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Preface

Abu Ja’far Muhammad ibn Musa al-Khwarizmi
(whose name gives us the word ‘algorithm’) wrote
an algebra textbook which included much of what is -
still regarded as elementary algebra today. The title
of his book wasHisab al-jabr w’al-muqgabala The
word al-jabr means ‘restoring’, referring to the pro-
cess of moving a negative quantity to the other side o
an equation; the wordl-mugabalameans ‘compar- -
ing’, and refers to subtracting equal quantities from-
both sides of an equation. Both processes are famil:
iar to anyone who has to solve an equation! The worc
al-jabr has, of course, been incorporated into our lan-
guage as ‘algebra’.
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In a similar vein, Doctor Johnson gave this definition of “algebra” inDiis-
tionary of 1755:

This is a peculiar kind of arithmetick, which takes the quantity sought,
whether it be a number or a line, or any other quantity, as if it were
granted, and by means of one or more quantities given, proceeds by
consequence, till the quantity at first only supposed to be known, or
at least some power thereof, is found to be equal to some quantity or
guantities which are known, and consequently itself is known.

Since the time of Al-Khwarizmi and Johnson, the subject of algebra has changed
considerably. Firstly, we no longer restrict ourselves to considering just numbers;
the variables and symbols in our equations may be vectors, matrices, polynomi-
als, sets, or permutations. Secondly, the way we look at these equations has also
changed. As far as possible, we don’t care what the variables stand for, but only
the “laws” that they obey (associative, distributive, etc.); so that we can prove
something about a system satisfying certain laws which will apply to systems of
numbers, matrices, polynomials, etc. We sometimes refer to this as “abstract al-
gebra”.
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Chapter 1

What is mathematics about?

There is a short answer to this question: mathematics is goofs In any

other subject, chemistry, history, sociology, or anything else, what one expert says
can always be challenged by another expert. In mathematics, once a statement is
proved, we are sure of it, and we can use it confidently, either to build the next
part of mathematics on, or in an application of mathematics.

1.1 Some examples of proofs

In this part of the course we are going to talk about how to prove things. Let us
start with an easy theorem.

Theorem 1.1 Let n be a natural number. TheR is odd if and only if n is odd.

If you know what the words in the theorem mean, you might try a few cases,
to get a feel for what the theorem is about:
lisodd £=1isodd
2iseven 2=4iseven
3isodd %=9is odd
and so on. It seems to work. But this is not yet a proof; we are not convinced that
if you went on far enough, you might find a number for which the theorem was
not true.
First let us read the theorem more carefully.

Natural number This means one of the counting numberd,@,3.4,.... (Ar-
guments still occur among mathematicians about whether 0 should count as a nat-
ural number or not. This is just a matter of names, and doesn't affect the theorem
very much. We will say that 0 is a natural number.)

1



2 CHAPTER 1. WHAT IS MATHEMATICS ABOUT?

If and only if We will come back to this later. For now, it means that, for any
value ofn, either the two statements is odd” and ‘h? is odd” are both true, or
they are both false. In other words,

e if nis odd, them? is odd:;
e if n?is odd, them is odd.

This shows us that we have two things to show, in order to prove the theorem.
The first one looks fairly straightforward, but the second seems more difficult. But
we can turn it round into something simpler. The statement

if n?is odd, them is odd
is logically the same as the statement
if nis even, them? is even.
So we have to prove the two statements:
e if nis odd, them? is odd;
e if nis even, them? is even.

So let’s try to prove them.

We have one more thing to consider. What are even and odd numbers, math-
ematically speaking? An even number is one which is divisible by 2 exactly; in
other wordsh is even if it can be written as = 2k for some natural numbex.

An odd number is one which leaves a remainder of 1 when divided by 2; in other
words,n is odd if it can be written as = 2k + 1 for some numbek.

So to prove the first statement, we assume thatan odd number, and have
to show thain? is an odd number. That is, we assume that 2k + 1 for some
natural numbek. Then

n? = (2k+1)% = 4k® + 4k+ 1 = 2(2k? + 2k) + 1 = 2m+1,

wherem = 2k? 4+ 2k. Son? is odd.
For the second statement, assumeihaeven, that isn = 2k for some natural
numberk. Then
n? = (2k)? = 4k? = 2(2k?) = 2m,

wherem = 2k?; son? is even.
Now we have finished the proof, and we are sure that the theorem is true for
all natural numbers.
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Now let’s use this theorem as a
building block in a very famous
theorem, proved by Pythagoras,
who has some claim to be the first
mathematician ever (that is, the first
person to insist that mathematical
statements must have proofs). It
was Pythagoras who invented the
words “mathematics” and
“theorem”.

Theorem 1.2 The numbek/2 is irrational.

First we have to examine what the theorem means. The nugibés a pos-
itive real numbeix such thaix? = 2. A rational number is a number that can be
expressed as a fractiarib, wherea andb are integers, that is, natural numbers or
their negatives.

Now my calculator tells me thay/2 = 1.414213562. If this is right, then
Pythagoras is wrong, because this means that

1414213562
V2= 1000000000

But it turns out that the calculator is wrong, because it also tells me that
(1414213569 = 1.999999998944727844

which is close to 2 but not exactly 2. Pythagoras claims that, no matter how
accurately the calculator does the sum and to how many places of decimals it
expresses the answer, it will never get the exact valugdf

So how did Pythagoras prove his theorem? He used another important tech-
nique:

Proof by contradiction If | am trying to prove a statemef | have succeeded
if I can show that the assumption tHais false leads to a contradiction, a logical
absurdity. For this shows th&tis not false, that is, it is true.

So we prove Pythagoras’s theorem by contradiction; we assume the falsity of
what we are trying to prove and head for a contradiction. That is, we assume that

V2 is rational
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That is, m
v2="

n

for some natural numbenms andn. Now, in a fraction like this, if there is a
common factor oim andn, we can divide it out, and assume that they have no
common factor. (For examplé2 = 3.)

Now take our equation. Square roots are awkward; it usually simplifies an
equation if you can get rid of them. We can easily do this by squaring both sides
of the equation, to get

n
or in other words,
m = 2n2.

This equation tells us that? is even, since it isRwherek = n?>. Now we are able
to use Theorem 1.1, since we already proved this. Simfde even, necessarity
is even; sayn= 2p for some natural numbegg. Substituting this into the equation
gives

4p? = 2n?,

and cancelling a factor 2 gives
2p° =n?.

Now we can “do it again”. The last equation shows thais even, so that is
even, sayn = 29. So our original fraction fox/2 is

vz-m_2p
n 2q
We can cancel the 2 to get a simpler fraction §&.
But stop and remember what we are doing. We started off by saying that we
can assume that andn have no common factor, and we ended up with their
having a common factor of 2. So we have reached a contradiction.

According to the principle of proof by contradiction, our assumption t{fiat
is rational must be wrong, so thef2 is irrational, as Pythagoras claimed.

Now let us have another famous example of a proof by contradiction. We will
prove that the prime numbers go on for ever; there is no largest prime. (Recently,
a computer search found a previously unknown prime number bigger than any
others found so far. A journalist got the idea that they had found “the largest
prime number”, and phoned one of my colleagues for a comment. What would
you say if this happened to you?)
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This beautiful proof was discovered
by the Greek geometer Euclid, who
wrote one of the world’s most
successful textbooks ever, which
was used for nearly two thousand
years.

Theorem 1.3 There are infinitely many prime numbers.

A prime number is a natural number which is divisible only by itself and 1.
So 2, 3, 5 and 7 are prime numbers; 4 is not, sinee2ix 2. By convention, we
say that 1 is not a prime number, even though it satisfies the condition of having
no divisors except itself and 1; this is just a convention, and we will see the reason
for it later. Now if the numben is not prime, it must be divisible by some prime
number smaller than. (Again, we will see why later. This is not meant to be
obvious!)

We prove Euclid’s theorem by contradiction. That is, we assume that there are
only finitely many prime numbers. Then we can make a list of prime numbers:

p17 p27 p\?”'"?pk

are all the prime numbers.
Let n be the number that we get when we multiply all of these primes together
and add 1:

N= pP1p2pP3--- P+ 1.

Now there are two cases to consider: eithas prime, or it is not. We need to
show that either case leads us to a contradiction.

Caseniis prime: In this case, sinces, ..., px are all the primesy must be
one of them. But this is impossible, sinngs bigger than any of these primes.
(Remember how we formel)

Casenis not prime: Thenn must have a prime factor, which must be one
of the primespy, ..., px. Butnis the product of all the primes plus one; so if we
divide it by any of the prime®;, ..., px, we get a remainder of one. So this case
is also contradictory.

So, again according to the principle of proof by contradiction, the assumption
that there are only finitely many primes must be wrong; so there must be infinitely
many primes.
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1.2 Some proof techniques

Here are some words you'll find in statements you are asked to prove.

If, implies, sufficient The three statements
If A, thenB

AimpliesB
Ais a sufficient condition foB

all have the same meaning. They meanA'is true, therB is true”.

Look more closely at this. How could this statement fail to be true? The only
way it could fail is if Ais true andB is false. (IfAis false, then the statement is
correct no matter whethé& is true or false.) This seems a bit odd, sometimes, so
let us take an everyday example. Suppose | say to you, “If it is fine tomorrow, we
will go for a picnic.” The only situation in which my statement is false is if it is
fine tomorrow and we don't go for a picnic; if it rains tomorrow, my statement is
technically correct (though maybe not helpful!)

So how do we prove “ifA, thenB”? The obvious way is to assume thais
true, and deduce th8must be true. Look back at our proof of ‘fifis even, then
n? is even” in the last section. We assume thét even and prove thaf is even.

Only if, is implied by, necessary This is exactly the reverse. The three state-
ments

Bonly if A
Ais implied byB
Ais a necessary condition f&

all mean the same as ‘8, thenA".
The proof strategy, then, is to assume & true, and deduce thatmust be
true.

If and only if, equivalent, necessary and sufficient We saw earlier that to say
“Aif and only if B’ means that eitheA andB are both true, or they are both false.
We also saw that there are two things we have to do to show thig, tlienB”
and “if B, thenA”. This agrees with what we just learned about “if” and “only
if”. We sometimes also say “the statemeAtsandB are equivalent”, orAis a
necessary and sufficient condition 8.

Now we turn to some proof techniques.
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Proof by contradiction We already met this idea. In order to pro&ewe can
assume that is false and deduce a contradiction (a statement that is logically
impossible). We saw two examples of this: the proofs of Pythagoras’ Theorem on
the irrationality ofy/2, and Euclid’s theorem that there are infinitely many primes.

Proof by contrapositive This is a fancy way of saying thaiA‘implies B” is
logically equivalent to “noB implies notA”. We saw an example of this on
page 2. In order to prove the statementrifis even, them is even”, we proved
instead its contrapositive, the statementtis odd, them? is odd”.

Counterexamples Sometimes you will be given a general proposition, and asked
whether it is true or false.

Suppose for example you are trying to prove that some property holds for
every natural numbar. Let us call the properti(n). Now:

e If A(n) is true, then we have to give a general proof for it.
e If A(n) is false, we only have to give one valuerofor which it is not true.

For example, suppose we are considering the statement “every odd number is
prime”. SoA(n) would be, “if nis odd, them is prime”. If this happened to be
true, we would have to give a proof of it. But it is false, and all we need to say is
“the number 9 is odd, but is not prime since it is equal to3'. In this case, we
say that 9 is @ounterexampléo the statement that, ifis odd, them is prime.

1.3 Proof by induction

This is a more specialised technique but is very important, so we give it a section
to itself.

Suppose that we are trying to prove a statement about all natural numbers.
Suppose thaf(n) is the statement about the particular natural numbefhe
strategy of proof by induction is to do the following:

(a) Prove the statemeAf0), that is, the case when= 0.

(b) Prove that, ifA(n) is true, thenA(n+ 1) is true. In other wordsassume
A(n) andprove An+1).

Here (a) is called “starting the induction”, and (b) is “the inductive step”.

This is a bit confusing at first, since in part (b) we seem to be assuming the
thing we are trying to prove, namel(n); an argument where you assume what
you are trying to prove can't be valid, right? Well, in this case the argument is
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right. By (a), we know thaf\(0) is true. Now by (b) (in the case= 0), we know
thatA(0) impliesA(1), soA(1) must be true. By (b) again (with= 1), we know
thatA(1) impliesA(2), soA(2) must be true. And so on. Given any numbgwe
can count up ta; and at each step of the way, (b) allows us to get from the truth
of each statement to the truth of the next.

Suppose that we have a line of dominos, as shown in the diagram.

If we push over the first domino, what will happen? It will knock over the
second, which will knock over the third, and so on; eventually all the dominos
will fall. This is like induction. The inductive step is the fact that each domino
knocks over the next one, and starting the induction is giving the first domino a
push.

We have a bit of freedom about starting the induction. Instead of 0, it might
be more convenient to start by proviAgl); this and the inductive step show that
A(n) is true for alln > 1. We'll see an example soon where we start wi(R).

Here is an example. What is the sum of the firgositive integers? Induction
doesn’t help uguesghe answer, but if we can guess it, induction will letareve
that our guess is correct.

Theorem 1.4 The sum of the first n positive integers {®1#- 1) /2.

Again we can check this for small values: for example,
1+2+34+44+5=15=5x%x6/2.
Here is the proof by induction. L&{(n) be the statement

n(n+1)

1424---4n=
+2+ 0+ 5

Starting the induction Forn =1, the left hand side is 1, and the right-hand
side is 1x 2/2=1; soA(1) is true.
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The inductive step Suppose thal\(n) is true; that is,

1
1+2+---+n:n(n;r ).

We have to prove tha&(n+ 1) is true.
Now the left-hand side ofA\(n+1) is 1+2+---+n+ (n+1). Since we are
assuming thaf\(n) is true, this is equal to

n(n;1)+(n+l) _ n(n;l)_{_Z(n;l)
_ (n+1)(n+2)
T

after a little bit of algebraic manipulation. But this is exactly the right-hand side
of A(n+1); itis what we get from the expressiofn+ 1) /2 if we substituten+ 1
in place ofn. So the left and right sides #f(n+ 1) are equal, an&(n+1) is true.

By induction, we have proved tha{n) is true for alln > 1.

Unfinished business | told you earlier that if a natural numbeiis greater than 1
and is not prime, then it is divisible by some prime number less thdn other
words,

Theorem 1.5 Every natural number o~ 1 has a prime factor.

We prove this theorem by induction. Takén) to be the statement “every
natural numbek satisfying 1< k < n has a prime factor”. We provA(n) by
induction.

Starting the induction We can conveniently start the induction wiih= 2:
there is only one numbdrsatisfying 1< k < 2, namelyk = 2, and it has a prime
factor, namely 2. flote: We could start the induction with = 1: there are no
numbers satisfying 1< k < 1, and so any statement at all is true for all of them!
But you may feel uncomfortable with this sort of argument!]

The inductive step We assume tha&(n) is true, and we have to provén+
1). In other words, we assume that every natural nunktsatisfying 1< k <n
has a prime factor, and we have to prove that every natural nukngeisfying
1 <k <n+1 has a prime factor. Well, we don’t have to prove it &f these
numbers, since the hypothegin) shows that it is true fok = 2,3,...,n; we
only have to prove it fok = n+ 1.

Case 1n+1is prime. Ifitis prime, it certainly has a prime factor, namely itself.
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Case 2:n+1 is not prime; s+ 1 = ab for some natural numbeis andb,
where neither factor is 1. Then each factor must be smallerrtrab. So,
for example, < a < n. By A(n), we know that has a prime factop. Then
pis also a factor oh+ 1, and we have finished.

This completes the proof by induction.

Here is a variant on the principle of induction. Sometimes you might find this
easier to apply.

Suppose that we are trying to prove a staterd¢nj. We begin by arguing by
contradiction: we assume thatn) isn't true for all values oh, that is, there is
some value ofi for which it is false. So there must be a smallest value tr
whichA(n) is false. Now this has the property tha(n) is false butA(m) is true
for all numberan smaller tham — so we callh the “minimal counterexample” to
the statement we are trying to prove. (Some peoplendié “least criminal”.) If
we can show that no minimal counterexample can exist, then we have proved that
A(n) is true for alln.

Why is this the same as induction? Well, hdde the minimal counterexample,
and remember we are trying to get a contradiction. Maybe0. To show a
contradiction, we have to show that0) is true. Or maybe > 0. Now A(n)
is false andA(n— 1) is true, so if we could show th&(n— 1) impliesA(n), we
would have a contradiction in this case too. So the two things we have to prove are
precisely the same as starting the induction and doing the inductive step in a proof
by induction. But sometimes it is easier to think about a minimal counterexample.

Take an induction proof and try writing it out in the “minimal counterexample”
style, and see which you prefer.

1.4 Some more mathematical terms

There are many other specialised terms in mathematics.

Theorem, Proposition, Lemma, Corollary These words all mean the same
thing: a statement which we can prove. We use them for slightly different pur-
poses.

A theoremis an important statement which we can prove prapositionis
a statement which is less important. (Of the five theorems we've seen so far, |
would normally call two of them “theorems” and the other three “propositions”;
can you guess which are which?)cArollary is a statement which follows easily
from a theorem or proposition. For example, the statement

Let n be a natural number. Thenr is odd if and only if n is odd.
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follows easily from Theorem 1 in the notes, so | could call it a corollary of Theo-
rem 1. Finally, demmais a statement which is proved as a stepping stone to some
more important theorem. So | could have called Theorem 1 a lemma for the proof
of Theorem 2. (Remember how we used Theorem 1 in the proof of Theorem 2.)

Of course these words are not used very precisely; it is a matter of judgment
whether something is a theorem, proposition, or whatever. For example, there is a
very famous theorem calldéermat’s Last Theorepwhich is the following:

Theorem 1.6 Let n be a natural number bigger th& Then there are no positive
integers xy, z satisfying X+ y" = 2.

This was proved fairly recently by Andrew Wiles, so why do we attribute it to
Fermat?

Pierre de Fermat wrote the
statement of this theorem in the
margin of one of his books. He
said, “I have a truly wonderful
proof of this theorem, but this
margin is too small to contain it.”
No such proof was ever found, and
today we don't believe he had a
proof; but the name stuck.

Conjecture The proof of Fermat's Last Theorem is rather complicated, and |
will not give it here! Note that, for about 350 years (between Fermat and Wiles),
“Fermat’s Last Theorem” wasn’'t a theorem, since we didn’t have a proof! A
statement that we think is true but we can’t prove is calle@jecture So we
should really have called Rermat’s Conjecture

An example of a conjecture which hasn't yet been provedafdbach’s con-
jecture

Every even number greater than 2 is the sum of two prime numbers.

