- 402 -

Over a Class of geometrical Transformations.l

The rapid development of geometry in our century stands, as is well known, in
an mumate dependence on philosophical reflections upon the nature of
Cartesian Geometry - reflections, which are expounded in their most universal
form by Pliicker in his oldest works.

For one, who has immersed himself in the spirit of Pliicker’s works, there is
nothing fundamentally new in the idea, that as element for the geometry of the
space can be used any curve that is dependent on three parameters. When
none-the-less no one, as far as [ know, has realised this thought, the

ground must probably be sought in that no advantage that might result from
this was seen.

I have been brought to a general study of the said theory by my finding that,
through a particularly remarkable transformation, the theory of main tangential
curves can be brought back to that of rounded curves,

Following Pliicker's trail I discuss the equation system:
(F,ixyzXYZ)=0, Fixyz XY Z)=0],

which 1n one meaning, later to be explained, defines a general reciprocity
between two spaces. When in particular the two equations are linear in relation
to each system's variables, a projection is obtained by which to each space's
points correspond in the other space the lines of a Pliicker Line-complex. The
simplest among the class of transformations I obtain in this way is the well-
known Ampéreish, which hereby is shown in a new light. In particular I
study the aforementioned projection, upon which I found a - as it appears to
me - fundamental relation between the Pliicker line geometry and a spatial
geometry whose element is the sphere.

While 1 was occupied with the present thesis I have been standing in a vivid
exchange of thoughts with Pliicker's pupil, Dr. Felix Klein, to whom 1 owe
many ideas, more, no doubt, than what by quotation I am able to indicate.

I'will also notify that this work has many points of contact with my works over

The most imponant aspects of the present thesis | reported to Christiania Science
Association in July and October 1870. One may also compare a note of Mr Klein
and me in the Berlin Academy’s "Monaisbericht” 15 December, 1870.
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the imaginaries of plane geometry. When I am not letting these relations be
exposed in my narrative here, it is partly because I consider it incidental, and
partly that I don't wish to deviate from the customary language of

mathematics. !

First Section
Over a new Reciprocity of Space
§ 1.
Reciprocity between two planes or two spaces.

1. The Poncelet-Gergonne reciprocity theory can, as is well known in
respect of plane geometry, be derived from the equation:

X(a;x + by + ¢} + Y(ax + byy +¢,) + (a,x + byy+¢cy)=0 (1)
or by the equivalent:
x’(a,x +2,Y +2,)+y(b,X+b,Y + by} + (¢, X + ¢, Y + cy)=0

provided that one interprets (x,y) and (X,Y) as Cartesian point co-ordinates for
two planes.

If, namely, one uses the term, conjugate, of two points (x,y) and (X,Y),
whose co-ordinate values satisfy equation (1), one can say that, to a given
point (x,y), conjugate points (X,Y) form a straight linc that can be perceived as
corresponding to the given point.

When all points of a given straight line have a mutual conjugated point in the
other plane, their corresponding straight lines go through this common point.

The two planes are thus mapped into each other by equation (1) in such a way
that to the points of the one plane correspond the straight lines of the other

! Guided by the theories expounded in the present thesis, Mr Klein in a recently
published note (Gesellschaft d. Wissensch, ze Gottingen, 4 March 1870) brought the
Pliscker ideas one step forward in that he showed, that the Pliicker line geometry - or
by my transformation the corresponding sphere geometry - in a remarkable way
manifests itself as an illustration of the metric geometry between four variables.
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plane. To points of a given line A correspond the straight lines that go through
A’s image point.

But herein lies just the principle of the Poncelet-Gergonne reciprocity theory.

One considers now in the one plane a polygon whose corners are:
{Py» P2--Py) and in the other plane the polygon, whose sides: (S,, S,..8,)
correspond (o these points. From what we have said follows also that the last-
mentioned polygon's corners: (S, S,) (S, S,1)..(S,., S,) are projection points
of the given sides: (p, p,) (p; P3)...(p,.; P,). that thus the two polygons stand
in a reciprocal relation.

By a limit transition onc is brought from here to a consideration of two curves ¢
and C, that correspond to each other in such a way that the tangents of the one
project themselves as the points of the other. Two such curves are said to be
reciprocal relative to equation (1).

2. Pliicker! has based a generalisation of the above presented theory on the
interpretation of the general equation:
Flx,y X,Y]=0 (2)

Those to a given point (x,y) [or (X,Y)] conjugated points (X,Y) [or (X,y)] now
form a curve C [or ¢}, which is produced by equation (2), when in the same
(x,y) [or (X,Y)] are regarded as parameters, (X,Y) {or (x.y)] on the contrary
as running co-ordinates.

By equation (2) the two planes are thus projected into each other in such a way,
that to the points of the one plane unambiguously correspond the curves of a
certamn curve-net in the other.

Quite as before it is understood, that to points of a given curve ¢ [or C)
correspond the curves C (or ¢) that go through the given image point.

To a polygon of curves ¢ (¢, c,...c) correspond n points: (py Py..-p,) Which
pairwise lic upon those curves C: (p; p,) (p, P3)-.-(P,., P,), Whose image
points are comers of the given curvilinear polygon. Eventually one is here also

brought to & consideration of curves 0 and £ in the two planes, that stand in
such a mutual relation to each other, that to the points of the one correspond the

I Analytisch geometrische Entwickelungen. T.I. Zweite Abth.
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curves ¢ [or C] that envelope the other. In general this reciprocity relation is not
complete, though, inasmuch as adjunct forms usually appear.

3. Pliicker' bases the general reciprocity between two spaces on the
interpretation of the general equation:

Fixyz XYZ)=0.

When F is linear in respect of cach system's variables, the Poncelet-Gergonne
rectprocity between the two spaces' points and planes is obtained.

In the present thesis and especially in the first section of the same, I aim at
studying a new reciprocity of space, which is to be considered side-ordered to
Plucker's, and that is defined by the equation system:

Fi(xyzXY¥2)=0
Fy(xyzXYZj=0,

where {xyz) and (XY 2) are perceived as point co-ordinates of two spaces
rand R.

§ 2.

A space curve, that depends upon three parameters can be chosen as the
element of the geometry of the space.

4. The transformation of geometric postulates that is founded upon the
Poncelet-Gergonne or the Plicker reciprocity can - as Gergonne and Pliicker
have emphasised - be seen from a higher point of view, which we here want to
state, because the same applies to our new reciprocity.

The Cartesian geometry, namely, translates any geometric theorem into an
algebraic one and thus of the geometry of the plane renders a faithful
representation of the algebra of two variables and likewise of the geometry of
space a representation of the algebra of three variable quantities.

Now Plilcker in particular has directed attention to the circumstance that to
Cartesian analytic geometry is attributed a double conditionality.

Descartes produces a system of values of the variables x and y at a point in the
plane; he has, as one uses to express it, chosen the point as the element of the

! Although 1 am unable 1o provide 2 quotation, I believe that it is correct to attribute
this reciprocity to Plucker.
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geometry of the plane, while with the same justification one could use the
straight line or any curve at all depending upon two parameters. Now - as
regards the plane - the geometrical transformation that is founded upon the
Poncelet-Gergonne reciprocity can be perceived as consisting of a
transition from a point 10 a straight line as element, and likewise the
Plicker plane reciprocity in the same sense rests upon the introduction of a
curve depending upon two parameters as the element of the geometry of the
plane.

Further, Descartes produces a quantity-system (x,y) by the point in the
plane whose distance from two given axes equals x and y. he has
among the unlimited manifold of possible co-ordinate systems chosen a
definite one.

The progress that geometry has made in the 19th century depends to a large
part upon the fact that these two conditions in Cartesian analytic geometry have
been clearly recognised as such, and it is accordingly close at hand to exploit
these important facts even more.

5. The in the following presented new theories are founded upon the fact,
that one can choose any space-curve which depends upon three parameters as
the element of the geometry of the space. If, for instance, one remembers that
the equations of the straight line in space contain four essential co-ordinates,
one realises that the straight lines that meet a given condition may be used as
the element of a geometry of the space, which - like the ordinary one - gives a
faithful representation of the algebra of three variables.

Hereby, however, a certain line-system - the Plicker line-complex - is
distinguished, and 1t is as a consequence of this seen that a certain
representation of this kind can have only a limited utility. If, however, it
concemns a study of the space relative to a given line-complex, it may be
particularly suitable to choose the straight lines of this complex as space-
element. As is well known, in the metric geometry, the infinitely distanced
imaginary circle and as consequence hereof the straight lines that intersect the
same are marked owt, and therefore there might a priori be some grouns to
suppose that, as regards the treatment of certain metric problems, it might be
advantageous to introduce these straight lines as element.

It is to be emphasised that when we, for instance, have just said that it is
possible to choose the straight lines of a line-complex as space-elements, this is
something different, something more particular if one so likes, than those ideas
that lic as a ground for Pliicker's last work: "Neue Geometrie des Raumes,
gegrundet auf die Betrachtung der geraden Linie als Raum-Element”. Pliicker
had already drawn attention to the fact that it is possible to create a
representation of an algebra that embraces an arbitrary number of variables in
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that one namely introduces a figure that depends upon the necessary number

of parameters as element. Especially he emphasised!, that the space-line has
four co-ordinates, that by choosing the same as space element one thus obtains
a geometry for which the space has four dimensions.

