.4). Then

[e, f ] = (e, f)Hα.

Proof. Let us compute the pairing ([e, f ], h) for some h ∈ h. Since the form ( , ) is invariant, we
have

([e, f ], h) = (e, [f, h]) = −(e, [h, f ]) = 〈h, α〉(e, f) = (e, f)(h,Hα)

Since ( , ) is a non-degenerate form on h, this implies that [e, f ] = (e, f)Hα. ¤
Lemma 6.42.

(1) Let α ∈ R. Then (α, α) = (Hα,Hα) 6= 0.

(2) Let e ∈ gα, f ∈ g−α be such that (e, f) = 2
(α,α) , and let

(6.5) hα =
2Hα

(α, α)
.

Then 〈hα, α〉 = 2 and the elements e, f, hα satisfy the commutation relations (3.24) of Lie
algebra sl(2,C). We will denote such a subalgebra by sl(2,C)α ⊂ g.

(3) So defined hα is independent of the choice of non-degenerate invariant bilinear form ( , ).

Proof. Assume that (α, α) = 0; then 〈Hα, α〉 = 0. Choose e ∈ gα, f ∈ g−α such that (e, f) 6= 0
(possible by Theorem 6.38). Let h = [e, f ] = (e, f)Hα and consider the algebra a generated by
e, f, h. Then we see that [h, e] = 〈h, α〉e = 0, [h, f ] = −〈h, α〉f = 0, so a is solvable Lie algebra.
By Lie theorem (Theorem 5.30), we can choose a basis in g such that operators ad e, ad f , adh are
upper triangular. Since h = [e, f ], adh will be strictly upper-triangular and thus nilpotent. But
since h ∈ h, it is also semisimple. Thus, h = 0. On the other hand, h = (e, f)Hα 6= 0. This
contradiction proves the first part of the theorem.

The second part is immediate from definitions and Lemma 6.41.

The last part is left as an exercise to the reader (Exercise 6.7). ¤
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This lemma gives us a very powerful tool for study of g: we can consider g as a module over the
subalgebra sl(2,C)α and then use results about representations of sl(2,C) proved in Section 4.8.

Lemma 6.43. Let α be a root, and let sl(2,C)α be the Lie subalgebra generated by e ∈ gα, f ∈ g−α

and hα as in Lemma 6.42.

Consider the subspace

V = Chα ⊕
⊕

k∈Z,k 6=0

gkα ⊂ g.

Then V is an irreducible representation of sl(2,C)α.

Proof. Since ad e.gkα ⊂ g(k+1)α, and by Lemma 6.41, ad e.g−α ⊂ Chα, and similarly for f , V is a
representation of sl(2,C)α. Since 〈hα, α〉 = 2, we see that the weight decomposition of V is given
by V [k] = 0 for odd k and V [2k] = gkα, V [0] = Chα. In particular, zero weight space V [0] is
one-dimensional. By Exercise 4.11, this implies that V is irreducible. ¤

Now we can prove the main theorem about the structure of semisimple Lie algebras.

Theorem 6.44. Let g be a complex semisimple Lie algebra with Cartan subalgebra h and root
decomposition g = h⊕⊕

α∈R gα. Let ( , ) a non-degenerate symmetric invariant bilinear form on g.

(1) R spans h∗ as a vector space, and elements hα, α ∈ R, defined by (6.5) span h as a vector
space.

(2) For each α ∈ R, the root subspace gα is one-dimensional.

(3) For any two roots α, β, the number

〈hα, β〉 =
2(α, β)
(α, α)

is integer.

(4) For α ∈ R, define the reflection operator sα : h∗ → h∗ by

sα(λ) = λ− 〈hα, λ〉α = λ− 2(α, λ)
(α, α)

α.

Then for any roots α, β, sα(β) is also a root. In particular, if α ∈ R, then −α = sα(α) ∈ R.

(5) For any root α, the only multiples of α which are also roots are ±α.

(6) For roots α, β 6= ±α, the subspace

V =
⊕

k∈Z
gβ+kα

is an irreducible representation of sl(2,C)α.

(7) If α, β are roots such that α+ β is also a root, then [gα, gβ ] = gα+β.

Proof. (1) Assume that R does not generate h∗; then there exists a non-zero h ∈ h such
that 〈h, α〉 = 0 for all α ∈ R. But then root decomposition (6.2) implies that adh = 0.
However, by definition in a semisimple Lie algebra, the center is trivial: z(g) = 0.

The fact that hα span h now immediately follows: using identification of h with h∗

given by the Killing form, elements hα are identified with non-zero multiples of α.

(2) Immediate from Lemma 6.43 and the fact that in any irreducible representation of sl(2,C),
weight subspaces are one-dimensional.
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(3) Consider g as a representation of sl(2,C)α. Then elements of gβ have weight equal to
〈hα, β〉. But by Theorem 4.60, weights of any finite-dimensional representation of sl(2,C)
are integer.

(4) Assume that 〈hα, β〉 = n ≥ 0. Then elements of gβ have weight n with respect to action
of sl(2,C)α. By Theorem 4.60, operator fn

α is an isomorphism of the space of vectors of
weight n with the space of vectors of weight −n. In particular, it means that if v ∈ gβ is
non-zero vector, then fn

αv ∈ gβ−nα is also non-zero. Thus, β − nα = sα(β) ∈ R.
For n ≤ 0, the proof is similar, using e−n instead of fn.

(5) Assume that α and β = cα, c ∈ C, are both roots. By part (3), 2(α,β)
(α,α) = 2c is integer, so

c is a half-integer. The same argument shows that 1/c is also a half-integer. It is easy to
see that this implies that c ∈ {±1, ±2, ±1/2}. Interchanging the roots if necessary and
possibly replacing α by −α, we have c = 1 or c = 2.

Now let us consider the subspace

V = Chα ⊕
⊕

k∈Z,k 6=0

gkα ⊂ g.

By Lemma 6.43, V is an irreducible representation of sl(2,C)α, and by part (2), V [2] =
gα = Ceα. Thus, the map ad eα : gα → g2α is zero. But the results of Section 4.8 show
that in an irreducible representation, kernel of e is exactly the highest weight subspace.
Thus, we see that V has highest weight 2: V [4] = V [6] = · · · = 0. This means that
V = g−α ⊕ Chα ⊕ gα, so the only integer multiples of α which are roots are ±α. In
particular, 2α is not a root.

Combining these two results, we see that if α, cα are both roots, then c = ±1.

(6) Proof is immediate from dim gβ+kα = 1.

(7) We already know that [gα, gβ ] ⊂ gα+β . Since dim gα+β = 1, we need to show that for
non-zero eα ∈ gα, eβ ∈ gβ , we have [eα, eβ ] 6= 0. This follows from the previous part
and the fact that in an irreducible representation of sl(2,C), if v ∈ V [k] is non-zero and
V [k + 2] 6= 0, then e.v 6= 0.

¤

In the next chapter, we will study the set of roots R in detail. As we will see, it gives us a key
to the classification of semisimple Lie algebras.

Theorem 6.45.

(1) Let hR ⊂ h be the real vector space generated by hα, α ∈ R. Then h = hR ⊕ ihR, and the
restriction of the Killing form to hR is positive definite.

(2) Let h∗R ⊂ h∗ be the real vector space generated by α ∈ R. Then h∗ = h∗R ⊕ ih∗R. Also,
h∗R = {λ ∈ h∗ | 〈λ, h〉 ∈ R for all h ∈ hR} = (hR)∗.

Proof. Let us first prove that the restriction of the Killing form to hR is real and positive definite.
Indeed,

(hα, hβ) = tr(adhα adhβ) =
∑

γ∈R

〈hα, γ〉〈hβ , γ〉.

But by Theorem 6.44, 〈hα, γ〉, 〈hβ , γ〉 ∈ Z, so (hα, hβ) ∈ Z.

Now let h =
∑
cαhα ∈ hR. Then 〈h, γ〉 =

∑
cα〈hα, γ〉 ∈ R for any root γ, so

(h, h) = tr(adh)2 =
∑

γ

〈h, γ〉2 ≥ 0
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which proves that the Killing form is positive definite on hR.

Since the Killing form is positive definite on hR, it is negative definite on ihR, so hR ∩ ihR = {0},
which implies dimR hR ≤ 1

2 dimR h = r, where r = dimC h is the rank of g. On the other hand, since
hα generate h over C, we see that dimR hR ≥ r. Thus, dimR hR = r, so h = hR ⊕ ihR.

The second part easily follows from the first one. ¤

Remark 6.46. It easily follows from this theorem and Theorem 6.10 that if k is a compact real
form of g (see Theorem 6.13), then k∩h = ihR. For example, for g = sl(n,C), hR consists of traceless
diagonal matrices with real entries, and su(n)∩h =traceless diagonal skew-hermitian matrices=ihR.

6.7. Regular elements and conjugacy of Cartan
subalgebras

In this section, we give another way of constructing Cartan subalgebras, and prove conjugacy of
Cartan subalgebras, which was stated without proof in Section 6.5. This section can be skipped at
first reading.

We start with an example.

Example 6.47. Let g = sl(n,C) and let h ∈ g be such that all eigenvalues of h are distinct (as is
well known, set of such matrices is open and dense in g). In this case, h has an eigenbasis vi in which
it becomes a diagonal matrix with distinct numbers λi on the diagonal. Since eigenvalues of adh
are of the form λi−λj (see proof of Theorem 5.60), this implies that [h, x] = 0 iff x itself is diagonal
in the basis vi. Therefore, in this case the subalgebra of diagonal matrices (which, as discussed in
Example 6.34, is a Cartan subalgebra in sl(n,C)) can be recovered as the centralizer of h: h = C(h).

This suggests a method of constructing Cartan subalgebras for an arbitrary semisimple Lie
algebra g as centralizers of “generic” element h ∈ g. We must, however, give a precise definition of
the word “generic”, which can be done as follows.

Definition 6.48. For any x ∈ g, define “nullity” of x by

n(x) = multiplicity of 0 as a generalized eigenvalue of adx

It is clear that for every x ∈ g, n(x) ≥ 1 (because x itself is annihilated by adx).

Definition 6.49. For any Lie algebra g, its rank rank(g) is defined by

rank(g) = min
x∈g

n(x)

An element x ∈ g is called regular if n(x) = rank(g).

Example 6.50. Let g = gl(n,C) and let x ∈ g have eigenvalues λi. Then eigenvalues of adx
are λi − λj , i, j = 1 . . . n; thus, n(x) ≥ n with the equality iff all λi are distinct. Therefore,
rank(gl(n,C)) = n and x ∈ gl(n,C) is regular iff its eigenvalues are distinct (in which case it must
be diagonalizable). A minor modification of this argument shows that rank(sl(n,C)) = n − 1 and
x ∈ sl(n,C) is regular iff its eigenvalues are distinct.

Lemma 6.51. In any finite-dimensional complex Lie algebra g , the set greg of regular elements is
connected, open and dense in g.

Proof. For any x ∈ g, let px(t) = det(adx − t) = an(x)tn + · · · + a0(x) be the characteristic
polynomial of adx. By definition, n(x) is multiplicity of zero as a root of px(t): thus, for any x,
polynomial px(t) has zero of order ≥ r at zero, with equality iff x is regular (r is the rank of g)
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Therefore, x is regular iff ar(x) 6= 0. But each of the coefficients ak(x) is a polynomial function on
g; thus, the set {x | ar(x) 6= 0} is an open dense set in g.

To prove that greg is connected, note that for any affine complex line l = x + ty, t ∈ C, the
intersection

l ∩ greg = {x+ ty | ar(x+ ty) 6= 0}
is either empty (if ar(x + ty) is identically zero) or a complement of a finite number of points in l;
in particular, if non-empty, it must be connected. Thus, if x1, x2 ∈ greg, by taking a complex line
through them we see that x1, x2 are path-connected. ¤

Proposition 6.52. Let g be a complex semisimple Lie algebra, and h ⊂ g — a Cartan subalgebra.

(1) dim h = rank(g).

(2)

h ∩ greg = {h ∈ h | 〈h, α〉 6= 0 ∀ α ∈ R}.
In particular, h ∩ greg is open and dense in h.

Proof. Let G be a connected Lie group with Lie algebra G and define

V = {h ∈ h | 〈h, α〉 6= 0 ∀ α ∈ R} ⊂ h

and let U = AdG.V . Then the set U is open in g. Indeed, consider the map ϕ : G × V → g given
by (g, x) 7→ Ad g.x. Then, for any x ∈ V , the corresponding map of tangent spaces at (1, x) is given
by ϕ∗ : g× h → g : (y, h) 7→ [y, x] + h. Since [gα, x] = gα (this is where we need that 〈x, α〉 6= 0 ∀α),
we see that ϕ∗ is surjective; therefore, the image of ϕ contains an open neighborhood of x. Since
any u ∈ U can be written in the form u = Ad g.x for some x ∈ V , this implies that for any u ∈ U ,
the set U contains an open neighborhood of u.

Since the set U is open, it must intersect with the open dense set greg. On the other hand,
for any u = Ad g.x ∈ U , we have n(u) = n(x) = dimC(x), where C(x) = {y ∈ g | [x, y] = 0} is
the centralizer of x, so rank(g) = n(x). But it easily follows from the root decomposition and the
definition of V that for any x ∈ V , we have C(x) = h. Therefore, rank(g) = dim h.

The second part of the proposition now immediately follows from the observation that for any
h ∈ h, we have

n(h) = dimC(h) = dim h + |{α ∈ R | 〈h, α〉 = 0}|.
¤

Theorem 6.53. Let g be a complex semisimple Lie algebra, and x ∈ g — a regular semisimple
element. Then the centralizer C(x) = {y ∈ g | [x, y] = 0} is a Cartan subalgebra in g. Conversely,
any Cartan subalgebra in g can be written as a centralizer of a regular semisimple element.

Proof. Let us decompose g into direct sum of eigenspaces for adx: g =
⊕

gλ, λ ∈ C, adx|gλ
= λ.

Then the results of Theorem 6.30, Lemma 6.31 apply; in particular, g0 = C(x) is a reductive
subalgebra in g.

We claim that C(x) is nilpotent. Indeed, by Engel’s theorem (Theorem 5.34) it suffices to prove
that for any y ∈ C(x), the restriction of ad y to C(x) is nilpotent. Consider element xt = x+ ty ∈
C(x). Then for small values of t, we have adxt|g/g0 is invertible (since adx|g/g0 is invertible), so
the null space of xt is contained in g0 = C(x). On the other hand, by definition of rank we have
n(xt) ≥ rank(g) = dimC(x) (the last equality holds because x is regular). Thus, adxt|C(x) is
nilpotent for t close to zero; since x acts by zero in C(x), this means that ad y|C(x) is nilpotent.
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Now the same arguments as in the proof of Theorem 6.35 show that g0 = C(x) is a toral
subalgebra. Since x ∈ C(x), the centralizer of C(x) is contained in C(x); thus, C(x) is a Cartan
subalgebra.

The last part is obvious: if h is a Cartan subalgebra, then by Proposition 6.52 it contains a
regular semisimple element x and thus h ⊂ C(x); since dim h = rank(g) = dimC(x), we see that
h = C(x).

¤

Corollary 6.54. In a complex semisimple Lie algebra,

(1) Any regular element is semisimple.

(2) Any regular element is contained in a unique Cartan subalgebra.

Proof. It is immediate from the definition that eigenvalues of adx and adxs = (adx)s coincide;
thus, if x is regular then so is xs. Then by Theorem 6.53, C(xs) is a Cartan subalgebra. Since
x ∈ C(xs), x itself must be semisimple.

To prove the second part, note that by (1) and Theorem 6.53, for any regular x the centralizer
C(x) is a Cartan subalgebra, so x is contained in a Cartan subalgebra. To prove uniqueness, note
that if h 3 x is a Cartan subalgebra, then commutativity of h implies that h ⊂ C(x). On the other
hand, by Proposition 6.52, dim h = rank(g) = dimC(x). ¤

Theorem 6.55. Any two Cartan subalgebras in a semisimple Lie algebra are conjugate: if h1, h2 ⊂ g

are Cartan subalgebras, then there exists an element g in the Lie group G corresponding to g such
that h2 = Ad g(h1).

Proof. Consider the set greg of regular elements in g; by Corollary 6.54, any such element is
contained in a unique Cartan subalgebra, namely hx = C(x). Define the following equivalence
relation on greg:

x ∼ y ⇐⇒ hx is conjugate to hy

Obviously, if x, y are regular elements in the same Cartan subalgebra h, then for any g ∈ G, we have
y ∼ Ad g.x. But it was shown in the proof of Proposition 6.52 that for fixed Cartan subalgebra h, the
set {Ad g.x | g ∈ G, x ∈ h∩greg} is open. Thus, each equivalence class of x contains a neighborhood
of x and therefore is open.

Since the set greg is connected (Lemma 6.51), and each equivalence class of relation ∼ is open,
this implies that there is only one equivalence class: for any regular x, y, corresponding Cartan
subalgebras hx, hy are conjugate. Since every Cartan subalgebra has the form hx (Theorem 6.53),
this implies the statement of the theorem. ¤

Exercises

6.1. Show that the Casimir operator for g = so(3,R) is given by C = 1
2 (J2

x + J2
y + J2

z ), where
generators Jx, Jy, Jz are defined in Section 3.10; thus, it follows from Proposition 6.15 that
J2

x + J2
y + J2

z ∈ Uso(3,R) is central. Compare this with the proof of Lemma 4.62, where the same
result was obtained by direct computation.

6.2. Show that for g = gl(n,C), Definition 6.25 is equivalent to the usual definition of a semisimple
operator (hint: use results of Section 5.9).

6.3. Show that if h ⊂ g is a Cartan subalgebra in a complex semisimple Lie algebra, then h is a
nilpotent subalgebra which coincides with its normalizer n(h) = {x ∈ g | adx.h ⊂ h}. (This is
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the usual definition of a Cartan subalgebra which can be used for any Lie algebra, not necessarily
a semisimple one.)

6.4. Let g be a complex Lie algebra which has a root decomposition:

g = h⊕
⊕

α∈R

gα

where R is a finite subset in h∗ − {0}, h is commutative and for h ∈ h, x ∈ gα, we have [h, x] =
〈h, α〉x. Show that then g is semisimple, and h is a Cartan subalgebra.

6.5. Let h ⊂ so(4,C) be the subalgebra consisting of matrices of the form



a

−a
b

−b




(entries not shown are zeros). Show that then h is a Cartan subalgebra and find the corresponding
root decomposition.

6.6. (1) Define a bilinear form B on W = Λ2C4 by ω1 ∧ ω2 = B(ω1, ω2)e1 ∧ e2 ∧ e3 ∧ e4. Show
that B is a symmetric non-degenerate form and construct an orthonormal basis for B.

(2) Let g = so(W,B) = {x ∈ gl(W ) | B(xω1, ω2) +B(ω1, xω2) = 0}. Show that g ' so(6,C).
(3) Show that the form B is invariant under the natural action of sl(4,C) on Λ2C4.
(4) Using results of the previous parts, construct a homomorphism sl(4,C) → so(6,C) and prove

that it is an isomorphism.

6.7. Show that definition (6.5) of hα is independent of the choice of ( , ): replacing the Killing
form by any other non-degenerate symmetric invariant bilinear form gives the same hα (see Ex-
ercise 6.7). [Hint: show it first for a simple Lie algebra, then use Theorem 6.39.]





Chapter 7

Root Systems

7.1. Abstract root systems

The results of Section 6.6 show that the set of roots R of a semisimple complex Lie algebra has a
number of remarkable properties. It turns out that sets with similar properties also appear in many
other areas of mathematics. Thus, we will introduce the notion of abstract root system and study
such objects, leaving for some time the theory of Lie algebras.

Definition 7.1. An abstract root system is a finite set of elements R ⊂ E \ {0}, where E is a
Euclidean vector space (i.e., a real vector space with an inner product), such that the following
properties hold:

(R1) R generates E as a vector space.

(R2) For any two roots α, β, the number

(7.1) nαβ =
2(α, β)
(β, β)

is integer.

(R3) Let sα : E → E be defined by

(7.2) sα(λ) = λ− 2(α, λ)
(α, α)

α.

Then for any roots α, β, sα(β) ∈ R.

The number r = dimE is called the rank of R.

If, in addition, R satisfies the following property

(R4) If α, cα are both roots, then c = ±1.

then R is called a reduced root system.

Remark 7.2. It is easy to deduce from (R1)—(R3) that if α, cα are both roots, then c ∈ {±1,±2,± 1
2}

(see the proof of Theorem 6.44). However, there are indeed examples of non-reduced root systems,
which contain α and 2α as roots — see Exercise 7.1. Thus, condition (R4) does not follow from
(R1)—(R3). However, in this book we will only consider reduced root systems.

Note that conditions (R2), (R3) have a very simple geometric meaning. Namely, sα is the
reflection around the hyperplane

(7.3) Lα = {λ ∈ E | (α, λ) = 0}.

107
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It can be defined by sα(λ) = λ if (α, λ) = 0 and sα(α) = −α.

Similarly, the number nαβ also has a simple geometric meaning: if we denote by pα the operator
of orthogonal projection onto the line containing α, then pα(β) = nβα

2 α. Thus, (R2) says that the
projection of β onto α is a half-integer multiple of α.