To prove this is probably very difficult. But to disprove it, a single counterex-
ample (an even number which is not the sum of two primes) would do.

Prove, show, demonstrate These words all mean the same thing. We have
discussed how to give a mathematical proof of a statement. These words all ask
you to do that.
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Converse The converse of the statemert impliesB” (or “if AthenB”) is the
statement B impliesA”. They are not logically equivalent, as we saw when we
discussed “if” and “only if”. You should regard the following conversation as a
warning! Alice is at the Mad Hatter’s Tea Party and the Hatter has just asked her
ariddle: ‘Why is a raven like a writing-desk?’

‘Come, we shall have some fun now! thought Alice. ‘I'm glad they've
begun asking riddles.—I believe | can guess that, she added aloud.

‘Do you mean that you think you can find out the answer to it?’ said the
March Hare.

‘Exactly so,’ said Alice.

‘Then you should say what you mean,’ the March Hare went on.

‘I do, Alice hastily replied; ‘at least—at least | mean what | say—that's
the same thing, you know.’

‘Not the same thing a bit"" said the Hatter. ‘You might just as well
say that “I see what | eat” is the same thing as “I eat what | see”’ ‘You
might just as well say,” added the March Hare, ‘that “I like what | get” is the
same thing as “I get what | like""" “You might just as well say,’ added the
Dormouse, who seemed to be talking in his sleep, ‘that “| breathe when |
sleep” is the same thing as “I sleep when | breathe™!’

‘Itis the same thing with you,” said the Hatter, and here the conversation
dropped, and the party sat silent for a minute, while Alice thought over all
she could remember about ravens and writing-desks, which wasn’'t much.

Definition To take another example from Lewis Carroll, recall Humpty Dumpty’s
statement: “When | use a word, it means exactly what | want it to mean, neither
more nor less”.

In mathematics, we use a lot of words with very precise meanings, often quite
different from their usual meanings. When we introduce a word which is to have
a special meaning, we have to say precisely what that meaning is to be. Usually,
the word being defined is written in italics. For example, in Geometry I, you met
the definition

An mx n matrix is an array of numbers set out m rows andn
columns.

From that point, whenever the lecturer uses the word “matrix”, it has this meaning,
and has no relation to the meanings of the word in geology, in medicine, and in
science fiction.

If you are trying to solve a coursework guestion containing a word whose
meaning you are not sure of, check your notes to see if you can find a definition
of that word.
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Exercises

1.1 Write down and prove the contrapositive of the statement

If xis anirrational number then-x s an irrational number.

1.2 Find counterexamples to the statements
(a) Every odd number is prime.

(b) Every prime number is odd.

1.3 Prove by induction that

n(n+1)(2n+1
121924 ... 12— (n+ )6( + ).

1.4 Let n be a positive natural number, and suppose thaas the property that

every positive natural number smaller thaf2 dividesn. Prove than < 6, and

hence find all numbenswith this property.

n

1.5 Define thebinomial coefl‘iciem(k

) for natural numbers andk by the rule

!
k k-(k=1)---1 0 " ifk>n.
(Heren! is the product of the natural numbers from 1ntp

(a) | have given you two definitions here. Prove that they are equivalent.

00" ()

(c) Using this and induction on, prove theBinomial Theorem

(a+b)"= % (E) akp" X

k=0

(b) Prove that

for positive integers..

1.6 Prove that

> (=)



14 CHAPTER 1. WHAT IS MATHEMATICS ABOUT?

1.7 Find the mistake in the following proof of the “Theorem?All triangles are
isosceles(You will need to draw a figure!)

Proof Given any triangleABC, let D be the point inside the triangle where the
bisector of the angl& meets the perpendicular bisector of the 982 Now let
DM be the perpendicular frod to AB andDN be the perpendicular fro to
AC.

Step 1 The triangleADN andADM are congruent (since they have the same
angles and they also have the silg in common).

Step 2 The triangle<CDN andBDM are congruent (sincBN = DM from
Step 1, andDC = DB asDL is the perpendicular bisector BC by construction,
and the angleEND andBMD are both right angles).

Step 3 From Step 1 we hav&N = AM, and from Step 2 we hawe¢C = MB.
HenceAC = AB.



Chapter 2

Numbers

Algebra begins by considering numbers and their properties, and moves on to
other kinds of mathematical objects. In this section of the notes, we will look at
numbers.

The important sets of numbers are:
¢ the natural numbers, denoted Wy
¢ the integers, denoted (%,

¢ the rational numbers, denoted Qy
¢ the real numbers, denoted Ry

e the complex numbers, denoted By

The notation we use for them is a special typeface called “blackboard bold”. Orig-
inally, number systems were printed in bold typ&Z, etc.; lecturers writing on
the blackboard couldn’t write in bold, so invented a different way of doing it; then
the printers had to catch up by designing a typeface.

The notationN, R and C for natural, real and complex numbers is easy to
remember; but what about the others? If the real numbers are &llden we
need a different letter for the rational numbers; we chd@$er “quotients”, since
every rational number has the folayib wherea andb are integers. Th& comes
from the German wordahlen meaning numbers.

In this section, you will not leardefinitionsof numbers. | will assume that
you know what numbers are; we will revise some of their properties.

15
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2.1 The natural numbers

The German mathematician Leopold
Kronecker (pictured) said, “God made the
natural numbers; all the rest is the work of
man.” In the same spirit, the French
mathematiciaEmil Borel said, “All of
mathematics can be deduced from the sole
notion of an integer; here we have a fact
universally acknowledged today.”

The important properties of the natural numbers are:

(&) They are used in counting. We can start from zero and, in principle, count up
a step at a time to reach any natural number. (Of course there are practical
limits!) This is the basis of proof by induction, as we saw in the last chapter.

(b) We can add and multiply natural numbers. These operations satisfy a num-
ber of familiar laws that you probably never stopped to think about. These
include:

at+b=b+a ab=ba
(a+b)+c=a+(b+c), (abjc=a(bc),
a(b+c) =ab+ac,
O+a=a, la=a

These laws are important to us, and they have been given names, which you
will need to know. The first two are theommutative lawsgfor addition

and multiplication respectively), the next two are #ssociative lawsfor
addition and multiplication), the fifth is thdistributive law and the last two

are theidentity laws(for addition and multiplication).

(c) Although we can add and multiply, we cannot always subtract or divide
natural numbers. There is no natural numbsuch that 4 x = 2, and noy
such that $ =5.

The facts that subtraction and division are not possible in the natural numbers
can be viewed another way. Since we can think of subtraction as “adding the
negative” and division as “multiplying by the reciprocal”’, we can formulate two
further laws known as thmverse lawdo describe the situation. These are laws
which do not holdfor the natural numbers!
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Additive inverse law: For any elemeafthere exists an elementa such that
a+(—a)=0.

Multiplicative inverse law: For any elemeat# 0, there exists an elemeat?!
suchthas-a=t=1.

Notice the exclusion in the multiplicative inverse law; we can't divide by zero!

The laws for the natural numbers can be interpreted in terms of counting. This
depends on two obvious principles:

e arow ofadots, followed by a row ob dots, containg+ b dots.
e arectangle of dots with sidesandb containsab dots.

The figure illustrates this faa = 2 andb = 3.

2+3=5 3x2=06

Now the laws of algebra can be explained by geometric transformations. For
example, the picture below shows the commutative law for addition and the dis-
tributive law. In the first case, we have reflected the figure left-to-right.

(3+4)x2=3x2+4x2

You are invited to produce similar geometric explanations of the commutative law
for multiplication and the associative laws.

2.2 The integers

We enlarge the number system because we are trying to solve equations which
can’'t be solved in the original system. At every stage in the process, people first
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thought that the new numbers were just aids to calculating, and not “proper” num-
bers. The names given to them reflect this: negative numbers, improper fractions,
irrational numbers, imaginary numbers! Only later were they fully accepted. You
may like to read the bookmagining Numberdy Barry Mazur, about the long
process of accepting imaginary numbers.

Anyway, we can’t always subtract natural numbers, so we add negative num-
bers to make it possible. Thetegersare the natural numbers together with their
negatives. So addition, subtraction, and multiplication are all possible for inte-
gers. The laws we met for natural numbers all continue to hold for integers. Also,
the additive inverse law (but not the multiplicative inverse law) holds for integers.

The natural numbers, 2,... are positive, while-1,—2, ... are negative. In-
tegers satisfy the law of signs: the product of a positive and a negative number is
negative, while the product of two negative numbers is positive.

2.3 The rational numbers

In a similar way, rational numbers are introduced because we cannot always divide
integers. A rational number is a number which can be written as a fraction

a
b

wherea andb are integers and # 0. We require that multiplying or dividing nu-
merator and denominator (top and bottom) of a fraction by the same thing doesn’t
change the fraction. So, if the denominator is negative, we can multipky by

to make it positive; and if numerator and denominator have a common factor, we
can divide by it. (We say that a fracti@yb is in its lowest termsf the highest
common factor o andbis 1.)

We can write rules for adding and multiplying rational numbers:

§+E_ad+bc g_g_ad—bc

b d bd ’ b d bd ’
a ¢ ac a ¢ ad
BXHZE, B—a_E:rfC?éO

The last rule says: to divide by a fraction, turn it upside down and multiply.

So, for rational numbers, addition, subtraction, multiplication, and division
(except by 0) are all possible. The rules we met for natural numbers all hold for
rational numbers, and so do the two inverse laws.
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2.4 The real numbers

There are still many equations we can’t solve with rational numbers. One such
equation is¢ = 2. (we saw Pythagoras’ proof of this in the last chapter.) Other
equations involve functions from trigonometry (such axsi#il, which has the ir-
rational solutiork = 7/2) and calculus (such as lag- 1, which has the irrational
solutionx = e).

So, we take a larger number system in which these equations can be solved,
thereal numbersA real number is a number that can be represented as an infinite
decimal. This includes all the rational numbers and many more, including the
solutions of the three equations above; for example,

£ = 04

I = 0142857142857,
V2 = 1.41421356237..,

T — 157079632679..,

e = 2.71828182846..

In the last three cases, we cannot write out the number exactly as a decimal, but
we assume that the approximation gets better as the number of digits increases.

We can add, subtract, multiply, and divide (except by zero) in the system of
real numbers, and the laws we met earlier (including the inverse laws) all hold
here too.

2.5 The complex numbers

The final extension arises because there are still equations we can't solve, such as
x? = —1 (which has no real solution) of = 2 (which has only one, though for
various reasons we would like it to have three). It turns out that the first equation
is the crucial one.

A complex numbeis a number of the fornra+ bi, wherea andb are real
numbers, and i is a mysterious symbol which will have the property that+1.
The rules for addition and multplication are

(a+bi)+(c+di) = (a+c)+(b+d)i,
(a+bi)(c+di) = (ac—bd)+ (ad+bo)i.
You can work out the rule for subtraction. How do we divide? You can check that

the rule above gives
(a+bi)(a—bi) = a®+b?,
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which is a positive number unleas= b = 0. So, to divide bya+ bi, we multiply

by
a B b i
a2 +b? a2+b2) "

Thus, in the complex numbers, we can add, subtract, multiply, and divide
(except by zero), and the laws we met earlier (including the inverse laws) all apply
here too.

Complex numbers are not called complex because they are complicated: a
modern advertising executive would certainly have come up with a different name!
They are called “complex” because each complex number is built of two parts,
each of which is simpler (being a real number).

Here, unlike for the other forms of numbers, we don’t have to take on trust
that the laws hold; we can prove them. Here, for example, is the distributive law.
Letz; = a; + b1l, z = ay + boi, andzz = az + bsi. Now

7z1(z2+23) = (a1+bai)((az+ag)+ (by+bs)i)
= (ag(ag+ag) —bi(b2+bs)) +as(bo+ bs) + bi(az + az))i,

and

02+21Z3 = ((alaz — blbz) + (albz + azbl)i) + ((a1a3 — blbg) + (albg + agbl)i)
= (a1a2 —bibo+aja3— blbg) + (albz +aghy +ajbs+ agbl)i,

and a little bit of rearranging shows that the two expressions are the same.

If z=a+ biis a complex number (wheweandb are real), we say thatandb
are thereal partandimaginary partof zrespectively. The complex numbe# bi
is called thecomplex conjugatef z, and is written ag. So the rules for addition
and subtraction can be put like this:

To add or subtract complex numbers, we add or subtract their real
parts and their imaginary parts.

The rule for multiplication looks more complicated as we have written it out.
There is another representation of complex numbers which makes it look simpler.
Let z= a+ bi. We define themodulusandargumentof z by

Iz = vaZ+b?
argz) =0 where co® =a/|z and si =b/|z|.
In other words, ifizl =r and argz) = 6, then
z=r(cosh +ising).

Now the rules for multiplication and division are:
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To multiply two complex numbers, multiply their moduli and add
their arguments. To divide two complex numbers, divide their moduli
and subtract their arguments.

2.6 The complex plane, or Argand diagram

The complex numbers can be represented geometrically, by points in the Eu-
clidean plane (which is usually referred to as Argand diagranmor thecomplex
planefor this purpose. The complex numbes a-+ bi is represented as the point
with coordinatega,b). Then|z is the length of the line from the origin to the
pointz, and argz) is the angle between this line and thaxis. See Figure 2.1.

z=a-thi

b=rsin6

0 a=rcosf

Figure 2.1: The Argand diagram

In terms of the complex plane, we can give a geometric description of addition
and multiplication of complex numbers. The addition rule is the same as you
learned for adding vectors in Geometry |, namely, pagallelogram rule(see
Figure 2.2).

Multiplication is a little bit more complicated. Let be a complex number
with modulusr and argumen®, so thatz = r(cosé +isin@). Then the way
to multiply an arbitrary complex number lajis a combination of a stretch and a
rotation: first we expand the plane so that the distance of each point from the origin
is multiplied byr; then we rotate the plane through an an@leSee Figure 2.3,
where we are multiplying by i = v/2(cogr/4) +isin(x/4)); the dots represent
the stretching out by a factor @f2, and the circular arc represents the rotation by
/4.

Now let’'s check the correctness of our rule for multiplying complex numbers.
Remember that the rule is: to multiply two complex numbers, we multiply the
moduli and add the arguments. To see that this is correct, supposa tuad
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2 +2p

V4]

2

0

Figure 2.2: Addition of complex numbers
(34 2i)(1+1)
=1+5i

0

Figure 2.3: Multiplication of complex numbers

2z, are two complex numbers; let their moduli beandr,, and their arguments
61+ 6,. Then

n = I']_(COSQ]_—l-iSinel),
Zp = rp(cosby+isinGy).
Then
212 = Tr1rp(cosh;+isinBy)(cosb, +isinby)

= r1rp((cosf,coshy — sinBySinB2) 4 (C0SO; SiNB2 + SinB1 c0SH,)i)
= rirp(cog 61+ 62) +isin(61+ 62)),

which is what we wanted to show.
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From this we can provBe Moivre’s Theorem

Theorem 2.1 For any natural number n, we have

(cosf +isin®)" = cosnb +isinng.

Proof The proof is by induction. Starting the induction is easy sifu®so +
ising)° =1 and cos@-isin0= 1.
For the inductive step, suppose that the result is true,ftrat is,

(cosf +isin®)" = cosnd +isinng.
Then

(cosf +isinf)™1 = (cosd +isin®)"- (cosh +ising)
= (cosnb +isinn)(cose +isino)
cogn+1)6 +isin(n+1)6,

which is the result fon+ 1. So the proof by induction is complete.

Note that, in the second line of the chain of equations, we have used the in-
ductive hypothesis, and in the third line, we have used the rule for multiplying
complex numbers.

The argument is clear if we express it geometrically. To multiply by the com-
plex numbercos6 +isinB)", we rotaten times through an angle, which is the
same as rotating through an angk

De Moivre’s Theorem is useful in deriving trigonometrical formulae. For ex-
ample,

cosP +isin30 = (cosf+ising)>
(cos’ @ —3cosAsir? ) + (3cog Osind —sin’H)i,

SO

cosP = cosS6—3cohsinto,
sin30 = 3co€6sind —sinto.

These can be converted into the more familiar forms éos31cos 6 — 3cosd
and sin® = 3sin6 — 4sirt 8 by using the equation cé8 + sir’ 6 = 1.
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Exercises

2.1 Prove by induction or otherwise that

1,1, , 1 _n-1
1.2 2.3 (n-1)n  n °

2.2 Use De Moivre’s Theorem to express cas$ a polynomial in cog and to
express sindas a polynomial in Sir.

2.4 Thequaterniondorm a number system discovered by Hamilton. They have
the forma+ bi + ¢j + dk, wherea,b,c,d € R and i, j, k are new symbols which
satisfy

2.3 Find

i?=j?=Kk?>=ijk = —1.
(&) Write down rules for the sum and product of two quaternions.
(b) Show that the associative law for multiplication holds for quaternions.

(c) Show that(a+ bi + ¢j + dk)(a— bi — ¢j — dk) = (a® + b? 4 ¢ 4 d?), and
hence show that the quaternions satisfy the inverse law for multiplication
(that is, every non-zero quaternion has a multiplicative inverse).
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Other algebraic systems

In this section, we will look at other algebraic systems which have operations
which resemble addition and multiplication for number systems. These operations
satisfy some of the laws which hold for numbers, but not necessarily all of them.
A reminder: we are interested in the following laws:

Commutative lawsa+b = b+ a, ab= ba

Associative laws{a+b) +c=a+ (b+c), (ab)jc = a(bc)
Distributive law:a(b+ c) = ab+ac

Identity laws: O+a=a, la=a

Inverse laws: For alé there exist§—a) such thata+ (—a) = 0; for all a # 0,
there exist@ ! such tham-a1 = 1.

We have to be a bit careful about what the identity laws mean, since in other alge-
braic systems there will not be numbers 0 and 1 to use here. The identity law for
multiplication should mean that there is a particular elenadaaly) in our system
such thata= a for every elemené. In the case of number systems, the number

1 has this property. Similarly we have to be careful about the interpretatiem of
anda~!in the inverse laws. But notice that we don’t even have to try to check the
additive or multiplicative inverse laws unless the additive or multiplicative identity
laws hold.

3.1 \Vectors

In Geometry |, you learned how to add 3-dimensional vectors, and two different
ways to multiply them: the scalar product or dot product, and the vector product

25
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or cross product. Given two vectausv, we denote their sum by + v, their dot
product byu - v, and their cross product hyx v.
(We can’'t do something like in handwriting, or writing on the blackboard.
So you should write the vectorasu, as you did in the Geometry | course.)
Remember that we can represent a vector by a column consisting of three
numbers; for example,

2
U=2i+j-5k=[ -1
5

Addition The commutative and associative laws hold for vector addition; so

0
does the zero and inverse laws, if we take the ve@ter [ O | to be the zero
0
element:
u+v = v+u,
(U+Vv)+w = u+(v+w),
0+v = v,
V+(—-v) = 0.