§3.

Curve complex. New geometric representation of partial differential equations
of the first order. The main tangent-curves of a line-complex.

6. Pliicker has used the expression line-complex 1o denote the collection
of the straight lines, that satisfy a given condition, and which thus depend upon
three unspecified (undetermined) parameters. By analogy herewith, in the
following, by curve-complex Iunderstand an arbitrary system of space-curves
¢, whose equations:

fi(xyzabce)=0, fa(xyzabe)=0 3)

contain three essential constants.

On differentiation of (3) with respect to x y z and elimination of a, b, ¢
between the two new and the initial equations a result is obtained of
the form:

f(xyz dxdydz)=0 (4)

If here x, y, z are perceived as parameters, dx, dy, dz on the other hand as
direction-cosines, each point in the space defined by (4) is associated with a
cone, namely, the collection of tangents to those complex-curves ¢, that go
through the point in question. These cones 1 call elementary complex-cones;
further 1 use the designation: elementary complex-direction to denote an
arbitrary line-element (dx dy dz) that belongs to a complex-curve ¢. The
collection of the to a point corresponding elementary complex-directions
generate the to the point associated elementary complex-cone.

To a given system (3) or - as one may also say - to a given curve-complex
correspond a definite equation: [f = 0], on the other hand [f = 0], through
the mentioned operations, can be derived from an unlimited manifold of
systems (3).

! Geometrie des Raumes. n. 258. (1846).
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If namely one chooses an arbitrary relation of the form:
Vixyzdxdydza] =0,
where o denotes a constant, and represents

Piixyzafy=0 @xyzaBy=0
the integral of the simultaneous system:
f=0, y=0,

itis evident, that also (¢ =0, ¢, = 0] by differentiation relative to x, y, z and
climination of a, [3, v leads to: (f=0).

Any curve of this new complex: [¢; = 0, ¢, = 0] is enveloped by curves ¢,
inasmuch as its elements are all complex-directions.

7. A partial differential equation of the first order between x, y, z is,
according to Monge, equivalent to the following problem: to find the general
surface which in each of its points touches a cone associated with the point in
question and whose general equation in plane co-ordinates is produced by just
the given partial differential equation.

Lagrange and Monge have led this problem back to the determination of a
definite curve-complex - the so called characteristic curves - inasmuch as they
have shown, that one always gets an integral surface by adjoining to a surface a
collection of charactenstic curves each of which intersects the nearest
preceding one.

One may note that the equation:
f(xyz dx dy dz)=0,

which the characteristic curves, according to the aforesaid determine, is to be
considered as equivalent to the partial differential equation itself, inasmuch as
both these equations are the analytic definition of the same three-fold infinity of
cones,

8. A general geometric interpretation of partial differential equations of the
first order between xyz is obtained by showing that the task: finding the
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general surface which at all its points has a three-point contact with a curve of a
given curve-complex - whereby it is implied, however, that the said curve is
not in its whole extension residing upon the surface - finds its analytic
expression in a partial differential equation of the first order. When, further:

fixyz dxdydz) =0

is the equation, that the characteristic Curves determine, any curve-complex
whose equations satisfy (f = 0) will stand in the said geometrical relation to the
given partial differential equation.

One considers that a complex of curves c is given, which satisfies (f = 0) and
analytically expresses the requirement that a surface [z= F(x y)] at each of its
points has a three-point contact with a curve ¢, without, however, excluding
the possibility of an even more intimate contact. It is easy to sec that to

determune z a partial differential equation of the second order (8, = 0) is

obtained.! But any surface which is generated by infinitely many ¢, apparently
satisfies (&) = 0), and hence its general integral with two arbitrary functions is

known. By analytical deliberations of great simplicity - albeit formally of
some breadth - I intend to show that the partial differential equation of the first

order (8 = 0), that corresponds to (f = 0), satisfies (8 = 0). When now
apparently (8; = 0) in general is not included in the aforementioned integral,
(8) = 0) is a singular integral of (8, = 0).

The equation: [f(x y z dx dy dz) = 0] gives by differentiation:
fydx + fydy + f,dz + g, d2x + £4,d2y + £4,d22 = 0, (6)

whereby (dx dy dz d2x d2y d2z) are to be regarded as belonging to an
arbitrary curve, that satisfies: (f = 0). In particular (6) is valid for [&; = 0]'s
charactenstic curves, and in that we denote these by an index, we obtain:

fy dx) +.. figx,d2x) +... = 0.

Now remarking that any curve that touches one of (8; = 0)'s integral

! (52 = 0) has the form: [A(rt - 52) + Br+ Cs + DI+ E = 0]. One may compare with
a dissertauion by Boole in Crelles Journal. Bd. 61.
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surfaces: (U = 0) satisfies the equation:

du dU dUu _
de +a;dy +3-z- —0. (7)

that further any curve, that by (U = 0) has a three-point contact, in addition
fulfills the relation:

dzU 2 dUuy 2
'd_z'(dx) + ...\ )dx....=0, (8)
X

it is seen, that any characteristic curve, that lies upon (U = 0), satisfies (7) as
well as (8).

But at each of its points (U = 0) touches the associated cone of the system:
(f = 0), and thus apply the equations:

f(k=p.c£'].., fdy: pd_U‘ f'a:pw N
dx dy dz'

in which p denotes an undetermined proportionality factor. Thus the
accentuated equation (8) transforms into the following

2
p[%(dxl)z-t-...] - [f’d,idzxﬁ... ]= 0.
l

But we know, that:

Foydxy+... + ) d3p+... =0
and hence is:

LU L1 afaxe ]

p 2 <+ = XE xl+...

or by exclusion of the now unneccesary index:




Now, however,

du 42 , dU ;2. = dU - 2
pEd_x-d X+ dyd) 3 ddeZ]—[fdxd X+..].

and thus the equation:

2
du 2, dU 2, du dU 402 _
p[—(Tx—d X+ dy d Y + dz d22 -+ dxz( ) + .., ]....

=fy dx + Py dy + ', dz +0gy d%x + Fgy d2y + £y, d2z,
whose right and left parts thus simultaneously vanish.

Qur expansions show, that any curve, that satisfies (f = 0), and that touches
one upon (U = 0) lying characteristic curve with the said surface has a three-

point contact; (8] = 0} is thus a singular integral of (83 = 0).
Finally we show that (83 = 0) does not allow any other singular integral.

On an integral surface 1 of (87 = 0), every point is namely associated with a

direction - the respective, three-point-contacting ¢'s tangent. If it is now
implied, that I is not generated by a manifold ¢, so goes through each point of 1
two converging ¢, that both touch upon the surface in the point in question. But
in consequence, I in each of its points is contacted by the corresponding

elementary complex-cone, I satisfies the equation: (§) = 0).

9. Corollary. The determination of the most general surface that in each of
its points has an - not upon the surface lying - main tangent, belonging to a
given line-complex, depends upon the solution of a partial differential equation
of the first order, whose characteristic curves are enveloped by the complex's
lines. The said curves appear in this case as main tangent-curves on the integral
surfaces.
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We present an independent geometrical proof of this corollary.

The partial differential equation, whose characteristics are enveloped by a given
line-complex’s lines, is according to Monge's theory the analytic expression of
the following problem: to find the most general surface which at each of its
points touches the complex-cone corresponding to the point. But when a
curve's tangents belong to a line-complex, the same osculation-plane is the
tangent plane to the corresponding complex-cone, and thus our characteristic
curves' osculation plane is the tangent plane for all integral surfaces which
contain the curve at hand. Here a couple of further remarks are required,
which, however, may be a repetition of what we have said before.

Any line-complex determines, according to the above-mentioned, a complex of
curves that are enveloped by the line-complex’s lines, and which have the
property to be main tangent-curves on any surface that is generated by a
system of these curves, each of which intersects the preceding. This complex
of curves we in the following designate the line-complex's main tangeni-
CuUrves,

I owe Mr. Klein the acknowledgement, that the congruence of straight lines,
that Pliicker calls a line-complexe's singular lines, belong to the said curve-
complex. If the given complex is formed by a surface's tangents [or by the
straight lines that intersect a curve), then all the lines of the line-complex are
singular lines and hence also main tangent-curves.

§4

The equation system : Fi(xyz XY Z)=0, Fy(xyz X Y Z) = 0, determines
a reciprocity between two spacc:s.l

10.  We begin a study of the spatial reciprocity determined by the equations:
Fiixyz XYZ)=0

9)
Fylxyz XYZ)=0

when in the same (x y z) and (X Y Z) are perceived as point co-ordinates of
two spaces r and R.2

i
2

One compares this paragraph with § 1.