Using the notion of a root system, one of the main results of the previous chapter can be
reformulated as follows.

Theorem 7.3. Let g be a semisimple complex Lie algebra, with root decomposition (6.2). Then the
set of roots R ⊂ h∗R \ {0} is a reduced root system.

Finally, for future use it is convenient to introduce, for every root α ∈ R, the corresponding
coroot α∨ ∈ E∗ defined by

(7.4) 〈α∨, λ〉 =
2(α, λ)
(α, α)

.

Note that for the root system of a semisimple Lie algebra, this coincides with the definition of hα ∈ h

defined by (6.5): α∨ = hα.

Then one easily sees that 〈α∨, α〉 = 2 and that

(7.5)
nαβ = 〈α, β∨〉

sα(λ) = λ− 〈λ, α∨〉α.

Example 7.4. Let ei be the standard basis of Rn, with the usual inner product: (ei, ej) = δij .
Let E = {(λ1, . . . , λn) ∈ Rn | ∑

λi = 0}, and R = {ei − ej | 1 ≤ i, j ≤ n, i 6= j} ⊂ E. Then R

is a reduced root system. Indeed, one easily sees that for α = ei − ej , the corresponding reflection
sα : E → E is the transposition of ith, jth entries:

sei−ej (. . . , λi, . . . , λj , . . . ) = (. . . , λj , . . . , λi, . . . )

Clearly, R is stable under such transpositions (and, more generally, under all permutations). Thus,
condition (R3) is satisfied.

Since (α, α) = 2 for any α ∈ R, condition (R2) is equivalent to (α, β) ∈ Z for any α, β ∈ R

which is immediate.

Finally, condition (R1) is obvious. Thus, R is a root system of rank n−1. For historical reasons,
this root system is usually referred to as “root system of type An−1” (subscript is chosen to match
the rank of the root system).

Alternatively, one can also define E as a quotient of Rn:

E = Rn/R(1, . . . , 1).

In this description, we see that this root system is exactly the root system of Lie algebra sl(n,C)
(see Example 6.40).

7.2. Automorphisms and Weyl group

Most important information about the root system is contained in the numbers nαβ rather than in
inner product themselves. This motivates the following definition.

Definition 7.5. Let R1 ⊂ E1, R2 ⊂ E2 be two root systems. An isomorphism ϕ : R1 → R2 is a
vector space isomorphism ϕ : E1 → E2 such that ϕ(R1) = R2 and nϕ(α)ϕ(β) = nαβ for any α, β ∈ R1.
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Note that condition nϕ(α)ϕ(β) = nαβ will be automatically satisfied if ϕ preserves the inner
product. However, not every isomorphism of root systems preserves the inner product. For example,
for any c ∈ R+, the root systems R and cR = {cα, α ∈ R} are isomorphic. The isomorphism is given
by v 7→ cv, which does not preserve the inner product.

A special class of automorphisms of a root system R are those generated by reflections sα.

Definition 7.6. The Weyl group W of a root system R is the subgroup of GL(E) generated by
reflections sα, α ∈ R.

Lemma 7.7.

(1) The Weyl group W is a finite subgroup in the orthogonal group O(E), and the root system
R is invariant under the action of W .

(2) For any w ∈W , α ∈ R, we have sw(α) = wsαw
−1.

Proof. Since every reflection sα is an orthogonal transformation, W ⊂ O(E). Since sα(R) = R (by
the axioms of a root system), we have w(R) = R for any w ∈ W . Moreover, if some w ∈ W leaves
every root invariant, then w = id (because R generates E). Thus, W is a subgroup of the group
Aut(R) of all automorphisms of R. Since R is a finite set, Aut(R) is finite; thus W is also finite.

The second identity is obvious: indeed, wsαw
−1 acts as identity on the hyperplane wLα = Lw(α),

and wsαw
−1(w(α)) = −w(α), so it is a reflection corresponding to root w(α). ¤

Example 7.8. Let R be the root system of type An−1 (see Example 7.4). Then W is the group
generated by transpositions sij . It is easy to see that these transpositions generate the symmetric
group Sn; thus, for this root system W = Sn.

In particular, for the root system A1 (i.e., the root system of sl(2,C)), we have W = S2 = Z2 =
{1, s} where s acts on E ' R by λ 7→ −λ.

It should be noted, however, that not all automorphisms of a root system are given by elements
of the Weyl group. For example, for An, n > 2, the automorphism α 7→ −α is not in the Weyl
group.

7.3. Pairs of roots and rank two root systems

Our main goal is to give a full classification of all possible reduced root systems, which in turn will
be used to get a classification of all semisimple Lie algebras. The first step is considering the rank
two case.

From now on, R is a reduced root system.

The first observation is that conditions (R2), (R3) impose very strong restrictions on relative
position of two roots.

Theorem 7.9. Let α, β ∈ R be roots which are not multiples of one another, with |α| ≥ |β|, and let
ϕ be the angle between them. Then we must have one of the following possibilities:

(1) ϕ = π/2 (i.e., α, β are orthogonal), nαβ = nβα = 0

(2a) ϕ = 2π/3, |α| = |β|, nαβ = nβα = −1

(2b) ϕ = π/3, |α| = |β|, nαβ = nβα = 1.

(3a) ϕ = 3π/4, |α| = √
2|β|, nαβ = −2, nβα = −1.

(3b) ϕ = π/4, |α| = √
2|β|, nαβ = 2, nβα = 1.

(4a) ϕ = 5π/6, |α| = √
3|β|, nαβ = 3, nβα = 1.
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(4b) ϕ = π/6, |α| = √
3|β|, nαβ = −3, nβα = −1.

Proof. Recall nαβ defined by (7.1). Since (α, β) = |α||β| cosϕ, we see that nαβ = 2 |α||β| cosϕ. Thus,
nαβnβα = 4 cos2 ϕ. Since nαβnβα ∈ Z, this means that nαβnβα must be one of 0, 1, 2, 3. Analyzing
each of these possibilities and using nαβ

nβα
= |α|2

|β|2 if cosϕ 6= 0, we get the statement of the theorem. ¤

It turns out that each of the possibilities listed in this theorem is indeed realized.

Theorem 7.10.

(1) Let A1 ∪ A1, A2, B2, G2 be the sets of vectors in R2 shown in Figure 7.1. Then each of
them is a rank two root system.

(2) Any rank two reduced root system is isomorphic to one of root systems A1 ∪ A1, A2, B2,
G2.

A1 ∪ A1. All angles are
π/2, lengths are equal

A2. All angles are π/3,
lengths are equal

B2. All angles are π/4,
lengths are 1 and

√
2

G2. All angles are π/6,
lengths are 1 and

√
3

Figure 7.1. Rank two root systems

Proof. Proof of part (1) is given by explicit analysis. Since for any pair of vectors in these systems,
the angle and ratio of lengths is among one of the possibilities listed in Theorem 7.9, condition (R2)
is satisfied. It is also easy to see that condition (R3) is satisfied.
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To prove the second part, assume that R is a reduced rank 2 root system. Let us choose α, β
to be two roots such that the angle ϕ between them is as large as possible and |α| ≥ |β|. Then
ϕ ≥ π/2 (otherwise, we could take the pair α, sα(β) and get a larger angle). Thus, we must be in
one of situations (1), (2a), (3a), (4a) of Theorem 7.9.

Consider, for example, case (2a): |α| = |β|, ϕ = 2π/3. By the definition of a root system, R is
stable under reflections sα, sβ . But successively applying these two reflections to α, β we get exactly
the root system of type A2. Thus, in this case R contains as a subset the root system A2 generated
by α, β.

To show that in this case R = A2, note that if we have another root γ which is not in A2, then γ
must be between some of the roots of A2 (since R is reduced). Thus, the angle between γ and some
root δ is less than π/3, and the angle between γ and −δ is greater than 2π/3, which is impossible
because angle between α, β was chosen to be the maximal possible. Thus, R = A2.

Similar analysis shows that in cases (1), (3a), (4a) of Theorem 7.9, we will get R = A1 ∪ A1,
B2, G2 respectively. ¤

For future use, we also give the following result.

Lemma 7.11. Let α, β ∈ R be two roots such that (α, β) < 0, α 6= cβ. Then α+ β ∈ R.

Proof. It suffices to prove this for each of rank two root systems described in Theorem 7.10. For
each of them, it is easy to check directly. ¤

7.4. Positive roots and simple roots

In order to proceed with the classification of root systems, we would like to find for each root system
some small set of “generating roots”, similar to what was done in the previous section for rank 2
root systems. In general it can be done as follows.

Let t ∈ E be such that for any root α, (t, α) 6= 0 (such elements t are called regular). Then we
can write

(7.6)
R = R+ tR−

R+ = {α ∈ R | (α, t) > 0}, R− = {α ∈ R | (α, t) < 0}
Such a decomposition will be called a polarization of R. Note that polarization depends on the
choice of t. The roots α ∈ R+ will be called positive, and the roots α ∈ R− will be called negative.

From now on, let us assume that we have fixed a polarization (7.6) of the root system R.

Definition 7.12. A root α ∈ R+ is called simple if it can not be written as a sum of two positive
roots.

We will denote the set of simple roots by Π ⊂ R+.

We have the following easy lemma.

Lemma 7.13. Every positive root can be written as a sum of simple roots.

Proof. If a positive root α is not simple, it can be written in the form α = α′+α′′, with α′, α′′ ∈ R+,
and (α′, t) < (α, t), (α′′, t) < (α, t). If α′, α′′ are not simple, we can apply the same argument to
them to write them as a sum of positive roots. Since (α, t) can only take finitely many values, the
process will terminate after finitely many steps. ¤
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α1

α2 α1 + α2

t

Figure 7.2. Positive and simple roots for A2

Example 7.14. Let us consider the root system A2 and let t be as shown in Figure 7.2. Then there
are three positive roots: two of them are denoted by α1, α2, and the third one is α1 + α2. Thus,
one easily sees that α1, α2 are simple roots, and α1 + α2 is not simple.

Lemma 7.15. If α, β ∈ R+ are simple, then (α, β) ≤ 0.

Proof. Assume that (α, β) > 0. Then, applying Lemma 7.11 to −α, β, we see that β′ = β−α ∈ R.
If β′ ∈ R+, then β = β′ + α can not be simple. If β′ ∈ R−, then −β′ ∈ R+, so α = −β′ + β can not
be simple. This contradiction shows that (α, β) > 0 is impossible. ¤

Theorem 7.16. Let R = R+ tR− ⊂ E be a root system. Then the simple roots form a basis of the
vector space E.

Proof. By Lemma 7.13, every positive root can be written as a linear combination of simple roots.
Since R spans E, this implies that the set of simple roots spans E.

Linear independence of simple roots follows from the results of Lemma 7.15 and the following
linear algebra lemma proof of which is given in the exercises (Exercise 7.3).

Lemma 7.17. Let v1, . . . vk be a collection of non-zero vectors in a Euclidean space E such that for
i 6= j, (vi, vj) ≤ 0. Then {v1, . . . , vk} are linearly independent.

¤

Corollary 7.18. Every α ∈ R can be uniquely written as a linear combination of simple roots with
integer coefficients:

(7.7) α =
r∑

i=1

niαi, ni ∈ Z

where {α1, . . . , αr} = Π is the set of simple roots. If α ∈ R+, then all ni ≥ 0; if α ∈ R−, then all
ni ≤ 0.

For a positive root α ∈ R+, we define its height by

(7.8) ht
(∑

niαi

)
=

∑
ni ∈ Z+
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so that ht(αi) = 1. In many cases, statements about positive roots can be proved by induction in
height.

Example 7.19. Let R be the root system of type An−1 or equivalently, the root system of sl(n,C)
(see Example 6.40, Example 7.4). Choose the polarization as follows:

R+ = {ei − ej | i < j}
(the corresponding root subspaces Eij , i < j, generate the Lie subalgebra n of strictly upper-
triangular matrices in sl(n,C)).

Then it is easy to show that the simple roots are

α1 = e1 − e2, α2 = e2 − e3, . . . , αn−1 = en−1 − en

and indeed, any positive root can be written as a sum of simple roots with non-negative integer
coefficients. For example, e2 − e4 = (e2 − e3) + (e3 − e4) = α2 + α3. The height is given by
ht(ei − ej) = j − i.

7.5. Weight and root lattices

In the study of root systems of simple Lie algebras, we will frequently use the following lattices.
Recall that a lattice in a real vector space E is an abelian group generated by a basis in E. Of
course, by a suitable change of basis any lattice L ⊂ E can be identified with Zn ⊂ Rn.

Every root system R ⊂ E gives rise to the following lattices:

(7.9)
Q = {abelian group generated by α ∈ R} ⊂ E

Q∨ = {abelian group generated by α∨, α ∈ R} ⊂ E∗

Lattice Q is called the root lattice of R, and Q∨ is the coroot lattice. Note that despite the notation,
Q∨ is not the dual lattice to Q.

To justify the use of the word lattice, we need to show that Q, Q∨ are indeed generated by a basis
in E (respectively E∗). This can be done as follows. Fix a polarization of R and let Π = {α1, . . . , αr}
be the corresponding system of simple roots. Since every root can be written as a linear combination
of simple roots with integer coefficients (Corollary 7.18), one has

(7.10) Q =
⊕

Zαi,

which shows that Q is indeed a lattice. Similarly, it follows from Exercise 7.2 that

(7.11) Q∨ =
⊕

Zα∨i .

Even more important in the applications to the representation theory of semisimple Lie algebras
is the weight lattice P ⊂ E defined as follows:

(7.12) P = {λ ∈ E | 〈λ, α∨〉 ∈ Z for all α ∈ R} = {λ ∈ E | 〈λ, α∨〉 ∈ Z for all α∨ ∈ Q∨}.
In other words, P ⊂ E is exactly the dual lattice of Q∨ ⊂ E∗. Elements of P are frequently called
integral weights. Their role in representation theory will be discussed in Chapter 8.

Since Q∨ is generated by α∨i , the weight lattice can also be defined by

(7.13) P = {λ ∈ E | 〈λ, α∨i 〉 ∈ Z for all simple roots αi}.
One can easily define a basis in P . Namely, define fundamental weights ωi ∈ E by

(7.14) 〈ωi, α
∨
j 〉 = δij .
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Then one easily sees that so defined ωi form a basis in E and that

P =
⊕

i

Zωi.

Finally, note that by the axioms of a root system, we have nαβ = 〈α, β∨〉 ∈ Z for any roots α, β.
Thus, R ⊂ P which implies that

Q ⊂ P.

However, in general P 6= Q, as the examples below show. Since both P,Q are free abelian groups
of rank r, general theory of finitely generated abelian groups implies that the quotient group P/Q

is a finite abelian group. It is also possible to describe the order |P/Q| in terms of the matrix
aij = 〈α∨i , αj〉 (see Exercise 7.4).

Example 7.20. Consider the root system A1. It has the unique positive root α, so Q = Zα,
Q∨ = Zα∨. If we define the inner product ( , ) by (α, α) = 2, and use this product to identify
E∗ ' E, then under this identification α∨ 7→ α, Q∨ ∼−→ Q.

Since 〈α, α∨〉 = 2, we see that the fundamental weight is ω = α
2 , and P = Zα

2 . Thus, in this
case P/Q = Z2.

Example 7.21. For the root system A2, the root and weight lattices are shown in Figure 7.3. This
figure also shows simple roots α1, α2 and fundamental weights ω1, ω2.

α1

α2

ω1

ω2

Figure 7.3. Weight and root lattices for A2. Large dots show α ∈ Q, small dots α ∈ P −Q.

It is easy to see from the figure (and also easy to prove algebraically) that one can take α1, ω1

as a basis of P , and that α1, 3ω1 = α2 + 2α1 is a basis of Q. Thus, P/Q = Z3.

7.6. Weyl chambers

In the previous sections, we have constructed, starting with a root system R, first the set of positive
roots R+ and then a smaller set of simple roots Π = {α1, . . . , αr} which in a suitable sense generates
R. Schematically this can be shown as follows:

R −→ R+ −→ Π = {α1, . . . , αr}
The first step (passage from R to R+) requires a choice of polarization, which is determined by a
regular element t ∈ E; the second step is independent of any choices.

Our next goal is to use this information to get a classification of reduced root systems, by
classifying possible sets of simple roots. However, before doing this we need to answer the following
two questions:
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(1) Is it possible to recover R from Π?

(2) Do different choices of polarization give rise to equivalent in a suitable sense sets of simple
roots Π,Π′?

We will start with the second question as it is easier to answer.

Recall that a polarization is defined by an element t ∈ E which does not lie on any of the
hyperplanes orthogonal to roots:

(7.15)
t ∈ E \

⋃

α∈R

Lα

Lα = {λ ∈ E | (α, λ) = 0}
Moreover, the polarization actually depends not on t itself but only on the signs of (t, α); thus,

polarization is unchanged if we change t as long as we do not cross any of the hyperplanes. This
justifies the following definition.

Definition 7.22. A Weyl chamber is a connected component of the complement to the hyperplanes:

C = connected component of

(
E \

⋃

α∈R

Lα

)

For example, for root system A2 there are 6 Weyl chambers; one of them is shaded in the figure
below.

Figure 7.4. A Weyl chamber for A2

Clearly, to specify a Weyl chamber we need to specify, for each hyperplane Lα, on which side of
the hyperplane the Weyl chamber lies. Thus, a Weyl chamber is defined by a system of inequalities
of the form

±(α, λ) > 0

(one inequality for each root hyperplane). Any such system of inequalities defines either an empty
set or a Weyl chamber.

For future use, we state here some results about geometry of Weyl chambers.
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Lemma 7.23.

(1) The closure C of a Weyl chamber C is an unbounded convex cone.

(2) The boundary ∂C is a union of finite number of codimension one faces: ∂C =
⋃
Fi. Each

Fi is a closed convex unbounded subset in one of the hyperplanes Lα, given by a system of
inequalities. The hyperplanes containing Fi are called walls of C.

This lemma is geometrically obvious (in fact, it equally applies to any subset in a Euclidean
space defined by a finite system of strict inequalities) and we omit the proof.

We can now return to the polarizations. Note that any Weyl chamber C defines a polarization
given by

(7.16) R+ = {α ∈ R | (α, t) > 0}, t ∈ C
(this does not depend on the choice of t ∈ C). Conversely, given a polarization R = R+tR−, define
the corresponding positive Weyl chamber C+ by

(7.17) C+ = {λ ∈ E | (λ, α) > 0 for all α ∈ R+} = {λ ∈ E | (λ, αi) > 0 for all αi ∈ Π}
(to prove the last equality, note that if (λ, αi) > 0 for all αi ∈ Π, then by Lemma 7.13, for
any α =

∑
niαi, we have (λ, α) > 0). This system of inequalities does have solutions (because

the element t used to define the polarization satisfies these inequalities) and thus defines a Weyl
chamber.

Lemma 7.24. Formulas (7.16), (7.17) define a bijection between the set of all polarizations of R
and the set of Weyl chambers.

Proof is left as an exercise to the reader.

In order to relate polarizations defined by different Weyl chambers, recall the Weyl group W

defined in Section 7.2. Since the action of W maps root hyperplanes to root hyperplanes, we have
a well-defined action of W on the set of Weyl chambers.

Theorem 7.25. The Weyl group acts transitively on the set of Weyl chambers.

Proof. The proof is based on several facts which are of significant interest in their own right.
Namely, let us say that two Weyl chambers C,C ′ are adjacent if they have a common codimension
one face F (obviously, they have to be on different sides of F ). If Lα is the hyperplane containing
this common face F , then we will say that C,C ′ are adjacent chambers separated by Lα.

Then we have the following two lemmas, proof of which as an exercise to the reader.

Lemma 7.26. Any two Weyl chambers C,C ′ can be connected by a sequence of chambers C0 = C,
C1, . . . , Cl = C ′ such that Ci is adjacent to Ci+1.

Lemma 7.27. If C,C ′ are adjacent Weyl chambers separated by hyperplane Lα then sα(C) = C ′.

The statement of the theorem now easily follows from these two lemmas. Indeed, let C,C ′

be two Weyl chambers. By Lemma 7.26, they can be connected by a sequence of Weyl chambers
C0 = C, C1, . . . , Cl = C ′. Let Lβi be the hyperplane separating Ci−1 and Ci. Then, by Lemma 7.27,

(7.18)
Cl = sβl

(Cl−1) = sβl
sβl−1(Cl−2) = . . .

= sβl
. . . sβ1(C0)

so C ′ = w(C), with w = sβl
. . . sβ1 . This completes the proof of Theorem 7.25. ¤

Corollary 7.28. Every Weyl chamber has exactly r = rank(R) walls. Walls of positive Weyl
chamber C+ are Lαi , αi ∈ Π.
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Proof. For the positive Weyl chamber C+, this follows from (7.17). Since every Weyl chamber can
be written in the form C = w(C+) for some w ∈ W , all Weyl chambers have the same number of
walls. ¤

Corollary 7.29. Let R = R+ t R− = R′+ t R′− be two polarizations of the same root system,
and Π,Π′ the corresponding sets of simple roots. Then there exists an element w ∈ W such that
Π = w(Π′).