These can all be proved by a calculation. For example, here is a proof of the
associative law. Let

a p X
u=|bl, v=14q], W=1Yy
C r ya
Then
a+p X (a+p)+x
(Utv)+w=|b+qg |+|Yy| = (b+q)+y ,
CHr z (C+r)+
a P+ X a+(p+x)
u+(v+w)=[b |+ g+ty]| = b+ (g+y) |,
c r+z c+(r+2

and(a+ p) +x=a+ (p+Xx), etc., since the associative law holds for addition of
real numbers. So the two expressions are equal.

Notice what we have done here: we used the associative law for the real num-
bers to prove it for 3-dimensional vectors.
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Scalar product Asking about the associative law or other laws for the scalar
product doesn't really make sense, since the scalar product of two vectors is a
number, not a vector! S@i-v) -w is meaningless.

The lesson is that the operations we will be studying must take two objects of
some kind and combine them into another object of the same kind.

Vector product Remember the formula for the vector product:

a X i a Xx
blx|y]=|] by,
c y4 k ¢ z

or, to put it another way,
(a +bj +ck) x (xi +yj +zk) = (bz— cy)i + (cx— az)j + (ay— bx)k.

(This was not thedefinition but it was proved in Part 5 of the notes that this
formula holds.)

What properties does it have? You also met these properties in the Geometry |
course.

Associative law: This does not hold. Remember thatv = O for any vecto.
Now

(ixi)xj = 0xj=0,
ix(ixj) = ixk=-].

(Remember that taisprovesomething like the associative law, a single
counterexample is enough!)

Commutative law: This does not hold either. In fact, | hope you remember from
Geometry | that
uxv=—(vxu)

for any two vectorau andv. To get a specific counterexample, we could
observe that
ixj=Kk, j xi=-k.

Distributive law: This one is true:
Ux (V+w)=(uxv)+(uxw).

How do you prove this?
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Identity law: This one also fails. There cannot be a veetaith the property
thate x v = v for any choice ofv, becausee x v is always perpendicular
to v!

The lesson here is that even nice operations might fail to satisfy the usual laws
for numbers.

3.2 Matrices

Matrices form another class of objects which can be added and multiplied. We
will consider just 2< 2 matrices, as these illustrate the general principles. Recall
the rules, that you learned in Geometry I. lLet 2 3 andB = (S rf]) be

two matrices. We will take the entries. .., hto be arbitrary real numbers.

Addition The sum of two matriceé andB is the matrix obtained by adding
corresponding elements AfandB:

ab+ef_a+eb+f
c d g h) \c+g d+h)’

Multiplication  The rule for multiplication is more complicated:

a b\ /e f\ [aet+bg af+bh

c d/\g h/ \cet+dg cf+dh)’
It works like this. To work out the entry in the first row and second column of the
productAB, we take the first row oA (which is(a b)), and the second column
of B (which is ;

add the products, to gatf + bh. The rule for the other entries #B is similar.
Do these operations satisfy the laws we wrote down earlier?

; multiply corresponding elementa by f, andb by h), and

Addition The commutative, associative, identity, and inverse laws all hold.

To verify thatA+ B = B+ A, we have to show that corresponding entries of
these matrices are equal. These entries are obtained by adding corresponding
entries inA andB in either order; the results are equal. In detail,

a b L(€ f\  (a+e btf
c d g h/  \c+g d+h)’
e f L(2 by  [(et+a f+b
g h c d/  \g+c h+d)’
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and the matrices on the right are equal because = e+ a etc.
The associative law is true, and the argument to prove it is similar. If we define

thezero matrixto be
O — 00
2><2 - O 0 9

then we havé,, > + A = A for any matrixA; for, to work outO,,» + A, we add
zero to each entry of\, which doesn’t change it. Similarly, for any matri
we let—A be the matrix whose entries are the negatives of the entridstben
A+ (—A)=0.

Multiplication  Here we find our first surprise: The commutative law for multi-
plication fails! Remember that to disprove a general assertion, we only need one
counterexample:

1 2\ (5 6\ (19 22 23 34\ (5 6\ (/1 2
(8 8)-(a 5)#(3 3%)-G )G 5
[How did | find this example? Trial and error; | wrote down the first two matrices
| could think of, multiplied them both ways round, and found that the results were
different.]
Despite this, the associative law and the identity law do both hold for matrix

multiplication. For the associative law, there is no alternative but to multiply it out
and see:

a b e f i ~ (a Db\ [ei+fk ej+fl
c d g h)\k I ~ \c d/\gi+hk gj+hl
a(ei+ fk) +b(gi+hk) )

- ("
(Ea - E:;f:sa st (1))

(ae+bg)i + (af +bh)k )

Algebraic manipulation shows that
a(ei+ fk) +b(gi+ hk) = (ae+ bg)i + (ce+dg)k.

[Take a look at this manipulation. We first expand the brackets on the left, using
the distributive law. This givea(ei) +a( fk)+b(gi) +b(hk). Now use the associa-
tive law for multiplication to switch this int¢ae)i + (af)k+ (bg)i + (bh)k. Then

the commutative law for addition changes this(&®)i + (bg)i + (af)k+ (bh)k,
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and the distributive law once more turns this into the right-hand expression. Oh,
and | forgot to mention that | used the associative law for addition without telling
you, when | wrote down the sum of four terms without telling you where the
brackets go! So almost all the laws for real numbers get used.]

To prove the identity law for multiplication, we have to know what the identity
matrix is. Since the zero matrix has every entry zero, you might guess that the
identity matrix has every entry 1, but it doesn’t:

EHEDEY

In fact the identity matrix has ones on the main diagonal and zeros elsewhere:

(39

We havel,A = Afor any 2x 2 matrixA:

1 0\/a by [a b

0 1/\c d/) \c d)°
Now another possible problem might occur to you. Since multiplication is not
commutative, is it true thail, = A for anyA? Well, yes itis:

a b\/1 0\ (a b

(5 a0 2)-=(¢a)
as you can check. [You may also notice that, as well as the identity law for mul-
tiplication, we use the fact thabG= 0 for any real numbea and the zero law for
addition.]
10
0 0)’
then there is no matriB such thatAB = 1,. You learned in Geometry | that the
condition for a matrix to have an inverse is thatdegerminanis not zero.

The inverse law for multiplication does not hold. For exampl@,=#

Distributive law: | leave it to you to check that
A(B+C)=AB+AC

for any matrice®\, B,C. You might even want to check which laws for real num-
bers are used in the proof. Because multiplication is not commutative, we can also
check the other way round:

(B+C)A=BA+CA
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for any matrice\, B, C.

We use the notatiokl,, 2(R) for the set of all 2« 2 matrices with real numbers
as entries. (We call these matrices “real matrices” for short.) As you can see, we
can easily generalise this notation. By changing the subscript, we can talk about
the set of matrices of different size, sax 3; and by puttingZ, Q or C in place
of R, we can talk about matrices whose entries are integers, rational numbers, or
complex numbers.

3.3 Polynomials

You can think of a polynomial as a function which can be written as a sum of

terms, each of which is a power @ultiplied by a constant. So “the polynomial

x2” should really be “the polynomialxt”. We write x! asx, and leave oux’

altogether (just writing the constant). If the coefficient of a powex isfzero, we

usually don’t bother writing it: so we writex2 + 3 rather than £ + 0x+ 3. Of

course, if all the terms are zero, we have to write something; so we just write O.
So a typical polynomial has the form

anxX"+a,_ X"t agx+ap.

Note that a constardy is a special kind of polynomial called@nstant polyno-
mial.

The degreeof a polynomial is the largest numbersuch that the polynomial
contains a terna,x" with a, ## 0. Thus, a non-zero constant polynomial has de-
gree 0, since it has the forapx°. The zero polynomial 0 doesn’t have a degree,
since it doesn’t have any non-zero terms! [Be warned: some people say that it
has degree-1; others say that it has degreeo. Of course, these are merely
conventions.]

Addition and multiplication  You already know how to add and multiply poly-
nomials. But it is difficult to give a proper mathematical definition. For example,
(23 43) + (C+x—5) =x3+ 2 +x— 2.

We can't just say “add corresponding terms”, since some terms may be missing;
we have first to put the missing terms in with coefficients 0. For multiplication, we
multiply each term of the first factor by each term of the second, and then gather
up terms involving the same powerf

(2 +3) (®+x—5) = 2+ (2 +3%°) —10x% +3x— 15
= 2C+53 10 +3x— 15,
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| ask you to take on trust for now that it is possible to give good definitions of
addition and multiplication of polynomials, and to show that they do satisfy the
commutative, associative and identity laws for both addition and multiplication,
the inverse law for addition, and the distributive law.

We use the notatioiR[x] for the set of all polynomials with real numbers as
coefficients. (We call them “real polynomials” for short.) As you can see, this
notation can be generalise@[x] andC[x] denote the sets of polynomials with
rational or complex numbers as coefficients. These sets satisfy the same rules for
addition and multiplication as the real polynomials.

3.4 Sets

Here is another example where we have an operation or rule of combination for
objects which are nothing like numbers.

Let.¥ be a set. We regard it as a “universal set”; in Probability I, it was called
thesample spaceOur objects will be subsets of'.

Two operations which can be performed on sets are union and intersection,
defined as follows:

Union: theunion of two setsA andB is the set of all elements lying in eithér
or B:
AUB={x:xeAorxe B}.

We readAUB as “A unionB”, or “AorB".

Intersection: thentersectionof two setsA andB is the set of all elements lying
in both A andB:
ANB={x:xeAandx e B}.

We readAN B as “A intersectiorB”, or “A andB”.

We can represent sets Mgnn diagramsand show these two operations in a

diagram as follows: A B A B
AUB ANB

Here are some laws they satisfy.

Commutative laws AUB=BUA ANB=BNA
Associative laws AU (BUC) = (AuB)uC AN (BNC)=(AnB)NC
Identity laws AUD=A AN =A
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When we come to the distributive law, there is a small surprise. To write down
the distributive law for numbers, we have to distinguish between addition and
multiplication. It is true that

ax (b+c)=(axb)+(axc),
but it is not true that
a+(bxc)=(a+b)x (a+c).

For sets, which of our two operations should play the role of addition, and which
should be multiplication?

It turns out that it works both ways round. We can replace “plus” by “or” and
“times” by “and”, orvice versa

Distributive laws AN (BUC) = (ANB)U(ANC) AU(BNC) = (AUB)N(AUC)

All of these assertions have similar proofs: draw a Venn diagram to convince
yourself, and then give a mathematical argument. Here is the proof of the first
distributive law. | leave the VVenn diagram to you.

xe AN(BUC) < xeAandxeBUC
< (xeAandxeB)or(xe Aandx e C)
& xe (ANB)U(ANC).

So the two seté&A\n (BUC) and (AN B) U (ANC) have the same members, and
hence are equal.

The inverse laws are not true. For example, we saw that the zero element for
the operation of union is the empty set 0; and, given &sehich is not the empty
set, it is impossible to find a s such thatAuB = 0, sinceAUB is at least as
large asA. The failure of the inverse law for intersection is similar.

In Probability I, you saw several other operations on sdifference symmet-
ric difference andcomplement You might like to check which of our laws are
satisfied by difference, or by symmetric difference, for example.

Exercises
) 1 2 1 -1
31 (a) Flnd(3 4> (3 _5).

. : 1 2
(b) Find the inverse 0(3 4).



34 CHAPTER 3. OTHER ALGEBRAIC SYSTEMS

3.2 Find two matrices having entries 0 and 1 only which do not commute with
each other.

3.3 Show that the symmetric difference of sets satisfies the associative, commu-
tative, identity and inverse laws, where the identity element is the empty set 0 and
the inverse of any s&t is equal toA.

3.4 Recall the definition of the quaternions from the last chapter.

(&) Show that any quaternion can be formally writtemasv, wherea € R and
v is a 3-dimensional real vector.

(b) Show that

(@a+Vv)+(b+w) = (a+b)+(v+w),
(a+Vv)(b+w) = (ab—v-w)+ (aw+bv+vxw),

where- and x denote the dot and cross product of vectors.
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Relations and functions

4.1 Ordered pairs and Cartesian product

We write {x,y} to mean a set containing just the two elementndy. More
generally,{X1,Xo,..., X} IS a set containing just theelements, xo, ..., Xn.

The order in which elements come in a set is not important{y5¢} is the
same set agx,y}. This set is sometimes called anordered pair

Often, however, the order of the elements does matter, and we need a different
construction. We write therdered pairwith first elemenk and second elemewpt
as(x,y); this is not the same dg,x) unlessx andy are equal. You have seen this
notation used for the coordinates of points in the plane. The point with coordinates
(2,3) is not the same as the point with coordinatd®). The rule for equality of
ordered pairs is:

(X,y) = (u,v) if and only if x=u andy = v.

This notation can be extended to orderetuiples for largem. For example, a

point in three-dimensional space is given byadered triple(x,y,z) of coordi-

nates.
The idea of coordinatising the plane or
three-dimensional space by ordered pairs or triples
of real numbers was invented by Descartes. In his
honour, we call the system “Cartesian coordinates”.
This great idea of Descartes allows us to use
algebraic methods to solve geometric problems, as
you saw in the Geometry | course last term.

By means of Cartesian coordinates, the set of all points in the plane is matched
up with the set of all ordered pai(g,y), wherex andy are real numbers. We call

35
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this setR x R, or R2. This notation works much more generally, as we now
explain.

Let X andY be any two sets. We define thé&artesian product X< Y to be
the set of all ordered pair,y), with x € X andy € Y; that is, all ordered pairs
which can be made using an elemenoas first coordinate and an elementyof
as second coordinate. We write this as follows:

XxY={(xy):xeX,yeY}.
You should read this formula exactly as in the explanation. The notation

{x: P}

means “the set of all elememtdor which P holds”. This is a very common way
of specifying a set.

If Y =X, we write X xY more briefly asX?. Similarly, if we have sets
X1, -+, %0, We letXy x - -+ x X, be the set of all ordereattuples(xy, ..., xn) such
thatx; € Xq, ..., Xq € Xp. If X1 =Xo =--- = X, = X, say, we write this set as".

If the sets are finite, we can do some counting. Remember that we use the
notation|X| for the number of elements of the séi(not to be confused witz],
the modulus of the complex numberfor example).

Proposition 4.1 Let X and Y be sets witlX| = p and|Y| = g. Then
(@) [XxY|=paq;

(b) [X]"=p".

Proof (a) In how many ways can we choose an ordered (pay) with x € X and
y € Y? There are choices forx, andq choices fory; each choice ok can be
combined with each choice fgr so we multiply the numbers.

(b) This is an exercise for you.

The “multiplicative principle” used in part (a) of the above proof is very im-
portant. For example, K = {1,2} andY = {a,b,c}, then we can arrange the
elements oKX x Y in a table with two rows and three columns as follows:
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4.2 Relations

Suppose we are given a set of peopje...,R,. What does the relation of being
sisters mean? For each ordered pBirP, ), eitherR andP; are sisters, or they are
not; so we can think of the relation as being a rule of some kind which answers
“true” or “false” for each pair(R,Pj). Mathematically, there is a more abstract
way of saying the same thing; the relation of sisterhood issétef all ordered
pairs(R,P;) for which the relation is true. (When | say thatandP; are sisters, |
mean that each of them is the sister of the other.)

So we define aelation Ron a setX to be a subset of the Cartesian product
X2 = X x X; that is, a set of ordered pairs. We think of the relation as holding
betweernx andy if the pair(x,y) is in R, and not holding otherwise.

Here is another example. L¥t= {1,2,3 4}, and letR be the relation “less
than” (this means, the relation that holds betwgeandy if and only if x < y).
Then we can writdR as a set by listing all the pairs for which this is true:

R= {(la 2)7 (la 3)7 (174)7 (27 3)? (274)’ (374)}'

How many different relations are there on theXet {1,2,3,4}? A relation
on X is a subset oK x X. There are 4« 4 = 16 elements X x X, by Proposi-
tion 4.1. How many subsets does a set of size 16 have? For each element of the
set, we can decide to include that element in the subset, or to leave it out. The two
choices can be made independently for each of the sixteen elemettssuf the
number of subsets is

2x2x---x2=21%_65536

So there are 65536 relations. Of course, not all of them have simple names like
“less than”.

You will see that a relation like “less than” is writteni< y; in other words,
we put the symbol for the relation between the names of the two elements making
up the ordered pair. We could, if we wanted, invent a similar notation for any
relation. Thus, iRis a relation, we could writg& R yto mean(x,y) € R.

4.3 Equivalence relations and partitions

Just as there are certain laws that operations like multiplication may or may not
satisfy, so there are laws that relations may or may not satisfy. Here are some
important ones.

Let Rbe arelation on a sé&t. We say thaR s

reflexiveif (x,x) € Rfor all x € X;
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symmetridf (X,y) € Rimplies that(y,x) € R;
transitiveif (x,y) € Rand(y,z) € Rtogether imply thatx,z) € R

For example, the relation “less than” is not reflexive (since no element is less
than itself); is not symmetric (since< y andy < x cannot both hold); but is
transitive (sincex < y andy < zdo imply thatx < z). The relation of being sisters
is not reflexive (it is debatable whether a girl can be her own sister, but a boy
certainly cannot!), but it is symmetric. It is “almost” transitive: xfandy are
sisters, and/ andz are sisters, ther andz are sisters except in the case when
X = z. But this case can actually occur, so the relation is not transitive. (For it to
be transitive, the transitive law would have to hold without any exceptions.)

A very important class of relations are called equivalence relationggiiv-
alence relationis a relation which is reflexive, symmetric, and transitive.

Before seeing the job that equivalence relations do in mathematics, we need
another definition.

Let X be a set. Apartition of X is a collection{As, Az, ...} of subsets oK
having the following properties:

(@) Ai # 0;
(b) ANA;=0fori# j;
(€) AUAU--- =X,

So each set is non-empty; no two sets have any element in common; and between
them they cover the whole &f. The name arises because theXset divided into
disjoint partsAg, Ay, ... ..

At Al A3| Aq| A5

The statement and proof of the next theorem are quite long, but the message
is very simple: the job of an equivalence relationXrs to produce a partition of
X; every equivalence relation gives a partition, and every partition comes from an
equivalence relation. This result is called thguivalence Relation Theorem

First we need one piece of notation. llebe a relation on a set. We write
R(x) for the set of elements of which are related t&; that is,

Rx) ={ye X: (xy) € R}.
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Theorem 4.2 (a) Let R be an equivalence relation on X. Then the séx3,R
for x € X, form a partition of X.