Things, that belong to the spacer, we as arule denote by small letters; on the
other hand versals are used for everything belonging o R.
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When the term conjugated is used of two points, whose co-ordinate values
(x y z) and (X Y Z) satisfy the relations (9), one can say, that the to a given
point (x y z) conjugated points (X Y Z) generate a curve C, which is
formulated by (9), when in the same (x y z) are regarded as parameters,
(XY Z) on the other hand as running co-ordinates.

To the curves of the space r, thus unambiguously correspond the curves C of a
definite curve-complex in R, and likewise appears in r a complex of curves c,
which stand in the same relation to R's points.

A curve ¢’s points have a mutual conjugated point in R, and in consequence
their corresponding cuirves C go through this mutual point.

The two spaces are thus mapped by the equation system (9) into each other in
such a way, that to each space's points unambiguously correspond in the other
the curves of a definite complex. When a point describes a complex-curve, the

complex-curve corresponding to the point turns round’ the image-point of the
intersected one.

71. Ttis now possible to show, that the equations (9) determine a general
reciprocity between figures in the two spaces and especially between curves
that are enveloped by complex-curves c and C.

When two curves of the one complex have a mutual-point - which is obviously
not so in general - their imagepoints lie upon a complex-curve. Note in
particular, that two endlessly close-lying complex-curves, which intersect each
other, project themselves as two points whose infinitesimal connection-line is
an elementary complex-direction.

One now considers a curve @ in r, that is enveloped by curves ¢, and all curves

C that correspond to o's points. Two consecutive of these C would, after what
we have just said, intersect each other, and thus their collection determines an

envelope-curve L.

It is further apparent, that when a point runs through X, the corresponding ¢
will envelop a curve ¢, and it can be shown that ¢! is precisely the originally
given curve ©.

One may namely consider on the one hand a curved polygon formed by

1

The term, “turns round" is unfortunate 1nasmuch as, of course, a turn associated by a
change of form s meant.
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complex-curves (¢, ¢, ¢4...c,)), whose corners are (¢y ¢9) (cy€3)..(cpyy €p) -
and on the other hand the imagepoints of the curves ¢: (P, P,...P ), which
obviously pairwise: (P; P,) (P, P5)..(P, | P,) lie upon complex-curves c,
those, namely, which correspond to the comers of the given polygon. The new

polygon in R and the given one thus stand in a fully reciprocal relation to each
other.

By a limit transition one obtains in the two spaces curves, which are enveloped
by complex-curves ¢ and C, and which stand in such a mutual relation to each
other, that to the points of the one correspond the complex-curves that envelope
the other,

A curve enveloped by complex-curves is thus projected in a double sense as
another, likewise by complex-curves enveloped curve, which we say is the
rendered reciprocal relative to the equation system (9).

One may also notice that elementary complex-directions (dx dy dz) (dX dY dZ)
arrange themselves pairwise as reciprocals, and that thus two rounded lines
enveloped by complex-curves, that touch upon each other, are transformed in
the other space as curves that stand in the same mutual relation.

12, Also between other space-forms equations (9) determine a
correspondence, which, however, in general is not a complete reciprocity.

A given swrface f's points are, namely, projected in R as a double infinity of

curves C; as a curve-congruence, whose focus-surface’ is F. Likewise
correspond to F's points a congruence of curves ¢, whose focus-surface, as we
will later see, contains f as reducible part.

The elementary complex-cones whose apex-points lie upon the surface f,
intersect the corresponding tangent-planes of this in n straight lines - by n is
understood the said complex-cones' order - and thus in each point of f
determine n elementary complex-directions. The continuous succession of
these directions forms an f n-fold enveloping curve set, which is all enveloped
by complex-curves c¢. The geometric locus for this curve-collection’s reciprocal
curves, or, as we may also say, collection of image-points of the ¢, which
touch upon f, forms the focus-surface F.

! In analogy with the terminclogy used for line-congruences, I understand by

this curve-congruence’s focus-surface: the geometric locus for intersection-points
between infinitesimally close-lying curves C. If the curve-congruence is thought of
as defined by a partial linear differential equation, its focus-surface is just what in
general one calls the differential equation’s singular integral.
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In order to prove this, one remembers, that two infinitesimally close-lying,
each other intersecting curves C project themselves as two points, whose
infinitesimal connection-ine is an elementary complex-direction. Now there go
from a point py on f, n complex-directions, and thus py's image-point Cyis
intersected at n points of the adjacent C, which belong to our curve-congruence
carlier considered - in those n points, namely, which correspond to the n
complex-curves x, which touch the surface f in the point p,. F's points are thus

the image of the ¢ that touch f.

When now f has a general location in the spacer, a ¢, that touches f in a point,
will in general not have more contacts with the same. But al! these ¢ form a
congruence in which each c touches the focus system in N points - by N is
understood the order of the elementary complex-cones in R -, and thus, as said

above, our congruence’s focus-system decomposes in f and a surface @, which
is touched by each ¢ in (N-1) points.

If thus the correspondence determined by equations (9) between surfaces in r
and R is to be a complete reciprocity, it is necessary and sufficient that n and N
both equal 1. In general, the reciprocity-relation is incomplete inasmuch as
analogous operations on the one hand transform f in F, and on the other, F in

the collection of fand @.

The above deliberations are also valid, when f, and as a consequence
hereof, F  are surface-elements; if f is infinitesimal in one direction alone, the
same is the case with F,

One considers finally a curve k, which is not enveloped by complex-curves ¢,
together with the surface F, that is generated by all C, which correspond to k's
points. The points of a ¢ are transformed to the through C's image-point going
curves ¢, and thus correspond to F's points the coliection of curves c, that
intersect k. The interrelation between k and F is thus a double one.

Equations (9) which map the two spaces into each other, transform the
according to the above-mentione given spaceforms to new ones that stand in a
reciprocal relation to the given ones, and can thus serve to transform
geometrical theorems and problems. For a special form of the equations (9) we
will make important uses of this transformation-principle later on.

§5
13.  Legendre has given a general method to - in the language of modemn

! One compares also: Plikcker, Geometrie des Raumes. § 2. (1846).
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geometry - transform a partial differential equation between point co-ordinates
xyz into a differential equation between plane-co-ordinates t, u, v, or - as
one may also say - between point-co-ordinates t, u, v, of a space, that stands in
a reciprocal relation to the given one.

When the curves ¢ are introduced as elements of the space r, it is in a similar
way possible to transform a partial differential equation between x, y, z into a
differential equation between the new space-element's co-ordinates X Y Z,
whereby one may also interpret X, Y,Z as point-co-ordinates of the space
R, - a notion that will prevail in our exposition,

Hence, given an arbitrary partial differential equation of the first order between

X, ¥, z and all surfaces y that generate a so called “integral complet” of the
same, one should bear in mind, that any other integral surface f can be

represented as envelope of single-infinitely many w.

One considers further in the space R all surfaces ¥ and @ which correspond to
the surfaces y and f. We will soon show, that any F is the envelope-surface of
single-infinitely many ¥, that thus the surfaces F satisfy a partial differential
cquation of the first order, for which all ¥ form an "integral complet”.

Two given surfaces in r, which possess a mutual surface-element, namely
project themselves in R as surfaces which touch each other, and likewise
surfaces that possess infinitely many mutual surface-clements are transformed
in surfaces, which like the given one touch each other along a curve.

This provided, one considers an integral surface f; and all single-infinitely
many W, that touch the same along a charactenstic curve, and finally the
corresponding Fy and W, It is clear that Fy) is touched by each W along a
curve, and F thus is the envelope-surface of all ‘¥,

14. A particular interest is offered by the fact that the partial differential
equation, that is transformed, is precisely that, which is determined by the
complex-curves ¢ (compare § 3); in that case it can be shown, that the
corresponding differential equation between X, Y, Z is decomposed into
two equations, of which one is just that which corresponds to the complex-
curves C.

Consider an integral surface by the given differential equation between x y z,
and all to the surface f's points corresponding complex-cones. These cones
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after § 4 in each point of f determine n complex-directions, of which in casu
two coincide; thus the in § 4 on the surface f considered collection of curves,
which are enveloped by complex-curves ¢, decompose into f's characteristic
curves and a curve-system, that covers f (n-2)fold.

The curve-congruence in the space R corresponding to f's points thus has a
focus-system, which is decomposed into two surfaces, of which the one - that
we are calling @ - is touched by each ¢ in two coinciding points, while (n-2)

contact-points fall upon the other. The surfaces @ thus satisfy the partial

differential equation that, after the theorem in § 3, are determined by the
complex-curves C.

Now noting, that @ is the geometric locus for the reciprocal curves of f's
characteristic curves, it is seen that the two integral surfaces f, and f, which

touch cach other along a characteristic curve k, are transformed into two
surfaces ®, and ®,,which touch each other along K's reciprocal curve; k is
namely enveloped by complex-curves c.

The characteristic curves for the two partial differential equations which, after
§ 3, are determined by the curve-complexes ¢ and C, are reciprocal curves
relative to the equation-system (9).

/5. The theorem just stated gives the following general method for the
transformation of partial differential equations of the first order.

