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PREFACE

Recent decades have seen extensive application of mathematics

in all spheres of man’s activity. The use of mathematics as a

tool for simulating the world around us has increased, and as

a result a mathematical education has become ever more
necessary.

“Linear algebra with elements of analytic geometry” is a bas-

ic course for mathematics students in technical schools. The
topic is important because most applied problems are either

“linear” in nature or admit of "linearization”.

The concept of a vector underlies linear algebra. In a narrow

sense, a vector is an arrow or a directed line segment in the

plane or in space. However, mathematicians have extended the

concept and this in more general interpretation covers a wider

circle of objects.

The vector is primarily used in analytic geometry. The basic

idea in this branch of mathematics is the coordinates, that is,

numbers defining the position of a geometric object. The coor-

dinate method was developed to solve geometrical problems

and then extended to all fields of mathematics and so it became
a universal tool of its application.

The union of two main ideas, those of coordinates and a

vector, underlies the course on analytic algebra with the ele-

ments of analytic geometry. The mathematical methods a stu-

dent masters when studying the course will be of practical use

in all applications of mathematics.

This study aid is in two parts. The first part presents the

elements of analytic geometry and the theory of determinants,

while the second part is devoted to linear algebra, namely, sys-
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terns of linear equations, matrix theory, and vector, Euclidean,

and affine spaces. The concepts of linear algebra are mainly

studied using arithmetic vector spaces R" (n = 1, 2, 3),

although Chapter 10 also presents abstract vector spaces. All

problems of linear algebra are in any case reduced to analyzing

systems of linear equations. We use Gaussian elimination for

this purpose. We believe that this approach best serves the aim

of the course, which is to teach the student methods for solving

linear problems avoiding wherever possible abstract notions.

The book is oriented to high-school graduates. Neverthe-

less, a small part of the material demands more of the student,

namely Chapter 5 («th-order determinants), Section 10.5 (ab-

stract vector spaces), and Chapter 13 (affine spaces). Each

chapter (except for Chapter 8) ends with exercises.

When selecting the material for this study aid, we were guid-

ed by the course curriculum and a desire for simplicity of

presentation.

We would like to express our appreciation to the reviewers

rofessor O. V. Manturov and Z. M. Egozar’yan, who com-

piled the course curriculum, for their constructive and valuable

suggestions.

The authors



Part One

ANALYTIC GEOMETRY

Chapter 1

VECTORS IN THE PLANE AND IN SPACE.
CARTESIAN COORDINATE SYSTEM

1.1. VECTORS

1. Notion of a vector.

Many physical quantities encountered in mathematics and its

applications, such as the length of a line segment, the area of

a figure, the volume and mass of a body, are completely

described by real numbers, their magnitudes. These quantities

are called scalars. Other physical quantities, such as force and

velocity are not completely determined by a number, they also

possess direction. Such quantities are called vectors.

Definition. A directed line segment or vector is a line seg-

ment whose endpoints are specified. A vector is directed from

its initial to its terminal point.

Vectors are represented geometrically as arrows (Fig. 1). The
tail of the arrow is called the initial point of the vector, and

. the tip of the arrow the terminal point. A vector whose initial

point is A and whose terminal point is B is denoted AB, and

its length or magnitude is denoted \AB\. Another notation of

a vector is lowercase boldface type such as a and its magnitude

is denoted |a| or a. The initial point of the vector AB (point

A) is sometimes called the point of its application.

Figure I

Figure 2
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Definition. Vectors lying on the same line or on parallel lines

are called collinear vectors.

Any two of the three vectors in Fig. 2 are collinear to each

other.

Definition. Vectors which are collinear, have the same length,

and are in the same direction are called equivalent.

If vectors are equivalent, we write AB = CD.
The definition of vector equality implies that the point of

application of the vector can be arbitrarily chosen. In this

sense, vectors are often called free. The vectors AB and CD
shown in Fig. 3 are equivalent, while the vectors MN and MP
and EF and GH are not.

If the initial point of a vector coincides with its terminal

point, the vector is represented by a point and have no specific

direction. Such a vector is called the zero vector and is denoted

by 0. Thus, the equality a = 0 is read as “the vector a equals

zero”, which means that the initial and terminal points of a

coincide. The magnitude of the zero vector is zero.

From the definition of collinear vectors we infer that the zero

vector is collinear with any vector.

2. Addition of vectors.

A course of high-school mathematics covers the operation

of vector addition. Let us recall the geometric interpretation

of vector addition, that is, the triangle law of addition.

If a and b are any two vectors, then the sum a + b is the

vector constructed as follows (Fig. 4). Place the initial point of

a vector a '
, which is equivalent to a, at any point O and posi-

tion a vector b', which is equivalent to b, so that its initial
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Figure 4

point coincides with the terminal point of a '
. The vector a + b

is the arrow from the initial point of a
'

(i.e. the point O) to

the terminal point of b'.

We emphasize that the vector a + b so constructed does not

depend on the position of the point O. If we take any other

point, say O*, and perform the same construction, we obtain

the same vector a + b (Fig. 5).

If vectors a and b are not collinear, we can apply the

parallelogram law of addition. To obtain the vector a + b, we
place the initial points of a and b at the same point O and
construct a parallelogram (Fig. 6). The diagonal from the point

O is the vector a + b.

The parallelogram law is often applied in physics problems,

for instance, when composing forces, i.e. to find the resultant

force.

Here are some properties of vector addition familiar from
high-school mathematics.

1°. Commutativity
,

a + b = b + a (1)

Figure 5 Figure 6
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Fi8ure 7
Figure 8

The property is illustrated in Fig. 7 when a and b are not

collinear.

2°. Associativity,

(a + b) + c = a + (b + c) (2)

(see Fig. 8).

The two properties imply that the sum of any number of

vectors is not affected by the order of addition of the methods

of grouping.

To construct the sum ai + a2 + . . . + a„, it is most con-

venient to apply the rule of closure of an open polygon, which

is a generalization of the triangle law and is as follows. If we

go from the initial point of the vector ai to the terminal point

of the vector a„ by way of vectors ai ,
a2 , . . . , a*, then the vector

from the initial point of ai to the terminal point of a„ is their

sum ai + a2 + ... + a„ (Fig. 9).

3. Vector subtraction.

Definition. Given any two vectors a and b, their difference

b - a is a vector d, such that when added to the vector a yields

the vector b.

Figure 9 Figure 10
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Figure 11

Hence follows the rule for vector subtraction. We position

vectors a and b so that their initial points coincide (point O,

see Fig. 10), the vector from the terminal point (A

)

of a to the

terminal point (B

)

of b is the vector b - a. Indeed, if a = OA
and b = OB, then OA + AB = OB, i.e. AB = OB - OA, or

AB = b - a

The vector with the same length as the vector a but opposite-

ly directed is called the negative of (opposite to) a and is denot-

ed by -a. We can easily see that

a + ( — a) = 0 (3)

Obviously, if a = AB, then - a = BA, and we have (see Fig. 11)

a + ( - a) = AB + BA — AA = 0

Formula (3) yields the following for the difference of two

vectors

b-a = b + (-a) (4)

Indeed, if we add the vector a and the vector b + ( - a), we get

a + [b + (-a)] = b + [a + (-a)] = b + 0 = b

Formula (4) is most useful when we add or subtract more

than two vectors. For instance, to find the difference a - b -

c - d, we should use vectors a, -b, -c, -d to construct their

sum according to the rule of closure of an open polygon.

4. Multiplication of a vector by a scalar.

If a is a vector and X is a number (scalar), then the product
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Figure 13 Figure 14

Xa is a vector which is collinear to a, has the length |X|-|a|, and
has the same direction as a if X > 0 and is opposite to a if

X < 0. Here |X| denotes the absolute value of the number X.

The product 0a is equal to zero (zero vector).

If X > 0, the multiplication of a by X can be visualized as

follows: the vector Xa is the result of “stretching” the vector

aX times. However, we mean a mathematical stretching, so that

if, for instance, X = 1/2, stretching X times means that the

length of a is reduced to one half. If X < 0, stretching |X| times

is accompanied by changing the direction of a to the opposite

(Fig. 12).

The operation of vector multiplication by scalars possesses

the following property:

Mfia) = (Xu) a (5 )

The vectors X(jta) and (X*t) a have the same magnitude equal

to |X||/i||a|, have the same direction as a if X and /t are of the

same sign and have the opposite direction if X and n are of

opposite signs. If either X or n is zero, both vectors X(jia) and
(X/i) a are zero.

Here is another property of the operation of vector multipli-

cation by a scalar:

-(Xa) = (-X)a (6)

This property is illustrated in Fig. 13.

Theorem (on collinear vectors). If a and b are two collinear

vectors and a is nonzero, then there is a unique number X such

that b = Xa.
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If b = 0, then X = 0. Now let b ^ 0. Let X = |bj/ja| if the

vectors b and a are in the same direction, and X = - |b|/|a| if

they have opposite directions. Then b = Xa.

If b = ^a along with b = Xa, then (X - f) a = 0, and since

a ^ 0, we have X - n = 0, i.e. X = n. m

5. Linear operations on vectors.

The operations of vector addition and multiplication by a

number are called linear operations. (The operation of subtrac-

tion is defined via addition and thereby is considered to be

“secondary”.)

In the school course the following two properties, each in-

volving both linear operations, were proved:

(X + n) a = Xa + /ra (7)

X(a + b) = Xa + Xb (8)

Here a, b, X, and n are arbitrary. Figure 14 illustrates Eq. (8)

for X > 1.

Properties (1) through (8) are important since they make it

possible to perform calculations in vector algebra basically as

in common algebra, for instance, we can use the rules of arith-

metic for removing brackets and factoring out.

6. A Linear combination of several vectors.

Suppose we have several vectors ai, a2 , . . ., a„.

Definition. A linear combination of vectors ai, a2 ,
. .

. , a„

is the sum of the products of these vectors multiplied by any

numbers ci, Cz, . . ., c„.

For instance, 3a - ^
b + 7c is a linear combination of the

vectors a, b, c.

Example. A quadrilateral ABCD is given, and P and Q are

the midpoints of the sides BC and AD respectively (Fig. 15),

express the vector PQ via the vectors AB, BC, CD.

O We have

PQ = PB+BA+AQ = - }^BC - AB + ^AD

Since AB + BC + CD + DA = AA = 0 and hence DA =
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-(AB + BC + CD), we get

PQ = - -
2
BC - AB + |

(AS + BC + CD)

= - \rAB + \cb
2 2

We see that the expression does not contain the vector BC. 9
7. A line segment divided in a ratio.

Let a point C divide a line segment AB (see Fig. 16) in the

ratio -
, i.e.

\AC\ _ «

\CB\ /3

Then,

AC =
|
CB (9)

We connect points A, B, and C with a point O and formulate

the following problem: express vector OC in terms of vectors

OA and OB.

O We have AC = OC - OA and CB = OB - OC. Mul-

tiplying both sides of the first equation by 0 and both sides

of the second by a, we have

/3AC = p(OC - OA) and aCB = a(OB - OC)

Since, by virtue of (9), the left-hand sides of the equalities are

2— 366
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8

C

Figure 17

equal, their right-hand sides are also equal

/3(OC - 04) = a(OB - OC

)

We write this equation as (a + (3) OC = @OA + aOB, whence

00)

Formula (10) is widely used in calculations.

Example. Prove that the medians of a triangle intersect at

one point, which is the centroid of the triangle, and that this

point divides each median in the ratio 2:1 reckoning from the

vertex along the median.

O We choose an arbitrary point O in the plane of the trian-

gle. Then consider point P which divides median AA '

in the

ratio 2:1 (Fig. 17). By formula (10) we have

OA ' = l OB +^OC
2 2

3
(OA + OB + OC)

Whence
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Figure 18

Vectors OA , OB, and OC are in equal proportion in this expres-

sion. Hence it is clear that if we take points Q and R which
divide medians BB' and CC' respectively in the ratio 2:1, we
obtain similar expressions for vectors OQ and OR. Conse-
quently, OP = OQ = OR, which proves that points P, Q, and
R coincide. #

Here is another example. It generalizes the preceding example and represents

Ceva’s theorem from elementary geometry, viz. if the sides of a triangle are

divided in the ratios a:0, y:a, 0:y (see Fig. 18), then the straight lines joining
the vertices to thepoints ofdivision of the opposite sides intersect at one point.

We consider point P which divides the line segment AA '

in the ratio

(0 + 7 ).ol. From formula (10) we have

OP
a + (3 + 7

OA + 0 + 7

a + 0 + 7
OA'

a

a + 0 + 7
OA +

0 + 7

a + 0 + 7 (
-

\0 + 7
OB + —

0 + 7

= (aOA + 0OB + 7OC)
a + 0 + 7

Thus it is clear that if we take point Q, which divides line segment BB' in

the ratio (a + y):0, and point R, which divides line segment CC' in.the ratio

(a + 0):y, Uten wej3btain_similar expressions for vectors OQ and OR. Conse-
quently, OP = OQ = OR, which proves that points P, Q, and R
coincide.

The theorems on the intersection of bisectors and on the intersection of the

altitudes of a triangle at one point are special cases of Ceva’s theorem.
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1.2. VECTOR BASIS IN THE PLANE AND IN SPACE

1. Vector basis in the plane. Representation of a vector in

terms of the basis.

Lemma. If vectors a and b are not collinear, then the

equation

aa + j3b = 0 ( 1 )

holds true if and only if both a and /3 are zero.

Let, say, a^O. Then (1) yields

a

and this contradicts the hypothesis that a and b are not col-

linear. Therefore, a = 0. We can prove that /3 = 0 in a similar

way.

Let us now consider a plane in space.

Definition. A vector basis in a given plane is a set of any
two noncollinear vectors ei and e2 in the plane.

The vectors ei and e2 are termed the first and the second
basis vectors respectively.

We prove the following important theorem.

Theorem. Let ei , e2 be a vector basis in the plane. Then any
vector a in the plane can be uniquely represented as a linear

combination of the basis vectors ei and e2

a = Xei + Ye2 (2)

We reduce the vectors ei, e2 , and a to a common origin

O and draw a straight line through point A (the terminus of

a) and parallel to e2 . Let A\ be the point of intersection of

the straight line and the axis of ei (Fig. 19); point A x does exist

since the vectors ei and e2 are not collinear. We have

a = OA\ + AiA. By the theorem on collinear vectors,

OA i
= Xei and A\A = Te2 , where X and Y are numbers,

whence a = A'ei + Te2 , and this is the representation of the

vector a as a linear combination of the vectors ei and e2 .

We now prove that this representation is unique. Let the

equality

a = A*ei + T*e2 (3)
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as well as Eq. (2) be true. Subtracting (2) from (3) we have

(X - X*) e, 4- (Y - Y*) e2 = 0

According to the above lemma this means that X = X* and
Y = Y*. m

Definition. Equality (2) is the representation of the vector

a in terms of the basis ei, e2 and the numbers X and Y are

called the coordinates of a in the basis ei, e2 (or in terms of

the basis ei, e2).

This definition of vector coordinates implies that equal vec-

tors have equal coordinates. Indeed, if a = Xt\ + Fe2 and

a' = A"ei + F'e2 , then the equality a = a' implies that

(X' - X) e, + (Y’ - Y) e2 = 0

whence from the lemma we have X' = X and Y’ = Y.

For the sake of brevity we accept the following notation: if

X and Y are the coordinates of the vector a in the basis ei,

e2 ,
we shall write a = (X, Y ) in the basis ei, e2 ; if the basis

is known, we shall simply write a = <X,
Y).

Let us return to the proof of the representation theorem. A
direct corollary of the proof is the following proposition: let

vectors ei , e2 ,
and a be reduced to a common origin O. Through

the terminus of a we draw a straight line parallel to the vector

ei. Let Az be the point of intersection of the straight line and
the axis of the vector e2 . Then OAz = Fe2 ,

where Y is the se-

cond coordinate of a in the basis ei, e2 .

Indeed,_we can see from Fig. 19 that OAz = A\A\ conse-

quently, OA 2 = Fe2 .
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Figure 20

By changing the indices of the basis vectors we can always

get ei to be the second basis vector (we assume that e{ = e2 ,

e2 = ei). Hence it is clear that we have an analogous proposi-

tion for the first coordinate of the vector a: through the termi-

nus of a we draw a straight line parallel to the vector e2 . Let

A\ be the point where the straight line intersects the axis of
the vector ei . Then OA i

= A'ei , where X is the first coordinate

of a.

Example. Given a parallelogram ABCD (Fig. 20). The points

P and Q are the midpoints of the sides BC and CD respectively,

find the coordinates of the vector PQ if we assume that

ei = AD and e2 = AB are the basis vectors.

O We have PQ = PC+CQ = ^AD-^AB = \e i

-

1 — 2 2

^e2 . Hence PQ = <1/2, -1/2) in the basis ei, e2 . #

2. Coplanar vectors.

We say that the vector AB is parallel to a given plane a if

the straight line AB containing this vector is parallel to the

plane. A zero vector is assumed to be parallel to any plane.

Definition. Several vectors a, b, c, ... in space are called

coplanar if they are parallel to the same plane.

If vectors OA, OB, OC, . .

.

with the common origin O are

coplanar, then the points A, B, C, .

.

. are obviously in the same

plane. In this sense we can say that coplanar vectors can be

translated to the same plane.

Example. Consider a pyramid with the vertices A, B, C, D
(Fig. 21). The vectors BC, CD, DB are obviously coplanar,

while the vectors AD, AB, AC are not, neither are the vectors

AB, AD, DC: otherwise the point C would lie in the plane

ABD.
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A
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p

Figure 21 Figure 22

Two vectors are always coplanar, while three vectors can be

noncoplanar. If the vectors OA, OB, OC are not coplanar, we
can obtain three distinct planes by drawing through the termi-

nus of each vector a plane parallel to the two remaining vectors.

These three planes together with_diree other planes, which are

defined by the pairs of vectors OA and OB, OA and OC, OB
and OC, respectively, enclose a parallelepiped (Fig. 22). If P
is a vertex of the parallelepiped, then

6p = 6q + qp = 6q + oc=oa + ob + 6c.

This expression gives^a way of constructing the sum of three

noncoplanar vectors OA, OB, OC: we consider the parallele-

piped with vertex O and the jine segments OA, OB, OC as its

three edges; then the vector OA + OB + OC is a principal di-

agonal of the parallelepiped starting at the vertex O.

3. Vector basis in space. Representation of an arbitrary vector

in terms of the basis.

Lemma. If three vectors a, b, and c are noncoplanar, then

the equality

aa + /3b + -yc = 0 (4)

holds true if a = 0, /3 = 0, 7 = 0.

Let, for example, a A 0. Then from (4) we have

a = - — b - ^ c. (5 )a a
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Figure 23

If vectors b and c are collinear, then (5) implies that all three

vectors a, b, and c are collinear, and hence are coplanar. If b

and c are not collinear, then after being reduced to a common
origin they will define some plane; then by (5) the three vectors

a, b, and c are parallel to that plane. Thus the assumption that

a ^ 0 led us to a contradiction with the hypothesis. This means

that a = 0. Similarly we can prove that j3 = 0 and y = 0.

Definition. A vector basis in space is a set of any three non-

coplanar vectors ei, e2 , and e3.

The vectors ei, e2 , and e3 are called the first, the second,

and the third basis vectors.

Theorem. Let ei , e2 ,
and e 3 be a vector basis in space. Then

any vector a in space can be uniquely represented as a linear

combination of the basis vectors ei, e2 ,
and e3 :

a = Xt\ + Te2 + Ze3 (6)

o We reduce the vectors ei , e2 , e 3 , and a to a common origin

O and denote the plane defined by the vectors ei and e2 by

a. We draw through a point A (the terminus of a) a straight

line / parallel to e 3 (Fig. 23). We designate the point where the

straight line intersects the plane a as P (the point P does exist

since the straight line / is not parallel to a). We have

a = OA = OP + PA.

By virtue of the theorem proved in Sec. 1.2.1 the vector OP
can be represented as a linear combination ei and ei'.

OP = Xti + Ye2 ; by the theorem on collinear vectors,
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PA = Ze3. Hence we have a = Xe\ + Ye2 + Ze3, and this

proves that the vector a can be represented as a linear combina-

tion of the vectors ei, e2 , and e3 .

The uniqueness of the representation can be proved in the

same way as in the preceding theorem.

Definition. Expression (6) is the representation of vector a

in the basis ei, e2 ,
and e3 ,

and the numbers X, Y, and Z are

called the coordinates of a in the basis ei, e2 , e3 .

As in the case of the plane, here we accept the following nota-

tion: if X, y, Z are the coordinates of the vector a in the basis

ei, e2 , e3 , then we shall write a = <X, Y, Z> in the basis ei,

e2 , e3 .

If the basis is predetermined, then we simply write a = (X,

Y Z>.

We now turn to the proof of the last theorem again. A direct

consequence of the proof is the following proposition: let vec-

tors ei, e2 , e3 ,
and a be reduced to a common origin O.

Through the terminus of a we draw a plane parallel to the vec-

tors ei and e2 and designate by A 3 the_point of intersection

of this plane and the axis of e 3 . Then OA 3 = Ze3 , where Z is

the third coordinate of the vector a in the basis ei, e2 , e3 .

Indeed, we can see from Fig. 23 that OA 3 = PA; consequent-

ly, OA 3 = Ze3 .

By changing the indices of the basis vectors we can always

get e2 or ei to be the third basis vector (for example, assume

that e{ = ei, e2 = e3 , e3
' = e2 ). Hence it follows that proposi-

tions similar to the one just proved are also valid for two other

coordinates of the vector a.

Let a plane be drawn through the terminus of the vector a

parallel to vectors ei and e3 , and A 2 be the point where that

plane intersects the axis o/e2 . Then OA 2 = Ye2 , where Y is

the second coordinate of a.

Let a plane be drawn through the terminus of the vector

a parallel to vectors e2 and e3 , and let A\ be the point where

that plane intersects the axis of ei. Then OA\ = Xei, where

X is the first coordinate of a.

Example. A pyramid with vertices A, B, C, and D is given
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A

Figure 24

and P and Q are the midpoints of edges AD and BC respective-

ly (Fig^24), find_the coordinates of PQ in the basis e, = AB,
e2 = AC, e3 = AD.
We have

PQ = PA + AC + CQ = - ^AD + AC + ~CB
A* A

= - ~AD + AC + ~(CA + AB)\t' + - |e3

Whence PQ = <1/2, 1/2, -l/2> in the basis ei, e2 , e3 . •
4. Operations on vectors defined by their coordinates.

Assume that we have two vectors a and b such that a = (X,

Y), b = (X', Y'), in the vector basis ei, e2 . Then we have

a = Aei + Te2 ,
b = A"ei + T'e2 , and therefore

a + b = (X + X') ei + (Y + Y') e2

a - b = (X- X') e, + (Y- Y')t2

Thus

a + b = (X + X', Y + Y' >, a - b = (X - X' , Y - Y' >

that is, when adding or subtracting vectors we add or subtract

their respective coordinates.

Similarly, if a = <X,
Y), we can write a = Xei + Ye2 ,

Xa = XAei + XTe2 ,
whence it follows that

Xa = <XA, XT>
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that is, when multiplying a vector by a number we multiply

its coordinates by that number.

The rules of operations on vectors in space are the same as

those in the plane; if a = <X,
T, Z > and b = <A", Y', Z'),

then

a + b = <* + X', Y+ Y’, Z + Z'>

a-b = <X-X', Y-Y', Z-Z >

Xa = <\X, XT, XZ>

We can prove these equalities in the same way we did in the

case of the plane.

Example. Let a = < -1, 2, 5>, b = <1, 3, 7>. Find the vector

7a - 5b.

O We have 7a = <-7, 14, 35>,5b = <5, 15, 35>,7a - 5b =

<- 12 ,

-
1 ,

0 >. •
5. The condition of the collinearity of vectors in coordinates.

Suppose that a = <

X

, T> and b = <A", Y' > are two vectors

in the plane, with a ^ 0. If b is not collinear with a, then

b = Xa, where X is a number. Since equal vectors have equal

coordinates, we have

X' = \X, Y' = XT (7)

Conversely: If equalities (7) are true, then b = Xa, that is b

is collinear with a.

Thus, the vector b is collinear with the nonzero vector a if

and only if the coordinates of b are proportional to the respec-

tive coordinates of a.

The same conclusion is also valid for vectors in space.

If none of the coordinates of vector a is zero, the condition

that vector b is collinear with vector a can be written in the

form
Xf_ _ Yf_

X Y
in the plane, and as

Xf = Yf = Zf
X Y Z

in space.
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For instance, the vector b = < -2, 6, 4> is collinear with the

vector a = < -3, 9, 6> since -2/ -3 = 6/9 = 4/6.

Example. Verify that the two vectors a= <— 1, 3> and

b = <2, 2> in the plane are noncollinear and express the vector

c = <7, -5> in terms of the basis a, b.

O Since - 1/2 ^ 3/2, a and b are noncollinear. Consequent-

ly, they form a basis in the plane. Let c = Xa + yb. To find

X and Y, we equate the respective coordinates of the vectors

c and Xa + Fb and obtain the following system of two equa-

tions in two unknowns X and F:

1 = X-(-\)+ Y-2-2 = X-3 + F-2

By solving it we find X = -3, Y = 2. Thus, c = -3a -I- 2b. #

1.3. CARTESIAN COORDINATE SYSTEM ON A STRAIGHT
LINE, IN THE PLANE, AND IN SPACE

Suppose that O is a fixed point and we call it the origin.

If M is an arbitrary point, then the vector OM is called the

radius vector of M relative to the origin O, or in short, the

radius vector of M.
1. Cartesian coordinates on a straight line.

Suppose that we have a straight line / in space. We choose

the origin O on that line and also a nonzero vector e which

we shall call a basis vector (Fig. 25).

Definition. The set ( 0, e ) of the point O and the basis vector

e is called a Cartesian coordinate system on the straight line.

We consider an arbitrary point A/ on the straight line /. Since

the vectors OM and e are collinear, we have OM = xe, where

x is a number. We call this number the coordinate of M on

the straight line. The coordinate of the origin O is zero. All

the points M on the line have either positive or negative coor-

dinates depending on whether the directions of OM and e coin-

0 e
^

M
X

Figure 25
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Figure 26

cide or are opposite. The straight line / on which we have in-

troduced coordinates is called a coordinate axis or the x-axis.

Assigning coordinates on the straight line leads to each point

M on the line being associated with a unique number x, the

coordinate of the point. Conversely: an arbitrary number x cor-

responds to a unique point M for which the number is its coor-

dinate.

2. Cartesian coordinate in the plane.

We choose an origin O in the plane and two collinear vectors

ei and which form a vector basis.

Definition. The set
(
O, ei , e2 )

of the point O and the vector

basis ei, e2 is called a Cartesian coordinate system in the plane.

Two straight lines which pass through O parallel to the

respective vectors ei and e2 are called the coordinate axes, the

first being the abscissa or the x-axis and the second, the or-

dinate or the y-axis.

We shall always depict the vectors ei and e2 lying along the

respective coordinate axes (Fig. 26).

If the Cartesian coordinate system is given in the plane, then

the position of a point M with respect to that system can be

defined by two numbers x and y, which are the coordinates of

M in the system.

Definition. The coordinates of the pointM in the plane with

respect to the Cartesian coordinate system (O, ei, e2) are the

coordinates of its radius vector OM in the basis ei, e2.

In other words, to find the coordinates of a point M, we
should express the vector OM in terms of the basis ei, e2 i

OM = xei + ye2
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Figure 27

The numbers x and y are the coordinates of M with respect

to the Cartesian coordinate system
{ O, ei, e2 ).

The x coordinate is called the abscissa of the point M, and

the y coordinate the ordinate of M. The coordinates of a point

are usually given in parentheses. In compact notation, we speak

of “the point M(x, y)”.

Thus, every point M of the plane with the fixed coordinate

system ( O, ei, e2 )
is associated with an ordered pair of num-

bers (x, y). Conversely, every ordered pair of numbers (x, y)

is associated with the only point M in the plane; this point is

the terminus of the vector OM = xei + ye2 .

The coordinates of the origin O are 0, 0. The coordinates

of points lying on the abscissa axis are x, 0, and the coordinates

of points of the ordinate axis are 0, y. The remaining part of

the plane is separated by the coordinate axes into four compart-

ments called quadrants (Fig. 27): we have x > 0, y > 0 for the

points of the first quadrant, x < 0, y > 0 for those of the sec-

ond quadrant, x < 0, y < 0 for those of the third quadrant,

and x > 0, y < 0 for those of the fourth quadrant.

Figure 28 shows several points with their coordinates.

Coordinate systems underlie the methods of analytic geome-

try and reduce any geometric problem to that of arithmetic or

algebra. First, we arithmetize initial data. For example, to speci-

fy a point we define its coordinates. The solution of the

problem is also arithmetized (we will touch upon this subject

below). The final result also has an arithmetic form; for in-

stance, a point is found when its coordinates are found.
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3. Coordinates of a vector in Cartesian coordinate systems.

Definition. The coordinates of a vector a in the plane with

respect to the Cartesian coordinate system {

O

, ei, e2 ) are the

coordinates of this vector in terms of the basis ei, ti.

In other words, in order to find the coordinates of the vector

a, we should express it in terms of the basis ei, e2 :

a = A'e, + Ye2

the coefficients X and Y are the coordinates of a relative to

the Cartesian coordinate system (O, ei, e2 ).

Let us consider the following important problem.

Problem. Given two points A (x,_^), B(x'
,
y'), find the coor-

dinates X and Y of the vector AB.
O We have OA = xei + yti, OB = x' + y'

e

2 . By
subtracting the first equality from the second we get AB =

(x ' - x) ei + (_
y' - y) t2 . Consequently,

X = x' - x, Y = y' - y • (1)

Thus, the coordinates of a vector are equal to the difference

of the respective coordinates of the terminus and origin of the

vector.

Using (1) and the condition for two vectors to be collinear

we can derive a condition when three points of the plane, A (xr,

y), B(x',y'), and C(x", y"), lie on the same straight line. For

the points A, B, and C to lie on^one straight line, it is necessary

and sufficient that the vector AC be collinear to the vector AB,
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that is, the coordinates x" — x,y" - y of AC bejyroportional

to the respective coordinates x' - x, y' - y of AB. Thus, the

condition for three points A, B, C to lie on one straight line

is that the numbers x" - x and y" - y are proportional to

x' - x, y' - y.

Example. Points A(l, 1), 5(0, -3), C(3, 9) lie on one straight

line since the numbers 3 - 1, 9 - 1 are proportional to 0 - 1,

-3 - 1.

4. Cartesian coordinate system in space.

Suppose we have a fixed point O (the origin) and a vector

basis ei, e2 , e3 in space.

Definition. A Cartesian coordinate system in space is the set

(O, ei, e2 , e3 |.

Three straight lines passing through O parallel to the cor-

responding vectors ei, e2 , and e3 are called the axes of coor-

dinates and designated the y-, and z-axes respectively. We
shall always depict vectors ei, e2 ,

and e3 along the correspond-

ing coordinate axes (Fig. 29).

Definition. The coordinates of a point M in space relative

to the Cartesian coordinate system
{ O, ei, e2 , e3 j

are the coor-

dinates of its radius vector OM in this system.

In other words, the coordinates of the pointM are three num-

bers x, y, z such that

OM = xei + _ye2 + ze3

Just as in the plane, x and y are the abscissa and ordinate

of the point M respectively, the third coordinate z is the appli-
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Figure 30

cate of M. In compact notation, we speak of “the point M(x,

y, Z)".

A Cartesian coordinate system in space yields a one-to-one

correspondence between point M and ordered triples (x, y, z)

of real numbers.

The coordinates of the origin O are 0, 0, 0. The coordinates

of the points lying on the x-, y-, and z-axes are (x, 0, 0), (0,

y, 0), and (0, 0, z) respectively, and the coordinates of the points

belonging to the xOy, xOz, and yOz planes are (x, y, 0), (x,

0, z), and (0, y, z) respectively. The coordinate planes partition

space into eight compartments called octants. In the first oc-

tant, x > 0, y > 0, z > 0, and it is shown in Fig. 30 by the

straight lines which are parallel to the z-axis.

Definition. The coordinates of a vector a in space relative

to the Cartesian coordinate system j O, ei, ti, e3 )
are the coor-

dinates of this vector in the basis ei, e2 ,
e3 .

As in the plane, we can find the coordinates of a vector from

the coordinates of its origin and terminus: if A(x, y, z) and

B(x', y', z'), then the coordinates X, Y, Z of the vector AB
are X = x' - x, Y = y’-y, Z = z'~z respectively.

Finally, the condition that the three points A(x, y, z), B(x '

,

y ', z '
), C(x " ,y",z") lie on one straight line in space is analo-

gous to condition (2) derived for the plane: the numbers

x" — x, y" - y, z" - z are proportional to x' - x, y' — y,

z' - z.

5. The coordinates of the point which divides a line segment

in a given ratio.

3—36h
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Given two points in space, find the point C which divides

the line segment AB in the ratio a:P. In analytic geometry, to

find a point always means to find its coordinates.

We use the following formula

OC =
a + P

OA +
a + p

OB

which was derived in Sec. 1.1., Item 7. We label the coordinates

of point C with an asterisk and get

x =
,
x +

a + p a + p

'

y* P
a + P

y +
a

a + /3

y'
(3 )

= z + z
'

a + (3 a + p

which is the solution of the problem.

The same problem can be solved in the plane; then we have

A(x, y) and B(x'
,
y'), and the solution is the first two formulas

in (3).

In a special case when a = P, formulas (3) assume the follow-

ing form

** = ~(x + x'), y* =^Cv + y'), z* =j(z + z')

that is, the coordinates of the midpoint of a line segment are

equal to half-sums of the coordinates of the endpoints.

Example 1. The line segment AB with endpoints A (7, 1) and

B(4, -5) is divided into three equal parts. Find the coordinates

of the points of division.

O Suppose P is the division point closest to A. Then

a:P = 1:2 and the coordinates of P are

**=f 7 +f4 = 6 >
y* =§-i +j-(-5)= -i

For the second point of division Q we have a:P = 2:1, conse-
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quently,

x* = f 7 + f 4 = 5, ** =
i

'
1 + r (-5) = _3

Thus, the division points are P(6, -1) and Q(5, -3). #
Example 2. Find the point which is symmetric to the point

A (-2, 0, 7) relative to the point B{5, -1, 2).

O If C is the required point, then B is the midpoint of the

line segment AC. Therefore, denoting the coordinates of C by

x, y, z, we get

5 = (-2 + x)/2, - 1 = (0 + >0/2, 2 = (7 + z)/2

whence x = 12, y = —2,z= -3. •

Exercises to Chapter 1

1 . 1 .

1. Find three arbitrary vectors a, b, and c in the plane and construct (a)

3a, (b) - — b, (c) 2a + 3b, (d) — a - 3b, (e) a + 2b - — c,

2 2 3

(f) — — a - b + 2c.

2 ^ _
2. We haveji parallelogram ABCD with AB = a and AD = b. Express the

vectors PA , PB, PC, and PD in terms of a and b, where P is the point where

the diagonals intersect.

3. Two vectors a and b having the same length are laid off from a common
origin. Prove that the vector a + b laid off from the same origin is directed

along the bisector of the angle a, b.

4. Two vectors a and b are laid off from a common origin. Prove that the

vector— a + — b, laid off from the same origin, is directed along the bisector

M N
of the angle a, b.

5. Prove that for any two vectors a and b the inequality |a + b| ^ |a| + |b|

is true. Find the condition when the equality sign is valid.

6. Find the condition two vectors a and b should satisfy so that (a)

a + bj = Ja - b|, (b) a + b| > a - b|, (c) a + b| < a - b|.

7. Given a triangle ABC and a point O in the plane, a point P is constructed

such that OP =
^

(OA + OB + OC), prove that the sum (PA + PB + PC)

is zero. Try to generalize the problem to an n-gon.

8. Prove that there are no two distinct points P and Q such that

PA + PB + PC = 0 and QA + QB + QC = 0.
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9. The side BC of a triangle ABCjs divided by points P and Q_\mo three

equal parts. Denoting AB = c and AC = b, express the vectors AP and AQ
in terms of b and c.

10. We mark a point D on the side AB of a triangle ABC so that_CD is

the bisector of z. C. Express the vectors AD, BD, and CD in terms of CB = a

and C4 = b.

11. Prove that the line segments joining the midpoints of opposite edges

of a tetrahedron intersect, and the point of intersection is the midpoint of these

line segments.

12. Prove that a line segment joining the midpoints of the diagonals of a

trapezoid is parallel to its bases.

13. In a parallelogram ABCD the vertex B is connected to the midpoint Q
of the side AD. Find the ratio in which the line segment BQ divides the di-

agonal AC.

1 .2 .

1. In a regular hexagon AiA^A 3A4A 5A 6 we have A tA 2 = a and A tA 6 = b.

Express the vectors A t A], A,A 4 , A\A$ in the basis a, b.

2. Find the values a and 0 such that the following vectors are collinear:

(a) <-2.3, 0), (a, -6.2>, (b) (a, -2>, </3, 20).

3. Given two vectors, a = <2, 3> and b = <1, 2> in the plane, check that

they are noncollinear and represent the vector c = <4, 9) in the basis a, b.

1.3.

1. Find the coordinates of the point which is symmetric to a point A (a,

b) with respect to the origin of a Cartesian coordinate system.

2. Given four points, A(\, 3), B(4, 7), C(2, 8), D(- 1, 4) in the plane, verify

that the quadrilateral ABCD is a parallelogram.

3. Given three points, A ( - 1, 2), B(0, 3), C(4, - 5), find a fourth point D
such that the quadrilateral is a parallelogram.

4. Show that the four points A (3, -1, 2), £(1,2, — 1), C( — 1, 1, -3), D(3,

— 5, 3) are the vertices of a trapezoid.

5. Check whether the following points lie on one straight line: (a) A (3, 1),

B(- 2, -9), C(8, 11), (b) A(0, 2), £(- 1, 5), C(3, 4), (c) A( 1, -5, 3), fl(5,

-1, 7), C(6, 0, 8).

6. Find the coordinates of the midpoint of the line segment AB with end-

points A (2, 3) and B(- 4, 7).

7. Find the point which is symmetric to the point A ( - 3, 0) relative to the

point B(2, 9).

8. The line segment AB with endpoints A (1, - 3, - 5) and B(7, 3, 4) is divid-

ed into three equal parts. Find the division points.

9. A line segment AB is divided by the points P(0, 5, 2) and Q( 1, 7, 2)

into three equal parts. Find its endpoints.

10. Find the point at which the medians of a triangle are concurrent (its

centroid). The vertices of the triangle are at the points A( 1, 4), B(~ 5, 0),

C(-2, 1).



Chapter 2

RECTANGULAR CARTESIAN COORDINATES.
SIMPLE PROBLEMS IN ANALYTIC GEOMETRY

2.1. PROJECTION OF A VECTOR ON AN AXIS

Suppose that a straight line is specified in space. We choose

the positive direction on it.

Definition. An axis is a straight line having the positive direc-

tion and a unit of measurement.

The positive direction and the unit of length are usually

specified simultaneously by a vector e having length 1 which

is parallel to that straight line. This vector is called a unit vector

or basis vector (Fig. 31).

We denote the straight line by / and drop the perpendicular

to it from an arbitrary point A. The point A '

, which is the

foot of the perpendicular, is the orthogonal projection (or sim-

ply projection) of A on the axis /.

Definition. Let / be an arbitrary axis and AB an arbitrary

vector in space. The vector A ' B ' whose initial and terminal

points are the projections of the points A and B on the /-axis

is called the vector projection of AB on the / axis (Fig. 32).

Along with the projection of a vector there is also the scalar

projection of a vector on an axis.

Definition. The scalar projection of a vector AB on the /

A fl

Figure 31 Figure 32
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axis is a number X such that

A^B' = Xe

We denote a scalar projection by proj/Afi, or sometimes

proj aAB, where a is a nonzero vector directed along the posi-

tive / axis. The absolute value of the number proj/,45 is equal

to the length of A' B'
,
where the sign indicates whether the

vector has the same or opposite direction to the unit vector e

of the / axis.

Below we shall mostly use scalar projections, and so when
we say “projection” we shall always mean a scalar projection,

unless otherwise specified.

1. Angle between vectors. Angle between a vector and an

axis.

Suppose that a and b are two arbitrary vectors. We place their

initial points at the same point and draw a plane through them.

The angle <p between two vectors a and b is the angle of the

shortest rotation from a to b in the plane of the vectors

(Fig. 33). Obviously, 0 ^ <p < ir. If at least one of the vectors

a, b is zero, the angle between them is undefined.

The angle between a vector a and the / axis is the angle <p

between a and the unit vectorj^of the ^axis (Fig. 34).

We denote the angle by (a, b) or (a, /).

2. Theorem on the projection of a vector on an axis.

Theorem. The projection of a vector a on the l axis is equal

to the product of the length of a and the cosine of the angle

between a and the l axis :

proj/a = |a| cos (a, /) (1)

e

i_

e m

Figure 33 Figure 34
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pi-

—

i ^ i . _ t i _

proj
L
£>>0 e proj

L
a-0 e

Figure 35

Formula (1) follows directly from the definition of cosine.

Figure 35 shows some possible cases.

3. Properties of projections.

We shall derive the three most important properties of

projections of vectors.

1°. Equal vectors have equal projections on the same axis.

Indeed, if a = b, then |a| = |b| and (a, l) = (b, /), whence

by formula (1) it follows that proj/a = proj/b.

2°. The projection of the sum of several vectors on an axis

is equal to the sum of their projections on that axis

:

proj/(a + b + . . .) = proj/a + proj/b + . .

.

To ascertain the validity of this property, it is sufficient to

verify it for two summands.

We construct a broken line OAB containing the directed line

segments OA = a and AB = b (Fig. 36). We project the points

O, A, B onto the / axis and get points O', A', B'

.

A

Figure 36
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kd

Figure 37

Suppose that X is the projection of the vector a and g. is the

projection of b on the / axis. Then O 'A ' = Xe, A ' B' = g.e,

where e is the unit vector of the / axis. Whence
O'

=

(X + n)e, and this means that X + g is the projection

of OB (i.e. of the vector a + b) on the / axis. Thus,

proj/(a + b) = proj/ a + proj/ b

3°. When multiplying a vector into a number, we multiply

its projection by that number-.

proj/(A:a) = k proj / a

We translate the initial point of a to some point on the

/ axis. Let a ' be the vector projection of a on the l axis (Fig. 37).

We have a' = Xe, where X is the projection of a on the / axis.

First we consider the case where k > 0. “Extension” of a A:

times obviously causes “extension” of a ’ k times, that is, it be-

comes a vector Ara'. But Ara' = Ac(Xe) = (A:X) e. Whence it fol-

lows that proj((A:a) = k\ = A:-proj/a.

We suggest the reader consider the case where k < 0 indepen-

dently. When k = 0 property 3° is obvious.

2.2. RECTANGULAR CARTESIAN COORDINATE SYSTEM

A rectangular Cartesian coordinate system is the simplest of

Cartesian coordinate systems.

Definition. The Cartesian coordinate system
( O, ei , ez )

in

the plane is called rectangular if ej and ez are perpendicular

unit vectors.
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Figure 38

Similarly, we can define the rectangular Cartesian coordinate

system (O, e t , ez, e3 J
in space; here ei, e2 , and e3 should also

be mutually perpendicular unit vectors.

The basis unit vectors ei and e2 of a rectangular Cartesian

coordinate system in the plane are usually denoted by i, j, and

the basis unit vectors ei, e2 , and e3 in a rectangular Cartesian

coordinate system in space are usually denoted by i, j, k. Ac-

cordingly, an arbitrary radius vector OM can be represented in

the basis as

OM = xi + .yj (in the plane)

OM = xi + yj + zk (in space)

The coordinates of the point M are x, y, in the first case, and

jc, y, z in the second (Fig. 38).

In what follows we shall say a rectangular coordinate system

rather than a rectangular Cartesian coordinate system, and

coordinates x, y in the plane and x, y, z in space we shall call

rectangular coordinates.

When considering rectangular coordinate systems we should

note that there are right-handed and left-handed rectangular

coordinate systems.

In a left-handed rectangular coordinate system, the 90° rota-

tion from the vector i to the vector j appears clockwise (Fig. 39),



42 Part One. Analytic Geometry

j li

i t

right-handed system left-handed system

Figure 39

while in a right-handed coordinate system this rotation is coun-

terclockwise. These two coordinate systems are different and

no displacements in the plane can make the left-handed pair

i, j coincide with the right-handed one.

In a left-handed rectangular coordinate system in space,

when three vectors i, j, k originate from a common point, the

90° rotation from i to j when viewed from the terminus of k

appears clockwise, while in a right-handed coordinate system

such a rotation appears counterclockwise (Fig. 40). The two

systems differ in the same way as left-hand and right-hand

screws do.

In this book we shall only use right-handed coordinate

systems.

1. Coordinates of a vector in a rectangular system, as its

projections on coordinate axes.

Here are some remarks. Suppose that in a rectangular system

in the plane we have a point A with coordinates x and y. Then

A\(x, 0) and Ai(0, y) are its projections on the coordinate axes,

which follows directly from our reasoning (see Sec. 1.2.,

Item 1). Similarly, if in a rectangular system in space the coor-

Figure 40
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dinates of a point A are x, y, z, then Afx, 0, 0), A 2 (0, y, 0),

^43(0, 0, z) are its projections on the coordinate axes (see

Sec. 1.2., Item 3).

Theorem. The coordinates of a vector AB in a rectangular

coordinate system coincide with its projections on the coor-

dinate axes.

Suppose we are given A(x, y, z) and B(x’, y', z'). We
have proved that the coordinates of AB in the given coordinate

system are x ' - x, y ' - y, z' - z.

Projecting the points A and B onto the coordinate axes yields

the points A t , A 2 , A 3 and B\, B2 , B3 . We have

AfBi = OBi - OA\ = x'i - xi = (x' - x) i

and, similarly, A 2B2 = (y' - y) j, A 2B2 = (z' - z) k. These

equalities imply that

Vxo')xAB = x' - x, proj^AS = y’ - y, proj zAB = z' - z.