Proof. By Lemma 7.24, each polarization is defined by a Weyl chamber. Since W acts transitively
on the set of Weyl chambers, it also acts transitively on the set of all polarizations. ¤

This last corollary provides an answer to the question asked in the beginning of this section: sets
of simple roots obtained from different polarizations can be related by an orthogonal transformation
of E.

7.7. Simple reflections

We can now return to the first question asked in the beginning of the previous section: is it possible
to recover R from the set of simple roots Π? The answer is again based on the use of Weyl group.

Theorem 7.30. Let R be a reduced root system, with fixed polarization R = R+ t R−. Let Π =
{α1, . . . , αr} be the set of simple roots. Consider reflections corresponding to simple roots si = sαi

(they are called simple reflections).

(1) The simple refelections si generate W .

(2) W (Π) = R: every α ∈ R can be written in the form w(αi) for some w ∈W and αi ∈ Π.

Proof. We start by proving the following result

Lemma 7.31. Any Weyl chamber can be written as

C = si1 . . . sil
(C+)

for some sequence of indices i1, . . . , il ∈ {1, . . . , r}. (Here C+ is the positive Weyl chamber defined
by (7.17).)

Proof. By the construction given in the proof of Theorem 7.25, we can connect C+, C by a chain
of adjacent Weyl chambers C0 = C+, C1, . . . , Cl = C. Then C = sβl

. . . sβ1(C+), where Lβi is the
hyperplane separating Ci−1 and Ci.

Since Lβ1 separates C0 = C+ from C1, it means that Lβ1 is one of the walls of C+. Since the
walls of C+ are exactly hyperplanes Lαi corresponding to simple roots (see Corollary 7.28), we see
that β1 = ±αi1 for some index i1 ∈ {1, . . . , r}, so sβ1 = si1 and C1 = si1(C+).

Consider now the hyperplane Lβ2 separating C1 from C2. It is a wall of C1 = si1(C+); thus, it
must be of the form Lβ2 = si1(L) for some hyperplane L which is a wall of C+. Thus, we get that
β2 = ±si1(αi2) for some index i2. By Lemma 7.7, we therefore have sβ2 = si1si2si1 and thus

sβ2sβ1 = si1si2si1 · si1 = si1si2

C2 = si1si2(C+)

Repeating the same argument, we finally get that

C = si1 . . . sil
(C+)

and the indices ik are computed inductively, by

(7.19) βk = si1 . . . sik−1(αik
)
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which completes the proof of the lemma. ¤

Now the theorem easily follows. Indeed, every hyperplane Lα is a wall of some Weyl chamber
C. Using the lemma, we can write C = w(C+) for some w = si1 . . . sil

. Thus, Lα = w(Lαj
) for

some index j, so α = ±w(αj) and sα = wsjw
−1, which proves both statements of the theorem.

¤

It is also possible to write the full set of defining relations for W (see Exercise 7.11).

Example 7.32. Let R be the root system of type An−1. Then the Weyl group is W = Sn (see
Example 7.8) and simple reflections are transpositions si = (i i + 1). And indeed, it is well known
that these transpositions generate the symmetric group.

We can also describe the Weyl chambers in this case. Namely, the positive Weyl chamber is

C+ = {(λ1, . . . , λn) ∈ E | λ1 ≥ λ2 ≥ · · · ≥ λn}
and all other Weyl chambers are obtained by applying to C+ permutations σ ∈ Sn. Thus, they are
of the form

Cσ = {(λ1, . . . , λn) ∈ E | λσ(1) ≥ λσ(2) ≥ · · · ≥ λσ(n)}, σ ∈ Sn.

Corollary 7.33. The root system R can be recovered from the set of simple roots Π.

Proof. Given Π, we can recover W as the group generated by si and then recover R = W (Π). ¤

Let us say that a root hyperplane Lα separates two Weyl chambers C,C ′ if these two chambers
are on different sides of Lα, i.e. α(C), α(C ′) have different signs (we do not assume that Lα is one
of the walls of C or C ′).

Definition 7.34. Let R be a reduced root system, with the set of simple roots Π. Then we define,
for an element w ∈W , its length by

(7.20) l(w) = number of root hyperplanes separating C+ and w(C+) = |{α ∈ R+ | w(α) ∈ R−}|.

It should be noted that l(w) depends not only on w itself but also on the choice of polarization
R = R+ tR− or equivalently, the set of simple roots.

Example 7.35. Let w = si be a simple reflection. Then the Weyl chambers C+ and si(C+) are
separated by exactly one hyperplane, namely Lαi . Therefore, l(si) = 1, and

(7.21) {α ∈ R+ | si(α) ∈ R−} = {αi}.
In other words, si(αi) = −αi ∈ R− and si permutes elements of R+ \ {αi}.

This example is very useful in many arguments involving Weyl group, such as the following
lemma.

Lemma 7.36. Let

(7.22) ρ =
1
2

∑

α∈R+

α.

Then 〈ρ, α∨i 〉 = 2(ρ,αi)
(αi,αi)

= 1.

Proof. Writing ρ = (αi +
∑

α∈R+\{αi} α)/2 and using results of Example 7.35, we see that si(ρ) =
ρ− αi. On the other hand, by definition si(λ) = λ− 〈α∨i , λ〉αi. ¤
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Theorem 7.37. Let
w = si1 . . . sil

be an expression for w as a product of simple reflections which has minimal possible length (such
expressions are called reduced). Then l = l(w).

Proof. We can connect C+ and w(C+) by a chain of Weyl chambers C0 = C+, C1, . . . , Cl = w(C+),
where Ck = si1 . . . sik

(C+). The same argument as in the proof of Theorem 7.31 shows that then Ck

and Ck−1 are adjacent Weyl chambers separated by root hypeplane Lβk
, with βk = si1 . . . sik−1(αik

).
This shows that we can connect C+ and w(C+) by a path crossing exactly l hyperplanes. In
particular, this means that C+ and w(C+) are separated by at most l hyperplanes, so l(w) ≤ l.

Note, however, that we can not yet conclude that l(w) = l: it is possible that the path we had
constructed crosses some hyperplane more than once. For example, we can write 1 = sisi, which
gives us a path connecting C+ with itself but crossing hypeplane Lαi

twice. So to show that l(w) = l,
we need to show that if w = si1 . . . sil

is a reduced expression, then all hyperplanes Lβ1 , . . . , Lβl

are distinct: we never cross any hyperplane more than once. The proof of this fact is given as an
exercise (see Exercise 7.6). ¤

Corollary 7.38. The action of W on the set of Weyl chambers is simply transitive.

Proof. Otherwise, there exists w ∈W such that w(C+) = C+. By definition, this means l(w) = 0.
By Theorem 7.37, this implies that w = 1. ¤

This shows that C+ is the fundamental domain for the action of W on E. In fact, we have a
stronger result: every W -orbit in E contains exactly one element from C+ (see Exercise 7.8).

Lemma 7.39. Let C− be the negative Weyl chamber: C− = −C+ and let w0 ∈ W be such that
w0(C+) = C− (by Corollary 7.38, such an element exists and is unique). Then l(w0) = |R+| and
for any w ∈ W , w 6= w0, we have l(w) < l(w0). For this reason w0 is called the longest element in
W .

The proof of this lemma is left to the reader as an exercise.

7.8. Dynkin diagrams and classification of root
systems

In the previous sections, we have discussed that given a reduced root system R, we can choose a
polarization R = R+tR− and then define the set of simple roots Π = {α1, . . . , αr}. We have shown
that R can be recovered from Π (Corollary 7.33) and that different choices of polarization give rise
to sets of simple roots which are related by the action of the Weyl group (Corollary 7.29). Thus,
classifying root systems is equivalent to classifying possible sets of simple roots Π.

The main goal of this section will be to give a complete solution of this problem, thus giving a
classification of all root systems.

The first step is to note that there is an obvious way to construct larger root systems from
smaller ones. Namely, if R1 ⊂ E1 and R2 ⊂ E2 are two root systems, then we can define R =
R1 t R2 ⊂ E1 ⊕ E2, with the inner product on E1 ⊕ E2 defined so that E1 ⊥ E2. It is easy to see
that so defined R is again a root system.

Definition 7.40. A root system R is called reducible if it can be written in the form R = R1 tR2,
with R1 ⊥ R2. Otherwise, R is called irreducible.
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For example, root system A1 ∪ A1 discussed in Section 7.3 is reducible; all other root systems
discussed in that section are irreducible.

Remark 7.41. It should be noted that a root system being reducible or irreducible is completely
unrelated to whether the root system is reduced or not. It would be best if a different terminology
were used, to avoid confusion; however, both of these terms are so widely used that changing them
is not feasible.

There is an analogous notion for the set of simple roots.

Lemma 7.42. Let R be a reduced root system, with given polarization, and let Π be the set of simple
roots.

(1) If R is reducible: R = R1 tR2, then Π = Π1 tΠ2, where Πi = Π ∩Ri is the set of simple
roots for Ri.

(2) Conversely, if Π = Π1 tΠ2, with Π1 ⊥ Π2, then R = R1 tR2, where Ri is the root system
generated by Πi.

Proof. The first part is obvious. To prove the second part, notice that if α ∈ Π1, β ∈ Π2, then
sα(β) = β and sα, sβ commute. Thus, if we denote by Wi the group generated by simple reflections
sα, α ∈ Πi, then W = W1 × W2, and W1 acts trivially on Π2, W2 acts trivially on Π1. Thus,
R = W (Π1 tΠ2) = W1(Π1) tW2(Π2). ¤

It can be shown that every reducible root system can be uniquely written in the form R1 t
R2 · · · t Rn, where Ri are mutually orthogonal irreducible root systems. Thus, in order to classify
all root systems, it suffices to classify all irreducible root systems. For this reason, from now on R is
an irreducible root system and Π is the corresponding set of simple roots. We assume that we have
chosen an order on the set of simple roots: Π = {α1 . . . , αr}.

The compact way of describing relative position of roots αi ∈ Π is by writing all inner products
between these roots. However, this is not invariant under isomorphisms of root systems. A better
way of describing relative position of simple roots is given by the so called Cartan matrix.

Definition 7.43. The Cartan matrix A of a set of simple roots Π ⊂ R is the r × r matrix with
entries

(7.23) aij = nαjαi = 〈α∨i , αj〉 =
2(αi, αj)
(αi, αi)

.

The following properties of the Cartan matrix immediately follow from the definitions and from
known properties of simple roots.

Lemma 7.44.

(1) For any i, aii = 2.

(2) For any i 6= j, aij is a non-positive integer: aij ∈ Z, aij ≤ 0.

(3) For any i 6= j, aijaji = 4 cos2 ϕ, where ϕ is the angle between αi, αj . If ϕ 6= π/2, then

|αi|2
|αj |2 =

aji

aij
.
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Example 7.45. For the root system An, the Cartan matrix is

A =




2 −1
−1 2 −1

−1 2 −1
...
−1 2 −1

−1 2




(entries which are not shown are zeroes).

The information contained in the Cartan matrix can also be presented in a graphical way.

Definition 7.46. Let Π be a set of simple roots of a root system R. The Dynkin diagram of Π is
the graph constructed as follows:

• For each simple root αi, we construct a vertex vi of the Dynkin diagram (traditionally,
vertices are drawn as small circles rather than as dots)

• For each pair of simple roots αi 6= αj , we connect the corresponding vertices by n edges,
where n depends on the angle ϕ between αi, αj :
For ϕ = π/2, n = 0 (vertices are not connected)
For ϕ = 2π/3, n = 1 (case of A2 system)
For ϕ = 3π/4, n = 2 (case of B2 system)
For ϕ = 5π/6, n = 3 (case of G2 system)

• Finally, for every pair of distinct simple roots αi 6= αj , if |αi| 6= |αj | and they are not
orthogonal, we orient the corresponding (multiple) edge by putting on it an arrow pointing
towards the shorter root.

Example 7.47. The Dynkin diagrams for rank two root systems are shown in Figure 7.5.

A1 ∪A1: A2:

B2: G2:

Figure 7.5. Dynkin diagrams of rank two root systems

Theorem 7.48. Let Π be a set of simple roots of a reduced root system R.

(1) The Dynkin diagram of Π is connected if and only if R is irreducible.

(2) The Dynkin diagram determines the Cartan matrix A.

(3) R is determined by the Dynkin diagram uniquely up to an isomorphism: if R,R′ are two
reduced root systems with the same Dynkin diagram, then they are isomorphic.

Proof. (1) Assume that R is reducible; then, by Lemma 7.42, we have Π = Π1 t Π2, with
Π1 ⊥ Π2. Thus, by construction of Dynkin diagram, it will be a disjoint union of the
Dynkin diagram of Π1 and the Dynkin diagram of Π2. Proof in the opposite direction is
similar.

(2) Dynkin diagram determines, for each pair of simple roots αi, αj , the angle between them
and shows which of them is longer. Since all possible configurations of two roots are
listed in Theorem 7.9, one easily sees that this information, together with the condition
(αi, αj) ≤ 0, uniquely determines nαiαj , nαjαi .
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(3) By part (2), the Dynkin diagram determines Π uniquely up to an isomorphism. By Corol-
lary 7.33, Π determines R uniquely up to an isomorphism.

¤

Thus, the problem of classifying all irreducible root systems reduces to the following problem:
which graphs can appear as Dynkin diagrams of irreducible root systems? The answer is given by
the following theorem.

Theorem 7.49. Let R be a reduced irreducible root system. Then its Dynkin diagram is isomorphic
to one of the diagrams below (in each diagram, the subscript is equal to the number of vertices, so
Xn has exactly n vertices):

• An (n ≥ 1) :

• Bn (n ≥ 2) :

• Cn (n ≥ 2) :

• Dn (n ≥ 4) :

• E6 :

• E7 :

• E8 :

• F4 :

• G2 :

Conversely, each of these diagrams does appear as the Dynkin diagram of a reduced irreducible
root system.

The proof of this theorem is not difficult but rather long as it requires analyzing a number
of cases. We will give a proof of a special case, when the diagram contains no multiple edges, in
Section 7.10.

Explicit constructions of the root systems corresponding to each of the diagrams A–D is given
in Appendix A, along with useful information such as a description of the Weyl group, and much
more. Description of root systems E6, E7, E8, F4, G2 (these root systems are sometimes called
“exceptional”) can be found in [3], [24].

The letters A,B, . . . , G do not have any deep significance: these are just the first 7 letters of
the alphabet. However, this notation has become standard. Since the Dynkin diagram determines
the root system up to isomorphism, it is also common to use the same notation An, . . . , G2 for the
corresponding root system.

Remark 7.50. In the list above, we have imposed restrictions n ≥ 2 for Bn, Cn and n ≥ 4 for Dn,
which is natural from the point of view of diagrams. In fact, constructions of root systems given in
Appendix A also work for smaller values of n. Namely, constructions of root systems Bn, Cn also
make sense for n = 1; however, these root systems coincide with A1: B1 = C1 = A1, so they do
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not give any new diagrams (note also that for n = 2, B2 = C2). (This corresponds to Lie algebra
isomorphisms sl(2,C) ' so(3,C) ' sp(1,C) constructed in Section 3.10 and sp(2,C) ' so(5,C).)

Similarly, construction of the root system Dn also makes sense for n = 2, 3, in which case it gives
D2 = A1∪A1, D3 = A3, which correspond to Lie algebra isomorphisms so(4,C) ' sl(2,C)⊕sl(2,C),
so(6,C) ' sl(4,C), see Exercise 6.6.

Other than the equalities listed above, all root systems An, . . . , G2 are distinct.

Corollary 7.51. If R is a reduced irreducible root system, then (α, α) can take at most two different
values. The number

(7.24) m =
max(α, α)
min(α, α)

is equal to the maximal multiplicity of an edge in the Dynkin diagram; thus, m = 1 for root systems
of types ADE (these are called simply-laced diagrams), m = 2 for types BCF, and m = 3 for G2.

For non-simply laced systems, the roots with (α, α) being the larger of two possible values are
called the long roots, and the remaining roots are called short.

7.9. Serre relations and classification of
semisimple Lie algebras

We can now return to the question of classification of complex semisimple Lie algebras. Since every
semisimple algebra is a direct sum of simple ones, it suffices to classify simple Lie algebras.

According to the results of Section 6.6, every semisimple Lie algebra defines a reduced root
system; if the algebra is not simple but only semisimple, then the root system is reducible. The one
question we have not yet answered is whether one can go back and recover the Lie algebra from the
root system. If the answer is positive, then the isomorphism classes of simple Lie algebras are in
bijection with the isomorphism classes of reduced irreducible root systems, and thus we could use
classification results of Section 7.8 to classify simple Lie algebras.

Theorem 7.52. Let g be a semisimple complex Lie algebra with root system R ⊂ h∗, and ( , ) — a
non-degenerate invariant symmetric bilinear form on g. Let R = R+ t R− be a polarization of R,
and Π = {α1, . . . , αr} — the corresponding system of simple roots.

(1) The subspaces

(7.25) n± =
⊕

α∈R±

gα

are subalgebras in g, and

(7.26) g = n− ⊕ h⊕ n+

as a vector space.

(2) Let ei ∈ gαi , fi ∈ g−αi be chosen so that (ei, fi) = 2
(αi,αi)

, and let hi = hαi ∈ h be defined
by (6.5). Then e1, . . . , er generate n+, f1, . . . , fr generate n−, and h1, . . . , hr form a basis
of h. In particular, {ei, fi, hi}i=1...r generate g.
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(3) The elements ei, fi, hi satisfy the following relations, called the Serre relations:

[hi, hj ] = 0(7.27)

[hi, ej ] = aijej , [hi, fj ] = −aijfj(7.28)

[ei, fj ] = δijhi(7.29)

(ad ei)1−aijej = 0(7.30)

(ad fi)1−aijfj = 0(7.31)

where aij = nαj ,αi = 〈α∨i , αj〉 are the entries of the Cartan matrix.

Proof.

(1) The fact that n+ is a subalgebra follows from [gα, gβ ] ⊂ gα+β (see Theorem 6.38) and the
fact that the sum of positive roots is positive. Equation (7.26) is obvious.

(2) The fact that hi form a basis of h follows from Theorem 7.16. To prove that ei generate
n+, we first prove the following lemma.

Lemma 7.53. Let R = R+ t R− be a reduced root system,, with set of simple roots
{α1, . . . , αr}. Let α be a positive root which is not simple. Then α = β + αi for some
positive root β and simple root αi.

Proof. Let us consider the inner products (α, αi). If all of them are non-positive, then,
by Lemma 7.17, {α, α1, . . . , αr} are linearly independent, which is impossible since {αi} is
a basis. Thus, there exists i such that (α, αi) > 0. Thus, (α,−αi) < 0. By Lemma 7.11,
this implies that β = α − αi is a root, so α = β + αi. We leave it to the reader to check
that β must be a positive root. This completes the proof of the lemma. ¤

By Theorem 6.44, under the assumption of the lemma we have gα = [gβ , ei]. Using
induction in height ht(α) (see equation (7.8)), it is now easy to show that ei generate n+.
Similar argument shows that fi generate n−.

(3) Relations (7.27), (7.28) are an immediate corollary of the definition of Cartan subalgebra
and root subspace. Commutation relation [ei, fi] = hi is part of Lemma 6.42 (about
sl(2,C)-triple determined by a root). Commutation relation [ei, fj ] = 0 for i 6= j follows
from the fact that [ei, fj ] ∈ gαi−αj . But αi − αj is not a root (it can not be a positive
root because the coefficient of αj is negative, and it can not be a negative root because the
coefficient of αi is positive). Thus, [ei, fj ] = 0.

To prove relations (7.31), consider the subspace
⊕

k∈Z gαj+kαi ⊂ g as a module over
sl(2,C) triple generated by ei, fi, hi. Since ad ei.fj = 0, fj is a highest-weight vector; by
(7.29), its weight is equal to −aij . Results of Section 4.8 about representation theory of
sl(2,C), imply that if v is a vector of weight λ in a finite-dimensional representation, with
e.v = 0, then fλ+1.v = 0. Applying it to fj , we get (7.31). Equality (7.30) is proved
similarly.

This completes the proof of Theorem 7.52.

¤

A natural question is whether (7.27)–(7.31) is a full set of defining relations for g. The answer
is given by the following theorem.

Theorem 7.54. Let R be a reduced irreducible root system, with a polarization R = R+ t R−
and system of simple roots Π = {α1, . . . , αr}. Let g(R) be the complex Lie algebra with generators



7.10. Proof of the classification theorem in simply-laced case 125

ei, fi, hi, i = 1 . . . , r and relations (7.27)-(7.31). Then g is a finite-dimensional semisimple Lie
algebra with root system R.

The proof of this theorem is not given here; interested reader can find it in [47], [22], or [24].
We note only that it is highly non-trivial that g(R) is finite-dimensional (in fact, this is the key step
of the proof), which in turn is based on the use of Weyl group.

Corollary 7.55.

(1) If g is a semisimple Lie algebra with root system R, then there is a natural isomorphism
g ' g(R).

(2) There is a natural bijection between the set of isomorphism classes of reduced root systems
and the set of isomorphism classes of finite-dimensional complex semisimple Lie algebras.
The Lie algebra is simple iff the root system is irreducible.

Combining this corollary with the classification given in Theorem 7.49, we get the following
celebrated result.

Theorem 7.56. Simple finite-dimensional complex Lie algebras are classified by Dynkin diagrams
An . . . G2 listed in Theorem 7.49.