One determines after the customary method the equation:
f(x y zdx dy dz) =0,

which the given partial differential equation’s characteristics satisfy, and
choose an arbitrary relation of the form:

y(x y z dx dy dzX) = 0,
where X denotes a constant. The simultaneous system:
f=0,y=0
be integrated in the form:

FilxyzXYZ)=0. FolxyzXYZ),
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where Y and Z are the constants introduced by the integration.
By differentiation and elimination one obtains a relation of the form:

F3(X Y ZdX dY dZ) =0,

which we regard as an equation for the characteristic curves of a definite partial
differential equation:

dz
F,(X Y Zg 39)=0.

Our earlier expansions show that (F4 = 0), that is derived of (Fy3 = 0)

according to the ordinary rules, and the given partial differential equation stand
in such a mutual interrelation, that if the one can be integrated, so is the other
also open for treatment,

One may draw from this general conclusions on the reduction in degree of
partial differential equations of the first order, defined by a complex of curves,
the order of which is given.

Thus, for example, any partial differential equation of the first order, that is
defined by a line-complex (§ 3), may be transformed into a partial differential

equation of the second degree.!

Likewise, any partial differential equation, defined by a cone-intersection-
complex, can be transformed into a differential equation of the 30th degree.2

§ 6.

Over the most general transformation that tums surfaces that touch each other
into similar surfaces.

/6. Inthe study of partial differential equations, an important role is played
by transformations that can be expressed in the form:

X=F (xyzpq)hY=F(xyzpq), Z=F (xyzpq).

This reduction is due to the fact that each line of a line-congruence touches the focus-
system in 2 ponts (§ 4, 12).

The number 30 comes up as product of 6 and {6-1). 6 is the number of points. in
which the focus-system of a focus-imtersection-congruence is touched by cach focus-
intersection.




- 419 -

By p and q one as usual understands the partially derived: dz/dx, dz/dy,;
likewise P and Q denote dZ/dX and dZ/dY.

In the following we would consider the instance where the functions F,, F,
and Fy are chosen in such a way that P and Q also only depend of (x yzpq)

P=Fyxyzpq); Q=Fsxyzpq).

In that we imply that, from the above 5 equations, a relation between (X Y Z P
Q) cannot be derived, note also that each separate quantity (x y z p q) can be
expressed as a function of (X Y ZP Q).

Whenxy zand X Y Z are perceived as point co-ordinates for r and R, one
can say, that by a transformation of this kind is defined a correspondence
between the two spaces’ surface-elements, and nota bene the most general. We
will show, that these transformations fall into two distinet, side-ordered

classes, of which the one’ corresponds to the Pliicker reciprocity, while the
other corresponds to the by me propounded reciprocity.

By elimination of p, g, P and Q between the five equations:

X=F|. Y=F2. Z=F3, P=F4, Q=FS

two essentially different situations may occur. Either only an equation between
(xy zX'Y Z} is obtained, or two relations exist between these quantities. (The
existence of rhree mutually independent equations between the two spaces’
point-co-ordinates requires the transformation in guestion to be a point-
transformation.)

But it is known, that the equation:
FixyzXYZ)=0

always defines a reciprocal correspondence between the two spaces’ surface-
elements; and likewise I have in the foregoing shown, that the equation-system:

FilxyzXYZ)=0, FolxyzXY2)=0

always determines a transformation, that turns surfaces, that touch each other
in like surfaces.

! Compare: Du Bois-Reymond, Partielle Differential-Gleichungen. 75- 8.
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Hereby my proposition is proved.

At this point I will draw atiention to the fact that these transformations possess
the remarkable ability to project an arbitrary differential equation of the form:

[A(rt - s%) + Br + Cs + Dt + E = 0], in which A, B, C, D depend only on x, y,
z, p, q into an equation of the same form. Inasmuch as the given equation
satisfies a generalc}‘nrst integral, the same is of course also the case with the new
cquation. (Compare Boole's thesis in Crelle's Journal Bd. 61).

Second Section

The Pliicker Line-Geometry can be transformed
into a Sphere-Geometry

§7.
The two curve-complexes are line-complexes.

7. When we imply that the equations, that map the two spaces into each
other, are linear in relation to any system variables:

(]0) { 0= X(a.ubly'c'udl) . Yuzxobzy«zudz) - 2‘“3‘*3’“3“"3) “lag+.)
0= X(aln+Bly47| 14»8') + Y(uzullzyoyzzoéz} 4 Z(a3x¢83y0731083) + (a.‘toﬂ‘yoy‘pé‘)_

the points conjugate to a given point in the other space obviously generate a

straight line. The two curve-Complexes are Pliicker line-complexes!, and in
consequence the equations (10) determine a correspondence between r and R,
that possesses the following characteristic properties:

a) To each space's points correspond unambiguously the lines of a line-
complex in the other.

b) When a point describes a complex-line, the corresponding line in the
other space turns around the intersected's image-point.

c) Curves that are enveloped by the two complexes' lines, arrange
themselves together pairwise as reciprocals in such a way that the tangents

' Regarding the theory of line-complexes | assume as known: 1) Plicker, Neue

Geometrie des Raumes, gegrindet auf etc....1868-69; 2) Klein, Zur Theori der
Complexe....math. Annalen. Bd. I1.
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of each correspond to the points of the other.

d) To a surface f in the space r is associated a surface F in R for two
reasons. On the one hand, F is the focus-surface of the line-congruence whose
image is f; on the other F's points correspond to those of s tangents which
belong to the line-complexes in r. '

e) On the surfaces f and F just mentioned all curves arrange themselves
together pairwise, conjugated in such a way, that to one upon f [or F] lying
curve's points correspond in the other space a line-surface, which contains the
conjugated curves and after the same touches F [or f].

f) To a curve upon f, which is enveloped by the line-complexes lines,
corresponds as conjugated a likewise by complex-lines enveloped curve on F,
and these curves are reciprocal curves, in the sense stated under (c).

Any one of the equations (10) determines an an-harmonic correspondence
between points and planes in the two spaces, and thus cach of our line-
complexes may be defined as collections of an-harmonically corresponding
planes’ intersection-lines - or as an-harmonically corresponding points'
intersection-fines. But the complex of the second degree here defined is
according to Mr. Reye identical to the line-system that initially Biner has
considered as the collection of a material body's stationary revolution-axes and
that later on  numerous mathematicians, especially Chasles and Reye, have
studied.

When the constants in equations (10) are particularised, the two complexes can
either get a special status - they may for example coincide, the case of which
Mr. Reye has treated in his "Geometrie des Lages, 1868", second part, in that
he simultaneously set forth the equations obeying (a) and (b) - or they may
themselves be particularised. Without entering a discussion of all the possible

special-varieties, I wish to stress the two most important degenerations:’

Both complexes can be special, linear. This case leads to the well-known
Ampere's transformation, which can thus be regarded as dependant upon the
fact that one introduces as space-element, instead of the point, the collection of
straight lines which intersect a given line.

The onc complex may degenerate into the collection of straight lines, that

Lie, "Reprasentation der Imaginzren etc. Christiania Vidensk.-Selskab 1869.
Februar og August”. The in the mentioned dissertation’s §§ 17 and 27-29 treated
spatial transformation is identical tothe one, I treat in the present Paragraph.
In § 25 T explicitly stress the first of the degenerations here reported.
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of each correspond to the points of the other.

d) To a surface f in the space r is associated a surface F in R for two
reasons. On the one hand, F is the focus-surface of the line-congruence whose
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fi To a curve upon f, which is enveloped by the line-complexes lines,
corresponds as conjugated a likewise by complex-lines enveloped curve on F,
and these curves are reciprocal curves, in the sense stated under (c).
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between points and planes in the two spaces, and thus each of our line-
complexes may be defined as collections of an-harmonically corresponding
planes’ intersection-lines - or as an-harmonically corresponding points’
intersection-lines, But the complex of the second degree here defined is
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considered as the collection of a matenal body's stationary revolution-axes and
that later on numerous mathematicians, especially Chasles and Reye, have
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When the constants in equations (10) are particularised, the two complexes can
cither get a special status - they may for example coincide, the case of which
Mr. Reye has treated in his "Geometrie des Lages, 1868", second part, in that
he simultaneously set forth the equations obeying (a) and (b) - or they may
themselves be particularised. Without entering a discussion of all the possible

special-varieties, I wish to stress the two most important degenerations: !

Both complexes can be spectal, linear. This case leads to the well-known
Ampere's transformation, which can thus be regarded as dependant upon the
fact that one introduces as space-clement, instead of the point, the collection of
straight lines which intersect a given line.

The one complex may degenerate into the collection of straight lines, that

' Lie, "Reprasentation der Imagineren etc. Chrictiania Vidensk.-Selskab 1869,

Februar og August”. The in the mentioned dissertation's §§ 17 and 27-29 treated
spatial transformation is identical to the one, I treat in the present Paragraph.
In § 25 T explicitly stress the first of the degenerations here reported.