2. Length of a line segment in coordinates.

Suppose that we have a coordinate axis with origin O and

basis unit vector e. We mark^two points, A(x{) and B(x2)

(Fig. 41). Then AB = OB - OA = (x2 - Xi) e. Hence it fol-

lows that the distance between A and B is

\AB\ = |x2 - Xi|

Let us now choose two points in a rectangular coordinate

system, A(xu yi) and B(x2 , y2). We first assume that the line

segment AB is not parallel to either coordinate axis. Through

A and B we draw straight lines parallel to the coordinate axes

(Fig. 42). By the Pythagorean theorem we have \AB\
2 =

Figure 41
Figure 42
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Figure 43

\AP\
2

_+ \BP\
2 from the right triangle ABP. But

|

AP\ =
|proj*,4£| = \x2 - Xi\, \BP\ = IprojyABl = \y2 - yi\, whence it

follows that

\AB\
2 = \x2 - Xi\

2
+ |y2 - j!|

2

Thus,

\AB\ = V(*2 - x,)
2 + (y2 - yi)

2
(1)

Formula (1) is also valid when the line segment AB is parallel

to either the xr-axis or j-axis.

Formula (1) expresses the length of a line segment in the

plane via the coordinates of its endpoints.

Finally, we consider points A and B in space. We have A (X \

,

yi, zi), and B(x2 , y2 , z2 ). Assume first that the line segment

AB is not parallel to the xy coordinate plane. We project A
and B onto that plane and get the points A ' (xi , yi , 0) and

B' (x2 , y2 , 0). According to what we have proved, \A ' B'\ 2 =

(x2 - Xi)
2 + (y2 - yx)

2
.

Through A and B we draw planes parallel to the z-axis

(Fig. 43). By the Pythagorean theorem, from the triangle ABP
we have

\AB\
2 = \AP\

2 + \PB\
2 = \A'B'\ 2 + \PB\

2

But \PB\ = \zi~^ Zi\, since \PB\ is the absolute value of the

projection of AB on the z-axis. Whence

\AB\
2 = (x2 - Xi)

2 + (y2 - ^i)
2 + (z2 - Zi)

2
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Thus,

\AB\ = yj(x2 - Xi )

2 + (y2
-

.Vi)
2
+ (z2 ~ Zi )

2
(2)

The last formula is also valid when the line segment AB is

parallel to the xy plane (then \AB
j

= \A ' B

'

|,
and zi - Z\ = 0).

Formula (2) expresses the length of a line segment in space

via the coordinates of its endpoints.

Example 1. Find the distance between the points A(-l, 1,

5) and B( 1, 3, 4).

O From formula (2) we have

\AB\ = V(1 - (-1))
2 + (1 - 3)

2 + (5 - 4)
2 = 3. •

Example 2. Find the point in the plane equidistant from the

three points, ,4(11, 3), B(10, 6), C(-l, 9). In other words, find

the circumcentre of the triangle ABC.

O Suppose that P(x, y) is the required point. We write the

conditions \PA\ - \PB\ and \PA\ = |PC| as follows:

V(x - ll)
2 + (y - 3)

2 = V(x - 10)
2 + O' - 6)

z

V(* - ll)
2 + O' - 3)

2 = y/(x + l)
2 + O' - 9)

2

or, after squaring and simplifying, as x - 3y = -3,

2x - y = 4. Solving this system of two equations in two

unknowns we find that x = 3, y = 2. The required point is P(3,

2). •
3. Length of a vector in coordinates.

In Sec. 1.3 we derived formulas for the coordinates of a vec-

tor AB in terms of the coordinates of its initial and

terminal points:

X = x2 - Xi , Y = y2 - yi

when A(xi, y i) and B(x2 , y2) are two points in the plane, and

X = x2 - Xu Y - y2 — yi, z = Z2 - Zi

when A(xi, yi, Zi) and B(x2 , y2 , z2) are two points in space.

Using formulas (1) and (2) we can now express the length of

an arbitrary vector AB = a in terms of its coordinates in a rec-
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tangular coordinate system:

|a| = \!

X

1 + Y2

if a = <X,
Y) is a vector in the plane, and

|a| = yfx2 + Y2 + Z2

if a = <X,
Y, Z) is the vector in space.

Example. The length of the vector a = < - 3, 4> in the plane
is V( — 3)

2 + 4
2 = 5. The length of the vector a = <1,

-2, 2> in space is V

1

2 + ( - 2)
2 + 2

2 = 3.

4. Direction cosines.

Suppose that a is a nonzero vector in space. We denote by
a, 0, y the angles between the vector and the at-, y-, and z-axes

of the rectangular coordinate system (Fig. 44). Since the projec-

tions of a vector on the coordinate axes coincide (according

to what we have proved) with respective coordinates X, Y, Z
of this vector, we can write

X = jaj cos a, Y = |a| cos 0, Z = ja| cos y (3)

Thus, each coordinate of the vector is equal to the product
of its length and the cosine of the angle between the vector

and the corresponding coordinate axis.

Definition. The numbers cos a, cos 0, cos y are called the

direction cosines of the vector a.

The direction cosines are related as follows:

cos
2 a + cos

2
0 + cos

2

y = 1 (4)
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Indeed, |aj
2 = X2 + Y2 + Z2

, whence according to (3)

|a|
2 = |a|

2
(cos

2 a + cos
2

/3 + cos
2

7)

canceling out |a|
2 we arrive at equality (4).

Example 1. Find the direction cosines of the vector AB if

A(l, -1, 3) and B(2, 1, 1).

O The coordinates of AB are X = 2 - 1 = 1,

Y = 1 - (-1) = 2 , Z = 1 - 3 = -2. Whence, \AB\
2 =

V l
2

4- 2
2 + (-2) 2 = 3. We now find the cosine vectors from

formulas (3):

cos a = X 1

3
’ cos /3 -

Y_

l

a
l

Z
cos 7 = —

a

2

3
'

Example 2. The vector a makes angles of 60° with the x-

and y-axes. Find the angle between a and the z-axis.

O Denoting the required angle by 7 we can write

cos
2 60° + cos

2 60° + cos
2
7 = 1 , whence it follows that

cos 7 = ±1/V2. We have two solutions: 7 = 45° and 7 = 135°.

Obviously, they correspond to two symmetric vectors relative

to the xy coordinate plane. •
Example 3. A vector a makes equal acute angles with the

coordinate axes. Find the angles.

O In this case a = 0 = 7, and therefore formula (4) gives

3 cos
2 a = 1. Whence we have cos a = ±1/V3. Since, by

hypothesis, the angle a is acute, we take the positive value:

cos a = 1/V3. From the table of cosines we find that

a = 55°. •
We note in conclusion that if / is an axis in space and e is

a basis unit vector on the axis, then the direction cosines of

e are called the direction cosines of the axis itself.

2.3. SCALAR PRODUCT OF VECTORS

1. Definition of a scalar product.

Consider the following problem. A constant force F exerted

along the line of motion moves a particle of mass 1 from point

P to point Q. Find the work done. We know from the physics
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course that work is the product of the force and the distance

moved and the cosine of the angle between the directions of

the force and motion. In vector notation we can write

A = |F| \PQ\ cos (fTPQ)

where A is the required work.

There is a single operation which takes two vectors (or three

numbers, viz. the lengths of the vectors and the cosine of the

angle between them) to produce a scalar A. This operation is

called the scalar multiplication of two vectors. We shall see be-

low that this operation is widely used.

Definition. The scalar (or dot) product of two nonzero vec-

tors a and b is the number

|a||bj cos (a, b)

If one of the vectors a or b is zero, their scalar product is zero.

The scalar product of vectors a and b is denoted as a-b. Thus,

a-b = |a|jb cos (1)

where <p is the angle between a and b. The cases where a = 0

or b = 0 can also be described by formula (1) since then |a| = 0

or |b| = 0 (the angle <p is undefined).

The scalar product is closely related to the projections of vec-

tors. If proj ab is the projection of vector b on the axis whose
direction is the same as that of a, then, according to the the-

orem on projections, we have proj ab = |b| cos <p, proj b a
=

|a| cos <p, which together with formula (1) imply that

a-b = a proj a b, a-b = |b| proj„a (2)

that is, the scalar product of two vectors is equal to the product

of the length of one of them multiplied by the projection of
the other on the direction of the first vector.

Note too that the scalar product of a vector with itself is

the square of its length

a-a = ja| |aj cos 0 = |a|
2

since the vector a forms the angle <p = 0 with itself.
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2. Properties of the scalar product.

1°. Commutativity.

ab = ba

This property follows directly from the definition of the sca-

lar product.

2°. Associativity relative to the multiplication of a vector by

a scalar.

(£a)b = f(ab)

The property follows from the properties of projections since

(^a)-b = |b| proj b (A:a) = |b|Arproj b a = /r|b| proj b a = A:(a-b)

3°. Distributivity over vector addition :

(a + b)c = ac + be

We can prove this property using the properties of

projections

(a + b)c = |c| proj c (a + b) = |c|(proj c a + proj cb)

= |c|proj c a + |c|proj c b = ac + be

4°. The property of sign. If a and b are two nonzero vectors

and
<f>

is the angle between them, then

a b > 0 if the angle >p is acute,

a b < 0 if the angle <p is obtuse,

a b = 0 if the angle ip is right.

Indeed, since [a| > 0 and |b| > 0, we have

the inequality a b > 0 is equivalent to cos <p > 0,

the inequality a b < 0 is equivalent to cos <p < 0,

the equality a b = 0 is equivalent to cos ip = 0.

5°. The vectors a and b are perpendicular if and only if their

scalar product is zero.

Indeed, if alb, then ip = x/2, whence it follows that

cos <p = 0 and therefore a b = 0. Conversely, if a-b = 0, then

either |a| = 0 or |b| = 0 or cos ip = 0. In the first and second

cases alb since the zero vector is perpendicular to any vector,

in the third case ip = x/2 and alb.

4— 366
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Here is an example of how to apply the properties of the

scalar product.

Example. PQ is a principal diagonal of a parallelepiped

(Fig. 45), a, b, and c are the edges emanating from the vertex

P, and the angles between these edges are a (between b and

c), /3 (between a and c), 7 (between a and b). Find the length

of the diagonal PQ.

O We designate the vectors (edges) emanating from the ver-

tex P as a, b, and c (|a| = a, |b| = b, |c| = c). Obviously,

PQ = a + b + c. Whence it follows

PQ2 = (a + b + c)-(a + b + c) = a-a + a-b + a-c

-I- b-a + bb + b e + c-a + c b + c-c

Since a a = a
2

, b b = b
2

,
c-c = c

2
, a-b = b-a = ab cos 7 ,

a-c = c-a = ac cos b-c = c-b = be cos a, finally we get

\PQ\
2 = a

2 + b 2 + c
2 + lab cos 7

+ lac cos /3 + Ibc cos a. •

3. Scalar product and the test for a straight line to be perpen-

dicular to a plane.

We can use the properties of the scalar product for moving

some geometric theorems.

Figure 45 Figure 46
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Theorem (the test for a straight line to be perpendicular to

a plane). If a straight line l in space is perpendicular to any

two intersecting straight lines ofa plane a, then l is perpendicu-

lar to any straight line in that plane.

We denote by a and b two intersecting straight lines of

the plane a which are perpendicular to a straight line /. Let

c be a straight line belonging to the plane and passing through

the point of intersection of a and b (Fig. 46). We choose non-

zero vectors I, a, b, and c on the straight lines /, a, b, and c

respectively. By the hypothesis we have a-1 = 0, bl = 0.

The vectors a and b are noncollinear (the straight lines a and

b intersect), and therefore we can represent the vector c as their

linear combination

c = Xa + fib

where X and n are some numbers. Whence

c • 1 = (Xa + /xb)-l = X(a-l) + ^(b-1) = 0

Consequently, the vector c is perpendicular to the straight line

/. Noting that c is any one of vectors of the plane a, we con-

clude that any straight line of the plane a is perpendicular to

1 .

4. Representation of the scalar product in terms of the coor-

dinates of vectors.

Suppose that the coordinates of vectors a and b are specified

in a rectangular coordinate system in the plane: a = (A^, Yi),

b = <X2 , Yi). Then the following important formula is valid:

a b = XVX2 + Yv Y2

that is, the scalar product is equal to the sum of the products

of the corresponding coordinates.

To derive this formula, we express these vectors in terms of

the basis unit vectors:

a = Xii + Tij, b = X2 i + Y2j

and then take the scalar product. We have

a-b = (X\X2) i-i + (Xi Y2) i-j + (YiX2) j-i + (Ti Y2) j-j

4 *
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Since i-i = j j
= 1 (the length of i and j is unity) and

i-j = j-i = 0 (i is perpendicular to j), the last expression reduces

to the required form

ab = X\X2 + Yi Y2

If a and b are two vectors in space and a = <X\ , Y\, Z\),

b = <X2 , Y2,Z2 ), then similar reasoning leads to the following

equality:

a b = X,X2 + Y, Y2 + Z\Z2

which can be interpreted in the same way as in the plane.

In particular, for one vector a = {X, Y, Z> we have

aa = |a|
2 = X2 + Y2 + Z2

whence follows the familiar formula

|a| = \/X2 + Y2 + Z 2

5. Application of scalar products.

The following formula is widely used in practice:

a-b = X\X2 + Yi Y2 + Z 1Z2 (3)

(1) The perpendicularity test for two vectors. Two vectors

a and b are perpendicular if and only if

XiX2 + r, y2 + z,z2 = 0

The proposition follows immediately from formula (3) and
property 5° of the scalar product.

(2) Angle between two vectors. Suppose that a and b are two
nonzero vectors and <p is the angle between them. From the

definition of the scalar product it follows that

or

cos <p =
a b

|a||b|

COS <P
= X!X2 + Yi Y2 + Z1Z2

\!x\ + Yj + Zj six} + Yi + Z\
(4)
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(3) Projection of a vector on an axis. Suppose that we have

an axis / in space with a unit vector e which makes angles a,

/3, y with the coordinate axes. Then the projection of an ar-

bitrary vectors a = (X, Y, Z> on the / axis is

proj
e a = X cos a + Y cos /3 + Z cos y (5 )

Indeed, since the length of e is unity, its projections on the

coordinate axes are 1-cosa, l-cos/3, 1-cosy. Consequently,

the coordinates of e are also equal to cos a, cos /3, cos y. Since

proj e a = |e|proj ea = a-e

we have formula (5).

Example 1. Given the points A(2, 0, 1), B(2, 1, 0), C(l, 0,

0). Find angle ABC.
O We consider the vectors BA = <2 - 2, 0 - 1, 1 - 0> =

<0, -1, 1> and BC = <1 - 2, 0 - 1, 0 - 0> = <-l, -1, 0).

The required angle ABC is the angle <p between these vectors.

From the formula for the cosine of the angle between two vec-

tors we have

COS * = BABC = 0-(-l) + (-!)•(-!)+ 1-0

\ba\\bc\ Vo 2 + (-i )

2 + i
2V(-i )

2
+ (—

i

)

2 + o
2

2

Hence, = 60°. •
Example 2. Find the projection of the vector a = <1, 2, 3)

on the / axis which forms equal acute angles with the coordinate

axes.

O Example 3 in Sec. 2.2., Item 4 shows that the direction

cosines of the / axis are cos a = cos 0 = cos y = 1/V3. Conse-
quently,

proj/a = !•-;=. + 2-

Example 3. Given two vectors a = <1, 2, -1> and b = <2,

-1, 3>. Find proj a b.
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O Since ab = |a|proj„b, we have

a . h 1-2 + 2-(- 1) + (- 1)-3

1*1 Vl 2 + 2
2 + (-1)*

3

V6

2.4. POLAR COORDINATES

Coordinate systems are used to locate points (in the plane

or in space) by specifying their coordinates. Although the rec-

tangular Cartesian coordinate system is most popular, other

coordinates, e.g. the polar system, are also widely used. The

polar coordinate system in the plane is defined by fixed point

O, called the pole (Fig. 47), a fixed ray p emanating from O
and called the polar axis, and a scale for length measurement.

The position of a point A/ different from the pole is defined

in polar coordinates by two numbers, r and <p. The number

r > 0 is the first coordinate and called the polar radius-, it is

equal to the distance from the pole O to the point M. The num-

ber tp is the second coordinate and called the polar angle. We
choose the positive direction of reckoning the angles; as is usual

in trigonometry, the positive direction is counterclockwise.

Then y> is the angle through which the ray p is rotated in the

positive direction for p to coincide with the ray OM. If we ro-

tate p clockwise, then <p is a negative number. Obviously, the

angle <p lies within 0 and 2ir; in other words, the polar angle

for point M is <p of any of the angles <p + 2im, where n is an

integer. The pair of numbers (r, <p) are called the polar coor-

dinates of the point M.

o p

Figure 47
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IfM is not the pole, then r > 0 and lies within 2im. Now,

ifM coincides with the pole, then r = 0 and does not matter.

Conversely, given the pair of numbers (r, <p) with r > 0, we can

construct the point M for which r and <p are polar coordinates.

Exercises to Chapter 2

2.1

1. Find the projection of the unit vector e on the I axis with which e makes

the following angles: (a) 30°, (b) 45°, (c) 120°, (d) 90°.

2. Given proj/a = ~ |a|, find the angle between a and the / axis.

3. Vectors a, b, and c form a triangle, i.e. a + b + c = 0. Find

proj„(b + c).

4. Prove that the sum of the projections of vectors a and b on an axis having

the same direction as the vector a + b is equal to |a + b|.

2.2

1. Find the coordinates of points symmetric to the point A (-3, 1) relative

to the coordinate axes.

2. Find the coordinates of points which are symmetric to the point A (-3,

1, 2) relative to (a) the coordinate axes, (b) the xy, xz, yz coordinate planes.

3. Find the lengths of the sides of triangle ABC if A(3, 2), B(-l, -1),

0(11 ,
- 6).

4. Find the point on the y-axis 5 units from the point A (4, -6).

5. Given three points in the plane, .4(3, 7), B( 1, 3), and C(7, 5), find the

point which is symmetric to A relative to the straight line BC.

6. Find the center and radius of a circle passing through the point A ( - 2,

4) and touching the coordinate axes.

7. Given two vectors a = <2, -5, 3) and b = <4, -3, - 3 >. Find the lengths

of the vectors a + b and 2a - 3b.

8. Given a triangle with the vertices /4(3, -5), B(- 3, 3), C(-l, -2), find

the length of the median AD, where D is the midpoint of the side BC.

9. Find the length and direction cosines of the vector AB with A(- 2, 1,

3) and B(0, -1, 2).

10. Find out whether a vector in space can make the following angles with

the coordinate axes: (a) 45°, 60°, 120°, (b) 45°, 135°, 60°. If the answer is affir-

mative, find the coordinates of the vector assuming its length to be unity.

11. Find the coordinates of the point M in space if the length of its radius

vector equals 8 units and the angle of inclination to the x-axis is 45° and to

the z-axis is 60°.
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2.3

1. Check the validity of the following equalities: (a) (a + b)
2 = a

2 +
2a-b + b2

, (b) (a + b) (a - b) = a
2 - b

2
, (c) (a + b)

2 + (a - b)
2 =

2|a|
2 + 2 |b|

2
.

2. Three vectors a, b, and c form a triangle, i.e. a + b + c = 0. Express

the length of c in terms of a and b.

3. TWo forces P and Q are applied to the same point. The forces act at an

angle of 120° to each other and |P| = 4 and |Q| = 7. Find the value of the

resulting force R.

4. Prove that a triangle with vertices (a) A(0, 0), B(3, 1), 0(1, 7) is right,

(b) A (2, -1), B(4, 8), C(10, 6) is obtuse.

5. Check whether the quadrilateral with vertices A (5, 2, 6), B(6, 4, 4), C(4,

3, 2), 27(3, 1, -4) is a square.

6. Find the value of a such that the vectors < -2, a, 3> and <2, a, a) are

perpendicular.

7. Find the angle between two vectors a = 3p + 2q and b = p + 5q, where

p and q are two perpendicular vectors.

8. Find the angle between the bisectors of the coordinate angles xOy and

yOz.

9. Find the cosine of the angle between a diagonal and edge of the cube.

10. A parallelogram is constructed on the given vectors a and b. Express

the vector of its height which is perpendicular to the side a in terms of the

vectors a and b.

11. Find proj
a
b if a = <1, 2, -2> and b = <0, 5, 2).

12. Given the points A(~3
l 1, 5), B(3, 9, 5), C(0, 0, 1), 27(4, 1, -1), find

the projection of the vector CD onto the axis having the same direction as the

vector AB.
13. Prove that the vector (a c) b - (a b) c is perpendicular to the vector a.

2.4

1. Construct the points whose polar coordinates are (a) (3, x/3), (b)

, (c) (V3, - ir/6).

2. Find the polar coordinates of the point symmetric to the point (1, ir/4)

relative to (a) the pole, (b) the polar axis.

3. Locate the points in the plane whose polar coordinates satisfy the follow-

ing conditions: (a) r = 1, (b) r = 3, (c) 1 < r < 3, (d) <p = x/3, (e)

tr/2 < <p < 3t/2.



Chapter 3

DETERMINANTS

3.1. SECOND-ORDER DETERMINANTS. CRAMER’S RULE

Suppose we have a square array consisting of four numbers:

C £)
Such an array is called a matrix or, to be more precise, a matrix

of order (or dimension) 2 x 2 or a square of order two.

Definition. The determinant of matrix ( 1 ) is the number

fll&2 - 02^1

and is denoted by

Thus

fli b i

02 bi

a\ bi

02 bi
= Q\b2 ~ 02b

\

Example. We have

(2)

‘

_5 = 1 ( — 5) - (- 2)3 = 1

We should distinguish between matrix ( 1 ) and its determinant

(2), namely, a matrix is an array of four numbers, while a deter-

minant is the only number obtained from the array as indicated

above.

The numbers a\, b\, ai, 62 are called the elements of matrix

( 1 ). The matrix has two rows and two columns. The elements

a\, b 1 and ai, bi comprise the first and the second row respec-

tively, and the elements a\, 02 and b\, Z>2 comprise the first and

the second column respectively.
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The same notions of elements, rows, and columns are also

valid for determinant (2). We say that determinant (2) is com-
posed of the elements ci \ , b \ , a2 , b2 .

Although the expression aib2 - a2 b\ for the determinant is

not complicated, it is advisable to memorize the following

scheme for evaluating it:

\ /

2 ^2

\ /
The line segment marked with the + sign connects two ele-

ments whose product should be taken with the plus sign, and
the line segment marked with the - sign connects two elements
whose product should be taken with the minus sign.

Determinants of second-order square matrices are called

second-order determinants.

1. Cramer’s rule for solving a system of two second-order
equations in two unknowns.

Suppose we have a system of two equations

(a xx + b\y = ci

(
a2x + b2y = c2

( '

We use the coefficients of the unknowns to form the deter-

minant

a\ bi

a2 b2

We shall call it the determinant ofsystem (3) and denote it by A.

We shall also need two other determinants, namely

Ai
ci b\

c2 b2
, A2 =

a i Ci

a2 c2

The determinant Ai is obtained from A by replacing the ele-

ments ai, a2 of the first column (they are the coefficients of
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x in the equations of the system) by the constant terms ci, c2 .

The determinant A2 is formed in a similar way by replacing

the elements of the second column in A by the constant terms.

Theorem (Cramer’s rule for a 2 x 2 system). If the deter-

minant A of system (3) is nonzero, the system has a unique

solution. The solution can be found from the formulas :

x = At

A ’ (4)

By multiplying both sides of the first equation in (4) by

bi and of the second equation by - b\ and adding the results,

we obtain

(aib2 - a2 bi ) x = C\b2 - c2 b\

or, which is the same, A x = Aj. Whence we have

Similarly, by multiplying both sides of the first equation by

— a2 and of the second equation by a\ and adding the results

we arrive at the equation

(ia\b2 - a2 b\) y = a\C2 - a2 C\

or, briefly, A -y = A2 . Whence we have

Thus we see that if a system of equations is solvable, its solu-

tion is given by (4). Now it remains for us to check whether

the numbers x = ^ , y - ~ constitute the solution of the sys-

tem, that is, whether the following equalities

Ai ,
A2 _a\-— + b\-—7— Ci,

A A
a2 -

,
A2

+ b2 —j— = c2
A

hold true. We have

fliAi + b\A2 = a\(cib2 - c2 b\ ) + bi(aic2 - a2ci )

= C\{a\b2 - a2 b\) = CiA
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and this proves the validity of the first equality. The second
equality can be checked in a similar way.

Example. Solve the system

r3x - 5y = 0

l x - 2y = 1

O We have

A =
3-5
1 - 2

= -1 * 0

consequently

3 0

1 1

A y A~
— 3 •

The theorem we have just proved is called Cramer’s rule (to

be more accurate, Cramer’s rule for a system of two equations
in two unknowns). We shall discuss Cramer’s rule for the gener-

al case (i.e. for a system of n equations in n unknowns) in

Sec. 3.15.

3.2. THIRD-ORDER DETERMINANTS

We shall now consider a square matrix of third order, that

is, an array of 3 X 3 numbers,

a\ bi ci

a2 b2 c2 (1)

<*3 bi Ci

The notions of element, row, and column are equivalent to

those of matrices of second order.

Definition. The determinant of matrix (1) is the number

aib2 Ci + bic2ai + C\a2 bi - c\b2ai - b\a2 c2 - a\c2b2 (2)

Determinants of square matrices of third order are called

third-order determinants.
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The determinant of matrix (1) is written as

a\ bi ci

Cl2 bj Cl

ai bi ci

(3 )

Thus by definition we have

a\ b\ Ci

ai bi ci = aibici + b\C2 ai + c\a2bi - C\b2 ai (4)

ai bi Ci - biaici - a\C2 bi

The numbers a\, b\, Ci, a2 , bi, ci, ai, bi, ci are called the

elements of determinant (3). We say that determinant (3) is

formed from elements au bu cu a2 , bi, c2 , ai, bi, c3 .

Although (4) seems to be complicated, it can be easily

remembered. If we connect with a dashed line each three ele-

ments of the determinant whose product is taken with the plus

sign in (4), we obtain scheme 1, which can be easily memorized.
Similarly, for the products taken with the minus sign in (4) we
have scheme 2.

\M
<K 7>

P<f\

WA /
/ \>

a
c/ V

Scheme 1 Scheme 2

The schemes illustrate the triangle rule for evaluating third

order determinants.

Example. Compute the third-order determinant

1 2 3

0 1 -1

2 4 5



62 Part One. Analytic Geometry

O We draw the schemes

i 2 3

\/X?Sx \
0 / 1 / ^

//-^x / \2^ 4 5

and find that the determinant is equal to 1-1-5 + 2-( — 1)-2 +
0-4-3 - 3-1-2 - 2-0-5 - (— 1)-4- 1 = -1. •
With practice the reader will be able to apply the schemes

mentally without drawing them.

Note that each of the six products in (2), say 0162C3 , is called

a term of the determinant. Any term of the determinant con-

tains either of the letters a, b, and c as a factor; in other words,

each term contains one element of the first, second, and third

columns. The indices of these letters in each term are permuta-

tions of the numbers 1, 2, 3, that is, each term contains one

element of the first, second, and third rows. This remark will

serve as a basis for defining determinants of an arbitrary order

n.

3.3. nth-ORDER DETERMINANTS

1. Notation.

We shall now use one letter, say a, to denote the elements

in a determinant with indices showing the position of the ele-

ment in the determinant rather than use different letters (a ,

b, c, and so on) as we did above: namely, we denote by a,j an

element in the /th row and y'th column. For instance, an is the

element of the first row and the second column (read “0 one

two” and not “a twelve”).

In this notation, formulas for second- and third-order deter-

minants are:

0n 0 12

021 022
= 011022 — 012021
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flu tfi 2 a 13

Oz\ On On — OwOnan + 012^230.11 + 013021032

031 O32 033 — 013022031 — 012021033 “ O11O23O32

2. A permutation of the numbers 1, 2, n. Even and odd

permutations.

A permutation of the numbers 1, 2, . .

n

is their arrange-

ment in some order (not necessarily increasing). For instance,

3, 2, 1, 4 is a permutation of the numbers 1, 2, 3, 4.

The number of permutations of 1,2, . . .

,

n is the product
1-2-3'. .-.n.

We use P„ to denote the number of permutations of 1,

2, . . ., n. Obviously, Pz = 2 = 1-2. We shall consider now a

permutation of the numbers 1, 2, .

n

- 1:

iu h, . in - 1 (1)

We can use it to obtain the permutations of 1, 2, . . ., n if we

write the number n either on the left of i\, or between i\ and
/*

2 , or between k and h, and so on, or on the right of i.

In this way we can obtain n permutations of the numbers 1,

2, from permutation (1). Since the number of permuta-

tions (1) is P„ - 1 , we have the following formula:

P„ = nP„ -

1

Specifically,

Pi = 3-P2 = 3-2-1, P4 = 4-P3 = 4-3-2-1

p5 = 5 P4 = 5-4-3-2-1

In general, Pn = n (n -
1) . . .3-2-1.

This product is written n\ (read “n factorial’*). Thus, the

number of permutations of the numbers 1, 2, . ... n is n\

Suppose we have a permutation . . .,j„ of the numbers

1, 2, We denote it by J and write

J — (Jit Jit .*•» jn)

An inversion in a permutation J exists when a larger number

precedes a smaller number.
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Example. The permutation (3, 2, 1, 4) has three inversions:

(3, 2), (3, 1), (2, 1).

We use a(J) to denote the total number of inversions in the

permutation J. The permutation is said to be even if the num-
ber a(J) is even, and odd if a(J) is odd.

In the example just discussed the permutation has three in-

versions and consequently it is odd. Note that the permutation

(1, 2, 3, . . n) has no inversions or, in other words, has zero

inversions. Consequently, this permutation is even.

3. Definition of nth-order determinants.

We shall consider a square array formed from n x n num-
bers. Such an array is called a square matrix of order n. The
number from the ith row and y'th column of the array is denoted

by aij.

We have the matrix

(2)

The numbers an, . . ., a„„ forming the matrix are called its

elements.

Matrix (2) has n
2
elements. We choose n elements such that

(1) they are in distinct rows (that is, we take one element from

each row), and (2) they are in distinct columns (this means that

we take one element from each column). We agree to call such

a sequence of n elements of the matrix admissible.

An example of an admissible sequence is an, an, . . ., a„„.

In order to obtain an admissible sequence we choose an ar-

bitrary element of matrix (2) and then delete the row and

column of the element. As a result we get a matrix of order

n - 1. We choose an arbitrary element in this matrix and delete

the row and column of this element. In the resulting matrix

we again choose an element, and so on. All in all we choose

n elements of matrix (2). These elements are from different

rows and different columns of the matrix.

Let us consider an admissible sequence of n elements of
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matrix (2). We arrange the elements of the sequence in a

definite order: beginning with an element aij, from the first

row, then an element a^2
from the second row, and so on.

Thus we have

flly'n U2/i> •••> Onj. (3)

where j \ ,

y'
2 , . . . , jn are the numbers of the rows of the elements

being chosen, and by definition they are distinct. Consequently,

ji, j2 , . . ., jn is an ordered sequence of numbers 1 , 2, . . ., n;

we denote it by J. Thus

J = (jl, jl, .... jn) (4)

is a permutation of the numbers 1, 2, . ... n.

Now if for each admissible sequence (2) we form the

products a\j,a2j2 . . Mnj. of all its elements, multiply the

products by either + 1 or - 1 depending on whether the permu-

tation J is even or odd, and then add the results, we obtain

the expression:

£(-l (5)

j

which is the determinant of matrix (2) or simply an nth-order

determinant. The letter J below the summation sign indicates

that summation is carried out over all possible permutations

(4) of the numbers 1, 2, The products ay,ay,. . .anj„ in

(5) are the terms of the determinant. There are n\ terms in an

nth-order determinant.

An nth-order determinant is written as

a\\ an ... a\ n

021 CI22 • • • 02n

anl On2 • • • ann

The vertical lines mean that we are considering the determinant

and not an array of n
2
numbers, that is, we are concerned with

a number composed in a particular way from the array (expres-

sion (5)).

5— 36 <>
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To summarize we formulate the following definition.

Definition. The determinant of matrix (2) is the expression

aa a\2 . . . a\ n

a2 i a22 ... a2„ = 2(- ani. (6)

J

Qn\ On2 • • • Qnn

where the summation is carried out over all permutations

J = On h , .... if) of the numbers 1, 2, . . ., n.

Matrix (2) is often denoted by A and its determinant by \A
|

or det A*. Sometimes we shall use the notation A.

4. Specific cases when n = 2 and n = 3.

Before studying mh-order determinants, it is necessary to

verify that for n = 2 and n = 3 formula (6) leads to the familiar

second- and third-order determinants. Products of form
a\j

l
a2j1

are the terms of the second-order determinant

flu Ol2

<721 <722

where On h) >s any permutation of the numbers 1, 2. There

are two such permutations: (1, 2) and (2, 1), the first being an

even permutation (it has zero inversions). Consequently,

<7 1 1 <712

<721 <722

= <7 1 1 <722 — <7l 2 <72

1

which coincides with the known expression for a second-order

determinant.

The product a\j,a2jlay 1
are the terms of the third-order de-

terminant

<7 1 1 <712 <7 1

3

<721 <722 <723

<731 <732 <733

where is a permutation of the numbers 1, 2, 3. There

are six such permutations, three of which are even, namely, (1,

2, 3), (2, 3, 1), (3, 1, 2), and three are odd, namely, (3, 2, 1),
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(2, 1, 3), (1, 3, 2). Whence it follows that

0n an an
021 022 023 = 011022033 + 012023031 + 013021032

031 032 033 — 013022031 — 012021033 — 011023032 O)

This is the rule we know for evaluating third-order deter-

minants.

3.4. TRANSPOSITION OF A DETERMINANT

We shall now consider an interesting property of a deter-

minant.

Theorem. The value of a determinant is left unchanged if

its rows are written as columns, in the same order.

For instance,

-1 -2 -3 -15 0

5 7 9 = -2 7 4

0 4 6 -3 9 6

o Suppose that

A
011 012 • • • 0 In

021 022 • • • 02«

0/1 1 0/l2 * * • 0/in

is the initial determinant, and

A* =
011 012 . . 01n

021 022 • • 02n

0//

1

0/i2 • • * ann

is the result of interchanging of its rows and columns. Let us

prove that A = A*.

We shall now introduce an additional concept, the inverse

permutation. Let J be a permutation of the numbers 1, 2, . . .,

n. Let us form a new permutation, which is inverse to J, and

denote it by J
~ 1

using the following rule. If a number j is in
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the /th position in the permutation J, then in the permutation

J- 1

the number /' is in the ./th position.

For example, the permutation (3, 6, 4, 5, 1, 2) is the inverse

of the permutation (5, 6, 1, 3, 4, 2).

Let us show that a(J) = a(J~ '), that is, the inverse permuta-

tion has the same number of inversions as the initial permu-

tation.

Indeed, suppose that numbers k and /, which are in the ath

and /3th positions respectively in a permutation*/ (with a < 13)

form an inversion, i.e. k > l. The numbers a and (3 are in the

Ath and /th positions respectively in the permutation J~\ Since

l < k but /3 > a, the numbers a and /3 form an inversion in

J-'. Thus, each pair of numbers forming inversion in the initial

permutation is associated with a similar pair in the inverse per-

mutation. We can prove by analogy that pairs not forming an

inversion in the initial permutation correspond to similar pairs

in the inverse. Whence it follows that the number of inversions

in the permutation J coincides with the number of inversions

in the permutation J~ l

,
i.e. o(J) = a(/

-1
).

Let us prove that A = A*. The determinant A is the sum of

n\ products of the form

(— 0\j i
a2j1

. . Mnj. (1)

where o(J) is the number of inversions in the permutation

J = 0l» jl, • jn)-

Let us consider expression (1) in terms of the determinant

A*. We interchange the factors in the product a\j,aij2
. . .anj, so

that the first element is an element from the first row of the

determinant A* (i.e. from the first column of A), the second

element is an element from the second row of A*, and so on.

The result will be a\j,a2j2
. . .anj, = a;,ic,,2 - . The permuta-

tion I = (j'l, |2 ,
. . ., in) is the inverse of / = (ju h, • • - , jn)\

indeed if in the permutation J a number q is in the /?th position,

then expression (1) contains the factor apq ,
and consequently

p is in the <7th position in the permutation I. Whence it follows

that a(I) = ct(/), and thus

(-1 )
a(J)

aiha2j2 . . .anJ,
= (- l)

0<J)
a/,ia, 12 . . .a,„n
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The left-hand side of this equality is a term of the deter-

minant A with the sign it has in the determinant, and the right-

hand side is the term of the determinant A* having the cor-

responding sign. Thus the determinants A and A* have the same

terms taken with the same signs. Whence it follows that

A = A*.

The operation of interchanging the rows and columns of a

determinant is called a transposition (A* is the transpose of

A). Therefore, the theorem just proved can be formulated thus:

the value of a determinant is left unchanged under transpo-

sition.

The property that a determinant is unchanged upon inter-

changing rows and columns shows that in a certain sense rows

are equivalent to columns, namely, any statement concerning

a determinant formulated in terms of rows remains valid if the

word “row” is replaced by the word “column”. We shall use

this statement in Sec. 3.6 when deriving the principal properties

of determinants of order n.

3.5. EXPANSION OF A DETERMINANT BY ROWS
AND COLUMNS

The initial formula

On aa . . . flin

a2 i a22 ... a2n = E(~ . .anJ, (1)

J

@nl 0;i2 • • • dnn

is not suitable for evaluating /7th order determinants since it

has n\ terms and as n increases this number grows rapidly (for

instance, whereas a fourth-order determinant has 24 terms, a

fifth-order determinant has 120 terms).

In practice, determinants are usually evaluated from formu-

las for the expansion of determinants by rows (columns), which

are given below.
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Let us consider an nth order determinant

A =
flit Ul2 • d\n

021 022 02n

On\ On2 . . . Onn

Let / be a number from 1, 2, .

.

n. Each term of the deter-

minant contains one element of the /th row as a factor. We com-
bine all terms involving an (the first element of the /th row),

put before the brackets the common factor an ,
and denote the

expression in brackets by An Then we combine all terms con-

taining a,

2

(their sum is anAa), and so on. As a result the sum
in (1) decomposes into n parts:

OilAn, Ot2A ,2 , . . ., OinAin

Consequently

A = OnAn + OnAn + . . . + Oi„Ai„ (2)

Equation (2) is the expansion of a determinant in terms of the

elements of the ith row (or simply the expansion by the ith row).

Expression Ay is called the cofactor or a signed minor of the

element ay in the determinant A.

Thus, a determinant is equal to the sum of the products of
elements of any row by their cofactors.

As an example let us expand a third-order determinant by

the second row. From formula (7) in Sec. 3.3 we have

a ii a\2 an
an 022 023 — fl2l(tfutf32 — 012033) + 022(0n033

O3 1 O32 033 — 013031) + 023(012031 — 011032)

The expressions in brackets are the cofactors A21, A22, and ^ 23 .

Remark. Any term of a determinant having an element ay

as a factor cannot contain any other element from the /'th row

and the y'th column of the determinant as a factor. Whence it

follows that the expression for Ay does not involve elements

from the /'th row and the y'th column of the determinant. In

other words, the number Ay is completely defined by elements
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from other (not the ith) rows and other (not the y'th) columns

of the determinant.

The proof of the statement concerning columns is quite simi-

lar. Let j be a number from 1, 2, ...,«. Each term of the deter-

minant contains an element from the y'th column as a factor.

We combine all the terms involving ay (the first element of the

yth column). Their sum is equal to a\jA\j. Then we combine

all terms containing ay (their sum is equal to ayAy), and so

on. The result is

A = aijAij + OyAy + . . . + OnjAnj (3)

which is the expansion of the determinant A in terms of the

elements of the jth column (or simply the expansion by the

jth column).

Thus, a determinant is equal to the sum of the products of
elements of any column by their cofactors.

Formulas (2) and (3) can be used for evaluating the deter-

minant A. But we must know how to find cofactors. To do this

we first deduce some properties of nth-order determinants.

3.6. PROPERTIES OF nth-ORDER DETERMINANTS

Properties l°-7° of a determinant concern rows.

1 °. If all the elements of a row of a determinant are zero,

the determinant is zero.

In order to prove the statement, it is sufficient to expand a

determinant by that row.

2°. If any two rows of a determinant are interchanged, the

determinant is multiplied by -1.

We have to distinguish between two cases.

Case 1. Interchanging neighboring rows. Suppose that we in-

terchange two neighboring rows, say the first and second, in

the determinant:

A =
aa a 12 ... a\ n

«21 022 «2n

Uni Un2 • • . Unn
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The result is the new determinant

A' =
Oil fii2 . • • flln

fl21 fl22 . . fl2n

fl/il fln2 • • • fl«/i

Let us show that A' = - A. We consider some term of A:

• -Onj, ( 1 )

The factors fly,, .

.

a„j, of this product are also the elements

of A ' and they belong to different rows and different columns.

Consequently, any term of the determinant A is also a term

of A'. The converse is also true: any term of the determinant

A ' is also a term of A. Thus, the determinants A and A ' contain

the same terms. In order to prove that A ' = - A, it is sufficient

to verify that the sign (+ and - ) of the term of the determinant

A is opposite to the sign of the term of the determinant A'.

The sign of the product in (1) of A is defined by the factor

(_ where J = (ju h » • • jn). In order to find the sign

of the same term of A', we should write the product in (1) so

that the first be an element from the first row in A ' , the second

be an element from the second row, and so on. We know how
to obtain the determinant A' and so we write (1) in the form

fl2j! fly,fl37J
. • Onj,. The sign of this product in A' is defined by

the factor (-l)a<r) , where J' = (j2 , ju y3 , • • jn).

When passing from J to we have interchanged j\ and j2 .

As a result the number of inversions in a permutation should

change (increase or decrease) by 1. Indeed, if j\ < j2 , then a

change from J to J' results in a new inversion (j2 , ji), and if

ji < ji , then the change eliminated the inversion (ji » 72), other

inversions being unchanged. Thus, the numbers a(J) and a(J')

differ by unity, whence it follows that ( — l)
0^ = — (— 1)° <-/

\

This means that the sign of the product (1) in the determinant

A is opposite in sign to that in A'.

Case 2. Interchanging the rows which are not neighbors. Sup-

pose that we interchange the ith and the yth rows, with / < j.

This can be done in several steps. First we interchange the /th
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and the (i + l)th rows. Then we interchange the (/ + l)th and

(/ + 2)th rows in the resultant determinant, and so on until the

/th row of the initial determinant is in the y'th position. Then
we shift the initial ,/th row “upward”, (it is now in the (j - l)th

position) until it is in the /th position. All in all, we should

accomplish 2(J — i) - 1 interchanges of neighboring rows

0 - / when shifting the /'th row “downward” and j - i
-

1

when shifting the /th row “upward”). Upon each interchange

the determinant is multiplied by -
1; the total number of inter-

changes is odd, and therefore the resulting determinant is multi-

plied by -
1 .

Remark. The proof of property 2° shows that the initial de-

terminant A and the determinant A ' obtained from A by inter-

changing two rows consist of the same terms but taken with

opposite signs.

3°. If a determinant contains two identical rows, it is zero.

Indeed, if we interchange two identical rows in a deter-

minant A, we should obtain the same determinant A; on the

other hand under such an interchange the determinant must

be multiplied by -1. Consequently, A = - A, whence 2A = 0

or A = 0.

Example. The determinant

-1 2 3

4-5 6

4-5 6

is zero since its second and third rows are identical.

4°. A common factor of the elements ofany row can be taken

outside the determinant.

For instance, let the elements of the first row have a com-

mon factor k, namely kan, kan, . .., ka\„. Then

kan kan ka in

On 022 02n

Qnn@nl Qn2

— ka\\A\\ + kanAn + . .

.

+ ka\ nA\„
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= k(a\\A\\ + diiAn + + A\ nAin)

d\\ d\2 din

Oil «22 • • • 02n

O/ji dnl • • • dnn

5°. If edch element of o row is o sum of two oddends, then

the determinont con be represented os o sum of two deter-

minants in each of which all the elements are the same as in

the initial determinant except for the elements of the indicated

row. The indicated row in the first determinant contains the

first addends and that in the second determinant contains the

second addends.

For instance,

bn + Cn 612 + C12 ... bi„ + Ci„

O21 O22 ... 02n

Qnl Qn2 • • • Qnn

bn bn . • bln Cn Cl2 • • Cm
021 022 • &2n + 021 022 U2n

Qn\ Qn2 • Qnn Onl Qn2 • • Qnn

In order to prove this, it is sufficient to write

(£?11 + Cii) All + (bi2 + C12) A 12 + . . . + (bln + Cm) A 1„

= (biiAu + bnAn + . . . + bi nAif)

+ (CnAn + C12A 12 + . . . + Cin^ln)

6°. The value of a determinant is left unchanged, if the ele-

ments of a row are altered by adding to them any constant mul-

tiple of the corresponding elements of any other row.

For instance,

an Oi2 ... Oi„

O21 022 • • • 02n

tf/il Qn2 • • • Qnn
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+ ka2 \ 0\2 + k022 . . o\ n + ka2 ,

a2 \ 022 Cl2n

&n\ Qn2 • . • Qnn

Indeed, according to property 5°, the determinant on the right-

hand side of the equality can be represented as

an an CJ\n ka2{ ka22 . ka2n

021 022 • • @2 ft + a2 i 022 • 02n

Qn\ On2 • Clnn Qn\ Qn2 • • Clnn

a 11 On 0\n

021 On 02n + k
021 022 02n

O21 022 02n

Onl On2 • • • Onn

O it 0\2 . 0\ n

021 022 02n

Onl On2 • - • Onn

Onl On2 • Onn

(the determinant containing the factor k is zero since it has two

identical rows, the first and the second).

Example. Evaluate the determinant

2 5 9

26 57 92

263 571 920

O Note that the second row differs “slightly” from the first

multiplied by 10, and the third row from the second multiplied

by 10. Therefore, we add the second row multiplied by -10

to the third row, and the first row multiplied by -10 to the

second row. The resulting determinant is

2 5 9

6 7 2

3 1 0
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which, according to property 6°, must be equal to the initial

determinant. By a direct calculation (say, by the triangle rule),

we find that the determinant is 109. Consequently, the initial

determinant is also 109. 9
A remark must be made before formulating the next

property. We know that the sum of the elements of a row multi-

plied by their cofactors equals the determinant. Suppose we
add the elements of a row multiplied by the cofactors of the

corresponding elements of another row. For instance, find the

sum a2iv4ii + aiiAn + . . . + a2nAi„, which contains the ele-

ments of the second row multiplied by the cofactors of the cor-

responding elements of the first row. The result can be deduced

due to the next property.