It is common to refer to the simple Lie algebra corresponding to the Dynkin diagram, say, E6,
as “simple Lie algebra of type E6”.

It is possible to give an explicit construction of the simple Lie algebra corresponding to each
of the Dynkin diagrams of Theorem 7.49. For example, Lie algebra of type An is nothing but
sl(n + 1,C). Series Bn, Cn, Dn correspond to classical Lie algebras so and sp. These root systems
and Lie algebras are described in detail in Appendix A. Construction of exceptional Lie algebras,
of types E6, E7, E8, F4, G2, can be found in [3] or in [24].

7.10. Proof of the classification theorem in
simply-laced case

In this section, we give a proof of the classification theorem for Dynkin diagrams (Theorem 7.49) in
a special case when the diagram is simply-laced, i.e. contains no multiple edges. This section can
be skipped at the first reading.

Let D be a connected simply-laced Dynkin diagram, with the set of vertices I. Then all roots αi

have the same length; without loss of generality, we can assume that (αi, αi) = 2. Then the Cartan
matrix is given by aij = (αi, αj). In particular, this implies the following important rule.

(7.32) For any J ⊂ I, the matrix (aij)i,j∈J is positive definite

We can now prove the classification theorem. For readers convenience, the proof is broken into
several steps. In these arguments, a “subdiagram” is a diagram obtained by taking a subset of
vertices of the original Dynkin diagram and all edges between them.

Step 1. D contains no cycles.

Indeed, otherwise D contains a subdiagram which is a cycle. But for such a subdiagram, bilinear
form defined by the Cartan matrix is not positive definite: explicit computation shows that vector∑

j∈J αj is in the kernel of this form.

Step 2. Each vertex is connected to at most three others.
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Indeed, otherwise D would contain a subdiagram shown below. But for such a subdiagram,
bilinear form defined by the Cartan matrix is not positive definite: vector 2α+ (β1 + β2 + β3 + β4)
is in the kernel of this form.

α
β1 β2

β3 β4

Figure 7.6.

Step 3. D contains at most one branching point (i.e., a vertex of valency more than 2).

Indeed, otherwise D contains the subdiagram shown below.

α1 α2 αn

β1

β2

β3

β4

Figure 7.7.

Let α = α1 + · · ·+ . . . αn. It is easy to see that α, β1, β2, β3, β4 are linearly independent and thus
the matrix of their inner products must be positive definite. On the other hand, explicit computation
shows that (α, α) = 2, (α, βi) = −1, so the inner products between these vectors are given by the
same matrix as in Step 2 and which, as was shown above, is not positive definite.

Combining the three steps, we see that D must be either a chain, i.e. a diagram of type An, or a
“star” diagram with three branches as shown below. Denote by p, q, r the lengths of these branches
(including the central vertex); for example, for diagram E7 the lengths would be 2, 3, 4. Denote
the roots corresponding to the branches of the diagram by β1, . . . , βp−1, γ1, . . . , γq−1, δ1, . . . , δr−1 as
shown in the figure.

α
βp−1β1

γq−1

γ1

δr−1

δ1

Figure 7.8.

Let α be the central vertex and let β =
∑p−1

i=1 iβi, γ =
∑q−1

i=1 iγi, δ =
∑r−1

i=1 iδi. Then β, γ, δ are
orthogonal, and vectors α, β, γ, δ are linearly independent. Thus,

(
α, β

|β|
)2 +

(
α, γ

|γ|
)2 +

(
α, δ

|δ|
)2
< |α|2

or
(α, β)2

(β, β)
+

(α, γ)2

(γ, γ)
+

(α, δ)2

(δ, δ)
< 2
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Explicit computation shows that (β, β) = p(p− 1), and (α, β) = −(p− 1), and similarly for γ, δ,
so we get

p− 1
p

+
q − 1
q

+
r − 1
r

< 2

or

(7.33)
1
p

+
1
q

+
1
r
> 1

Since by definition p, q, r ≥ 2, elementary analysis shows that up to the order, the only solutions
are (2, 2, n), n ≥ 2, (2, 3, 3), (2, 3, 4), (2, 3, 5), which correspond to Dynkin diagrams Dn+2, E6, E7,
E8 respectively.

Thus we have shown that any simply-laced Dynkin diagram must be isomorphic to one of An,
Dn, E6, E7, E8. It can be shown by explicitly constructing the corresponding root systems that
each of these diagrams does appear as a Dynkin digram of a reduced root system. For Dn, such a
construction is given in Appendix A; for E series, such a construction can be found in [47], [24] or
[3]. This completes the proof of the classification theorem for simply-laced Dynkin diagrams.

The proof for non simply-laced case is quite similar but requires a couple of extra steps. This
proof can be found in [22], [24], or [3] and will not be repeated here.

Exercises

7.1. Let R ⊂ Rn be given by

R = {±ei,±2ei | 1 ≤ i ≤ n} ∪ {±ei ± ej | 1 ≤ i, j ≤ n, i 6= j}
where ei is the standard basis in Rn. Show that R is a non-reduced root system. (This root
system is usually denoted BCn.)

7.2. (1) Let R ⊂ E be a root system. Show that the set

R∨ = {α∨ | α ∈ R} ⊂ E∗

where α∨ ∈ E∗ is the coroot defined by (7.4), is also a root system. It is usually called the
dual root system of R.

(2) Let Π = {α1, . . . , αr} ⊂ R be the set of simple roots. Show that the set Π∨ = {α∨1 , . . . , α∨r } ⊂
R∨ is the set of simple roots of R∨. [Note: this is not completely trivial, as α 7→ α∨ is not a
linear map. Try using equation (7.17).]

7.3. Prove Lemma 7.17. (Hint: any linear dependence can be written in the form
∑

i∈I

civi =
∑

j∈J

cjvj

where I ∩ J = ∅, ci, cj ≥ 0. Show that if one denotes v =
∑

i∈I civi, then (v, v) ≤ 0. )

7.4. Show that |P/Q| = | detA|, where A is the Cartan matrix: aij = 〈α∨i , αj〉.
7.5. Compute explicitly the group P/Q for root systems An, Dn.

7.6. Complete the gap in the proof of Theorem 7.37. Namely, assume that w = si1 . . . sil
. Let

βk = si1 . . . sik−1(αik
). Show that if we have βk = ±βj for some j < k (thus, the path constructed

in the proof of Theorem 7.37 crosses the hyperplane Lβj twice), then w = si1 . . . ŝij . . . ŝik
. . . sil

(hat means that the corresponding factor should be skipped) and thus, original expression was
not reduced.
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7.7. Let w = si1 . . . sil
be a reduced expression. Show that then

{α ∈ R+ | w(α) ∈ R−} = {β1, . . . , βl}
where βk = si1 . . . sik−1(αik

) (cf. proof of Lemma 7.31).

7.8. Let C+ be the closure of the positive Weyl chamber, and λ ∈ C+, w ∈ W be such that
w(λ) ∈ C+.
(1) Show that λ ∈ C+ ∩ w−1(C+).
(2) Let Lα ⊂ E be a root hyperplane which separates C+ and w−1C+. Show that then λ ∈ Lα.
(3) Show that w(λ) = λ.

Deduce from this that every W -orbit in E contains a unique element from C+.

7.9. Let w0 ∈ W be the longest element in the Weyl group W as defined in Lemma 7.39. Show
that then for any w ∈W , we have l(ww0) = l(w0w) = l(w0)− l(w).

7.10. Let W = Sn be the Weyl group of root system An−1. Show that the longest element w0 ∈W
is the permutation w0 = (n n− 1 . . . 1).

7.11.
(1) Let R be a reduced root system of rank 2, with simple roots α1, α2. Show that the longest

element in the corresponding Weyl group is

w0 = s1s2s1 · · · = s2s1s2 . . . (m factors in each of the products)

where m depends on the angle ϕ between α1, α2: ϕ = π− π
m (so m = 2 for A1×A1, m = 3 for

A2, m = 4 for B2, m = 6 for G2). If you can not think of any other proof, give a case-by-case
proof.

(2) Show that the following relations hold in W (these are called Coxeter relations):

(7.34)
s2i = 1

(sisj)mij = 1,

where mij is determined by the angle between αi, αj in the same way as in the previous part.
(It can be shown that the Coxeter relations is a defining set of relations for the Weyl group:
W could be defined as the group generated by elements si subject to Coxeter relations. A
proof of this fact can be found in [23] or in [3].)

7.12. Let ϕ : R1
∼−→ R2 be an isomorphism between irreducible root systems. Show that then ϕ is

a composition of an isometry and a scalar operator: (ϕ(v), ϕ(w)) = c(v, w) for any v, w ∈ E1.

7.13. (1) Let n± be subalgebras in a semisimple complex Lie algebra defined by (7.25). Show that
n± are nilpotent.

(2) Let b = n+ ⊕ h. Show that b is solvable.

7.14. (1) Show that if two vertices in a Dynkin diagram are connected by a single edge, then the
corresponding simple roots are in the same W -orbit .

(2) Show that for a reduced irreducible root system, the Weyl group acts transitively on the set
of all roots of the same length.

7.15. Let R ⊂ E be an irreducible root system. Show that then E is an irreducible representation
of the Weyl group W .

7.16. Let G be a connected complex Lie group such that g = Lie(G) is semisimple. Fix a root
decomposition of g.
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(1) Choose α ∈ R and let iα : sl(2,C) → g be the embedding constructed in Lemma 6.42; by
Theorem 3.41, this embedding can be lifted to a morphism iα : SL(2,C) → G.
Let

Sα = iα

(
0 −1
1 0

)
= exp

(π
2

(fα − eα)
)
∈ G

(cf. Exercise 3.18). Show that AdSα(hα) = −hα and that AdSα(h) = h if h ∈ h, 〈h, α〉 = 0.
Deduce from this that the action of Sα on g∗ preserves h∗ and that restriction of AdSα to
h∗ coincides with the reflection sα.

(2) Show that the Weyl group W acts on h∗ by inner automorphisms: for any w ∈W , there exists
an element w̃ ∈ G such that Ad w̃|h∗ = w. [Note, however, that in general, w̃1w2 6= w̃1w̃2.]

7.17. Let

R = {±ei ± ei, i 6= j} ∪ {
1
2

8∑

i=1

±ei

} ⊂ R8

(in the first set, signs are chosen independently; in the second, even number of signs should be
pluses). Prove that R is a reduced root system with Dynkin diagram E8.





Chapter 8

Representations of
Semisimple Lie Algebras

In this chapter, we study representations of complex semisimple Lie algebras. Recall that by results
of Section 6.3, every finite-dimensional representation is completely reducible and thus can be written
in the form V =

⊕
niVi, where Vi are irreducible representations and ni ∈ Z+ are the multiplicities.

Thus, the study of representations reduces to classification of irreducible representations and finding
a way to determine, for a given representation V , the multiplicities ni. Both of these questions have
a complete answer, which will be given below.

Throughout this chapter, g is a complex finite-dimensional semisimple Lie algebra. We fix a
choice of a Cartan subalgebra and thus the root decomposition g = h ⊕ ⊕

R gα (see Section 6.6).
We will freely use notation from Chapter 7; in particular, we denote by αi, i = 1 . . . r, simple roots,
and by si ∈ W corresponding simple reflections. We will also choose a non-degenerate invariant
symmetric bilinear form ( , ) on g.

All representations considered in this chapter are complex and unless specified otherwise, finite-
dimensional.

8.1. Weight decomposition and characters

As in the study of representations of sl(2,C) (see Section 4.8), the key to the study of representations
of g is decomposing the representation into the eigenspaces for the Cartan subalgebra.

Definition 8.1. Let V be a representation of g. A vector v ∈ V is called a vector of weight λ ∈ h∗

if, for any h ∈ h, one has hv = 〈λ, h〉v. The space of all vectors of weight λ is called the weight space
and denoted V [λ]:

(8.1) V [λ] = {v ∈ V | hv = 〈λ, h〉v ∀h ∈ h}.

If V [λ] 6= {0}, then λ is called a weight of V . The set of all weights of V is denoted by P (V ):

(8.2) P (V ) = {λ ∈ h∗ | V [λ] 6= {0} }.

Note that it easily follows from standard linear algebra results that vectors of different weights
are linearly independent. This, in particular, implies that P (V ) is finite for a finite-dimensional
representation.

131
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Theorem 8.2. Every finite-dimensional representation of g admits a weight decomposition:

(8.3) V =
⊕

λ∈P (V )

V [λ].

Moreover, all weights of V are integral: P (V ) ⊂ P , where P is the weight lattice defined in Sec-
tion 7.5.

Proof. Let α ∈ R be a root. Consider the corresponding sl(2,C) subalgebra in g generated by
eα, fα, hα as in Lemma 6.42. Considering V is a module over this sl(2,C) and using results of
Section 4.8, we see that hα is a diagonalizable operator in V . Since elements hα, α ∈ R, span
h, and sum of commuting diagonalizable operators is diagonalizable, we see that any h ∈ h is
diagonalizable. Since h is commutative, all of them can be diagonalized simultaneously, which gives
the weight decomposition.

Since weights of sl(2,C) must be integer, we see that for any weight λ of V , we must have
〈λ, hα〉 ∈ Z, which by definition implies that λ ∈ P . ¤

As in the sl(2,C) case, this weight decomposition agrees with the root decomposition of g.

Lemma 8.3. If x ∈ gα, then x.V [λ] ⊂ V [λ+ α].

Proof of this lemma is almost identical to the proof in sl(2,C) case (see Lemma 4.55). Details
are left to the reader.

For many practical applications it is important to know dimensions of the weight subspaces V [λ].
To describe them, it is convenient to introduce the formal generating series for these dimensions as
follows.

Let C[P ] be the algebra generated by formal expressions eλ, λ ∈ P , subject to the following
relations:

(8.4)
eλeµ = eλ+µ

e0 = 1

Algebra C[P ] can also be described as the algebra of polynomial complex-valued functions on the
torus T = h/2πiQ∨, where Q∨ is the coroot lattice defined in Section 7.5, by letting

(8.5) eλ(t) = e〈t,λ〉, λ ∈ P, t ∈ h/2πiQ∨

which explains the notation. It is easy to show that algebra C[P ] is isomorphic to the algebra of
Laurent polynomials in r = rank g variables (see Exercise 8.3); thus, we will commonly refer to
elements of C[P ] as polynomials.

Definition 8.4. Let V be a finite-dimensional representation of g. We define its character ch(V ) ∈
C[P ] by

ch(V ) =
∑

(dimV [λ])eλ.

Remark 8.5. Note that the word “character” had already been used before, in relation with group
representations (see Definition 4.43). In fact, these two definitions are closely related: any finite-
dimensional representation of g can also be considered as a representation of the corresponding
simply-connected complex Lie group G. In particular, every t ∈ h gives an element exp(t) ∈ G.
Then it follows from the definition that if we consider elements of C[P ] as functions on T = h/2πiQ∨

as defined in (8.5), then
ch(V )(t) = trV (exp(t))

which establishes relation with Definition 4.43.
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Example 8.6. Let g = sl(2,C). Then P = Zα
2 , so C[P ] is generated by enα/2, n ∈ Z. Denoting

eα/2 = x, we see that C[P ] = C[x, x−1]. By Theorem 4.59, the character of irreducible representation
Vn is given by

ch(Vn) = xn + xn−2 + xn−4 + · · ·+ x−n =
xn+1 − x−n−1

x− x−1

The following lemma lists some basic properties of characters.

Lemma 8.7.

(1) ch(C) = 1

(2) ch(V1 ⊕ V2) = ch(V1) + ch(V2)

(3) ch(V1 ⊗ V2) = ch(V1) ch(V2)

(4) ch(V ∗) = ch(V ), where is defined by

eλ = e−λ.

Proof of all of these facts is left to the reader as an easy exercise.

In the example of sl(2,C) one notices that the characters are symmetric with respect to the
action of the Weyl group (which in this case acts by x 7→ x−1). It turns out that similar result holds
in general.

Theorem 8.8. If V is a finite-dimensional representation of g, then the set of weights and di-
mensions of weight subspaces are Weyl group invariant: for any w ∈ W , dimV [λ] = dimV [w(λ)].
Equivalently,

w(ch(V )) = ch(V )

where the action of W on C[P ] is defined by

w(eλ) = ew(λ).

Proof. Since W is generated by simple reflections si, it suffices to prove this theorem for w = si. Let
〈λ, α∨i 〉 = n ≥ 0; then it follows from representation theory of sl(2,C) (Theorem 4.60) that operators
fn

i : V [λ] → V [λ−nαi] and en
i : V [λ−nαi] → V [λ] are isomorphisms (in fact, up to a constant, they

are mutually inverse) and thus dimV [λ] = dimV [λ− nαi]. Since λ− nαi = λ− 〈λ, α∨i 〉αi = si(λ),
this shows that dimensions of the weight subspaces are invariant under si. ¤

Later we will show that characters of irreducible finite-dimensional representations form a basis
of the subalgebra of W -invariants C[P ]W ⊂ C[P ] (see Theorem 8.41).

Figure 8.1 shows an example of the set of weights of a representation of sl(3,C).

Figure 8.1. Set of weights of a representation V of Lie algebra sl(3,C). Large dots are the weights
of V , small dots are all weights λ ∈ P ; shaded area is the convex hull of P (V ). The figure also
shows the root hyperplanes.
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8.2. Highest weight representations and Verma
modules

To study irreducible representations, we introduce a class of representations which are generated by
a single vector. As we will later show, all finite-dimensional irreducible representations fall into this
class. However, it turns out that to study finite-dimensional representations, we need to consider
infinite-dimensional representations as an auxiliary tool.

Recall (see Theorem 7.52) that choice of polarization of the root system gives the following
decomposition for the Lie algebra g:

g = n− ⊕ h⊕ n+, n± =
⊕

α∈R±

gα.

Definition 8.9. A non-zero representation V (not necessarily finite-dimensional) of g is called a
highest weight representation if it is generated by a vector v ∈ V [λ] such that x.v = 0 for all x ∈ n+.
In this case, v is called the highest weight vector, and λ is the highest weight of V .

The importance of such representations is explained by the following theorem.

Theorem 8.10. Every irreducible finite-dimensional representation of g is a highest weight repre-
sentation.

Proof. Let P (V ) be the set of weights of V . Let λ ∈ P (V ) be such that for all α ∈ R+, λ+α /∈ P (V ).
Such a λ exists: for example, we can take h ∈ h such that 〈h, α〉 > 0 for all α ∈ R+, and then consider
λ ∈ P (V ) such that 〈h, λ〉 is maximal possible.

Now let v ∈ V [λ] be a non-zero vector. Since λ+ α /∈ P (V ), we have eαv = 0 for any α ∈ R+.
Consider the subrepresentation V ′ ⊂ V generated by v. By definition, V ′ is a highest weight
representation. On the other hand, since V is irreducible, one has V ′ = V . ¤

Note that there can be many non-isomorphic highest weight representations with the same
highest weight. However, in any highest weight representation with highest weight vector vλ ∈ V [λ],
the following conditions hold:

(8.6)
hvλ = 〈h, λ〉vλ ∀h ∈ h

xvλ = 0 ∀x ∈ n+.

Let us define the universal highest weight representation Mλ as the representation generated by
a vector vλ satisfying conditions (8.6) and no other relations. More formally, define

(8.7) Mλ = Ug/Iλ

where Iλ is the left ideal in Ug generated by vectors e ∈ n+ and (h− 〈h, λ〉), h ∈ h. This module is
called Verma module and plays an important role in representation theory.

Alternatively, Verma modules can be defined as follows. Define the Borel subalgebra b by

(8.8) b = h⊕ n+.

Formulas (8.6) define a one-dimensional representation of b which we will denote by Cλ. Then Verma
module Mλ can be defined by

(8.9) Mλ = Ug⊗Ub Cλ.

Remark 8.11. Readers familiar with the notion of induced representation recognize that Mλ can
be naturally described as an induced representation: Mλ = IndUg

UbCλ.
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Example 8.12. Let g = sl(2,C) and identify h∗ ' C by λ 7→ 〈h, λ〉, so that α 7→ 2. Then Verma
module Mλ, λ ∈ C, is the module described in Lemma 4.58.

The following lemma shows that Verma modules are indeed universal in a suitable sense.

Lemma 8.13. If V is a highest weight representation with highest weight λ, then

V 'Mλ/W

for some submodule W ⊂Mλ.

Thus, the study of highest weight representations essentially reduces to the study of submodules
in Verma modules.

Theorem 8.14. Let λ ∈ h∗ and let Mλ be the Verma module with highest weight λ.

(1) Every vector v ∈ Mλ can be uniquely written in the form v = uvλ, u ∈ Un−. In other
words, the map

Un− →Mλ

u 7→ uvλ

is an isomorphism of vector spaces.

(2) Mλ admits a weight decomposition: Mλ =
⊕

µMλ[µ], with finite-dimensional weight
spaces. The set of weights of Mλ is

(8.10) P (Mλ) = λ−Q+, Q+ =
{∑

niαi, ni ∈ Z+

}

(3) dimMλ[λ] = 1.