(b) Conversely, given any partitiofA1, Ay, ...} of X, there is an equivalence
relation R on X such that the setsake the same as the set&dRfor x € X.

Proof (a) We have to show that the s&&) satisfy the conditions in the defini-
tion of a partition ofX.

e For anyx, we havex,X) € R(sinceRis reflexive), s € R(x); thusR(x) #
0.

e We have to show that, R(x) # R(y), thenR(x) "R(y) = 0. The contrapos-
itive of this is: if R(x) "R(y) # 0, thenR(x) = R(y); we prove this. Suppose
thatR(x) N R(y) # 0; this means that there is some element,zdying in
bothR(x) andR(y). By definition,(x,z) € Rand(y,z) € R, hence(zy) € R
by symmetry andx,y) € R by transitivity.

We have to show thd®(x) = R(y); this means showing that every element
in R(x) is in R(y), and every element d&(y) is in R(x). For the first claim,
takeu € R(x). Then(x,u) € R. Also (y,x) € R (by symmetry; we know that
(x,¥) € R; so(y,u) € Rby transitivity, andu € R(y). Conversely, it € R(y),

a similar argument (which you should try for yourself) shows thatR(x).
SoR(x) = R(y), as required.

e Finally we have to show that the union of all the sB{x) is X, in other
words, that every element o lies in one of these sets. But we already
showed in the first part thatbelongs to the séR(x).

(b) Suppose thafA;,Ay, ...} is a partition ofx. We define a relatiolR as
follows:

R={(x,y) : xandy lie in the same part of the partitidpn
Now
e x andx lie in the same part of the partition, &is reflexive.

e If x andy lie in the same part of the partition, then soylandx; soR is
symmetric.

e Suppose that andy lie in the same pard; of the partition, and/ andzlie
in the same parj. Theny € Aj andy € Aj; and so we havé; = A; (since
different parts are disjoint). Thusandz both lie inA;. SoR s transitive.
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ThusR s an equivalence relation. But cleaf¢x) consists of all elements lying
in the same part of the partition &sso, if x € A;, thenR(x) = A;. So the partition
consists of the seR(x).

If Ris an equivalence relation, then the sB{x) (the parts of the partition
corresponding t&) are called thequivalence classed R.

Here is an example. There are five partitions of the{4e®?,3}. One has a
single part; three of them have one part of size 1 and one of size 2; and one has
three parts of size 1. Here are the partitions and the corresponding equivalence
relations.

Partition Equivalence relation

{{1,2,3}} {(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)}
{{1}.{2,3}} 1{(1,1),(2,2),(2,3),(3,2),(3,3)}

{{2},{1,3}} {(1,1),(1,3),(2,2%(3,1),(3,3)}

{{3r.{1.2}} 1{(1,1),(1,2),(21),(2,2),(3,3)}

{{1},{2}.{3}} | {(1,1),(2,2),(3,3)}

Since partitions and equivalence relations amount to the same thing, we can
use whichever is more convenient.

4.4 Functions

What is a function? This is a question that has given mathematicians a lot of
trouble over the ages. People used to think that a function had to be given by a
formula, such as? or sinx. We don’t require this any longer. All that is important

is that you put in a value for the argument of the function, and out comes a value.
Think of a function as a kind of black box:

The name of the function iB; we putx into the black box andF (x) comes
out. Be careful not to confude, the name written on the black box, wi(x),
which is what comes out wheqis put in. Sometimes the language makes it hard
to keep this straight. For example, there is a function which, when you pyt in
outputsx?. We tend to call this “the functiow®”, but it is really “the squaring
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function”, or “the functionx — x2”. (You see that we have a special symbelto
denote what the black box does.)

Black boxes are not really mathematical notation, so we re-formulate this defi-
nition in more mathematical terms. We have to define what we mean by a function
F. Now there will be a seX of allowable inputs to the black boX; is called the
domainof F. Similarly, there will be a sef which contains all the possible out-
puts; this is called theodomainof F. (We don’t necessarily require that every
value ofY can come out of the black box. For the squaring function, the domain
and the codomain are both equalRe even though none of the outputs can be
negative.)

The important thing is that every inpute X produces exactly one output
y=F(x) € Y. The ordered paifx,y) is a convenient way of saying that the input
X produces the output. Then we can take all the possible ordered pairs as a
description of the function. Thus we come to the formal definition:

Let X andY be sets. Then &unctionfrom X to Y is a subseF of
X xY having the property that, for everyc X, there is exactly one
elementy € Y such thatx,y) € F. We write this unique asF (x). We
write F : X — Y (read ‘F from X to Y”) to mean thafF is a function
with domainX and codomairy.

The set of all elementB (x), asx runs throughX, is called therange of the
functionF. It is a subset of the codomain, but (as we remarked) it need not be the
whole codomain.

Here is an example. L&t =Y = {1,2,3,4,5}, and let
F= {(17 1)7 (274)7 (37 5)7 (474>7 (57 1)}

ThenF is a function fromX to Y, with F(1) = 1, F(2) = 4, and so on. (In this
particular case, it happens thatis given by a fairly simple formulaf (x) =
6Xx— X% —4.)

A functionF : X — Y is called

injective or one-to-one if different elements oX have different images
underF: X3 # xp implies F(x1) # F(x2) (or equivalently,F (x1) = F(x2)
impliesx; = Xp).

surjective or ontg, if its range is equal t&': that is, for every €Y, there is
somex € X such thaf (x) =y.

bijective or a one-to-one correspondengeit is both injective and surjec-
tive.



42 CHAPTER 4. RELATIONS AND FUNCTIONS

A bijective function fromX to Y matches up the two sets: for each X there
is a uniquey = F(x) € Y; and for eacly € Y there is a uniqu& € X such that
F(x) =y. This can only happen X andY have the same number of elements.

If F is a bijective function fronX toY, then there is amverse function Grom
Y to X which takes every elemegtc Y to the uniquex € X for which F(x) =y.
In other words, the black box f@s is the black box fofF in reverse:

X = G(y) if and only ify = F(X).

The inverse functios is also bijective. Thus a bijective functiéhand its inverse
G satisfy

e G(F(x)) =xforall xe X;
e F(G(y))=yforallyeY.

Notice thatF is the inverse function oB.

Sometimes we represent a functien A — B by a picture, where we show
the two set andB, and draw an arrow from each elemerdf A to the element
b= F(a) of B. For such a picture to show a function, each elemeAtmoist have
exactly one arrow leaving it. Now

e F is one-to-one (injective) if no point d@ has two or more arrows entering
it;

e F is onto (surjective) if every point d has at least one arrow entering it;

¢ F is one-to-one and onto (bijective) if every point®has exactly one arrow
entering it; in this case, the arrows match up the points with the points
of B.

Here are some illustrations. The first is not a function because some elements of
A have more than one arrow leaving them while some have none.

A

Not a function Onto, not one-to-one
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)

o/
One-to-one, not onto One-to-one and onto

4.5 Operations

An operationis a special kind of function: its domain ¥ x X and its codomain
is X, whereX is a set. In other words, the input to the black boxFoconsists of
a pair(x,y) of elements o, and the output is a single element6f So we can
think of the function as “combining” the two inputs in some way.

There is a different notation often used for operations. Rather than write the
function asF, so thatz= F(x,y) is the output whex andy are input, instead we
choose a symbol like-, x, %, =—, o or e, and place it between the two inputs: that
is, we writex—+Y, orxxy, or ..., instead oF (x,y). This is callednfix notation

Many of the operations we have already met (addition, subtraction, multipli-
cation for numbers; addition and vector product for vectors; addition and multi-
plication for matrices or polynomials; union and intersection for sets) are binary
operations.

An operation on a finite set can be represented by an operation table. This is
a square table with elements of the Xelabelling the rows and columns of the
table. To calculateoy (if o is the operation), we look in the row labell&dnd
column labelledy; the element in the table in this positionXxsy. Here is an
example:

Given an operation, we can ask whether it satisfies the laws of algebra that we
have met several times already. Consider the above example.

Commutative? Yes, since the table is symmetric about the main diagomalyso
is always the same §® x.

Associative? Yes, though this is harder to show. You are invited either to prove it
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by considering all cases of the associative law, or to find a nicer proof using
a description of what the operation actually does.

Identity? Yesais an identity, since

aoca=a, aob=D, aoc=_C.

Inverse? No, there is no elemensuch thatox = a, sinceco x is always equal
to ¢, whateverx is.

4.6 Appendix: Relations and functions

In this section we will see that, given an arbitrary function, we can turn it into
a bijective function. IfF : X — Y is not onto, we can throw away the points of
the codomairY which are not in the range &f. Making it one-to-one is more
difficult. The theorem below shows how to do it.

Theorem 4.3 Let F: X — Y be a function.
(a) Therange of F, the séyy €Y : y=F(x) for some x X, is a subset B of Y.

(b) Define arelation R on X by the rule thigd, x2) € R if and only if Hx;) =
F(x2). Then R is an equivalence relation on X.

(c) Let A be the set of equivalence classes of R. Then the furkctidn— B
defined by (R(x)) = F(x) for all x € X, is a bijective function from A to B.

Proof Part (a) is clear. Part (b) is quite ea®yis

reflexive becausk (x) = F(x) for all x € X;
symmetric because(x1) = F(x2) impliesF (x2) = F(x1);
transitive becausE (x1) = F (x2) andF (x2) = F(x3) impliesF (x1) = F (x3).

Look at part (c). There is one important thing we have to do before we even
have a functior: to show that it is well-defined. How could this go wrong?
If x; andx; are equivalent (that is, ifx;,x2) € R, thenR(x1) = R(x2). What
guarantee do we have thatR(x;)) = F(R(x2)), as we need? This means that
F(x1) = F(x2); but that is exactly the condition that ensu(gs x,) € R. SoF is
a well-defined function.

Is it one-to-one? Suppose thatR(x;)) = F(R(x2)). Then by definition,
F(x1) = F(X2); SO(X1,X2) € R, SOR(X1) = R(X2).

Is it onto? Take any € B. SinceB is the range of, there exists someec X
with F(x) =y. ThenF (R(x)) =y, soy is in the range oF.
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If that seems complicated, here is a picture.

F F
X Y A B

AL g Aje—ey1
FE(X)=¥1

Ao ~EX) Age——eYo
Y2

Az e 1Y3 Age—eY3
Y4

Ay B Age———eYs

As Age—Ys5

The five slabs on the left are the equivalence classes of the reRitieach
point in the top slab is mapped Iy to the same poinE (x) on the right. The
five points in the oval on the right make up the rangé& oft is clear that equiva-
lence classes on the left are matched up with points of the range on the right by a
bijective function.

In our earlier example, the equivalence classes of the rel&iare {1,5},
{2,4} and{3}; the range of is {1,4,5}; and the one-to-one correspondeiice
maps{1,5} to 1,{2,4} to 4, and{3} to 5.

F F
X Y A B
1 1
2 2 {151
3 3 {24} 4
4 4  {3}e—5
5 5

Exercises

4.1 Which of the following relation®& on setsX are (i) reflexive, (ii) symmetric,
and (iii) transitive? For any relation which is an equivalence relation (that is,
satisfies all three conditions), describe its equivalence classes.
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(@) X is the set of positive integer® = {(x,y) : x+y = 100}.
(b) Xis the set of integerf®k = {(X,y) : X=y}.

(c) X is the set of railway stations in Great BritaRjs the set of pairgx,y) of
stations for which there is a scheduled direct train frotay.

4.2 For each of the following functionk, describe the image d¥, and state
whetherF is (i) one-to-one and (ii) onto:

(@ F:{0,1,2,3,4,5} —{0,1,2,3,4,5}, F(X) = |X/2] (the greatest integer not
exceeding/2).

(b) F:R—R,F(x)=¢€~
() F:R—R,F(X) =x3+x

4.3 How many operations are there on the &atb} with two elements? How
many of them satisfy (i) the associative law, (ii) the identity law?

4.4 The Fundamental Theorem of Algebsays that a polynomial of degree
over the complex numbers hagomplex roots.

Define a “function’F : C? — C? by the rule thafF (a,b) = (c,d) if candd are
the roots of the quadratic equatigh+ ax+b = 0. (So, for exampler (—3,2) =
(1,2))

Show that~ is not in fact a function.

Can you suggest a way to fix the definition?
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Division and Euclid’s algorithm

5.1 The division rule

Thedivision ruleis the following property of natural numbers:

Proposition 5.1 Let a and b be natural numbers, and assume that® Then
there exist natural numbers g and r such that

(@ a=bqg+r;
(b) 0<r<b-1.
Moreover, g and r are unique.

The numberg andr are the quotient and remainder wheers divided byb.
The last part of the proposition (about uniqueness) means thgtaifidr’ are
another pair of natural numbers satisfyiag- bq +r’ and 0<r’ <b -1, then
g=q andr =r".

Proof We will show the uniqueness first. Lgtandr’ be as above. if =r’, then
bg= bd, soq=d (asb > 0). So suppose that# r’. We may suppose that< r’
(the case when > r’ is handled similarly). Then' —r = b(q—d'). This number
is both a multiple ob, and also in the range from 1 -1 (since bothr andr’
are in the range from 0 to— 1 and they are unequal). This is not possible.

It remains to show thaj andr exist. Consider the multiples of 0, b, 2b, . ...
Eventually these become greater tlaiiCertainly(a+ 1)b is greater tham.) Let
gb be the last multiple ob which is not greater thaa. Thengb< a < (q+1)b.
So 0<a—qgb< b. Puttingr = a— gbgives the result.

Sinceq andr are uniquely determined yandb, we write them aadivb and
amodb respectively. So, for example, 37 div57 and 37 mod 5= 2.
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The division rule is sometimes called tkésision algorithm Most people
understand the word “algorithm” to mean something like “computer program”,
but it really means a set of instructions which can be followed without any special
knowledge or creativity and are guaranteed to lead to the result. A recipe is an
algorithm for producing a meal. If | follow the recipe, | am sure to produce the
meal. (But if | change things, for example by putting in too much chili powder,
there is no guarantee about the result!) If | follow the recipe, and invite you to
come and share the meal, | have to give you directions, which are an algorithm for
getting from your house to mine.

You learned in primary school an algorithm for long division which has been
known and used for more than 3000 years. This algorithm is a set of instructions
which, given two positive integesandb, dividesa by b and finds the quotierg
and remainder satisfyinga=bqg+r and 0<r <b-—1.

5.2 Greatest common divisor and least common mul-
tiple

We writea | b to mean that dividesb, or b is a multiple ofa. Warning: Don’t
confusea | b with a/b, which meansa divided by b; this is the opposite way
round! Soa | bis a relation on the natural numbers which holds-# acfor some
natural numbec.

Every natural number, including zero, divides 0. (This might seem odd, since
we know that “you can’t divide by zero”; but |0 means simply that there exists
a numberc such that 0= 0- ¢, which is certainly true. On the other hand, zero
doesn’t divide any natural number except zero.

Let a andb be natural numbers. Bommon divisoof a andb is a numbed
with the property thatl | aandd | b. We calld thegreatest common divisakit is
a common divisor, and if any other common divisoracindb is smaller thard.
Thus, the common divisors of 12 and 18 are 1, 2, 3 and 6; and the greatest of these
is 6. We write gcd12,18) = 6. We write gcd as shorthand for “greatest common
divisor”.

The remarks above about zero show that(gdd) = a holds for any non-zero
numbera. What about gc,0)? Since every natural number divides zero, there
IS no greatest one.

The numbem is acommon multipleof a andb if both a| mandb | m. It
is theleast common multipl€ it is a common multiple which is smaller than
any other common multiple. Thus the least common multiple of 12 and 18 is 36
(written Icm(12,18) = 36). Any two natural numbeisandb have a least common
multiple. For there certainly exist common multiples, for examge and any
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non-empty set of natural numbers has a least element. (The least common multiple
of 0 andais 0, for anya.) We write lcm as shorthand for “least common multiple”.

Is it true that any two natural numbers have a greatest common divisor? We
will see later that it is. Consider, for example, 8633 and 9167. Finding the gcd
looks like a difficult job. But, if you know that 8633 89x 97 and 9167 89 x
103, and that all the factors are prime, you can easily see thé86889167) =
89.

But this isnot an efficient way to find the gcd of two numbers. Factorising a
number into its prime factors is notoriously difficult. In fact, it is the difficulty of
this problem which keeps internet commercial transactions secure!

Euclid discovered an efficient way to find the gcd of two numbers a long time
ago. His method gives us much more information about the gcd as well. In the
next section, we look at his method.

5.3 Euclid’s algorithm

Euclid’s algorithm is based on two simple rules:

Proposition 5.2

a |f b - O,
geda,b) = {gcd(b, amodb) ifb>0.

Proof We saw already that g¢d, 0) = a, so suppose théit> 0. Letr = adivb=
a—Dbq, so thata=bq+r. If d dividesa andb then it dividesa— bg=r; and if

d dividesb andr then it dividesbg+r = a. So the lists of common divisors af
andb, and common divisors df andr, are the same, and the greatest elements of
these lists are also the same.

This is so slick that it doesn't tell us much. But looking more closely we see
that it gives us an algorithm for calculating the gcc@ndb. If b = 0, the answer
isa. If b> 0, calculateamodb = by; our task is reduced to finding gdal b; ), and
b, < b. Now repeat the procedure; bf = 0, the answer ib; otherwise calculate
b, = bmodb;, and our task is reduced to finding dbg, b,), andb, < b;. At each
step, the second number of the pair whose gcd we have to find gets smaller; so the
process cannot continue for ever, and must stop at some point. It stops when we
are finding gcdby,_1, bn), with b, = 0; the answer i®y_1.

This isEuclid’s Algorithm Here it is more formally:

To find gcda, b)

Putbg =aandb; =b.
As long as the last numbéy found is non-zero, pui,. 1 = b,_1mod
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\t;\r}.hen the last numbds, is zero, then the gcd i, 1.
Example Find gcd198 78).

bp = 198,b; = 78.

198=2-78+42, sob, = 42.

78=1-42+ 36, sobz = 36.

42=1-36+6, soby = 6.

36=6-6+0, sobs =0.
So gcd198 78) = 6.

Exercise Use Euclid’s algorithm to find g¢86339167).

5.4 Euclid’s algorithm extended

The calculations that allow us to find the greatest common divisor of two numbers
also do more.

Theorem 5.3 Let a and b be natural numbers, and=dgcd(a, b). Then there are
integers x and y such thatd xa+ yb. Moreover, x and y can be found from
Euclid’s algorithm.

Proof The first, easy, case is whén= 0. Then gcda,0) =a=1-a+0-0, so
we can takex= 1 andy = 0.