7°. The sum of the elements of a row in a determinant multi-

plied by the cofactors of the corresponding elements of another

row is zero.

For instance, let us show that

^21^4 1 1 + 022^ 12 + • • + a2nAi n = 0 (2)

For arbitrary numbers bi, b2 , . .., b„ the following equality

is valid:

b i b2 ... bn

021 022 • • • 02/1 — b\Au + b2A 12 -l- . . . + bnAi„

Qn\ @n2 • • • @nn

(this is the expansion of the determinant by the first row). We
assume that b\ = 021 , b2 = a22 , . . ., b„ . = a2„ and find that

0n 012 • 01 n

021 022 • • • 02/1 — G2lAu + 022-4 12 + . . . + 02/1-4 in

Qn\ Qn2 • • • &nn

The determinant on the left-hand side is zero since it contains

two identical rows, the first and the second row. Equality (2)

is proved.
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Example. Given the determinant

3 2 1

1 -5 2

4-3 3

the sum of the elements of the first row multiplied by the cofac-

tors of the corresponding elements of the third row is

3-
3 1

1 2
+ 1

-
3 2

1 -5
= 0

3.7. MINORS. EVALUATION OF nth-ORDER DETERMINANTS

1. Minors.

Let us consider an nth-order determinant

A =
Cl 11 fll2 • Oln

011 022 02n

Onl On2 • • Onn

We cuoose one element ay. If we delete the /th row and the

y'th column (i.e. the row and the column of the element ay) from

A, we obtain a determinant of order n — 1. This is called the

minor of the element ay in the determinant A and is denoted

by My. For instance, the minor of the element 023 = -2 in the

fourth-order determinant is

1 -1 7 1 -1 7

0 0 6 = 0 0 6

0 0 -2 0 0 -2

2. Relation between Minors and Cofactors.

Let us prove the following fundamental theorem.

Theorem. The cofactor of any element ay of the determinant

A is equal to the minor of the element multiplied by (- \)‘
+j

,

that is.

Aij = (- l)
,+7My ( 1 )
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In other words, the same equality A,j = ±My is always true,

the plus sign being valid when the sum / + j is even and the

minus sign when it is odd.

First we prove formula (1) for the special case when / = n,

j = n. Since the number n + n is even, we need only verify that

Ann Mnn (2)

According to the definition of a cofactor, in order to find

A„„ we must combine all the terms of the determinant A which
involve the element ann as a factor, that is, the terms of the form

Olji ®?/». • -On- 1,7. \Onn (3)

The sign of such a term in A is defined by the factor (- 1)
0^,

where J = . .
.

,

jn - 1 , «), Eliminating the number n from
the permutation J, we obtain a permutation J' = (Ju j2 , .

,

y«-i) of the numbers 1, 2, . . ., n - 1. The number n is the

largest of the numbers 1, 2, . . ., n - 1, and therefore it does

not form an inversion with either of the numbers j \ , ji, . . .,

j„ -
i in the permutation J; consequently, the number of inver-

sions in J coincides with that in J’, that is,

a{J) = a(J') (4)

If we factor out a„„ from all terms of form (3) (each taken

with the respective factor (-l)"00) the expression in brackets

will be equal to A„„. Noting (4), we thus have

Ann = 2j(
— \)°

(J
)a ljia2ji- On-

J'

where J' is any permutation of the numbers 1, 2, . . ., n - 1.

The sum on the right-hand side is the determinant

an au ... ai,„_

i

a21 022 02, n - 1

O/j-1,1 On - 1,2 On-1,/1-1

that is, the minor M„n . Equality (2) is proved.

Let us now consider the general case when / and j are any
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integers from 1 to n. We reduce this to the special case of / = n,

j = n discussed above.

We interchange the /th and (/ + l)th rows in the determinant

A. Then we interchange the (/' + l)th and (/ + 2)th rows in the

resulting determinant, and so on, until the /th row of A changes
places with the nth last row. The element ay in the resulting

determinant appears in the nth row and y'th column. Then by
interchanging neighboring columns (first the y'th and the

C/ + l)th, then the (j + l)th and (y + 2)th columns, and so on),

we shift the element ay “to the right” until it appears in the

bottom right corner of the determinant, i.e. in the nth row and
nth column. We have made 2n — i — j interchanges of neigh-

boring rows and columns (n - / when shifting the /th row
“downward” and n - j when shifting the y'th column “to the

right”). These interchanges leave the determinant unchanged,

while changing its sign. Given that the number 2n - (/ + j) is

even or odd as / + j is even or odd, we infer that, as a result

of the interchanges, the terms in the determinant A are multi-

plied by (-1) ,+
-/

.

The minor M„'„ in the resulting determinant A' is the same
determinant of order n -

1, as the minor M„„. Thus, the cofac-

tor Ay is equal to (-1 )
i+j

Ay. Given that A^n = Mn„ (from
what we have just proved), we have

(-1 )
i+JAy = My

and this is essentially the same as (1).

3. Evaluation of nth-order determinants.

In practice, nth-order determinants are evaluated from the

formulas for expanding a determinant by a row or column. For
instance, expanding a determinant A by the /th row we have

A = anAn + onAa + ... + ct,„Ai„

or noting formula (1)

A = an(-\Y
+ 1Mn + a,-2 (- l)

i + 2M,2 + . . . + a,„(- \)
i + nMin

This equality reduces the evaluation of the nth-order deter-
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minant A to the evaluation of a set of (

n

- l)th-order deter-

minants M,i, Mn, . . ., M,„.

The formula for the expansion of a determinant by a row

(or column) is simpler when all the elements of this row (or

column) are zero except for one element, say aif.

A = dijAij

or

A = aij{-\)
i+j

Mij

Thus to evaluate the nth-order determinant A means to evaluate

a single (

n

- l)th-order determinant.

Although a given determinant A may not contain a row (or

column) with the required number of zeros, we can always

transform the determinant, leaving its value unchanged, so that

the elements of the row (or column) we have chosen are zero

except for one element. To do this we use one of the properties

of a determinant, namely, the value of a determinant remains

unaltered if the elements of one row (or column) are altered

by adding a multiple of the corresponding elements of any

other row (or column), or in short, if a row (or column) multi-

plied by an arbitrary number is added to another row (or

column). A concrete example illustrates how a determinant can

be transformed to the desired form.

Example. Evaluate the fifth-order determinant

1 3 -2 -2 1

0 -2 2 1 0

1 2 1 -1 3

1 -1 3 0 1

2 2 3 -2 1

O We choose the second row since it contains more zeros

(there are two). We shall try to transform the determinant

without changing its value, so that all the elements of the sec-

ond row are zero, except for a24 = 1. Obviously, it is sufficient

to add the fourth row multiplied by 2 to the second row and

the fourth row multiplied by - 2 to the third row. The result
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is the following determinant

1 -1 2 -2 1

0 0 0 1 0

1 0 3 -1 3

1 -1 3 0 1

2 -2 7 -2 1

which equals the initial one. We expand it by the second row

and obtain

1-12 1

-1 0 3 3

1

-

13 1

2

-

271

We should choose the second row in the last determinant since

it contains zero. Let us transform the determinant so that all

the elements of the second row are zero, except for an = -1.

By subtracting the first row from the third one and the first

row multiplied by 2 from the fourth one we obtain the deter-

minant

1-12 1

-10 3 3

0 0 1 0

0 0 3 -1

which equals the initial determinant A. Its expansion by the

second row yields

A
-13 3 -13 3

0 1 0 - 0 1 0

0 3 -1 0 3-1

This third-order determinant can be directly evaluated, but to

expand it by the first row is much simpler:

A (-D(-l) i +

1

fi— 36h

1 0

3 -1
= 1 •
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3.8. CRAMER’S RULE FOR ANnXn SYSTEM

An important application of nth-order determinants is solv-

ing a system of n linear equations in n unknowns. We shall

call such a system an n x n system.

Let us introduce some notation. We shall use the same letter

* with different indices to denote different unknowns, viz. x\

is the first unknown, *2 is the second one, and so on. The
coefficients of the unknowns in an ith equation are: an is the

coefficient of *1, an is that ofX2 , and so on. So the /th equation

of the system is written as

OnXl + <2,2*2 + . . . + a,nXn = bi

where n is the number of unknowns in the system.

We shall write an n x n system as

, •*

011*1 + 012*2 + . . . + 01n*n = b\

021*1 + 022*2 + . . . + 02n*n = bl (1)

J2nl*l + 0„2*2 + . . . + QnnXn = b„

The determinant

A =
011 012

021 022

0\

n

Qln

On 1 Onl • • • Onn

(2)

formed from the coefficients of the unknowns in system (1) is

called the determinant of this system.

A solution ofsystem (1) is the set of values of the unknowns

*1 = ai, *2 = «2, . . ., x„ = a„ such that it satisfies every equa-

tion of the system.

The following theorem, which is called Cramer’s rule for an

n X n system, is valid and it is similar to the theorem we have

proved in Sec. 3.1 (Cramer’s rule for a 2 X 2 system).

Theorem (Cramer’s rule for an n x n system). If the deter-

minant A of an n x n system is nonzero, then the system has
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a unique solution, which can be found from the formulas

At A2 An*1=
A’

*2=
A = f (3)

where each determinant Ai, A2 , A„ is obtained from the

determinant A by interchanging the corresponding column (the

first, second, . . ., nth) by the column consisting of the constant
terms of the equations:

A, =
b\ an
b2 022 .

• Qln

• Q2n , a2 =
Oil b\ .

021 62 .

Oi„

• O2/1

bn CJn2 &nn &n 1 t>n . Qnn

First we prove that if a solution xu *2 , ..., x„ exists for

system (1), then it is satisfied by formulas (3). Then we show
that the values of the unknowns defined by (3) are valid for (1).

(I) Suppose that each of the equalities in (1) is satisfied by
some numbers *1 , xi, .

.

x„. We multiply both sides of the

first equality by An , those of the second by y4 2 i, and so on,
and both sides of the nth equality by An \

.

In other words, we
multiply the equalities in (1) by the cofactors of the first column
of the determinant A. Summing these equations yields

>lll(Oll*i + 012X2 + . . . + OinXn)

+ >l 2 l(021 *l + 022*2 + . . . + 02n*n)

+ >lnl(On l*l + On2*2 + . . . + Onn*n)

= biOn + b2A2l + . . . + bnA„i

By combining the terms containing first Xi, then x2 , and so
on, we rewrite the equation in the form

(oii>ln + 02M 21 + . . . + an\A n \) *1

+ (Ol2>l 1 1 + 022.A2X + . . . + a„2A„i) X2

+ (Oln^ll + 02nA 2 l + . . . + a„„A nI ) X„

= b\A\i + b2A2\ + . . . + bnAnl (4)
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The coefficients of X\, x2 , .

.

x„ can be easily simplified using

the properties of a determinant. For example, the coefficients

of xi is the sum of the elements of the first column in A by

their cofactors; consequently, this coefficient is A. The coeffi-

cient of xi is the sum of the products of the elements of the

second column in A by the cofactors of the corresponding ele-

ments of the first column; consequently, this coefficient is zero

(property 7° of determinants). Similarly, the coefficients of x3 ,

. .
. , x„ are zero. As a result, the left-hand side of (4) is equal

to A-X\. The right-hand side of (4) is the expansion of Ai by

the first row; consequently, the right-hand side of (4) is equal

to Ai. Thus, it follows from (4) that

A-*i = Ai

and noting that A^O we have

Ai

We have obtained the first formula in (3).

In order to obtain the second formula from (3) we multiply

both sides of the first equality in (1) by An, those of the second

by A 22 ,
and so on, and those of the last by A n2 . In other words,

we multiply the equalities in (1) by the cofactors of the elements

of the second row in the determinant A. Adding these equalities

yields

A-*2 = A2

i.e. the second formula in (3).

The remaining formulas of (3) can be obtained in a similar

way.

(II) Let us now check whether the values of the unknowns

defined by (3) satisfy (1). We verify this for the first equation.

We have

Ai A2
an —r + ~r + • • + fl|

A A

A„

A
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= [au(b\Au + bzAz\ + . . . + bnAn i ) + anibiAu

+ 62^22 + . . . + bnAnz) + . . . + Oin(6 i-*4 in + bzAzn

+ . . . + bnAnn)]

= ^ [b\(a\\A\\ + Q12A 12 + . . . + di nAi„) + 62 (011^121

+ 012^22 + . . . + CtinAzn) + . . . + bn(OuAn \

+ ClllAnZ + . . . + Oin>lnn)]«

The factor of 61 on the right-hand side of this equality is equal

to A since it is the expansion of A by the first row; the factor

of 62 is zero since it is the sum of the products of the elements

of the first row in A by the cofactors of the corresponding ele-

ments of the second row; similarly, the factors of the remaining

bi are also zero. Consequently, we have

4-6iA = 61
A

Remark. Formulas (3) are seldom used since they require

evaluating the determinants A, Ai, . . ., A„. A practical method

for the solution of system (1) is Gaussian elimination (see

Chapter 9).

Example 1. Solve the 3x3 system

fx + y + z= -2

|
Ax + 2y + z = - 4 (5)

/ 9x + 3y + z = - 8
We have

1 1 1

4 2 1

9 3 1

2*0

and therefore the system has a unique solution. We find that

-2 1 1 1 -2 1

-4 2 1 = -2, A2 = 4 -4 1

-8 3 1 9 -8 1
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A3

1 1 -2
4 2-4
9 3-8

-4

Consequently, x = -2/2 = -
1

, y = 2/2=1, z= -4/2 =
- 2 .

Example 2. Given three points in the plane: Mi (1, - 2),M2 (2,

-4),M3 (3, - 8), find the coefficients p, q, r such that the graph
of the function y = px2 + qx + r passes through Mi, M2 , andM3 . In other words, draw a parabola through these points.

O The condition for the parabola to pass through Mi(l,
-2) is

-2 = p\ 2 + q \ + r

The similar condition for M2 (2, -4) is

-4 = /?-2
2 + q-2 + r

and for M3 (3, -8) is

-8 = p- 3
2 + <7-3 + r

We have a system of three equations in three unknowns

(p + q + r = -2

\4p + 2q + r= -4

\J)p + 3q + r = - 8

which only differs from system (5) in Example 1 by the notation

for the unknowns. Whence we have p = -\, q = \, r = -2,

and the desired function is y = -x2 + x + 2. •

3.9. A HOMOGENEOUS n x n SYSTEM

Definition. A linear equation is said to be homogeneous if

its constant term is zero. A system composed of homogeneous
equations is homogeneous.

Let us write a homogeneous system of n equations in n
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unknowns in the general form
r
auX\ + anX2 + ... + a\ nxn = 0

021*1 + a22X2 + . . . + a2nx„ = 0 (1)

+ U„2X2 + ... + OnnXn = 0

Setting x\ = 0, x2 = 0, . . .

,

xn = 0 we obtain one of the solu-

tions of a homogeneous system. This solution is called a zero

(or trivial) solution. It is frequenly necessary to know whether

a homogeneous system has nontrivial solutions, i.e. such that

at least one of the numbers xu x2 , . . ., x„ is nonzero. The fol-

lowing theorem gives an answer.

Theorem. A system of n homogeneous equations in n

unknowns has a nontrivial solution if and only if the deter-

minant is zero.

As usual we use A to denote the determinant of a system

A =
Oil Ol2 • • Ol n

021 022 • • 02n

Uni Uni . • . Unn

We must prove two statements.

(1) If system (1) has nontrivial solution, then A = 0.

(2) If A = 0, then system (1) has a nontrivial solution.

Let us prove the first statement. Suppose that system (1) has

a nontrivial solution on, a2 , . . ., a„. Then the system has at

least two distinct solutions: (ai, a2 , ., a„) and (0, 0

0). Whence it follows that A = 0. Indeed, if A ^ 0, then as we

know the system has a unique solution.

Let us now prove the second statement. We use induction

on n. For n = 2 we have the system

(un x\ + ai2*2 = 0

(021*1 + U22X2 = 0

whose determinant, by the hypothesis, is zero:

U\\ U\2

U21 U22
- 011022 — O12O21 = 0
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This equation implies that any pair of numbers, (012, -an)

or (a22, -a2t), is a solution of the system (check it). Therefore,

if there are zeros among the numbers an, an, an, 022, then

a nontrivial solution exists. Now, if all four numbers are zero,

then any pair of numbers Xi , X2 gives the solution; consequent-

ly, nontrivial solutions exist in this case too.

Let us now suppose that the second statement is valid for

a system of n - 1 equations; we prove the statement for a sys-

tem of n equations.

We shall not consider a system of the form

' 0-xi + 0-X2 + . . . + 0-x„ = 0

Oxi + 0-X2 + . . . + 0-x„ = 0

^
O'Xl + 0 -X2 + . . . + 0-Xn — 0

since any set of the numbers x\ , X2, . . , x„ provides its solution.

Consequently, we may assume that at least one of the coeffi-

cients of the unknowns in (1) is nonzero. Two cases are possible

here.

Case 1 when an ^ 0. We add the corresponding sides of the

first equation multiplied by -021 /an to both sides of the sec-

ond equation in (1). We obtain

021X1 + 022X2 + . . . + OznXn

— (OnXi + 012X2 + . . . + OinX„) — 0
On

i.e. an equation of the form

022X2 + . . . + a{nXn = 0

(the term containing xi is absent). Similarly, adding the cor-

responding sides of the first equation multiplied by - 031/01

1

to both sides of the third equation in (1) yields

032X2 + . . . + ai„xn = 0
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and so on. As a result system (1) assumes the form

'#11*1 + <712*2 + • • • + #ln*n = 0

<*22*2 + • • • + ai„xn = 0 (1
')

#n2*2 + . . . + a'nlXn = 0

System (1 ') is equivalent to system (1), that is, it has the same

solution as (1). Indeed, since (1
') is derived from (1), any solu-

tion *i, *2, x„ of (1) satisfies system (I'). The converse

is also true, that is, system (1) can be derived from (1
') (to do

this we multiply the first equation in (1 ') by <72i/<7n and add

the result to the second equation, then multiply the first equa-

tion by <73 i/<7h and add the result to the third equation, and

so on), hence it follows that every solution of system (1
') satis-

fies (1).

Let us consider the determinant of system (1
')

A' =
#11 <712 ... <7i„

0 a{l #2n

0 a;2 a

i

n

Obviously, this can be obtained from the determinant A in the

same way as system (1
') was obtained from system (1), namely,

we multiply the first row by -<z2 i/<7n and add the result to

the second row, then multiply the first row by -<731/011 and
add the result to the third row, and so on. Each of these opera-

tions leaves the determinant unchanged (property 6° of a deter-

minant). Consequently, A' = A But by the hypothesis A = 0

and, consequently, A' = 0.

Expansion of A' by the first row yields

#22 ••• #2»

#n- = 0

an2

and since on ^0, we have



90 Part One. Analytic Geometry

According to the inductive assumption, this means that an

(n - 1) x (n - 1) system

022*2 + - . . + ai„Xn = 0

{a„2X2 + . . . + dnnXn = 0

which is a part of system (1 '), has a nontrivial soluton. Let

the solution be Xz = <*2 , . . x„ = a„. Having found x\ from

the first equation in (1
') ( «i = - — c*2 - • • • --"a»|,we

V 011 On )
get a complete solution ai, ai, . . ., a„ of system (1') and there-

fore of system (1).

Case 2 when a\\ = 0. By interchanging, if necessary, the

equations in system (1) (as a result the rows in the determinant

will interchange and it becomes zero), we get the first equation

with at least one of the coefficients of the unknowns to be zero.

If it is the coefficient of x\, we have Case 1. If it is the coeffi-

cient of, say, xz, we must interchange the unknowns, namely,

substitute Xz for X\ and xi for xz (the first and second rows

interchange in the determinant and it remains zero). As a result,

the coefficient of X\ in the first equation becomes nonzero, i.e.

we again arrive at Case 1.

Example 1. Find whether the system has a nontrivial so-

lution:

C x - 3y + 2z = 0

|
2jc - y + z = 0

l&x + y - z = 0

O We find the determinant of the system

1 -3 2 -1 1

2 -1 1 = 1-

8 1 -1 1 -1

-(-3)-
2 1

8 -1
+ 2 -

2 -1

8 1

50

Since A ^ 0, the system has a unique solution, x = 0, y = 0,

Z - 0. There is no nontrivial solution. •
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Example 2. Find whether the system has a nontrivial so-

lution:

x + 3y - z = 0

5x + y - 2z = 0

3* - 5y =0

O The determinant is

A =
1

5

3

3

1

-5
= 0

(check this). Thus the system has a nontrivial solution. #
Example 3. Find the value of a at which the homogeneous

system

[

ax + y + 5z = 0

lx - ay + z = 0

- 3x + 2y + 3z = 0

has a nontrivial solution.

O The determinant of the system

A =
a 1 5

7 -a 1

-3 2 3

-3a 2 - 11a + 46

depends on a. A nontrivial solution exists if and only if A = 0,

i.e. if 3a
2 + 17a - 46 = 0. By solving this quadratic equation,

we find its two roots, a\ = 2 and ai = -23/3. The system has

nontrivial solutions at these values of a only. #

3.10. A CONDITION FOR A DETERMINANT TO BE ZERO

We first consider a second-order determinant

A = au au

<*21 <*22

Each row of such a determinant is a sequence of two numbers.

In a Cartesian coordinate system in the plane, each row is as-

sociated with a vector.
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Similarly, each row of a third-order determinant

fi =
an an an
an 022 023

031 032 033

is a sequence of three numbers. In a Cartesian coordinate sys-

tem in space, each row is again associated with a vector.

Theorem 1. A second-order determinant is zero if and only

if its row vectors are collinear.

Theorem 2. A third-order determinant is zero if and only if

its row vectors are coplanar.

Let us first prove the following lemma.

Lemma. Two vectors pi and P2 are collinear if and only if

one of them is a linear combination of the other. Three vectors

Pi, P2, and p3 are coplanar if and only if one of them is a

linear combination of the other two.

The first assertion is obvious since it means that pi and

P2 are collinear if and only if the equality pi = Xp2 or P2 = Api

holds true, where X is a number.

Let us prove the second assertion of the lemma. We first as-

sume that the vectors pi, P2, and pi are coplanar and reduce

them to the origin. If pi = 0, then pi is a linear combination

of P2 and P3 '. pi = 0-p2 + 0-p3. Therefore we assume that

Pi A 0. Two cases are possible here.

(1) Vector p2 is collinear with pi, i.e. p2 = Xpi, X being a sca-

lar. We write this equation in the form P2 = Xpi + 0p3 and

see that one of the three vectors can be represented as a linear

combination of the other two.

(2) Vector p2 is not collinear with pi. Then pi and p2

represent a plane, and vector p3, which is coplanar with pi and

P2 should lie in this plane, and this means that P3 can be

represented as a linear combination of pi and P2 (see Item 1

in Sec. 1.2).

Conversely, suppose one of the vectors pi, p2, P3 is a linear

combination of the other two, namely p3 = Xpi + m>2- It is ob-

vious that pi, p2, P3 are coplanar.

Let us now prove Theorem 1. We use pi and p2 to denote
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vectors corresponding to the rows of the determinant (pi cor-

responds to the first row and P2 to the second). We must prove

two statements:

( 1 ) if vectors pi and P2 are collinear, then A = 0, and

(2) if A = 0 ,
then pi and p2 are collinear.

Let us prove the first statement. Suppose that pi and P2 are

collinear, then, according to the lemma, one of them is a linear

combination of the other, namely, P2 = Xpi, X being a number.

This means that a2 i
= Xfln, 022 = Xtta . It follows that

an an

an an
= anan — anan = X(anfli2 — anan) = 0

the proof is complete.

Let us prove the second statement. Suppose A = 0 .

Let us consider the following system of equations

(anXi + U2 1X2 = 0

lanXl + £722*2 = 0

Its determinant

( 1 )

£7i2 £722

is obtained by transposing A. Consequently, AC is also zero, and

this means, according to the theorem on homogeneous systems,

that system ( 1 ) has nontrivial solutions, say *i = ai, *2 = oa-

Thus, the following equations are valid:

£7 1 iQfi -I- £72lC£2 = 0 , £7i20!l + £722«2 = 0

where either ai or ct2 is nonzero. These equations show that

if we multiply the first row of the determinant by ai and the

second by a

2

and add the results, we obtain the zeroth row.

In other words,

aiP; + CX2P2 = 0 (2)

Since either a 1 or 012 is nonzero, we can represent one of the

vectors pi , p2 as a linear combination of the other. For instance,
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if a2 ^ 0, then it follows from (2) that

at
P2 = - — Pi

0!2

Thus, pi and p2 are collinear.

Let us prove Theorem 2. We use pi, p2 , and p3 to denote
the vectors corresponding to the rows of the determinant 12.

As before, we must prove two assertions:

(1) if vectors pi, p2 , and p3 are coplanar, then 12 = 0, and

(2) if 12 = 0, then vectors pi, p2 , and p3 are coplanar.

Suppose pi, p2 , and p3 are coplanar, then, according to the

lemma, one of the vectors is a linear combination of the other
two. For instance, p3 can be represented as a linear combination
of pi and p2 , i.e. p3 = Xpi + np2 , where X and n are numbers.
We write this equation as p3 - Xpi - /tp2 = 0. Hence we can
see that if we multiply the first row of the determinant 12 by
- X and the second row by - n and add them to the third row,

then we obtain the determinant

12
' =

on o 12 a i 3

021 022 023

0 0 0

Using the properties of a determinant, we can write 12' = 12

(property 6°) and 12' =0 (property 1°). Consequently, 12 = 0,

which was required to prove.

The second statement can be proved in the same way as the

similar statement of Theorem 1 (we leave it to the reader).

Example. Find whether the vectors p, = <-4, 1, -7>,

P2 = <2, 5, 9>, and p3 = < -8, 13, — 3>, defined by their coor-

dinates in a Cartesian system, are coplanar.

O We use the coordinate of the vectors to form a third-order

determinant

12 =
-4 1 -7
2 5 9

-8 13 -3

Direct evaluation shows that it is equal to zero. Hence it fol-

lows, according to Theorem 2, that pi, p2 , and p3 are

coplanar. #
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Exercises to Chapter 3

3.1

1.

Evaluate the determinants:

(a)
7 -4

5 -3
(b)

1 5

11 55
(c)

cos a - sin a

sin a — cos a

2.

Solve the equations:

|0 X lx + 2 - 3

(8) = 1, (b)

|

x 0
|

x - 2 x

3.

Using Cramer’s rule, solve the systems of equations:

(a)

lOx - 3y + 41 = 0

3x + 2y - 8 = 0,

(b)
[3x + y + 5

'

Jf + 5? - 3

0

0 ,

(c)

x cos a - y sin a = a

x sin a + y cos a = b

4.

Prove that the square polynomial ax2 + bx + c, with a ^ 0, is a perfect

square if and only if

ab =0
b c

3.2

1. Evaluate the determinants:

2 1 3 -3 0 1 0 a 0

(a) 5 3 2

1 4 3

, (b) -5 2 4

0 3 7

. (c) bed
0 c 0

2. Solving the equations:

1 2 3 1 x 2

(a) -1x0
3 2 4

= -1. (b) X -lx
-5 -5 4

a a a a + x x x

(c) -a a x
-a-a x

= 0, (d) x b + x x
X x c + X

= 0

3.3

1. Find the number of inversions in the permutations:

(a) (7, 6, 9, 1, 2, 3, 5, 4, 8), (b) (n, n -
1, n - 2, ...

,

2, 1). Are the permutations

in (a) and (b) even?
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2 . Find whether the product (a) 055044053021032, (b) 051023034045012 is a term

of a fifth-order determinant. If the answer is affirmative, find the sign of the

term.

3. Choose the values of i and k so that the product 04706301,05507*024031

is a term of a determinant (find its order) and has the plus sign.

4 . Prove that the determinant

on 0 0 ... 0

021 022 0 ... 0

031 032 033. .. 0

Onl On2 0n3 • 0„n

all whose elements located “higher” than an, 022, • ., a„„ are zeros, is equal

to the product 011022033 . . . o„„.

5 . Prove that the fourth-order determinant

Oil O12 Ol3 O14

021 022 0 0

031 032 0 0

041 042 0 0

is zero.

6. Find the terms containing x4
and x 3

of the determinant

5jc 12 3

x x 1 2

12x3
x 1 2 2x

3.6

1. Using the properties of a determinant, show that

(a) the equation

1 * x2

1 o o2

1 b b
2

0

has the roots xi = a and x2 = b,

(b) each of the determinants

1 2 3 sin
2 a 1 cos

2 a sin a cos a sin (a + 5)

4 5 6 , sin
2
0 1 cos

2
0 , sin 0 cos 0 sin (0 + 6)

7 8 9 sin
2
7 1 cos

2
7 sin 7 cos 7 sin (7 + 6)

is zero.
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2. Using the properties of a determinant, evaluate

1 3 6

12 31 62

122 315 623

3. Prove the equation

1 1 1

a b c

a 2 b
2

c
2

- (b - a)(c - a)(c - b)

both by a direct evaluation of the determinant and by using the properties

of a determinant.

3.7

1. Find the minor of atJ in the determinant A

(a)
1 2

3 4
1, j = 2, (b)

a b

c d
2, j = 2,

5 -7 2 12 3 4

9 1 3 , / = 2, j = 3, (d) 2 3 4 1

4 1 6 3 4 12
4 12 3

(c)

2. Expand the determinant

i = 4, j

(a)

2-341
4-232
a bed
3 -14 3

by the third row, and the determinant

(b)

by the second column.

3. Evaluate the determinants:

5 a 2 -1

4 b 4 -3

2 c 3 -2
4 d 5 -4

3 1 1 1 1 2 3 4 0 1 1 1

(a) 1 3 1 1 , (b) -2 1 -4 3 , (c) 1 0 1 1

1 1 3 1 3 -4 -1 2 1 1 0 1

1 1 1 3 4 3 -2 -1 1 1 1 0

7— 360



98 Part One. Analytic Geometry

(d)

0 1 1 3 2 0 -1 3 4 -1 2 3 1 1

1 0 1 6 . (e) 0 1 0 2 1 , (0 0 -3 2 1 0

1 1 0 -2 -1 0 1 5 3 2 1 -1 0 2

3 6 -2 0 -3 1 -2 0 2 4 1 -2 7 0
-1 -1 2 5 1 0 0 3 5 0

3.8

1. Using Cramer’s rule, solve the systems of equations:

7

(c)

I

x + 2y + 3z

2x - y + z = 9 (b)

x - 4y + 2z = 11,

<
2x + y + z + u = 5

x + 2y + z + u = 4 (d)

x + y + 2z + u = l

x + y + z + 2u = 4,

x + y + z = 1

2x - 3y + z = 1

4x + y - 5z = 1,

r
2x\ + 2xi - X] + xt = 4

4jfi + 3x2 - X3 + 2xi = 6

8xi + 5x2 - 3x3 + 4x4 = 12

3xi + 3x2 - 2x3 + 2xi = 6

2. Find all the solutions of the system of equations if the determinant of

the system is nonzero:

cix + b ty + ciz = a\

( 1
) ^

a-ix + biy + Ciz = a2

aix + biy + c3z = fl3.

r
(2)

V

axi + bxi + bx-j + bxA = c

bxi + ax2 + 6x3 + bx4 = c

bx1 + bxi + ax3 + Z>X4 = c

ZtXi + f>X2 + 6x3 + 0x4 = c

3.9

1. Find nontrivial solutions of the system of equations if it has any:

f2x-4y = 0 - x + y = 0
(a)

1

5x - lOy = 0,

(b)

t-+ 7y = 0,

(c)

- 2x + y + z = 0

x - 2y + z = 0

x + y - 2z = 0

2. Find the values of a at which the system has nontrivial solutions:

( x + 2y - 3z = 0

(a)
|
3x - 2y + z = 0 (b)

I ax - 14y + 15z = 0,

ax + y + z = 0
1 x + ay + z = 0

x + y + ax = 0

3. Prove that if the system

aix + bty = ct

[

a2x + b2y = Ci

aix + bty = c3
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is consistent, then

3.10

oi bi ci

ai bi Ci

03 bi c}

1. Find whether the vectors are coplanar:

(a) a = < — 1, 4, 2>, b = <3, 1, — 5>, c = <1, 9, -1>,

(b) a = <0, 1, 0>, b = <a, 0, y), c = <0, 2, 0>

2. Find the values of X for which the vectors a = <3, 4, 2>, b = <6, 8, 7>,

c = <9, 12; X> are coplanar.



Chapter 4

THE EQUATION OF A LINE IN THE PLANE.
A STRAIGHT LINE IN THE PLANE

4.1. THE EQUATION OF A LINE

Suppose that we have an equation

F(x, y) = 0 (1)

in two unknowns * and y. If the numbers xo and yo are such

that their substitution into the equation turns it into an equality

then we say that the pair of numbers Xo, y0 satisfies the equa-

tion. For example, the pair xo = 10, To = 9 satisfies the equa-

tion 1 - x + y = 0, while the pair X\ — 2, yi = 3 does not.

A pair of numbers x, y satisfying a given equation is not

arbitrary: if x is defined, then y cannot be arbitrary since the

value of y is related to x. It follows that a change in x causes

a change in y. A point (x, _y) will trace a line in the coordinate

plane.

1. A line defined by an equation. An equation corresponding

to a line.

Definition 1. Suppose we have an equation F(x, y) = 0. Then

the set of all points (x, y) in a coordinate plane whose coor-

dinates satisfy the equation is called the line defined by this

equation.

Definition 2. Suppose we have a line / in a coordinate plane.

The equation corresponding to this line or simply the equation

of the line / is an equation F(x, y) = 0 which defines the line /.

In other words, if we have an equation and must find the

line defined by this equation, we have to collect all the points

(x, y) whose coordinates satisfy the equation. Conversely, if we

have a line and must find its equation, we have to choose an

equation in two unknowns such that it is satisfied by all the

points of the line and only those points.

If we have the equation of a line, then studying the geometric



Ch. 4. A Straight Line in the Plane 101

0 X

Figure 48

properties of the line reduces to studying its equation and this

is the main purpose of analytic geometry. Its importance is that

it is easier to study an equation than to investigate a line geo-

metrically, especially since many methods have been developed

in algebra and mathematical analysis for studying equations.

The term running point of a line is often used when studying

lines. This is a variable point M(x, y) which moves along the

line (Fig. 48). The coordinates x and y of a running point are

called running coordinates.

An important remark must be made. An equation

F(x, y) = 0 relating x and y can sometimes be solved for y,

i.e. y can be explicitly expressed in terms of x. In this case the

above equation can be replaced by an equation of the form

y = f(x). A curve defined by such an equation is called the

graph of the function f(x). For instance, the equation

1 - x + y = 0 implies the relationship y = x —
1 (or

x = y + 1).

Finally we note that the equation of a line can be considered

in any coordinates in the plane and not only in rectangular

Cartesian coordinates. For instance, in polar coordinates the

equation of a line is of the form /(r, <p) = 0.

Example 1. We have an equation x-y = 0ory = r. If x

assumes an arbitrary value, then y assumes the value of x. Con-

sequently, a line defined by this equation consists of a point

equidistant from the x- and y-axes and located in the first or

the third quadrant. In other words, the equation defines the

bisector of the first and the third quadrant angles (Fig. 49).
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Figure 50

Example 2. We have an equation x + y = 0 or y = -x. This

equation defines the bisector of the second and the fourth

quadrant angles (Fig. 50).

Example 3. We have an equation y = 0. Although the equa-

tion does not involve the x coordinate, we may consider it to

be an equation in two unknowns, x and y (in order to show
that this assumption is valid, we can write this equation in the

form 0-a: + y = 0; now the left-hand side formally contains jc).

The line / defined by this equation consists of the points with

zero ordinate; the abscissa can be arbitrary since the equation

imposes no conditions on x. Consequently / is the, x-axis.

Example 4. We have an equation x2 + y
2 = 0. It is satisfied

by a single pair of values of x and y, namely x = 0 and y => 0.

Therefore, the equation defines just one point and this is the

origin. We may consider this point as a degenerate line.

Example 5. We have an equation sin
2
(x + y) - 3 = 0. Obvi-

ously, this equation cannot be satisfied by any values of x and

y. Consequently, this equation defines an “empty” line (a line

containing no points).

Example 6. We have an equation in polar coordinates

r - a cos <p = 0, where a > 0 is a constant number. This equa-

tion defines a circle of radius R = a/2 which passes through

the pole O, the center of the circle lying on a polar ray (Fig. 51).

Let us consider a point A on a polar ray at the distance a

from the pole. The condition r = cos <p means that z: OMA is

a right angle. Every point on the indicated circle possesses such

a property and only they do.
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Figure 52

The examples considered above specified an equation and we
had to find the line defined by the given equation. We now
consider the inverse problem: to form the equation of a given

line. Bear in mind that the desired equation can be written in

different forms. For instance, x - y = 0, y - x = 0,

(x - y)
2 = 0, \x - y \ = 0 are different forms of the equation

of the same line, namely the bisector of the first and third quad-
rant angles.

Example 7. Set up the equation of the circle with center at

P(a, b) and radius R (Fig. 52).

O We mark an arbitrary running point M(x, y) on the circle.

Then the distance from M to P equals R:

V(x - a)
2 + (y - b)

2 = R (2)

and this is the equation of the circle. Indeed,

(1) if the point M(x, >>) lies on the circle, then its x, y coor-

dinates satisfy equation (2) since IMP I = R,

(2) if a point N(x, y) is not on the circle, then its coordinates

do not satisfy equation (2). Indeed, in this case the distance

between N and P is not equal to R.

A simpler form of equation (2) can be obtained by squaring

its both sides:

(x - a)
2
+ (y - b

)

2 = R 2

which is an equation of a circle in rectangular Cartesian coor-

dinates.
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If the center P of the circle coincides with the origin, then

a = 0, b = 0 and the equation assumes the form

x2 + y
2 = R 2 •

2. A problem on the intersection of two lines.

Suppose that lines l\ and h are specified by their equations

F(x, y) = 0 and <b(x, y) = 0 respectively. Let us find the points

at which the lines intersect. From the viewpoint of analytic ge-

ometry, finding intersection points means finding the coor-

dinates in a given coordinate system.

If M(xo, yo) is an intersection point, then F(xo, yo) = 0 since

M belongs to l\ and <l>(xo, yo) = 0 as well, sinceM also belongs

to h. Thus the numbers xo and yo satisfy the system of

equations

F{x, y) = 0

$(x, y) = 0

Conversely, if a pair of numbers x0 , yo satisfies the system, then

the point M(xo, yo) belongs to the two lines simultaneously,

that is, it is a point at which they intersect.

Thus, in order to find the points of intersection of two lines,

we must solve the system of the equations of these lines.

If the system has no solution, then the lines do not intersect;

if the system has a unique solution (a single pair of numbers

Xo, yo), then the lines intersect only at one point; if the system

has several solutions, then the lines intersect at several points.

Example. Find the point of intersection of the bisectors of

the first and third quadrant angles with the circle of radius

R = V5 centered on the y-axis a unit from the origin (Fig. 53).

O We know that the equation of this bisector has the form
x - y = 0. The equation of the circle is x2 + (y - l)

2 = 5. The
system

-y = o
: + (y - l)

2 = 5

has two solutions: Xi = 2, yi = 2 and x2 = -1, y2 = -1. This

means that the lines intersect at two points, (2, 2) and (
— 1,

-
1 ). •
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4.2. PARAMETRIC EQUATIONS OF A LINE

Suppose that a point M moves along a line / in the plane.

If a coordinate system is specified, the position ofM is defined

by its coordinates x and y. As the point moves, its coordinates

vary, that is they depend on time:

* = /(0. y = <p(t) (l)

The symbols f(t) and <p(t) mean there is a functional depen-

dence. The variable t (time) is a parameter; given a certain value

of t we can find the values of x and y from formulas (1), i.e.

the position of M. Therefore we usually say that formulas (1)

specify the line / parametrically.

Let us digress from physics considerations and suppose that

we have a varying quantity t (not necessarily time). We specify

two functions

x=m,y = v(t) (2)

If we assign arbitrary values to the parameter t (such that f(t)

and <p(t) are meaningful), then x and y will vary and the point

M(x, y) will change its position in the coordinate plane.

Definition. The set of all points M(x, y) whose coordinates

are defined by formulas (2) is called the line represented
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c (x, y)

o A X

Figure 54 Figure 55

parametrically, and formulas (2) are called the parametric

equations or parametric representation of this line.

Example 1. Find the line defined by the parametric equations

x = Rcost, y = R sin t (3 )

O Squaring both sides of the equations and adding

the results yields x2 + y
2 = R 2

cos
2

1 + /?
2
sin

2
f = R 2

. But

x2 + y
2 = R 2

defines a circle of radius R with center at the

origin. Thus, any point whose coordinates are defined by for-

mulas (3) lies on this circle.

If t varies from 0 to 2x, then the point x = R cos t,

y = R sin t traverses the entire circle. Therefore formulas (3)

with the additional condition 0 ^ t ^ 2 consists of the paramet-

ric equations of a circle.

The meaning of the parameter t can be understood from

Fig. 54: t is the polar angle of the point M belonging to the

circle. If we neglect the additional condition (0 ^ ^ 2ir), then

the pointM will traverse the circle many times as t varies from
- oo to + oo. •
Example 2. A triangle ABC with sides a, b, and c and oppo-

site angles a, /3, and y slides with its vertices A and B along

the coordinate axes. Set up the parametric equations of the

curve described by the vertex C when it moves. Assume the an-

gle t is the parameter (see Fig. 55).
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O Let the current position of C be defined by the coor-

dinates x and y. We can write OC = OA + AC or in terms of

coordinates

<x, y) = <c-cos(x - (t + a), 0> + (bcost, 6sint>

Whence

x = c-cos (it - (/ + a)) + b cos /, y = b sin t

Using reduction formulas we simplify the above expressions:

x = -c-cos (t + a) + b cos t, y = b sin t. •

4.3. A STRAIGHT LINE IN THE PLANE AND ITS EQUATION

The position of a straight line in the plane can be defined

in different ways. For example, we can specify

(a) two points Mo and Mi belonging to the straight line,

(b) one of the points M0 of the straight line and a vector

a to which the line must be parallel,

(c) one of the points Mo of the line and a vector n to which

the line must be perpendicular,

(d) one of the points Mo of the line and an angle <p which
the line must form with, say, the x-axis.

We assume in this section that a rectangular Cartesian coor-

dinate system is introduced in the plane.

1. The equation of a straight line which passes through a

given point perpendicular to a given vector.

Given a point M0(xb, yo) and a nonzero vector n = (A, B),

Figure 56
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set up the equation of a straight line / passing through Mo and

perpendicular to n (Fig. 56).

Obviously, M(x, y) belongs to / if and only if the vectorM0M
is perpendicular to n. The condition for two vectors to be per-

pendicular is: the sum of the products of their corresponding

coordinates is zero. Noting that the coordinates of the vector

M0M are X - xo, y - yo, we write the condition thatM0M X n

in the form

A(x - Xo) + B(y - y0 )
= 0 (1)

Thus, the point M(x, y) belongs to the straight line / if and
only if its coordinates satisfy condition (1). Consequently, (1)

is the equation of the straight line /.

We arrive at a conclusion: the equation of the straight line

passing through a point M0(x0 , yo) and perpendicular to the

vector n = (A, B) has the form in (1).

Note that a nonzero vector which is perpendicular to a given

straight line is called a normal vector to the line. There are an

infinite number of normal vectors to a straight line, all the vec-

tors being mutually collinear.

Example 1. The equation of a straight line passing through

the point Mo(-l, 2) and perpendicular to the vector n =
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<5, -4> has the form

5(jf-(-l))-4Cv-2) = 0

or, on simplifying, 5x - 4y + 13 = 0.

Example 2. Three points A(-l, 2), B(3, 5), and C(4, -2)
are given in the plane. Ascertain that the figure ABC is a trian-

gle and set up the equation of its altitude drawn from the vertex

A (Fig. 57).

O The points A, B, and C are not collinear since the condi-

tion of collinearity is not fulfilled:

3 ~ (— 1 ) . 5 - 2

1 - (- 1 )
-2-2

Consequently, ABC is a triangle.

Before forming the equation of the altitude drawn from the

point A, we note that we can take the vector BC = <1, — 7>
as a normal vector to the altitude. Hence it follows that the

equation of the altitude has the form 1 •(*-(- 1))-
l(y - 2) = 0 or simpler x - ly + 15 = 0. (There is no need for

a drawing since we have solved the problem analytically.) #
2. The general equation of a straight line.

After removing the brackets equation (1) assumes the form

Ax + By + (-Ax

o

- By0)
- 0

We use C to denote the number ( - Axo - By0) and get

Ax + By + C = 0 (2)

Thus, every straight line is associated with a linear equation

in two unknowns x and y, at least one of the coefficients A
or B being nonzero (note that A and B are the coordinates of

the normal vector to the straight line).

Let us prove the converse: If we have an equation like (2)

in which either A or B is nonzero, then this equation defines

a straight line.

For example, let B ^ 0. Then (2) can be written as
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According to Item 1, this equation defines a straight line pass-

ing through the point M0 (0, -C/B) and perpendicular to the

vector n = (A, B). Now, if A 0, the reasoning is similar.

Thus, if a rectangular Cartesian coordinate system is fixed

in the plane, we have

(1) every straight line is defined by a linear equation

Ax + By + C = 0 in which A or B is nonzero,

(2) an equation of the form Ax + By + C = 0 in which A
or B is nonzero defines a straight line.

The equation Ax + By + C = 0, provided that A or B is

nonzero, is called the equation of a straight line in the plane

written in a general form or simply the general equation of a

straight line.

Note an important fact we have established above when con-

sidering (2): the coefficients A and B in the equation

Ax + By + C = 0 of a straight line are the coordinates of a

normal vector to that line.

3. The equation of a straight line which is parallel to a given

straight line and the equation of a straight line which is perpen-

dicular to a given straight line.

Let us consider the general equation of a straight line

Ax + By + C = 0 (3)

We have noted that the vector < A , B) is a normal vector to

the straight line.