Proof. By a corollary of PBW theorem (Corollary 5.14), since g = n− ⊕ b, Ug ' Un− ⊗ Ub as an
Un−-module. Therefore, using (8.9), we have

Mλ = Ug⊗Ub Cλ = Un− ⊗ Ub⊗Ub Cλ = Un− ⊗ Cλ

which proves (1). Parts (2) and (3) immediately follow from (1). ¤

Figure 8.2 shows set of weights of a Verma module over sl(3,C).

Since every highest weight representation is a quotient of a Verma module, the above theorem
can be generalized to arbitrary highest weight representation. For future convenience, introduce
relations ≺,¹ on h∗ by

(8.11)
λ ¹ µ iff µ− λ ∈ Q+,

λ ≺ µ ⇐⇒ λ ¹ µ, λ 6= µ

where Q+ is defined by (8.10). It is easy to see that ¹ is a partial order on h∗.

Theorem 8.15. Let V be a highest weight representation with highest weight λ (not necessarily
finite-dimensional).

(1) Every vector v ∈ Mλ can be written in the form v = uvλ, u ∈ Un−. In other words, the
map

Un− →Mλ

u 7→ uvλ

is surjective.

(2) V admits a weight decomposition: V =
⊕

µ¹λ V [µ], with finite-dimensional weight sub-
spaces.
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λ

Figure 8.2. Set of weights of a Verma module Mλ for Lie algebra sl(3,C). Large dots are the
weights of Mλ, small dots are all weights µ ∈ P ; shaded area is the convex hull of P (Mλ).

(3) dimMλ[λ] = 1.

Proof. Part (1) immediately follows from the similar statement for Verma modules. Part (2) also
follows from weight decomposition for Verma modules and the following linear algebra lemma, the
proof of which is left as an exercise (see Exercise 8.1).

Lemma 8.16. Let h be a commutative finite-dimensional Lie algebra and M a module over h (not
necessarily finite-dimensional) which admits a weight decomposition with finite-dimensional weight
spaces:

M =
⊕

M [λ], M [λ] = {v | hv = 〈h, λ〉v}

Then any submodule, quotient of M also admits a weight decomposition.

To prove part (3), note that dimV [λ] ≤ dimMλ[λ] = 1. On the other hand, by definition of a
highest weight representation, V does have a non-zero highest weight vector v ∈ V [λ].

¤

Corollary 8.17. In any highest weight representation, there is a unique highest weight and unique
up to a scalar highest weight vector.

Proof. Indeed, if λ, µ are highest weights, then by Theorem 8.15, λ ¹ µ and µ ¹ λ which is
impossible unless λ = µ. ¤
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8.3. Classification of irreducible
finite-dimensional representations

Our next goal is to classify all irreducible finite-dimensional representations. Since by Theorem 8.10
every such representation is a highest weight representation, this question can be reformulated as
follows: classify all highest weight representations which are finite-dimensional and irreducible.

The first step is the following easy result.

Theorem 8.18. For any λ ∈ h∗, there exists a unique up to isomorphism irreducible highest weight
representation with highest weight λ. This representation is denoted Lλ.

Proof. All highest weight representations with highest weight λ are of the form Mλ/W for some
W ⊂ Mλ. It is easy to see that Mλ/W is irreducible iff W is a maximal proper subrepresentation
(that is, not properly contained in any other proper subrepresentation). Thus, it suffices to prove
that Mλ has a unique maximal proper submodule.

Note that by Lemma 8.16, every proper submodule W ⊂ Mλ admits a weight decomposition
and W [λ] = 0 (otherwise, we would have W [λ] = Mλ[λ], which would force W = Mλ). Let Jλ

be the sum of all submodules W ⊂ Mλ such that W [λ] = 0. Then Jλ ⊂ Mλ is proper (because
Jλ[λ] = 0). Since it contains every other proper submodule of Mλ, it is the unique maximal proper
submodule of Mλ. Thus, Lλ = Mλ/Jλ is the unique irreducible highest-weight module with highest
weight λ. ¤

Example 8.19. For g = sl(2,C), results of Section 4.8 show that if λ ∈ Z+, then Lλ = Vλ is the
finite-dimensional irreducible module of dimension λ+ 1, and Lλ = Mλ for λ /∈ Z+.

As we will later see, the situation is similar for other Lie algebras. In particular, for “generic”
λ, Verma module is irreducible, so Mλ = Lλ.

Since every finite-dimensional representation is a highest weight representation (Theorem 8.15),
we get the following corollary.

Corollary 8.20. Every irreducible finite-dimensional representation V must be isomorphic to one
of Lλ.

Thus, to classify all irreducible finite-dimensional representations of g, we need to find which of
Lλ are finite-dimensional.

To give an answer to this question, we need to introduce some notation. Recall the weight lattice
P ⊂ h∗ defined by (7.12).

Definition 8.21. A weight λ ∈ h∗ is called dominant integral the following condition holds

(8.12) 〈λ, α∨〉 ∈ Z+ for all α ∈ R+.

The set of all dominant integral weights is denoted by P+.

It follows from results of Exercise 7.2 that condition (8.12) is equivalent to

(8.13) 〈λ, α∨i 〉 ∈ Z+ for all αi ∈ Π.

Lemma 8.22.

(1) P+ = P ∩C+, where C+ = {λ ∈ h∗ | 〈λ, α∨i 〉 > 0 ∀i} is the positive Weyl chamber and C+

is its closure.

(2) For any λ ∈ P , its Weyl group orbit Wλ contains exactly one element of P+.
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Proof. The first part is immediate from the definitions. The second part follows from the fact that
any W -orbit in h∗R contains exactly one element from C+ (Exercise 7.8). ¤

Theorem 8.23. Irreducible highest weight representation Lλ is finite-dimensional iff λ ∈ P+.

Before proving this theorem, note that together with Theorem 8.10 it immediately implies the
following corollary.

Corollary 8.24. For every λ ∈ P+, representation Lλ is an irreducible finite-dimensional represen-
tation. These representations are pairwise non-isomorphic, and every irreducible finite-dimensional
representation is isomorphic to one of them.

Proof of Theorem 8.23. First, let us prove that if Lλ is finite-dimensional, then λ ∈ P+. In-
deed, let αi be a simple root and let sl(2,C)i be the subalgebra in g generated by eαi

, hαi
, fαi

(see Lemma 6.42). Consider Lλ as sl(2,C)i module. Then vλ satisfies relations eivλ = 0, hivλ =
〈hi, λ〉vλ = 〈α∨i , λ〉vλ. It generates a highest weight sl(2,C)i submodule, which is finite-dimensional
(since Lλ is finite-dimensional). By classification theorem for irreducible representation of sl(2,C)
(Theorem 4.59), this implies that the highest weight 〈hi, λ〉 ∈ Z+. Repeating the argument for each
simple root, we see that λ ∈ P+.

Now let us prove that if λ ∈ P+, then Lλ is finite-dimensional. This is a more difficult result;
we break the proof in several steps.

Step 1. Let ni = 〈α∨i , λ〉 ∈ Z+. Consider the vector

(8.14) vsi.λ = fni+1
i vλ ∈Mλ[si.λ],

where vλ ∈Mλ is the highest-weight vector and

(8.15) si.λ = λ− (ni + 1)αi.

(we will give a more general definition later, see (8.20)). Then we have

(8.16) ejvsi.λ = 0 for all i, j.

Indeed, for i 6= j we have [ej , fi] = 0 (see equation (7.29)), so ejf
ni+1
i vλ = fni+1

i ejvλ = 0. For i = j,
this follows from the results of Section 4.8: if v is a vector of weight n in a representation of sl(2,C)
such that ev = 0, then efn+1v = 0.

Step 2. Let Mi ⊂ Mλ be the subrepresentation generated by vector vsi.λ. By (8.16), Mi is
a highest weight representation. In particular, by Theorem 8.15 all weights µ of Mi must satisfy
µ ¹ si.λ ≺ λ. Thus, λ is not a weight of Mi; therefore, each Mi is a proper submodule in Mλ.

Consider now the quotient

(8.17) L̃λ = Mλ/
∑

Mi.

Since each Mi is a proper subrepresentation, so is
∑
Mi (see the proof of Theorem 8.18 ); thus, L̃λ

is a non-zero highest weight representation.

Step 3. The key step of the proof is the following theorem.

Theorem 8.25. Let λ ∈ P+, and let L̃λ be defined by (8.17). Then L̃λ is finite-dimensional.

The proof of this theorem is rather long. It is given in a separate section (Section 8.9) at the
end of this chapter.

Now we can complete the proof of Theorem 8.23. Since Lλ is the quotient of Mλ by the
maximal proper ideal, we see that Lλ is a quotient of L̃λ. Since L̃λ is finite-dimensional, so is Lλ.
This completes the proof. (Later we will show that in fact L̃λ = Lλ; see Theorem 8.28.) ¤
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Note that for many practical applications, construction of irreducible finite-dimensional repre-
sentation given in this theorem is not very useful, as it gives such a representation as a quotient of an
infinite-dimensional representation Mλ. However, for all classical algebras there also exist very ex-
plicit constructions of the irreducible finite-dimensional representations which are usually not based
on realizing Lλ as quotients of Verma modules. We will give an example of this for g = sl(n,C) in
Section 8.7.

Example 8.26. Let g be a simple Lie algebra. Consider the adjoint representation of g, which in
this case is irreducible. Weights of this representation are exactly α ∈ R (with multiplicity 1) and 0
with multiplicity dim h = r.

By general theory above, this representation must have a highest weight θ, which can be defined
by conditions θ ∈ R, θ + α /∈ R ∪ {0} for any α ∈ R+; from this, it is easy to see that θ ∈ R+.
Usually, θ is called the maximal root of g. Another characterization can be found in Exercise 8.6.

In particular, for g = sl(n,C), the maximal root θ is given by θ = e1 − en.

8.4. Bernstein–Gelfand–Gelfand resolution

In the previous section, we have shown that for λ ∈ P+, the irreducible highest weight representation
Lλ is finite-dimensional. Our next goal is to study the structure of these representations — in
particular, to find the dimensions of weight subspaces.

Recall that in the proof of Theorem 8.23 we defined, for each λ ∈ P+, a collection of submodules
Mi ⊂ Mλ. We have shown that each of them is a highest weight module. In fact, we can make a
more precise statement.

Lemma 8.27. Let v ∈ Mλ[µ] be a vector such that n+v = 0 (such a vector is called a singular
vector), and let M ′ ⊂ Mλ be the submodule generated by v. Then M ′ is a Verma module with
highest weight µ.

Proof. Since eαv = 0, by definition M ′ is a highest weight representation with highest weight µ
and thus is isomorphic to a quotient of the Verma module Mµ. To show that M ′ = Mµ, it suffices
to show that the map Un− →M ′ : u 7→ uv is injective.

Indeed, assume that uv = 0 for some u ∈ Un−. On the other hand, by Theorem 8.14, we can
write v = u′vλ for some u′ ∈ Un−. Thus, we get uu′vλ = 0. By Theorem 8.14, this implies that
uu′ = 0 as element of Un−. But by Corollary 5.15, Un− has no zero divisors. ¤

This allows us to give a better description of the irreducible finite-dimensional modules Lλ,
λ ∈ P+.

Theorem 8.28. Let λ ∈ P+. As in the proof of Theorem 8.23, let

vsi.λ = fni+1
i vλ ∈Mλ, ni = 〈λ, α∨i 〉

and let Mi ⊂Mλ be the submodule generated by vsi.λ.

(1) Each Mi is isomorphic to a Verma module:

Mi 'Msi.λ, si.λ = λ− (ni + 1)αi

(2)

Lλ = Mλ

/ r∑

i=1

Mi.
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Proof. Part (1) is an immediate corollary of (8.16) and Lemma 8.27. To prove part (2), let L̃λ =
Mλ

/∑
Mi. As was shown in the proof of Theorem 8.23, L̃λ is finite-dimensional, and all weights µ of

L̃λ satisfy µ ¹ λ. By complete reducibility (Theorem 6.20), we can write L̃λ =
⊕

µ¹λ, µ∈P+ nµLµ.

Comparing the dimensions of subspace of weight λ, we see that nλ = 1: L̃λ = Lλ ⊕
(⊕

µ≺λ nµLµ

)
.

This shows that the highest weight vector vλ of L̃λ is in Lλ; thus, the submodule it generates must
be equal to Lλ. On the other hand, vλ generates L̃λ. ¤

Example 8.29. For g = sl(2,C), this theorem reduces to Lλ = Mλ/M−λ−1, λ ∈ Z+, which had
already been established in the proof of Theorem 4.59.

Theorem 8.28 provides some description of the structure of finite-dimensional irreducible repre-
sentations Lλ. In particular, we can try to use it to find dimensions of the weight subspaces in Lλ:
indeed, for Mλ dimensions of the weight subspaces can be easily found, since by Theorem 8.14, for
β ∈ Q+, we have dimMλ[λ − β] = dimUn−[−β]. The latter dimension can be easily found using
PBW theorem.

However, for Lie algebras other than sl(2,C), Theorem 8.28 does not give full information about
the structure of Lλ; in particular, it is not enough to find the dimensions of the weight subspaces.
The problem is that the sum

∑
Mi is not a direct sum: these modules have a non-trivial intersection.

Another way to say it is as follows: Theorem 8.28 describes Lλ as the cokernel of the map

(8.18)
⊕

Msi.λ →Mλ

but does not describe its kernel. Since Lλ = Mλ/
∑
Mi, we can extend (8.18) to the following exact

sequence of modules:

(8.19)
⊕

Msi.λ →Mλ → Lλ → 0

which, unfortunately, is not a short exact sequence: the first map is not injective.

It turns out, however, that (8.19) can be extended to a long exact sequence, which gives a
resolution of Lλ. All terms in this resolution will be direct sums of Verma modules.

Define the shifted action of the Weyl group W on h∗ by

(8.20) w.λ = w(λ+ ρ)− ρ

where ρ = 1
2

∑
α∈R+

α as in Lemma 7.36. Note that in particular, siρ = ρ − αi (see proof of
Lemma 7.36), so this definition agrees with earlier definition (8.15).

Theorem 8.30. Let λ ∈ P+. Then there exists a long exact sequence

0 →Mw0.λ → · · ·
⊕

w∈W,l(w)=k

Mw.λ · · · →
⊕

i

Msi.λ →Mλ → Lλ → 0

where l(w) is the length of an element w ∈ W as defined in Definition 7.34, and w0 is the longest
element of the Weyl group (see Lemma 7.39).

This is called the Bernstein-Gelfand-Gelfand (BGG) resolution of Lλ.

The proof of this theorem is rather hard and will not be given here. Interested reader can find
it in the original paper [2].

Example 8.31. For g = sl(2,C), W = {1, s}, and s.λ = −λ − 2 (if we identify h∗ with C as in
Example 8.12), so the BGG resolution takes the form

0 →M−λ−2 →Mλ → Lλ → 0

(compare with the proof of Theorem 4.59).
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Example 8.32. For g = sl(3,C), W = S3, and the BGG resolution takes the form

0 →Ms1s2s1.λ →
(
Ms1s2.λ ⊕Ms2s1.λ

) → (
Ms1.λ ⊕Ms2.λ

) →Mλ → Lλ → 0

BGG resolution leads to many extremely interesting and deep connections between representa-
tion theory, geometry, and combinatorics. For the curious reader we briefly list some of the exciting
possibilities it opens; none of them will be used in the remainder of this book.

• For fixed λ ∈ P+, inclusions of the modules of the form Mw.λ define a partial order on W .
This order is independent of λ (as long as λ ∈ P+) and is called Bruhat order on W .

• BGG resolution and Bruhat order are closely related to the geometry of the flag variety
F = G/B, where G is the simply-connected complex Lie group with Lie algebra g and
B is the Borel subgroup, i.e. the subgroup corresponding to the Borel subalgebra b; in
the simplest example of G = GL(n,C), the flag variety F was described in Example 2.25.
In particular, the flag variety admits a cell decomposition in which the cells are labeled
by elements of W and the partial order defined by “cell C1 is in the closure of cell C2”
coincides with the Bruhat order.

• One can also ask if it is possible to write a similar resolution in terms of Verma modules for
Lλ when λ /∈ P+. It can be shown that for generic λ, Lλ = Mλ; however, there is a number
of intermediate cases between generic λ and λ ∈ P+. It turns out that there is indeed an
analog of BGG resolution for any λ, but it is highly non-trivial; proper description of it,
given by Kazhdan and Lusztig, requires introducing a new cohomology theory (intersection
cohomology, or equivalently, cohomology of perverse sheaves) for singular varieties such as
the closures of cells in flag variety. An introduction to this theory, with further references,
can be found in [37].

8.5. Weyl character formula

Recall that for a finite-dimensional representation V we have defined its character ch(V ) by ch(V ) =∑
dimV [λ]eλ ∈ C[P ]. In this section, we will give an explicit formula for characters of irreducible

representations Lλ.

Before doing this, we will need to define characters for certain infinite-dimensional representa-
tions; however, they will be not in C[P ] but in a certain completion of it. There are several possible
completions; the one we will use is defined by

(8.21) Ĉ[P ] = {f =
∑

λ∈P

cλe
λ | supp f ⊂ finite union of cones (λi −Q+)}

where supp f = {λ | cλ 6= 0}.
In particular, it follows from Theorem 8.15 that for any highest weight representation M with

integral highest weight, the character ch(M) defined as in Definition 8.4 is in Ĉ[P ]. The same holds
for finite direct sums of highest weight modules.

In particular, it is very easy to compute characters of Verma modules.

Lemma 8.33. For any λ ∈ P ,

ch(Mλ) =
eλ

∏
α∈R+

(1− e−α)

where each factor 1
1−e−α should be understood as a formal series

1
1− e−α

= 1 + e−α + e−2α + . . .
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Proof. Since u 7→ uvλ gives an isomorphism Un− ' Mλ (Theorem 8.14), we see that ch(Mλ) =
eλ ch(Un−) (note that Un− is not a representation of g, but it still has weight decomposition and
thus we can define its character). Thus, we need to compute the character of Un−. On the other
hand, by PBW theorem (Theorem 5.11), monomials

∏
α∈R+

fnα
α form a basis in Un−. Thus,

ch(Un−) =
∑

µ∈Q+

e−µP (µ),

where P (µ) is so-called Kostant partition function defined by

(8.22) P (µ) =
(
number of ways to write µ =

∑

α∈R+

nαα
)

On the other hand, explicit computation shows that
∏

α∈R+

1
1− e−α

=
∏

α∈R+

(1 + e−α + e−2α + . . . ) =
∑

µ∈Q+

P (µ)e−µ = ch(Un−).

¤

Now we are ready to give the celebrated Weyl character formula, which gives the characters of
irreducible highest weight representations.

Theorem 8.34. Let Lλ be the irreducible finite-dimensional representation with highest weight
λ ∈ P+. Then

ch(Lλ) =
∑

w∈W (−1)l(w)ew.λ

∏
α∈R+

(1− e−α)
=

∑
w∈W (−1)l(w)ew(λ+ρ)

∏
α∈R+

(eα/2 − e−α/2)

where l(w) is the length of w ∈W (see Theorem 7.37).

Note that since we already know that Lλ is finite-dimensional the quotient is in fact polynomial,
i.e. lies in C[P ] rather than in the completion Ĉ[P ].

Proof. We will use the BGG resolution. Recall from linear algebra that if we have a long exact
sequence of vector spaces 0 → V1 → · · · → Vn → 0, then

∑
(−1)i dimVi = 0. Similarly, if we have

a long exact sequence of g-modules, then applying the previous argument to each weight subspace
separately we see that

∑
(−1)i ch(Vi) = 0.

Applying this to BGG resolution, we see that

ch(Lλ) =
∑

w∈W

(−1)l(w) ch(Mw.λ).

Since characters of Verma modules are given by Lemma 8.33, we get

ch(Lλ) =
∑

w∈W

(−1)l(w) ew.λ

∏
α∈R+

(1− e−α)

which gives the first form of Weyl character formula. To get the second form, notice that ew.λ =
ew(λ+ρ)−ρ = e−ρew(λ+ρ) and∏

(1− e−α) =
∏

e−α/2(eα/2 − e−α/2) = e−ρ
∏

(eα/2 − e−α/2)

since ρ = 1
2

∑
α (see Lemma 7.36). ¤

Remark 8.35. There are many proofs of Weyl character formula; in particular, there are several
proofs which are “elementary” in that they do not rely on existence of the BGG resolution (see, for
example, [22]). However, in our opinion, the BGG resolution, while difficult to prove, provides a
better insight into the true meaning of Weyl character formula.
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Corollary 8.36 (Weyl denominator identity).

(8.23)
∏

α∈R+

(eα/2 − e−α/2) =
∑

w∈W

(−1)l(w)ew(ρ).

This polynomial is commonly called Weyl denominator and denoted by δ.

Proof. Let us apply Weyl character formula in the case λ = 0. In this case Lλ = C, so ch(Lλ) = 1,
which immediately gives the statement of the corollary. ¤

Corollary 8.37. For λ ∈ P+,
ch(Lλ) = Aλ+ρ/Aρ

where
Aµ =

∑

w∈W

(−1)l(w)ew(µ).

Notice that it is immediate from Weyl denominator identity that Weyl denominator is skew-
symmetric:

w(δ) = (−1)l(w)δ.

Thus, Weyl character formula represents a W -symmetric polynomial ch(Lλ) as a quotient of
two skew-symmetric polynomials.