Now suppose that = amodb, so thata = bq+r. We saw that go@,b) =
gcdb,r) =d, say. Suppose that we can write= ub+ vr. Then we have

d = ub+v(a—qb) =va+ (u—qv)b,

sod = xa+Yybwithx=v,y=u—qw
Now, having run Euclid’s algorithm, we can work back from the bottom to the
top expressing as a combination df; andb;_; for all i, finally reaching = 0.

To make this clear, look back at the example. We have

42=1-36+6, 6=1-42—1-36
78=1.42+36, 6=1.42—1.(78-42)=2.42—1-78
198=2-78+42, 6=2.(198—2.78)—1.78=2.198—5-78.

The final expression is& 2-198—5-78.
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We defined the greatest common divisoraodndb to be the largest natural
number which divides both. Using the result of Euclid’s extended algorithm, we
can say a bit more:

Proposition 5.4 The greatest common divisor of the natural numbers a and b is
the natural number d with the properties

(a) d|aanddj|b;

(b) if e is a natural number satisfying|@ and €| b, then € d.

Proof Letd = gcda,b). Certainly condition (a) holds. Now suppose tleas
a natural number satisfying| a ande | b. Euclid’s algorithm gives us integexs
andy such thad = xa+yb. Now e| xaande| yb; soe| xa+yb=d.

Remark Recall that, with our earlier definition, we had to admit that (@c@)
doesn’t exist, since every natural number divides 0 and there is no greatest one.
But, witha = b = 0, there is a unique natural number satisfying the conclusion of
Proposition 5.4, namelg = 0. So in fact this Proposition gives us a better way to
define the greatest common divisor, which works for all pairs of natural numbers
without exception!

5.5 Polynomials

Now we leave integers for a while, and turn to thelRgd of all polynomials with
real coefficients.

There is also a version of the division rule and Euclid’s algorithm for polyno-
mials. The long division method for polynomials is similar to that for integers.
Here is an example: Divide® 4 4x3 — x4 5 by x? 4 2x — 1.

X +2x -3
¥ 4+2x —1 ) X +43 —x +5
X 423 —x?
23 +x° =X
23 +4x% —2x
-3x°> +Xx +5
-3¢ —6x +3
> +2

This calculation shows that when we divige+ 4x3 — x+5 by X2 +2x— 1, the
quotient isx? 4+ 2x — 3 and the remainder is<# 2.

In general, letf(x) andg(x) be two polynomials, withg(x) # 0. Then the
division rule produces a quotieqtx) and a remainder(x) such that
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o () =9g()ax) +r(x);
e eitherr(x) = 0 or the degree af(x) is smaller than the degree gfx).

(Remember that we didn’t define the degree of the zero polynomial.)

Let us prove that the division rule works. The proof follows the method that
we used in the example: we multipdyx) by a constant times a powerx$o that,
when we subtract it, the degree of the result is smaller than it was. Our proof will
be by induction on the degree 6¢x).

So letf (x) andg(x) be polynomials, wittg(x) # O.

Case 1: Either f(x) =0, or dedf(x)) < dedgg(x)). In this case we have
nothing to do except to puf(x) = 0 andr(x) = f(X).

Case 2: deqgf(x)) > dedg(x)). We let degf(x)) = n, and assume (as in-
duction hypothesis) that the result is trueffx) is replaced by a polynomial of
degree less tham Let

f(x) = ax"+ldt,
gx) = bpx"+ld.t,

where we have used the abbreviation I.d.t. for “lower degree terms”. We have
an # 0, by # 0, and (by the case assumptiony m. Then

(@n/bm)X"™M-g(x) = anx" +1.d.t,,

and so the polynomial*(x) = f(x) — (an/bm)X" ™. g(x) satisfies degf*(x)) <
deq f(x)): the subtraction cancels the leading termf ¢f). So by the induction
hypothesis, we have

F () = g™ () + 1" (%),

wherer*(x) = 0 or dedr*(x)) < degg(x)). Then

(
f(x) = 9(X) ((an/bm)X™"+g"(x)) +1"(x),
so we can pug(x) = (an/bm)X"M+g*(x) andr(x) = r*(x) to complete the proof.

Having got a division rule for polynomials, we can now copy everything that
we did for integers. Here is a summary of the definitions and results.
A non-zero polynomial is callechonicif its leading coefficient is 1, that is, if
it has the form
f(x) =xX"+an_1x"" 1+ +ax+ao.
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We say thag(x) divides f(x) if f(x) =g(x)q(x) for some polynomiafj(x); in
other words, if the remainder in the division rule is zero.

We define the greatest common divisor of two polynomials by the more ad-
vanced definition that we met at the end of the last section.gféatest common
divisor of f(x) andg(x) is a polynomiald(x) with the properties

(a) d(x) divides f (x) andd(x) dividesg(x);

(b) if h(x) is any polynomial which divides both(x) andg(x), thenh(x) di-
videsd(x);

(c) d(x) is monic (if it is not the zero polynomial).

The last condition is put in because, for any non-zero real nuropeach of

the polynomialsf (x) andc f(x) divides the other; without this condition, the gcd
would not be uniquely defined, since any non-zero constant multiple of it would
work just as well.

Theorem 5.5 (a) Any two polynomials (k) and g x) have a greatest common
divisor.

(b) The g.c.d. of two polynomials can be found by Euclid’s algorithm.

(c) If ged(f(x),g(x)) = d(x), then there exist polynomialgx) and k'x) such
that
FOIh(X) +g(x)k(x) = d(x);

these two polynomials can also be found from the extended version of Eu-
clid’s algorithm.

We will not prove this theorem in detail, since the proof is the same as that for
integers.
Exercises

5.1 Find the greatest common divisor of 2047 and 2323, and write it in the form
204K%+ 2323 for some integerg andy.

5.2 Find the least common multiple of 2047 and 2323.
5.3 Find the greatest common divisorxf— 1 andx® + 3x? 4+ x+ 3, and write it

in the form (x* — L)u(x) + (x3 + 3x? + x+ 3)v(x) for some polynomialsi(x) and
V(X).
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5.4 Prove that, for any two positive integersandn,
gcdm,n) -lem(m,n) = mn

Does any similar result hold for three positive integers?



Chapter 6

Modular arithmetic

Modular arithmetic is an important example of an algebraic system with only a
finite number of elements, unlike most of our examples (the number systems,
matrices, polynomials, etc.) which have infinitely many elements.

6.1 Congruence modn

Here is a very important example of an equivalence relation.
LetX =7, the set of integers. We define arelatiop onZ, calledcongruence
mod m wheremis a positive integer, as follows:

X=mYif and only ify — x is a multiple ofm.

You will often see this relation written as=y (modm). The meaning is
exactly the same.
We check the conditions for an equivalence relation.

reflexive:x —x=0-m, SOX =y X.

symmetric: ifx =n Y, theny — x = cmfor some integec, sox—y = (—c)m, so
Y =mX

transitive: ifx=nyandy =n z theny—x=cmandz—y=dm soz—x=
(c+d)m, sox=nyz

So=,is an equivalence relation.
This means that the set of integers is partitioned into equivalence classes of the
relation=p,. These classes are calledngruence classes mod m/e write [X|m
for the congruence class madcontaining the integex. (This is what we called
R(x) in the Equivalence Relation Theorem, wh&#és the name of the relation;
so we should really call #=y(x). But this looks a bit odd, so we say|, instead.
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For example, whem = 4, we have

Os = {..,-8-404812..1,

[

s = {..,-7,-3,1,59,13...},
2 = {..,—6,-2,2,6,10,14,...},
B+ = {..,—5-1,37,11,15,...},

and then the pattern repeatd}, is the same set g8|4 (since 0=4 4). So there
are just four equivalence classes. More generally:

Proposition 6.1 The equivalence relatiosy, has exactly m equivalence classes,
namely[O]m, [1]m7 [2]m7 R [m_ 1]m

Proof Given any integen, we can divide it bymto get a quotieng| and remain-
derr, so thatn=mqg+r and 0O<r <m-—1. Thenn—r =mg sor =, n, and

n e [rlm- So every integer lies in one of the classes in the proposition. These
classes are all different, sinceiifj both lie in the range 0..,m—1, thenj —i
cannot be a multiple ahunless = j.

We use this in everyday life. Consider time on the 24-hour clock, for example.
What is the time if 298 hours have passed since midnight on 1 January this year?
Since two events occur at the same time of day if their times are congruent mod 24,
we see that the time {29854 = [10]24, that is, 10:00, or 10am in the morning.

6.2 Operations on congruence classes

Now we can add and multiply congruence classes as follows:

[@m+[0jm = [a+Db]m,
[@m-[blm = [ab]m.

Look carefully at these supposed definitions. First, notice that the symbols for
addition and multiplication on the left are the things being defined; on the right
we take the ordinary addition and multiplication of integers.

The second important thing is that we have to do some work to show that we
have defined anything at all. Suppose tfet, = [@]m and [b]y = [b'|m. What
guarantee have we thi@+ a|y, = [b+ b/|m? If this is not true, then our definition
is worthless; so let’s try to prove it. We have

ad—a = cm and

b—b = dm so
@+b)—(ath) = (c+d)m,
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so indeed +b' =, a+b. Similarly, with the same assumption,

ab'—ab = (cm+a)(dm+b)—ab
= m(cdm4cm+-ad)

soa' b’ =, ab. So our definition is valid.

For example, here are “addition table” and “multiplication table” for the in-
tegers mod 4. | have been lazy and writted,@, 3 instead of the correct forms
[0]4, [1]4,[2]4, [3]a.

+/0 1 2 3 0123
0/01 2 3 0/0 00O
1/1 2 3 0 1/01 2 3
2|12 3 01 2/0 2 0 2
3|13 01 2 3]0 3 21

We denote the set of congruence classes modith these operations of ad-
dition and multiplication, byZn. Note thatZn, is a set withm elements. We call
the operations “addition and multiplication mod.

Theorem 6.2 The setZy,, with addition and multiplication mod m, satisfies the
commutative, associative, and identity laws for both addition and multiplication,
the inverse law for addition, and the distributive law.

Proof We won't prove the whole thing; here is a proof of the distributive law.
We are trying to prove that

[@m([0]m+ [€]m) = [a]m[b]m + [ m[C]m.

The left-hand side is equal {ajm[b+ c|m (by the definition of addition modh),
which in turn is equal tga(b+ c)]m (by the definition of multiplication mod.
Similarly the right-hand side is equal f@b]m+ [adm, which is equal tgab+-ad|m.
Now a(b+ c) = ab+ ac, by the distributive law for integers; so the two sides are
equal.

6.3 Inverses

What about multiplicative inverses? Not every elemeriZinhas an inverse. For
example,[2]4 has no inverse; if you look at row 2 of the multiplication table for
Z4, you see that it contains only the entries 0 and 2, so there is no elébpent
such thaf2]4[b]4 = [1]4. On the other hand, iis, every non-zero element has an
inverse, since

[s[1]s =15, [2]5[3]s = [1]5, [4]5[4]5 = [1]5.
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Theorem 6.3 The elemenfa), of Zn, has an inverse if and only ¢ficd(a, m) = 1.

Proof We have two things to prove: if géd, m) = 1, then[a]y has an inverse; if
[alm has an inverse, then ga@m) = 1.

Suppose that g¢d, m) = 1. As we saw in the last chapter, Euclid’s algorithm
shows that there exist integexsandy such thatxa+ym= 1. This says that
xa—1=ymis a multiple ofm, so thatxa=n 1. This means$x|m[am = [1]m, SO
[X|m is the inverse ofa]m.

Now suppose thdk|n, is the inverse ofa],, so thatxa=p, 1. This means that
xa+ym= 1 for some integey. Now letd = gcd(a,m). Thend | xaandd | ym, so
d | xa+ym=1; so we must havd = 1, as required.

Corollary 6.4 Suppose that p is a prime number. Then the multiplicative inverse
law holds inZp; that is, every non-zero element4f has an inverse.

Proof If pis prime, then every numberwith 1 < a < p satisfies gcth, p) = 1.
(For the gcd divideg, so can only be 1 op; but p clearly doesn’t dividex.) Then
the Theorem implies thaa|, has an inverse ifip.

6.4 Fermat’s Little Theorem

We already met Fermat, whose “Last Theorem” gave mathematicians so much
trouble for so many years. In this section, we will prove a theorem which Fermat
did succeed in establishing. First, two results at¥&uifor p prime.

Lemma 6.5 Let p be a prime number and suppose thaap. Then gaor p| b.

Proof Suppose thgb dividesabbut p does not divide. Sincepis prime, we see
that gcda, p) = 1. By Euclid’s algorithm, there exigtandy such thaka+yp= 1.
Thenxab+ ypb=b. Now p dividesxab(since it dividesab, and clearlyp divides
yph so p dividesb.

Lemma 6.6 Let p be a prime number.
(a) If [a]p[b]p = [O]p, then eitherfa]p = [O] or [b]p = [O]p.
(b) If [ab], = [ac]p and[a]p # [0]p, then[b]p = [c]p.

Proof (a) Sincea]p[b]p = [ab]p, the assumptiofa]p[b], = [0]p, means thaab=
0, that is,p | ab. Thenp|aor p|b by the preceding Lemma; ga], = [0], or

[0lp = [Olp-
(b) We havela)p[b—c|p = [0]p; S0, if [a]p # [0]p, then[b—c]p = [0]p, so that
[b]p = [c]p.
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So we come tdermat’s Little Theorem:

Theorem 6.7 Let p be a prime number. If a is any integer not divisible by p, then
aP-l=,1

So, for example, 8=7 1, as you can check.

Proof Consider the non-zero elemeiits$y, [2]p,...,[p— 1]p. Multiply them all

by a, to get(alp, [28]p,...,[(p—1)ap. Now by the preceding Lemma, none of
these elements is equal[@},, and no two of them are equal; so we have the same
list of elements in a different order. So their product is the same:

[@]p[2a]p---[(P—1)a]p = [1p[2]p--- [P—1p,
from which we see that
@ p[2]p[2lp--- [P~ Up = [Lp[2p--- [P~ Lp-
Since[1]p[2]p--- [p—1]p # [0]p, We conclude from the lemma that
@ Hp = [p,
in other wordsaP~! =, 1, as required.
For example, ifp = 7 anda = 3, then the multiples of 3 mod 7 are
[8]7,1617,[9]7 = [2]7,[12)7 = [9]7,[197 = [1]7, [18]7 = [4]7,

so we do obtain all the non-zero congruence classes in a different order.

Exercises

6.1 Find the units irZsg and their inverses.

2 .
6.2 Calculateé + Z in Zag.

6.3 Solve the quadratic equatiod+2x+2 =0
(@) inZaz,

(b) in Z1e.

6.4 Prove that(p—1)! =, —1 if and only if p is prime. (This isWilson’s Theo-
rem)
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Chapter 7

Polynomials revisited

We will look at three further aspects of polynomials. First, we have only consid-
ered real polynomials so far, but this can be generalised: as long as we can add
and multiply the coefficients, we can do the same with polynomials. Second, we
look at factorisation and show that, under the right conditions, the division rule,
Euclid’s algorithm, and the Remainder and Factor Theorems hold. Finally, the
construction of the integers mad by means of congruence classes can be ex-
tended to polynomials. This gives us a leskhocconstruction of the complex
numbers, as well as other finite systems having addition and multiplication.

7.1 Polynomials over other systems

Let R be a set on which two operations (calladdition and multiplication are
defined. Suppose th& satisfies the following laws. (We call this collection of
laws CRI).

e the commutative, associative, identity and inverse laws for addition (the
identity for addition is called 0, and the inverseaos —a);

e the commutative, associative, and identity laws for multiplication (the iden-
tity for multiplication is called 1);

e the distributive law.

Later, we will study such systems formally under the name “commutative rings
with identity”. In this section, we will put them to use.
The examples we have met already include:

L4 Z’ Q, R, (C;

e R[x], the polynomials with real coefficients;
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e Zm, the integers mod.

We can define @olynomialoverRto be an expression of the form
f(X) = anx"+aq_1X" 1+ -+ ax+ ap,

wheren is a non-negative integer alg,a,_1,...,a1,a9 € R. We adopt the same
rules as we discussed earlier for when two expressions represent the same polyno-
mial (we can insert or remove terms with coefficient zero, and we can reptace 1
by x"). Now we can add and multiply polynomials by the same rules as before.
Let R[x] be the set of all polynomials with coefficientsia

Proposition 7.1 If R satisfies the laws (CRI) above, then so does R

Proof As usual, we don't give a detailed verification of all the laws. The ap-
pendix to this chapter gives some of the details.

We end this section with a warning. We informally defined a real polynomial
to be a function on the real numbers given by an expression of the right form. This
no longer works for more general polynomials.

Example Let R= Zj, the integers mood 2. The sRtcontains two elements,
[0]2 and [1]2, which we will write more briefly as 0 and 1. The laws (CRI) are
satisfied.

Now consider the two polynomiabsandx®. Since @ =0 and # = 1, these
two polynomials give rise to the same functionn However, we really do want
to regard them as different polynomials! Hence we regard polynomials as being
formal expressions, not the functions they define.

7.2 Division and factorisation

The division rule and Euclid’s algorithm work in almost the same way for poly-
nomials as for integers. So we can mimic the definition of the integersmmod

We need one more property for the coefficients, beyond the laws (CRI) we
assumed before. The extra law is the inverse law for multiplication, which states
that every elemerd of R except 0 has a multiplicative inverse®. A system sat-
isfying (CRI) and the inverse law for multiplication is callefield. The examples
we know so far ar€, R, C, andZ, for prime numbers.

[Why do we need this extra law? Look back at the proof of the division rule
for polynomials. To dividef (x) = anX"+ - - - by g(x) = bpXx™+ - - -, wherebm # 0
andn > m, we first subtracfan/bm)x"Mg(x) from f(x) to obtain a polynomial
of smaller degree. So we need to be able to didgley b, that is, we need a
multiplicative inverse foibp,.]
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Theorem 7.2 If R is a field, then the set[R of polynomials with coefficients in R
satisfies the division rule, and Euclid’s algorithm works ix|R

A polynomialg(x) of degree greater than zero is callegducibleif it cannot
be written in the forng(x) = h(x)k(x), whereh(x) andk(x) are polynomials with
degrees smaller than the degregyof).

We will not treat irreducible polynomials in detail, but simply look at one
technique for recognising them. Lé&{x) be a polynomial over the fielR. For
anyc € R, we letf(c) denote the result of “substitutirginto f(x)”; that is,

if f(x) =anx"+---+ao, thenf(c) = anc"+--- +ao.