The following propositions are valid:

(1) If a straight line l is defined by equation (3), then any

straight line parallel to l can be defined by an equation of the

form

Ax + By + C' = 0 (4)

(2) If a straight line l is defined by equation (3), then any

straight line which is perpendicular to l can be defined by an

equation of the form

Bx - Ay + C" = 0 (5)

Let us prove proposition 1. At any value of C' the straight
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line (4) is parallel to the straight line (3) since it has the same

normal vector. On the other hand, whatever the point M0(xo,

yo), we can “make” the straight line (4) pass through this point

by selecting the value of C' (we must choose C' = —Ax0 -

By0); consequently, by varying C

'

we can get any straight line

parallel to I.

Let us now prove proposition 2. Normal vectors to the

straight lines (3) and (5) are perpendicular since their scalar

product is zero:

AB + B( — A) = 0

Consequently, for any value of C" the straight line (5) is per-

pendicular to the straight line (3). On the other hand, whatever

the point Mo(xo, yo), a suitable selection of C" can make the

straight line (5) pass through this point; this means that by

changing C" we can obtain any straight line perpendicular to /.

Example. A straight line l is defined by the equation

3x - ly + 12 = 0. Form the equation of a straight line passing

through the point M0(5, 1) parallel to / and the equation of

the straight line passing through M0 and perpendicular to /.

O The respective equations of the two lines are 3x - ly +
C " = 0 and -lx - 3y + C" = 0. We choose C ' and C " such

that the lines both pass through Mo

3-5 - 71 + C' = 0, -7-5 - 3-1 + C" = 0

Whence C' = -8, C" =38. The desired lines are

3x - ly - 8 = 0, -lx - 3y + 38 = 0 •

4. Studying the general equation of a straight line.

Let a straight line in the plane be defined by the equation

Ax + By + C = 0

where A ^ 0 or B ^ 0. Let us examine the location of a straight

line relative to the coordinate axes depending on whether either

of the numbers A, B, C is zero (or nonzero).

(1) If A = 0, then the equation assumes the form

By + C = 0 or y = - C/B, which means that all the points of
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the line have the same ordinate, -C/B. Consequently, the

straight line is parallel to the x-axis (Fig. 58).

(2) If B = 0, then the equation is Ax + C = 0 or

x = -C/A, which means that all the points of the line have

the same abscissa, -C/A. Thus, the straight line is parallel to

the 7-axis.

(3) If C = 0, then the equation is Ax + By = 0. One of the

solutions of the equation is the pair of numbers x = 0, y = 0,

which means that the straight line passes through the origin.

(4) IfA = 0 and C = 0, then the equation is By = 0 or, since

B A 0, y = 0. Thus, the straight line defined by this equation

coincides with the x-axis.

(5) If B - 0 and C = 0, then the equation is Ax = 0 or, since

A 0, x = 0. This equation defines the 7-axis.

It is easiest to construct a straight line from its equation by

finding its two points. When B ^ 0, we write the equation in

the form

take two different values of x, and find the corresponding

values of y. Now, if B = 0, the straight line is parallel to the

7-axis; in this case, in order to construct this line, we take any

two of its points with abscissa x = -C/B.
Example 1. Construct the straight line defined by the equa-

tion 3x - 2y + 8 = 0.

O We rewrite the equation as y = (3/2)x + 4. Then take, for

instance, x\ = 0 and xz = -2 and find that 71 = 4 and yz = 1.
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Figure 59 Figure 60

We draw a straight line through the points (0, 4) and (-2, 1)

(Fig. 59). •
Example 2. Construct the straight line defined by the equa-

tion 3x + 2y = 0.

O Since the constant term is absent, the line passes through

the origin. Consequently, we know one point. Let us find

another. Setting x = 2, we have y = -3. We draw a straight

line through the origin and the point (2, -3) (Fig. 60). •
5. The equation of a straight line passing through a given

point parallel to a given vector.

Given a point M0(xo, .Vo) and a nonzero vector a = (p, q),
find the equation of the straight line passing through Mo
parallel to a (Fig. 61).

We restrict our consideration to the case where p ^ 0, q ^ 0:

if p = 0 or q = 0, then the straight line / is parallel to the y-

or x-axis, and its equation has the form x = Xo or y = y0
respectively.

8— 361.
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Obviously, a point M(x, y) belongs to l if and only if the

vector M0M is collinear with a, which, in its turn, is the case

if and only if the coordinates ofM0M are proportional to the

corresponding coordinates of a, i.e.

X - Xo = y - y0

P Q

Thus, (6) is the equation of the straight line passing through

M0 (jco, yo) parallel to a = (p, q), where p 5* 0, q * 0.

A nonzero vector parallel to a straight line is called the direc-

tion vector of that line. Every straight line has an infinite num-
ber of direction vectors, these vectors being mutually collinear.

Proceeding from the foregoing, we can easily solve another

problem: to set up the equation of a straight line passing

through two given points M0(x0 , yo) and Mi (x\ , yi). We take

the vector MoMi as a direction vector, whose coordinates are

p = xi - xo and q = yi - yo respectively. Assuming that

Xi 5* xo and y i ^ yo, we find from (6) that the equation of /

has the form

* - *o _ y - yo

xi - xo yi - yo

Thus, (7) is the equation of the straight line passing through

the two points M0(xo, yo) and Mi (xt , yi), where Xi * xo,

yi ^ yo, or the two-point equation.

When x\ = x0 , the straight line is parallel to the y-axis and

its equation is x = Xo. Whenyi = y0 , the straight line is parallel

to the x-axis and its equation is y = yo.

Example 1. Given three points A(- 1, 7), B(0, 9), C(l, 3),

set up the equation of the straight line passing through A
parallel to the straight line^ BC.

O The coordinates of BC are 1 - 0 and 3-9 respectively,

i.e. 1 and -6. We substitute xo = -1, yo = 7 (the coordinates

of A) and the assumed values p = 1, q = -6 into equation

(6) and obtain

x + 1 _ y - 7

1

-
-6 or 6x + y - 1 = 0 •
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Example 2. Given a triangle with vertices A(0, 7), 5(2, 5),

C(6, -4), set up the equation of the median from C.

O Let 5 be the midpoint of the side AB whose coordinates

are

Since the median passes through C and P, we can write its equa-

tion as that of the straight line passing through two points

Mo(l, 6) (the point P) and Mi (6, -4) (the point C). We have

x - 1 _ y - 6
or 2xr + ^- 8 = 0«6-1 -4-6

6. An intercept form of the equation of a straight line.

Suppose that two points differing from the origin are speci-

fied on the coordinate axes: A(a, 0) on the x-axis, with a A 0,

and 5(0, b) on the y-axis, with b ^ 0. Let us consider the

equation

(8)

This equation is satisfied by the coordinates of both A and

5. Consequently, (8) defines the straight line AB (Fig. 62).

Equation (8) is called the intercept equation of a straight line

with the numbers a and b being the intercepts. Any equation

of the form

Ax + By + C = 0

8 *

Figure 62 Figure 63
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can be reduced to the form of (8) if the three numbers A, B,

and C are nonzero. We first write the equation as

Ax + By - -C, then divide both sides by - C to get

* +. y =\
-C/A -C/B

This is the intercept form of the equation of a straight line,

where a = -C/A and b = -C/B.
For example, the equation 5* - 2y + 10 = 0 can be trans-

formed as above to get

x
-2

= 1

This equation defines the straight line passing through the

points (-2, 0) and (0, 5) (Fig. 63).

Note that intercept equations are convenient for constructing

straight lines.

Example. We draw a straight line through the point P(3, 2)

so that P is the midpoint of the line segment AB (Fig. 64).

O We write the equation of the desired straight line as

Since the point P is the midpoint of AB, where A(a, 0) and
B(0, b), we have

3 = a + 0
2 = 0 + b

2 2
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that is, a = 6 and b = 4. Thus, the equation of our straight

line is

7. Slope of a straight line.

Consider a straight line / in the plane. The angle of inclina-

tion of / to the x-axis is <p (Fig. 65), through which we must

turn the x-axis for it to coincide with /; such angles are meas-

ured counterclockwise.

This definition is not unique. In fact, if we turn the x-axis

through an angle of <p + irn, where n is an integer, it will also

coincide with /. The angle of inclination <p is the least nonnega-

tive angle of rotation, i.e. such that 0 < a < -k.

The quantity k = tan is called the slope of the straight line

/.

If
<f>
= x/2, then tan <p = 0. Hence, a straight line which is

parallel to the y-axis has no slope. All other straight lines have

slopes.

If ifi = 0, then tan <p = 0. Hence the straight line is parallel

to the x-axis and its slope is zero. Conversely: if k = 0, then

tan <p = 0 and hence <p = 0, and this means that the straight

line is parallel to the x-axis.

For finding the slope of a straight line, we must know its

two points. If Mo(xo, yo) and Afi(xi, >>i) are two points of a

y

X

Figure 65 Figure 66
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straight line /, then its slope is

yi - yo
k =

Xi - x0
(9)

The proof follows directly from Fig. 66. If two straight lines

are parallel, then their respective slopes are equal.

Example 1. The slope of the straight line passing through

points A (a, 0) and fi(0, b) is

k = 0

0 - a

b

a

We assume here that a is nonzero.

Example 2. The slope of the straight line passing through

the origin 0(0, 0) and a point A (a, b) is

k = b- 0

a — 0

We assume here that a is nonzero.

8. The equation of a straight line passing through a given

point and having a given slope.

Suppose we have a point M0(xo, yo) in the plane and a slope

k. Let us derive the equation of the straight line which passes

through M0 and have the slope k.

If a point M(x, y) belongs to /, then from (9) we have

l^ = k
x - Xo

Now, if M does not lie on /, then the above equation is not

satisfied. Thus this equation is the equation of the straight line

/. We rewrite it as

y - yo = k(x - *0 ) (10)

Thus, (10) is the point-slope equation of the straight line l that

passes through M0 (jc0 , yo) and has slope k.

If a point Mo lies on the y-axis, i.e. M0(0, b), then (10) as-

sumes the form y - b = k(x - 0) or

y = kx + b (H)
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This is the form of the equation of the straight line that has

slope k and whose ^-intercept equals b.

Note that the equation of any straight line having a slope,

i.e. which is not parallel to the y-axis, can be written in the

form (10) or (11).

Equation y = kx + b is the slope-intercept equation of the

straight line with slope k and y-intercept b. If the straight line

defined by a general equation

Ax + By + C = 0 ( 12)

is not parallel to the y-axis (i.e. B ^ 0), then in order to reduce

its equation to the form in (11) it is sufficient to write (12) as

By = -Ax - C and then divide its both sides by B. We get

Whence it follows that the slope of the line (12) is

(13)

Example 1. Find the slope of the straight line

3x + 5y - 7 = 0.

O We reduce this equation to the form y = kx + b. We have

5y = -3x + 7 or y = ~(3/5)x + 7/5. Thus, the slope is

k = —3/5. •
Example 2. Derive the equation of the straight line that pass-

es through the point A/o(2, 1) and has the slope k = — 1.

O Substituting the data into equation (10) yields y —
1 =

-l-(x - 2) or x + y - 3 = 0. •
Example 3. A light ray is directed along the straight line

y = 3x - 5. When it reaches the x-axis it is reflected. Find the

equation of the reflected ray.

O We find the point at which the incident ray and the x-axis

intersect. Since the ordinate of the point of reflection is zero,

we put y = 0 in the equation of the ray. We have 3x - 5 = 0

or x = 5/3. We know a point Mo(5/3, 0) on the reflected ray;

it remains to find its slope. If the angle of inclination of the

incident ray to the x-axis is <p, then the angle of inclination of
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Figure 67

the reflected ray is y? (Fig. 67). We know that

tan(-y>) = -tany>. We can see from the equation k = 3 for

the incident ray. Hence, for the reflected ray k = - 3. Substitut-

ing the coordinates of Mo and the value of k into (10), we have

y - 0 = -3(x - 5/3) or 3x + y — 5 = 0, which is the equa-

tion of the reflected ray.

9. The angle between straight lines.

Let us consider two straight lines l\ and h in the plane

(Fig. 68). One of them we call the first and the other the second.

Let k\ and kr be the slopes of these lines.

The angle through which we must turn the first straight

line for it to coincide with the second is the slope of the second

straight line to the first. The sign of the angle <p depends on

whether such a rotation is counterclockwise or clockwise. Obvi-

ously, the angle <p is determined to within the term multiple

of ir.

If <pi and <P2 are the slopes of the first and second straight

lines to the x-axis respectively, then >p = <f>2 - <p\. Whence

tan ip = tan —
<(>i) =

tan <p2
— tan <p\

1 + tan tpz tan <pi

But tanyn = k\ and tan <P2 = ki, thus.

tanyj = ki - k\

1 + kik\
(14)
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We have obtained a formula for finding the angle between

two straight lines, provided we know the slopes of the lines.

Formula (14) is senseless if the denominator on its right-hand

side is zero. In this case tan y> does not exist, and this means
that <p = 7t/2. Hence we have the condition for two straight

lines to be perpendicular. fa fa + 1 = 0.

This condition is usually written as

fa = - 4- Of * 0) (15)
K\

Example 1. Find the angle <p between the straight lines

7>x - 5y + 1 = 0 and lx - 3x + 4 = 0.

O We find the slopes of the lines: k\ = 3/5 and fa = 2/3.

Whence

2_ _ 3_

From tables of trigonometric functions we find that

y> = 2°48 '. •
Example 2. A ray of light is directed along the straight line

y = 2x - 4. On reaching the straight line y = x, the ray is

reflected. Find the equation of the reflected ray.

O Find the point at which the incident ray and the line y = x
intersect. Solving the equations y = 2x - 4 and y = x simul-

taneously yields x = 4, y = 4; the intersection point isM0 (4, 4).

If we denote the angle of inclination of the incident ray to

the line y = x by y>, then we have

The angle of inclination of the reflected ray to the line y = x
is obviously -<p, and its tangent -tany? = -1/3. Then denot-

ing the slope of the reflected ray by k and using (14), we can

write

1 _ k -
1

3 1+fal
whence it follows that k = 1/2.
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Thus, the reflected ray passes through the point M0 (4, 4) and
its slope is k = 1/2. The equation of this ray is

or

y ~ 4 = y (* - 4)

x - 2y + A = 0 •

4.4. RELATIVE POSITION OF TWO STRAIGHT LINES
IN THE PLANE

Suppose that we have two straight lines /, and l2 in the plane
which are defined by the equations

A ix + B\y + Ci = 0 (1)

for l\ and

AiX + fi2_y + C2 = 0 (2)

for h.

Let us show how we can find the relative position of the

straight lines l\ and /2 from their equations. Three cases are

possible.

Case 1. The lines coincide. Whence it follows that their nor-
mal vectors, m = (Ai, B\ ) and n2 = <A 2 , B2 >, are collipear.

Since ni ^ 0, there is a number X such that n2 = Xni, that is,

Ai = \A\ and B2 = \B 1 . We write the equations of the straight

lines as

A,x + B,y + Ci = 0 (for /1 )

\A\X + \B\y + C2 = 0 (for /2 )

Any point of l\ (or of /2 ) satisfies each of the above equations
and hence the equation

0-x + 0-.y + (C2 - XCi) = 0 (3)

which results from the subtraction of both sides of the first

equation multiplied by X from the respective sides of the second
equation. An equation of form (3) has a solution if its constant
term is zero, i.e. C2 = XCi.
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Thus, the condition for the straight lines h and k to coincide

is the existence of a number X such that A 2 = \A\, B2 = \BU
C2 = XCi.

This condition means that one of equations (1), (2) is ob-

tained from the other by multiplying both sides by the same

number X.

Case 2. The straight lines do not coincide but are parallel.

As in case (1) it follows that their normal vectors are collinear,

i.e. A 2 = \Ai, B2 = \B\. Since l\ and l2 do not coincide, we
must have C2 A XCi.

Thus, the condition for the straight lines l\ and l2 to be

parallel and not coincident is the existence of a number X such

that A 2 = X/4i, B2 = \B\, C2 A XCi.

Example. The straight lines 6x - 2y + 4 = 0 and 9x - 3y +
6 = 0 coincide since 6 : 9 = ( — 2) :

( — 3) = 4:6. These lines

are parallel since 6 : 9 = ( - 2) :
( - 3) A 4 : 5.

Case 3. The straight lines h and l2 are not parallel, they inter-

sect at a single point. In this case their normal vectors, ni and

n2 , are not collinear. Conversely, if ni and 112 are not collinear,

then h and l2 are not parallel.

Thus, the condition for the straight lines l\ and l2 to be not

parallel is that their normal vectors are not collinear.

Noting that vectors < A\B\ > and (A 2B2 ) are not collinear

if and only if the determinant formed from their coordinates

is nonzero (see Sec. 3.10), we can infer that the condition for

the straight lines l\ and l2 to be not parallel is

A t B

t

A 2 b2

A 0 (4)

If l\ and l2 are not parallel, we can find their point of inter-

section by solving the system of equations (1) and (2). Accord-

ing to (4), the solution can also be found using Cramer’s rule.

Example. Verify that the straight lines lx - 3y + 5 = 0 and
x - 5.y

-
1
- 6 = 0 are not parallel and find the point at which

they intersect.
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O The lines are not parallel since

We find the point of their intersection by solving the system

C2x - 3y = -5

[ x - 5y = -6

According to Cramer’s rule,

1lO1 2 -5

-6 -5 1 -6

Thus, the lines intersect at the point (-1, 1). •

4.5. PARAMETRIC EQUATIONS OF A STRAIGHT LINE

Suppose a straight line passes through a point M0 and

parallel to a vector a (Fig. 69). Then the condition for a point

M to belong to this line is the collinearity of the vectors M0M
and a. In other words, the point M lies on this line if and only

if the following equation is satisfied for a number t:

M0M = /a (1)

We introduce a rectangular Cartesian coordinate system in

the plane, specify a point Mo(xo, y0 ) and a vector a = (p, q)
in this system, and denote the coordinates of the running point

Figure 69
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M by x and y. Then the vector equation (1) takes the form
x - Xo = tp, y - yo = tq or

x = Xo + tp, y = y0 + tq (2)

If the parameter t varies from - oo to + oo then the point M,
whose coordinates x and y are defined by formulas (2), runs

along the entire straight line.

Thus, formulas (2) are parametric equations of the straight

line passing through the point M0(x0 , y0 ) and parallel to the

vector a = (p, q).

Example. The parametric equations of the straight line pass-

ing through the point M0(2, -1) and parallel to the vector

a = <7, 3> have the form x = 2 + It, y = -1+3 1.

4.6. DISTANCE BETWEEN A POINT
AND A STRAIGHT LINE

Given in the plane a point M0(x0 , yo) and a straight line /

defined by the equation Ax + By + C = 0, find the distance

d from Mo to /.

If Mi(xi, yi) is a point of /, then the desired distance (Fig.

70) is

d = lproj nM0Mil

where proj„ is the projection of a vector M0M\ on n and n is

Figure 70
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a normal vector to /; or else

lA/oMi-nl

We can take the vector n = (A^B) as a normal vector to the
straight line /. Noting that M0MX = (xx - x0 , y x - _y0 > , we
obtain

^ _ \A(xx - xo) + B(y x - y0)\
()

Since Mx belongs to /, we have Axx + By x + C = 0. Thus
we can write formula (1) as

d _ I Ax

o

+ Byo + Ci

y/A
2 + B2

We have arrived at the following rule: in order to find the

distance from a point M0 to a straight line l defined by the

general equation we have to substitute the coordinates ofM0

for the running coordinates x, y in this equation aftd divide

the absolute value of the result by VA 2 + B2
.

Example 1. Given the equation 3x - 4y + 10 = 0 of a
straight line, find the distance between the point M{4, 3) and
this line.

O From formula (2) we have

d = 1

3-4 - 4-3 + 101 = H)

V3 2 + 4
2 5

Example 2. Find the distance between the straight lines

3x - 4y + 10 = 0 and 3x - \y - 5 = 0.

O We choose a point (3, 1) on the second line and find its

distance to the first line:
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4.7. HALF-PLANES DEFINED BY A STRAIGHT LINE

Suppose we have a straight line in the plane in rectangular

Cartesian coordinates:

Ax + By + C = 0 (1)

This line divides the plane into two half-planes; the line is their

boundary or edge (Fig. 71).

Let us prove the following proposition: one of the half-planes

defined by (1) is composed of points (x, y) for which

Ax + By + C ^ 0 (2)

and the other is composed of points (x, y) for which

Ax + By + C < 0 (3)

First we assume that B ^ 0. Then (1) is equivalent to the

equation y = Arx + b. Inequalities (2) and (3) reduce to the

forms y ^ kx + b and y < kx + b respectively. The first in-

equality defines the half-plane lying above the straight line

y = kx + b (Fig. 72) and the second the half-plane lying below

the line. Now, if B = 0, then A is necessarily nonzero and (1)

is equivalent to the equation x = c, (2) and (3) reduce to the

forms x > c and x ^ c respectively. The first inequality defines

the half-plane lying to the right of the straight line x = c and

the second the half-plane lying to the left of the line.

Figure 71



128 Part One. Analytic Geometry

y1
>

ifcl
=kx+b

y2 <y0 - kx + b

Example 1. Check whether the points A(-l, -3) and B(2,

2) lie on one side or on different sides of the straight line

2x - y - 3 = 0.

O We substitute the coordinates of A and B into the left-

hand side of the equation. We have 2-( — 1) — (
— 3) — 3 = -2

and 2-2 - 2 - 3 = — 1. The resulting numbers have the same
sign. Hence the points A and B lie on one side of the line. •
Exercises to Chapter 4

4.1

1. Find the lines defined by the following equations: (a) x = 0, (b) xy = 0,

(c) (x - 2)(x + 3) = 0, (d) I x I
- \y\ = 0, (e) x2 - y

2 = 0.

2. A straight line is displaced so that the area 5 of a triangle which the line

forms with the coordinate axes remains constant. Find the equation of the line

described by the midpoint of the segment of the straight line intercepted by

the coordinate axes.

3. Describe the line defined in polar coordinates by the equation: (a) = 0,

(b) r — 1, (c) r = <p (the spiral of Archimedes).

4. In order to balance a body of mass m on an inclined plane forming an

angle a with the horizontal plane, we must apply a force Q = mg sin a (Fig.

73). Graph the function Q(a) in polar coordinates assuming that a is the polar

angle and Q is the polar radius.

Figure 73
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5.

Find the points of intersection of two circles. One circle is centered at

a point (a, 0) on the x-axis with radius a, and the other at a point (0, b) on
the .F-axis with radius b.

4.2

1. A body of mass m is thrown with an initial velocity Vo at an angle a
to the horizon. Find the parametric equations of its trajectory with time t as

a parameter.

2. A thread is wound onto a fixed disk of radius 1. Then the thread is wound
off by pulling its free end so that there is no sag. Compile the parametric equa-

tions of the trajectory of its free end. Take the center of the disk as the origin

and direct the x-axis toward the free end of the thread (before unwinding).

Assume that the length of the unwounded thread is the parameter.

4.3

1. Compile the equation of the indicated straight line:

(a) through the point (3, - 1) and parallel to the bisector of the first quadrant

angle,

(b) through the point (3, -1) and perpendicular to the bisector of the first

quadrant angle.

2. Drop the perpendiculars to the straight line 7x + 3y - 21 = 0 from the

points of intersection with the coordinate axes. Find the equations of the per-

pendiculars.

3. Find a point B symmetric to A(- 1, 10) with respect to a straight line

x - 2y + 6 = 0.

4. Given the vertices A (2, -1), B(-l, 3), C(4, 0) of the triangle, write the

equations of its sides.

5. Find the equations of the straight lines drawn through the vertices of

AABC (see the previous exercise) and parallel to the opposite sides.

6. Find the points at which the straight line drawn through the points

(-7, 1) and (5, 6) intersects the coordinate axes.

7. Given the equations of the sides of A ABC: 3x + 2y - 8 = 0 (for AB),

4x - y - 7 = 0 (for AC), and lOx - 3y + 41 = 0 (for BC), find the coor-

dinates of its vertices.

8. Compile the equations of the altitudes of AABC (see the previous ex-

ercise).

9. Find the equation in intercept form of the straight lines: y = -2x + 3,

5x + 3y - 15 = 0, and 3x - 2y + 12 = 0.

10. Find the area of a triangle formed by the straight line

— 3x + 2y + 6 = 0 and the coordinate axes.

11. Write the equation of a side of a square whose diagonals serve as coor-

dinate axes. The length of a side is a.

12. Draw a straight line through the point (3, -4) so that the area of the

triangle it forms with the coordinate axes equals 3.

4— 3 (>(>
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13. Find the slopes of the straight lines x/2 + y/1 = 1 and 9x - 1

y

+
1 = 0 .

14. Draw a straight line through the point (
— 1, 7) perpendicular to the

straight line y = (2/S)x + 7.

15. Form the equations of the legs of an isosceles right triangle if the equa-
tion of its base is y = lx + 5 and (4, - 1) is the vertex of the right angle.

16. A ray is directed from the point (6, 9) to the straight line

- 5y + 6 = 0 at an angle of 45°. Find the equation of a ray reflected from
this straight line.

17. Given in an isosceles triangle the equation of its base 2x + y + 3 = 0,

the equation of one leg x + 4y + 5 = 0, and the point (-28/5, 6/5) lying

on the other leg, find the equation of the other leg.

4.4

1.

Find the relative position of the indicated straight lines:

(a) 3x — 6y - 9 = 0 (b) 3x - 6y - 9 = 0

- 2x + 4y + 6 = 0 -2x + 4y + 5 = 0

(c) y = — (5/3)jc + 2 (d) 5x - 3y + 11 = 0

Sx + 3y — 1 = 0 -4x - ly + 10 = 0

2. Find the points on the y-axis which are equidistant from the origin and
from the straight line 4x - 3y + 12 = 0.

3. Find the point on the straight line x + y = 1 equidistant from the straight

lines 2x - 9y = 1 and 6x - ly - 2.

4. Given the triangle with the vertices A(2, 1), B( - 13, 5), C(7, 3), find the
altitude from C to the side AB.

5. Find the distance between two straight lines 3x - 4y + 12 = 0 and
3* - 4y - 7 = 0.

6. Set up the equations of straight lines which are parallel to the straight

line 3x - 4y + 12 = 0 and a distance 7 units away from it.

7. One side of a square lies on the straight line x - 3y + 1 = 0 arid one
of its vertices is at the point (3, 0). Find the equations of its remaining sides.

8. Through the origin draw tangents to the circle (x + 4)
2 + (y

- 3)
2 = 16.

4.7

1. Check whether the point >1(5, 2) and the origin lie on one side or on
different sides of the indicated straight lines: (a) lx - 12y + 19 = 0,

(b) 2x - 9y + 3 = 0.

2. Check whether the straight line 5x + 4y - 20 = 0 intersects the line seg-

ment AB, where A (3, 1) and B(6, -1).

3. Given the points >1(3, 2), B( 1, 1), and C(- 2, 0), find whether the entire

triangle ABC lies on one side of the straight line 5x - 3y - 6 = 0.



Chapter 5

CONIC SECTIONS

This chapter deals with second-degree curves or conic sections.

In rectangular Cartesian coordinates in the plane these curves

are defined by second-degree algebraic equations whose general

form is

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0

where at least one of the coefficients A, B, C is nonzero.

The ellipse, hyperbola, and parabola are most interesting

conic sections and are often used in mathematics and its appli-

cations.

5.1. THE ELLIPSE

1. The definition and canonical equation of an ellipse.

Definition. An ellipse is the set of all points in a plane such

that the sum of the distances from two fixed points, called the

foci, is a constant greater than the distance between the foci.

A special case of an ellipse when its foci coincide is the circle

which is the set of all points in the plane a given distance called

the radius away from a fixed point.

We can construct an ellipse from its definition (Fig. 74). Take

a sheet of plywood, and fix two pins at points F\ and Fi. Then

make a loop of a thread and put it over both pins. If we pull

the thread taut with the tip of a pencil and move the pencil

over the surface of the plywood so that the thread remains taut,

then the line left behind will be an ellipse with foci F\ and Fi.

By changing the distance F1F2 between the foci and the length

of the thread, we get different ellipses.
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The ellipse is the most common curve in Nature and technol-

ogy. For instance, the planets orbit the sun along ellipses with

the sun at one of the foci (Fig. 75), if a circular cylinder is

cut by a plane not parallel to its axis, then the section is an

ellipse (Fig. 76).

The notion of an ellipsoid of inertia is used in mechanics.

This is an imaginary curve whose shape depends on the shape

of a plate (Fig. 77).

Let us derive the equation of an ellipse. Suppose that two

points Fi and F2 are the foci of an ellipse and A/ its point.

We use 2c, n , and r2 to denote the lengths of the line segments

F\F2 , F\M, and F2M (Fig. 78).

The sum of the distances F\M and F2M is a constant charac-

terizing the ellipse. We denote this constant by 2a. By definition

la > 2c. Note that if 2a = 2c, then F\M + F2M = 2a is only

Figure 76
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satisfied by the point of the line segment F\F2 , while for

2a < 2c none of the points on the plane satisfy this condition.

Thus, by the definition of an ellipse,

Ci + r2 = 2a (1)

Let us introduce a rectangular Cartesian coordinate system in

the plane so that the x-axis passes through the foci and the

y-axis divides FiF2 in half (Fig. 79). Then (x, y), (-c, 0) and
(c, 0) are the coordinates of the points M, F\

,
and F2 respective-

ly. Using the formula for the distance between two points we
can write

ri = V(x + c)
2
+ y

2
, r2 = V(x - c)

2
+ y

2

Substituting these expressions into (1) yields

V(x + c)
2 + y

2 + V(x - c)
2
+ y

2 = la (2)

and this is the equation of an ellipse since it is satisfied by the

coordinates of any point M belonging to the ellipse and is not

Figure 78 Figure 79
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satisfied by the coordinates of points not belonging to it (for

such points we have r\ + n ^ 2d).

Equation (2) can be simplified. We first write it as

V(x + c)
2 + y

2 = 2a - V(x - c)
2 + j

2

and square both sides of the last equation:

(x + c)
2 + .y

2 = 4o2 - 4aV(x - c)
2 + .y

2 + (x - c)
2 + .y

2

By collecting like terms we have

4cx = 4a
2 - 4aV(x - c)

2 + .y
2

or

aV(x - c)
2 + y

2 = a
1 - cx

Then we square both sides of the last equation:

a
2x2 + a

2
c
2 - 2a

1
cx + a

2
y
2 = a

2 - 2

a

2
cx + c

2x2

The result of a simple transformation is

(</
2 - c

2
)x

2 + a
2
y
2 = a

2
(a

2 - c
2
)

By assumption, the difference a
2 - c

2
is positive (a > c). We

use b to denote the square root of this number: b = \ a
2 - c

2
.

Thus, b
2 = a

2 - c
2

, b < a. By dividing both sides of the last

equation by a
2 b2

, we finally have

This equation is obtained from (2). Proceeding in the reverse

way we can show (check this) that equation (2) follows from

(3). Thus, these equations are equivalent. Equation (3) is called

the canonical equation of an ellipse. This is a second-degree

equation and, hence, an ellipse is a second-degree curve.

Remark. We have noted that in the given coordinate system

the parameter a in (3) is greater than b. However, equation (3)

can also define an ellipse when a is smaller than b if we change

the coordinate axes, thereby reducing the situation to the case

when a is greater than b. Hence, (3), when a < b, defines an
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y

(-a, 0)
0

(0,-b)

Figure 80

ellipse whose foci lie on the y-axis and the distance between

the origin and the foci is c = y/b
2 - a

2
.

2. Studying the shape of an ellipse from its canonical

equation.

If an ellipse is defined by a canonical equation and (x, y)

is a point on it, then the points (x, -y), (-*> >0, and (-x,

-y) also belong to the ellipse. Indeed, squaring the numbers

-x and -y yields x1 and y
2 and equation (3) is satisfied for

all the indicated points. Hence it follows that the x- and y-axes

are the axes of symmetry of an ellipse and the origin is the

center of symmetry.

The points at which the ellipse cuts the coordinate axes are

vertices. Putting y = 0 we have from (3) x
2
/a

2 = 1, i.e. x = ±a.

Thus, the vertices lying on the x-axis have coordinates

( - a, 0) and (a, 0). Similarly, we find that the coordinates of

the vertices lying on the y-axis are (0, - b) and (0, b) (Fig. 80).

Since the ellipse is symmetric with respect to the x- and

y-axes, it is sufficient to study its shape within the first quad-

rant, i.e. for x ^ 0 and y ^ 0. In this case we find from (3) that

y = — yJa
2 - x2

a

This relationship shows that as x increases from 0 to a the coor-

dinate y decreases from b to 0. As x increases further the differ-

ence a
2 - x2 becomes negative and y does not exist, hence it

follows that the ellipse has no points with abscissas x greater

than a. The part of the ellipse we have just considered is depict-

ed in Fig. 81. We can show that the part of the ellipse lying
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FiSure 82 Figure 83

in the first quadrant is convex upward and the tangent at the

vertex (a, 0) is parallel to the y-axis, while the tangent at the

vertex (0, b) is parallel to the x-axis. The two tangents are shown
by dashed lines in Fig. 81.

The parts of the ellipse in the other quadrants are symmetric

to the part in the first quadrant with respect to the coordinate

axes (Fig. 82).

The center of symmetry of the ellipse is simply called the

center and it is the midpoint of the line segment FXF2 joining

its foci. Any chord passing through the center of an ellipse is

a diameter. Fig. 83 shows several diameters. The diameter pass-

ing through the foci of an ellipse is called the major axis and
the diameter which passes through the center and perpendicu-

lar to the major axis is called the minor axis of the ellipse.

If, as before, the x-axis passes through the foci Fx and F2

of an ellipse and the origin is the midpoint of the line segment

FiF2 , then the major axis coincides with the x-axis and the

minor axis with the y-axis; in this case a > b in equation (3)

of the ellipse since b
2 = a

2 - c
2

. In the case where a < b we
find that the major and minor axes lie on the y- and x-axes

respectively.

The numbers a and b in the canonical equation (3) are the

lengths of the corresponding line segments which join the

center of an ellipse with its vertices and are called the semiaxes.

If a > b, then a is the semimajor axis and b is the semiminor
axis: if a < b, then b is the semimajor axis and a is the semi-
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minor axis. In any case it is customary to denote the semiaxis

lying on the x-axis by a and the other semiaxis by b.

Example 1. Find the equation of an ellipse if its major axis

is 10 and the distance between the foci is 8. Assume that the

major axis coincides with the x-axis and the midpoint of the

segment joining the foci coincides with the origin.

O The equation of the ellipse in the given coordinate system

is its canonical equation (3). Here we have b
2 = a

2 - c
2 =

5
2 - 4

2 = 9, hence b = 3. The desired equation is

Example 2. Show that the curve 9x
2 + 4y

2 = 36 is an ellipse.

Find the lengths of its axes and the coordinates of its foci.

O Dividing both sides of the equation by the constant term

yields

thus the given curve is the ellipse whose semimajor axis is 3

and the semiminor axis is 2. The foci F\ and Fi lie on the j'-axis

2c apart, where c
2 = 3

2 - 2
2

, i.e. c = V5 . The coordinates of

the foci are (0, -V5) and (0, V5).

3. The ellipse as a section of a circular cylinder.

We show that any section of a circular cylinder by a plane

not parallel to its axis is an ellipse.

Consider a circular cylinder and a plane a intersecting

it at a point O and use / to denote the curve of intersection.

Draw a plane a through O perpendicular to the axis of the

cylinder; the section is the circle Twith radius r. We choose the

coordinate axes in each plane a and a as shown in Fig. 84 (the

x-axis is common to both planes and the axes of ordinates are

the y-axis in the a plane and the j-axis in the a plane).

Let M(x, y) be an arbitrary point on the curve l. Its projec-

tion on the plane a is the point M on the circle /. Let x and

y be the coordinates of M in the plane a. We can see from

the figure that y = y cos <p, where <p is an (acute) angle between
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the planes a and a. Since M(x, y) lies on the circle with radius

r and center at the origin, we have x2 + y
2 = r

2
, whence

x2
+ y

2
cos

2
<p = r

2

Thus, the coordinates of any point M(x, y) of the curve / are

related as follows

Conversely, if point M(x, y) in the plane a satisfies (4), then

its projection M(x, y), where y = ycos<p, satisfies equation

x2 + y
2 = r

2
, i.e. lies on the circle F, hence the point M lies on

the curve /.

Thus, the curve of intersection of a cylinder and a plane is

defined by equation (4), that is, is an ellipse with the semiminor
axis r and the semimajor axis r/cos <p, where r is the radius of

the section of the cylinder and ip is the angle of inclination

of the cutting plane to the perpendicular plane to the axis of

the cylinder.

4. The equation of a tangent to an ellipse.

Suppose an ellipse is specified by its equation in standard
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form

(5 )

We choose a point M0(xb, yo) on the ellipse, where y0 0 (that

is, a point which is distinct from the vertices A\ and A 2 (Fig.

85)). A small portion of the ellipse near M0 is the graph of

a function y = y(x) (we can explicitly express y in terms of x

using (5)). Differentiating both sides of the equation

y\x) _ .

b
2

with respect to x yields

2x 2yy' _ .

V b2 -

whence it follows that

y' = i^x
a

2
y

This means, for one, that the tangent at Mo has the slope

,
b

2
xo

a
2
yo

If we know the slope of a tangent and a point Mo(xo, yo)

on the tangent, then we can write the equation of the tangent

as y - yo = k(x - x0 ) or

y - To = - ~2 — (x - Xo)
a yo

Transposing the terms to the left-hand side yields

xpx ^ y0y

a
2 b2 (M)-

or, since Mo lies on the ellipse,

xox y0y^ b
2 (6)



140 Part One. Analytic Geometry

which is the desired equation of the tangent to an ellipse at

a point Mo(xo, yo). Equation (6) only differs from equation (5)

of an ellipse in that (6) is a linear equation in the running coor-

dinates x and y.

Now, let us take into consideration the vertices A\ and A 2

of the ellipse. Suppose, for instance, that M0 coincides with A i

,

then we have x0 = -a,y0 = 0, and (6) assumes the form x = a,

which is, in fact, the equation of the tangent at A , . Similarly,

ifM0 coincides with A 2 , then (6) transforms into the equation
of the tangent at A 2 .

Thus, the tangent to an ellipse defined by (5) at a point

Mo(xo, yo) of the ellipse is defined by (6).

Example. Find the equation of the tangent at a point M0

of the ellipse

the tangent lies on the bisector of the first quadrant angle.

O We first find the coordinates of M0 . Since x0 = y0 for

x2 x2

this point, we have ~ = 1 from the equation of the el-
lo y

16 9 4 3 12
Iipse, i.e. Xo = y , whence x0 = y- = (bear in mind that

Xo > 0). According to (6) the equation of the tangent to the

ellipse at the point (y , y J
has the form

12 x, 12 y
5

'

16 5
'

9
= 1 •

5.2. THE HYPERBOLA

1. The definition and canonical equation of a hyperbola.

Definition. The hyperbola is the set of all points in the plane
such that the absolute value of the difference of the distances

from two fixed points called foci is a constant smaller than the

distance between the foci.

We use F\ and F2 to denote the foci of a hyperbola and 2c
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to denote the distance between the foci. Let M be an arbitrary

point on the hyperbola and r\ and r2 the lengths of the segments

F\M and FzM. By the definition of a hyperbola,

I r\ - ri I =2a (1)

where a is a constant characterizing the hyperbola (2a < 2c).

In order to derive the equation of a hyperbola, we introduce

a rectangular Cartesian coordinate system so that the x-axis

passes through the foci and the .y-axis divides the line segment

FiF2 in half (Fig. 86). Then the coordinates of the points Fu
Fz, and M are (-c, 0), (c, 0), and (x, y), respectively. By ex-

pressing n and r2 in terms of the coordinates of Fu Fz, and

M and substituting the results into (1), we obtain

I V(x + c)
2 + y

2 - V(x - c)
2 + y

2
1 = 2a (2)

Perform similar transformations as in the case of the ellipse.

Write equation (2) in the form

V(x + c)
2 + / - v(x - c)

2
+ y

2 = ±2a

transfer the second root to the right-hand side, and square both

sides. The result is

(x + c)
2 + y

2 = 4a
2 ± 4uV(x - c)

2 + y
2 + (x - c)

2 + y
2

or

cx - a
2 = ±W(x - c)

2 + y
2

Squaring both sides of the last equation yields

c
2x2 - 2a

2
cx + a

4 = a
2x2 - 2

a

2
cx + a

2
c
2 + aV

Figure 86
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Or

(c
2 - a

2
)x

2 - a
2
y
2 = a

2
(c

2 - a
2
) (2a)

We introduce a new number b = Vc
2 — a

2
. Since c > a by

definition, we have c
2 - a

2 > 0 and the number b exists; with

b
2 = c

2 - a
2

or, which is the same, c
2 = a

2 + b
2

. By dividing

both sides of (2a) by a
2
b
2 we finally have

_ / _ i

a
2

b
2 (3 )

Equation (3) is derived from equation (2). If we perform trans-

formations in reverse direction, then we can show that (2) fol-

lows from (3) as well. Thus, these, equations are equivalent. An
equation of form (3) is called the canonical equation of a

hyperbola.

This is the second-degree equation and thus the hyperbola

is a second-degree curve.

Example 1. Find the foci of the hyperbola

~9 T6
1

O We have a = V9 = 3 and b = Vl6 = 4. The distance be-

tween the foci is 2c, where c
2 = a

2 + b 2 = 9 + 16 = 25, i.e.

c = 5. The coordinates of the foci are (-5, 0) and (5, 0). •
Example 2. Show that the curve

a
2

b
2

is a hyperbola and find its foci.

O The given equation only differs from the canonical equa-

tion in that its right-hand side is - 1 and not 1. We introduce

a new system of coordinates, namely, we consider the x-axis

to be the new ordinate denoted by l^axis and the .y-axis to be

the new abscissa denoted by A'-axis. In new coordinates the

Y2

_ X2

7
2

b
2

given equation takes the form = -1 or

= 1
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This equation defines a hyperbola whose foci lie on the X-axis

at the points ( - c, 0) and (c, 0), where c = Va2 + b
2

. In the

initial xy coordinates the foci lie on the y-axis at the points

(0, -c) and (0, c). •
2. Studying the shape of a hyperbola from its canonical

equation.

Since the power of each variable x and y in equation (3) is

two, the hyperbola defined by (3) is symmetric with respect to

the coordinate axes and the origin O is the center of symmetry

of the hyperbola. Thus, to determine the shape of a hyperbola

it is sufficient to consider its portion lying in the first quadrant.

We first determine whether a hyperbola intersects the axes

of symmetry. It follows from (3) that I x I ^ a since for I x I < a

, . x2

the expression -j — ^ is less than unity. Thus, a hyperbola
or b

2

does not intersect the y-axis which is called the conjugate axis

of the hyperbola. At the same time putting y = 0 we find that

x = ±a, which means that the hyperbola and the x-axis inter-

sect at two points, Ai(-a, 0) and A 2 {a, 0). These points are

called the vertices and the x-axis the transverse axis of the

hyperbola.

Thus, the axis of symmetry which does not intersect the

hyperbola is its conjugate axis and the axis of symmetry which

intersects it at two points (its vertices) is its transverse axis.

Assuming x ^ 0, y > 0 in the equation of a hyperbola we

express y in terms of x

a

We can see that as the coordinate x increases y also increases

indefinitely. Figure 87 depicts the part of the hyperbola in the

first quadrant. We can show that this part is convex upward

and the tangent (drawn with a dashed line) to the hyperbola

at the vertex A 2 is parallel to the y-axis.

Since a hyperbola is symmetric with respect to the coordinate

axes, it can be drawn as illustrated in Fig. 88. The hyperbola

consists of two parts called branches, one of which corresponds
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Figure 87

to x ^ a and the other to — a. The dashed lines in the

figure are explained in the next subsection.

3. The asymptotes of a hyperbola.

Let us analyze the straight lines y - — x and y = - —x
a a

which are shown by dashed lines in Fig. 88 and denoted by
/+ and /_in Fig. 89. These lines possess a remarkable property,

namely, if a point M moves along a hyperbola receding in-

definitely from the origin, then the hyperbola approaches
closer and closer to one of the indicated straight lines.

In order to verify this property we choose the point M in

the first quadrant (it is sufficient to consider only this case since

a hyperbola is symmetric with respect to the coordinate axes).

Let M move along a hyperbola receding indefinitely from the
origin O, with x~* oo. The distance d = MP from M to the

straight line / + is less than the distance MN (MP is the perpen-

Figure 88
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Figure 89

dicular to /+ ). But MN is the difference of the ordinates of
the hyperbola and the straight line /+ . Since the branch being

considered is described by the equation y = — y/x
2 - a

2
and

a

the line /+ by y = — x, we have
a

MN = ~ (x - y/x
2 - a2

)

Multiplying and dividing this equation by x + yJx
2 - a

2
yields

MN = ab

x + y/x
2 - a2

As the point M moves along the hyperbola receding in-

definitely from the origin, its abscissa x becomes as large

as desired (x -» oo). We can say the same of the value x +

y/x
2 - a

2
. Therefore, the fraction becomes ar-

x + Vjt - a
bitrarily small (MN -» 0), consequently, the distance d becomes
arbitrarily small as well.

Suppose for a curve L there exists a straight line / such that

when a point M moves along L to infinity, this point ap-

proaches / indefinitely, then the straight line / is called an

1

0

— 36 (>
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asymptote of the curve L. Thus, the straight lines y = — x and
a

y = - x are asymptotes of the hyperbola.

Remark. In order to draw the hyperbola defined by equation

(3) we construct a rectangle with center at the origin and sides

2a and 2b, which are parallel to the x- and y-axes respectively

(Fig. 90). The straight lines joining opposite vertices of the rec-

tangle are the asymptotes of the hyperbola. Then sketch the

branches of the hyperbola: the left branch should touch the

rectangle from outside at the point A i (one vertex of the hyper-

bola) and approach the asymptotes with its “ends” and the

right branch touches the rectangle at the point A 2 (the other

vertex) from the outside and also approaches the asymptotes.

The line segments a and b are semitransverse and semicon-

jugate axes respectively.

Example 1. Form the equations of the asymptotes of the

hyperbola

O We have a = 3 and b = 2, the equations of the asymp-
2 2

totes are y = — x and y = - — x. •

Example 2. Set up the equation of the hyperbola whose
transverse axis is the x-axis, the equations of whose asymptotes
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are 5x - 4y = 0 and 5x + 4y = 0, and the distance between

the vertices is 16.