Weyl character formula can also be used to compute the dimensions of irreducible representa-
tions. Namely, since

dimV =
∑

dimV [λ] = ch(V )(0)

(considering C[P ] as functions on h/2πiQ∨ using (8.5)), in theory, dimension of Lλ can be obtained
by computing the value of ch(Lλ) at t = 0. However, Weyl character formula gives ch(Lλ) as a
quotient of two polynomials, both vanishing at t = 0; thus, computing the value of the quotient at
0 is not quite trivial. The easiest way to do this is by introducing so-called q–dimension.

Definition 8.38. For a finite-dimensional representation V of g, define dimq V ∈ C[q±1] by

dimq V = trV (q2ρ) =
∑

λ

(dimV [λ])q2(ρ,λ),

where (· , ·) is a W -invariant symmetric bilinear form on h∗ such that (λ, µ) ∈ Z for any λ, µ ∈ P .

Obviously, q–dimension can be easily computed from character:

dimq V = πρ(ch(V ))

where πρ : C[P ] → C[q±1] is the homomorphism defined by πρ(eλ) = q2(λ,ρ). Equally obviously,
usual dimension can be easily computed from q-dimension: dimV = (dimq V )|q=1.

Theorem 8.39. For λ ∈ P+,

dimq Lλ =
∏

α∈R+

q(λ+ρ,α) − q(λ+ρ,α)

q(ρ,α) − q(ρ,α)

Proof. It follows from Weyl character formula that

dimq Lλ =
∑

w(−1)l(w)q2(w(λ+ρ),ρ)

∏
α∈R+

(q(α,ρ) − q−(α,ρ))

The numerator of this expression can be rewritten as follows, using W -invariance of (· , ·):
∑
w

(−1)l(w)q2(w(λ+ρ),ρ) =
∑
w

(−1)l(w)q2(λ+ρ,w(ρ)) = πλ+ρ

(∑
w

(−1)l(w)ew(ρ)

)
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where πλ+ρ(eµ) = q2(λ+ρ,µ).

Using Weyl denominator identity, we can rewrite this as

πλ+ρ

( ∏

α∈R+

(eα/2 − e−α/2)
)

=
∏

α∈R+

(q(λ+ρ,α) − q(λ+ρ,α))

which gives the statement of the theorem. ¤

Corollary 8.40. For α ∈ P+,

dimLλ =
∏

α∈R+

(λ+ ρ, α)
(ρ, α)

=
∏

α∈R+

〈λ+ ρ, α∨〉
〈ρ, α∨〉

Proof. Follows from

lim
q→1

qn − q−n

qm − q−m
=

n

m

which can be verified either by noticing that

qn − q−n

q − q−1
= qn−1 + qn−3 + · · ·+ q−n+1

or by using L’Hôpital’s rule. ¤

It should be noted that explicitly computing characters using Weyl character formula can lead
to extremely long computations (suffices to mention that the Weyl group of type E8 has order
696, 729, 600). There are equivalent formulas which are slightly more convenient for computations,
such a Freudental’s formula (see [22]); however, with any of these formulas doing computations by
hand is extremely tedious. Fortunately, there are software packages which allow one to delegate
this job to a computer. Among the most popular are weyl package for Maple, developed by John
Stembridge [56], LiE program developed by Marc van Leeuwen [35], and GAP computational discrete
algebra system [13].

8.6. Multiplicities

Since finite-dimensional irreducible representations of g are classified by dominant weights λ ∈ P+,
it follows from complete reducibility that any finite-dimensional representation can be written as

(8.24) V =
⊕

λ∈P+

nλLλ.

In this section, we discuss how one can compute multiplicities nλ.

Theorem 8.41. Characters ch(Lλ), λ ∈ P+, form a basis in the algebra of W -invariant polynomials
C[P ]W .

Proof. First, note that we have a fairly obvious basis in C[P ]W . Namely, for any λ ∈ P+ let

mλ =
∑

µ∈Wλ

eµ

where Wλ is the W -orbit of λ. Since any orbit contains a unique element of P+ (Lemma 8.22), it is
clear that elements mλ, λ ∈ P+, form a basis in C[P ]W .

It follows from Theorem 8.15 that for any λ ∈ P+, we have

ch(Lλ) =
∑

µ¹λ

cµe
µ = mλ +

∑

µ∈P+,µ≺λ

cµmµ
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where the coefficients cµ can be computed using Weyl character formula. Note that for any λ ∈ P+,
the set {µ ∈ P+ | µ ¹ λ} is finite (Exercise 8.2).

Thus, the matrix expressing ch(Lλ) in terms of mµ is upper-triangular (with respect to partial
order ≺) with ones on the diagonal. From this, standard linear algebra arguments show that this
matrix is invertible:

mλ = ch(Lλ) +
∑

µ∈P+,µ≺λ

dµ ch(Lµ)

¤

This theorem shows that multiplicities nλ in (8.24) can be found by writing character ch(V ) in
the basis ch(Lλ):

ch(V ) =
∑

λ∈P+

nλ ch(Lλ).

Moreover, the proof of the theorem also suggests a way of finding these coefficients recursively: if
λ ∈ P (V ) is maximal (i.e., there are no weights µ ∈ P (V ) with λ ≺ µ), then nλ = dimV [λ]. Now
we can consider ch(V )− nλ ch(Lλ) and apply the same construction, and so on.

For simplest Lie algebras such as sl(2,C), it is easy to find the coefficients explicitly (see Ex-
ercise 4.11). For higher-dimensional Lie algebras, computations can be very long and tedious. As
with Weyl character formula, use of a computer package is recommended in such cases.

8.7. Representations of sl(n,C)

In this section, we will consider in detail the classification of irreducible representations of sl(n,C)
and the character formula for irreducible representations of sl(n,C).

We start by recalling the root system of sl(n,C) (see Example 6.40, Example 7.4). In this case
the root system is given by

R = {ei − ej , i 6= j} ⊂ h∗ = Cn/C(1, . . . , 1)

and positive roots are ei − ej , i < j. The weight lattice and set of dominant roots are given by

P = {(λ1, . . . , λn) ∈ h∗ | λi − λj ∈ Z}
P+ = {(λ1, . . . , λn) ∈ h∗ | λi − λi+1 ∈ Z+}

Note that since adding a multiple of (1, . . . , 1) does not change the weight, we can represent
every weight λ ∈ P by an n-tuple (λ1, . . . , λn) such that each λi ∈ Z. Similarly,

P+ = {(λ1, . . . , λn) | λi ∈ Z, λ1 ≥ λ2 ≥ · · · ≥ λn}/Z(1, . . . , 1)

= {(λ1, . . . , λn−1, 0) | λi ∈ Z+, λ1 ≥ λ2 ≥ · · · ≥ λn−1 ≥ 0}
(For readers familiar with the notion of partition, we note that the last formula shows that the set
of dominant integer weights for sl(n,C) can be identified with the set of partitions with n−1 parts.)

It is common to represent dominant weights graphically by so-called Young diagrams, as illus-
trated below:

(5, 3, 1, 1, 0) −→

More generally, Young diagram corresponding to a weight (λ1 ≥ · · · ≥ λn−1 ≥ 0) is constructed by
putting λ1 boxes in the first row, λ2 boxes in the second row, and so on.
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Example 8.42. Let V = Cn be the tautological representation of sl(n,C). Then weights of V
are e1, . . . , en. One easily sees that the highest weight is e1 = (1, 0, . . . , 0), so V = L(1,0,...,0). The
corresponding Young diagram is a single box.

Example 8.43. Let k ≥ 0. Then it can be shown (see Exercise 8.4) that the representation SkCn

is a highest weight representation with highest weight ke1 = (k, 0, . . . , 0). The corresponding Young
diagram is a row of k boxes.

Example 8.44. Let 1 ≤ k < n. Then it can be shown (see Exercise 8.5) that the representation
ΛkCn is a highest weight representation with highest weight e1 + · · ·+ek = (1, 1, . . . , 1, 0, . . . 0). The
corresponding Young diagram is a column of k boxes.

Note that the same argument shows that for k = n, the highest weight of ΛnCn is (1, . . . , 1) =
(0, . . . , 0), so ΛnCn is the trivial one-dimensional representation of sl(n,C) (compare with Exer-
cise 4.3).

In fact, the above examples can be generalized: any irreducible finite-dimensional representa-
tion Lλ of sl(n,C) appears as a subspace in (Cn)N , N =

∑
λi, determined by suitable symmetry

properties, i.e. transforming in a certain way under the action of symmetric group SN . Detailed
exposition can be found in [11].

Example 8.45. Let V the adjoint representation of sl(3,C). Then the highest weight of V is
α1 + α2 = e1 − e3 = 2e1 + e2. Thus, V = L(2,1,0) and the corresponding Young diagram is

We can also give an explicit description of the algebra C[P ]. Namely, denoting xi = eei , we get
eλ = xλ1

1 . . . xλn
n . Relation e1 + · · ·+ en = 0 gives x1x2 . . . xn = 1. Thus,

(8.25) C[P ] = C[x±1
1 , . . . , x±1

n ]/(x1 . . . xn − 1)

It is easy to check that two homogeneous polynomials of the same total degree are equal in C[P ] iff
they are equal in C[x±1

1 , . . . , x±1
n ].

Let us now discuss the characters of irreducible representations of sl(n,C). We start by writing
the Weyl denominator identity in this case.

Theorem 8.46. Weyl denominator identity for sl(n,C) takes the form

(8.26)
∏

i<j

(xi − xj) =
∑

s∈Sn

sgn(s)xn−1
s(1)x

n−1
s(2) . . . x

0
s(n)

where sgn(s) = (−1)l(s) is the sign of permutation s.

Proof. Using ρ = (n − 1, n − 2, . . . , 1, 0), we can write the left-hand side of Weyl denominator
identity (8.23) as

eρ
∏

α∈R+

(1− e−α) = xn−1
1 xn−2

2 . . . x0
n

∏

i<j

(
1− xj

xi

)
=

∏

i<j

(xi − xj).

The right-hand side is
∑

s∈Sn

(−1)l(s)s(xn−1
1 . . . x0

n) =
∑

s∈Sn

sgn(s)xn−1
s(1) . . . x

0
s(n).

¤
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Of course, identity (8.26) is well-known: most readers probably have recognized that the
right-hand side is the well-known Vandermonde determinant, i.e. the determinant of the matrix
(xn−i

j )1≤i,j≤n. Formula (8.26) for Vandermonde determinant is usually discussed in any standard
algebra course and can be proved by completely elementary methods.

Now we are ready to discuss the Weyl character formula.

Theorem 8.47. Let λ = (λ1, . . . , λn, ) ∈ P+ be a dominant weight for sl(n,C): λi ∈ Z+, λ1 ≥
λ2 ≥ · · · ≥ λn (we do not assume that λn = 0). Then the character of the corresponding irreducible
representation of sl(n,C) is given by

(8.27) ch(Lλ) =
Aλ1+n−1,λ2+n−2,...,λn

An−1,n−2,...,1,0
=
Aλ1+n−1,λ2+n−2,...,λn∏

i<j(xi − xj)

where
Aµ1,...,µn

= det(xµj

i )1≤i,j≤n =
∑

s∈Sn

sgn(s)xµ1
s(1) . . . x

µn

s(n).

Proof. Immediately follows from general Weyl character formula (Theorem 8.34), together with
ρ = (n− 1, . . . , 1, 0). ¤

Polynomials (8.27) are usually called Schur functions and denoted sλ. It follows from gen-
eral result about W -invariance of characters (Theorem 8.8) that sλ are symmetric polynomials in
x1, . . . , xn; moreover, by Theorem 8.41, they form a basis of the space of symmetric polynomials.
Detailed description of these functions can be found, for example, in Macdonald’s monograph [36].

Example 8.48. Let us write the Weyl character formula for sl(3,C). In this case, W = S3, so Weyl
character formula gives for λ = (λ1, λ2, 0), λ1 ≥ λ2:

ch(Lλ) =

∑
s∈S3

sgn(s)xλ1+2
s(1) x

λ2+1
s(2)∏

i<j(xi − xj)

Let us check this formula for the fundamental representation, i.e. the tautological action of sl(3,C)
on C3. In this case, weights of this representations are e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1), so
the highest weight is (1, 0, 0). Therefore, Weyl character formula gives

ch(C3) =

∑
s∈S3

sgn(s)s(x3
1x2)

(x1 − x2)(x1 − x3)(x2 − x3)

=
x3

1x2 − x3
1x3 − x3

2x1 + x3
2x3 + x3

3x1 − x3
3x2

(x1 − x2)(x1 − x3)(x2 − x3)

We leave it to the reader to check that the rational function in the right-hand side is actually equal
to x1 + x2 + x3, thus showing that the weights of C3 are e1, e2, e3, each with multiplicity one.

8.8. Harish-Chandra isomorphism

Recall that in Section 6.3 we have defined a central element C ∈ Z(Ug), called the Casimir element.
This element played an important role in the proof of the complete reducibility theorem.

However, the Casimir element is not the only central element in Ug. In this section, we will
study the center

Zg = Z(Ug).

In particular, we will show that central elements can be used to distinguish finite-dimensional
representations: an irreducible finite-dimensional representation V is completely determined by the
values of central elements C ∈ Zg in V .
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We start by recalling some results about Ug proved in Section 5.2. Recall that for any vector
space V we denote by SV the symmetric algebra of V ; it can be identified with the algebra of
polynomial functions on V ∗. In particular, we denote by Sg the symmetric algebra of g. By
Theorem 5.16, the map

(8.28)

sym : Sg → Ug

x1 . . . xn 7→ 1
n!

∑

s∈Sn

xs(1) . . . xs(n)

is an isomorphism of g-modules, compatible with natural filtrations in Sg, Ug. Note, however, that
sym is not an algebra isomorphism — it can not be, because Sg is commutative and Ug is not
(unless g is abelian).

Proposition 8.49. Map sym induces a vector space isomorphism

(Sg)G ∼−→ Zg

where G is the connected simply-connected Lie group with Lie algebra g and Zg is the center of Ug.

Proof. Indeed, it was proved in Proposition 5.7 that Zg coincides with the subspace of g–invariants
in Ug. On the other hand, for any representation of a connected Lie group G, spaces of G-invariants
and g-invariants coincide. ¤

Note that the map sym : (Sg)G ∼−→ Zg is not an algebra isomorphism (even though both algebras
are commutative); we will return to this below.

Thus, central elements in Ug are closely related to invariant polynomials (Sg)G, which makes
them much easier to describe. However, it turns out that the same space admits even more explicit
description.

Choose a Cartan subalgebra h ⊂ g and consider the algebra Sh of polynomials on h∗. Since h

is a direct summand in g: g = h⊕⊕
α gα, we see that h∗ is a direct summand in g∗. Thus, we can

restrict any polynomial p ∈ Sg to h∗. This gives a restriction map

(8.29) res : Sg → Sh.

It is easy to see that res is a degree-preserving algebra homomorphism.

In particular, we can apply res to a G–invariant polynomial p ∈ (Sg)G. Since the coadjont
action of G does not preserve h∗ ⊂ g∗, we can not claim that the restriction of p to h∗ is G–
invariant. However, there are some inner automorphisms which preserve h∗: for example, we have
seen in Exercise 7.16 that any element of the Weyl group can be lifted to an inner automorphism of
g∗, i.e. is given by Ad∗ w̃ for some w̃ ∈ G. Thus, we see that restriction map (8.29) gives rise to a
map res : (Sg)G → (Sh)W .

Theorem 8.50. Restriction map (8.29) induces an algebra isomorphism

(8.30) res : (Sg)G → (Sh)W .

The proof of this theorem can be found in [22] or [9]. Here we only note that to prove surjectivity,
we need to construct sufficiently many G–invariant elements in Sg, which is done using irreducible
finite-dimensional representations.
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Combining the results above, we see that we have the following diagram

(8.31) (Sg)G

sym

||zzzzzzzz
res

$$HH
HH

HH
HH

H

Zg (Sh)W

where both arrows are isomorphisms: sym is an isomorphism of filtered vector spaces, while res is
an isomorphism of graded algebras.

Example 8.51. Let Ω =
∑
ai ⊗ bi ∈ (S2g)G be an invariant symmetric tensor. Then

sym(Ω) =
1
2
(∑

aibi + biai

)
=

∑
aibi.

In particular, if B is a non-degenerate invariant symmetric bilinear form on g and xi, x
i are dual

bases with respect to B, then we can take Ω =
∑
xi⊗xi and sym(Ω) =

∑
xix

i ∈ Ug is exactly the
corresponding Casimir element CB as defined in Proposition 6.15.

Returning to diagram (8.31), we see that the composition res ◦ (sym)−1 gives an isomorphism
Zg

∼−→ (Sh)W , which makes it easy to describe how large Zg is as a filtered vector space. However,
it is not an algebra isomorphism. A natural question is whether one can identify Zg and (Sh)W as
algebras.

To answer that, we will consider action of central elements z ∈ Zg in highest weight represen-
tations.

Theorem 8.52. For any z ∈ Zg, there exists a unique polynomial χz ∈ Sh such that in any highest
weight representation V with highest weight λ,

(8.32) z|V = χz(λ+ ρ) id .

The map z 7→ χz is an algebra homomorphism Zg → (Sh)W .

Proof. Since any z ∈ Zg must have weight zero (which follows because it must be ad h invariant),
we see that if vλ is the highest weight vector of a highest weight representation V , then zvλ = cvλ

for some constant c. Since z is central and vλ generates V , this implies that z = c id in V for some
constant c which depends on λ and which therefore can be written as χz(λ + ρ) for some function
χz on h∗.

To show that χz is a polynomial in λ, we extend the definition of χz to all of Ug as follows.
Recall that by PBW theorem, monomials( ∏

α∈R+

fkα
α

)(∏

i

hni
i

)( ∏

α∈R+

emα
α

)

where hi is a basis in h, form a basis in Ug. Define now the map HC : Ug → Sh by

(8.33) HC

(( ∏

α∈R+

fkα
α

)(∏

i

hni
i

)( ∏

α∈R+

emα
α

))
=

{∏
i h

ni
i , if kα,mα = 0 for all α

0 otherwise

Then an easy explicit computation shows that for any u ∈ Ug, uvλ = HC(z)(λ)vλ + . . . , where
dots stand for vectors of weights µ ≺ λ. In particular, applying this to z ∈ Zg, we see that
zvλ = χz(λ+ ρ)vλ = HC(z)(λ)vλ, so χz(λ) = HC(z)(λ− ρ). By definition, HC(z) ∈ Sh, so χz(λ)
is a polynomial function in λ.

The fact that z 7→ χz is an algebra homomorphism is obvious:

(z1z2)vλ = z1(z2vλ) = χz2(λ+ ρ)z1vλ = χz1(λ+ ρ)χz2(λ+ ρ)vλ
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so χz1z2 = χz1χz2 , and similarly for addition.

Finally, we need to show that for every z ∈ Zg, χz is W -invariant. It suffices to show that
χz(si(λ)) = χz(λ) for any i.

Let λ ∈ P+. Then, as was shown in Theorem 8.23, Verma module Mλ contains a submodule
Msi.λ, where si.λ = si(λ+ ρ)− ρ. Therefore, the value of z in Mλ and Msi.λ must be equal, which
gives

χz(λ+ ρ) = χz(si.λ+ ρ) = χz(si(λ+ ρ)).

Thus, we see that χz(µ) = χz(si(µ)) for any µ ∈ ρ+ P+. However, since both χz(µ) and χz(si(µ))
are polynomial functions of µ, it is easy to show that if they are equal for all µ ∈ ρ+ P+, then they
are everywhere equal (see Exercise 8.8). Thus, χz is si-invariant. ¤

Example 8.53. Let ( , ) be an invariant symmetric bilinear form on g∗ and C the corresponding
Casimir element as in Example 8.51. Then explicit computation, done in Exercise 8.7, shows that
the action of C in a highest weight module with highest weight λ is given by (λ, λ + 2ρ) = (λ +
ρ, λ+ ρ)− (ρ, ρ). Therefore, χC(µ) = (µ, µ)− (ρ, ρ).

We can now add the map z → χz to the diagram (8.31):

(8.34) (Sg)G

sym

||zzzzzzzz
res

$$HH
HH

HH
HH

H

Zg
χz // (Sh)W

Note, however, that the diagram is not commutative. For example, for an invariant bilinear
form ( , ) on g∗, considered as an element of (S2g)G, composition χ ◦ sym gives the polynomial
(µ, µ)− (ρ, ρ) (see Example 8.53), whereas the restriction gives just (µ, µ).

Theorem 8.54.

(1) Diagram (8.34) is commutative “up to lower order terms”: for any p ∈ (Sng)G, we have

χsym(p) ≡ res(p) mod (Sn−1h)W

(2) The map χz : Zg → (Sh)W defined in Theorem 8.52 is an algebra isomorphism. This
isomorphism is usually called Harish–Chandra isomorphism.

Proof. We start with part (1). It is easier to prove a more general result: for any p ∈ Sng, we have

HC(sym(p)) ≡ res(p) mod Sn−1h

where HC : Ug → Sh is defined by (8.33).