The next theorem combines two familiar results about polynomialsRtie
mainder Theorenand theFactor Theorem Notice that, if we dividef (x) by a
polynomial of degree 1, the remainder has degree zero, that is, it is a constant
polynomial (which we regard as an elemenR)f

Theorem 7.3 Let f(x) be a polynomial over a field R, and=cR.
(a) The remainder when(X) is divided by x-c is f(c).

(b) f(x) is divisible by x-c if and only if f(c) = 0.

Proof (a) Write f(x) = (x—c)q(x) +r, wherer is a constant polynomial. Sub-
stitutingc into this equation we find (c) = .

(b) If f(c) =0thenf(x) = (x—c)q(x), sox— cdividesf(x). The converse is
clear from the uniqueness of the remainder in the division rule.

Example The polynomialf(x) = x> — 2 is irreducible inQ[x]. For if it fac-
torises, it must be a product of polynomials of degrees 1 and 2. The polynomial of
degree 1 has the form— ¢, wherec is a rational number; by the Factor Theorem,
f(c) =0, that is,c3 = 2. But, following Euclid’s proof, it can be shown théf2

is irrational (this is an exercise for you); so this is impossible.

7.3 “Modular arithmetic” for polynomials

Now let R be a field, and leg(x) be a fixed non-zero polynomial iRx]. To
make things easier, we assume th@) is monic. We say that two polynomials
f1(x) and fz(x) arecongruent mod () if g(x) divides f1(x) — f2(x), that is, if
f1(x) = g(x)h(x) + f2(x) for some polynomiah(x).



64 CHAPTER 7. POLYNOMIALS REVISITED

Proposition 7.4 Congruence mod(g) is an equivalence relation, and each equiv-
alence class contains a unique polynomi@)rsuch that (x) = 0 or dedr (X)) <

degg(x)).

This is just a re-statement of the division rule. We will denote the equivalence
class off (x) by [f(x)], and call it acongruence class mod>g.

Let E be the set of congruence classes my@d. Just as we did for congru-
ence classes maah in the integers, we are going to give rules for adding and
multiplying elements oE. The rules are the obvious ones:

o [f1()]+ [f2(3)] = [f2(%) + f2(x)],
o [f1(¥)]-[f200] = [fa(x) f2(X)].

Just as before, we have first to do some work to show that our definition is
a good one. That is, ifi(x) = f{(x) and fa(x) = f5(x), then f1(x) + fa(x) =
f1(X) + f3(x) and f1(x) f2(x) = f1(x) f5(X). (All congruences are modulg(x).)
Here is the proof of the first statement; try the second for yourself. We are given
that f1(x) — f1(x) = g(x)h1(x) and f2(x) — f5(x) = g(x)hz(x). Then we find

(f2(%) + f2(x)) — (f1(x) + f2(x)) = 9(x) (e (x) + hz(x)),
which shows the required congruence.

Proposition 7.5 If R is a field, then the set E of congruence classes niwdadso
satisfies (CRI).

The proof of this simply involves routine checking of laws.
For integers, we saw that, is a field if p is prime. Something very similar
happens here; in place of primes, we use irreducible polynomials.

Theorem 7.6 Suppose that R is a field an@q an irreducible polynomial in [].
Then the set E of equivalence classes mpd  also a field, and contains the
field R.

Proof We have to show that a non-zero congruence class has a multiplicative
inverse.

Suppose that the equivalence clab&)] is not zero. This means thgtx)
doesn't dividef (x). So ged f(x),g(x)) = 1. (For the gcd is a monic polynomial
dividing g(x); sinceg(x) is irreducible, it cannot have positive degree.)

By Euclid’s algorithm, there are polynomidigx) andk(x) such that

f(X)h(X) + g(k(X) = 1.
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This equation says thdt(x)h(x) = 1 modg(x), so[f(X)] - [h(X)] = [1]. Thus we
have found an inverse fof (x)].

To find a copy of the fiel®R insideE, we just take the equivalence classes of
the constant polynomials; they add and multiply just like elemenk of

[c]+[d]=[c+d],  [c]-[d]=[ed],

This is all very good, but a bit too abstract for practical use. Here is a descrip-
tion which is easier to calculate with.

Proposition 7.7 Suppose that the hypotheses of the previous theorem are satis-
fied, and let m be the degree qi Then E is the set

{cm1a™ 1+ +co:Co,...,Cmo1 ERY,
wherea is a new symbol satisfying g) = 0.

Proof We saw that the constant polynomiats$ are just like elements dR, so
we ignore the difference and identify them with element®oLet o = [x], the
congruence class containing the polynomiaNow we saw that each equivalence
class contains a unique polynomigk) of degree less tham (or zero). Ifr(x) =
Cm_1X™ 1+ .. 4o, then

r(x)] = [Cm,]_Xm_l + -+ +Co)
= [ema] XY™ 1+ +co]
= cm_lam*1+...+00_

(In the second line we used the rules for adding and multiplying equivalence
classes; in the third, we pld] = cand[x] = «.

Finally, g(x) = 0 modg(x), so[g(x)] = [0]. By the same argument, this gives
g(a) =0.

Time for a (very important) example. LBtbe the fieldR of real numbers. We
takeg(x) to be the polynomiak? + 1. (This is irreducible; for its factors, if any,
would have degree 1, but if, say,

X2+ 1= (x—a)(x—bh),

thena? = —1, which is impossible since the square of any real number is positive.
Now the fieldE of our construction consists of all expressions of the form

c+da, wherec andd are real numbers anais a new symbol satisfying?+1=

0. Thusa is the symbol usually called i. So the complex numbers are not just a

fluke; they are a special case of a very general construction!
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7.4 Finite fields

We saw thaZ, is a field withm elements ifmis prime, but is not a field imis
composite. Is there a finite field with four elements? We cannoZyssince[2]4
has no multiplicative inverse.

We apply the construction of the preceding section. First we find an irreducible
polynomial.

Lemma 7.8 The polynomial ¥+ x+ 1 s irreducible overZ,.

Proof If not, it has a factor of the forrx — ¢ for somec € Z,. By the Factor
Theorem, this would mean thétc) = 0. But, writing 0 and 1 instead of the more
cumbersomé0], and[1],,

0°+0+1 = 1,
12+1+1 1,

so noc satisfyingc® +c+ 1 = 0 exists, and there is no factpr— c).

So there is a fielE consisting of the elementsx + d, with ¢, d € Z, and
a’+ o +1=0. The elements oE are Q1,a,+ 1. The elements 0 and 1
comprise the field,, so that 11 = 0. Thenx+x= (1+ 1)x = 0 for anyx, and
soa? = —a—1= o+ 1. Then we can do calculations like

(a+1)2=0’+a+o+l=a+1+1=q.

In general, any expression involvirg can be calculated to be one of the four
elements 0L, o, o + 1.
The addition and multiplication tables for the fidkdcan now be worked out:

+ 0 1 a a+1 0 1 a a+1
0 0 1 a o+l 0O |0 0 0 0
1 1 0 a+l o 1 0 1 a a+1
a a o+l 0 1 a (0 a o+l 1
ao+l|la+l « 1 0 a+1|0 a+1 1 o

Now the multiplicative inverses of Iy anda + 1 are, respectively, Iy + 1,
anda.

Evariste Galois is one of the founders of modern algebra. He was killed in a
duel at the age of 19; already he had worked out, and published, the construction
of finite fields (he did much more than we have seen, showing that the number
of elements in a finite field must be a power of a prime, and that for each prime
power there is a unique finite field of that order). Finite fields are caHabbis
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fieldsin his honour; the field witlg elements is denoted by Gfj. So the field
we constructed above is G&.

But his major work, in which he showed how group theory could be used
to decide when a “solution by radicals” for a general polynomial equation could
be found, had been lost by referees at the French Academy (who were probably
unable to understand it). Its main impact came fifteen years later when it was
rediscovered and published.

As well as algebra, Galois was
deeply involved in the revolutionary
politics of his time. The duel in
which he was shot and killed was
apparently over a woman; but
historians have uncovered evidence
that it had been set up, either by the
Royalist police, or by the
revolutionaries to whom he had
offered himself as a sacrifice to
spark a general uprising. If the
second explanation is true, then he
died in vain, as there was no
uprising.

7.5 Appendix: Laws for polynomials
In Proposition 7.1, we asserted thatRikatisfies the system (CRI) of laws, then
so doesR[x|, the set of polynomials ové. In this appendix | will say a few words

about the proof. First, let us be clear about the definitions.
A polynomial overR is an expression

n .
f(x) =anx"+---+aix+ap = ;aX'-
i=
Suppose thag(x) is another polynomial:
m .
9(x) = bmX™+ -+ +bg = Z)bix\
i=

To addf(x) andg(x), we first assume tha = n. (If m< n, we add extra terms
OX fori =m+1,...,nto the polynomiab(x), and similarly ifn < mwe add zero
terms tof (x). Then

=)

(F+9() =Y (a+b)x.
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The rule for multiplication is a bit more complicated:

m+n

(1900 =3 o,

where

G = Zaj bi,j,
the sum being over all values ¢ffor which botha; andb;_; are defined; that is,
we have KX j <nand 0<i—j <m, sothat —m< j <i. We can summarise
these two sets of conditions by saying

max0,i —m) < j <min(i,n).
Consider, for example, the distributive law
(f+g)h= fh+gh

We assume that andg are as above (witm= n) and that

h(x) = iidixi.

Then the coefficient of in (f +g)his
> (@j+bj)di—j = > ajdi_j+bjdi—j,
using the distributive law foR; and the coefficient ifh+ ghis
S ajdij+ 3 bjdij.

Now all the sums are over the same range f@ax- m) < j < min(i,p), and
rearranging the terms shows that the two expressions are equal.

Exercises

7.1 Suppose thaax+ b dividescyx"+ - -- + ¢p in Z[X], wherea, b, co, ..., cn are
integers. Show thaa divides c,, andb dividescg. Hence show that" — 2 is
irreducible ovelZ for any positive integen.

7.2 (a) Show that the polynomiaf + 1 is irreducible ovefZs.
(b) Construct a field with nine elements.

7.3 Verify the associative law for multiplication of polynomials.



Chapter 8
Rings

We have seen many different types of structure (hnumbers, matrices, polynomials,
sets, modular arithmetic) which satisfy very similar laws. Now we take the ob-
vious next step: we consider systems satisfying these laws abstractly, and prove
things about them directly from the laws they satisfy. The results will then be true
in our systems no matter what they are made up of. This is calledxibenatic
method

8.1 Rings

A ring is a setR of elements with two operationaddition (written +) andmulti-

plication (written - or just by juxtaposing the factors) which satisfies the following

laws. (Most of these we have seen before, but we state them all formally here.)
Additive laws:

(AO) Closure law: For ah,b € R, we havea+b e R.
(Al) Associative law: For ala, b,c € R, we havea+ (b+c) = (a+b) +c.

(A2) Zero law: There is an elemen&OR with the property thaa+0=0+a=a
forallae R

(A3) Additive inverse law: For alé € R, there exists an elemebic R such that
a+b=Db+a=0. We writebas—a.

(A4) Commutative law: For alh b € R, we havea+b=b+a.
Multiplicative laws:

(MO) Closure law: For ag, b € R, we haveab € R.

69
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(M1) Associative law: For alh, b,c € R, we havea(bc) = (ab)c.

Mixed laws:

D Distributive laws: For alh, b, c € R, we havea(b+c) = ab+acand(b+c)a=
ba+ca

Before we go further, a couple of comments:

e The closure laws are new. Strictly speaking, they are not necessary, since to
say that+ is an operation oiR means that the outpat+ b when we input
a andb to the black box belongs t8. We put them in as a reminder that,
when we are checking that something is a ring, we have to be sure that this
holds.

¢ \We have stated the identity and inverse laws for addition in a more compli-
cated way than necessary. Since we are going on to state the commutative
law for addition, we could simply have said tleat 0 = aanda+ (—a) = 0.
We’'ll see the reason soon.

We have already seen that sometimes the multiplication satisfies further laws,
which resemble the laws for addition. This won’t always be the case, so we give
special names to rings in which these laws hold.

LetRbe aring. We say tha& is aring with identityif

(M2) Identity law: There is an elementelR (with 1 # 0) suchthatd=al=a
forallac R

We say thaR is adivision ringif it satisfies (M2) and also

(M3) Multiplicative inverse law: for ala € R, if a+# 0, then there exists € R
such thaib = ba= 1. We writeb asa1.

We say thaR is acommutative ringf
(M4) Commutative law: for ala, b € R, we haveab = ba.

(Note that the word “commutative” here refers to the multiplication; the addition
in a ring is always commutative.) Finally, we say tlrats afield if it satisfies
(M2), (M3) and (M4).

The condition (CRI) which we introduced in the last chapter thus stands for
“‘commutative ring with identity”.

In a non-commutative ring, we need to assume both parts of the identity and
multiplicative inverse laws, since one does not follow from the other. Similarly,
we do need both parts of the distributive law.
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8.2 Examples of rings

We have a ready-made stock of examples:

e 7 is a commutative ring with identity.

Q, R andC are fields.
e If Ris a commutative ring with identity, then so is thelynomial ring Rx|.

e If Risaring, then so is the skt,.n(R) of all n x n matrices oveR (with the
usual definitions of matrix addition and multiplication) Rhas an identity,
then so doeMn«n(R). But this ring is usually not commutative.

e For anym, the setZ, of integers moanis a commutative ring with identity.
Itis a field if and only ifmis prime.

e If Ris a field andy(x) a monic polynomial of degree at least 1 o®Rithen
the set of congruence classes of polynomals giaglis a commutative ring
with identity. It is a field if (and only if)g(x) is an irreducible polynomial.

Note that the third and fourth of these constructions (polynomials and matri-
ces) are methods of building new rings from old ones. You may guess that the
fifth and sixth can also be made into constructions of new rings from old. This is
correct, but the construction is beyond the scope of this course. You will meet it
next year in Algebraic Structures I.

Some other familiar structures do not form rings. For example, the set of
natural number8l is not a ring, since the additive inverse law does not hold.

At the end of the last chapter, we constructed a field with four elements.

8.3 Properties of rings

We now give a few properties of rings. Since we only use the ring axioms in the
proofs, and not any special properties of the elements, these are valid for all rings.
This is the advantage of the axiomatic method.

Proposition 8.1 Inaring R,
there is a unique zero element;

any element has a unique additive inverse.
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Proof (a) Suppose thatandZ are two zero elements. This means that, for any
acR

at+z=z+a=a,

atZ=Z+a=a
Now we havez+Z = Z (puttinga = Z in the first equation) ang+ Z = z (putting

a=zin the second). Se="7.
This justifies us in calling the unique zero element O.

(b) Suppose thai andb’ are both additive inverses af This means that

a+b=b+a=0,
a+b=b+a=0.

Hence
b=b+0=b+(a+b)=(b+a)+b=0+b"=0b"

(Here the first and last equalities hold because 0 is the zero element; the second
and second last are our assumptions abautdb’; and the middle equality is the
associative law.

This justifies our use of-a for the unique inverse &.

Proposition 8.2 Let R be aring.
(a) If R has an identity, then this identity is unique.
(b) If a€ R has a multiplicative inverse, then this inverse is unique.
The proof is almost identical to that of the previous proposition, and is left as

an exercise.
The next result is called theancellation law

Proposition 8.3 Let R be aring. If a-b=a+c, then b= c.

Proof
b=0+b=(—a+a)+b=-a+(a+b)=—-a+(a+c)=(—a+a)+c=0+c=c.

Here the third and fifth equalities use the associative law, and the fourth is what
we are given. To see where this proof comes from, start atb = a+ ¢, then
add—ato each side and work each expression down using the associative, inverse
and zero laws.
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Remark Try to prove that, iR is a field anda £ 0, thenab = acimpliesb = c.
The next result is something you might have expected to find amongst our
basic laws. But it is not needed there, since we can prove it!

Proposition 8.4 Let R be a ring. For any elementaR, we havéa = a0 = 0.
Proof We have O+ 0= 0, since O is the zero element. Multiply both sidesaby
a0+a0=a(0+0)=a0=a0+0,

where the last equality uses the zero law again. Now fabm a0 = a0+ 0, we
geta0 = 0 by the cancellation law. The other paa £ 0 is proved similarly; try
it yourself.

There is one more fact we need. This fact uses only the associative law in its
proof, so it holds for both addition and multiplication. To state it, we take be
a binary operation on a sit which satisfies the associative law. That is,
ao(boc)=(aobh)oc

for all a,b,c € X. This means that we can wrige> b o ¢ without ambiguity.

What about applying the operation to four elements? We have to put in brack-
ets to specify the order in which the operation is applied. There are five possibili-
ties:

ao(bo(cod))

ao((boc)od)

(aob)o(cod)

(ao(boc))od

((aob)oc)od
Now the first and second are equal, sitce(cod) = (boc)od. Similarly the
fourth and fifth are equal. Consider the third expression. If wexpttao b,
then this expression iso (cod), which is equal taxo c) od, which is the last
expression. Similarly, putting= cod, we find it is equal to the first. So all five

are equal.
This result generalises:

Proposition 8.5 Leto be an operation on a set X which satisfies the associative
law. Then the value of the expression

aioazo---oan
is the same, whatever (legal) way-r2 pairs of brackets are inserted.

| won't give the inductive proof here; you are encouraged to try it yourself!
You will find the proof in an appendix to the notes.
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8.4 Units

Let R be a ring with identity element 1. An elemant Ris called aunit if there
is an element € R such thauv=vu= 1. The element is called thenverseof
u, writtenu~—1. By Proposition 8.2, a unit has a unique inverse.

Here are some properties of units.

Proposition 8.6 Let R be a ring with identity.
(a) Ois not a unit.
(b) 1is a unit; its inverse id.
(c) If uis a unit, then so isT; its inverse is u.

(d) If uand v are units, then so is uv; its inverse v,

Proof (a) Since @ =0 for all ve€ Rand 0+# 1, there is no elemem such that
Ov=1.

(b) The equation 11 = 1 shows that 1 is the inverse of 1.

(c) The equationtu= uu~! = 1, which holds because ! is the inverse of
u, also shows that is the inverse ofi L.

(d) Suppose thai~! andv—1! are the inverses afandv. Then
Louut=1,
1

v tu )y = uwhHhut=ulu"

v IuHwy = vimtuyv=vilv=viv=1,

sov lis the inverse ofiv.

Here is how Hermann Weyl explains Proposition refunits(d), the statement

that (uv) % = v—tu=1, in his bookSymmetrypublished by Princeton University
Press.

With this rule, although perhaps not with its
mathematical expression, you are all familiar. When
you dress, it is not immaterial in which order you
perform the operations; and when in dressing you L
start with the shirt and end up with the coat, then in ==
undressing you observe the opposite order; first takdis
off the coat and the shirt comes last.