O We know that the asymptotes intersect at the center of

a hyperbola. We infer from the equations of the asymptotes

that the center of a hyperbola is at the origin. Thus, the x-axis

is the transverse axis of the hyperbola (by definition) and the

y-axis is its conjugate axis. The equation of the hyperbola has

the form

In order to find the numbers a and b we reduce the equations

of the asymptotes to the form y = — x and y = - x,

whence we immediately have — = . But, by hypothesis,

2a - 16, i.e. a = 8. Consequently, b = 10.

The desired equation has the form

x2

8

4. The equation of a tangent to a hyperbola.

The equation of a tangent to the hyperbola

(4)

can be found in the same way as for an ellipse. Therefore, we
just give the final result without repeating the argument.

The tangent to the hyperbola defined by (4) at a point Mo(x0 ,

yo) on this hyperbola is determined by the equation

Xox _ Toy _ ,

a2
b2

~

5. The hyperbola as a graph of inverse proportionality.

If in the equation of the hyperbola

10 *
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Figure 91

the numbers a and b are equal, we can write

x2 - y
2 = a

2
(5)

A hyperbola defined by (5) is equilateral and its asymptotes
are the straight lines y = x and y = -x, i.e. they are the bisec-

tors of the quadrant angles.

Let us turn the coordinate axes through 45° and use x and

y to denote the new axes so that they coincide with the asymp-
totes of the equilateral hyperbola (Fig. 91). We can show that

the equation of the hyperbola in the new coordinates has the

form

We know that two varying quantities x and y related as

xy = c, where c is a constant, are inversely proportional. Thus,

we infer that an equilateral hyperbola is the graph of inverse

proportionality.

5.3. THE PARABOLA

1. The canonical equation of a parabola.

Definition. A parabola is the set of all points in the plane

equidistant from a fixed point, called the focus, and a fixed

line, called the directrix.
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We use p to denote the distance between the focus and the

directrix, the number p > 0 is the parameter of the parabola.

In order to derive the equation of a parabola, we take the

straight line which is perpendicular to the directrix and passes

through the focus F as the x-axis and assume that it is directed

from the directrix to the focus (Fig. 92). We place the origin

at the midpoint of the line segment joining the focus and the

directrix. The coordinates of the focus in our system are p/2,

0 and the equation of the directrix is x = -p/2.

Suppose M(x, y) is an arbitrary point on the parabola and

P is its projection on the directrix, then, by the definition of

a parabola, MP = MF or

0 )

Squaring both sides of (1) and simplifying yields

y
2 = 2px (2)

It can easily be shown (we leave it to the reader) that the

converse is also true, namely, we can derive (1) from (2). Thus,

(1) and (2) are equivalent. Hence it follows that (2) is the equa-

tion of the parabola.

Equation (2) is the canonical equation of a parabola. We can

see from this equation that a parabola is a second-degree curve.

It also follows from the canonical equation that the parabola

defined by it is symmetric with respect to the x-axis. In fact,

y

X

Figure 92
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if (2) is satisfied by the coordinates of point (x, y), then it is

also satisfied by the coordinates of point (x, —y). In addition,
all the points on the parabola have x >0. The point (0, 0) is

the leftmost point of the parabola (in the usual coordinate sys-

tem) and called the vertex of the parabola.

We note once more that if a parabola is defined by the canon-
ical equation y

2 = 2px in the given coordinate system, then its

directrix is defined by the equation x = -p/2 and its focus
is at the point F(p/2, 0).

2. The parabola as the graph of a quadratic equation.
School mathematics call the graph of the function

y = ax2 + bx + c

a parabola, where a is nonzero. Let us ascertain that this defini-

tion is consistent with that given earlier.

We transform the equation as

y = a (x2 + — x + —\ = a (x2 + 2- ~
\ a a ) \ 2c

x + hf-(S
b 2

- 4ac

4a

Introducing the notation

b b2 - 4ac

we can write

2a 4a

y - (3 = a(x - a)
2

= &

Now, if we assume the point 0(a, /3) to be the new origin and

leave the direction of the coordinate axes unchanged, then the

old and new coordinates are related as

x = x - a, y = y - 0

and the equation of the curve we consider in the new system is

y = ax
2

or x2 = 2py

with p = 1/2a. The last equation only differs from the canoni-

cal equation of a parabola in the notation of coordinates.
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Thus, a parabola is, in fact, the graph of a quadratic poly-

nomial.

Example. Find the directrix and focus of the parabola de-

fined by the equation

y = ^x2 - 3x + 6

O We transform the equation as follows

y = y (x
2 - 6x + 12) = j- (x

2 - 6x + 9 - 9 + 12)

= r (
*- 3)2 + f

y ~T = T (x ~ 3)2

Then we translate the coordinate axes assuming the point 0(3,

3/2) to be the origin. The equation of a parabola in the new

coordinate system has the form

y = y x1
or ? = 2P9

with p = 1. This equation only differs from the canonical equa-

tion (2) in the notation of the axes. Noting the remark made

at the end of subsection 1, we find that the equation of the

directrix of the parabola is y = —p/2 = —1/2 and the focus

is at the point with the coordinates y = p/2 = 1/2, x = 0. Pass-

ing to the old coordinates via the formulas x = x + 3 and

y = y + 3/2 yields the equation of the directrix, viz. y = 1, and

the coordinates of the focus are x = 3 and y - 2 (Fig. 93). •
3. Optical properties of the parabola.

One property of the parabola is widely applied in optics. We
first formulate this property geometrically.

Figure 94 shows the parabola y
2 = 2px with focus F, a point

Mo(xo, Jo) on the parabola, the ray / emanating from M0 and

parallel to the axis of the parabola (the x-axis), and the tangent

to the parabola at Mo. The property we are interested in is that
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the tangent makes equal angles with the vector MoF and the

ray l.

This statement is obvious ifM0 is the vertex of the parabola,

i.e. Mo(0, 0). Suppose, therefore, that Mo is not at the point

(0, 0). In this case a sufficiently small part of the parabola near

Mo is described by the equation y = ^(x). Differentiating the

identity y
z
(x) = 2px with respect to x yields 2yy ' = 2p, whence

y’ = p/y. This means, for one, that the slope of the tangent

to the parabola at Mo is k = p/yo-

It follows directly from Fig. 94 that

tan = yo

Xo - p/2

where <p is the angle the vector FM0 forms with the x-axis. We
have at the same time

. 2 tan a 2p/yo _ 2pyo
tan 2,oi — = — — j— x j y

1 - tan
2 a 1 - p^/yl yo - P

2pyo = j>o

2pxo - p
2 xo - p/2

whence it follows that <p = 2a, and since <p = a + /3, we have

a =
/3 which was desired to obtain.

The property of a parabola we proved can be interpreted as

follows. Suppose a source of light is placed at the focus F. Light

rays emanating from the focus are reflected from the parabola
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governed by the law of reflection, namely, the angle of inci-

dence is equal to the angle of reflection. Since the angles a

and /3 are equal (which we have just proved), the reflected ray

is parallel to the x-axis. In other words, all the rays are reflected

in a beam parallel to the axis.

The reflection property is exploited in constructing parabolic

mirrors which are used in telescopes, searchlights, automobile

headlights, solar heating devices, and the like (Fig. 95).

Exercises to Chapter 5

5.1

1. A vertex of a triangle whose base is fixed moves so that the perimeter

of the triangle is constant. Find the trajectory of the moving vertex if the base

of the triangle is 24 and the perimeter is 50.

2. A line segment of constant length slides with its ends along the sides of

a right angle. Prove that any point of the segment moves along the arc of an

ellipse.

3. Form the canonical equation of an ellipse if the distance between the foci

is 6 and the semimajor axis is 5.

4. Find a point on the ellipse

axis.

X2

20
1 at a distance 4 from the minor

5. Given the semiaxes a and b of an ellipse with a > b, prove that the distance

r from an arbitrary point on the ellipse to its center is such that b ^ r ^ a.

x2
y
1

6. Find the side of a square inscribed in the ellipse — + — = 1.

a1 b1

7. Given an ellipse passing through the points (8, 3) and (2V5, 2V5), find

its equation if we know that the coordinate axes are its axes of symmetry.

x2 y
2

8. Find the equation of the tangent to the ellipse — + — = 1 at the point

(1. 3)-
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X2
y

2

9.

Find the tangents to the ellipse — H =1 with the slope k = - 1 and
20 15

determine the distance between these tangents.

10. Prove that the straight line Ax + By + C = 0 touches the ellipse if and

only if Aa1 + Bbl = C2
.

11. Find the tangents common to the two ellipses

= 1

12. Different chords are drawn through the vertex (a, 0) of the ellipse

x2
y

2

— + = 1. Find the line on which the midpoints of the chords lie.

a2
b
2

13. Prove that the tangent to an ellipse at a point M forms equal angles

with the line segments MF, and MF2 , where F, and F2 are the foci.

14. A cylinder whose section is a circle of radius 10 is cut by a plane which

makes an angle of 30° with the axis of the cylinder. The curve of the intersec-

tion is the ellipse: find the lengths of its semiaxes.

5.2

1. Form the equation of a hyperbola whose axes coincide with the coordinate

axes if the distance between the foci is 20 and the distance between the vertices

is 16.

2. Given the foci Ft(-5, 0) and Ft (5, 0) and the point C(4V2, 3) on the

hyperbola, find its equation.

x2
y
2

3. Find a point M on the hyperbola — —— = 1 for which MF\ _l MF2 ,

where Fi and F2 are the foci.

x2
y

2

4. Find the foci and asymptotes of the hyperbola 1.

64 36

5. Find the equation of the hyperbola given the equation of its asymptotes

y = ±(3/2)x and the point (2V3, 3) on it.

6. Prove that the product of the distances from any point on a hyperbola

to its asymptotes is a constant.

x2 y
2

7. Find the points at which the hyperbola =1 intersects the follow-
90 36

ing straight lines: (a) x - 5y = 0, (b) 2x + y — 18 = 0, (c) x - y + 5 = 0.

x2 y
2

8. Find the equation of the tangent to the hyperbola — — = 1 at the

point (6, -5). *2 2

9. Draw the tangent with the slope k = 2 to the hyperbola — = 1.

8 6

10. Find whether we can draw a tangent to a hyperbola at any angle of incli-

nation to the transverse axis.
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11. Find the condition for the straight line Ax + By + C
x2

v
2

hyperbola 1.

a2 b
2

0 to touch the

5.3

1. Form the equation of the parabola touching the y-axis if its focus is at

the point (6, 0) and the x-axis is its axis of symmetry.

2. Form the equation of the parabola

(a) symmetric with respect to the x-axis, touching the y-axis, and passing

through the point (9, 1),

(b) symmetric with respect to the y-axis touching the x-axis, and passing

through the point (3, -3).

3. Find the points at which the parabola y
2 = 3x and the following straight

lines intersect:

(a) x - 3y + 6 = 0, (b) x - 2y + 3 = 0, (c) y + x = -5.

4. Find the points at which the parabola y
2 = 12x and the ellipse

x2
y

2

— H =1 intersect.
25 16

5. A chord which is perpendicular to the axis of the parabola y
2 = 2px is

drawn through its focus. Find the length of the chord.

6. Prove that the tangent to the parabola y
2 = 2px at the point (xo, yo) is

defined by the equation y0 = p(xo + x).

7. Form the equation of the tangent to the parabola y
2 = 2px at a point

with abscissa 3.

8. Draw the tangent to the parabola x2 = 5y parallel to the straight line

2x - y = 0.

9. Find the condition that the straight line y - kx + b touches the parabola

y
2 = 2px.

10. Find the equation of the line formed by the midpoints of the ordinates

of the parabola y
2 = 2px.

11. An object thrown at an angle to the horizon describes an arc of a parabo-

la and falls 16 meters away. Find the parameter p of the parabolic trajectory

if the height reached by the object is 12 meters.

12. Find the equation of the parabola if its minimal ordinate is -4, the

focus is at the point (4, 0), and the axis of symmetry is parallel to the y-axis.



Chapter 6

THE PLANE IN SPACE

6.1. THE EQUATION OF A SURFACE IN SPACE.

THE EQUATION OF A PLANE

1. The notion of the equation of a plane.

Suppose we have an equation in three variables

Fix, y, z) = 0 (1)

We introduce a rectangular Cartesian coordinate system in

space and consider x, y, z to be the coordinates of a point.

Equation (1) is satisfied for some points (x, y, z), while for

others it is not. The question arises as what is the set T of the

spatial points that satisfy equation (1). Generally, the set T is

a surface in space. Let us consider the case where we can express

coordinate z from (1) as a function of x and y

z = /(•*, y)

When the values x = Xo, y = yo are fixed, we have a single value

Zo = f(xo, yo) for z. Geometrically, this means that exactly one
point from the set T lies on each straight line parallel to the

z-axis. In other words, the set T and every straight line parallel

to the z-axis intersect at a unique point. It is natural to consider

such a set a surface in space.

Definition 1. The surface defined by the equation F(x, y,

z) = 0 is the set T of all points in space whose coordinates satis-

fy this equation.

Definition 2. The equation of a surface T given in space is

the equation F(x, y, z) = 0 such that the surface defined by

this equation coincides with T.

As an example, we find the equation of a sphere centered

at the point P(a, b, c) with radius R.

The point M(x, y, z) belongs to the sphere we consider if
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and only if I PM I = P or

V(x - a)
2 + O' - b )

2 + (z - c)
2 = P

This relationship is the equation of the sphere. Squaring both

sides we finally obtain

(x - a)
2 + (y - b)

2 + (z - c)
2 = P 2

2. The equation of a cylindrical surface.

Suppose we have a curve Z, and a straight line / in space.

If we draw a straight line parallel to /, through every point of

the curve L, then we obtain a surface (Fig. 96) called cylindri-

cal. The curve L is the directrix and the lines parallel to / consti-

tute the generatrix of the cylindrical surface.

We choose a coordinate system in space so that the z-axis

is parallel to the straight line / and assume that the directrix

L is in the xy plane and is defined by the equation

F(x, y) = 0 (2)

We now prove that (2) is also the equation of the given cylindri-

cal surface in space.

A point M(x, y, z ) belongs to this surface if and only if its

projection on the xy-plane, a point N(x, y, 0), lies on the curve

L (Fig. 97), and this means that x and y satisfy (2). Thus, M
is a point of the cylindrical surface if and only if its x, y coor-

dinates satisfy (2).
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Similarly, we can establish that a cylindrical surface with

generatrices parallel to the y'-axis is defined by an equation of
the form $>(x, z) = 0. If generatrices are parallel to the x-axis,

then the equation of the surface is of the form z)
= 0.

Example 1. The equation y - x = 0, which does not contain

the z coordinate, defines a cylindrical surface with generatrices

parallel to the z-axis. The bisector of the first and third quad-
rant angles in the xy-plane is the directrix (Fig. 98).

Example 2. The equation (y - l)
2 + (z + 2)

2 = 1, which
does not involve the x coordinate, defines a cylindrical surface

with generatrices parallel to the x-axis. The directrix is the circle

centered at the point (0, 1, -2) with radius 1 and lying in the

.yz-plane. This surface is called the right circular cylinder

(Fig. 99).

3. Different ways of defining a plane. The equation of a plane

passing through a given point and perpendicular to a given

vector.

A plane in space can be specified in several ways. For instance

we can specify

(a) a point Mo of the desired plane and a nonzero normal
vector n to the plane,

(b) a point Mo of the desired plane and two noncollinear vec-

tors parallel to the plane,
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(c) three points of the desired plane Mu M2 , and M3 (it is

assumed that the points are not collinear).

We introduce a rectangular Cartesian coordinate system in

space. Given a point Mo(x0 , yo, Zo) and a nonzero vector
n = (A, B, C > in this system, find the equation of a plane
a through Mo and perpendicular to n.

The point M(x, y, z) lies on the plane a if and only if the
vectors M0M and n are perpendicular (Fig. 100), i.e.

MoM-n = 0 (3)

Since MoM = (x - x0 , y - y0 , z - Zo > and n = (A, B, C>,
condition (3) is equivalent to the equation

A(x - x0) + B(y - y0 ) + C(z - Zo) = 0 (4)

which is the equation of the plane a.

Thus, (4) is the equation of the plane through MQ(x0 , y0 ,

Zo) and perpendicular to n = (A, B, C).

Example. Write the equation of the plane through the point

M0 (l, 2, -3) and perpendicular to the vector n = <4, 7, 9>:

4(x - 1) + l{y - 2) + 9(z + 3) = 0

or, after simplifying,

4x + ly + 9z + 9 = 0

Theorem. Any plane in rectangular Cartesian coordinates is

defined by the linear algebraic equation, that is, the equation
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of the form

Ax + By + Cz + D = 0 (5)

at least one of the coefficients A, B, C being nonzero.

Conversely, any linear equation in which at least one of the

coefficients A, B, C is nonzero defines a plane.

Given a plane a in space. We consider a point M0(*b,

^o, Zo) lying on the plane and a nonzero normal vector n = (A,
B, C) to the plane. According to what we have proved before,

the equation of the plane a has the form in (4). We write (4)

as Ax + By + Cz + D = 0, where D = -Axo - By0 - Czo,
and see that the plane a is defined by a linear equation; since

n ^ 0, one of the three numbers is nonzero.

Conversely, given equation (5), where one of the numbers
A, B, C is nonzero, choose one of the solutions x = xo , y = y0 ,

z = Zo of this equation. For instance, if A * 0, then we can
take the solution x0 = -D/A, y0 = 0, zo = 0. Then subtracting

the identity

Axo + Byo + Czo + D = 0 (6)

from equation (5) yields

A(x - xo) + B(y - y0 ) + C(z - Zo) = 0 (7)

which is equivalent to the original ec uation (5). In fact, we ob-
tained (7) from (5) by subtracting (6) from it; similarly, we can
derive (5) from (7) by adding (6) to it.

Accordingly equation (7) defines the plane through the point
M0(xo, yo, zo) and perpendicular to the vector n = {A, B, C>,
hence it follows that (5) also defines the plane.

Definition. An equation of the form in (5) where at least

one of the coefficients A, B, C is nonzero is called the general
equation of the plane.

Note that any nonzero vector n perpendicular to the given

plane is called a normal vector to this plane. Obviously, a plane
has a set of normal vectors, all of them being mutually col-

linear.

Let us concentrate on a fact we established when proving the
second statement of the theorem, namely, if a plane is defined
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by the equation Ax + By + Cz + D = 0, then n = (A, B, C>

is a normal vector to the plane.

4. Analyzing the general equation of a plane.

Let us find whether a change in the coefficients A, B, C and

in the number D in the general equation of a plane

Ax + By + Cz + D = 0 (8)

changes the position of the plane with respect to the coordinate

axes.

(1) If D changes while the coefficients A, B, C do not, then

the normal vector n = (A, B, C> is left unchanged: the plane

is displaced parallel to itself in space (Fig. 101).

For D = 0 the equation assumes the form

Ax + By + Cz = 0 (9)

Obviously, the numbers x = 0, t = 0, z = 0 satisfy (9), hence

it follows that (9) defines a plane passing through the origin.

(2) A change in A, B, C makes the vector n rotate and, conse-

quently, the plane itself. If one of the coefficients vanishes,

then n becomes perpendicular to the respective coordinate axis,

and therefore the plane is parallel to that axis. For instance,

the equation By + Cz + D = 0 defines a plane parallel to the

x-axis.

If one of the coefficients and the constant term are zero, then

the plane passes through the corresponding coordinate axis.

For instance, the equation By + Cz = 0 defines a plane passing

through the x-axis.

I I —36h
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(3) If two coordinates of the vector n are both zero, then
n is parallel to that coordinate axis the projection on which
is nonzero; the plane is perpendicular to this axis or, in other

words, is parallel to the corresponding coordinate plane.

Thus, the planes defined by Ax + D = 0, By + D = 0, and
Cz + D = 0 are perpendicular to the x-, y-, and z-axes, respec-

tively or, which is the same, are parallel to the yz, xz, and xy
coordinate planes, respectively.

For D = 0 the last three equations assume the form x = 0,

y = 0, and z — 0. These are the equations of the yz, xz, and
xy coordinate planes, respectively.

5. Relative position of two planes.

Suppose two planes a and 0 are defined by the equations

A\X 4- B\y + CiX + D\ = 0 for a

A 2X + B2y + Ciz + D2 = 0 for 0

Three cases are possible here: (1) the planes coincide, (2) the

planes are parallel but not coincident, and (3) the planes are

not parallel, i.e. they intersect along a straight line.

How can we determine from the equations which is the case?

Case 3 can easily be established, namely for two planes not
to be parallel it is necessary and sufficient that their normal
vectors nj = <A u Bu Ci> and n2 = <A 2 , B2 , C2 ) be not

parallel, i.e. the coordinates of n t be not proportional to those

of n2 . For instance, the planes defined by3x-y + z + 4 = 0
and x — y + 2z — 5 = 0 are not parallel since the numbers 3,

-1, 1 are not proportional to the numbers 1, -1, 2.

Cases 1 and 2 are common in that ni and n2 are collinear,

i.e. n2 = Xnt , where X is a number. The equations of the planes

are

A\X + B\y + C\z + D\ = 0 for a

\,4ix + \B\y + XCiz + D2 = 0 for 0

If here the planes have at least one point in common, then
the last two equations have the general solution x0 , yo, Zo- By
substituting these coordinates into both equations, we obtain
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two arithmetic identities. Multiplying the first by X and sub-

tracting the result from the second yields Dz - \D\ = 0. Con-

versely, if n2 = Xni and Dz = \D\, then the planes coincide.

Thus, case 1 is characterized by the existence of a number
X such that Ai = X>1 1 ,

fi2 = \B\, Cz = XCi, Dz = \DU while

for case 2 X is such that Ai = \A\, Bz = \Bi, C2 A XCi,

Dz A \D\.

Example. The planes 2x + 2y - 4z + 6 = 0 and 3x + 3y -
6z + 10 = 0 are parallel but do not coincide since 2/3 =

2/3 = — 4/( — 6) = 6/10.

6.2. SPECIAL FORMS OF THE EQUATION OF A PLANE

1. The equation of a plane passing through a given point

and parallel to two given vectors.

Given a point M\(x\, y i, Zi) and two noncollinear vectors

a = <p, q, r) and a' = (p\ q'
, r' > in a rectangular Cartesian

coordinate system. We assume that the vectors originate at Mi
(Fig. 102). Let us form the equation of the plane a through

Mi and parallel to a and a'.

If a point M(x, y, z) lies in the plane a then the vectors MiM,
a, and a' lie in a and hence are coplanar. Conversely, if M
is such that the three vectors are coplanar, then M lies in the

plane of a and a', i.e. in the plane a.

The condition that three vectors are coplanar is, according

to the theorem in Sec. 3.10, that the determinant composed of

the coordinates of these vectors is zero. This condition has the

Figure 102
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form
x - X\ y - y 1 z - Zi

P q r

P' Q ' r'

= 0 ( 1 )

for the vectors M\M, a, and a'.

Consequently, (1) is the equation ofa plane through the point

Mi(xu yi, z \ ) and parallel to the vectors a = (p, q, r > and
a' = (p', q‘, r' ).

Example 1. Find the equation of the plane through the point

Mi (2, 2, 1) and parallel to the vectors a = <3, 2, 5> and
a' = <1, -1, 0>.

O Substituting the data into (1) yields

x - 2 y - 2 i -

3 2 5

1 -1 0

= 0

To simplify this determinant we expand it by the elements of

the first row:

(x- 2)
2 5

-1 0
-O' ~ 2)

3 5

1 0
+ 0-D 3 2

1 -1
= 0

or

5(* - 2) + 5 (.y
- 2) - 50 - 1) = 0

By removing brackets and dividing both sides by 5, we obtain

the desired equation x + y- z- 2 = 0. •
Example 2. Find the equation of the plane a through the

point Mi(l, -1, -4) and perpendicular to each plane defined

by 3x - 2y + 3z + 5 = 0 and - 5x + 4y - z + 1 = 0.

O Since each of the given planes is perpendicular to the

plane a its normal vector must be parallel to a. Then we have

two vectors a = <3, -2, 3> and a' = < -5, 4, -1>. According

to (1) the equation of a has the form

x

-

1 j + I

3 -2
-5 4

Z + 4

3

-1
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Expanding the determinant yields

(x- 1)

2 3

4-1 -o+l)
3 3

-5 -1 + (Z + 4)
3 -2

-5 4
= 0

or

100c - 1) - \2(y + 1) + 2(z + 4) = 0

and the final result is the desired equation 5x + 6y - z - 3 =

0 . •
2. The equation of the plane passing through three given points.

Given three noncollinear points yu Zi), M2(x2 , y2 , Z2 ),

and Mi(x2 , y2 , z3 ), find the equation of the plane passing through

these points.

Consider the vectors MXM2 = (x2 - X\, y2 - yu z2 - Zi) and

Mi = <x3
- xi, y3 - yu Zi - Zi> which are, by assumption,

noncollinear and lie in the desired plane a (thereby are parallel

to a). Thus, we can obtain the equation of the plane a as that

of the plane through the point Mi and parallel to the two vectors

M\M2 and M\M3 , i.e.

x — X\

x2 - Xi

X3 ~ Xi

y - y\

yi-yi
ys - yi

z - zi

Z2 - Zi

Z3 - Zl

= 0 (2)

Thus, (2) is the equation of the plane through three points

M\, M2 ,
M3, or the three-point form of the equation.

Example. Find the equation of the plane passing through the

three points Mi(l, -2, -1), M2 {2, 3, 0), and M3 (6, 2, -2).

O Substituting the coordinates of the points into (2) yields

or

x -
1 y + 2 z + 1

2 - 1 + 2 + 1 = 0

6 -
1 + 2 4- 1

x -

1

5

y + 2 z + 1

5 1

4 -1

= 0
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By expanding this determinant by the first row, we obtain

(x- 1)
1

-1 (y + 2) + (z + l)
1 5

5 4
= 0

or

-%x - 1) + 6O' + 2) - 21(z + 1) = 0

Removing brackets and dividing both sides of the equation by
- 3 yields the final result 3x - 2y + 7z = 0. We can see that

the plane passes through the origin.

3. The intercept equation of a plane.

If the plane intersects the three coordinate axes and does not

pass through the origin, then it is convenient to write its equa-

tion in intercept form.

Given three points on the coordinate axes distinct from the

origin, namely, A(a, 0, 0) with o^Oon the x-axis, B(0, b, 0)

with 6/0on the y-axis, and C(0, 0, c) with c ^ 0 on the

z-axis, find the equation of the plane passing through A, B,

and C.

We can take

(3 )

as such an equation. In fact, (3) is a linear equation and, there-

fore, defines a plane. By substituting the coordinates of A into
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(3) we ascertain that the plane does pass through this point:

a

a c

Similarly, we can show that the plane also passes through B
and C.

Equation (3) is called the intercept equation of a plane since

it defines the plane which cuts the ^-intercept a, the y-intercept

b, and the z-intercept c.

The intercept form is very convenient and illustrates the posi-

tion of a plane in space (Fig. 103).

Any general equation of a plane Ax + By + Cz + D = 0

can be reduced to form in (3) if A, B, C, and D are all nonzero.

We must transfer the constant term D to the right-hand side

and then divide both sides by —D. The result is

*
+ -.y + _ * = i

-D/A -D/B -D/C

which is the intercept equation with a = -D/A, b = —D/B,
and c = -D/C.
Example 1. Reduce the equation of a plane Ax - 3y + 2z -

12 = 0 to intercept form.

O By transforming the equation as above we get

^ = i or — + + —
12 12 3 -4 6

Ax

12

= 1 .

Example 2. Find the volume of the pyramid bounded by the

plane defined in Example 1 and the coordinate planes.

O We assume that the base of the pyramid is a triangle with

the vertices 0(0, 0, 0), A(3, 0, 0), and fi(0, -4, 0) in the

xy-plane and the altitude of the pyramid is the line segment

OC with C(0, 0, 6). Using the formula for the volume of a

pyramid and substituting the data yields

V = y SoAB h = j- •^ • 6 = 12. •
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6.3. DISTANCE BETWEEN A POINT AND A PLANE.
ANGLE BETWEEN TWO PLANES

1. Distance from a point to a plane.

Given a plane a defined by the equation

Ax + By + Cz + D = 0 (1)

and a point M0{x0 , yo, Zo) in space, find the distance d from
Mo to a.

This problem is similar to finding the distance between a

point and a straight line, which we discussed in Sec. 4.6. There-

fore we immediately write

I Axo + Byo + Czo + D I

\lA
2 + B2 + C2

We now formulate the following rule: in order to find the dis-

tance from the point Mo to the plane a defined by the general

equation (1), we must substitute the coordinates ofM0 for the

running coordinates x, y, and z on the left-hand side of (1) and
divide the absolute value of the result by \I

A

2 + B 2 + C2
.

Example 1. Find the distance from the point M0 (l, 1, 1) and
the plane defined by 2x + 2y - z + 3 = 0.

O We have from formula (2)

12-1 + 2-1 - 1 + 31 _

V2 2 + 2
2 + (- 1)

2 V9

Example 2. Find the distance between two parallel planes de-

fined by 2x + 2y - z + 3 = 0 and 2jc + 2y - z - 3 = 0.

O The easiest way is to choose a point M0 on one plane

and then find the distance from Mo to the other plane. For in-

stance, we choose the point M0 (l, 1, 1) on the second plane.

According to Example 1, the distance fromM0 to the first plane

is 6. #
6. Angle between two planes.

The angle between two planes is the angle between the nor-

mal vectors to these planes.

A normal vector to a plane can have either of two opposite
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Figure 104

directions and, therefore, the angle between two planes is mul-

tivalued (Fig. 104); it may have two values, ^ and x - <p. Since

cos (x - tp) = -cos y>, we can find the cosine of the angle be-

tween two planes from the formula where m and 112 are two

normal vectors to the planes a and (3 respectively.

If the planes are defined by the general equations

A\X + B\y + C\z + D\ = 0 for a

Azx + Biy + C2Z + £>2 = 0 for /3

then we can choose m = <y4i, B\, C\) and nz = {Az, Bz, Cz >

as the normal vectors. Then

A\Az + B\Bz + Ci Cz
COS * ”

'Ja] + B\ + Cl'JAl + B\ + c\

Corollary. For two planes to be perpendicular it is necessary

and sufficient that the condition

A\Az + B\Bz + C 1 C2 = 0

is satisfied.

In fact, if the planes a and (3 are perpendicular, then

ni-n2 = 0. The converse is also true.

6.4. HALF-SPACES

We consider a plane a in space. The plane divides the entire

space into two half-spaces and is their boundary. Every half-

space is indicated by the parallel lines in Fig. 105.
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Figure 105

Suppose that the equation of the plane a is

Ax + By + Cz + D = 0 (1)

We characterize the half-space defined by a in algebraic terms.

One half-space is the set of points M(x, y, z) for which

Ax + By + Cz + D^O (2)

and the other half-space is the set ofpoints N(x, y, z) for which

Ax + By + Cz + D s$ 0 (3)

We first suppose that C A 0. Then equation (1) reduces

to the form
z = ax + by + k (4)

and (2) is equivalent to the inequality

z ^ ax + by + k (5)

and (3) is equivalent to the inequality

Z ^ ax + by + k (6)

Inequality (5) defines the half-space lying above the plane given

by (4) (Fig. 106) and (6) defines the half-space lying below the

plane.

If C = 0, then A or B is nonzero; then reasoning in a similar

way (but with respect to another coordinate, x or y) we can

obtain the required result.
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Example 1. Given the plane 2x - 3y + lz - 5 = 0 and two

points A/(4, -2, -2) and N(l, 3, 1), find whether the points

lie on one side of the plane.

O By substituting the coordinates ofM and N into the left-

hand side of the equation we have 2-4 - 3-(-2) + 7-(-2) -

5 = -5 and 2-1 - 3-3 + 7-1 - 5 = -5. Since the numbers

have the same sign, we infer that M and N belong to the same

half-space. •
Example 2. Given the plane a defined by the equation

x + .y-4z+l = 0 and two points P(l, 1, 1) and Q{2, 2, 1),

find whether the line segment PQ intersects the plane.

O Substituting the coordinates of P and Q into the left-hand

side of the equation yields l + l- 4+ l= - 1 and 1 + 2-
4+1 = 1. Since the resulting numbers are different in sign,

we infer that P and Q belong to different half-spaces with

respect to the plane a. Thus, the line segment PQ intersects

the plane. #

Exercises to Chapter 6

6.1

1. Describe the surfaces defined by the equations:

(1) x = 0, (2) y = 0, (3) z = 0, (4) xy = 0,

(5) xyz = 0, (6) x = 2, (7) xy - / = 0,

Y
2 V

2

(8) — + — = 1, (9) x2 + y
2 + z

2 = 16
„2 h2
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2. Form the equation of the plane through the point P( - 1, 2, 3) and perpen-

dicular to the radius-vector of the point.

3. Find the equation of the plane through the point P(l, 3, -4) and perpen-

dicular to the radius-vector of the point Q(-l, 0, 2).

4. Given three points Mi(l, 7, -2), Mi(A, -3, 2), and Mj(3, 4, 2), find

the equation of the plane through M, and perpendicular to the straight line

MlMy.
5. Find the equation of the plane through the point A(0, -2, -3) and

parallel to the plane defined by x + 5y - 4z + 2 = 0.

6. Find the equation of the plane through the point A(l, 1, 1) and parallel

to the try-plane and through the point B( - 1, 2, 7) and the x-axis.

7. Find the values of p and q such that the following pairs of equations

define the parallel planes

(a)

x — py + 2z - 3 = 0

2x - 4y - qz + 7 = 0,

(b)
(p + l)x - 6y + (p - l)z + 2 = 0

2x - 3y + qz - 1 = 0

8.

Find whether the planes defined by px - y - z = 0 and x + y + z = 0

coincide.

6.2

1. Find the equation of the plane passing through the origin and the points

A/i(l, 2, 3) and M2 (4, 5, 6).

2. Find the equation of the plane

(a) through two points Mi(-1, 1, 4) and 4/2(6, 4, -3) and parallel to the

x-axis.

(b) through two points Mi(0, -1, 1) and Mi(2, 1, 3) and perpendicular to

the plane defined by 4x - 3y + 5z = 0.

3. Find the points at which the plane defined by 7x - 5y + 2z - 14 = 0

and the coordinate axes intersect.

4. Find the intercept equation of the plane defined by 3x - 5y + 45z +

15 = 0.

5. Find the equation of the plane cutting the z-intercept c = - 5 and perpen-

dicular to the vector n = <2, -7, 1).

6. Find the equation of the plane through the point A( - 1, 1, 3) and cutting

equal intercepts on the coordinate axes.

6.3

X. Find the distance from the origin to the plane 2x + 2y - z - 1 = 0.

2. Find the distance between two parallel planes 6x + 3y + 2z = 5 and

6x + 3y + 2z = 1.

3. Find the equation of the planes parallel to the plane 6x + 3y - 2z +
7 = 0 and a distance 5 away from it.

4. Find the point on the x-axis equidistant from two planes 12x - 16y +

15z +1=0 and 2x + 2y - z - 1 = 0.
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5. Given two faces of a cube lying in the parallel planes

6x - 3y + 2z + 1 = 0 and 6x - 3y + 2z + 4 = 0, find the volume of the

cube.

6. Find the distance from the point P(l, 1, 1) to the plane passing through

the points ,4(4, -1, -1), B(2, 0, -2), and C(3, —I, 2).

7. Determine the altitude of the pyramid SABC dropped from the vertex

S on the base ABC if S(0, 6, 4), A(3, 5, 3), B(- 2, 11, -5), and C(l, -1, 4).

8. The normal vector n = <2, -3, 5> to the plane a defined by the equation

2x - 3y + 5z - 5 = 0 originates at a point on the plane. Find whether the

terminus of n lies on the same side of the plane a with the origin of coordinates.

9. Find the angle between two planes:

(a) Ax - 5y + 3z - 1 = 0 (b) 3x - y + 5z + 2 = 0

4x + Sy + 3z — 2 = 0 5x + 3y - z + 10 = 0

10. Given two planes through the point M( - 5, 16, 12): one plane contains

the x-axis and the other the y-axis, find the cosine of the angle between these

planes.

6.4

1. Find whether the point M(-2, 1, 4) and the origin lie on the same side

of the plane 3x - ly + 2z - 1 = 0.

2. In each of the cases find whether the points A/(2, — 1, -
1) and N( 1, 2,

-3) lie in the dihedral angle formed by the planes or in adjacent angles or

in vertical angles

(a) 3x - y + 2z - 3 = 0 (b) 2x - y + 5z -
1 = 0

x - 2y - z + 4 = 0 3x-2y + 6z-l=0



Chapter 7

A STRAIGHT LINE IN SPACE

7.1. EQUATIONS OF A LINE IN SPACE. EQUATIONS
OF A STRAIGHT LINE

1. A line as the intersection of two surfaces.

A basic method of defining a line in spatial analytic geometry

is its representation as the intersection of two surfaces.

Suppose we have two surfaces defined by the equations

F(x, y, z) = 0 and <f>(x, y, z) = 0, respectively. Then, their inter-

section consists of the points M(x, y, z) such that their coor-

dinates satisfy both equations simultaneously. Naturally, we

can adopt the following definitions.

Definition 1. Suppose we have a system

(F(x,y, z) = 0

[d>(x, y, z) = 0

The line L defined by this system is the set of all pdints of

space whose coordinates satisfy the system.

Definition 2. The equations of a line L in space are any two

equations F(x, y, z) = 0 and d>(x, y, z) = 0 such that the line

defined by the system of these equations coincides with L.

2. Parametric representation of a line.

Another way of defining a line is to represent it parametrical-

ly. Suppose we have three arbitrary functions f(t), <p(t), and

\J/(t) defined on a set T (say, on an interval from a to b). Then
<

the set of points M(x, y, z) whose coordinates are given by the

formulas

x = fit), y = <p(t), z = i(t) ( 1 )

where the parameter t (the argument) runs over the set T, is

a line defined parametrically and equations (1) are called the

parametric equations of the line.
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Example. The line defined by the parametric equations

x = R cos t, y = R sin t, z = t, where t varies from 0 to 2ir, is

a circular helix whose projection on the x^-plane is a circle cen-

tered at the origin (Fig. 107).

3. Parametric equations of a straight line.

The position of a straight line in space can be given in differ-

ent ways. For instance, a line can be determined by any two
points on it, or by two planes which intersect along it, or by
a point on it, or by two planes which intersect along it, or by
a point on it and a vector parallel to it. Each has a different

form for the equations describing the line.

We assume any nonzero vector parallel to a straight line to

be the direction vector of this Ime.

Given a point Mi(xx , y x , zi) and a nonzero vector a = (p,

q, r) in a rectangular Cartesian coordinate system, find the

equation of the straight line / passing through M\ and whose
direction vector is a. Obviously, a point M(x, y, z) lies on /

if and only if the vector M\M is collinear with a, i.e. when there

is a number t such that M\M = ta. We write the last equation
in coordinates:

x - x\ = tp, y - y x
= tq, z - Zi = tr
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or

x = Xi + tp, y = yi + tq, z = Zi + tr (2)

Thus, relations (2) are the parametric equations of the

straight line passing through the point Mfx\ , yi, Z\) and whose

direction vector is a = (p, q, r).

When the parameter t varies from — oo to + oo, the point

with the coordinates in (2) runs along the entire straight line.

Example 1. Write the parametric equations of the straight

line through the point Mi(-1, 2, 5) and parallel to the vector

a = <9, -2, 4>.

O Using formulas (2) we write the desired equations in the

form

x = -1 + 9t, y = 2 - 2t, z = 5 + At. •

Example 2. Find the distance from the point P(l, 1, 1) to

the straight line / defined by the parametric equations

x = -At, y = 8 -f t, z = 6 + 3t (3)

O In order to find the distance from the point P to the

straight line / it_is necessary to find a point ^(x, y, z) such

that the vector PQ is perpendicular to /, i.e. PQ ± a, where a

is a direction vector of the straight line (Fig. 108). We can take

the vector a = < - A, 1, 3>, whose coordinates equal the coeffi-

cients of t in equations (3), as the vector a.

The coordinates of the vector PQ are x -
1, y — 1, z — 1.

Using (3) we can write PQ = < -At -
1, 7 + /, 5 + 3 1).

The condition for the vectors to be perpendicular is that their

scalar product is zero. Therefore, instead of PQ i a we can
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write

(-1 - 4/)-(-4) + (7 + 0-1 + (5 + 3t)-3 = 0

whence t = - 1. Thus, the value of the parameter t correspond-

ing to the point Q is -1. Consequently, the coordinates of Q
are x = -At = 4, y = 8 + t = 7, z = 6 + 7>t = 3. We can now
find the distance from the point P to the straight line /

I PQ I = V (4 - l)
2 + (7 - l)

2 + (3 - l)
2 = V49 = 7

4. Canonical equations of a straight line.

The parametric equations of a straight line, i.e. equations (2),

express the proportionality between the numbers x - x\

,

y — y\, z — Zi (the coordinates of M\M) and p, q, r (the coor-

dinates of a). Thus, we can write them as

x - xi = y - yi = z - zi
(4)

p q r

Equations (4) are the canonical (symmetric) equations of a

straight line.

We must clearly understand that (4) is a system of two

equations

x - xi _ y - y\

~P Q

X - Xi _ z - Zl

P r

each of which is of first degree, that is the equation of a plane.

Thus, the canonical equations define a straight line as a line

along which two planes intersect.

Strictly speaking, representing the equations of a straight line

in form (4) is only meaningful when the three numbers p, q,

r are all nonzero. Nevertheless, equations (4) can also be used

when one or even two of the numbers are zero. Say, for p = 0

we write

x - xi _ y - yi _ z - zi

0 q r
(5)

1 2— 36 (>
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Let us show how this notation can be understood. We know

that equations (4) express the collinearity of two vectors

< x - X\ ,y - yi, z - Zi> and <p, q, r). Whenp = 0, collineari-

ty means that

This is precisely what equations (5) mean.

If p = 0 and q = 0, then we write (4) as

x - xi _y - yi _ z - zi

6 0 ~
r

which we understand as a system of two equations

x = xi, y = yi

(explain why).

Example 1. Find the canonical equations of the straight line

through two points M\{\, 0, -1) and A/2(-2, 1, 2).

O We take M\M2 = < -3, 1, 3> as the direction vector, then

the canonical equations (4) assume the form

x -
1 _ y _ z + 1 f

-3 1 3

Example 2. Write the canonical equations of the straight line

through the point (1, 0, 2) and parallel to the y-axis.

O We take the unit vector j = <0, 1, 0) as the direction vec-

tor of the line and write the canonical equations as

x -
1 _ y _ z - 2

0 1
0“

Actually, these equations imply the system x = 1, z = 2 (y

is arbitrary).

7.2. GENERAL EQUATIONS OF A STRAIGHT LINE

1. Finding a vector perpendicular to two given vectors.

This subsection is optional. We present a method for finding

from two vectors in space m and n2 a third vector n perpendicu-
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lar to each of the vectors. Here if ni and n2 are not collinear,

then n ^ 0; otherwise n = 0.

We introduce a rectangular Cartesian coordinate system in

space and assume that the vectors m and n2 are specified by
their coordinates: ni = <A U Bu Ci>, n2 = <A 2 , B2 , C2 >.

Theorem. The vector n with coordinates

Bx Cx Ax Cx A i Bx

b2 c2
> a 2 c2

f a 2 b2

is perpendicular to each of the vectors m and n2 ; n = 0 if and
only if ni and n2 are collinear.

Remark. Expression (1) for the coordinates of n can be easily

remembered in the following way. We form the array

A\B\ Ci

A 2B2 C2

from the coordinates of ni and n2 . Eliminating in turn the first,

second, and third columns yields three square matrices

(B x C,\ /Ax C,\ /Ax BA
\B2 C2) V^2 C2) V^2 B2)

whose determinants are the coordinates of the vector n; the sec-

ond determinant should be multiplied by -1.

In order to ascertain that n and n, (i = 1, 2) are perpen-

dicular, it is sufficient to verify that their scalar product is zero.

We have

ni-n - A\-
B\

B2

Cx

C2

- Si
Ax

A 2

Cx

C2

+ Cr
Ax

A 2

Bx

B2

= Ax(BxC2 - B2 Cx) - Bx(AxCz - A 2 Cx )

+ Cx(AxB2 — A 2 Bx)

Collecting like terms on the right-hand side yields ni-n = 0.

Similarly, we can verify that n2 n = 0.

If the vectors m and n2 are collinear, then their coordinates

are proportional and then each determinant in (1) is zero. Hence

it follows in this case that n is zero.



180 Part One. Analytic Geometry

Conversely, let n = 0, i.e. the three determinants in (1) are

zero. We prove that in this case ni and n2 are collinear. If

n2 = 0, then the proof is trivial: a zero vector is collinear with

any vector. Let n2 5* 0, then at least one coordinate of n2 , say

A 2 , is nonzero. Since the second determinant in (1) is zero, it

follows that its rows are collinear (as vectors in the plane). Be-

cause the vector corresponding to the second row is nonzero

(since A 2 ^ 0), we have, by the theorem in Sec. 1.1, subsec. 4,

Ai = \A 2 , Ci = \C2

where X is a scalar. Similarly, since the third determinant in

(1) is zero, we have

A\ = [aA 2 , B\ = hB2

where ^ is a scalar. It follows from the last two equations for

A\ that X = n (since A 2 ^ 0). Hence,

A\ = \A 2 , B\ = \B2 , Ci - \C2

that is, ni is collinear with n2 .

We denote the vector n, whose coordinates are given in (1),

by ni X n2 .

Thus, we introduce a new operation of mutiplication for vec-

tors in space. Whereas the scalar multiplication of two vectors

yields a number, the new operation results in a vector and

ni x n2 is the vector multiplication of ni and n2 .

Example 1. Show that

i x j
= k, j x k = i, k x i = j (2)

where i, j, and k are the unit vectors.

O Since i = <1, 0, 0>, j = <0, 1, 0>, and k = <0, 0, 1>, the

vector i x j has the coordinates

0 0 1 0 1 0

1 0
>

0 0
>

0 1

i.e. i x j = <0, 0, 1 > = k.

The remaining two equations in (2) can be verified in a simi-

lar way. #
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Example 2. Find a X b, with a = <1, 1, 1> and b =

< 1 ,
-

1 , 1 >.

O The coordinates of the vector a x b are

1 1 1 1 1 1

-1 1

>

1 1
> -1 1

i.e. a x b = <2, 0, 2>. 9
2. General equations of a straight line.