Indeed, since sym(x1 . . . xn) ≡ x1 . . . xn mod Un−1g, we see that if

p =
( ∏

α∈R+

fkα
α

)(∏

i

hni
i

)( ∏

α∈R+

emα
α

)
∈ Sng

then we have

HC(sym(p)) ≡
{∏

i h
ni
i , kα,mα = 0 for all α

0 otherwise
= res(p) mod Sn−1h.

Since for z ∈ Zg ∩ Ung we have χz(λ) = HC(z)(λ − ρ) ≡ HC(z)(λ) mod Sn−1h (see proof of
Theorem 8.52), we see that χz ≡ HC(z) mod Sn−1h, which proves part (1).

To prove part (2), note that since res is an isomorphism, part (1) implies that composition
χ ◦ sym is also an isomorphism. Since sym is an isomorphism, χ is also an isomorphism. ¤
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Corollary 8.55. Let λ, µ ∈ h∗. Then χz(λ) = χz(µ) for all z ∈ Zg iff λ, µ are in the same W -orbit.

Indeed it follows from the previous theorem and the fact that W -invariant polynomials separate
orbits of W .

Theorem 8.54 also allows one to construct an algebra isomorphism (Sg)G ∼−→ Zg as a composition
χ−1 ◦ res. In fact, it is a special case of a more general result: for any finite-dimensional Lie algebra
g there exists an algebra isomorphism (Sg)G ∼−→ Zg, called Duflo–Kirillov (or, more properly, Duflo–
Ginzburg–Kirillov) isomorphism . For semisimple Lie algebras this isomorphism coincides with the
one given by composition χ−1 ◦ res. Details can be found in [9].

Returning to the case of semisimple g, it should be noted that the algebra (Sh)W (and thus Zg)
is well studied (see, e.g., [23]). Namely, it is known that this algebra is a free polynomial algebra,
with the number of generators equal to the rank of g:

(Sh)W ' C[C1, . . . , Cr], r = rank(g)

Degrees of the generators are also known. For various reasons it is common to consider not degrees
themselves but so-called exponents of g (or of W )

di = degCi − 1.

For example, for g = sl(n,C) we have (Sh)W = (C[x1, . . . , xn]/(x1 + · · · + xn))Sn = C[σ2, . . . , σn],
where σi are elementary symmetric functions, i.e. coefficients of the polynomial

∏
(x − xi). Thus,

in this case the exponents are 1, . . . , n− 1. Lists of exponents for other simple Lie algebras can be
found in [3]. We only mention here that existence of Killing form implies that d1 = 1 for any simple
Lie algebra.

Exponents also appear in many other problems related to semisimple Lie algebras. For example,
it is known that if G is a compact real semisimple Lie group, then (topological) cohomology of G is
a free exterior algebra:

H∗(G,R) ' Λ[ω1, . . . , ωr], degωi = 2di + 1

where di are the exponents of gC. For example, generator ω1 ∈ H3(G) which corresponds to d1 = 1
is defined (up to a scalar) by Exercise 4.7. Detailed discussion of this and related topics can be
found in [14].

8.9. Proof of Theorem 8.25

In this section, we give a proof of Theorem 8.25. Recall the statement of the theorem.

Theorem. Let λ ∈ P+, and let

L̃λ = Mλ/
∑

Mi

where Mi ⊂ Mλ is the subrepresentation generated by vector vsi.λ = fni+1
i vλ, ni = 〈λ, α∨i 〉. Then

L̃λ is finite-dimensional.

The proof is based on the following important notion. Recall that sl(2,C)i is the subalgebra
generated by ei, fi, hi, see Lemma 6.42.

Definition 8.56. A representation of g is called integrable if for any v ∈ V and any i ∈ {1, . . . , r},
the sl(2,C)i-submodule generated by v is finite-dimensional:

dim(Usl(2,C)iv) <∞

The theorem itself follows from the following two lemmas.
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Lemma 8.57. For any representation V , let

V int = {v ∈ V | For any i, dim(Usl(2,C)iv) <∞} ⊂ V

Then V int is an integrable subrepresentation of V .

Lemma 8.58. Any highest weight integrable representation is finite-dimensional.

From these two lemmas, the theorem easily follows. Indeed, consider L̃λ = Mλ/
∑
Mi. Since

in L̃λ, fni+1
i vλ = 0 and eivλ = 0, it is easy to see that vλ generates a finite-dimensional Usl(2,C)i–

module and thus vλ ∈ L̃int
λ . Since vλ generates L̃λ, it follows from Lemma 8.57 that L̃λ is integrable.

By Lemma 8.58, this implies that L̃λ is finite-dimensional.

Thus, it remains to prove these two lemmas.

Proof of Lemma 8.57. Let v ∈ V int and let W be the sl(2,C)i–module generated by v. By
assumption, W is finite-dimensional. Consider now the vector space gW , spanned by vectors xw,
x ∈ g, w ∈W . Clearly, gW is finite-dimensional. It is also closed under the action of sl(2,C)i:

eixw = xeiw + [x, ei]w ∈ gW

and similarly for other elements of sl(2,C)i. Thus, we see that for any x ∈ g, xv is contained in the
finite-dimensional sl(2,C)i–module gW and thus xv ∈ V int. Therefore, V int is a subrepresentation;
by definition, it is integrable. ¤

Proof of Lemma 8.58. Let V be an integrable representation. Since any vector is contained in
a finite-dimensional sl(2,C)i–submodule, the same arguments as in the proof of Theorem 8.8 show
that the set of weights of V is W -invariant. If we additionally assume that V is a highest weight
representation with highest weight λ, then any weight µ of V must satisfy w(µ) ∈ λ − Q+ for any
w ∈W . In particular, choosing w so that w(µ) ∈ P+ (which is always possible by Lemma 8.22), we
see that w(µ) ∈ P+ ∩ (λ − Q+). But for any λ, the set P+ ∩ (λ − Q+) is finite (see Exercise 8.2).
Thus, the set of weights of V is finite. Since in a highest weight module, any weight subspace is
finite-dimensional, this shows that V is finite-dimensional. ¤

Exercises

8.1. Prove Lemma 8.16. You can do it by breaking it into several steps as shown below.
(1) Show that given any finite set of distinct weights λ1, . . . , λn ∈ P (V ), there exists an element

p ∈ Uh such that p(λ1) = 1, p(λi) = 0 for i 6= 1 (considering elements of Uh = Sh as
polynomial functions on h∗).

(2) Let V ⊂ M be an h-submodule, and v ∈ V . Write v =
∑
vi, vi ∈ M [λi]. Show that then

each of vi ∈ V .
(3) Deduce Lemma 8.16.

8.2. (1) Show that for any t ∈ R+, the set {λ ∈ Q+ | (λ, ρ) ≤ t} is finite.
(2) Show that for any λ ∈ P+, the set {µ ∈ P+ | µ ¹ λ} is finite.

8.3. Let ωi, i = 1, . . . , r = rank g, be a basis of P , and denote xi = eωi ∈ C[P ]. Show that then
C[P ] is isomorphic to the algebra of Laurent polynomials C[x±1

1 , . . . , x±1
r ].

8.4. Let k > 0. Consider the representation V = SkCn of sl(n,C).
(1) Compute all weights of V and describe the corresponding weight subspaces.
(2) Show that V contains a unique (up to a factor) vector v such that n+v = 0, namely v = xk

1 ,
and deduce from this that V is irreducible.

(3) Find the highest weight of V and draw the corresponding Young diagram.
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8.5. Let 1 ≤ k ≤ n. Consider the representation V = ΛkCn of sl(n,C).
(1) Compute all weights of V and describe the corresponding weight subspaces.
(2) Show that V contains a unique (up to a factor) vector v such that n+v = 0, namely v =

x1 ∧ · · · ∧ xk, and deduce from this that V is irreducible.
(3) Find the highest weight of V and draw the corresponding Young diagram.

8.6. Let g be a simple Lie algebra and let θ ∈ R+ be the maximal root of g as defined in Exam-
ple 8.26.
(1) Show that any α ∈ R ∪ {0} can be written in the form α = θ −∑

niαi, ni ∈ Z+, and that
this condition uniquely defines θ.

(2) Show that ht(θ) is maximal possible: for any α ∈ R+, α 6= θ, we have ht(α) < ht(θ) (here ht
is the height of a root, see (7.8)). The number h = ht(θ) + 1 is called the Coxeter number of
g.

8.7. Let g be a simple complex Lie algebra and ( , ) a non-degenerate invariant bilinear symmetric
form on g. We will also use the same notation ( , ) for the corresponding bilinear form on g∗.
(1) Show that the corresponding Casimir element C defined by Proposition 6.15 can be written

in the form
C =

∑

α∈R+

(eαfα + fαeα) +
∑

i

h2
i

where eα, fα are defined as in Lemma 6.42, and hi is an orthonormal basis in h with respect
to ( , ).

(2) Show that in any highest weight module with highest weight λ (not necessarily finite-
dimensional), C acts by the constant

cλ = (λ, λ+ 2ρ).

(3) Using the arguments from the proof of Proposition 6.18, show if ( , ) = K is the Killing form,
then the corresponding Casimir element CK acts by 1 in the adjoint representation.

(4) Let θ be the maximal root as defined in Example 8.26. Show that

K(θ, θ + 2ρ) = 1

and deduce from it that

K(θ, θ) =
1

2h∨
, h∨ = 1 + 〈ρ, θ∨〉.

(The number h∨ is called the dual Coxeter number.)
Since it is known that θ is always a long root (as defined in Corollary 7.51), this exercise shows

that if we rescale the Killing form on g by letting K̃ = 1
2h∨K, then the associated form on g∗

has the property K̃(α, α) = 2h∨K(α, α) = 2 for long roots α. This renormalization is commonly
used, for example, in the theory of affine Lie algebras.

8.8. (1) Let f(x), x = (x1, . . . , xn), be a polynomial in n variables. Show that if f(x) = 0 for all
x ∈ Zn

+, then f = 0.
(2) Show that if f1, f2 ∈ Sh are such that f1(λ) = f2(λ) for all λ ∈ P+, then f1 = f2.

8.9. Let Vn be the irreducible (n + 1)-dimensional representation of sl(2,C) as in Theorem 4.59.
Using results of Example 8.6, show that

Vn ⊗ Vm '
⊕

Vk

where the direct sum is over all k ∈ Z+ satisfying the Clebsh–Gordan condition

|n−m| ≤ k ≤ n+m

n+m− k ∈ 2Z
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8.10. Define a bilinear form ( , )1 on C[P ] by

(f, g)1 =
1
|W |

∫
fgδδ

where involution is defined by eλ = e−λ, δ is the Weyl denominator (8.23), and
∫

: C[P ] → C
is defined by ∫

eλ =

{
1, λ = 0

0 otherwise

(1) Show that ( , )1 is symmetric.
(2) Using Weyl character formula, show that characters ch(Lλ), λ ∈ P+, are orthonormal with

respect to this form.



Overview of the
Literature

In this chapter we put together an overview of the literature and some suggestions for further
reading. The list is divided into three sections: textbooks (books suitable for readers just learning
the theory), monographs (books that provide detailed coverage but which still can be classified as
“core” theory of Lie groups and Lie algebras) and “Further reading”. Needless to say, this division
is rather arbitrary and should not be taken too seriously.

Basic textbooks

There is a large number of textbooks on Lie groups and Lie algebras. Below we list some standard
references which can be used either to complement the current book or to replace it.

Basic theory of Lie groups (subgroups, exponential map, etc) can be found in any good book
on differential geometry, such as Spivak [49] or Warner [55]. For more complete coverage, including
discussion of representation theory, the classic references are Bröcker and tom Dieck [4] or the book
by Fulton and Harris [11]. Other notable books in this category include Varadarajan [51], Onishchik
and Vinberg [41]. The latest (and highly recommended) additions to this list are Bump [5], Sepanski
[44] and Procesi [43]. Each of these books has its own strengths and weaknesses; we suggest that
the reader looks at them to choose the book which best matches his tastes.

For Lie algebras and in particular semisimple Lie algebras, probably the best reference is Serre
[47]. Without this book, the author of the current book would have never chosen Lie theory as
his field of study. Another notable book about Lie algebras is Humphreys [22] (largely inspired by
Serre’s book).

Monographs

For readers who have learned the basic theory covered in this book or in the textbooks listed above
and want to go deeper, there is no shortage of excellent in-depth books. Here are some notable
titles.

For the foundations of the theory of Lie groups, the reader may consult Serre [46] and Duister-
maat–Kolk [10], or the classical book by Chevalley [7]. Detailed exposition of the structure theory
of Lie groups, including semisimple Lie groups, can be found in Knapp [32] or in Zhelobenko [57];
Helgason [18], in addition to providing an introduction to theory of Lie groups and Lie algebras,
also includes a wealth of information about structure theory of Lie groups and homogeneous spaces.
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An overview of representation theory, including the theory of infinite-dimensional representa-
tions, can be found in Kirillov [29].

Closely related to the theory of Lie groups is the theory of algebraic groups; good introduction
can be found in Springer [50].

For Lie algebras, Jacobson [24] provides a comprehensive monograph on Lie algebras; in partic-
ular, there the reader can find the proofs of all the results on Lie algebras whose proof we chose to
skip in our book. An equally comprehensive exposition can be found in Bourbaki [3]. For the study
of universal enveloping algebras, the best source is Dixmier [9].

A detailed exposition of the theory of root systems, Weyl groups and closely related Coxeter
groups can be found in Humphreys [23].

Further reading

In this section, we list some more advanced topics which might be of interest to readers who have
mastered basic theory of Lie groups and Lie algebras. This list is highly biased and reflects the
author’s preferences; doubtless other people would suggest other topics.

Infinite-dimensional Lie groups and algebras. So far we only discussed finite-dimensional Lie
groups and Lie algebras. In general, study of infinite-dimensional Lie groups and Lie algebras is
hopelessly difficult. However, it turns out that there is a large class of infinite-dimensional Lie alge-
bras, called Kac–Moody algebras, which in many ways are similar to semisimple finite-dimensional
Lie algebras. These algebras proved to be of vital importance to mathematical physics: they serve
as the groups of symmetries in conformal field theory. A detailed exposition of these topics can be
found in Kac’s book [26] and Pressley and Segal’s [42] and Kumar [33].

Quantum groups. One of the most interesting developments in the theory of Lie groups and Lie
algebras in recent years is related to objects which are not actually Lie algebras or groups but rather
certain deformations of them. These deformations, called “quantum groups”, are associative algebras
where multiplication depends on an extra parameter q and which for q = 1 coincide with the usual
universal enveloping algebra Ug. It turns out that these quantum groups have a very interesting
representation theory, with many features which do not appear for the usual Lie algebras. They
also appear in many applications: to physics (where they again appear as groups of symmetries
in conformal field theory), to topology (they can be used to construct invariants of knots and 3-
manifolds, such as the famous Jones polynomial), to combinatorics (special polynomials), and much
more. A good introduction to quantum groups can be found in the books of Jantzen [25] or Kassel
[28]

Analysis on homogeneous spaces. We have briefly discussed analysis on compact Lie groups
in Section 4.7. In particular, we mentioned that the Peter-Weyl theorem should be regarded as a
non-commutative analog of the Fourier series.

However, this is just the beginning. One can also study various classes of functions on non-
compact Lie groups, or on various homogeneous spaces forG, study invariant differential operators on
such spaces, integral transforms, and much more. This is commonly referred to as “harmonic analysis
on homogeneous spaces”. Classical reference for the geometry of homogeneous spaces is Helgason
[18]; analysis on such spaces is discussed in Helgason [20] and [19]. Other notable references include
Molchanov [38] and Warner [54].
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Unitary infinite-dimensional representations. So far, we mostly considered the theory of finite-
dimensional representations. Again, the theory of infinite-dimensional representations in full gener-
ality is hopelessly complicated, even for semisimple Lie algebras and groups. However, the theory of
unitary infinite-dimensional representations seems to be more manageable but by no means trivial.
A large program of study of infinite-dimensional unitary representations of real reductive groups has
been initiated by Vogan; an overview of results can be found in [53].

Special functions and combinatorics. Representation theory of Lie groups and Lie algebras
is intimately related with combinatorics. For many groups, matrix coefficients and characters of
certain representations can be explicitly written in terms of classical special functions and orthogonal
polynomials; thus, various results from representation theory (such as orthogonality relation for
matrix coefficients) become identities involving such functions.

Representation theory of sl(n,C) is especially closely related to combinatorics: as was mentioned
in Section 8.7, irreducible representations of sl(n,C) are parametrized by Young digrams, which are
one of the central objects of study in combinatorics, and characters of irreducible representations
are Schur polynomials.

A detailed study of various links between the theory of special functions, combinatorics, and
representation theory can be found in Klimyk and Vilenkin [31].

Geometric representation theory. An extremely fruitful approach to representation theory
comes from geometry: instead of describing representations algebraically, by generators and re-
lations, they are constructed in geometric terms — for example, as spaces of global sections of
certain vector bundles on a manifold with the action of the group. This approach leads to some
truly remarkable results. Simplest example of such a construction is the Borel–Weil theorem, which
states that any irreducible finite-dimensional representation of a semisimple complex group can be
obtained as a space of global sections of a certain line bundle Lλ over the corresponding flag variety;
in fact, line bundles over the flag variety are classified by integral weights (see [44]).

This result has a far-reaching generalization: one can construct all highest weight modules (pos-
sibly infinite-dimensional) if we replace line bundles by appropriate generalizations — D–modules
or perverse sheaves. This provides a connection between the algebraic structure of the category of
highest weight modules (to be precise, category O) and geometric structure of the cell decomposition
of the flag variety; in particular, certain multiplicities in the category of highest-weight modules are
equal to dimensions of the cohomology spaces of so called “Schubert cells” in the flag variety (since
these cells are not manifolds but have singularities, appropriate cohomology theory is not the usual
de Rham or singular cohomology, but more complicated one, called intersection cohomology). An
introduction to this theory can be found in Milicic [37].

Another good reference for geometric methods in representation theory is Chriss and Ginzburg
[8]; however, this book is more concerned with representations of Hecke algberas than Lie groups.





Appendix A

Root Systems and
Simple Lie Algebras

In this appendix, for each of the Dynkin diagrams of types An, . . . Dn, we give an explicit description
of the corresponding root system and simple Lie algebra, along with some relevant information such
as the description of the Weyl group. This section contains no proofs; we refer the reader to [3],
[24] for proofs and descriptions of exceptional root systems E6, . . . , G2.

In this appendix, we use the following notation:

g — a complex simple Lie algebra, with fixed Cartan subalgebra h ⊂ g

R ⊂ h∗ — the root system of g

E = h∗R — the real vector space spanned by roots

( , ) — the symmetric invariant bilinear form on h∗ normalized so that (α, α) = 2 for long roots

R+ — set of positive roots (of course, there are many ways to choose it; we will only give the
most common and widely used choice)

Π = {α1, . . . , αr}, r = rank(R) — set of simple roots (see Definition 7.12)

W — the Weyl group (see Section 7.2)

P ⊂ E — the weight lattice (see Section 7.5)

Q ⊂ E — the root lattice (see Section 7.5)

θ — the highest root (see Example 8.26)

ρ = 1
2

∑
R+

α (see (7.22))

h = ht(θ) + 1, h∨ = 〈ρ, θ∨〉+ 1 — Coxeter number and dual Coxeter number, see Exercise 8.6,
Exercise 8.7

159
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A.1. An = sl(n + 1,C), n ≥ 1

Lie algebra: g = sl(n+1,C), with Cartan subalgebra h = {diagonal matrices with trace 0}.
We denote by ei ∈ h∗ the functional defined by

ei :



h1 0 . . . 0

. . .

0 . . . hn+1


 7→ hi

Then h∗ =
⊕
Cei/C(e1 + · · ·+ en+1), and

E = h∗R =
⊕

Rei/R(e1 + · · ·+ en+1)

with the inner product defined by (λ, µ) =
∑
λiµi if representatives λ, µ are chosen so that∑

λi =
∑
µi = 0.

Root system: R = {ei − ej | i 6= j}
Root subspace corresponding to root α = ei − ej is gα = CEij , and the corresponding

coroot hα = α∨ ∈ h is hα = Eii − Ejj .

Positive and simple roots: R+ = {ei − ej | i < j}, |R+| = n(n+1)
2

Π = {α1, . . . , αn}, αi = ei − ei+1.

Dynkin diagram:

Cartan matrix:

A =




2 −1
−1 2 −1

−1 2 −1
. . . . . . . . .

−1 2 −1
−1 2




Weyl group: W = Sn+1, acting on E by permutations. Simple reflections are si = (i i+1).

Weight and root lattices:
P = {(λ1, . . . , λn+1) | λi − λj ∈ Z}/R(1, . . . , 1) =

= {(λ1, . . . , λn, 0) | λi ∈ Z}.
Q = {(λ1, . . . , λn+1) | λi ∈ Z,

∑
λi = 0}

P/Q ' Z/(n+ 1)Z
Dominant weights and positive Weyl chamber:

C+ = {λ1, . . . , λn+1) | λ1 > λ2 > · · · > λn+1}/R(1, . . . , 1)
= {λ1, . . . , λn, 0) | λ1 > λ2 > · · · > λn > 0}.

P+ = {(λ1, . . . , λn+1) | λi − λi+1 ∈ Z+}/R(1, . . . , 1)
= {(λ1, . . . , λn, 0) | λi ∈ Z, λ1 ≥ λ2 · · · ≥ λn ≥ 0}.