- 423 -

intersect a given cone-section. In that case, the other complex is a general linear
complex. I here wish to mention, that Mr Noether (Gotting. Nachr. 1869) has
just reperted a projection of the lincar complex in a point-space, which is
identical to the one we consider here. The fundamental notion for us: that each
space contains a complex, whose lines are mapped as the other space's curves,
1s not expressed in Mr. Néether's brief note. - It is this degeneration that we
wish to study in the following, under the condition that the fundamental cone-
intersection is the infinitely distanced imaginary circle.

8. We have found that the two curve-complexes are line-complexes, when
the transformation-equations are linear in respect of any variable system,
and we are hereby led to investigate whether this sufficient condition is
necessary.,

When the one complex is a general line-complex, the corresponding curve-
complex’s elementary complex-cones must be decomposed in cones of the
second degree. The proof (§4, 12) of this lies in the fact that a line-
congruence's lines touch the focus-surface in two points. When the one
complex is a special line-complex, the corresponding curve-complex's
elementary complex-cones in the other space are decomposed into plane
bundles.

Thus, when both complexes would be line-complexes, the elementary
complex-cones in both spaces must decompose into cones of the 2nd or 1st
degree. But when a line-complex's cones always decompose, the complex

itself is reducible,! and thus it is shown that, when two line-complexes
are transformed into each other in the previously stated way, either both
mustbe of 2nd degree, or the one a special complex of 2nd degree
and the other linear, or both special linear complexes. All these
cases are represented by the equation-system (10), and we wish indicate
that  (10) defines the most general mutual transformation of two line-
complexes.

When, namely, both complexes are of 2nd degree, it can be shown, that the
singularity-surface cannot be a curved surface.

From each point of the surface in question emanate two plane bundles, whose
lines project in the other space as a straight line's points. It follows that all lines
of one bundle correspond to one and the same point in the other space.

But the collection of lines which do not have an independent mapping cannot

' I'don’t know of any proof of this proposition, which, however, is reported to me as
certain.
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form a complex, at the most a congruence or a number of congruences. When,
however, the collection of plane ray-bundles which emanate from all points of
a curved surface necessarily form a complex, our proposition, that the
singularity-surface cannot be a curved surface, is proved.

When two 2nd degree complexes are transformed into each other - in which
case neither of them can be a special complex - in both the singularity-surface
must consist only of planes, and in consequence both systems are such as
those Binet first examined.

When a 2nd degree complex and a linear complex are transformed into each
other, two cases are conceivable: the 2nd degree complex could be formed by
lines, which intersect a conesection - this occasion according to the aforesaid
actually exists -; the 2nd degree complex could consist of all a 2nd degree
surface’s tangents. I have through considerations, that have something in
common with those T use in § 12, proved that this second case does not exist;
because I could in that event, from the fact that a linear complex can be tumed
into itself by a three-fold infinity of linear transformations permutable between
themselves deduce, that the same must be the case with the 2nd degree surface,
which, however, is not how the matter stands.

§ 8.

Reciproéiry between a linear complex and the colletion of straight lines, which
intersect the endlessly distanced imaginary circle.

19. Inthe following we subject to a closer study the equation system:

Zz=x-2—k(x+iY) o
i= V-1 (11)

which is linear relative to both variable systems, and which after § 7 determines
a correspondence between two line-complexes. First we wish to seek these
complexes' equations in the Pliicker line co-ordinates.

Pliicker writes the straight line's equations in the form:

IZ=XxX-pP, sz=Yy-Qq,
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where he considers the five quantities: 1, p, s, 0, (16 - sp) as line-co-ordinates.
The equations (11) thus reproduce, provided that one perceives X, Y, Z as
parameters in the same, the system of straight lines, whose co-ordinates satisfy
the relations:

r= -%z, p= 35 (x+iY),

= L ox.j = L
s= 28(x 1Y), o= 27~AZ'

which by elimination of X, Y and Z give as our complex's equation:

22A0 +Br=0 (12).

The line-complex in the space r is thus a linear complex and it is a general
linear complex which - as one may notice - contains the xy-planes endlessly
distanced straight line.

To determine the line-complexes in R, one replaces the system (11) by the
equivalent:

)'zg z-2lBA2)Z= X- (Ax +B%’)

(i oat ) 7= v L0,

which, by combination with the equations of the straight line in R:

RZ=X-P, sZ=Y-X (13)
give:
LA B y
= — - — =Ax B— Y
R 55 2 Ty Z , P +DB3




- 426 -

and thus is found as equation of the line-complexes in R:

R2+82+1 =0 (14)
According to (13), however:

and as a consequence, (14) can also be written in the form:

dX? + dY? + d72 =0. (15)

The Jine-complexes in R are thus formed by the imaginary straight lines, whose
length equals zero, or as one may also say, of those lines that intersect the
endlessly distanced imaginary circle,

The equations (11) transform the two spaces into each other in such a way that
to r's points correspond in R the imaginary straight lines whose length equals
zero, while R's points transform as the lines of the linear complex (12).

One sees that, when a point runs through a line of this linear complex, the cor-
responding straight line in R describes an infinitesimal sphere - a point-sphere.

20.  According to the general theory for reciprocal curves, as expounded in
§ 4, one can, when a curve is known, by simple operations find the image-
curve that is enveloped by the other complex's lines. Now Lagrange has
engaged himself with the most general determination of space-curves whose
length equals zero, whose tangents thus possess the same property. He has
found these curves' general equation, and thus it is by the aforesaid also
possible to specify general formulas for the curves whose “tangents belong to a
linear complex,

In order not to depart from our aim we will not enter here into a closer
consideration of the simple geometrical relations that occur between reciprocal

curves in the two spaces, !

Our earlier expositions of the correspondence between surfaces in the two
spaces arc now somewhat modified thereby, in that all congruences of straight

! When the given curve of length equalling zero has an apex, the corresponding curve

in the linear complex has a stationary tangent. On the whole, stationary tangents
occur as ordinary singularities, when curves are perceived as line-generations, that
is, as enveloped by a given line-complex's lines.
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lines, which intersect the endlessly distanced circle possess a mutual focus-
curve - namely, that circle - and that furthermore a line-congruence’s straight
lines only touch the focus-surface in two points.

Because if one imagines a surface F given in R, and that f is the geometric
locus for the points in r that correspond to F's tangents of length zero, then
also, inversely, F is the complete geometric locus for the imagepoints of the
straight lines in the linear complex (12), touching f.

On the other hand, the case stands as in the general instance, when a surface
of general location in r is given, inasmuch as the straight lines of the lincar

compiex (12) which touch @, in addition envelope another surface y, @'s so
called reciprocal polarity relative to (12).

The above mentioned line-system transforms in R as a surface @, that
obviously is the focus-surface for two congruences - firstly for the collection of

straight lines, of length zero that correspond to @'s points - secondly for the
other collection of the lines that stand in the same relation to /'s points.

@’s 1angents of length equal to zero thus decompose into two systems, or as

one can also say: @'s geodetic curves of length equalling zero form two distinct
sets.

En passant we note that the determination of the curves that are enveloped by
the straight lines of a congruence belonging 1o a linear complex, according to
our general theories can be traced back to the searching out on the image-
surface F of the geodetic curves, whose length equals zero. For these curves
are reciprocal between each other (17, f) relative to the equation system (I 1).

2].  Inthe following we will make use of the ensuing theorems a few times:

a. A surface F of n™ order, which contains the endlessly distanced
imaginary circle as p-double line is the image of a congruence, whose order,

and in consequence also class, equals (n - p).!

An imaginary line of length equal to zero namely intersects Fin (n - p) points

! 1 will at this cccasion express an, as it seems, nowhere explicitly articulated, but

none-the-less for any one mathematician, who deals with line-geometry, weli-known
lemma: For a congruence that belongs 1o a linear complex, the order is always
equal 1o the class.
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which lie in the finite space, and thus are always given (n - p) lines of the
image-congruence, that run through a given point - or that lie in a given plane
in the space r.

b. A curve C of n'" order, which intersects the infinitely distanced circle in
p points, is projected in r as a linesurface of the (2n - p)** order.

A straight line of the linear complex (12) namely intersects the
mentioned linesurface in as many points as the number of - not infinitely
distanced - mutual-points between the curve C and an infinitesimal sphere.

§9.
The Pliicker line geometry can be transformed into a sphere-geometry.

22. In this paragraph we establish a fundamental relation that takes place
between the Pliicker line-geometry and a geometry whose elements are the
space’s spheres,

Because equations (11) transform the space r's straight lines into the space R's
spheres, and that for a double rendition (12).

On the one hand the straight lines of the complex l,, which intersect a given
line I, and thus likewise the same's reciprocal polarity |, relative to (12),
transform according to an earlier lemma (21,b) as a sphere's points; on the
other hand the lines 1, and 1,'s points are transformed into this sphere's

rectilinear generatrices.

By the following analytic expositions one can find the relations, that take place
between 1, and 1,'s line-co-ordinates X', Y', Z' and radius H".