Two nonparallel planes define a straight line along which

they intersect. Consequently, the system of equations

C A\x + B\y + Ciz + D\ = 0

[ A 2x + B2y + C2z + D2 = 0
( )

defines a straight line in space provided the vectors ni =

(Ai, B i, Ci> and 112 = < A 2 , B2 , C2 > are noncollinear.

Equations (3) are called the general equations of the straight

line.

We can transform the general equations to canonical ones.

To do this it is necessary to choose the direction vector of the

straight line and a point on that line.

Let us show that we can take the vector n = ni x 112 as direc-

tion vector of the line defined by (3), i.e.

B^ Ci At C, At Bt

b2 c2

> a 2 c2
i a 2 b2

We use a to denote one plane and 0 to denote the other plane

defined by (3). The vector m = (A u B\, Ci> is perpendicular

to a and the vector n2 = (A 2 , B2 , C2 > is perpendicular to 0.

Since n is perpendicular to m and 112 (according to the theorem

on p. 179), it is parallel to the planes a and j3, respectively,

and consequently, to the straight line in which the planes inter-

sect. In other words, n is the direction vector of the straight

line defined by (3). Note that n ^ 0 since m and n2 are not

collinear by assumption.

We now show how we can find the coordinates of the point

through which the line defined by (3) passes. Since n A 0, at
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least one coordinate of n is nonzero. Let, for instance,

A i B i

a 2 b2

* 0

We write system (3) as

A\X + B\y — D\ — C\Z

A 2x + B2y = D2 - C2z
(4)

and setting z equal to a number z t (say, zero), we find from

(4) the values of x and y, viz., x = X\ , y = yx . The three num-

bers define the desired point. If we know the point M\(xx, yx,

Zi) on the straight line (3) and the direction vector n, then we

can write the equation of that line

x - X\ y - y i z - Z l

B i c, Ax c, Ax B\

b2 c2 a 2 c2 a 2 b2

Example. Write the canonical equations of the straight line

(x + 2y + 3z -
1 = 0

(*-y-z + 2 = 0

O We first find the direction vector. We have

Bx c, 2 3
= 1,

Ax Cl 1 3

b2 c2 -1 -1 a 2 c2 1 -1

Ax B i 1 2

a 2 b2 1 -1

thus, the direction vector is n = <1, 4, -3>. Then we have to

find a point on the line, that is, a solution of system (5). Setting

z = 0 yields the system

Cx + 2y = 1

[x-y= -2
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We solve it to find that x = — 1, y = 1. Thus, (-1, 1, 0) is a

point on the straight line defined by (5). The canonical equa-

tions of this line have the form

x + l _ y -
1 _ z ^

1 4 -3

7.3. RELATIVE POSITION OF TWO STRAIGHT LINES

Suppose two straight lines h and li are defined in a rectangu-

lar Cartesian coordinate system by canonical equations

X - X\ 1
1 _ z - Z\

Pi Qi n

X - X2 1
1 _ z - Zi

Pi qi ri

Two cases are possible here:

(1) 1 1 and h lie in the same plane, and

(2) l\ and h lie in different planes, that is, they are skew.

Let us find when case 1 occurs. We consider three vectors

ai = (p\,q\,r\) and a2 = {pi, <72, n) which are the direction

vectors of the straight lines h and li, and Mi Mi = {xi - Xi,

yi - yi, Z2 - Zi > (Fig. 109). For the lines l\ and h to lie in the

same plane, it is necessary and sufficient that the three vectors

are coplanar.

The condition that three vectors are coplanar (see Sec. 3.1)

is that the third-order determinant composed of the coor-

Figure 109 Figure 110
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dinates of the vectors is zero:

x2 - xi y2 - y i zi - zi

Pi qi r\

Pi <72 r2

= 0 ( 1 )

Thus, the straight lines h and l2 lie in the same plane if and

only if condition (1) is satisfied.

Whence the condition that straight lines are skew: the

straight lines are skew if and only if

x2 - xi y2 y i z2 - Zi

Pi qi rx

Pi qi r2

* 0

If straight lines lie in the plane, then they intersect, or are

parallel and do not coincide, or coincide. When the lines coin-

cide, the three vectors Mi M2, ai, and a2 must be collinear.

When the lines are parallel, vector ai is collinear with a2 but

they are not collinear with Mi M2 (Fig. 110). If the lines inter-

sect, then ai and a2 are not collinear.

Example. Find the relative position of the straight lines

x - 1 _ y _ z

-

2 x-2_y-2_z-2>
1

"
2

"
1 ’ 3 1

~ 2

O We have

2 - 1 O1
<N 3-2 1 2 1

1 2 1 = 1 2 1

3 1 2 3 1 2

thus, the lines are in the same plane. The vectors ai = <1, 2,

1 > and a2 = <3, 2, 1 > are not collinear and hence the lines inter-

sect. In order to find the intersection point, we write the equa-

tions of the first straight line in parametric form: x = 1 + t,

y = 2t, z = 2 + t, and substitute them into the equations of

the second line. We have the following system of equations

t
-

1 2t - 2 t
-

1

3 1 2
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*•2

Figure 111

Since the straight lines intersect, the system must be consistent.

Solving it yields t - 1. Hence the coordinates of the point of

intersection are x = 2, y = 2, z = 3. •
1. Angle between two straight lines.

The angle <p between two straight lines in space is the smallest

of two adjacent angles formed by two straight lines drawn

through an arbitrary point in space and parallel to the two given

lines (Fig. 111).

Let ai = (pu q\, rx ) and a2 = {p2 , q2 , r2 ) be direction vec-

tors of the given lines. The angle between these vectors either

equals the angle <p between the lines or is the supplement of

ip. Therefore

ai-a2 _ I Pi Pi + <7 i <?2 + r2 r2 1

I a 1 1
-

1 a2 1 fp\ + q\ + rj n/p2 + q2 + ri

If the straight lines are perpendicular, then cos <p = 0 (the con-

verse is also true), then the condition that the straight lines are

perpendicular has the form

P\Pi + q\Qi + n r2 = 0

If the straight lines are parallel, then ai and a2 are collinear

(the converse is also true), then the condition that the lines are

parallel is

P\ = qt_ _ n
Pi qi r2
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7.4. RELATIVE POSITION OF A STRAIGHT LINE
AND A PLANE

The following cases are possible for a straight line / and a

plane a in space:

(1) a straight line / intersects a plane a, i.e. they have a point

in common,

(2) / is parallel to a but does not lie in a, in this case they

have no points in common,

(3) / lies in a.

Let us find how to distinguish between these cases if the

plane a is defined by the equation

Ax + By + Cz + D = 0

and the straight line / by the canonical equations

x - xi = y - yi = z - Zi

p q r

We consider two vectors n = (A, B, C> and a = </?, q, r >,

one of them being perpendicular to the plane a and the other

to the straight line /.

Obviously, the line / is parallel to a if and only if a is perpen-

dicular to n, that is when the scalar products of these vectors

are zero. Consequently,

Ap + Bq + Cr = 0 (1)

is the necessary and sufficient condition for the straight line

/ and the plane a to be parallel. Now, if this condition is not

fulfilled, i.e. if

Ap + Bq + Cr pi 0

then l and a intersect.

Suppose that the straight line / is parallel to the plane a, i.e.

condition (1) is valid.

The straight line lies in the plane a if and only if a point

yi, Zi) on / lies in this plane. Consequently, the neces-

sary and sufficient conditions that the straight line / lies in the
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plane a can be written as

Ap + Bq + Cr = 0

Ax\ 4- By\ + Czi + D = 0

Example. Let us consider the straight line

x - 3 _ y + 2 _ z

5 3-1
and the three planes

3x - 4y + lz + 4 = 0 (a)

x - y + 2z + 3 = 0 (/3)

x - y + 2z - 5 = 0 (7)

The straight line / intersects the plane a since 3-5 + ( — 4) - 3 +
7 -(-l) 5<£ 0. At the same time, the line is parallel to a plane

/3 since 1 -5 + ( — 1)- 3 + 2 (- 1) = 0, but does not lie in /3 since

the point A/i(3, -2, 0) on this line does not belong to /3. Finally,

/ lies in the plane 7 since / is parallel to 7 and Mi belongs to 7.

1. Angle between a straight line and a plane.

The angle 8 between a straight line and a plane is the angle

formed by the line and its projection on the plane. The angle

6 varies from 0 to 90°.

Let a plane be defined by the equation

Ax + By + Cz + D = 0

and a straight line by the canonical equations

x - xi _ y - yi _ z - Zi

P
~

r

The vector n = {A, B, C) is perpendicular to the plane and

the vector a = (p, q, r) is parallel to the straight line.

We denote the angle between the vectors n and a by <p. Figure

112 shows that <p = 90° ± 6, hence sin0 = I cos <p I.. Whence we

have

ln-al

In I
- la I

sin 0 =
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or in coordinate form

sin 8 -
I Ap + Bq + Cr I

\!a
2 + B2 (2)

We can find from (2) the angle between a straight line and
a plane using the coefficients of their equations.

Example. Find the angle between the straight line

( 6x - 2y - z - 20 = 0

1 15* - 2y - 4z - 8 = 0

and the plane 6x + 15y - 10z + 31 = 0.

O We first find the direction vector of the line. To do this,

according to Sec. 7.2, we should take the normal vectors of the

planes defining the line, i.e. n, = <6, -2, -1> and n2 = <15,

-2, — 4>, and then find the vector a = ni x n2 . We have

"<l
-2 -1

-2 -4
6 -1

15 -4
6 -

15 :>D
or a = <6, 9, 18 >. To simplify our calculation still further, it

is convenient to divide the coordinates of a by 3; we have

a' = <2, 3, 6>. Using (2) we find the sine of the angle between
the straight line and the plane:

16-2 + 15-3 - 10-61

o- 19-7
sin 8 -

V

6

2 + 15
2 + (-10) 2

\ll
2 + 3

2 + 6
2

3

133

From trigonometric tables we find that 8 ~ 1°18'. •
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Exercises to Chapter 7

7.1

1. Find the equation of the straight line through the origin and the point

(a, b, c).

2. Draw a straight line through the point (3, -2, 7) and parallel to the

. ... x - l y + 2 z + 4
straight line = =

.3-3 5

3. Given the equations of motion of a point x = 1 - 6/, y = 2 + 3r,

z = 5 - 2t, find its velocity v.

4. Given the equations of motion of a point x = 3 - 2r, y = -4 + t,

z = 1 + 2r, find the distance covered by the point in the time interval from

ti = 0 to ti = 5. ,

5. Draw a straight line through the point (-1, 2, 4) and perpendicular to

the plane 3x + 2y - 1z + 5 = 0.

6. Find the projection of the point (11, — 1, 6) on the plane

5x - y + 2z - 8 = 0.

7. Write the equations of the sides of AABC with vertices A(\, 1, 1),

B(- 2, 3, 4), and C(4, -5, 5).

8. Set up the equation of a plane passing through the point (-1, 0, 1) and

the straight line x = 1 + 5t, y = -4 + 2 1, z = -1 — t.

x + 1

9. Write the equation of the projection of the straight line =

y -
l z - 2= on the xy-plane.

6 -1

10. Write the equations of the perpendicular from the point (2, 4, 1) onto

,
x - 1 y -

1 z-2
the straight line = = .

5 -1 2

11. Find a point symmetric to the point (6, 5, -4) with respect to the straight

x + 2 y

-

3 z + 5
line

7 1 -3

12.

Find the distance between two straight lines

x _ y + 3 _ z -
1 __j x - 6 _ y

5 -2 r
and

-2

13. Given a cube with side equal to 1, find the distance from a vertex to

the diagonal not passing through it.

14. Verify whether a plane perpendicular to the diagonal of a cube and pass-

ing through its midpoint intersects the cube along a regular hexagon.

7.2

1. Reduce the equations of a straight line

x + y - z + 6 = 0

4x - Uy + 2z + 27 = 0

to canonical form.
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2.

Prove that the straight lines

x + 2 y - 1 z= = — and
3 -2 1

Cx + y-z = 0

[x - y - 5z -
:8 = 0

are parallel.

3. Describe relative positions of the straight lines:

(1) C5x + 7 = 0 (2) C3x - 1 = 0 (3) CA,x + B,y + C,z = 0

^3y -2 = 0 (^2y + 5z = 0 + Biy + Ctz = 0

4. Form the equations of the projection of the straight line

(x-y-z = o

[2.x +3y + z- 5 = 0

on the yz-plane.

5. Form the equations of the projection of the straight line

Cx - 4y + 2z - 5 = 0

1 3x + y - z + 2 = 0

on the plane 2x + 3y + z - 6 = 0.

7.3

X —
1 y + 1 7

1. Prove that the straight lines = = — and x = -3 + 7 1 ,

3 2-5
y = 6 - it, z = -6 + t lie in the same plane and find the equation of the

plane. Find the point at which the lines intersect.

2. Given the straight lines

and
x+l_y-2_z-4

4 c 1

find a such that the lines intersect.

3.

Find whether the straight lines

3* + 5y + 5z - 3 = 0

x + 5y + 14 = 0
and

x - 2 _ y - 6 _ z + 1

3
-4~

intersect.

4.

Find the angle between the straight lines

1 y + 2
and

y ~ 3

9

z + 1

6

7.4

1. Given the straight line through the points >Xi, y\, 0) and (xi, 0, Z2 ), find

the point at which this line and the yz-plan* «tersect.
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2. Find the value ofA for which the plane Ax -
3_v + 7z

x + 1 y _ z - 4

T

2 = 0 is parallel

to the straight line
2 1 -3

3. Find the values of A and B such that the plane Ax + By + z

is perpendicular to the straight line — y + 1

-5

4. Find the point at which the straight line — =

plane 3* - 5y — lOz -6 = 0.

5. Find the point at which the straight line

(lx + 2y + 3z - 15 = 0

/ 5x - 3y + 2z - 15 = 0

-1

y ~ 3 z + 1

9 = 0

and the

and the plane lOx - 11^ + 5z — 36 = 0 intersect.

6. Find the sines of the angles formed by the straight line

(4x — 6y + 3z + 18 = 0

(* - z + 3 = 0

and the coordinate axes.



Chapter 8

QUADRIC SURFACES

Any surface whose equation in rectilinear Cartesian coor-

dinates has the form

$(*, y, z) = 0

where 4>(x, y, z) is the second-degree polynomial in x, y, z, i.e.

$(*, y, z) = Ax2 + By2 + Cz2 + Dxy + Exz + Fyz +

+ Gx -t- Hy + Kz + E

is called a quadric surface.

We shall not consider cylindrical surfaces, i.e. those defined

in some coordinates by an equation of the form

4>(x, y) = 0

(its left-hand side is independent of z). Then, as can be shown,

the equation of a surface in convenient coordinates reduces to

one of the two forms:

Ax2
-)- By2 + Cz2 + L = 0 with A, B, C, L nonzero (I)

Ax2 + By2 + Kz = 0 with A, B, K nonzero (II)

Ellipsoids and hyperboloids are the most interesting exam-
ples of surfaces defined by (I), and the graphs of (II) are

paraboloids.

8.1. THE ELLIPSOID

Definition. The ellipsoid is a surface defined by the equation

in convenient rectangular coordinates:

x2 y
2

z
2

—y + T2 + ^2 = b ^ 0, c^O
a b c

( 1 )
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2

C(0,0,c)

B(0,b,0)

y

Figure 113

In order to visualize the shape of an ellipsoid and to sketch

it in a plane, we use the method of parallel sections, that is

examine its intersections with various planes.

Let the cutting planes be parallel to the xy-plane, each of

them being defined by the equation z = h (= const). The line

of intersection of the plane and an ellipsoid is determined by

the system of equations

We rewrite it as

(2)

If \h\ < c, i.e. -c < h < c, then 1 - h
2
/c

2
is positive and the

section is an ellipse (Fig. 113) with the semiaxes

The semiaxes have maximal values when h = 0, namely a\ = a

and b\ = b.

If h increases from 0 to c or decreases from 0 to - c, then

a v and b\ decrease from a to 0 and from b to 0, respectively.

13—366
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When h = c or h = -c, the sections of the ellipsoid are the

points (0, 0, c) and (0, 0, -c). When I h I > c, the first equation

in system (2) has no solution since its left-hand side is nonposi-

tive; consequently, there are no points belonging to the ellipsoid

outside of the strips between the planes z = c and z = -c.

Similar results are obtained when the ellipsoid and the planes

parallel to the xz- and yz-axes intersect.

Note once more that the intersection of the ellipsoid defined

by (1) and the xy-plane is the ellipse

and this ellipse has the longest semiaxes (a and b

)

out of all

its sections by the planes parallel to the xy-plane. Similarly, the

intersection of the ellipsoid and the xz-plane is the ellipse

and it has the longest semiaxes (

a

and c) out of all its sections

by the planes parallel to xz-plane. Finally, the intersection of
the ellipsoid and the yz-plane is the ellipse

It has the longest semiaxes (

b

and c) out of all its sections by
the planes parallel to the .yz-axis.

The quantities a, b, and c are the semiaxes of the ellipsoid

defined by (1). If a ^ b, b ^ c, c ^ a, the ellipsoid is called

tri-axial or symmetric.

When two of the semiaxes are equal, the ellipsoid is a surface

of revolution. For instance, if a = b, the equation of the ellip-

soid assumes the form
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and its section by the plane z = h, with I h I < c, is a circle

with center on the z-axis, and the ellipsoid is a surface of revo-

lution whose axis is the z-axis. Such an ellipsoid is called an
ellipsoid of revolution (or spheroid).

Finally, when the three semiaxes of an ellipsoid are equal,

the equation of the ellipsoid assumes the form

x2
y
2

+ “2 + = 1

i.e. it is a sphere with the equation

x2 + y
2 + z

2 = a
2

8.2. THE HYPERBOLOID

1. The hyperboloid of one sheet.

Definition. The hyperboloid of one sheet is the surface de-

fined by the following equation in convenient coordinates:

a
2 b2

= 1, a > 0, b > 0, c > 0 (1 )

13
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By cutting the hyperboloid defined by (1) by planes parallel

to the coordinate planes, we can find its shape in a similar man-
ner as we did in the case of an ellipsoid.

The section of the hyperboloid in (1) by the plane z = h is

a line defined by the equation

i.e. is an ellipse (Fig. 114) centered at the point (0 , 0, h) and
whose semiaxes are a x = aV 1 + h 2

/c
2 and bi = b\I 1 + h

2
/c

2
.

When h = 0, the semiaxes have minimal values ax = a and
bi = b; as I h I increases, i.e. as the cutting plane moves away
from the xy-plane, the values of the semiaxes increase in-

definitely.

The intersection of the surface in (1) and the xx-plane is the

hyperboloid defined by the equations

a
2

c
2

1

[y = 0

The section of the surface by the j'z-axis is the hyperbola with

the equations

It can be shown that any section of the surface in (1) by planes

passing through the z-axis is a hyperbola.

The hyperboloid of one sheet given by (1) opens indefinitely

along the z-axis as I z I grows; the section by the plane z = 0
is the “neck”.

When a = b, equation (1) becomes
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y

Figure 115

Sections of this surface by the planes z = h are circles with

centers on the z-axis. Consequently, in this case the hyperboloid

is a surface of revolution about the z-axis. Such a surface is

called a hyperboloid of revolution of one sheet.

2. Hyperboloid of two sheets.

Definition. The hyperboloid of two sheets is the surface de-

fined by the following equation in rectangular coordinates:

X2 V2 72

^2
+~

2 ~^z= -l a> 0, b> 0, c>0 (2)

This equation differs from (1) in the sign of the right-hand side.

In order to find the shape of the surface in (2), we consider

its sections by the planes z = h. These sections are lines lying

in the planes z = h and defined by the equations

(z = h (3)

When I h I < c, the right-hand side of (3) is negative; conse-

quently, the section is “empty”. Thus, there are no points be-
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longing to the hyperboloid in (3) in the strip between the planes
Z = c and z = —c. When I h I = c, i.e. when z = c or z = — c,

the only solution of (3) is * = 0, y = 0. Hence it follows that
the sections by the planes z = c and z = -c are the points (0,

0, c) and (0, 0, -c) respectively. When \h \ > c, equation (3)

defines an ellipse with the semiaxes a\ = afh 2
/c

2 -
1 and

= bfh 2
/

c

2 — 1 in the plane z = h. As I h I increases from
c to infinity, cti and b\ increase from zero to infinity.

Thus, the surface (2) consists of two sheets, one lying in the
subspace z> c and the other in the subspace z < -c (Fig. 115).

The sections of the surface by the xz- and ^z-planes are the
hyperbolas

-1
a
1

c
2

and

(/
= 0

It can be shown that any section by a plane passing through
the z-axis is a hyperbola.

For a = b (2) is a surface of revolution about the z-axis,

which is called a hyperboloid of revolution of two sheets.

8.3. THE PARABOLOID

1. The elliptic paraboloid.

Definition. The elliptic paraboloid is the surface defined in

rectangular coordinates by the equation

x2
y
2

-2 + ^2 = z, a > 0, b > 0 (1)
a b

This surface and the plane z = h can only intersect when
h ^ 0. For h = 0 the section is a point, the origin. For h > 0
the section is the ellipse defined by

(z = h
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with the semiaxes a\ = aVh and b\ = bfh. As h increases from

zero to infinity, a\ and b\ also increase from zero to infinity.

Let us consider the section of the surface (1) by the xz-plane.

1 2
This section is defined by the equations y = 0 and —= x = z,

a

which is a parabola with the z-axis and lying in the plane y = 0.

Similarly, the section by the jz-plane is the parabola x = 0,

= z with the z-axis and lying in the plane x = 0. It can

be shown that any section by a plane passing through the z-axis

is a parabola with the z-axis.

It is now clear why the surface (1) is called the elliptic

paraboloid (Fig. 116). For a = b equation (1) assumes the form

x2 + y
2 = a

2
z (2)

In this case the sections by the planes z = h, where h > 0, are

circles with centers on the z-plane. This means that (2) is a sur-

face of revolution with the z-axis and is called an elliptic

paraboloid of revolution.

2. The hyperbolic paraboloid.

Definition. The hyperbolic paraboloid is the surface defined

in rectangular coordinates by the equation

x2
v
2

^-^-= = z, a > 0, b > 0
a b

(3 )
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The section by the plane y = 0 is the parabola

y = o, z = \ x2

a
(4)

with the vertex at the origin and the z-axis as the symmetry

axis. Since here 1/a
2 > 0, the parabola lies in the half-plane

y = 0, z > 0, i.e. the parabola opens upward (with respect to

the z-axis).

The section by the plane x = 0 is a parabola with the

equations

x = 0, z = - ~ y
2

(5)

i.e. its vertex is at the origin and the parabola is symmetric

about the z-axis; it opens downward since here -1/b 2 < 0.

In order to visualize the shape of the surface in (3), clearly,

we consider the section by the plane x = h, where h is a number.

This is the parabola

which results from the parabola in (5) by displacing it upward
(i.e. in the positive direction of the z-axis) by h2/a2

. The vertex

of the new parabola has the coordinates

i.e. it lies on the parabola in (4).

Thus, in order to obtain the surface (3) we should use the

parabolas (4) and (5), which lie in perpendicular planes and
have their vertices and the axes of symmetry in common, one
parabola opening upward and the other opening downward.
Then one of them should be translated in space so that its ver-

tex moves along the other parabola. The resulting surface is

saddle-shaped (Fig. 117).

Let us consider sections of this surface by the planes z = h.
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Their equations

v2 v
2

z = h, ~ ti = h

show that the section by the plane z = h for h 0 is a hyperbo-

la. If h > 0, then the transverse axis of the parabola is parallel

to the x-axis (the straight line z = h, y = 0), while for h < 0

the transverse axis is parallel to the y-axis (the straight line

z = h, x = 0). When h = 0, the section is defined by

n
xl

Z = 0, -y
a

x y j
i.e. it degenerates into a pair of straight lines — - y = 0 and

— -f ~~ = 0 lying in the Jty-plane.
a b



Part Two

LINEAR ALGEBRA

The first part of this book dealt with the elements of analytic

geometry in the plane and in space on the basis of the ideas

of coordinates and vectors. Let us remind that we began

manipulating vectors after introducing two operations, namely,

vector addition and the multiplication of a vector by a scalar,

which follow the laws of arithmetic.

Mathematics and its applications often involve objects which

cannot be presented geometrically but admit operations with

them like those indicated above for vectors. Such objects are

also called vectors, but now the term has a wider sense. As
in the case of ordinary vectors, these objects can be defined

by sets of numbers—coordinates—with the difference that

there may be any number of coordinates (not necessarily two

or three). The study of such objects is called the theory of vec-

tor spaces or linear algebra.

We begin the second part of the book with a chapter on sys-

tems of linear algebraic equations. The chapter is optional, but

is necessary for presentation and is practically important.



Chapter 9

SYSTEMS OF LINEAR EQUATIONS

This chapter considers systems of first-degree algebraic equa-

tions. Special cases of such systems were discussed in Chapter

3 when studying systems of n linear equations in n unknowns.

In what follows the number of equations and the number of

unknowns are not necessarily equal; both numbers are ar-

bitrary.

Algebraic first-degree equations are called linear since a first-

degree equation in two unknowns defines a straight line in the

plane.

9 .1 . ELEMENTARY TRANSFORMATIONS OF A SYSTEM
OF LINEAR EQUATIONS

Let us revise the notation introduced in Chapter 3 . We
denote unknowns by xi, Xz, .... the coefficients of the

unknowns in the z'th equation of the system by an, a,2, . . . ,

and the constant term in the z'th equation by b-,. In this notation

the general form of the system of m linear equations in n

unknowns (an m x n system) is

a11X1 + 012X2 + . . . + ai„x„ = bi (1 st equation)

021*1 + 022X2 + . . . + a2nXn = b2 (2nd equation)

amt xi + am2x2 + . . . + am„xn = bm (mth equation)

Systems can contain equations of the form

0*1 + 0*2 + . . . + Q'Xr, = b

Obviously, for b = 0 this equation is satisfied by any set of

unknowns, while for b ^ 0 no set of unknowns satisfies it.
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The solution of system (1) is a set of n numbers on

,

012 , , ot„ which when substituted for the unknowns in each

equation of the system (ai for X\, az for xi, and so on) trans-

form all the equations into valid numerical equalities.

A system is said to be consistent if it has at least one solution

and inconsistent if it has no solution.

We later show that three cases are possible:

(1) the system is inconsistent,

(2) the system has a single solution, and

(3) the system has infinitely many solutions.

It is impossible to have a finite number of solutions greater

than one.

To analyze a system of equations means to establish whether

it is consistent. If the system is consistent and has a single solu-

tion, we should determine the solution; when the number of

solutions is infinite, we should find the set of solutions using

the most efficient method.

A method for solving systems of linear equations, which is

both sufficient and suitable for drawing theoretical conclu-

sions, by a systematic process of elimination of unknowns is

called Gaussian elimination or the Gauss algorithm.

When solving a system of linear equations, we shall always

start with a system written in the form in (1), namely, the order

of terms in the equations of the initial system is preset: the

first term is that with the unknown X\, the second is with X2,

and so on.

This order can be violated in the process of transforming the

system, since the following operations are possible:

(a) interchanging two terms in all the equations. For instance,

interchanging the terms with xz and x4 in the system

[

f

5Xi - 7X2 + 4X3 - X4 = 2

3xi + 6x2 - X3 + x* = 3

5xi - X4 + 4X3 - 7X2 = 2

3xi + X4 - X3 + 6x2 = 3

yields

Thus, a transformation of type in (a) is an identity transfor-

mation,



Ch. 9. Systems of Linear Equations 205

(b) eliminating an equation of the form

O'Xi + 0 X2 + . . . + O’Xri = 0 (2)

from the system ,

(c) adding a constant multiple of one equation to another

equation.

Definition. The operations (a), (b) and (c) are called elemen-

tary operations.

The following proposition is true.

A system obtained from an initial system by finitely many

elementary operations is said to be equivalent to it.

This is obvious for (a) and (b), while (c) requires additional

arguments.

Suppose we have the system

aii-xi + a12X2 = b\

a2 1 X1 + 022X2 = b2

(3)

We transform the system as follows: add both sides of the sec-

ond equation multiplied by a number c to the first equation.

The result is the new system

r(au + ca2 \)x\ + (an + ca22)^2 = b\ + cb2 ^
[ a2 \X\ + 022X2 = b2

Every solution of the initial system (3) satisfies the new sys-

tem (4). On the other hand, we can obtain (3) from (4) using

an operation similar to (c). To do this we add the second equa-

tion in (4) multiplied by - c to the first equation. Hence it fol-

lows that every solution of the new system satisfies the initial

system. Thus, the systems are equivalent.

9.2. GAUSSIAN ELIMINATION

1. Reducing a system to the echelon form.

The essence of Gaussian elimination is to use elementary

operations to reduce a system of equations to a form showing

all its solutions. Let us assume that if the algorithm involves
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the equation

0-xi + 0 -JC2 + . . . + 0 x„ = 0 (1)

then the equation is discarded, that is, a type (b) elementary

operation is applied.

Let us consider the system of linear equations

' anXi + 012X2 + • . + OlnXn = b\

021*1 + 022*2 + • • 02/i*n = bl
(2)

OmlXl + am2x2 + . • + 0mn*n = bm

TWo cases are possible here.

Case 1. The system involves an equation in which all the

coefficients of the unknowns are zero, while the constant term

is nonzero:

0
• JCi + 0'*2 + . . . + 0 •*„ — b (3)

where b is nonzero. No set of unknowns can satisfy (3) and

therefore a system containing such an equation is inconsistent.

Case 2. The system has no equations like (3) with b * 0. In

other words, each equation has at least one nonzero coefficient.

Let us dwell on this case. Suppose that aw ^ 0. Then we can

eliminate X\ from all the equations beginning from the second

one by adding the first equation multiplied by -a2 \ /an to the

second equation, the first equation multiplied by -a2 \/aw to

the third equation and so on. The resulting system is

r On*i + a i2x2 + . . . + a inx„ = bi

022*2 + • + a2nXn = b2

am 2X2 + . • + 0mn*n = bm

The first step is completed. The boxed equations of the system,

which remain to be transformed, are the residual part.

Let us apply step 1 to the residual part. As a result we either

find an equation of type (3) (where b ^ 0) thereby establishing
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that the system is inconsistent, or assuming aii ^ 0 perform

the next step, i.e. arrive at the system

anXi + anxi + a13X3 + . + a\ nx„ = b\

aiiXz + aiiXi + . + ainXn = bi

033*3 + •

// 1 It

. + ainXn = b3

Om3*3 + •

M 1 tt

• "t" QmnXn — Dm

The second step is completed. The residual part contains one

equation less.

Continuing the process we arrive at one of two cases. We
either obtain a system whose residual part contains an equation

of the form Oxi + . . . + 0 x„ = b, with b ^ 0, the system

thus having no solution (being inconsistent) and there is no rea-

son to transform it any further. Or, since the number of steps

cannot exceed n (the number of unknowns), we finally obtain

a system having no residual part, that is, to a system of the form

b\\Xi + bnXz + • . . + birXr + . . . + b\ nXn = Cl

bllXl + . . . + birXr + . . . + blnXn = C2 , ...

^ |
brrXr + . . . + brnXn — Cr

where the coefficients bn, bn bn are nonzero. The num-
ber of equations may be different to system (2) (r equations

instead of m initial ones) because equations of form (1) are

discarded.

We shall call the system in (4) to be in the echelon form due

to the appearance of the system. Just look at system (4), the

broken line beneath the first terms is like a staircase.

Now, let us see what we should do if the assumptions

flu ^ 0, aii ^ 0, and so on, required when obtaining (4) are

not fulfilled.

At each step the coefficient of the first unknown in the first

equation is called the pivotal coefficient. In system (2) the pivo-
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tal coefficient is an. If an = 0, then one of the coefficients

in the first equation is nonzero, say an- Then we interchange

terms with X\ and x2 in all the equations (a type (a) elementary

operation) to make the pivotal coefficient nonzero. Then we
eliminate x2 ,

and not X\, from all the equations of the system.

Similarly, we may interchange terms at each step of the al-

gorithm to ensure that the pivotal coefficient is nonzero. The
resulting system is not necessarily of form (4); it may differ

in the subscripts of the unknowns, but it will still be in the

echelon form.

Let us summarize.

Theorem. If the elementary operations do not result in the

equation of the form

0 -Xi + 0 -Xi + . . . + 0 -x„ = b

with b nonzero, then the system reduces either to form (4) or

to aform differingfrom (4) in the subscripts of the unknowns.
Example. Reduce (if possible) the following system of four

equations in five unknowns to the echelon form:

-Xi + 3x2 + 3^3 + 2x4 + 5x5 = 2

- 3xi -(- 5x2 + 2x3 + 3x4 + 4xs = 2
<

(5 )- 3xi + X2 - 5X3 - 7X5 = -2
- 5xi + 7x2 + x3 + 16x» + X5 = 10

O The pivotal coefficient is nonzero (it equals -1), thus,

we can eliminate Xi from all the equations of the system starting

with the second, namely, we subtract the first equation multi-

plied by -3, -3, -5 from the second, third, and fourth equa-

tions, respectively. The resulting system is

— Xi + 3X2 + 3X3 + 2x» + 5xs = 2

- 4x2 - 7X3 - 3X4 - llx5 = -4
-< - 8x2 - 14x3 - 6X4 - 22xs = -8

- 8x2 - 14x3 + 6x4 - 24x5 = 0

The pivotal coefficient in the boxed part of the system is non-

zero (it is - 4) and we can eliminate X2 from the second and
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third equations. We have

r —Xl + 3X2 + 3*3 + 2X4 + 5X5 = 2

- 4x2 - 7*3 - 3X4 - 11X5 = -4

0-X3 + 12X4 - 2X5 = 8

(the number of equations is one less than we started with since

we discarded the equation 0 = 0). The pivotal coefficient in the

residual part is zero, while other coefficients, say of xs ,
are non-

zero. Interchanging the terms with X3 and X5 yields a system

in the echelon form

— Xi + 3X2 + 5X5 + 2X4 + 3X3 = 2

- 4X2 - 11X5 - 3X4 - 7X3 = -4 (6)

- 2x5 + 12x4 = 8

which is equivalent to the initial system (5). •
2. Solving system in the echelon form.

We now consider the staired system (4). Two cases are possi-

ble here: r = n and r < n.

Case 1. r = n. Then the system has the form

b\\X\ + 612X2 + . . . + binXn = Cl

622X2 + . . . + b2nXn = C2

bnnXn — Cn

and is called triangular. Noting that b„„ ^ 0 we find from the

last equation in (7) the unique value of x„, then substituting

it into the preceding equation and noting that 6„-i,n-i ^ 0

we find a unique value for x„ - 1 ,
then substituting the values

of xn and x„_ 1 we found into the preceding equation we find

a unique value of x„- 2 , and so on.

Thus, a system in the echelon form in which the number r

of equations equals the number n of unknowns has a unique

solution.

Case 2. r < n. We transfer the terms with x,+ i, x,+ 2 ,

14—366
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to the right-hand side of all the equations in (4) to obtain

"b\\X\ + £12*2 + . . . + b\rXr = Cl - b\,r+ l*r + 'l
- ... - b\„X„

bllX2 + . . . + blrXr = C2 - ^2,r+ \Xr + l
- ... - blnXn ...

\
(8)

^ brrXr — Cr
— br, r + lXr + 1

— ... — brnXn

Substituting arbitrary numbers for xr+ 1 , xr+ i, ... , x„ into (8)

yields a system of triangular form for finding the remaining

unknowns xi, X2 , ... , xr . Solving this new system gives a

unique set of values of xit x2 , . .
. , xr . Hence we infer that

for r < n, system (4) has infinitely many solutions as described

by (8) (given arbitrary xr+u xr + 2 , . .
. , x„, we can find xu

X2 , . .
. , xr from (8).

Unknowns whose values can be arbitrarily chosen are said

to be free; xr+i,xr + 2 , ... , x„ are free unknowns for system (4).

Thus, a system in the echelon form of r equations in n

unknowns with r smaller than n has infinitely many solutions-,

here n - r unknowns are free.

Remark. If when reducing the initial system to the echelon

form we interchange the unknowns (type (b) elementary opera-

tions), then any n - r unknowns may be free in the resulting

system and not necessarily xr +i, xr + 2 , , x„.

3. Analyzing a system of linear equations.

Up till now our task was to describe all the solutions of a

system of linear equations. In some cases, however, it is suffi-

cient to know how many solutions the system has (no solution,

or a single solution, or infinitely many solutions) and we say

that we analyze the system. If the system has infinitely many
solutions, we should also find the free unknowns (the values

of the remaining unknowns are uniquely determined once we
know the values of free unknowns).

Gaussian elimination is sufficient to analyze a system of

linear equations. As a result we either ascertain that the system

has no solution (if an equation of the form 0-Xi -l- 0-^2 +
... + 0-xn = b, where b ^ 0, appear) or reduce the system to

the echelon form. Suppose we have the second case and r and



Ch. 9. Systems of Linear Equations 211

n are the number of equations and the number of unknowns
in the system in the echelon form, respectively. If r = n, then

the initial system has a single solution. If r < n, then the system

has infinitely many solutions, and we can consider the

unknowns undefined by the first terms of the equations in the

system having the echelon form as free unknowns.

Example 1. Analyze and solve system (5).

O The system has been already analyzed (reduced to form

(6)). It has infinitely many solutions; x4 and xj are free

unknowns.

To solve system (5) means to find all its solutions explicitly.

We transfer terms with free unknowns x4 and x3 to the right-

hand side of each equation in (6), i.e. we rewrite the system as

[

-Xi + 3x2 + 5X5 = 2 - 2x4 - 3^3

- 4x2 - 11x5 = -4 + 3X4 + 7x3 (9)

- 2x5 = 8 - 12x4
•

Given X4 and X3, we can find x5 , X2, and xi.

Thus, the problem is solved. However, we can continue the

solution and express x5 , X2, xi in terms of x4 and x3 . We have

from the last equation in (9) x5 = -4 + 6x4 . Substituting this

value into the second equation in (9) yields

-4x2 - 11( — 4 + 6x4) = -4 -1- 3x4 + 7x3

69 7
whence X2 = 12 - — x4 - x3 .

4 4

Finally, substituting the expressions for X5 and X2 into the

first equation yields

-xi + 3^12 - ^X4 -^-x5

^
+ 5( — 4 + 6x4)

= 2 - 2x4 - 3x3

79 9
whence Xi = 14 - — X4 - -

7
- x3 .

4 4

Thus, explicit expressions for X5, X2, and Xi in terms of x*

69 7
and X3 are X5 = -4 + 6x4, X2 = 12 - —- x4 - -7- x3 , and

4 4

14 *
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79 9
Xi = 14 —— x4 - *3 . The system has infinitely many solu-

tions. For example, putting x4 = 0 and x3
= 0 yields a particu-

lar solution xi = 14, x2 = 12, x3 = 0, x4 = 0, and x5 = -4. •
Example 2. Solve the system

2xi

2x\

3*i

2xi + 2*2

x2 +

Xl

Xi - x4 = 2

- 3x» = 1

X3 + X4 = 8

2x3 + 5x4 = 11

(10)

O The pivotal coefficient is nonzero, nevertheless it is con-

venient to begin by interchanging Xi and X2 (in each equation).

The result is

" - X2 + 2xi + x3 — X4 = 2

-X2 + 2xi - 3X4 = 1

3xi - *3 + X4 = 8

2x2 + 2xi - 2x3 + 5x4 = 11

We have further

-X2 + 2xi + X3 - Xl = 2

O-Xl - X3 - 2X4 = -1
•<

3xi - X3 + x4 = 8

6xi - 0-X3 + 3x4 = 15

"-X2 - X3 + 2xi - Xt = 2

- X3 + O-Xl - 2X4 = -1

3xi + 3xt = 9

6xi + 3x4 = 15

"-X2 + X3 + 2xi - Xt = 2

- X3 + O-Xl - 2xt = -1

- X3 + 3xi + X4 = 8

0-X3 + 6xi + 3xt = 15

-X2 + X3 + 2xi - Xt = 2

- X3 + O-Xl - 2X4 = -1

3xi + 3x4 = 9

_
- 3x4 = -3

The last system has a triangular form, by proceeding from

the last equation to the first, we obtain a single solution:

X4 = 1, Xl = 2, X3 = 1, X2 = 0. •
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4. Practical remark.

The process of elimination can be simplified by considering

the matrices of the equations of a system. We take system (10)

as an example. We write the coefficients of the unknowns and

the constant terms in matrix form. The result is the augmented

matrix of system (10):

We assume the following notation: we write the corresponding

unknown under the column of its coefficients. Thus, the matrix

of system (10) has the form

Xi Xi Xi x4

Elementary operations for matrices correspond to elemen-

tary operations for equations, namely,

(a) an interchange of two columns corresponds to inter-

change of two unknowns,

(b) discarding a row consisting of zeros corresponds to dis-

carding the equation 0-Xi + ... + 0-x„ = 0,

(c) addition of one row multiplied by a constant k to another

row corresponds to the addition of one equation of the system

multiplied by a constant k to another equation.

Now we write the solution of system (10):

(

2-1 1-1 2 \ /-I 2 1 — 1 2

\

2-1 0-3 1 \ / -1 2 0-311
3 0-2 5 8 I I 03-2 5 8 1

2 2 -2 5 11 / \ 2 2 -2 5 11 /

Xi X2 X3 X4 X2 Xi X3 X4
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/-I

\

0

0

0

X2

1 2 -1
- 10-2
-1 3 1

0 6 3

*3 Xl

2

-1

8

15

x4

/- 1

\

0

0

0

Xl

12-1
-1 0 -2

0 3 3

0 0-3
Xl Xi

2

-1

9

-3

Xa

where the ~ sign indicates that an elementary operation is per-

formed on the matrix.

The last matrix corresponds to the triangular system

"
-Xl + X3 + 2xi - X4 = 2

- Xi - 2x4 = -1

3xi + 3x4 = 9

- 3x4 = -3

from which we find the unique solution: x4 = 1 , Xi = 2, x3 = 1
,

xi = 0.

Example. Solve the system

r
2x. - xi + 3x3

- 2x4 + 4xs = -1

4xi - 2x2 + 5x3 + X4 + 7X5 = 2

,
2*. — Xz + ^3 + 8*4 “1" 2X5 = 1

O We have

12 -1 3 -2 4 _1
\ (

2 -1 3 -2 4

4 -2 5 1 7 2
]

-
|

0 0 -1 5 -1

\

-1 1 8 2 V 0 -2 10 -2

Xl Xl x3 X4 x5 Xl X2 x3 x» x5
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/
2 3 -1 -2 4 -

1

'

~ (o -1 0 5 -1 4

\° -2 0 10 -2 2

*1 *3 X2 X4 x5

/
2 3 -1 -2 4 -1

~ (o -1 0 5 -1 4

1° 0 0 0 0 -6

Xl *3 X2 x4 x5

The last row corresponds to the equation

Ooti + OX3 + 0-X2 + 0 -X4 + O-xs = -6

Thus, the system has no solution (is inconsistent). •
5. Consequence of Gaussian elimination for homogeneous

systems.

Remember that the system is said to be homogeneous if all

its constant terms are zero, namely,

OllX\ + fll2-*2 + . . . + GinXn = 0

@21 Xi + O22X2 + . . . + Q2nXn = 0

GmlX\ + dm2X2 + . . . + QmnXn — 0

A homogeneous system is always consistent: one of its solu-

tions is of the form Xi = 0, X2 = 0, . . . , xn = 0 and is called

the trivial solution. When considering a homogeneous system,

it is important to establish whether it has at least one nontrivial

(nonvanishing) solution.

Theorem. A homogeneous system in which the number of

equations is smaller than the number of unknowns (m < n)

always has a nontrivial solution.

o When solving the system by Gaussian elimination, we can

never obtain an equation of the form 0-jfi + . . . + 0-x„ = b

with b ^ 0, since all the constant terms in the system are zero.

Thus, the process ends with a system in the echelon form in
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which the number of equations is still smaller than the number

of unknowns. But such systems have infinitely many solutions,

nontrivial ones included.

Exercises to Chapter 9

1. What is a solution of a system of linear equations in n unknowns X\,

X2 , .... x„.

2. Find all the solutions of the equation 2x t — 3 if it is in (a) one unknown

Xi and (2) n unknowns jci , Xi x„.

3. Solve the following systems of equations by Gaussian elimination. Find

whether the system is consistent. If the system is consistent, reduce it to the

echelon form. If there are free unknowns, use them to express the remaining

unknowns.

(

Xi + 2X2 + X3 = 4

3xi - 5x2 + 3x3 = 1

2xi + 7x2 - x3 = 8
(2 )

f x + 2y + 2z — 1

2x + y - 2z = 2

2x + 2y + z = 3

5x + 4y + 7z = 6

[

2xi - y + z = -2

x + 2y + 3z — -1

x - 3y - 2z = 3 (

xi - 2x2 + 3x3 - 4x4 = 0

2X] + X3 - X4 = 0

-3xi + X2 + X3 - 2x4 = 0

[

Xi - 2x2 + X3 + X* = 1

Xi - 2X2 + x3 - X4 = -1

Xi - 2x2 + X3 + 5x4 = 5
(6)

r x+y+z+t =

1

x + y- z— t= 1

x - y + z - t = 1

^x-y-z+/=

1

(7)

f
Xi + X2 + 2X3 + 3x4 = 1

3xi - X2 - x3 - 2x4 = -4

2xi + 3x2 - x3 — xt = -6

Xi + 2x2 + 3x3 - X4 = -4

(8 )

2xi - X2 + X3 - X4 = 0

2x I
- X2 - 3x4 = 0

3xi - x3 + X4 = 0

2xi + 2x2 - 2x3 + 5x4 = 0

(9)

f x + y - 3z = -

1

2x + y - 2z = 1

x + y + z = 3

x + 2y - 3z = 1

[

2Xl - X2 + 3X3 - 2X4 + 4xs = -1

4xi - 2x2 + 5x3 + X4 + 7x5 = 2

2xi — X2 + X3 + 8X4 + 2X5
= 1
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4. Find a for which the system is consistent and solve it for those a:

(1) Cx + y + z = 1 (2) f2xi + x2 + X] + xt = 1

) x + ay + z - 1 I x\ + 2xi - x3 + 4xt = 2

/ x + y + az = 1 / Xi + 7x2 - 4x3 + 11x4 = a

(3) f5xi - X2 + 2x3 + X4 = 2a

) 2xi + x2 + 4x3 - 2xt = 1

I Xl - 3X2 - 6X3 + 5X4 = 0

5. Find the equation of a sphere in space passing through the points (a)

Mi(l, 0, 0), M2 (l, 1, 0), M3 (l, 1, 1), M4(0, 1, 1), (b) Mi (2, 2, 1), M2(2, 1, 2),

Mjd, 2, 2), M4 (0, 0, 3), (c) Mi (3, 1, 1), M2 (3, 0, 2), M3 (2, 1, 2), M4d, -1, 3).