Maximal root, ρ, and the Coxeter number:
θ = e1 − en+1 = (1, 0, . . . , 0,−1)
ρ = (n, n− 1, . . . , 1, 0) =

(
n
2 ,

n−2
2 , . . . , −n

2

)
h = h∨ = n+ 1
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A.2. Bn = so(2n + 1,C), n ≥ 1

Lie algebra: g = so(2n+1,C), with Cartan subalgebra consisiting of block-diagonal matrices

h =








A1

A2

. . .
An

0








, Ai =
[

0 ai

−ai 0

]

Lie algebra (alternative description): g = so(B) = {a ∈ gl(2n+1,C) | a+B−1atB = 0},
where B is the symmetric non-degenerate bilinear form on C2n+1 with the matrix

B =




0 In 0
In 0 0
0 0 1




This Lie algebra is isomorphic to the usual so(2n + 1,C); the isomorphism is given by
a 7→ Ba.

In this description, the Cartan subalgebra is

h = g ∩ {diagonal matrices} = {diag(x1, . . . , xn,−x1, . . . ,−xn, 0)}
Define ei ∈ h∗ by

ei : diag(x1, . . . , xn,−x1, . . . ,−xn, 0) 7→ xi.

Then ei, i = 1 . . . n, form a basis in h∗. The bilinear form is defined by (ei, ej) = δij .

Root system: R = {±ei ± ej (i 6= j),±ei} (signs are chosen independently)
The corresponding root subspaces and coroots in g (using the alternative description)

are given by
• For α = ei − ej : gα = C(Eij − Ej+n,i+n), hα = Hi −Hj .
• For α = ei + ej : gα = C(Ei,j+n − Ej,i+n), hα = Hi +Hj .
• For α = −ei − ej : gα = C(Ei+n,j − Ej+n,i), hα = −Hi −Hj .
• For α = ei, gα = C(Ei,2n+1 − E2n+1,n+i), hα = 2Hi.
• For α = −ei, gα = C(En+i,2n+1 − E2n+1,i), hα = −2Hi

where Hi = Eii − Ei+n,i+n.

Positive and simple roots: R+ = {ei ± ej (i < j), ei}, |R+| = n2

Π = {α1, . . . , αn}, α1 = e1 − e2, . . . , αn−1 = en−1 − en, αn = en.

Dynkin diagram:

Cartan matrix:

A =




2 −1 0
−1 2 −1

−1 2 −1
. . . . . . . . .

−1 2 −1
−2 2




Weyl group: W = Snn(Z2)n, acting on E by permutations and sign changes of coordinates.
Simple reflections are si = (i i+ 1) (i = 1 . . . n− 1), sn : (λ1, . . . , λn) 7→ (λ1, . . . ,−λn).

Weight and root lattices: (in basis ei . . . , en)
P = {(λ1, . . . , λn) | λi ∈ 1

2Z, λi − λj ∈ Z}
Q = Zn
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P/Q ' Z2

Dominant weights and positive Weyl chamber:
C+ = {λ1, . . . , λn) | λ1 > λ2 > · · · > λn > 0}.
P+ = {(λ1, . . . , λn) | λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0, λi ∈ 1

2Z, λi − λj ∈ Z}.
Maximal root, ρ, and the Coxeter number:

θ = e1 + e2 = (1, 1, 0, . . . , 0)
ρ = (n− 1

2 , n− 3
2 , . . . ,

1
2 )

h = 2n, h∨ = 2n− 1 (for n ≥ 2; for n = 1, so(3,C) ' sl(2,C), so h = h∨ = 2).
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A.3. Cn = sp(n,C), n ≥ 1

Lie algebra: g = sp(n,C) = {a ∈ gl(2n,C) | a+J−1atJ = 0}, where J is the skew-symmetric
nondegenerate matrix

J =
[

0 In
−In 0

]

The Cartan subalgebra is given by

h = g ∩ {diagonal matrices} = {diag(x1, . . . , xn,−x1, . . . ,−xn)}
Define ei ∈ h∗ by

ei : diag(x1, . . . , xn,−x1, . . . ,−xn) 7→ xi.

Then ei, i = 1 . . . n, form a basis in h∗. The bilinear form is defined by (ei, ej) = 1
2δij .

Root system: R = {±ei ± ej (i 6= j),±2ei} (signs are chosen independently)
The corresponding root subspaces and coroots are given by
• For α = ei − ej : gα = C(Eij − Ej+n,i+n), hα = Hi −Hj .
• For α = ei + ej : gα = C(Ei,j+n + Ej,i+n), hα = Hi +Hj .
• For α = −ei − ej : gα = C(Ei+n,j + Ej+n,i), hα = −Hi −Hj .
• For α = 2ei, gα = CEi,i+n, hα = Hi

• For α = −2ei, gα = CEi+n,i, hα = −Hi

where Hi = Eii − Ei+n,i+n.

Positive and simple roots: R+ = {ei ± ej (i < j), 2ei}, |R+| = n2

Π = {α1, . . . , αn}, α1 = e1 − e2, . . . , αn−1 = en−1 − en, αn = 2en.

Dynkin diagram:

Cartan matrix:

A =




2 −1
−1 2 −1

−1 2 −1
. . . . . . . . .

−1 2 −2
−1 2




Weyl group: W = Snn(Z2)n, acting on E by permutations and sign changes of coordinates.
Simple reflections are si = (i i+ 1) (i = 1 . . . n− 1), sn : (λ1, . . . , λn) 7→ (λ1, . . . ,−λn).

Weight and root lattices: (in basis e1, . . . , en)
P = Zn

Q = {(λ1, . . . , λn) | λi ∈ Z,
∑
λi ∈ 2Z}

P/Q ' Z2

Dominant weights and positive Weyl chamber:
C+ = {λ1, . . . , λn) | λ1 > λ2 > · · · > λn > 0}.
P+ = {(λ1, . . . , λn) | λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0, λi ∈ Z}.

Maximal root, ρ, and the Coxeter number:
θ = 2e1 = (2, 0, . . . , 0)
ρ = (n, n− 1, . . . , 1)
h = 2n, h∨ = n+ 1
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A.4. Dn = so(2n,C), n ≥ 2

Lie algebra: g = so(2n,C), with Cartan subalgebra consisting of block-diagonal matrices

h =








A1

A2

. . .
An







, Ai =

[
0 hi

−hi 0

]

Lie algebra (alternative description): g = so(B) = {a ∈ gl(2n,C) | a + B−1atB = 0},
where B is the symmetric non-degenerate bilinear form on C2n with the matrix

B =
[

0 In
In 0

]

This Lie algebra is isomorphic to the usual so(2n,C); the isomorphism is given by a 7→ Ba.
In this description, the Cartan subalgebra is

h = g ∩ {diagonal matrices} = {diag(x1, . . . , xn,−x1, . . . ,−xn)}
Define ei ∈ h∗ by

ei : diag(x1, . . . , xn,−x1, . . . ,−xn) 7→ xi.

Then ei, i = 1 . . . n form a basis in h∗. The bilinear form is given by (ei, ej) = δij .

Root system: R = {±ei ± ej (i 6= j)} (signs are chosen independently)
The corresponding root subspaces and coroots in g (using the alternative description)

are given by
• For α = ei − ej : gα = C(Eij − Ej+n,i+n), hα = Hi −Hj .
• For α = ei + ej : gα = C(Ei,j+n − Ej,i+n), hα = Hi +Hj .
• For α = −ei − ej : gα = C(Ei+n,j − Ej+n,i), hα = −Hi −Hj

where Hi = Eii − Ei+n,i+n.

Positive and simple roots: R+ = {ei ± ej (i < j)}, |R+| = n(n− 1)
Π = {α1, . . . , αn}, α1 = e1 − e2, . . . , αn−1 = en−1 − en, αn = en−1 + en.

Dynkin diagram:

Cartan matrix:

A =




2 −1
−1 2 −1

−1 2 −1
. . . . . . . . .

−1 2 −1 −1
−1 2
−1 2




Weyl group: W = {permutations and even number of sign changes}. Simple reflections are
si = (i i+ 1), i = 1 . . . n− 1, sn : (λ1, . . . , λn−1, λn) 7→ (λ1, . . . ,−λn,−λn−1).

Weight and root lattices: (in basis e1, . . . , en)
P = {(λ1, . . . , λn) | λi ∈ 1

2Z, λi − λj ∈ Z}
Q = {(λ1, . . . , λn) | λi ∈ Z,

∑
λi ∈ 2Z}

P/Q ' Z2 × Z2 for even n, P/Q ' Z4 for odd n
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Dominant weights and positive Weyl chamber:
C+ = {(λ1, . . . , λn) | λ1 > λ2 > · · · > λn, λn−1 + λn > 0}.
P+ = {(λ1, . . . , λn) | λ1 ≥ λ2 ≥ · · · ≥ λn, λn−1 + λn ≥ 0, λi ∈ 1

2Z, λi − λj ∈ Z}.
Maximal root, ρ, and the Coxeter number:

θ = e1 + e2 = (1, 1, 0, . . . , 0)
ρ = (n− 1, n− 2, . . . , 0)
h = h∨ = 2n− 2





Appendix B

Sample Syllabus

In this section, we give a sample syllabus of a one-semester graduate course on Lie groups and Lie
algebras based on this book. This course is designed to fit the standard schedule of US universities:
14 week semester, with two lectures a week, each lecture 1 hour and 20 minutes long.

Lecture 1: Introduction. Definition of a Lie group; C1 implies analytic. Examples: Rn, S1,
SU(2). Theorem about closed subgroup (no proof). Connected component and universal
cover.

Lecture 2: G/H. Action of G on manifolds; homogeneous spaces. Action on functions,
vector fields, etc. Left, right, and adjoint action. Left, right, and bi-invariant vector fields
(forms, etc).

Lecture 3: Classical groups: GL, SL, SU, SO, Sp – definition. Exponential and logarith-
mic maps for matrix groups. Proof that classical groups are smooth; calculation of the
corresponding Lie algebra and dimension. Topological information (connectedness, π1).
One-parameter subgroups in a Lie group: existence and uniqueness.

Lecture 4: Lie algebra of a Lie groups:

g = T1G = right-invariant vector fields = 1-parameter subgroups.

Exponential and logarithmic maps and their properties. Morphisms f : G1 → G2 are de-
termined by f∗ : g1 → g2. Example: elements Jx, Jy, Jz ∈ so(3). Definition of commutator:
exey = ex+y+ 1

2 [x,y]+....

Lecture 5: Properties of the commutator. Relation with the group commutator; Ad and ad.
Jacobi identity. Abstract Lie algebras and morphisms. [x, y] = xy−yx for matrix algebras.
Relation with the commutator of vector fields. Campbell–Hausdorff formula (no proof).

Lecture 6: IfG1 is simply-connected, then Hom(G1, G2) = Hom(g1, g2). Analytic subgroups
and Lie subalgebras. Ideals in g and normal subgroups in G.

Lecture 7: Lie’s third theorem (no proof). Corollary: category of connected, simply-con-
nected Lie groups is equivalent to the category of Lie algebras. Representations of G =
representations of g. Action by vector fields.

Example: representations of SO(3),SU(2). Complexification; su(n) and sl(n).
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Lecture 8: Representations of Lie groups and Lie algebras. Subrepresentations, direct sums,
V1 ⊗ V2, V ∗, action on EndV . Irreducibility. Intertwining operators. Schur lemma.
Semisimplicity.

Lecture 9: Unitary representations. Complete reducibility of representation for a group with
invariant integral. Invariant integral for finite groups and for compact Lie groups; Haar
measure. Example: representations of S1 and Fourier series.

Lecture 10: Characters and Peter–Weyl theorem.

Lecture 11: Universal enveloping algebra. Central element J2
x + J2

y + J2
z ∈ U so(3,R).

Statement of PBW theorem.

Lecture 12: Structure theory of Lie algebras: generalities. Commutant. Solvable and nilpo-
tent Lie algebras: equivalent definitions. Example: upper triangular matrices. Lie theorem
(about representations of a solvable Lie algebra).

Lecture 13: Engel’s theorem (without proof). Radical. Semisimple Lie algebras. Example:
semisimplicity of sl(2). Levi theorem (without proof). Statement of Cartan criterion of
solvability and semisimplicity.

Lecture 14: Jordan decomposition (into semisimple and nilpotent element). Proof of Cartan
criterion.

Lecture 15: Corollaries: every semisimple algebra is direct sum of simple ones; ideal, quo-
tient of a semisimple algebra is semisimple; [g, g] = g; every derivation is inner.

Relation between semisimple Lie algebras and compact groups.

Lecture 16: Complete reducibility of representations of a semisimple Lie algebra.

Lecture 17: Representations of sl(2,C). Semisimple elements in a Lie algebra.

Lecture 18: Semisimple and nilpotent elements; Jordan decomposition. Toral subalgebras.
Definition of Cartan (maximal toral) subalgebra. Theorem: conjugacy of Cartan subalge-
bras (no proof).

Lecture 19: Root decomposition and root system for semisimple Lie algebra. Basic proper-
ties. Example: sl(n,C).

Lecture 20: Definition of an abstract root system. Weyl group. Classification of rank 2 root
systems.

Lecture 21: Positive roots and simple roots. Polarizations and Weyl chambers. Transitivity
of action of W on the set of Weyl chambers.

Lecture 22: Simple reflections. Reconstructing root system from set of simple roots. Length
l(w) and its geometric interpretation as number of separating hyperplanes.

Lecture 23: Cartan matrix and Dynkin diagrams. Classification of Dynkin diagrams (partial
proof).

Lecture 24: Constructing a semisimple Lie algebra from a root system. Serre relations and
Serre theorem (no proof). Classification of simple Lie algebras.
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Lecture 25: Finite-dimensional representations of a semi-simple Lie algebra. Weights; sym-
metry under Weyl group. Example: sl(3,C). Singular vectors.

Lecture 26: Verma modules and irreducible highest weight modules. Dominant weights and
classification of finite-dimensional highest weight modules (without proof)

Lecture 27: BGG resolution and Weyl character formula

Lecture 28: Example: representations of sl(n,C).





List of Notation

R – real numbers
C – complex numbers
K — either R or C. This notation is used when a result

holds for both R and C.
Z – integer numbers
Z+ = {0, 1, 2, . . . } — non-negative integer numbers

Linear algebra
V ∗ — dual vector space
〈 , 〉 : V ⊗ V ∗ → C — canonical pairing of V with V ∗.
Hom(V, W ) — space of linear maps V → W
End(V ) = Hom(V, V ) — space of linear maps V → V

considered as an associative algebra
gl(V ) = Hom(V, V ) — space of linear maps V → V

considered as a Lie algebra, see Example 3.14
tr A — trace of a linear operator
Ker B = {v | B(v, w) = 0 for all w}, for a symmetric

bilinear form B — kernel, or radical, of B
At — adjoint operator: if A : V → W is a linear

operator, then At : W∗ → V ∗.
A = As + An— Jordan decomposition of an operator A,

see Theorem 5.59

Differential geometry
TpM — tangent space to manifold M at point p
Vect(M) — space of C∞ vector fields on M
Diff(M) — group of diffeomorphisms of a manifold M

Φt
ξ — time t flow of vector field ξ, see Section 3.5

Lie groups and Lie algebras
Gm — stabilizer of point m, see (2.3)
g = Lie(G) — Lie algebra of group G, see Theorem 3.20
exp: g → G — exponential map, see Definition 3.2
ad x.y = [x, y], see (2.4)
z(g) — center of g, see Definition 3.34
Der(g) — Lie algebra of derivations of g, see (3.14)
[g, g] — commutant of g, see Definition 5.19
rad(g) — radical of Lie algebra g, see Proposition 5.39
K(x, y) — Killing form, see Definition 5.50
Ad g — adjoint action of G on g, see (2.4)
Ug — universal enveloping algebra, see Definition 5.1

Representations
HomG(V, W ), Homg(V, W ) — spaces of intertwining

operators, see Definition 4.1
χV — character of representation V , see Definition 4.43

V G, V g — spaces of invariants, see Definition 4.13

Semisimple Lie algebras and root
systems

h — Cartan subalgebra, see Definition 6.32
gα — root subspace, see Theorem 6.38
R ⊂ h∗ \ {0} — root system

hα = α∨ = 2Hα
(α,α) ∈ h — dual root, see (6.5), (6.4) (for

root system of a Lie algebra) and (7.4) for an
abstract root system

rank(g) = dim h — rank of a semisimple Lie algebra, see
(6.1)

sα — reflection defined by a root α, see Definition 7.1
R± — positive and negative roots, see (7.6)
Π = {α1, . . . , αr} ⊂ R+ — simple roots, see

Definition 7.12
ht(α) — height of a positive root, see (7.8)
Lα = {λ ∈ E | (λ, α) = 0} — root hyperplane, see (7.15)
C+ — positive Weyl chamber, see (7.17)
W — Weyl group, see Definition 7.6
si = sαi

— simple reflection, see Theorem 7.30

l(w) — length of element w ∈ W , see Definition 7.34,
Theorem 7.37

w0 — longest element of the Weyl group, see
Lemma 7.39

ρ = 1
2

P
R+

α, see Lemma 7.36

n± — nilpotent subalgebras, see (7.25)
P — weight lattice, see (7.12)
Q — root lattice, see (7.9)
Q+ = {Pniαi, ni ∈ Z+}, see (8.10)

Representations of semisimple
Lie algebras
V [λ] — weight subspace, see Definition 4.54,

Definition 8.1
C[P ] — group algebra of the weight lattice, see (8.4)
Mλ — Verma module, see (8.7)
Lλ — irreducible highest weight representation, see

Theorem 8.18
≺ — partial order on weights, see (8.11)
w.λ — shifted action of Weyl group on weights, see

(8.20)
b — Borel subalgebra, see (8.8)
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Index

Action
of a Lie group on a manifold 18
left 21
right 21
adjoint 21, 50
coadjoint 51

Ado theorem 41

Bruhat order 141
Borel subalgebra 134
Bernstein–Gelfand–Gelfand (BGG) resolution 140

Campbell–Hausdorff formula 39
Cartan’s criterion

of solvability 84
of semisimplicity 84

Cartan subalgebra 97
Cartan matrix 120
Casimir operator 92
Character 59, 132
Clebsh–Gordan condition 153
Commutant 76
Commutator 32

of vector fields 35
Complexification 43
Coroot 108

lattice 113
Coset space 16
Coxeter relations 128
Coxeter number 153

dual 153

Derivations
of an associative algebra 38
of a Lie algebra 38
inner 46

Distribution 42
Dynkin diagram 121

simply-laced 123

Engel’s theorem 79
Exponential map

for matrix algebras 22
for arbitrary Lie algebra 30

Flag manifold 20
Frobenius integrability criterion 42

Haar measure 57
Harish-Chandra isomorphism 150
Heisenberg algebra 46
Height 112
Highest weight 63, 134

Highest weight vector 63, 134
Highest weight representation 134
Homogeneous space 19

Ideal (in a Lie algebra) 34
Integrable representation 151
Intertwining operator 49
Invariant bilinear form 52

Jacobi identity 33

Killing form 83
Kostant partition function 142

Laplace operator 46
Levi decomposition 81
Length of an element of Weyl group 118
Lie group 14
Lie subgroup 17

closed 15
Lie algebra 33

of a Lie group 34
abelian 34
solvable 76
nilpotent 77
semisimple 80
simple 80
reductive 82

Lie’s theorem (about representations of a solvable
algebra) 78

Longest element of the Weyl group 119

Maximal root 139
Multiplicity 53, 144

One-parameter subgroup 29
Orbit 19
Orthogonality relations

for matrix elements 58
for characters 59

Peter–Weyl theorem 61
Poincaré–Birkhoff–Witt (PBW) theorem 74
Polarization of a root system 111

Radical 80
Rank 97, 107
Real form

of a Lie algebra 43
of a Lie group 43

Reduced expression in Weyl group 119
Regular elements of h∗ 111
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Representation 18, 49
adjoint 50
coadjoint 51
irreducible 52
completely reducible 53
unitary 55

Root decomposition 97
Root lattice 113
Root system

of a semisimple Lie algebra 97
abstract 107
reduced 107
dual 127
irreducible 119

Roots
positive, negative 111
simple 111
short, long 123

Schur Lemma 54
Semisimple

Lie algebra 80
operator 85
element in a Lie algebra 95

Serre relations 124
Simple reflection 117
Simply-laced (root system, Dynkin diagram) 123
Singular vector 139
Stabilizer 19, 37
Subalgebra (in a Lie algebra) 34
Subgroup

closed Lie 15
Lie 17

Submanifold 13
embedded 13
immersed 13

Subrepresentation 51
Spin 70

Toral subalgebra 96

Unitary representation 55
Universal enveloping algebra 71

Verma module 134

Wall (of a Weyl chamber) 116
Weight 62, 131

integer 113
dominant 137

Weight decomposition 62, 131
Weight lattice 113
Weyl chamber 115

positive 116
adjacent 116

Weyl character formula 142
Weyl denominator 143
Weyl group 109

Young diagram 145
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[57] D. P. Želobenko, Compact Lie groups and their representations, Translations of Mathematical
Monographs, Vol. 40. Amer. Math. Soc., Providence, R.I., 1973