When
pz=x-r, Oz=y-5§

are the line 1, [or I5's] equation, and it is remembered that the linear complex
(12)'s straight lines can be expressed by:

A 1 .
-Eﬁzz= x-z—A(X+|Y)

| ; _ 1
m(X'lY)Z—y - ZX_AZ’
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it is seen, that one must eliminate x y z between these four lines in order to
subject the just mentioned lines to the condition of intersecting l;. One hereby

finds the following relation:

(Z-(AGA-Bjy, 0]% + [X-(Ap+Bs)]? + [Y- i(Bs-Ap)]? =

[Aho+Bpy, r]2 (16)

between these linear parameters (X, Y, Z) or, as one may also say, between the
imagepoints’ co-ordinates.

The immediate interpretation is that this equation confirms what we have said
above, and in addition yields the following formulas:

X'=Ap +Bs iY'=Ap - Bs
(17)
Z'=AAG-Bj T tH'=AhAG + By 1
or the equivalent
-1 o 1 -
P=__ + ) — - -
2A(X‘ iY s 2B()'(' iy")
(18)

1 . A
o= t = - — tH
In which one may without disadvantage exclude the sphere-co-ordinates

X'Y'Z'H"s accents, in that for our perception the space R's points are
spheres, whose radius equals zero,

The formulas (17) and (18) show, that a straight line in r transforms as an
unambiguously determined sphere in R, while to a given sphere correspond
two lines in r:

(xv Y' Z- + H) (xc Yb Z1 - H)n

which are each other's reciprocal polarities relative to the linear complex:

H=0=1Ac+Bpr, (12)
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(17) and (18) evidently express, when H is defined as zero, the unambiguous
association between the complexe (12)'s straight lines and the space R's point-
spheres.

A plane - that is, a sphere, whose radius is infinitely large - projects as two
straight lines (1, and 1,), which intersect the xy-planes endlessly distanced

straight lines, and according to the above are I, and ;s points the projection of

those imaginary lines in the given plane, which go to the same's endlessly
distanced circle-points.

Note in particular, that to a plane, touching the endlessly distanced imaginary
circle, corresponds a line of the complex (H = 0) parallel to the xy plane.

23.  Twolines !, and A;, which intersect each other, transform as spheres,
between which contact takes place.

For 1, and A,'s polarities relative to (H = 0) also intersect each other, and in

consequence the mentioned spheres have two mutual generatrices. But 2nd
degree surfaces, whose intersection-curves consist of a conesection and two
straight lines, touch each other in three points - the section-curves double-

points. 1, and A,'s image-spheres thus have three contact points, of which two,
however, imaginary and infinitely distanced, in ordinary parlance do not come

Into question.
Analytically our theorem is proved in the following way:
The condition for the intersection between the two lines:
Slz=y-0| Szz=)"02
is known to be expressed by the equation:
(f] - Tg)(oi - 02) - (p] " Pg)(S] - 52) =0,
which by use of (18) gives:

(Xp- X%+ (Y, - Y2 4 (2, - 2% + (H, - iH,)2 = 0,

which proves our statement.
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Our theorem shows, that the collection of the straight lines, which intersect a
given, transforms as all spheres, that touch a given, and in consequence we
kmow the special linear complex's projection.

Conversely, corresponding to two spheres, which touch each other, there are
two line-pairs, whose mutual relation is such that each line of the one pair
intersects a line of the other.

24.  The general linear complex's transformation. The general linear
complex is produced by the equation:

(pO-RO)+mr+no+pp+qs+t=0, (19)

which by use of (18) is found to be the equation of the corresponding “linear
sphere-complex™:

[X24+Y2+7Z2-H2) + MX +NY +PZ+QH + T =0.!

Here M, N, P, Q, T signify constants that depend upon m, n, p, q, t, while
X. Y, Z H are to be considered as - non-homogeneous - sphere co-ordinates.

The last equation determines, as one casily sees, all spheres that intersect the
image-sphere of the complexes (19) and (H = 0)'s linear mutual-congruence
under constant angle.

If these complexes are simultaneous invariants equalling zero, or the two
complexes, as Klein puts it, lie in involution, the constant angle is right.

To spheres, which intersect a given sphere under constant angle, correspond in
the space r those straight lines of two linear complexes that are each other's
reciprocal polarities relative to (H = 0).

In particular it should be noted that the spheres, which intersect a given one
orthogonally, transform as the straight lines of a linear complex, lying in
involution with (H = 0).

This equation can be posed under the form:
(X-Xg) 4 (Y-Yo)2 + (Z-Zo)? + (iH-iH,)% = C, 2
in which we perceive X, Yo, Zy H,, Cp as non-homogeneous co-ordinates

of the linear complex. Mr Klein has drew my attention to the fact, that the sphere
(Xo: Yo Zg Hp) is the image of the axes of the linear complex at hand.
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Now given a linear complex, whose equation has the form:

ar+bs+cp+do+e=0, (20)

the corresponding relation between X, Y, Z, H is also linear, and thus the
linear sphere-complex in question is generated by all spheres, which intersect a
given plane under a given angle.

This one may also conclude from the fact that the complex (20) contains the xy-
plane's infinitely distanced straight line, that thus the same's mutual-
congruence with (H = 0) possesses directrices, which intersect this line.

When the complexes (20) and (H = 0) lie in involution, (20)'s lines transform
as all spheres which intersect a given plane orthogonally, or, equivalently, as
the spheres whose centres lie in a given plane.

The following four complexes:

X =0=Ap+Bs Z=0=AAc- By r

iY =0=Ap-Bs H=0=AAc+By, r

lie, as one easily sees, pairwise in involution and furthermore contain, as
mutual line, the xy-planes infinitely distanced line.

The special linear complex: (Const = 0), that is generated by all lines parallel
with the xy-plane in association with the four general linear complexes (X =
0)(Y =0)(Z =0) (H = 0), thus forms a system, that is to be perceived as a
degeneration of Mr. Klein's 6 fundamental-complexes. In analogy with the fact
that, above we have introduced X, Y, Z, H as non-homogeneous co-ordinates
of a geometry with four dimensions, the element of which is the sphere, these
quantities can also be used as non-homogeneous line-co-ordinates.

Itis of interest to note, that the lincar complexes, whose equation is:

H= )JAc + By, 1= Const.,

and which according to the equation-form touch each other after a special lincar
congruence, whose directrices have joined themselves in the xy-plane's
endlessly distanced line, transform as a set of sphere-complexes, which are
characterised thereby, that all spheres of the same complex have equally large
radii.
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25.  Various projections. A surface f and all its tangents in a given point
project themselves as a surface F and all spheres that touch the same in a given
point.

A line lying upon f as a sphere, that touches F along a curve.
When f is a linesurface, F is a sphere-envelope - a tube-surface.

If in particular f is 2 2nd degree surface and as consequence thereof contains
two systems of rectilinear generatrices, in two ways F may be perceived as a
sphere-envelope, and it is significant that in this manner weolf::zin the most
general surface, which possess this property (the cyclide).

A developable surface transforms itself in the envelope-surface of a set of
spheres, of which two consecutive ones always touch each other - that is to
say, in an imaginary linesurface, whose generatrices intersect the infinitely
distanced imaginary circle. These line-surfaces are, one knows, just those that
Monge characterises by their possessing only one system of rounded curves.

26. It is known that the immediate consequence of the Pliicker
understanding, that when (1, = 0) and (1 = 0) are the equations for two linear

complexes,
h+u 1,=0,

provided that p signifies a parameter, represent a set of linear complexes,
which contain a mutual linear congruence. Our projection-principle transforms
this theorem into the following:

The spheres K, that intersect two given spheres § 1 and S, under given angles,
V, and V, stand in the same relation to infinitely many spheres S. There are,

corresponding to the said line-congruence's two directrices, two S, which are
touched by all K.

The variable line complex: ( I, + ul, = 0) intersects the complex (H = 0) along a
linear congruence, whose directrices describe a 2nd degree surface - the
average of the three complexes: |, = 0, I, = 0, H = 0, and in consequence the
Just mentioned spheres S envelop a cyclide, which, by the way, in this case is
degenerated into a circle, after which all S intersect each other.

Here we also wish to draw auention to the fact that our sphere-projection
allows the deduction of corresponding sphere-groups from interesting
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discontinuous line-groups, and vice versa. For example, from the well-known
theory for the 3rd degree surface’s 27 straight lines we derive the existence of
groups of 27 spheres, of which each touches ten of the others.

On the other hand, for example, sphere-columns yield strangely discontinuous
arrangements of a linear complex's lines.

§ 10.
Transformation of particulars concerning spheres in line-problems.

27.  In this paragraph we wish to solve a few well-known problems
concerning spheres, in that we consider the corresponding line-problems by
our transformation-principle.

Problem I. How many spheres touch four given spheres?

The four spheres transform in four line-pairs (1; A,)(, M)y Aq)(14 Ay), and

the corresponding line-problem is thus to find the lines, which intersect four
lines, chosen in such 2 way among the 8 stated, that one line is taken by each

pair.
The lines I and A can be arranged in 16 distinct groups of four:

hhhlhdy A R4l

in such a way, that each group only contains one line of each pair. These 16
groups are, however, pairwise generated by lines, that are each other's
reciprocal polarities relative to (H = 0), and in consequence also two associated

groups' transversal-pairs (1 tp) (T} Tp) are each other's polarities relative to

(H =0). The four last-mentioned lines are thus projected as two spheres, and
in consequence there exist 16 spheres, arranged in 8 pairs, that touch the four
given.