6. Find the equation of a third-degree parabola passing through the points

Mid, 0), M2 (0, -1), M3(-l, -2), M4(2, 7).

Remark. A third-order parabola is defined by the equation y = ax
3 +

bx2 + cx + d.



Chapter 10

VECTOR SPACES

10.1. ARITHMETIC VECTORS AND OPERATIONS WITH THEM

1. Arithmetic n-dimensional vector space.

Definition. Any finite set of numbers

Ul , 02, ...» Ctn (1)

is called an arithmetic vector, and the numbers are the coor-

dinates of this vector.

We use the notation (a\, ai, ... , a„) for an arithmetic

vector.

For instance, <— 1, 2, 0, 7> is an arithmetic vector whose

coordinates are -1, 2, 0, 7.

We can interpret geometrically only arithmetic vectors having

one, two, or three coordinates, namely, each set of the form

<fli>, <ai, 02 >, or <ai, 02 , 03 > is associated with a “true” vec-

tor, i.e. a directed line segment on a straight line, in the plane,

or in space (in a Cartesian coordinate system). An arithmetic

vector having more than three coordinates cannot be interpret-

ed geometrically, since by definition such a vector is a purely

arithmetic object (the set in (1)).

Arithmetic vectors are often encountered in mathematics

with different numbers of coordinates. Here are several ex-

amples:

(a) an ordinary (geometric) vector on a straight line can be

considered as an arithmetic vector having one, two, or three

coordinates,

(b) each row in an nth-order determinant is an arithmetic

vector with n coordinates,

(c) the coefficients of the unknowns in the linear equation

aiXi + 02X2 + ... + a„x„ = b
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form an arithmetic vector <ai, a2 , ... , a„) having n coor-

dinates, any solution <x?, x2 x°> of this equation is an

arithmetic vector with n coordinates.

Definition. 1\vo arithmetic vectors <o 1 , 02 , , a„ > and

{a{, a{, ... , a„ > are said to be equal if and only if they have

the same number of coordinates (n = m) and if the respective

coordinates are equal, ai = a{ , a2 = a{, . .

.

, an = a„

.

In what follows we shall omit the word “arithmetic” and sim-

ply say “vector”, and use lower-case letters in bold face to

denote vectors. If two vectors a and b are equal, then we write

a = b.

Definition. The sum of two vectors having the same number
of coordinates a = <ai, az, ... , a„>and b = (bi, bz, . .

.

, bm >

is the vector a + b defined by the equation

a + b = <ui + b\, az + b2 , . . . , a„ + b„

>

For instance, <— 1, 0, 7, 5> + <4, 1, -7, 3> = <3, 1, 0, 8>.

Thus, to add vectors means to add their respective coor-

dinates. This definition is in line with that given earlier for the

addition of vectors in a three-dimensional space (the coor-

dinates of the sum of two vectors are equal to the sums of the

corresponding coordinates of the vectors).

Definition. The product of the vector a = {a\, a2 , ...,«„>

by a scalar k is the vector ka defined by the equation

ka = (kai, ka2 , ... , ka„)

Vector addition is commutative and associative:

a + b = b + a

(a + b) + c = a + (b + c)

We can also easily verify the following equations:

(k + l)a = ka + /a

£(a + b) = ka + kb

k(la) = (kl)a
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Definition. A vector whose all coordinates are zero is called

the zero vector and is denoted by 0.

Strictly speaking, such a notation is inaccurate since 0 means

any of the vectors <0>, <0, 0>, <0, 0, 0>, .... However, in what

follows it is clear how many coordinates the vector 0 has in

each specific case.

Obviously, a + 0 = a whatever the vector a having the same

number of coordinates as the vector 0.

The vector ( — l)a is the negative (or the opposite vector) of

a and denoted by -a. If a = <ai, ai, ..., a„ >, then

-a = <-fli, - 02 , .... -o„>. Hence

a + (-a) = 0

Note that if ka = 0, then either k = 0 or a = 0.

Given a = <oi, 02 , .... o„>, the equation ka = 0 means
that

kai = 0, kai = 0, . . . , kan = 0 (2)

If k = 0, then there is nothing to be proved. If k * 0, then we

have oi = 0, 02 = 0 a„ = 0, whence a = 0.

Definition. The set of all arithmetic vectors having the given

number n of coordinates in which vector addition and multipli-

cation by a scalar are defined as above is called an arithmetic

n-dimensional vector space and denoted by R".

We shall omit the word “arithmetic” and simply say an

n-dimensional vector space R" or, in short, an R" space.

We can interpret geometrically only the spaces R 1

,
R 2

, and

R 3
; R 1

can be associated with the set of vectors on a straight

line, R2
with the set of vectors in the plane, and R 3

with the

set of vectors in space.

2. The set of all solutions of a homogeneous system of linear

equations as a subspace of R".

The theory of arithmetic vectors allows one to interpret a

number of facts concerning systems of linear equations. We
take a homogeneous system of linear equations as an example.

In the notation adopted in Chapter 9, the general form of
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a homogeneous system of m linear equations in n unknowns is

" an*i + <*12*2 + . . . + aXnx„ = 0

021*1 + 022*2 + . . . + a2nX„ = 0 ...

i
(3)

Um i*l + flm2*2 + . . . + ClmnXn = 0

Each solution of (3) is a set of n numbers *1, *2, ...,*« and

can therefore be considered as a vector x from R": x = <*1 ,

*2, ...,*„>. In this sense we can speak about the sum of two

solutions and the product of a solution and a scalar.

The set of all solutions of a homogeneous system possesses

two specific properties.

1°. The sum of two solutions is a solution.

2°. The product of a solution and a scalar is a solution.

Let us prove the first property. Suppose a = (

a

\ , a2 , . .
. ,

an ) and /3 = <0x, f}2 , . .

.

, /3„> are two solutions of system (3).

We have

a + fi = (ai + 01, a2 4- /32 a„ + 13„>

We verify whether a + /? is a solution of (3). We should substi-

tute the coordinates of the vector a + /S for the unknowns into

the left-hand side of each equation of the system to ascertain

that the result is zero. Take, for example, the first equation in

(3). We have

an(ai + /3i) + ai 2(a2 + /32 ) + . . . + ain(o:„ + /3„)

= (flnai + a\ 2 ct2 + . . . + ainCtn)

+ (flll/3l + Ul2/32 + . . . + OinPn)

the first sum on the right-hand side is zero since a is a solution

and the second sum is zero since /5 is a solution.

Let us prove property 2°. Suppose the vector a = <ai,

a2 , . .
. , a„> is a solution of (3). We must prove that the

vector

ka = (ka 1 , ka2 , . . . , kan >

where A: is a scalar, is also a solution. Substituting the coor-

dinates of this vector for the unknowns into, say, the first equa-
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tion in (3) yields

awka\ + aiz-kaz + . . . + ai n ''kan

= k(Q\\Ol\ + 0l20!2 + . . . + OinCtn) = k-0 = 0

Similarly, we can prove this for the remaining equations.

We denote by M the set of all solutions of system (3). This

is a set of vectors in R". According to what we have proved,

the set M possesses the following properties.

1°. If vectors x and y belong to M, then their sum x + y also

belongs to M.
2°. If a vector x belongs to M, then the vector kx, with k

a scalar, also belongs to M.
Any set of vectors in R" possessing these properties is called

a subspace. Thus, we can say that the set of all solutions of
the homogeneous system (3) is a subspace of vector space R".

10.2. LINEAR DEPENDENCE OF VECTORS

1. Linear combination of several vectors.

Concrete problems deal, as a rule, with a set or system of

vectors rather than with a single vector (all vectors in a system

have the same number of coordinates). In this case th'e vectors

are denoted by the same letter with different subscripts. For

instance,

a, = <1, 0, 3, -2, -1>, a2 = <-l, 1, 4, 3, 0>,

a3 = < -5, 3, 5, 3, 7>

is a system of three vectors each of which has five coordinates,

that is belongs to the space R 5
,
while

b, = <1, 1, 1, 1>, b2 = <1, 1, 1, 1> (2)

is the system of two vectors belonging to R4
. Do not be con-

fused to see that bi = b2 since a system of vectors may have

repetitions.

Suppose

®i > ^2 1 • • • > ap (3 )
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is a system of vectors from R". We choose arbitrary numbers
k\, k2 , . . . , kp and compose the vector

a = k\&\ + k2 a2 + . . . + kpap (4)

Definition. Any vector a of form (4) is a linear combination

of vectors ai , a2 , ... , ap and k\,k2 , ... , kp are its coefficients.

Example. Find the linear combination 2ai - 3a2 + a3 of vec-

tors ai, a2 , and a3 from (1).

O Adding the vectors 2ai = <2,0,6, -4), -3a2 = <3, -3,

-12, -9>, a3 = <-5, 3, 5, 3> yields

2a, - 3a2 + a3 = <0, 0, -1, 10) •
Instead of saying “the vector a is a linear combination of

vectors a,, a2 , ... , ap”, we can say that “a is linearly expressed

in terms of the vectors a,, a2 , . .
. , ap

” or “a decomposes into

vectors a,, a2 , . . . , ap
”.

2. Linear dependence and independence of a system of

vectors.

One of the basic concepts of vector space theory is that of

linear dependence.

Definition. The vectors a,, a2 , . .
. , ap are said to be linearly

dependent or form a linearly dependent system if there are

numbers c,, C2 , . . . , cp not all zero such that

c, a, + c2 a2 + . . . + cpap = 0 (5)

Otherwise, i.e. when (5) is only valid for Ci = C2 = ... =
cp = 0, we say that the vectors a,, a2 , .... ap are linearly in-

dependent or the system of these vectors is linearly in-

dependent.

Let us stress that the concepts of linear dependence and
linear independence only refer to systems with finite numbers
of vectors.

Theorem. A system consisting of one vector is linearly de-

pendent if and only if the vector is zero. A system consisting

of several vectors is linearly dependent if and only if at least

one of the vectors can be represented as a linear combination

of the others.
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Suppose a system consists of one vector ai . If the system
is linearly dependent, then there is a nonzero number c, such
that Cjai =0. Since Ci ^ 0, this equality is equivalent to
a >

= 0. Thus, the first statement is proved. Let us prove the
second statement.

Suppose the system

ai, a2 , . .
. , ap , p > 1 (6)

is linearly dependent. This means, by definition, that there are

numbers cu c2 , . .
. , cp , not all zero, such that

Ciai + c2 a2 + . . . + Cpap = 0

Suppose ci * 0. Adding the vector -oai to the last equation

yields

-ciai = c2 a2 + . . . + Cpap

and multiplying this equation by -1/ci gives

=
(
_
^)

32+ +
(~ t) 3p

Thus, we have shown that if system (6) is linearly dependent,
one of its vectors can be expressed as a linear combination of
the others. Let us prove the converse.

Suppose one of the vectors of (6) can be represented as a
linear combination of the others, for the sake of clarity, let it

be the vector ai:

ai = k2 a2 + . . . + kp 2ip

where k2 , . .
. , kp are numbers some of which or all may be

zero. We rewrite the equation as

(- l)ai + k2 a2 + . . . + kpap = 0

that is, add the vector -ai. This equation has the form as in

(5), where ci = -1, c2 = k2 , . .
. , cp = kp , with at least one

of the numbers cu . .
. , cp nonzero (in our case Ci * 0). Thus,

system (6) is linearly dependent.

Remark. The assertion in the theorem “there is a vector
which can be represented as a linear combination of the others”
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does not mean that every vector can be expressed in terms of

the others. We illustrate this by way of an example. Let a be

a nonzero vector. We consider a system of two vectors ai = 0

and a2 = a. The system is linearly dependent since, for instance,

1 ai + 0-a2 = 0 (o = 1 is thus nonzero). Consequently, one of

the vectors must be a linear combination of the other. In this

case ai can be expressed in terms of a2 since ai = 0 -a2 , while

a2 cannot be expressed m terms of ai since a2 ^ 0.

Generally speaking, it is not so easy to establish whether a

system of vectors is linearly dependent (or independent).

However, it is easy for a system of two vectors. Indeed, linear

dependence of the system ai, a2 means that one of the vectors,

say ai, can be expressed in terms of the other, i.e. ai = kaz.

Two vectors, say ai and a2 , which form a linearly dependent

system, are collinear. In this case the coordinates of ai are

proportional to the corresponding coordinates of a2 . For exam-

ple, the vector ai = < -1, 0, 3, 4) is collinear with the vector

a2 = < — 5, 0, 15, 20).

Thus, a system of two vectors is linearly dependent if and
only if the two vectors are collinear.

3. Geometric interpretation of linear dependence for a sys-

tem of three vectors in R 3
.

We introduce a Cartesian coordinate system in ordinary

space. Then every arithmetic vector from R 3

,
i.e. every set of

three numbers <ai, a2 , «3 > can be associated with an ordinary

vector, i.e. a directed line segment a in the customary space;

for clarity we assume that a originates from a fixed point O,

the origin. This geometric vector can be considered to be the

image of the arithmetic vector. We denote both of them by a.

To explain geometrically linear dependence of a system of

three vectors a, b, c in R 3 we use the lemma from Sec. 3.10,

which can be formulated thus: A system of three vectors in

R 3
is linearly dependent if and only if the vectors are coplanar.

Example 1. Find whether the system of the three vectors

a = < -1, 0, 7, 2, 3>

b = <2, 0, -14, -4, — 6>

in R 5
is linearly dependent.

15—36h
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O The coordinates of b are proportional to the correspond-

ing coordinates of a:

2 : ( — 1) = 0:0 = (-14): 7 = (-4): 2 = (-6): 3

Thus, the system a, b is linearly dependent (b = 2a). •
Example 2. Find whether the system of the three vectors

ai = <2, 3, 5>, a2 = < -4, 5, 7>, a3 = <10, -7, -9> is linearly

dependent.

O A system of three vectors R 3
is linearly dependent if the

vectors are copianar, and in turn, according to the theorem in

Sec. 3.10, the vectors are copianar if and only if the determinant

formed from their coordinates is zero. We have the determinant

2 3 5

-4 5 7

10 -7 -9

which is zero (check this). Thus, ai, a2 , and a3 are linearly

dependent. •
Example 3. Find whether the system of the three vectors

a, = <1, 2, 3, 0>, a2 = < -1, 0, 3, -2>, a3 = < -1, 3, 12, -5>
is linearly dependent. If the answer is affirmative, set up an

expression relating the vectors.

O According to the definition of linear dependence, we
must find whether the equation

Xiai -I- x2 a2 + x3 a3 = 0 (7)

in three unknowns X \ , x2 , x3 has at least one nontrivial solution.

We write (7) using vector coordinates

AT, <1, 2, 3, 0> + X2 < 1 , 0, 3,
— 2>

+ x3 <— 1, 3, 12, — 5> = <0, 0, 0, 0>

Reducing to the echelon form yields

<Xrl + X2 *( — 1) + jc3 -( — 1), Xi-2 + X2-0 + x3 -3,

Xi-3 + x2 -3 + jc3 -12,

xr 0 + x2 -(-2) + x3 -( — 5)> = <0, 0, 0, 0>
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Since the equality of two vectors means the equality of their

respective coordinates, the last vector equation is equivalent to

the system of four numerical equations

xi - x2 - x3
= 0

2x\ + 3^3 = 0

3xi + 3x2 + 12x3 = 0

- 2X2 - 5X3 = 0

(8 )

We solve (8) using Gaussian elimination:

x\ - x2 — x3 = 0

2xi + 3x3 = 0

3xi + 3x2 + 12x3 = 0

- 2X2 - 5X3 = 0

Xi — X2 - X3

2X2 + 5X3 = 0

6x2 + 15X3 = 0

- 2x2 - 5x3 = 0

XI - X2 - X3

2X2 + 5X3 = 0

0

0

The unknown X3 in the last system is free (it may take any nu-

merical value). Hence (8) has nontrivial solutions. For instance,

putting X3 = -2 yields the solution Xi = 3, X2 = 5, X3 = -2.

Consequently, ai, a2 ,
and a3 are related as

3ai + 5a2 - 2a3 = 0 (9)

Thus, the system ai, a2, a3 is linearly dependent and its vec-

tors are related by (9). •

10.3. PROPERTIES OF LINEAR DEPENDENCE

We consider the system of vectors

ai, a2 , . .
. , ap ( 1 )

from R".

1°. If one of the vectors is the zero vector, then the system
is linearly dependent.

Suppose, for instance, that the first vector in (1) is a non-
zero vector. Then obviously

0 = 0 -a2 + 0 -a 3 + . . . + 0 -ap

15 *
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which shows that ai is a linear combination of the other vec-

tors, that is, system (1) is linearly dependent.
2°. If a part of a system is linearly dependent, then the entire

system is linearly dependent.

Suppose a part of system (1), say, the first k vectors

(k < p), is linearly dependent. This means that there are num-
bers Ci, c2 , . .

. , Ck not all zero such that

Ciai + c2 a2 + . . . + ck ak = 0

which implies that

ciai + . . . + ck ai< + 0-a* + i + . . . + 0-ap = 0

i.e. the entire system (1) is linearly dependent.
3°. If the linearly independent system (1) becomes linearly

dependent, once a vector a is added, then a can be represented

as a linear combination of the vectors of (1).

The linear dependence of the system ai , . .
. , ap ,

a means
there is an equation

ciai + ... + cpZp + ca = 0 (2)

where Ci, c2 , . .
. , cp , c are not all zero. Note that the coeffi-

cient of a in (2) is necessarily nonzero; otherwise, (2) would
imply that the vectors ai, . .

. , ap are linearly dependent. Since

c ^ 0, a can be represented as a linear combination of ai, . .
. ,

ap .

1. The echelon form of a system of vectors.

Another property of linear dependence concerns a system of

vectors which has a special structure. We say that such systems

have the echelon form.

Definition. A system of vectors

3 1 <«n, a 12 , ... , a\p, ... , a in')

32 <0, s gf22 , . .
. , a2p, • .

. , u2n) .

\ W/

n/? <0, 0, . .v.
, app , . .

. , aPn y

is said to have the echelon form.

Here the coordinates below the dashed “diagonal” are all
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zero, while the coordinates next to the diagonal and above it,

i.e. an, an, . .
. , app ,

are all nonzero.

Obviously, p ^ n for the echelon form of a system, that is,

the number of vectors does not exceed the number of vector

coordinates.

4°. A system of vectors having the echelon form is linearly

independent.

Let us find when a vector of the form

a = ciai + C2 a2 + . . . + cpap

is the zero vector. Using (31 we find that the first coordinate

of a is Ci an; if it is zero, then Ci = 0 since an ^ 0. Then the

term c^i in the equation for a vanishes and the second coor-

dinate of a is c2 a22 \ if it is also zero, then c2 = 0 since a22 ^ 0,

and so on. Thus, we infer that

ciai + C2 a2 + . . . + cp ap = 0

is valid if ci = c2 =...= cp = 0, which implies that system

(3) is linearly independent.

Example. Show that the vectors in R 5
ai = <0, 3, 4, -2, 1>,

a2 = < -1, 0, 2, 3, -5), and a3 = <0, 0, -2, 1, 1> are linearly

independent.

O Arranging the vectors in the following order: a2 = < -1,

0, 2, 3, — 5>, a, = <0, 3, 4, -2, 1>, a3 = <0, 0, -2, 1, 1> yields

the echelon form of a system of vectors. •
2. The number of vectors in a linearly independent system.

The corollary follows from property 4°: there is a linearly

independent system in R" consisting of n vectors exactly.

An example is the echelon form of a system of vectors

e. = <1, 0, ... , 0>

e2 = <0, 1, .... 0> ...

e„ = <0, 0, . .
. , 1 >

one of whose coordinates is 1 and all the others are 0. Any

subsystem of it is also linearly independent, otherwise, the
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linear dependence of the subsystem would imply that the sys-

tem is linearly dependent.

Naturally we would like to know whether there is a linearly

independent system of more than n vectors in R". In the next

subsection we show that any system in R" consisting of more
than n vectors is linearly dependent.

We mention in conclusion an important property of the sys-

tem ei, e2 , . .
. , e„ (see (4)), namely, any vector a from R" can

be represented as a linear combination of the vectors ei,

e2 , . .
. , e„. In fact, suppose we have vector a = {a\, a2 , . .

. ,

a„). Multiplying ei by a\, e2 by a2 , and so on and adding the

resulting vectors yield

aiei -(- a2 e2 + . . . 4- atx„

= <«,, 0
, . , 0 > = <0 , <72 , ... , 0 > + ... +

<0, 0, . .
. , an )

= <au a2 , . .

.

, an ) = a

Thus, there is a system of n linearly independent vectors in

R" in terms of which any vector of R" can be linearly

represented.

10.4. BASES IN SPACE R"

Definition. A linearly independent system of vectors in a

space R" is called the basis of R” if any vector from R” can
be represented as a linear combination of any vector of the

system.

The last proposition formulated in the previous subsection

implies that there is a basis composed of n vectors in R". Other
bases also exist for R".

Lemma. If there is a basis of R" composed ofp vectors, then
any p + 1 vectors in R" are linearly dependent.

For the sake of simplicity, let p = 2. Thus, we have a basis

of two vectors a> and a2 in R": we prove that any three vectors

bi, b2 ,
and b3 are linearly dependent.

We denote the basis vectors by a and b instead of ai and a2 .
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Since a and b form a basis, any vector bi, b2, b3 can be

represented in terms of a and b:

bi = cna + /Jib, b2 = 02a + /32b, b3 = 0:3a + ftb

Multiplying the first equation by a number xi (so far ar-

bitrary), the second equation by xi, and the third equation by

X3 and adding the results yield

Xibi + X2b2 + X3b 3

= Xi(aia + /3ib) + Xztcna + fob) + X3(«3a + ftb)

= (xiai + X20C2 + X3a3)a + (xi/3i + X2182 + xhftlb

If we can choose Xi, X2, X3 such that not all are zero and both

expressions in parentheses are zero

aiXi + a2X2 + 0(3X3 = 0 ^
/3 jXi + ($2X2 + /J3X3 = 0

,

then

xibi + X2b2 + x3 b 3 = 0

is valid, i.e. the system bi, b2 ,
b3 is linearly dependent. Thus,

in order to prove the theorem, it is sufficient to show that sys-

tem (1) has a nontrivial solution. Since system (1) is homogene-

ous and the number of its equations is smaller than the number

of the unknowns (two equations in three unknowns), it has non-

trivial solutions according to the theorem in Sec. 9.2, Item 5.

Thus, the theorem is proved for the special case of p = 2.

A similar argument can be used for the general case (for any

p). Instead of system (1), we have a homogeneous system of

p equations in p + 1 unknowns which, according to the the-

orem, has a nontrivial solution.

Given the lemma, we can easily prove the following theorems.

Theorem 1. Any two bases of a space R" have the same num-

ber of vectors.

Note that since one of the bases of R", namely, the basis

d, e2 , ... ,
e„ in the preceding subsection, consists of n vectors,

any basis of R" has n vectors.

o Suppose a basis of R" has p vectors and another basis
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has q vectors. We shall prove this indirectly: let p A q, say

p < q. Then we can choose p + 1 vectors from the second bas-
is. According to the lemma, these vectors must be linearly de-
pendent, and, therefore the second basis is linearly dependent,
but this contradicts the definition of a basis.

Theorem 2. Any system in R" having more than n vectors
is linearly dependent.

A space R" contains a basis of n vectors. According to

the lemma, any system of n + 1 vectors in R" must be linearly

dependent. But then, generally, any system of more than n vec-

tors is linearly dependent, since we can always choose a sub-
system of n + 1 vectors and this is linearly dependent
(according to the lemma).

In conclusion let us characterize all the bases of R”.

The bases of R” are different linearly independent systems
of n vectors.

Given a basis, its vectors are linearly independent and their

number is n. Conversely, any linearly independent system of
n vectors

ai, a2 , . .
. , a„ (2)

is a basis of R”. To make sure, we add a vector a in R” to system

(2) and obtain a system of n + 1 vectors which according to

Theorem 2 must be linearly dependent. By property 3°, Sec.

10.3, of linear dependence we see that a can be represented as

a linear combination of ai, a2 , ... , a„. This proves that the

system ai, a2 , . .
. , a„ is a basis of R".

Example 1. The system of vectors a> = <1, 2, 3>, a2 =
< -1, 0, 3>, a3 = <2, 5, -2), m = <4, 12, 2> from R 3

is linearly

dependent since the number of vectors is greater than three.

Example 2. Verify whether the vectors ai = <1, 2, 3>,

a2 = <0, 1, -1>, a3 = <2, 4, 5> form a basis in R 3
.

O Since we have three vectors, it only remains to be estab-

lished whether they are linearly independent or, which is the

same, whether the equation

Xi»i + X2&2 + X3S3 = 0
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has a trivial solution (xi = Xz = X3 = 0). This equation is

equivalent to the system

rX\ + 2x3 = 0

2xi + X2 + 4X3 = 0

3xi - X2 + 5X3 = 0
V

According to the theorem in Sec. 3.9, a homogeneous 3x3
system has a nontrivial solution if and only if its determinant

is zero. The determinant of our system

1

0 2

2 1 4

3 -1 5

= -1

is nonzero, thus, the system has only a trivial solution. Hence

it follows that the vectors ai, a2, and a3 form a basis of R 3
. #

10.5. ABSTRACT VECTOR SPACES

Up till now we studied an arithmetic vector space R" which

is the set of all arithmetic vectors <fli, 02, ...,«»> in which

two algebraic operations, viz., vector addition and the multipli-

cation of a vector by a scalar, are defined.

A thorough analysis of the basic theorems on arithmetic vec-

tors shows that the notation of a vector in the form of a line

of several numbers is not essential. The important thing is that

there are two operations: vector addition and multiplication by

a scalar, which possess certain properties permitting to operate

on expressions of the form Aja ( + kim + . . . + kpap ,
where

ai, . .
. , ap are vectors and k\, . .

. , kp are scalars and which

obey ordinary algebraic laws.

This suggests a principle for generalizing the notion of an

arithmetic vector. We should call a vector any object for which

two operations, viz., vector addition and multiplication by a

scalar, are defined, provided the operations obey some natural

requirements. The advantage of such an approach is that there

is now no need to consider a vector to be a set of numbers

and we may call objects of diverse nature, such as functions

and matrices, vectors.
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1. Definition of an abstract vector space.

Definition. A set L is called a vector (or linear space) and
its elements are called vectors if on this set

(I) the operation of addition is defined: every pair of vectors

a and b from L is associated with a third vector from L called

the sum of a and b and denoted by a + b,

(II) the operation of multiplication of a vector by a scalar.

each pair a, k (where a is a vector and k is a scalar) is associated

in L with a vector called the product of k and a and denoted
by Ara,

(III) these operations possess the following properties:

(1) a + b = b + a for any two vectors a and b in L,

(2) (a + b) + c = a + (b + c) for any three vectors a, b, and
c, in L,

(3) there is a unique vector 0 in L such that a + 0 = a for

any a in L,

(4) for any vector a there is a unique vector a' such that

a + a' = 0 in L,

(5) 1 a = a for any a in L,

(6) k\(k2 a) = (k x k2 )a for any scalars k\, k2 and any a in L,

(7) (k i + k2 )a = kia + k2 a for any scalars k\, k2 and any
a in L,

(8) Ar(a + b) = ka + Arb for any scalar k and any vectors a

and b.

The vector 0 in (3) is called the zero vector, the vector a

'

in (4) is called the negative of a and is denoted by -a.
The branch of mathematics that studies vector spaces is

called linear algebra.

Note that we have considered two sets of two different opera-

tions but used the same notation for each set, viz., vector addi-

tion and scalar addition, and multiplication of a vector by a

scalar and multiplication of scalars. However, this is not umbig-
uous since it is clear from the notation which operation is in

use. For instance, given the equation

(A:i + k2 )a = Aria + Ar2 a

the + sign on the left-hand side means addition of scalars,

while the + sign on the right-hand side means vector addition.
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2. Examples of vector spaces.

Space R". We considered this space earlier. Its elements

(arithmetic vectors) are the sets of n numbers whose addition

and multiplication by scalars are defined by the rules

<ai, a2 , • • , an > + <bu b2 , . .
. , b„

>

= <Oi + b\, 02 + b2 , . . . , On + bn), k(a 1 , 02, . . . , On >

= (ka\, ka2 ka„)

Since n can assume infinitely many values 1, 2, 3, . .
. ,

we

have an infinite series of vector spaces: R 1

,
R 2

,
R 3

Function space. We can consider various mappings of the set

R of real numbers into itself or, which is the same, various

functions

y = fix)

defined on R and varying in R. Let us introduce the operations

of addition and multiplication for functions. To add two func-

tions f\(x) and f2 (x) together is to construct a new function

fi(x) + f2(x) whose value for any x = a is /i(a) + f2 (a); mul-

tiplication of f(x) by a scalar k yields kf(x) whose value for

any x = a is kf(a).

The set of all functions on which the operations of addition

and multiplication by a scalar are defined is a vector space.

Space of matrices. We consider various matrices of the form

/On fli 2\

\fl2i a22)

having two rows and two columns. Addition of matrices and

multiplication of a matrix by a scalar are defined as follows:

We can easily verify that all the conditions in the definition

of a vector space are satisfied here. Thus, we have a vector space
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which is the space of 2 x 2 matrices (i.e. of matrices having

two rows and two columns).

Vector spaces of 3 x 3, 4 x 4, etc. matrices can be construct-

ed in a similar way. Vector spaces of m X n matrices, where

m A n, also exist.

3. Basis.

We can introduce a number of concepts for an abstract vector

space in the same way as we did for the space R". Specifically,

we can speak of a linear combination

k\Z\ + k2 a2 -t- ... + kpSkp

of several vectors ai , a2 , ... , ap and of linearly dependent and
linearly independent systems of vectors. However, the proper-

ties of L may differ from those of R" in one respect. In order

to formulate this (possible) difference, we introduce the impor-

tant concept of a basis of the space L, which actually repeats

the definition of a basis of R".

Definition. A basis of a vector space L is a linearly indepen-

dent system of vectors from L such that any vector from L can

be represented as a linear combination of the system’s vectors.

A basis exists in R", an example being the system of n vectors

ei, e2 , ... , e„ constructed in Sec. 10.3, Item 2. There are vector

spaces L which have no basis. In order to exclude such spaces

from our consideration, we must add one more condition to

(I), (II), and (III) in the definition of a vector space given in

Item 1:

(IV) the space L has at least one basis.

4. The coordinates of a vector in terms of a basis.

Let us choose a basis of L consisting of n vectors

ci, e2 , . .
. , e„ (1)

Any vector a from L can be expressed in terms of the basis,

i.e. represented as a linear combination of the basis vectors

a = Arid + k2e2 + . .

.

+ k„e„ (2)

Theorem. Any vector a can be expressed in terms of the basis

in a unique manner.
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Suppose we have another representation of a in the basis

besides (2):

a = k{ e, + k{ e2 + ... + k„ e„ (3)

Subtracting (2) from (3) yields

(k{ - Ar r )ei + (k{ - k2 )e2 + kn)e„ = 0

But by assumption the vectors e,, e2 , .... e„ are linearly in-

dependent since they form the basis. Consequently, the last

equation can only be valid if all the coefficients k{ - k\,

k2 - k2 , . .

.

, k„ - k„ are zero, that is,

k\ = k{, k2 = k{, ... , k„ = k

;

Hence, representations (2) and (3) are the same.

Definition. The coefficients k\, k2 , . .

.

, k„ in the representa-

tion of the vector a in terms of the basis (1) are called the coor-

dinates of a in the basis.

Equations

(k\t\ + k2e2 + . .

.

+ k„e„) + (/i ei + l2 e2 + . . . + /n en )

= (^i + /i)ei + (k2 + l2 )e2 + ... + (k„ + /n )e„

and

c(k i ei + k2e2 + . . . + knen )

= (c/ri )ei + (ck2 )e2 + . . . + (ck„)en

following from the properties of vector addition and multipli-

cation of a vector by a scalar show that in order to add vectors,

we add their respective coordinates in the given basis, and when

multiplying a vector by a scalar we multiply its coordinates in

the given basis by that scalar.

Example 1. The vectors a and b have the coordinates in a

basis of L -1, 2, 3, 0, 6 and 1, 1, -3, 0, -4, respectively.

Find the coordinates of the vector 2a - 3b in the same basis.

O The coordinates of the vector 2a are - 2, 4, 6, 0, 12 and

those of -3b are -3, -3, 9, 0, 12. Hence it follows that the

coordinates of 2a - 3b are -5, 1, 15, 0, 24. #
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Example 2. Verify that the arithmetic vectors ai = <1, 2, 3>,

*2 = <0, 1, -1>, a3 = <2, 4, 5> form a basis of R 3 and find

the coordinates of the vector a = <5, 13, 9> in that basis.

O We showed in Sec. 9.4 that the system a t , a2 , a3 is a basis

of R 3
. Thus it remains for us to find the coordinates of a in

terms of the basis ai, a2 , a3 .

By denoting the desired coordinates by x t , xi, x3 , we can
write

*iai + x2 a2 + x3 a3 = a (4)

By assumption we have

xi*i + x2 a2 + x3 a3

= <*i + 2x3 , 2xi + x2 + 4x3 , 3xi - x2 + 5x3 >

and therefore (4) is equivalent to the system

' x\ + 2jc3 = 5

2xi + x2 + 4x3 = 13

3xi - x2 + 5x3 = 9
V

Gaussian elimination yields

r
x\ + 2x3 = 5

x2 = 3

J
x2 - xi = -6

whence it follows that x2 = 3, x3 = 3, x{
= -1. Thus,

a = — »i + 3a2 + 3a3 whose coordinates in the basis ai, a2 , a3

are -1, 3, 3.

5. Representation of an abstract vector space L as an arith-

metic vector space R".

Suppose a vector space 1; has a basis consisting of n vectors

ei, e2 , . .
. , e„. By representing a vector a from L as a linear

combination of the vectors of the basis:

a = £,ei + k2 e2 + . .

.

+ k„en

we can associate a with a line of numbers ku k2 , ... , k„ which
are the coordinates of a in the basis ei, e2 , . . . , e„, thereby,

associating a with an arithmetic vector from R".
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The properties of the coordinates of a vector in terms of the

basis imply that when vectors from L are added, their cor-

responding vectors from R" are also added, and when a vector

from L is multiplied by a scalar, its corresponding arithmetic

vector is also multiplied by that number. Thus, we can say that

under juxtaposition

a -* (ku k2 , kn )

the space L transforms into an arithmetic vector space R", R"
being a “numerical model” of L. Thus, everything we proved

earlier for R” must be valid for L. Specifically,

(1) any two bases of L contain the same number of vectors,

(2) if a basis of L consists of n vectors, then any system of
more than n vectors in L is linearly dependent.

6. Dimensions of a vector space.

Definition. The number of vectors of a basis of a vector

space L is called the dimension of L. If the number of vectors

is n, then L is said to have dimension n (or to be n-

dimensional).

If R" contains a basis of n vectors, then R" has dimension

n or is said to be an arithmetic n-space. We know that any sys-

tem of n + 1 or more vectors in R" is linearly dependent and
we can give another definition of dimension: the dimension of
a space L is the maximal number of linearly independent vec-

tors in L.

Exercises to Chapter 10

1. Find the linear combination 2ai - a2 + 3a3 of the vectors ai = <1, -1,

0, 4>, a2 = <16, 4, 7, -2>, and a3 = <5, 2, 2, -3>.

2. Find the vector 5ai - 2a2 + 7a3 if ai = bi - 2b2 ,
a2 = 3bi + b2 ,

a3 = -b + b2 + b 3 and bi = <0, 0, 1>, b2 = <-l, 2, 3>, b3 = <-l, 1, 0>.

3. Find the vector x from the equation a + 2b + 3c + 4x = 0, where

a = <5, -8, -1>, b = <2, -1, —4), c = <-3, 2, -5>.

4. Find the vector x from the equation 3(a - x) + 2(b + x) = 5(c + x),

where a = <2, 5, 1, 3>, b = <10, 1,-5, 10>, c = <4, 1, -1, 1>.

5. Show without calculation that each system of vectors is linearly de-

pendent:

(a) a, = <1, 1, 0, 1>, a2 = <-3, -3, 0, -3>,

(b) a, = <1, 2, 3, 4>, a2 = <4, 3, 2, 1>, a3 = <5, 5, 5, 5>,
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(c) ai = <1, 2, 3>, a2 = <3, 2, 1>, a3 = <1, 1, 1>.

6 . Show without calculation that the system of vectors is linearly in-

dependent:

(a) a, = <1, 0, 0, 0>, a2 = <0, 1, 0, 0>, a 3 = <0, 0, 1, 0>, 84 = <2, 3, 4, 5>.

(b) a, = <0, 2, 5>, a2 = <0, 0, 3>, a3 = < -1, 4, 7>.

7. Given the two vectors ai = <1, 2, 3, 4>, and a2 = <0, 0, 0, 1>, choose,

without calculating, two more vectors a3 and a4 such that the system aj, a2 ,

a 3 , a4 is linearly independent.

8 . Find all the values of X such that the vector b can be represented as a

linear combination of ai and a2 :

a, = <3, -1> a, = <1, 0, 0> a, = (3, 4, 2>

(1) a2 = <5, -2> (2) a 2 = <0, 1, 0> (3) a2 = <6 , 8
, 7>

b = <2, X) b = <0, 0, X> b = <9, 12, X>

9. Find whether each system is linearly dependent:

(a) ai = <1, 1, 1>, a2 = <1, 2, 3>, a3 = <1, 3, 3>,

(b) a, = <1, 1, 1, 1>, a2 = <1, -1, 1, -1>, a 3 = <2,3, l, 4 >,a4 = <2, 1, 1, 3>,

(c) a, = <2, 3, -4, 1>, a2 = <1, -2, 4, 0), a3 = <0, 0, 5, 1>.

10. Ttoo vectors a, and a2 have the coordinates -
1, 2 and 3, -5, respectively,

in a basis of a two-dimensional vector space L, and the coordinates of vector

b are 1, 1. Show that ai and a2 constitute a basis and find the coordinates

of b in this basis.

11. Three vectors ai, a2 , and a3 have the coordinates 1, -1, 0; 1, 2, 3; and
0 , 1 ,

—1 respectively in a basis of a three-dimensional vector space L, and
the coordinates of vector b are 6 , 6 , 6 . Show that ai, a2 , a 3 constitute a basis

and find the coordinates of b in this basis.



Chapter 11

MATRICES

We already used matrices in Chapter 3 when considering the

determinants of square matrices and Chapter 9 when solving

systems of linear equations by Gaussian elimination. In fact,

matrices are extensively applied in science and engineering.

We recall what a matrix is.

Definition. An m X n matrix is a set of numbers arranged

in a rectangular array of m rows and n columns and usually

enclosed in parentheses.

For instance,

is the 2x3 matrix.

An n x n matrix, which has the same number of rows and
columns is called a square matrix of order n.

The numbers constituting a matrix are called the elements

of the matrix.

We use the usual notation and denote the element in the z'th

row andy'th column by aij. Thus, the general form of an m x n

matrix is

an an ain

an an • - 'am

@m 1 am2 • • &mn

We shall denote a matrix by a single upper-case letter in bold

face, A, B, C, and so on.

16— 366
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11.1. RANK OF A MATRIX

1. Definition of the rank of a matrix.

Given an m x n matrix A

Each row of A can be considered as an arithmetic vector having

n coordinates, i.e. a vector from R". We denote these vectors

by Ai, A2 , ...» Am i

Ai = <tfn, fli2, .... Clin)

A2 = <021, O22 , • • -, 02n>

Am — (,0m 1, &m2, • • •» Omn)

Definition. The rank of the matrix A is the maximum num-
ber of linearly independent vectors in the system At, A2 , . . .,

Am of its rows.

When all the elements of a matrix A are zero, the order of

A is zero.

Thus, the rank of a matrix is a number r such that

(1) the matrix contains r linearly independent rows,

(2) any r + 1 rows of the matrix are linearly dependent.

Example. Consider the 3 x 4 matrix

The first two rows Ai = <1, 0, 3, -2> and A2 = < -1, 1, 4,

3> are linearly independent since the coordinates of Ai are not

proportional to those of A2 . At the same time the system of

the rows Ai, A2 ,
A3 is linearly dependent since A3 = 3Ai + A2

(check this). Hence, the rank of A is two.

2. Two propositions on the rank.

(1) Suppose any r rows ofA are linearly independent. If the
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rank of A is r, then all the remaining rows can be represented

as a linear combination of the r rows.

Adding any of the remaining rows to the r rows yields

a system of r + 1 rows which, by the definition of rank, must

be linearly dependent. According to property 3°, Sec. 10.2, of

linear dependence, it follows that the added row can be ex-

pressed as a linear combination of the r rows.

(2) Suppose any r rows of A are linearly independent. If the

remaining rows can be represented as a linear combination of
the r rows, the rank of A is r.

The proof is based on the concept of a basis of a finite

system of vectors.

A basis of a system of vectors ai, a2 ap is a linearly

independent part of the system (a subsystem) such that any vec-

tor of the system can be represented as a linear combination

of the subsystem. The following theorem is valid, and it can

be proved in the same way as the theorem on bases (Sec. 10.4).

Theorem. Any two bases of a given system of vectors consist

of the same number of vectors.

This theorem helps us prove proposition (2). Suppose we
have r rows of A, say Ai, A2 , . . ., Ar , such that the assump-

tions in (2) are satisfied, i.e. they are linearly independent and
any row of A can be represented as linear combination of the

r rows. Then, these r rows constitute a basis of the system of

all the rows of A. Let us consider any r + 1 rows of A. If they

were linearly independent, this would mean that there is a basis

of more than r vectors in the system of all rows of A, which,

according to the above theorem, is impossible. Hence it follows

that any r + 1 rows of A are linearly dependent, and the rank

of A is r. m

3. Properties of the rank of a matrix.

1 °. The rank of a matrix A is not changed, if we add a row
(say, next to the last row) which is a linear combination of the

rows of A.

We denote the new matrix by A. Let us prove that the

ranks of A and A are the same.

Suppose that the rank of A is r. This means that A must

16 *
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contain r linearly independent rows, say, the first r rows Aj,

A2 , . . ., Ar . The remaining rows of A can be represented as

a linear combination of Ai, A2 , . . ., Ar . This implies that the

added row can also be expressed as a linear combination of

Ai, A2 ,
- .

A

r \ by assumption, it is a linear combination of

the rows of A. In other words, all the rows following the first

r rows in A can be expressed as a linear combination of Ai,
A2 , . . ., Ar . Thus, the rank of A is also r. m

Property 1 can be formulated in a different way: the rank

of a matrix does not change if we delete a row which can be

represented as a linear combination of the remaining rows of
the matrix.

In fact, if we denote the initial matrix by A and the matrix

obtained by deleting the row by A, we can see that A can be

obtained from A by adding a row which is a linear combination

of the rows of A. But in this case, according to property 1°,

the ranks of A and A must be the same.

2°. The rank of a matrix is left unchanged if we add a linear

combination of the other rows to any row.

Suppose we add the second row of A multiplied by a

number k to the first row. The result is the matrix A whose

Ai + k\2, A2 , ..., Am (1)

The rank of A is not changed if we add the row Ai ; indeed,

Ai is a linear combination of rows (1), A t = (Ai + kAz) -
kAz). We obtain a matrix with rows Ai, Ai + kAz, Az, . . .,

Am . The rank of this matrix is again left unchanged if we delete

its row Ai + kAz (since this row is a linear combination of the

other rows). The result is a matrix with rows Ai, A2 , . . ., Am ,

that is, the initial matrix A. Thus, the ranks of A and A are

the same.

3°. The rank of A is not changed if we add a zero row.

A zero row can always be considered as a linear combina-
tion of the rows of A (0 = 0-Ai + 0-A2 + 0-Am ), and there-

fore property 3° follows from property 1°.

We can give another formulation of property 3°: the rank

of A is unaltered if we delete a zero row (of course, provided

there is such a row).
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11.2. PRACTICAL METHOD FOR FINDING THE RANK
OF A MATRIX

In order to find the rank of a matrix, we can apply Gaussian

elimination to a given matrix A and not to a system of

equations.

Definition. The operations in Gaussian elimination are called

elementary operations. The elementary operations for matrices

are

(1) interchanging two columns,

(b) deleting a zero row,

(c) adding one row multiplied by a number to another row.

The following theorem is valid.

Theorem. The rank of a matrix is not changed during

elementary operations.

The statement is obvious for elementary operations of

type (a); it follows from properties 2° and 3° (see Sec. 11.1,

Item 3) for elementary operations of types (b) and (c).

The main idea of the practical method for computing the

rank of a matrix is that the elementary operations can reduce

matrix A to the form

in which the diagonal elements bu, bn, .
.

,

bn are nonzero,

while the elements below the diagonal are zero. This form of

a matrix is called the echelon form. Then we can immediately

deduce from the echelon form of matrix that the rank of A is r.

In fact, the rows of B are linearly independent since they

form the echelon form of vectors (see Sec. 10.3), and thus the

rank of B equals the number of its row, i.e. r. Since the rank

remains unchanged by elementary operations, we know that the

rank of A is also r.

Rule. For finding the rank of a matrix A, we should reduce

it to the echelon form B using elementary operations. The rank

of A equals the number of rows in B.
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Example 1 . Find the rank of the matrix

A =

O Since an ^ 0, we can make all elements of the first

column below an vanish. To do this, we multiply the first row
by -3 and add the result to the second and third rows, and
then we add the first row multiplied by - 5 to the fourth row.