Here are some examples of units in familiar rings.
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In a field, every non-zero element is a unit.
e InZ, the only units are 1 and 1.

e LetF be afield. Then a polynomial in the polynomial rikdx] is a unit if
and only if it is a non-zero constant polynomial. For we have

ded(f(x)g(x)) = ded f(x)) +dedg(x)),

so if f(x)g(x) = 1 thenf(x) must have degree zero, that is, it is a constant
polynomial.

e LetF be afield andh a positive integer. An eleme#tof the ringMnn(F) is
a unitif and only if the determinant &is non-zero. In particulat, i 2)

is a unit inMa,.2(R) if and only if ad— bc# 0; if this holds, then its inverse

is
1 d -b
ad—bc\-c a /)’
e Which elements are units in the riffg, of integers modn? The next result
gives the answer.

Proposition 8.7 Suppose that n» 1.
(@) An elemenia)y, of Zn, is a unit if and only ifgcd(a, m) = 1.

(b) If gcda,m) > 1, then there exists #n, 0 such thafa)m[b]m = [O]m.

Proof Suppose that g¢d, m) = 1; we show thaais a unit. By Euclid, there exist
integers<andy such thaax+my= 1. This meanax=n, 1, so thata]m[X|m = [1]m,
and[a]n, is a unit.

Now suppose that g¢d,m) = d > 1. Thena/d andm/d are integers, and we

have m a
a(g) = (g) =n0

S0 [a]m[b]m = [O]m, whereb = m/d. Since 0< b < m, we haveb|m # [O]m.
But this equation shows thatcannot be a unit. For, {Km[am = [1]m, then

[blm = [1]m[b]m = [Xm[@]m[b]m = [X|m[0]m = [O]m,

a contradiction.
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Example The table shows, for each non-zero elem@ant of Z;,, an element
[b]12 such that the product is either 1 or 1. To save space we wiiitstead of

[@12.

a 1 2 3 4 5 6 7 8 9 10 11
ab 1.1=1 26=0 34=0 43=0 55=1 62=0 77=1 83=0 94=0 10@dot6=0 11.11=1

Unit? v X X X v X v X X X v
So the units irZ1 are[1]12, [5]12, [7]12, and[11]15.

Euler’s functiong (m), sometimes calleBuler’s totient functionis defined to
be the number of integems satisfying 0< a < m—1 and gcda,m) = 1. Thus
¢ (m) is the number of units i&n.

8.5 Appendix: The associative law

In this section we give the proof that,dfis an operation on a s&twhich satisfies
the associative law, then the compositionnalerms doesn’t depend on how we
put in the brackets (Proposition 8.5).

The proof is by induction om. Forn = 2, there are no brackets @ o ay,
and nothing to prove. Fan= 3, there ae two ways to put in the brackets, viz.
aj o (agoag) and(a; o ap) o ag; the associative law asserts that they are equal. In
the notes we saw that, far= 4, there are five bracketings, and the five expressions
are all equal.

So now suppose that the statement is true for expressions with fewen than
terms, and consider any two bracketingsagé - - - o a,. Now for any bracketing,
when we work it out “from the inside out”, in the last step we have just two
expressions to be composed; that is, the expression looks like

(Xlooxk)o(xk+lo.oxn)

There may be further brackets inside the two terms, but (according to the inductive
hypothesis) they don't affect the result. We will say that the expresqbis after
k terms
Suppose that the first expression splits dftearms, and the second splits after
| terms.

Casek=1 Both expressions now have the form

(Xlo...oxk)o<xk+lo...oxn),

and by induction the bracketed terms don’t depend on any further brackets. So
they are equal.
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Casek <| Now the first expression is

(Xpo---0Xk) o (Xkr10- - 0Xn)

and the second is
(Xlo...oxl)o(xl_i_lo...oxn)'

By the induction hypothesis, the value of the texp - - - o X, doesn’t depend on
where the brackets are; so we can rearrange the brackets so that this expression
splits afterk terms, so that the whole expression is

((X]_O---OXk> O(Xk+1o---OX|>) ) (X|+1O---0Xn).
In the same way, we can rearrange the second expression as
(X0 -0X) 0 (K:10++-0X) 0 (X110 0Xn)).

Now the two expressions are of the fofac b) o c andao (bo ), where

a = X10---0X,
b = X10---0X,
cC = X|+10"'0Xn.

The associative law shows that they are equal.

Casek >1 This case is almost identical to the preceding one.

Exercises

8.1 LetnZ be the set of all integers divisible oy Show thatZ is a ring (with the
usual addition and multiplication). Is it commutative? Does it have an identity?

8.2 Let Z(S) denote the set of all subsets of the SeFor A, B € #(S), define
A+ B = AAB (symmetric difference), andB = AN B (intersection). Show that
P(S)is aring. Show also thak? = Afor all Ac 2(S).

8.3 Let Rbe a ring in whiche? = a for all a € R. By consideringa-+ b)?, show
(a) Ris commutative;
(b) a+a=0forallae R

(Such aring is called Boolean ring)
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Chapter 9

Groups

The additive and multiplicative axioms for rings are very similar. This similarity
suggests considering a structure with a single operation, called a group. In this
section we study groups and their properties.

9.1 Definition

A groupis a setG with an operatior» on G satisfying the following axioms:
(GO) Closure law: for alh,b € G, we haveaob € G.
(G1) Associative law: for ali, b, c € G, we haveao (boc) = (aob)oc.

(G2) Identity law: there is an elemeat G (called thadentity) such thaboe=
eoa=aforanyae G.

(G3) Inverse law: for alb € G, there existd € G such thataob =boa =g,
wheree is the identity. The elemeiitis called thenverseof a, writtena’.

If in addition the following law holds:
(G4) Commutative law: for alh,b € G we haveaob=Dboa

thenG is called acommutative groupor more usually aabelian group(after the
Norwegian mathematician Niels Abel).

9.2 Elementary properties

Many of the simple properties work in the same way as for rings.

Proposition 9.1 Let G be a group.

79
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(a) The composition of n elements has the same value however the brackets are
inserted.

(b) The identity of G is unique.
(c) Each element has a unique inverse.

(d) Cancellation law; if b =aoc then b=c.

Proof (a) Proved in the appendix to the last section of the notes. @aiide*

are identities then
e=eoe" =¢".

(c) If bandb* are inverses o then
b=boe=boaob" =eob"=b"

(d) If ab= ac, multiply on the left by the inverse @fto getb = c.

9.3 Examples of groups

We have some ready-made examples.

e Let Rbe aring. Takes = R, with operation+; the identity is 0 and the
inverse ofais —a. This group is called thadditive groupof the ringR. It
is an abelian group.

e Let Rbe aring with identity, and ld#l (R) denote the set of units &, with
operation multiplication irR. This is a group;

— the closure, identity and inverse laws follow from Proposition xx in
the last part of the notes;
— the associative law follows from the ring axiom (M1).

This group is called thgroup of unitsof R. The next couple of examples
are special cases.

e In particular, ifF is a field, then the groug (F) of units of F consists of all
the non-zero elements &f. This is called thenultiplicative groupof F.
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e Let F be a field andh a positive integer. The sél,«n(F) of all nx n
matrices with elements iR is a ring. We saw that a matrix is a unit in this
ring if and only if its determinant is non-zero. The groupMnxn(F)) is
called thegeneral linear groumf dimensiom overF, written GL(n,F).

e LetV be avector space. Then, with the operation of vector addMas an
abelian group; the identity is the zero vecipand the inverse of is —v.

We will meet another very important class of groups in the next chapter.
Remark on notation | have used here a neutral symbdior the group opera-

tion. In books, you will often see the group operation written as multiplication, or
(in abelian groups) as addition. Here is a table comparing the different notations.

Notation Operation| ldentity | Inverse

General aob e a
Multiplicative | ab, a-b 1 al

Additive a+b 0 —a

In order to specify the notation, instead of saying, “Gebe a group”, we often
say, “Let(G,o) (or (G,+), or (G,-)) be a group”. The rest of the notation should
then be fixed as in the table.

Sometimes, however, the notations get a bit mixed up. For example, even with
the general notation, it is common to wse! instead ofa’ for the inverse of. |
will do so from now on.

9.4 Cayley tables

If a group is finite, it can be represented by its operation table. In the case of
groups, this table is more usually called tbayley tableafter Arthur Cayley who
pioneered its use. Here, for example, is the Cayley table of the group of units of
the ringZ».

. 7 11
1 7 11
5 11 7
717 11 1 5
1111 7 5 1

Notice that, like the solution to a Sudoku puzzle, the Cayley table of a group
contains each symbol exactly once in each row and once in each column (ignoring
row and column labels). Why? Suppose we are looking for the elelmemow a.

It occurs in columrxif aox = b. This equation has the unique solutioa a~1ob,
wherea1is the inverse oé. A similar argument applies to the columns.

g Rk
R oo
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Example Let G be a group with three elemergsa, b, with e the identity. We
know part of the Cayley table:

Q| D
O T

T 9o @O
o9 00D

Now consideao b, the element in the second row and third column. This cannot
bea, since we already hawein the row; and it cannot ble, since we already have
b in the column. S@aob = e. With similar arguments we can find all the other
entries.

So there is only one “type” of group with three elements.

We will just stop and look at what this means. I(& o) and(H, %) be groups.
We say thatG andH areisomorphicif there is a bijective (one-to-one and onto)
functionF : G — H such thatF (g1 o gz) = F(g1) * F(ge) for all 91,02 € G. In
other words, we can match element#ith elements oH such that the group
operation works in the same way on element&aind the matched elements of
H. The functionF is called ansomorphism

Thus, the argument we just gave shows that any two groups with three ele-
ments are isomorphic.

9.5 Subgroups

Let (G,0) be a group, andi a sulsetof G, that is, a selection of some of the
elements ofs. For example, leG = (Z,+) (the additive group of integers), and
H = 4Z (the set of multiples of 4).

We say thatd is subgroupof G if H, with the same operation (addition in our
example) is itself a group.

How do we decide if a subsét is a subgroup? It has to satisfy the group
axioms.

(GO) We require that, for alhiy,h, € H, we havehyohy € H.

(G1) H should satisfy the associative law; that(B; o hy) o hg = hy o (hy o hg,
for all hy,hy,hsz € H. But since this equation holds for any choice of three
elements of5, it is certainly true if the elements belongkb

(G2)H must contain an identity element. But, by the uniqueness of the identity,
this must be the same as the identity eleme@.dbo this condition requires
thatH should contain the identity d@b.
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(G3) Each element dfl must have an inverse. Again by the uniqueness, this
must be the same as the inverse@n So the condition is that, for any
h e H, its inverseh~1 belongs tcH.

So we get one axiom for free and have three to check. But the amount of work
can be reduced. The next result is called$lubdgroup Test

Proposition 9.2 A non-empty subset H of a grou@, o) is a subgroup if and only
if, for all hy,hy € H, we have hoh,* € H.

Proof If H is a subgroup anb;,hy € H, thenhg1 € H, and sdhy o hgl eH.

Conversely suppose this condition holds. SiHds non-empty, we can choose
some elementh € H. Takingh; = h, = h, we find thate=hoh™ € H; so (G2)
holds. Now, for anyh € H, we haveh~! = eoh™1 € H; so (G3) holds. Then for
anyhy,hp € H, we haveh,® € H, soh; ohp = hyo (h;1)~1 € H; so (G0) holds.
As we saw, we get (G1) for free.

In our exampleG = Z, H = 47, take two elements dfi, say 4 and 4; then
since the group operation s, the inverse of B is —4b, and we have to check
whether 4—4b € H. The answer is yes, sinca4 4b=4(a—b) € 4Z. So 4 is
a subgroup.

9.6 Cosets and Lagrange’s Theorem

In our example above, we saw thét 45 a subgroup oZ. Now Z can be parti-
tioned into four congruence classes mod 4, one of which is the subgauyeé
now generalise this to any group and any subgroup.

Let G be a group anti a subgroup ofs. Define a relation- on G by

g1~ @z ifand only ifgaog;* € H.
We claim that~ is an equivalence relation.
reflexive:g;og;t = ec H, sogy ~ ;.

symmetric: Letg; ~ gz, so thath = go0g;* € H. Thenh ! =gy0g,* € H, so
g2 ~ g1

transitive: Suppose thag ~ g> andgy ~ gz. Thenh=go gfl € H andk =
9300, € H. Then

koh= (ggoggl)o(gzogzl):ggogzle H,

SO0Q1 ~ Q3.
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Now since we have an equivalence relation@rthe selG is partitioned into
equivalence classes for the relation. These equivalence classes areoadesi
of H in G, and the number of equivalence classes idrtdexof H in G, written
|IG:H].

What do cosets look like?

For anyg € G, let

Hog={hog:heH}.

We claim that any coset has this form. Take G, and letX be the equivalence
class of~ containingg. Thatis,X = {x € G;g ~ x}.

e Takex € X. Theng~ x, soxog~t € H. Leth=xog™%. Thenx=hoge
Hog.

e Take an element dfl og, sayhog. Then(hog)og t=heH, sog~ hog;
thushog € X.

So every equivalence class is of the farw g. We have shown:

Theorem 9.3 Let H be a subgroup of G. Then the cosets of H in G are the sets of
the form

Hog={heg:heH}

and they form a partition of G.

Example LetG=7Z andH = 4Z. Since the group operations, the cosets of
H are the setsl +a for a € G, that is, the congruence classes. There are four of
them, sqG: H| = 4.

Remark We write the coset ald o g, and call the elemerg the coset represen-
tative Butany element of the coset can be used as its representative. In the above
example,

474+ 1=472+5=47—7 =47+ 100001= - - -

If Gis finite, theorder of G is the number of elements &. (If G is infinite,
we sometimes say that it has infinite order.) We write the ord& a$|G|.

Now the partition into cosets allows us to prove an important reguat,
grange’s Theorem

Theorem 9.4 Let G be a finite group, and H a subgroup of G. Theln divides
|G|. The quotientG|/|H| is equal to|G: H|, the index of H in G.
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Proof We know thatG is partitioned into the cosets &f. If we can show that
each coset has the same number as elemehtslags, then it will follow that the
number of cosets ig5|/|H|, and the theorem will be proved.

So letH o g be a coset oH. We define a functiorf : H — H o g by the rule
that f(h) = hog. We show thatf is one-to-one and onto. Then the conclusion
that|H o g| = |H| will follow.

f is one-to-one: suppose théthy) = f(hy), that is,hjog=hpog. By the
Cancellation Lawh; = hy.

f is onto: take an elementc H o g, sayx = hog. Thenx = f(h), as required.

9.7 Orders of elements

Remember that the order of a group is the number of elements in the group. We
will define in this section the order of an element of a group. This is quite different
— be careful not to get them confused — but there is a connection, as we will see.

Let g be an element of a group. We defineg" for every integem in the
following way:

g = 8
g togforn>0,
g" = (g") tforn>o0.

Q
I

Now it is possible to prove that trexponent lawsold:
Proposition 9.5 For any integers m and n,

(@) gmog'=gm™",

(b) (g™)"=g™.

The proof is not difficult but needs a lot of care. It follows from the definition

that
n__ | go---og(nfactors) ifn> 0,
9= \1gto---og! (=nfactors) ifn<O0.

Now consideig™™". There are four cases.

¢ If mandn are both positive then

g"og"=go---og (m+n factors)= g™,
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e If one of mandn s positive, sayn > 0, n < 0, then

— If m4+n> 0, so thatm > —n, then—n of the factorsy cancel all the
factorsg~!, leavingm+ n factorsg, so the result ig™™".

— If m+n < 0, thenm of the factorgy—* cancel all the factorg, leaving
—m—n factorsg~1; again we havg™™".

e Finally, if m andn are both negative, a similar argument to the first case
applies.

If one of mandn s zero, sayn= 0, then the product iso g" = g".
The argument for the second exponent law is similar.

It follows from the second exponent law thaf') =1 = g~". This also follows
becausgog "=g’ =e.

Now we make two definitions.

e The order of the elemeng is the smallest positive numbearfor which
g" = e, if such a number exists; if no positive powergfs equal toe, we
say thafg has infinite order.

e Thesubgroup generated byig the set
{g":neZ}
of all powers ofg. We write it as(g).

It is not clear from what has been said so far that “the subgroup generated by
g’ is actually a subgroup! In fact it is; this and more are contained in the next
Proposition. Remember that the word “order” has two different meanings; the
first is the number of elements in the subgroup, the second is the number we have
just defined.

Proposition 9.6 For any element g of a group G, the S@p is a subgroup of G,
and its order is equal to the order of g.

Proof To show that(g) is a subgroup, we apply the Subgroup Test. Take two
elements of this set, sa' andg". Then

g"o(g") t=gog "=g" "€ (g).
Next we show that, if has orden, then

e g"=eif and only if n dividesm;
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e g¢=d ifand only ifk=,1.

Suppose than= ng. Theng™ = (g")9 = € = e. Conversely, suppose thglt = e.
By the Division Rulem=nqg+r,with0<r <n-—1. Nowg"=g"=e¢, sog =e.
But nis the smallest positive integer such that tile power ofg is €, sincer < n
we must have = 0, andn dividesm.

Now gk = d' if and only if g —% = e. By the preceding paragraph, this holds if
and only ifn dividesl —k, that is, if and only ik =p, I.

We see that ifj has orden, then the setg) contains jush elements (one for
each congruence class m)d so it is a subgroup of order.

Similarly, if g has infinite order, then all the elements(gf are distinct (since
if g¢ = g' theng ~k =€), so(g) is an infinite subgroup.

Corollary 9.7 Let g be an element in a finite group of order n. Thén=e.

Proof The order ofg cannot be infinite, sincéy) is a finite set in this case. Sup-
pose the order af is m. Then the order of the subgroyg) is m. By Lagrange’s
Theoremmdividesn = |G|.

Now we can revisit Fermat’s Little Theorem and prove a stronger version.

Proposition 9.8 Let n be a positive integer, and a an integer such tela, n) =
1. Then & =, 1, whereg is Euler's totient function.

Proof LetUp be the group of units d&,. Then|Upy| = ¢(n), and[a], € Un. By

the preceding corollarya? ], = [ = [1]n; in other wordsa®™ =, 1.

Example There are four units i1, namely 15,7,11. (We writea instead of
[a]12.) By the Corollary, ifa is one of these four numbers, thah=1, 1. In fact,
in this casea? =1, 1 for each of the four numbers.

9.8 Cyclic groups
A groupG is acyclic groupif G = (g) for some elemerg € G.

The prototypical cyclic group of order is (Zn,+), while the prototypical
infinite cyclic group is(Z,+). In each case, the group is generated by the element

1.