Problem II. How many spheres intersect four given spheres under four given
angles?

The spheres, which intersect a given sphere under the same angle, project
themselves as those straight lines of two linear complexes, which are each
other’s reciprocal polarities relative to (H = 0). One thus has to consider four
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pairs of complexes {1; 4;)(1; 4,)(I; 23)(1, A,), and the problem is to find the

lines, that belong to four of these complexes, which are chosen in such a way,
that one of each pair is taken.

Four linear complexes have two mutual-lines, and thus as solution one obtains,
by following the same method as we used in the preceding problem’s
treatment, 16 spheres that are arranged in 8 pairs.

Our ;Jroblem is simplified, when one or more of the given angles are right,
insofar as a given sphere's orthogonal-spheres transform as the lines of one
complex lying in involution with (H = 0) (n.24). When all angles are right, the
question is how many mutual-lines four with (H = 0) in involution lying
complexes have. There are two such lines, which are each other's reciprocal
polarities relative to (H = 0), and in consequence there is only one sphere, that
intersects the four given orthogonally.

Problem I1l. To construct the spheres, that intersect five given spheres under
the same angle.

Our transformation-principle turns this problem into the following: to find
the linear complexes, which contain 2 line of each of five given line pairs

(1 &p)eenlls Ag).

These 10 lines can be arranged in 32 different groups of five, in such a way,
that each group contains one line of each pair:

11y 130,05) (g Ay Ay Ay )

-------------------

by which, however, note that pairwise these groups are each other's reciprocal
polarities relative to (H = 0). Each group gives a line-complex and, in all, 32
pairwisely conjugated linear complexes are thus obtained, which transform as
16 linear sphere-complexes. The 16 spheres, each of which is intersected under
constant angle by the mentioned system's spheres, are our problem's
solutions.

Two line-groups like:

il Asdgls Ay gy iyl

contain four mutual lines, and thus the two corresponding linear complexes
intersect each other after a linear congruence, whose directrices d,and d, are
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the mentioned four lines' transversals.

But the complex (H = 0) intersects that congruence along a 2nd degree surface,
which is the image of a circle - the average-circle between two of the sought
spheres, but likewise between d; and d,'s image-spheres. These last spheres

can also be defined by the fact that they touch four of the five given spheres
and thus one can, by the just stated construction, determine a number of circles
upon an arbitrary one of the spheres searched for.

On each of the 16 spheres that intersect five given under the same angle, five
circles can be constructed, provided that one can construct the spheres, which
touch the five given.

§ 11.
Relation between rounded curves' and maintangent-curves' theory.

28.  The transformation considered in the foregoing gains particular interest
due to the following, in my opinion important theorem:

To a surface F's rounded curves given in R correspond in r line-surfaces which
touch the image-surface f along maintangent-curves.

The surface f's tangents transform into spheres that touch F, and the idea is
thus that, to f's maintangents, correspond F's main-spheres. This is also the
case,

Because f is intersected by a maintangent in three coinciding points, which
shows that three consecutive generatrices of the maintangent's image-sphere
touch F. But such a sphere intersects F along a curve, which in both's point of
contact has an apex, and this is just characteristic of main-spheres.

When it is now further considered that this apex’s direction is tangent to a
rounded curve, it is seen that two consecutive points of a maintangent-curve on
f project as two lines, which touch F in consecutive points of the same
rounded curve. To fs maintangent-curves, perceived as point-creations, thus
correspond imaginary linesurfaces which touch F along a rounded curve.

But curves on f and F amange themselves pairwise together as conjugated in
such a way (n. 17, e) that the one's points are images of lines, which touch the
other surface in points of the conjugated curve, and thus our theorem is
proved.

The two ensuing examples can be regarded as a verification of this proposition.
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A sphere in R is the image of a linear congruence, as whose focus-surface the
two directrices are to be perceived. Now as is well-known any curve on a
sphere is a rounded curve, and in reality the directrices also appear as
maintangent-curves on  any line-surface that belongs to a linear
congruence. - A hyperboloid f in the space r gives in R a surface, which in two
ways can be perceived as a sphere-envelope. Now the line-surfaces in  the
complex (H= 0), touching f after its maintangent-curves, that is to say, after its
rectilinear generatrices, are themselves 2nd degree surfaces, and in
consequence the cyclide F's rounded curves are circles.

As an interesting consequence of our theorem the following may be
contemplated.

Kummer's surface of the first order and class has algebraic maintangent-curves
of the 16th order, which generate the complete contact-average between the
respective surface and linesurfaces of the 8th order.

Kummer's surface is namely the focus-surface for the general line-congruence
of 2nd order and class, which projects - provided it belongs to (H = 0) - as a
fourth degree surface which contains the infinitely distanced circle twice
(n. 21, a).

But Mr. Darboux and Moutard ! have shown, that the last mentioned
surface's curvelines are curves of the 8th order, which intersect the infinitely
distanced imaginary circle in 8 points, and thus these line transform as
linesurfaces of the 8th order (n. 21, b).

Finally, if it is remembered, that these linesurfaces' generatrices are
doubletangents to the Kummer surface, our theorem's correctness is realised.?

It is evident, that also the Kummer surface's degenerations, e.g.: the
wavesurface, the Pliicker complex-surface, the Steiner surface of the 4th order

and 3rd class’, a linesurface of 4th degree, the 3rd degree linesurface....have
algebraic maintangent-curves,

29, Mr Darboux has shown that on an arbitrary surface in general a
curveline located in the finite space can be determined - the touching-curve with
the imaginary developable, which is circumscribed simultaneously around the
given surface and the infinitely distanced imaginary circle.

! Comptes rendus. Year 1864.

Klein and Lie. Berliner Monatsbencht. 15 Dechr. 1870.
Clebsch has determined the Steiner surface’s maintangent-curves,
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As a consequence hereof it is in general possible to identify one maintangen:-
curve on the focussurface of a congruence belonging to a linear complex - the
geometric locus of the points, for which the tangentplane likewise is the plane
associated with the linear complex.

The infinitely small spheres, which touch F, namely consist of F's points in
connection with the above stated imaginary developables, and in consequence
the straight lines of the complex (H = 0}, which touch the imagesurface f,
divide into two systems - one system of doubletangents, and on the other hand
the collection of lines that touch f in the points of a definite curve, But this
curve is, as the projection of an imaginary linesurface that touches F along a
rounded curve, one of f's maintangent-curves.

However, this determination of a maintangent-curve is rendered illusory, when
not the congruence, but the focus-surface - or, more correctly, a reducible part
of the same - is conditionally stated. For on a surface, as a rule only a finite
number of points exist, whose tangentplane moreover is the plane which is
associated with the said point by a given linear complex.

Itis of interest to note, that a linesurface, whose generatrices belong to a
linear complex, contains infinitely many points, for which the
langentplane in addition is the plane assigned by the linear complex. The
collection of these points generates, by simple operations - differentiation and
elimination - , a determinable maintangent-curve.

But Mr. Clebsch has shown, that when a maintangent-curve is known upon a
linesurface, the others can be found by squaring.

The determination of maintangent-curves upon a linesurface belonging to a
linear complex depends only on squaring.

In that we use our transformation-principle on the mentioned theorem of Mr
Clebsch as well as on the deduced consequence, we obtain the following
theorems:

When upon a tubesurface (sphere envelope) a rounded curve which is not
circular is known, the others can be found by squaring.

Single-infinitely many spheres, that intersect a given sphere S under constant
angle, envelope a tubesurface upon which a curveline can be defined, and the
others thus determined by squaring.

That one can find a rounded curve upon the tubesurface mentioned in the last
theorem, is apparent also from the fact that the tubesurface intersects S under
constant angle. But this section-curve must be one of the tubesurface’s rounded
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curves by the known lemma: When two surfaces intersect each other under
constant angle, and the section-curve is a rounded line on the one surface, it
must also be so on the other; but on a sphere all curves are rounded lines.

§ 12
Correspondence between transformations of the two spaces.

30.  Our projection can, according to n. 16, be expressed by five equations,
which determine an arbitrary quantity of the two groups:

(xyzpq) (XYZPQ)),

as function of quantities of the other group. If now the one of the two spaces is
subjected to an, ¢.g., transformation, by which surfaces that touch each other,
are turmed into similar surfaces, the corresponding transformation of the other
space will possess the same property. The mentioned transformation of r
can namely be expressed by five equations between x, Y1+ 21, Py, q and

X2, ¥2, 22, P2, Q) - the indices 1 and 2 refer to the space r's two states - and

these relations are tumed by aid of the transformation-equations between
(xyzpq)and (XY ZP Q) torelations between (X, Y}, Z;, Py, Qp) and

(X2, Y3, Zy, Py, Qy), which proves our proposition.