Proposition 9.9 Any two cyclic groups of the same order are isomorphic.



88 CHAPTER 9. GROUPS

Proof We show that a cyclic group of orderis isomorphic toZ,, while an
infinite cyclic group is isomorphic t@.

Let G = (g) be a cyclic group of ordem. We saw in the last section that the
elemeng has orden, and thagk = ¢' if and only ifk=p|. Now the magk], — g
is well-defined and is one-to-one and onto, that is, a bijection, #fgrto G; and
it is an isomorphism, since

god =g" e k+l=m.

The proof for infinite groups is even simpler and is left to you.

Exercises
9.1 Show that, iboa=coa, thenb=c.

9.2 Let G be a group of orden. Show thatG is a cyclic group if and only i
contains an element whose ordenisHence show that any group of prime order
is cyclic.

9.3 Let G be a group of order 4; sa@ = {e,a,b,c}, wheree is the identity.
Suppose thab is not a cyclic group.

(@) Showthat? =b?=c?=e.
(b) Determine the Cayley table &.

(c) Show thaG is abelian.



Chapter 10

Permutations

We have seen rings and groups whose elements are numbers, polynomials, matri-
ces, and sets. In this chapter we meet another type of object: permutations. The
operation on permutations is composition, and we construct groups of permuta-
tions which play and important role in general group theory.

10.1 Definition and representation

A permutationof a setX is a functionf : X — X which is a bijection (one-to-one
and onto).

In this section we consider only the case whérs a finite set, and we take
X to be the sef1,2,...,n} for convenience. As an example of a permutation, we
will take n = 8 and letf be the function which maps 4, 2— 7, 3+— 3, 4— 8,
5—1,6—5,7— 2, and 8- 6.

We can represent a permutationtio-line notation We write a matrix with
two rows andh columns. In the first row we put the numbers.1,8; under each
numberx we put its image under the permutatibnin our example, we have

(1234567
4738152 6"

How many permutations of the sgt, ... n} are there? We can ask this ques-
tion another way? How many matrices are there with two rowsracdlumns,
such that the first row has the numbers.1 nin order, and the second contains
thesen numbers in an arbitrary order? There arehoices for the first element in
the second row; then— 1 choices for the second element (since we can't re-use
the element in the first column); then- 2 for the third; and so on until the last
place, where the one remaining number has to be put. So altogether the number

89
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of permutations is
n-(n—-1)-(n—2)---1.

This number is callea! (read "n factorial” or “factorialn”), the product of the
natural numbers from 1 te. Thus we have proved:

Proposition 10.1 The number of permutations of the $&t... . n}isnl .

10.2 The symmetric group

Let f; and f, be permutations. We define tkempositionof f; and f, to be the
permutation obtained by applying and thenf,.

Warning If you write the image ok under the permutatiofi as f (x), then the
composition off; and f; mapsx to f2(f1(x)) — note the reversal! In order to make
the notation work better, we change the way we write the imageuoider f by
putting f on the right, axf (or sometimes up in the air, ad). Then we have
X(f10 f2) = (xf1) f2, which is easier to remember.

You should be aware, though, that some people choose to resolve the problem
the other way, by defining the compositionfafand f, to be “first f,, thenfy”.

In practice, how do we compose permutations? (Practice is the right word
here: you should practise composing permutations until you can do it without
stopping to think.) Letf be the permutation we used as an example in the last

section, and let
(1 2 3 4 5 6 7
9={3 2 18 7 6 5 4

The easiest way to calculafe> g is to take each of the numbers. 1,8, map it
by f, map the result bg, and write down the result to get the bottom row of the
two-line form for f og. Thus,f maps 1 to 4, and maps 4 to 8; sd og maps 1 to
8; f maps 2to 7, and maps 7 to 5, sd og maps 2 to 5; and so on.

Another way to do it is to re-write the two-line form fagr by shuffling the
columns around so that the first row agrees with the second rdw @hen the
second row will be the second row 66 g. Thus,

/12345678 (473815286,
9=13 218 76 5 4 \s 51437 2 ¢°

fog:(

SO

(G210 \V)

3 4
1 4

0
w o1
~N O
N N
@ %
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To see what is going on, remember that a permutation is a function, which can
be thought of as a black box. The black box fors g is a composite containing
the black boxes fof andg with the output of the first connected to the input of
the second:

Now to calculate the result of applyinfgogto 1, we feed 1 into the input; the
first black box outputs 4, which is input to the second black box, which outputs 8.

We define a special permutation, tildentity permutationwhich leaves every-

thing where it is:
o 1 2 3 45 6 7
~\1 2 3 456 7 '

Then we haveo f = f oe= f for any permutatiorf.

Given a permutatiorf, we define thenverse permutationf f to be the per-
mutation which “puts everything back where it came from” — thug, mhapsx to
y, thenf~1 mapsy to x. (This is just the inverse function as we defined it before.)
It can be calculated directly from this rule. Another method is to take the two-
line form for f, shuffle the columns so that the bottom row is.1.2h, and then
interchanging the top and bottom rows. For our example,

(12345678 (5731682
“\4 73815286 \1234586 78"
c1_(1 234567
“\5 7316 8 2 4"

We then see thato f1=f1of =e
Now you will not be surprised to learn:

SO

Theorem 10.2 The set of all permutations dfl,...,n}, with the operation of
composition, is a group.

Proof The composition of two permutations is a permutation. The identity and
inverse laws have just been verified above. So all we have to worry about is the
associative law. We have

X(fo(goh)) = (xf)(goh) = (((xF)gh) = (x(feg))h=x((fog)oh)
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for all x; so f o (goh) = (f og) oh, the associative law.
(Essentially, this last argument shows that the result of applyingo h,
bracketed in any fashion, id} theng, thenh”.)

We call this group theymmetric group of degree and write itS,. Note that
S, is a group of orden! .

Proposition 10.3 S, is an abelian group if i< 2, and is non-abelian if o> 3.

Proof S has order 1, an8, has order 2; it is easy to check that these groups are
abelian, for example by writing down their Cayley tables.

Forn > 3, S, contains element$ andg, wheref interchanges 1 and 2 and
fixes 3...,n, andg interchanges 2 and 3 and fixed 1,.4n. Now check that
fog#gof. (For examplef ogmaps 1to 3, bugo f maps 1to 2.)

10.3 Cycles

We come now to a way of representing permutations which is more compact than
the two-line notation described earlier, but (after a bit of practice!) just as easy to
calculate with: this i€ycle notation

Let aj,ay,...,ax be distinct numbers chosen from the $&t2 ... . n}. The
cycle(as,ay,...,ax) denotes the permutation which mags— ap, ap — ag, .. .,
ax_1+— a, andax — a;. If you imagineas, ay, . .., a¢ written around a circle, then
the cycle is the permutation where each element moves to the next place round the
circle. Any number not in the séty, ..., ax} is fixed by this manoeuvre.

Notice that the same permutation can be written in many different ways as a
cycle, since we may start at any point:

(a1,ap,...,a) = (ag,...,&,a1) = - = (&, a1,...,8_1)-

If (ag,...,a) and(by,...,b) are cycles with the property that no element
lies in both of the set$ay,...,a} and{bs,...,b}, then we say that the cycles
aredisjoint, and define theiproductto be the permutation which acts as the first
cycle on theas, as the second cycle on thse, and fixes the other elements (if
any) of{1,...,n}. In a similar way, we define the product of any set of pairwise
disjoint cycles.

Theorem 10.4 Any permutation can be written as a product of disjoint cycles.
The representation is unique, up to the facts that the cycles can be written in any
order, and each cycle can be started at any point.
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Proof Our proofis an algorithm to find theycle decompositioof a permutation.
We will consider first our standard example:

(_ (12345867

~\4 7 38152 '
Now we do the following. Start with the first element, 1. Follow its successive
images undef until it returns to its starting point:

f:1l—4—8—6—5—1.

This gives us a cycl€l,4,8,6,5).
If this cycle contains all the elements of the $&t... n}, then stop. Other-
wise, choose the smallest unused element (in this case 2, and repeat the procedure:

f:2057—2,

so we have a cyclg, 7) disjoint from the first.
We are still not finished, since we have not seen the element 3 yet.fN8w-
3, s0(3) is a cycle with a single element. Now we have the cycle decomposition:

f=1(1,4,8,6,5)(2,7)(3).

The general procedure is the same. Start with the smallest element of the set,
namely 1, and follow its successive images untientil we return to something
we have seen before. This can only be 1. For supposefthht— ay +— --- —
ax — as, Where 1< s< k. Then we haveg 1f = ag= axf, contradicting the fact
that f is one-to-one. So the cycle ends by returning to its starting point.

Now continue this procedure until all elements have been used up. We cannot
ever stray into a previous cycle during this procedure. For suppose we start at an
elementby, and havef : b; — --- — by — as, whereag lies in an earlier cycle.
Then as beforegs 1f = as = b f, contradicting the fact that is one-to-one. So
the cycles we produce really are disjoint.

The uniqueness is hopefully clear.

You should practise composing and inverting permutations in disjoint cycle
notation. Finding the inverse is particularly simple: all we have to do to ffint
is to write each cycle of in reverse order!

We simplify the notation still further. Any element in a cycle of length 1 is

fixed by the permutation, and by convention we do not bother writing such cycles.
So our example permutation could be written simplyfas (1,4,8,6,5)(2,7).
The fact that 3 is not mentioned means that it is fixed. (You may notice that there
is a problem with this convention: the identity permutation fixes everything, and
so would be written just as a blank space! We get around this either by writing
one cycle(1) to represent it, or by just calling &)

Cycle notation makes it easy to get some information about a permutation:
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Proposition 10.5 The order of a permutation is the least common multiple of the
lengths of the cycles in its disjoint cycle representation.

Proof Recall that the order of is the smallest positive integaisuch thatf" = e.
To see what is going on, return to our standard example:

f=(()1,4,86,5)(2,7)(3).

Now elements in the first cycle return to their starting position after 5 steps, and
again after 10, 15, ... steps. So,fit = 1, thenn must be a multiple of 5. But
also the elements 2 and 7 swap placeisig applied an odd number of times, and
return to their original positions after an even number of steps. $b4f 1, then

n must also be even. Hencefif = 1 thenn is a multiple of 10. The point 3 is
fixed by any number of applications éfso doesn'’t affect things further. Thus,
the order ofn is a multiple of 10. Butf? = g, since applyingf ten times takes
each element back to its starting position; so the order is exactly 10.

In general, if the cycle lengths akeg, ko, ..., k., then elements of thigh cycle
are fixed byf" if and only if nis a multiple ofk;; so f" =eif and only ifnis a
multiple of all ofky, ...,k thatis, a multiple of lcrfky, ...,k ). So this Icm is the
order of f.

10.4 Transpositions

A transpositionis a permutation which swaps two elementnd j and fixes all
the other elements dfl, ..., n}. In disjoint cycle form, a transposition looks like

(i, ).

Theorem 10.6 Any permutation in $can be written as a product of transpo-
sitions. The number of transpositions occurring in a product equal to a given
element f is not always the same, but always has the same parity (even or odd)
depending on g.

Proof We begin by observing that
(1,2,...,n) =(1,2)(1,3)---(1,n).
For, in the product on the right,
e 1is mapped to 2 by the first factor, and remains there afterwards;

e 2 is mapped to 1 by the first factor, then to 2 by the second, then stays there;
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e n—1 is fixed by all factors until the second-last; it is mapped to 1 by the
second-last factor and thennidoy the last;

¢ nis fixed by all factors except the last, which takes it to 1.

So the two permutations are equal.
Now in exactly the same way, an arbitrary cydg, ay, ..., ax) can be written
as a product of transpositions:

(a1,a2,...,a) = (a1,a2)(a1,a3) -~ (a1, 8)-

Finally, given an arbitrary permutation, write it in disjoint cycle form, and then
write each cycle as a product of transpositions.

The statement about parity is harder to prove, and | have put the proof into an
appendix.

Our standard example can be written
f= (1747 8,6, 5)(27 7) = (17 4)(17 8)(17 6)(17 5)<2a 7)'

We call a permutatioevenor odd according as it is a product of an even or
odd number of transpositions; we call this tharity of f. Notice that a cycle of
lengthk is a product ok — 1 transpositions. So, if the lengths of the cycled of
areks, ...,k (including fixed points), theri is the product of

(Ki—1)+ (kg—1) +--+(k —1)=n—r

transpositions (since the cycle lengths add up)toln other words, if we define
c(f) to be the number of cycles in the cycle decompositiori ,ahen the parity
of f is the same as the parity nf-c(f).

Theorem 10.7 Suppose that & 2. Then the set of even permutations pisSa
subgroup of $having order h/2 and index2.

Proof Let A, be the set of even permutationsSa If f1, f> € A,, then fz‘1 has
the same cycle lengths ds (since we just reverse all the cycles), so it is also in
An. Thus, f; and f{l are each products of an even number of transpositions; and
then so, obviously, i$; o fz‘l. By the Subgroup Tes#, is a subgroup.

Let ~ be the equivalence relation defined by this subgroup; thdt is; f,
if and only if fyo fz‘1 € An. By considering each of; and f, as products of
transpositions, we see thét ~ f, if and only if f; and f, have the same parity.
So there are just two cosetsAf.

By Lagrange’s Theorem,

Aol = |Snl/2= 1t /2.
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The subgroupA, consisting of even permutations is called #éernating
groupof degreen.

Example Forn = 3, we have|S;| = 3! = 6, so|A3| = 3. The three even per-
mutations ares, (1,2,3) and(1,3,2); the remaining three permutations are the
transpositiong1,2), (1,3) and(2,3) form the other coset dfs in Ss.

Remark The formula for a 3< 3 determinant can be expressed as follows. For
each permutatiorf € S3, we do the following. Pick the elements in ravand
columnif of the matrix, and multiply them together. That is, choose one term
from each row and column in all possible ways. Now multiply the product by
if f isaneven permutation, and byl if f is an odd permutation. Finally, add up
these terms for all the permutations.

For example, if

>

I
T — o
o 3 o
= 33 0O

the terms are as follows:

Permutation Product Sign

e amr  +
(1,2,3) bnp +
(1,3,2) clq +

(1,2) blr -
(1,3) cmp —
(2,3) ang -

So detA) = amr+ bnp+clg— blr —cmp—ang

Now exactly the same procedure defines the determinant ofxam matrix,
for any positive integen. The drawback is that the number of terms needed for an
nx ndeterminant is!, a rapidly growing function; so the work required becomes
unreasonable very quickly. This is not a practical way to compute determinants;
but it is as good a definition as any!

10.5 Even and odd permutations

In this Appendix, we prove that the parity (even or odd) of a permutation does not
depend on the way we write it as a product of transpositions. We will give two
entirely different proofs.
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First proof

For this proof, we see what happens when we multiply a permutation by a trans-
position. We find that the number of cycles changes by 1 (it may increase or de-
crease). There are two cases, depending on whether the two points transposed lie
in different cycles or the same cycle of the permutation. Sé k& a permutation

andt a transposition.

Case 1: Transposing two points in different cycles. We may supposeftican-
tains two cyclegay,...,a) and(by,...,b), and that = (az,b;) (this is because
we can start each of the cycles at any point). Cycle$ obt containing points
moved byt will be unaffected. Now we find

fotiayy—ay— - --—a—bi—b—- - —b—a,

so the two cycles of are “stitched together” into a single cycle frot, and the
number of cycles decreases by 1.

Case 2: Transposing two points in the same cycle. Thistimédegt.. ., am,...,a)
be a cycle off, and assume that= (a;,am), where 1< m< k. This time

fot: Q= ane1— a1
Amt— amy1 > - Ak @m

so the single cycle of is “cut apart” into two cycles.

Now any permutatiorf can be written as
f =tiotyo---ofs,

wherety, ..., fs are transpositions. Ldt be the product of the firgtof the trans-
positions, and consider the quantity- c( f;), wherec(f) denotes the number of
cycles of f (including fixed points). We start witliy = e, havingn fixed points,
son—c(fg) = 0. Now, at each step, we multiply by a transposition, so we change
c(fi) by one, and hence change- c(fi) by one. So the final value— c(f) is

even or odd depending on whether the nuntefrtranspositions is even or odd.
Butn—c(f) is defined just by the cycle decompositionfofindependent of how

we express it as a product of transpositions. So in any such expression, the parity
of the number of transpositions will be the same.
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Second proof

Letxs,...,Xn benindeterminates, and consider the function

F(xl,...,xn):ﬂ(xj—xi).

i<]

For example, fon = 3, we have
F(X1,%2,%3) = (X2 — X1) (X3 — X1) (X3 — X2).

Given a permutatiorf, we define a new functiof ' of the same indetermi-
nates by applying the permutatidrto their indices:

Fr(xa, %) = [ (5 =)
i<]
For example, ih= 3 andf = (2,3), then

F12) (%1, %0, X3) = (X3 — X1) (X2 — X1) (X2 — X3) = —F (X1, X2, X3).

The result of applying1 and thenf, to F is just the result of applyindy o f1
to F, as you may check. We show that, for any transpositjove have

FUXq,..., %) = —F(X1,...,Xn).
It will follow that, if f is expressed as the productsdfanspositions, then
Ff(xlv"'7xn) = <_1)SF(X17"'3Xn)‘

Since the value of f does not depend on which expression as a product of trans-
positions we use, we see that1)® must be the same for all such expressions for
f, and hence the number of transpositions in the product must always have the
same parity, as required.

To prove our claim, take the transpositioa: (k, 1), wherek < |, and see what
it does toF. We look at the bracketed ternfs; — x;) and see what happens to
them. There are several cases.

o If {k,1}N{i,j} =0, then the term is unaffected by the permutation

o If i <k, then the terméxc —X;) and(x —X;) are interchanged, and there is
no effect onF.

e If k< i <1, then the term(x — Xx) goes to(xi —x ) = —(x —Xi), and the
term (X, — X;) goes to(xx — %) = —(X — Xx); the two sign changes cancel
out.
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e If i > 1, then the termgx; — x¢) and(x; — x ) are interchanged, and there is
no effect onF.

e Finally, the term(x; — x;) is mapped tqx —Xj) = —(Xj — X;).
So the overall effect of is to introduce one minus sign, and we conclude that
Ft! = —F, as required.
Exercises
10.1 Let g = (1,5,4,9,6,3)(7,8) andh = (1,4,3)(6,8,7)(5,9,2) be permuta-
tions in the symmetric grouf. Findgoh, g, g 1, andg~tohog. Show that
andg~1ohog have the same order.
10.2 If g andh are elements of any group, show that

(g tohog)"=g tohog

for any integen, and deduce thdtandg—! o hog necessarily have the same order.

10.3 List the elements di,, and say whether each is an even or odd permutation.
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