In that we restrict ourselves to linear transformations of r, we find between
the comesponding transformations of R: all movements (translation-
movement, rolation-movement and the helicoidal movement), semblability-

transformation, transformation by reciprocal radii, parallel transformation’ - by
that is understood transition from a surface to its parallel-surface - a reciprocal

transformation studied by Mr. Bonner? etc., which ail, corresponding to linear
transformations of r, possess the property of tuming rounded curves into
rounded curves. We finally prove, that to the general linear transformation of r
correspond the most general transformation of R, by which rounded lines are
covariant curves.

31, When we now firstly consider such linear point-transformations of r, to
which correspond linear point-transformations of R, it is evident, that we can
only find such transformations of R, by which the endlessly distanced
imaginary circle remains unchanged, and inversely it is also true that we obtain
all of these.

|
2

Bonnets “dilatation.”
Comptes rendus. Many times in the 50-ies.
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For as we know, such a linear point transformation of R on the one hand tums
straight lines which intersect that circle into similar lines; on the other hand
spheres into spheres, and thus the corresponding transformation of r is at the
same time a point- and line-transformation, that is: a linear point
transformation, which was to be proved.

The pgeneral linear transformation of R, that does not distort the
infinitely distanced imaginary circle, contains 7 constants and can, asis
well known, be composed by translation- and rotation-movements in
combination  with  semblability-transformations. The  corresponding
transformation of r, that obviously also depends upon 7 constants, can be
characterised so that it tums a linear complex (H = 0) and one determined by
the same lines - the xy-planes' infinitely distanced line - into itself. One could
also define this transformation so that it turns a special linear congruence into
iself.
By analytical considerations one can in the following way determine the linear
point-transformation of r corresponding to a transformation-movement of R. A
translation-movement is expressed by the equations:
X]= X2+A; Y, =Y2+B; Z] =22+C; Hl =H2,
which by using the formulas (17) give:
T=r12+a sp=sp+b, py=py+c O =09 +d.
On insertion of these expressions in a straight line's equations:
NZ1=%-Pp $121=Y¥1- Oy
are obtained as definition of the mentioned transformation of r:
Z|= 20 X1 =Xg+azy+C, ¥y = yp +bzy +d.

Likewise it is easy to determine analytically the transformation of r
corresponding the to a semblability-transformation of R. For the equations:

X|= sz; Y] =mY2; Zl =n122; Hl =mHz
give, by using (17):

N)= mr. pp=mp2: §;=msy; ) =mo2,
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which define a linear transformation of r that can also be expressed by:
Z1= Z2: X =mXy; yp=my3.

But these last relations define a linear point-transformation that can be defined
so that two straight lines retain their places.

By geometric consideration we will show, that also rotation-movements of R
metamorphose into transformations of the just stated kind. Let A be the
rotation-axis and M and N the two points of the imaginary circle not distorted
by the rotation. It is evident, that all imaginary lines, that intersect A, and that
go through M or N, retain their position under the rotation, and in
consequence the same is the case with these lines' imagepoints, which form
two straight lines parallel with the xy-plane.

32, Transformation by reciprocal radii of the space R transforms points into
points, spheres into spheres and finally straight lines of length equal to zero
into similar lines; the corresponding transformation of r is thus a linear point-
transformation, that urns the complex (H = 0) into itself. When one further
notes that transformation by reciprocal radii lets a definite sphere's
points and rectilinear generatrices maintain their position, it is realised, that
the corresponding point-transformation does not distort two straight lines’
points.

Mr Klein' has drawn our attention to the fact that the just mentioned
transformation can be perceived as composed of two transformations relative to
two linear complexes lying in involution, of which in casu (H = 0) is one,
while the other corresponds to the collection of spheres which intersect the
fundamental-sphere of the given transformation by reciprocal radii.

According to the above it is evident, that to a surface D, which through a
transformation by reciprocal radii is tumed into itself, corresponds in the space
r one to (H = 0) belonging congruence, which is its own reciprocal polarity
relative to a linear complex lying in involution with (H = 0). The focus-surface
(f) of the said congruence is thus its own reciprocal polarity relative to both the
stated linear complexes, and in consequence the collection of f's
doubletangents generally decomposes into three congruences, of which the two
relationally belong to (H = 0) and the complex lying in involution with the
same.

33, One now considers all line-transformations of r, by which straight

! Zur Theorie . . . math. Annzlen, Bd. I1.
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lines, that intersect each other are tumned into similar lines!, and on the other
hand the corresponding transformations of R, which possess the property to
turn spheres into spheres, spheres that touch each other in similar spheres.

By the stated line-transformation, the collection of a surface fy's tangents is
turned into all of another surface fy's tangents, and especially f;'s main-
tangents go over into f's maintangents - this irrespective of whether the line-
transformation is a point-transformation or a point-plane-transformation.

By the corresponding transformation of R, the threefold infinity of spheres,
that touch a given surface Fy is turned into the collection of spheres, standing

in the same relation to the other surface F, and especially Fy's main-spheres
are transformed into F5's main-spheres. A simple consequence hereof is that
Fy's and Fy's arcuate-lines correspond to each other in the sense that when in
an arbitrary relation:

¢'(X] Yl Zl Pl Ql)=0.

which is valid along one of F's rounded lines, are inserted X; Y, Zy Py Qy's
values at X5 Yy Z; Py Q,, an cquation is obtained, that is valid for one of
F»'s rounded curves.

! will now show, that any transformation of R of the form:

X =F (2% %% T
X, dY; dXo dx'Zm . dY2n
Y, =F YoZn oo
1 2{ M XLy ..,
(%% 72 o )
dM Z2
Z1=F YoZy ciiiiiiin.
1 3(J XLy it
(%2 T )
! Here are, as we know, two cases 1o be considered, insofar as lines, that go through

apoint, can either be wransformed in similar lines, or in lines that lie in a plane.
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which turns an arbitrary surface’s rounded lines into rounded lines for the new
surface, through my transformation corresponds to a linear transformation

of r.

The proof can be straightforwardly reduced to demonstrating that when a
transformation of r turns an arbitrary surface’s maintangent-curves into
maintangent-curves of the transformed surface, straight lines that intersect each
other must be turned into similar lines by the same.

Firstly, the transformation in question must tum straight lines into straight
lines, follows from that the straight line is the only curve, which is
maintangent-curve on any surface that contains the same.

Further, to straight lines that intersect each other, must correspond lines of the
same relative mode, can be deduced from the fact that the developable surface
is the only linesurface, which possesses the property, that through each of its
points runs only onc maintangent-curve - that thus our transformation must
turn developable surfaces into developable surfaces.

Our proposition is thus proved.

One may note that, corresponding to the two essentially different kinds of
linear transformations, exist two distinct classes of transformations, for which
rounded curves are covariant curves.

When one chooses among the stated transformations of R those which are
point-transformations, the most general point-transformation of R, by which
rounded lines are covariant curves, is obtained, a problem that Liouville
first solved. That hereunder equivalence in the smallest parts is maintained,
follows by the fact that infinitesimal spheres are transformed into infinitesimal
spheres,

FParallel-transformation is known to tum rounded lines into rounded lines, and
it is in reality easy to verify that the corresponding transformation of r is a
lincar point-transformation.
For the equations:

x|= XZ: YI =Y2; Zl =Z2; Hl =H2+A

transform (compare our considerations over translation-movement n. 3/ )
into relations of the form:

21= 29, X =Xq+uzy+ bl yy=yy+c2y +d.
1= “2: A1 =22 2 | =73 *9




34.  Mr. Bonnet has many times considered a transformation, which he
defines by the equations:

Zy=i \/1+P22+q22 P X=X+ P2y Y=Y+ G2y,

whereby the two indices refer to the given and the transformed surfaces.

Mr. Bonnet shows that this transformation is reciprocal - in the sense, that
twice applied it brings back the given surface, that it transforms curvelines into
curvelines, that finally the following two relations:

1= iHy, Hy= -l (o)

find place, provided that Hyand Hy signify curve-radii for corresponding
points, that further {; and [, are z-ordinates for the corresponding curve-
centres.

The Bonnet transformation is, as we will soon show, the image of a
transformation of r relative to the linear complex:

Z+iH = 0.
Because, remembered that (X = 0) (Y = 0) (Z = 0) (H = 0) pairwise lie in

involution, it is found, that the co-ordinates of the straight lines, that are each
other’s polarities relative to [Z + iH = 0], fulfil the relations:

X|= x2; Y| = Y2; ZI =iH2; Hl = -522 . (B)
But these formulas determine a pairwise correspondence between all spheres of
the space when X, Y, Z, H are interpreted as sphere-co-ordinates. This is just

the same as the Bonnet transformation.

Because a surface F's mainspheres are transformed hereunder into a surface

Fo's mainspheres, and hence we recover Bonnet's formulas (o). When one

further considers F generated by point-spheres, the equations () define F, as

an envelope of spheres, whose centres lie in the plane (z = 0), in that the
equation (Hy = 0) draws (Z; = 0) after itself as a consequence. In reality we

are hereby carried to precisely the geometric construction described by Mr.
Bonnet.