The result is the matrix _

1 3 3 2 5

0 -4 -7 -3 -11

0 -8 -14 -6 -22
0 -8 -14 -6 -24

Noting that an ^ 0, we make all elements of the second

column below 022 vanish. To this end, we add the second row

multiplied by -2 to the third and fourth rows. We have the

matrix

/-I 3 3 2 5\

/ 0-4-7 -3 -11 \

I 0 0 0 0 0 I

\ 0 0 0 0 - 2/

from which we delete the zero row. The third element in the

last (now the third) row is zero, however, we can make it non-

zero by interchanging the third and fifth columns. Then we get

the matrix

which is in echelon form. The rank of B is three; consequently

the rank of the initial matrix A is also three. •
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Example 2. Find the rank of the matrix

/-I 4 3 a 2\
A= -2 7 5 1 3

\-l 2 18 a)

for different values of the parameter a.

O We use the elementary operations

/-I 4 3 a 2\
A ~ I 0-1-11-2O -1)

\ 0-2-2 8 - a a -2/

/-I 4 3 o 2\

~( 0 - 1 - 1 1 - 2o -
1

)

\ 0 0 0 6 + 3o a)

hence it follows that if at least one of the numbers 6 + 3a or

a is nonzero, then the rank of A is three, and if both numbers

are zero, then the rank is two. But a and 6 + 3o cannot both

be zero simultaneously. Thus, the rank of A is three for any

o. •

11.3. THEOREM ON THE RANK OF A MATRIX

Suppose we omit some k rows and k columns, k ^ n and

k < m, from the matrix

The elements at the intersection of these rows and columns
form a square matrix A' of order k (a submatrix of A). Its

determinant |A'| is called a kth-order minor of A.

Nonzero minors of a matrix are especially interesting. The
theorem given below relates the rank of a matrix and a

maximal-order nonzero minor.

Theorem (on the rank of a matrix). The rank of a matrix

equals the maximal order of the nonzero minors of the matrix.
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In other words, if the rank of a matrix A is r, then A neces-

sarily contains an rth-order nonzero minor, while all the minors

of order r + 1 or more are zero. We omit the proof of the

theorem.

Corollary 1. The maximum number of linearly independent

rows equals the maximum number of linearly independent

columns.

d In fact, we consider a matrix A and its transpose A*

(A* is obtained by interchanging the rows and columns in A).

In order to prove the proposition it is sufficient to verify that

rank A = rank A* (1)

In fact, the left-hand side of (1) expresses the maximum num-
ber of linearly independent rows in A, while the right-hand side

is the maximum number of rows in A* which is, obviously,

the maximum number of columns in A.

Thus, it remains for us to prove (1) which by the theorem
on the rank of a matrix is equivalent to the following problem:

prove that the maximal orders of the nonzero minors in the

matrices A and A* are the same. This last proposition follows

directly from the properties of determinants (i.e. the transposi-

tion of a matrix leaves its determinant unchanged), since by

transposing A we exchange each minor of A by the “trans-

posed” minor and hence the minor is unaltered.

Corollary 2. If the determinant is zero, then its rows are

linearly dependent.

We consider a square matrix A such that |A| = 0. Then
the maximal order of the nonzero minors must be less than

n (n being the number of rows), hence, rank A < n. This means
that the rows of the matrix are linearly dependent.
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11.4. RANK OF A MATRIX AND SYSTEMS OF LINEAR
EQUATIONS

Suppose we have a system of linear equations

duXi + Cl\ 2X2 + . . . + d\ nxn = b\

dl\X\ + 022*2 + . . . + d2nX„ = (1)

fm 1*1 "t dfn2X2 “1" ... “t
- dninXn — bm

We arrange the coefficients of the unknowns in matrix form

and this is called the coefficient mdtrix of (1).

Suppose system (1) is consistent, then Gaussian elimination

yields the system in the echelon form

b\\X\ + b\2X2 + . . . + blrXr + b\, r + l*r + 1 + . . . + b\ nXn = Cl

b2lX2 + . . . + b2rXr + b2,r+ lXr + l + . . . + b2nX„ = C2

brrXr “f br,r+ lXr+ 1 + ... “f bnXn — Cr

Its coefficient matrix is

B =
b\2 ... bi rbi,r+l

b22 ... b2rb2,r+l

0 ... brrbr,r+ 1

System (1) is obtained from (2) by elementary operations.

Now, applying the same elementary operations to the matrix

A of (1) yields the matrix B. We know that elementary opera-

tions do not change the rank of a matrix, thus, the rank of

A is equal to the rank of B. Since the rank of B equals the

number of its rows, i.e. r we can write

rank A = r
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Reading this equation “from right to left” (r rank A) we may
conclude that if system (1) is consistent, then the number r of
the equations in an equivalent system (2) obtained from (1) by
Gaussian elimination, equals the rank of the matrix A o/(l).

Or alternatively, if the system is consistent, then the number
of free unknowns is n - r, where r is the rank of the matrix
A of the system.

11.5. OPERATIONS WITH MATRICES

The study of operations with matrices is an important part

of matrix theory. Multiplication of matrices, which is similar

in certain respects to multiplication of numbers, is especially

interesting and underlies matrix algebra which is frequently

used in mathematics and its applications.

1. Addition of matrices.

Suppose A and B are two matrices of the same dimension,

i.e. having the same number of rows and the same number of

columns,

A *=

an 0\2 • a i„ \ bn bn bln

021 O22 • a2n |,
B =

f

b2 l b22 •• • b2n

Qm\ @m2 • •• • Qmn J \ bmi bmi • brnn

Their sum is the matrix

A + B =
a11 + bn fli2 T b\2 . . . flln + bln

021 + b2 1 022 + b22 02n + &2n

Oml + bmi am2 + bm2 . Om„ + b„

In other words, in order to add two m x n matrices we should

add their corresponding elements. For instance,
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An m x n matrix with all its elements being zeros is called

an m x n zero matrix and denoted by 0 (strictly speaking, we

must denote it by 0m ,„ to show its dimension). Obviously,

A + 0 = A

for any matrix A of the same dimension as 0.

2. Multiplication of a matrix by a number.

To multiply a matrix A by a number k is, by definition, to

multiply all its elements by that number:

For instance,

It can easily be proved that

A:(A + B) = k\ + AB

for any two matrices A and B of the same dimension.

3. Matrix multiplication.

This is a special operation in which any two matrices A and

B such that the number of columns in A equals the number
of rows in B yield a third matrix C.

Suppose we have an m x n matrix A

and an n X k matrix B
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We note that, by definition, the number n of columns in A
equals the number n of rows in B, or in other words, the length

of a row in A equals the height of a column in B.

Definition. The product AB of two matrices A and B is a

matrix C whose elements are such that

Cij = a,ih\j + anb2j + . . . + a,nbnj

The rule for finding c,y can easily be remembered: every ele-

ment of the /th row of A and the corresponding element of

the yth column of B

Oil Oil • • • Clin

are multiplied and then the results are added together. Since

we have m rows in A and k columns in B, the double subscripts

of dj will run over / from 1 to m and over j from 1 to k, whence
it follows that C is an m x k matrix.

To iljpstrate, we compile a table showing the numbers of rows

and columns in the matrices A, B, and AB:

A B AB

Number of rows m n m

Number of columns n k k

You can remember this table thus: — t = t )
n k k )

Example 1. (J '4) •
(® ”2)

/3 0 + (-2) 0 3
-

( — 1) + ( — 2) -2\ = /0 — 7\

yi-0 + 4-0 !•(-!) + 4-2 ) V° V
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Example 2.
(I 1 -3\/f\ /1-2+ 1-1 + (-3)1
\1 2 -*)[ [)

\l-2 + 2-1 + ( — 4) * 1)

Example 3.

-1-6 + 0-( — 4) (- 1)-2 + 0-2\ / -6 -2'

2-6 + 7
•
( — 4) 2-2 + 72

)

=
l

-16 18

3-6 + 5
-

( — 4) 3-2 + 5-2/
'

V -2 16

Example 4.
^ 4y

’

(j 2)
t^ie Pr0^uct is meaningless

since the length of the row in the first matrix differs from the

length of the column in the second one.

11.6. PROPERTIES OF MATRIX MULTIPLICATION

1. Noncommutativity.

It is advisable to compare matrix multiplication and number
multiplication.

Matrix multiplication is not commutative in contrast to num-
ber multiplication. Generally, this means that AB ^ BA.

To illustrate, we consider the two matrices

^G')’ b -(D
Since the length of a row in A and the height of a column

in B are the same, the product AB is true, but the product BA
is undefined.

There are pairs if matrices A and B for which both products

AB and BA are defined, but AB 9̂ BA. For instance,

(::)««
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while

PP-P
2. Associativity.

Matrix multiplication is associative. This means that given

three matrices A, B, and C, if one of the products (AB)C and
A(BC) exists, then the other also exists and

(AB)C = A(BC) (1)

Suppose A and B are two matrices with the product AB,

and C is a matrix for which (AB)C is defined:

A B AB C (AB)C

Number of rows m n m k m

Number of columns n k k 1 i

Then the product A(BC) is also defined. Let us prove equa-

tion (1).

We denote the matrix AB by P and BC by Q. Let us prove

that PC = AQ.

The element of PC in the /th row and the y'th column is

k k / n

S Pipcpj = S ( E
(3=1 0=1 \a=l

The subscript a on the right-hand side of (2) varies from 1 to

n and j3 varies from 1 to k.

The element of AQ in the same row and column is

n n / k

'y
'

UiaQaj
~ S ttia I

0=1 0=1 \ 0 = 1

The right-hand side of this equation is the same as that in (2).

Thus, the elements at the same places in the matrices PC and

AQ are the same. Hence, PC = AQ.

ala hm
^j

C(3j — y ] Qinbat0Cfij (2 )
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Because matrix multiplication is associative, we can write

ABC without specifying which product (AB)C or A(BC) is

meant.

3. Distributivity.

Let us prove that matrix multiplication is distributive with

respect to matrix addition. Since matrix multiplication is not

commutative, we have

A(B + C) = AB + AC
(B + C)A = BA + CA

We only need to prove the first equation since the second

can be proved by analogy. We assume that B and C have the

same dimension and the number of columns in A and the num-

ber of rows in B are the same.

The element of A(B + C) in the /'th row and the y'th column is

Qi\(b\j + Cij) + diiiblj + C2j) + . . . + din(bnJ + C„j)

where n is the number of columns in A (which equals, by as-

sumption, the number of rows in B and C). Removing brackets

yields

(di\b\j + a,2by + . . . + Uinbnj) + (diiCij + (laCij

+ . . . + QinCnj)

The first sum is the element in the Arth row and y'th column

of AB and the second sum is the analogous element of AC. m

11.7. INVERSE OF A MATRIX

A more profound analogy between matrix multiplication and

number multiplication is observed when considering square

matrices. We assume that all the matrices discussed below are

square having the same order n (the number of rows or

columns), and this means that AB is always defined.

1. Identity matrix.

We know that the number 1 is such that when multiplied

by a number a gives a again:

a - 1 = 1 -a = a
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An n x n matrix called the identity matrix with the form

has a similar property. It is easy to prove that

AI = IA = A

whatever the matrix

In fact, the element of AI in the z'th row and jth column is

flil’O + . . . + Oij- 1-0 + Oyl + QiJ + l '0 + . . . + ain '0 = a,j

whence it follows that AI = A. Similarly, we can prove that

IA = A.

2. Inverse matrix.

An important property of the multiplication of numbers is

that any nonzero number a has an inverse number b such that

ab = 1, ba = 1

Matrices have a similar property when the condition that the

determinant of the matrix A is nonzero is substituted for the

condition that a ^ 0.

Definition 1. A square matrix A is said to be nonsingular

if its determinant is nonzero:

|A| * 0

and the matrix is said to be singular if |A| = 0.

Definition 2. Given an n x n square matrix A. An n x n

matrix B is called the inverse of A if

AB = I, BA = I
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The inverse of A is usually denoted by A Thus,

AA ~ 1 = I, A _1A = I

The following proposition is valid (we shall accept it without

proof): a singular matrix has no inverse.

3. Finding the inverse of a nonsingular matrix.

Suppose

/ Oil Ol2 • Oin

A =
J

fl21 022 • • • 02/,

\ a„i Qn2 • • Qnn

is a nonsingular matrix, i .e.

|A A 0

Theorem. If A is a nonsingular matrix, then

Az\ . . . Am
An . . . A„

2

Azn . • • Ann

is the inverse of A.

Here Ay is the cofactor of ay in the determinant |A|.

Note the special arrangement of Ay in the matrix B: Ay is

in the y'th row and /th column and not in the r'th row and yth

column.

We should prove the equations AB = I and BA = I. We
start with the product AB and putting AB = C we write

17— .166
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By the rule of matrix multiplication, the element in the /th row
and y'th column in C is

The expression equals 1 for / = j, since in this case the ex-

pression in the parentheses is the expansion of the determinant

|A| by the /th row; when / ^ j, the equation is zero, since the

expression in parentheses is the sum of the elements of the /th

row in |A| multiplied by the cofactors of the corresponding ele-

ments of they'th row (see property 7°, Sec. 3.6). Thus, dj is unity

if / = j and is zero if / A j, which implies C = I.

Example 1. Given the matrix

verify whether it has the inverse and find A 1

O We have

|A|=
\ _] = -1*0

consequently, the matrix A “
1

exists. In order to determine it,

we first find the numbers A u = -1, An = -4, A 2 i
= -2,

An - -7. Then using (1) we can write

Example 2. Given the matrix

verify whether it has the inverse and find it.

O We have

2 2 3

A = 1 -1 0 = -1
-1 2 1
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Since |A| ^ 0, A has the inverse A '.

We have

An =

An =

A 22 =

-1 0

2 1

1

-1

2 3

-1 1

= -
1

, A 12 = -

= 1, >421 =

- 5, A 23 = —

An = 2 3

-1 0
= 3, A 32 = -

1 0

-1 1

2 3

2 1

2 2

-1 2

2 3

1 0

An =
2 2

1 -1
= -4

Consequently, the inverse is

A' 1 = -

= -1

= 4

= -6

= 3

4 3\ / 1 -4 -4N

5 3 = 1-5-3
6 -4/ \-l 6 4,

We advise the reader to prove the equalities AA 1 = I and
A _1A = I. •

11.8. SYSTEMS OF LINEAR EQUATIONS IN MATRIX FORM

The operation of matrix multiplication opens a new insight

into a simple, but nevertheless important, problem of linear al-

gebra, namely, solving a system of linear equations.

Suppose we have a system of m linear equations in n
unknowns (an m x n system). For the sake of simplicity, we
consider the special case when m = 2, n = 3, that is, a system
of the form

(an xi + a i2x2 + fli3*3 = b\

(^21X1 + a22X2 + a23*3 = b2 ’

17
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By introducing the matrices

. _ (an an Oi 3\ „ _ /6A v f
X ‘\

\02 1 O22 023/’ \&2/’ \^3/

we can write system (1 ) as a single matrix equation

AX = B (2)

Indeed, the product AX is the matrix with a single column:

— f 0H*1
+ g12*2 + 013*3^

\|o2i*i + 022^ + 023*31/

whose elements are the right-hand sides of (1). Equating them

to the corresponding elements of the matrix B yields system (1).

Equation (2) is the matrix notation of system (1).

For instance, the matrix notation of the system

is

+ X2 + 5X3 = 4

- 7x3 = 1

The matrix notation of an m x n system is still ef the form
in (2), except that A is an m x n matrix, B is the column of

m elements, and X is the column of n elements.

1. An n X n system. Notation of a solution in terms of an

inverse matrix.

Systems in which the number of equations and unknowns
is the same (n x n systems) are of particular importance. In

this case A is an n X n square matrix. Suppose A is nonsingu-

lar, i.e. its determinant is nonzero. Then A has the inverse A ”
’.

By using the inverse, we can solve equation (2), namely, mul-

tiplying (2) from the left by A “
1

yields

A “'(AX) = A'B
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or, because matrix multiplication is associative

(A-'A)X = A“'B

But since A "
1A = I and IX = X, we have

X = A“'B (3 )

We cannot yet say that (3) is equivalent to (2); we can only

assert that any solution X of (2) also satisfies (3).

In fact, the matrix X defined by (3) satisfies (2) since

A(A 'B) = (AA"‘)B = IB = B

Thus, (3) is the matrix notation of the solution for an n x n

system having a nonsingular matrix A.

Remark. Formula (3) is not so convenient that it greatly sim-

plifies the solution of an n X n system with a nonsingular

matrix A since we first have to find the matrix A “
*, which

is in itself difficult. However, (3) is interesting from the view-

point of theory. Gaussian elimination is still the best method

for solving an n x n system.

Nevertheless, we can illustrate an application of (3).

Example. Solve the system of equations

X\ + 3X3 = 1

5xi + 3x2 + 7x3 = 1

3xi + 2x2 + 5x3 = 1

O We have

The determinant |A| is 4, hence A is nonsingular.

We calculate the inverse A “ 1

using formula (1) from
Sec. 11.6. We have
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a 31
0 3

3 7
-9

An 5 7

3 5
-4, A22

1 3

3 5
-4

A 23 = - 1 0

3 2
-2

An 0 3

3 7
~ 9 , ,432 = — 1 3

5 7
= 8

/ 1/4 6/4 - 9/4\
A ~ 1 = I -4/4 -4/4 8/4

)

\ 1/4 -2/4 3/4/

Then we find the matrix X from (3)

X =
/1/4 6/4 -9/4\
-

1 -! 2

\l/4 -2/4 3/4 /

Thus, the solution of the system is x, = -1/2, x2 = 0,

x3 = 1/2. •
2. Matrix equations.

The unknown matrix X in equations of form (2) consists of
a single column, however, there are equations of the same form
in which X consists of several columns. We consider the case
when A, B, and X are n x n square matrices, if A is nonsingu-
lar, then in order to find X we may use the technique applied

earlier, namely, multiplying the equation from the left by the

matrix A -1
. Then we obtain

X = A 'B

The problem is solved.
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Note that if the equation is of the form

YA = B

(the unknown matrix Y is on the left of A), then we obtain

Y = BA ~ 1

Example. Solve the equation

O The matrix

is nonsingular (its determinant is
- 2). We find the inverse

and then the unknown matrix

X = A 'B
2 (-3 2) (59) (2 3)

Exercises to Chapter 11

1. What can we say about the rows of a matrix if its rank is one or two.

2. Find the ranks of each matrix:

(4)
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3. Find the rank of the matrix depending on the value of a:

4. Find the condition under which both products AB and BA and the product

AA (which is the square of the matrix A) are defined.

5. Find the matrix A 2 - 6A, where A =

6. Multiply the matrices in the indicated order:

7. The notation ABC means (AB)C or , which is the same, A(BC). Find

(r:)
(-3 4)

8. The notation A" means A A. . A (n times). Find the matrices

C :0‘
» G :;)• » G :i)‘

« G -0’ -5i G -O'
,6>

G O'
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9. Find the change in the matrix

when we multiply it from the left by each matrix

(a) A

12. Using the inverse matrix solve each system of equations:

( x + 2y + 3z = 7

(a) \lx ~ y + z = 9

/ x - 4y + 2z = 11

(b)

lx - y + 3z = 1

3jc - 5y + z = 1

4x - ly =1

13. Solve each matrix equation

( 1 ) *(-)-(-»)

-C0 x C’-0=(i-:)



Chapter 12

EUCLIDEAN VECTOR SPACES

The concepts of a basis, dimension, and coordinate in terms

of a basis were introduced earlier, and are all related to the

concept of linear dependence. By considering two- and three-

dimensional vector spaces (i.e. the sets of all vectors in the plane

or in space), we can see that the concept of a vector is consider-

ably extended. For instance, each vector has a length, two non-

zero vectors form a definite angle, and perpendicular vectors

exist in spaces. This chapter generalizes these concepts (usually

called metric) to the case of a vector space of any dimension.

12.1. SCALAR PRODUCT. EUCLIDEAN VECTOR SPACES

1. Definition of a scalar product.

We introduced the operation of scalar multiplication of vec-

tors in the ordinary space in Sec. 2.3 by the formula

x-y = |x|-|y| -cos y>

where is the angle between x and y. The consequences of

this definition are

|x| = Vx^x ( 1 )

(2)

from which we can see that the length of a vector and the angle

between two vectors can be expressed via the scalar product.

Formulas (1) and (2) suggest a way of generalizing (to an n-

dimensional case) the scalar product, and so the length of a
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vector and the angle between two vectors can then be found

from formulas (1) and (2).

The scalar product of two vectors in three-dimensional space

possesses the following properties (see Sec. 2.3):

1°. x-x ^ 0, with x-x = 0 only if x = 0,

2°. x-y = y-x,

3°. (kx)-y = k(x- y), where A: is a scalar,

4°. (x + y)-z = x-z + y z.

It is advisable that properties l°-4° remain valid for any

generalization of the scalar product.

Definition 1. We say that we can define the operation ofsca-

lar multiplication (or simply, scalar multiplication) in a vector

space L if any pair of vectors x and y from L can be associated

with a number denoted by x-y and called the scalar product

of x and y, properties l
0-4° being valid.

Definition 2. A vector space L in which scalar multiplication

can be defined is called a Euclidean vector space.

Properties l°-4° are often called the axioms of the scalar

product.

2. Method of a scalar product.

We cannot say from the definition of a scalar product

whether we can introduce a scalar product in an ^-dimensional

vector space. The formula

x-y = xiyi + x2y2 + x3y3

from Sec. 2.3 suggests an answer; the formula expresses the sca-

lar product of two vectors x and y in a three-dimensional space

in terms of the Cartesian coordinates of these vectors. Using

a similar formula, we can define a scalar multiplication in an

n-dimensional vector space L. To do this, we choose a basis

ei, e2 , . . ., e„ in L and associate a pair of vectors x, y with

a number

x-y = xiyi + x2y2 + + xny„ (3)

where Xi, x2 , .
. , xn are the coordinates of x and yi, y2 , . . .,

y„ are the coordinates of y in the chosen basis. Then the proper-

ties l°-4° are satisfied.
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(1) The expression x-x = x\ + x\ + ... + x\ is nonnega-

tive for all values of X\, x2 , . . ., x„ and is zero only if x\ = 0,

X2 = 0, . .
. , xn = 0, that is, when x = 0.

(2) That property 2° is satisfied is obvious.

(3) (kx)-y = (Atati) .yi + (kx2)-y2 + . . . + (kx„)-y„ =
k(xiyi + x2y2 + . . . + x„y„) = k(x- y).

(4) (x + y)-z = (xi + yi) Zi + (x2 + y2) z2 + ... + (x„ +

yn) Zn = (XiZl + X2Z2 + . . . + X„Zn) + (jlZl + yiz2 + . . . +

ynZn)
= x-z + y-Z.

Thus, (3) defines the operation of scalar multiplication in a

space L.

If we choose another basis ej, e2 , . .

e*
n and associate a

pair of vectors x, y with a number (x-y)* = x\y\ + x2y2 +
. . . + x'ny*,, (where x\, . . ., x„ and y*, . . .,

y*
n are the coor-

dinates of x and y in the new basis), then, generally speaking,

x-y = (x-y)* is not satisfied. Hence it is clear that the operation

of scalar multiplication can be defined in L in many ways.

We shall show later that however the operation ofscalar mul-

tiplication is defined in a vector space L, there is always at least

one basis such that (3) is satisfied.

3. Properties following from the axioms 1°>4° of a scalar

product.

To begin with, we show that two additional properties of ax-

ioms 3° and 4° are valid:

3?. x-(ky) = k(x- y),

4?. x-(y + z) = x-y + x-z.

Property 3? follows from the chain of equalities

x-(ky) = (ky)-x = Ar(y-x) = Ar(x-y)

each of which uses the axioms of a scalar product. Property

4? can be proved in a similar manner, viz.,

x-(y + z) = (y + z)-x = y-x + z-x = x-y + x-z

By using properties 3° and 3? we can deduce one more
property:

3?-(£x)-(/y) = (kl)(x-y)
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Further, it follows from properties 4° and 4? that

(xi + x2 + ... + xp)-(yi + y2 + ... + yq)

= (xi, yi) + (xi, y2) + ... + (xp , yq)

i.e. the scalar multiplication of a sum by a sum is distributive:

each term of the first sum must be multiplied by each term

of the second and the results added. This and property 3 2 yield

a rule for multiplying one linear combination by another:

(£ 1 X 1 + k2 \2 + . . . + kp\p, Ayi + /2y2 + ... + /, y„)

= Mi(xryi) + (£i/2)(xi-y2) + . . . + kq lq (xp -yq) (4)

For instance

(3xi - 2x2)-(5yi + 4y2)

= (3 - 5)(xi -yi) + (3-4)(xi -y2) + ((-2)-5)(x2 -yi)

+ ((-2)-4)(x2 -y2) = 15(xj -yi) + 12(xr y2)

- 10(x2 -yi) - 8(x2 -y2)

12.2. SIMPLE METRIC CONCEPTS IN EUCLIDEAN VECTOR
SPACES

Having introduced scalar multiplication in a vector space L,

we can define such concepts as the length or absolute value

of a vector, the angle between two vectors, and the perpen-

dicularity of vectors.

Definition 1. The absolute value of a vector x is the number

|x| = Vx^x (1)

Since the radicand is nonnegative by virtue of axiom 1°, the

root exists.

Definition 2. Suppose x and y are two nonzero vectors. The
angle between x and y is the number <p defined by

COS if> =
xy

Vx^xVy^y
(2)

and such that 0 < <p ^ it.
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The existence of p will be proved later.

Definition 3. Two vectors x and y are said .to be perpendicular
or orthogonal if their scalar product is zero.

By viritue of (2), two nonzero vectors x and y are orthogonal
if and only if the angle <p between them is ir/2 (cos <p = 0).

The zero vector is orthogonal to any other vector and this

follows from the chain of equalities

Ox = (Ox)-x = 0(x-x) = 0

1. Cauchy-Buniakovski’s inequality.

Formula (2) for finding the angle between two nonzero vec-

tors x and y requires additional explanation. The point is that

cos <f cannot be any arbitrary number since cos <p = a is only
valid if —1 < a ^ 1. Thus, the angle <p between two nonzero
vectors exists if

-1 ^
xy

^ 1

M|y|

or, which is the same,

(x-y)
2

, (3)
M |y|

Theorem. The inequality

(x-y)
2

|x|
2
|y

|

2
(4)

is valid for any two vectors in a Euclidean vector space L.

Note that (4) is known as Cauchy-Buniakovski’s inequality*.

When x ^ 0 and y ^ 0 (4) is equivalent to (3).

Consider the scalar product of the vector y - tx with it-

self, where t is any number:

(y - tx)-(y - tx) = y-y - t(x- y) - f(y-x) + f
2
(x-x)

* Cauchy A. L. (1789-1857), French mathematician, the author of fun-

damental works on mathematical analysis

Buniakovski V. J. (1804-1889), Russian mathematician, the author of many
works on statistics including the first Russian textbook on probability theory.
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We obtain an equation of the form

(y - tx)-(y - tx) = at
2 + 2/3t + y

where a = x-x, /3 = -(x-y), 7 = y-y. The quadratic polynomi-

al in t on the right-hand side of the equation is nonnegative

for any t, since it is the scalar product of a vector with itself.

Hence it follows that the discriminant of the quadratic, i.e.

/3
2 - ay, is not positive. Consequently,

(x-y)
2 - (x-x)(y-y) ^ 0

which is (4) in different notation.

Thus, we have proved Cauchy-Buniakovski’s inequality and

thereby validated the definition of the angle between two

vectors.

If the scalar product is defined in terms of a basis by x-y =

Xiyi + xiyi + . . . + x„y„, then Cauchy-Buniakovski’s ine-

quality assumes the form

(x^i + xiyi + . . . + x„y„)
2

< (x\ + x\ + ... + x2
)(yj + y

2 + ... + yl)

which is valid for all x and y.

12.3. ORTHOGONAL SYSTEM OF VECTORS. ORTHOGONAL
BASIS

1. Orthogonal system of vectors.

Definition. The system of vectors

ai, a2 , .... ap (1)

in a Euclidean vector space L is said to be orthogonal if any

two vectors of the system are orthogonal, that is,

a, -a, = 0

where / and j are any numbers from the set 1 , 2 ,
. . ., p and

‘ * j-

Obviously, any subsystem of an orthogonal system is also

orthogonal.
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What is then the number of vectors in an orthogonal system?

If we do not require that each vector of the system be nonzero,

then the system may consist of any number of vectors. For in-

stance, the system of p equal vectors 0, 0, . .
.

,

0 is orthogonal

for any p. Therefore, we assume in addition, that all the vectors

of the system are nonzero. Given this assumption, the number
of vectors must not exceed the dimension of the space L, i.e. n.

This follows from the next Lemma.
Lemma. An orthogonal system of nonzero vectors is always

linearly independent.

Given an orthogonal system of nonzero vectors (1). Sup-

pose they are linearly dependent, i.e. the following equality is

true,

ciai + c2a2 + . . . + CpSip = 0

where ci, c2 , . . ., cp are not all zero, say C\ A 0. Then scalar

multiplication of the last equation by ai yields

ci(ar a,) + c2 (a2 -ai) + . . . + cp (ap -ai) = 0

or, since ai is orthogonal to every vector a2 , . . ., ap ,

ci(ai-ai) = 0

But ai-ai 0 since ai 5* 0. Hence Ci = 0. This contradiction

proves that system (1 ) is linearly independent.

Since a linearly independent system in an n-dimensional vec-

tor space consists of not more than n vectors, the lemma yields

the corollary: A system ofmutually orthogonal nonzero vectors

in an n-dimensional Euclidean vector space contains no more
than n vectors.

This proposition is obvious for n = 3, since we cannot “put”

more than three orthogonal nonzero vectors into an ordinary

three-dimensional space (Fig. 118).

Figure 118
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Is there an orthogonal system of exactly n nonzero vectors

in an ^-dimensional Euclidean vector space LI Since, according

to the lemma such a system is necessarily a basis of the space,

we may put an alternative question: Is there an orthogonal basis

in L? The answer is given in the next subsection.

2. Existence of an orthogonal basis.

Lemma. Suppose we have a system of k vectors in an n-

dimensional Euclidean vector space L, k < n, then there exists

a nonzero vector orthogonal to all the vectors of the system.

We denote the vectors of the system by ai, a2 , . . ., a*

and the unknown nonzero vector by x. The vector x ^ 0 and
is such that

ai-x = 0, a2 x = 0, ..., a*-x = 0 (2)

We choose a basis ei, e2 , . . ., e„ in L and assume that

x = xiei + x2e2 + . . . + x„e„

Then conditions in (2) take the form

ar(*iei + x2 e2 + . . . + x„e„) = 0

a2 -(*iei -I- x2e2 + . . . + x„e„) = 0

aHxiei + *2e2 + . . . + x„e„) = 0

Expanding each scalar product and designating a,y = a, • ej

yields

f Wll-Vl + Ctl2X2 + . . . + ainXn = 0

)
a2 iXi + a22x2 + . . . + a2„x„ = 0

+ Ctk2X2 + . . . + OiknXn = 0

This is a system of k homogeneous equations in n unknowns

Xi, X2, . .

x

n . Since k < n, the system must have a nontrivial

solution (see the theorem in Sec. 3.9). Consequently, there is

a nonzero vector x satisfying (2).

Theorem. There is always a basis of mutually orthogonal

vectors in a Euclidean vector space L (an orthogonal basis).

/! 1 8—366
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Let L be /i-dimensional. In order to construct an or-

thogonal basis, we take an arbitrary nonzero vector ai, then
a nonzero vector a2 orthogonal to ai, then a nonzero vector

a3 orthogonal to all the constructed vectors ai, a2 , .

.

a„_ i.

The existence of each next vector is ensured by the previous

lemma. The resulting system ai, a2 , . . a„ is orthogonal con-
sisting of n nonzero vectors and, consequently, is a basis of
L. a

12.4. ORTHONORMAL BASIS

1. Definition of an orthonormal basis.

Definition 1. A vector e is said to be normalized or a unit

vector if its length is 1.

Multiplying a nonnormalized vector a (a ^ 0) by a number
1

yields the normalized vector; indeed, a scalar product of the

vector — a with itself is

a

Qi
“)

'

(ii
*)

= w (a a) =

Transition from the vector a to -i- a is called the normaliza-
l»l

tion of a.

Definition 2. Given an n-dimensional Euclidean vector space
L, the basis

ci. e2 ,
. . ., e„ (1)

of L is said to be orthonormal if

(1) the basis is orthogonal, that is,

e*-e7 = 0 for / * j (2)

(2) each basis vector is normalized, that is,

erej =
1 (3)

An orthonormal basis always exists. In order to form such
a basis, it is sufficient to take any orthogonal basis ai, a2 , . . .,
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a„ (the existence of an orthogonal basis was proved in the previ-

ous section) and then normalize each vector of the basis

1 1
e, = — a,, e2 = — a2 ,

i «2
e«

1

2. Scalar product in an orthonormal basis.

Suppose we have an orthonormal basis ei, e2 , . . e„. Per-

forming scalar multiplication of two arbitrary vectors

x = *iei + x2e2 + . . . + x„e„ and y = y'lei + j2e2 + . . . +
yntn yields

x-y = (xieO-y + (x2e2)-y + . . . + (x„e„)-y (4)

The first term of the right-hand side equals

(xiei)-Oiei) + (*iei)-ty2 e2) + ... + (xieO-O^e,,)

= (jfijiKei-ei) + (xri^2)(er e2 ) + . . . + (xi.f„)(ei-e„)

= Xi.fi -1 + xiy2 - 0 + . . . + Xiy„-0 = Xi.fi

Similarly, we find that the second term is x2y2 ,
and so on. The

result is

x-y = xi.fi + x2y2 + . . . + x„yn

Thus, the scalar product of two vectors in an orthonormal
basis equals the sum of the products of their respective coor-

dinates.

Exercises to Chapter 12

1. Explain why it is impossible to introduce a scalar product in an n-

dimensional vector space, with n > 1, using the formula

x-y = x,y t

where Xi and y t
are the first coordinates of x and y in the basis. Which axiom

of l°-4° of the scalar product appears to be violated?

2. Prove the inequality

(x? + xl)(y] + y\) > (xifi + x2yi)
2

(a particular case of Cauchy-Buniakovski’s inequality for n = 2) indirectly by
considering the difference between the left-hand and right-hand sides.

18 *
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3. Prove that the previous inequality becomes an equality if and only if xi

:

y, = X2'.)>2, that is, when the vectors <Xi, X2> and <yi, y2> are collinear.

4. Let a scalar product be defined in R 3 by

xy = x\y, + x2y2 + x3y}

Employing the method given in Sec. 12.3, form an orthogonal basis with the

first basis vector <1, 1, 1>.

4. Suppose a scalar product in R4
is defined by

xy = Xiyi + x2y2 + x3y3 + x,y4

(a) Verify the orthogonality of the vectors ai = <1, 1, 1, 1> and a2 = <1,

1, -1, -1>. Construct an orthogonal basis which includes ai and a2 . Can

we choose the other two vectors so that their coordinates are +1 or -1?

(b) Find and normalize a nonzero vector orthogonal to each of the vectors

<1, 1, 1, 1>, <1, -1, -1, 1>, <2, 1, 1, 3>.



Chapter 13

AFFINE SPACES. CONVEX SETS AND POLYHEDRONS

13.1 THE AFFINE SPACE A"

We noted that an arithmetic vector space R” is an important

object studied in linear algebra. An arithmetic affine space A"
is closely related to R".

The relation between A" and’ R" is the same as between the

set of all points and the set of all vectors in an ordinary three-

dimensional space. Each point in an ordinary space is defined

(in a given Cartesian coordinate system) by a triple of numbers

and a pair of points defines a vector. By analogy, the points

of A" are defined by sets of n numbers and each pair of points

is associated with a vector from R".

Definition 1. Any set of n numbers

a i, 02 , . . a„ (1)

is called an arithmetic point and the numbers a\, a2 , . . . , a„

are called the coordinates of that point.

To stress that (1) is considered to be an arithmetic point (and

not an arithmetic vector) we write it in parentheses:

(fli, a2 , .... a„) (2)

We denote arithmetic points by upper-case letters A, B, C,

and so on. For instance, we denote point (2) by A and write

A = (ai, a2 , . . ., a„).

Definition 2. Suppose A and B are two arithmetic points hav-

ing the same number of coordinates n, i.e. A = (ai, a2

a„) and B = (bi, b2 , .... b„). The arithmetic vector (b±- a i,

b2 - a2 , bn - an ) from R" is called the vector AB and

A is its initial point and B is its terminal point.

This definition implies that the coordinates of AB are the
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differences of the corresponding coordinates of the initial and
terminal points.

The point (0, 0, 0) is called the origin and denoted by O.

Obviously, whatever the point A, the coordinates of OA coin-

cide with the coordinates of A. The vector OA is the radius

vector of A.

Definition 3. The set of all arithmetic points having n coor-

dinates in which each pair of points A and B is associated (by

the technique discussed) with a vector AB from R" is called

an n-dimensional arithmetic affine space and denoted by A".

We shall frequently omit the word “arithmetic” in our later

discussion.

Theorem. The equality

AB + BC = AC

is valid whatever the points A, B, C from A".

Let A = (oi, a2 a„), B = (b,, b2 , .... b„), and
C = (ci, c2 , . . ., c„). Then

AB = (bi - au b2 - a2 , b„ - a„

>

BC = <ci - bu c2 - b2 , c„ - bn )

whence it follows that

AB + BC = <(6i - a i) + (ci - b\), (

b

2 - a2) + (c2 - b2 ),

• • •> {bn ~ a„) + (c„ bn))

= <Ci - au c2 — a2 , c„ - a„) = AC

Laying off a vector. This is an important concept in the ge-

ometry of A" or affine geometry.

Definition 4. Let A = (oi, a2 , . . ., a„) be a point from A"
and p = <pi, p2 pn ) be a vector from R". To lay off a
vector p from a point A is to find a point B such that

AB = p (3)

_Since_05 = OA + AB, (3) is equivalent to the equation

OB = OA + p. Consequently, denoting the coordinates of B
by bu b2 , . . ., b„ yields

b\ = ai + pi, b2 = a2 + p2 , . . ., b„ = a„ + p„ (4)
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which means that the coordinates ofB are the sums of the coor-
dinates of A and the corresponding coordinates of p.

Notation. We write the point B obtained by laying off a vec-

tor p from the point A as A + p.

According to (4),

A + p = (a, + pu a2 + p2 , . . ., a„ + pn)

13.2. SIMPLE GEOMETRIC FIGURES IN A"

1. Straight line

A straight line in an ordinary space can be defined by a point
and a direction vector. The following definition is the generali-

zation of this fact.

Definition. Let X0 be a fixed point in A" and p be a fixed

vector from R". The set of points X of the form

X = X0 + tp (1)

with t a number, is called a straight line through X0 in the direc-

tion of p, or simply, a straight line.

If X0 = (Xi , x2 , x%) and p = (pi, p2 , pn >, then
X\ + tp\, x2 + tp2 , . .

.

,

x„ + tpn are the coordinates of point

(1). Therefore, we can say that the parametric equations of a
straight line through X0 in the direction of p have the form

XI = X°i + tpu X2 = X? + tp2 , Xn = X°n + tpn

2. Line segment.

Definition. Let X0 and Xx be two points in A". The set of
points X of the form

X = Xo + tXoX\ (2)

with t varying over the interval 0 ^ t < 1 is called a line seg-

ment X0X\

.

The points Xo and X\ are called the end points of the line

segment AoAi . Obviously Xo corresponds to t = 0 and Xx to

t = 1.

Theorem (on a line segment). A line segment XqXx in A"
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consists of the points X such that

OX = sOXo + (1 - s) OXi

where s varies within the limits 0^5^ 1

.

It follows from (2) that

OX = OXo + tX^Xi = OX

o

+ t(OX,
- OXo)

= (1 - t) OXo + tOXi

Putting 1 — t = s yields the statement of the theorem.

3. Different kinds of plane in A".

We can introduce the concept of a plane, and not only a

straight line, in the space A". However, the dimension n may
be larger than three. The point is that there are different kinds

of plane in A", where n > 3: two-dimensional, three-

dimensional, and finally (

n

- l)-dimensional.

Definition. Let A: be a real number. A plane of dimension

k (or a k-dimensional plane) in A" is the set of points X of

the form

X — Xo + ZiPi + /2P2 + . . . + tkPk

where X0 is a fixed point, pi, p2 , . . ., p* are fixed linearly in-

dependent vectors from R", and h, t2 , are arbitrary

numbers.

The definition may include the condition that k must be

smaller than n. Indeed, there are no linearly independent sys-

tems of vectors whose number exceeds n in R". The case when
k = n is of no interest since a linearly independent system of

n vectors is a basis of Rn
, and, therefore, an n-dimensional

plane is the set of points of the form

Xo + p

where p is any vector from R"; in other words, an n-

dimensional plane is the entire space A".

Two kinds of plane in A" are most interesting, namely, planes

of minimal possible dimension 1 and planes of maximal possi-

ble dimension n — 1. One-dimensional planes are, essentially,

straight lines defined earlier. Planes of dimension n — 1 are
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called hyperplanes. When n = 3, a hyperplane is the set of

points of the form

Xo + fiPi + teP2

where pi and p2 are linearly independent vectors from R 3
.

Whence it follows that for n = 3 the concept of a hyperplane

coincides with that of a plane in a three-dimensional space

(Fig. 119).

An ordinary plane is defined by an equation of the form

ax + by + cz + d = 0

Generalizing this fact, we shall give, in the next subsection,

another, independent definition of a hyperplane and use it in

what follows.

4. Hyperplanes.

Definition. A hyperplane in A" is the set of numbers

X - (xi, xi, ..., x„) whose coordinates satisfy the linear

equation

aiX\ + 02X2 + . . . + a„xn + b = 0 (3)

where a\, 02 , . . ., a„, b are fixed numbers and a\, 02 , . . ., a„

are not all zero.

Both definitions of a hyperplane are equivalent in that we

define it as a set determined by an equation of form (3) and

as an (n - l)-dimensional plane, i.e. the set of points X of the

19—366
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form

X = Xo + ft Pl + /2 P2 + • • • + tn - lPn - 1

where pi, p2 , .
.

p„- 1 are fixed linearly independent vectors

from R", and the equivalence can be proved.

5. Half-spaces.

If a plane in an ordinary space is defined by the equation

ax + by + cz + d = 0

then each of two half-spaces into which the plane divides the

space is defined by the respective inequality, namely,

ax + by + cz = d ^ 0

and

ax + by + cz + d < 0

Generalizing this fact we make the following definition.

Definition. Given a hyperplane

a 1X1 + aiXi + . . . + a„x„ + b = 0

in A", the following two sets are called half-spaces into which

this hyperplane divides A":

(1) the set of all points X = (xi, xz, . . ., x„) such that

a\X\ + azXz + . . . 4- a„x„ + b ^ 0

(2) the set of all points X = (xi, xz, . . ., x„ ) such that

a\X\ + azx2 + . . . + a„x„ + b ^ 0

13.3. CONVEX SETS OF POINTS IN A".

CONVEX POLYHEDRONS

1. Convex sets in the plane and in three-dimensional space.

Definition. The set M of points in the plane and in space

is said to be convex if it contains the line segment AB joining

its two points A and B.

Figure 120 illustrates convex and concave sets.
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2. Convex sets in A".

Definition. The set M of points in A" is said to be convex
if it contains all the points of the line segment AB joining its

points A and B.

Theorem. The hyperplane as well as any of its half-spaces

into which it divides A" are convex sets.

We consider a half-space defined by

flixi + a2x2 + . .

.

+ a„x„ + b ^ 0 (1)

We shall prove that it is convex. Suppose the points X' = (x{,

x2 , . . ., *„') and X" = (x{\ x2 , . ., xf) belong to the indicated

half-space, i.e.

a\x{ + a2x2 + . . . + a„x; + b ^ 0

a\x" + a2x£ + ... + anxH + b ^ 0

Let us verify that any point X of the line segment X'X" also

belongs to that half-space.

According to the theorem on a line segment (see Sec. 13.2),

the coordinates of X can be represented as

X\ = sx{ + (1 — 5) x"

x2 = sx{ + (1 - s) x2

IV*

x„ = sx' + (1 - s) X,
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Figure 121

where 0 ^ s ^ 1. Substituting these expressions into the left-

hand side of (1) yields

a\(sx{ + (1 - 5) x{) + a2 (sx{ + (1 - s) x{)

+ . . . + an (sx + (1 - s) x') + b

= s(a\x{ + ciixi + . . . + a„x'„ + b)

+ (1 - sXai*"-!- 02X2
"+ . . . + anxZ+ b)

(note that sb + (1 - s) b = b). The expression on the right-

hand side of this equation is nonnegative on the basis of (2)

and since s ^ 0, 1 - s ^ 0.

Thus, we proved that the half-space is convex. The same can

be proved by analogy for a hyperplane.

3. Convex polyhedral domains. Convex polyhedrons.

A convex polyhedron in an ordinary space can be visualized

as an intersection of several half-spaces. For instance, we can

see from Figure 121 that a tetrahedron is the intersection of

four half-spaces and a cube is the intersection of six half-

spaces.

However, the converse is not always true: the intersection of

several half-spaces can be a convex polyhedron. First, the inter-

section may be empty (Fig. 122) or it can be an unbounded

figure (the infinite trihedral angle in Fig. 123). Given the last

remark, we introduce the following definitions.

Definition 1. The set of points in A" is called a convex poly-

hedral domain if it can be represented as the intersection of

several half-spaces.

Definition 2. A convex polyhedral domain in A", which is
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Figure 123

at the same time a bounded set in A", is called a convex poly-

hedron.

In a bounded set the coordinates of all its points are less

in absolute value than a constant C: |jci| < C, \x2
\
< C, .

.

|*n| < C.

Thus, a convex polyhedral domain is defined by a system of

linear inequalities

( aiXi + a2x2 + . . . + anx„ + b ^ 0

C a iX\ + o2x2 + . . . + a„xn + b ' ^ 0

The number of inequalities in the system can be arbitrary.

Example. Find the convex polyhedral domain in the plane

defined by the system

C x + y + 1^0

I

x - 2y - 2 ^ 0

(^2x - y - 4 ^ 0

(In the case of a plane, we should say a polygonal and not

“polyhedral” domain.)

• We can write the first inequality of the system as

y ^ -x - 1; it defines the half-plane above its boundary line

l\ (Fig. 124). The second inequality is equivalent to

y ^ (l/2)x — 1 and defines the half-plane below the boundary
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u

x

Figure 124

line h. The third inequality y lx - 4 defines the half-plane

below its boundary line h. The intersection of these three half-

planes is a convex polyhedral domain M shown in Fig. 124; it

is unbounded and has two vertices: ^4 1 (1, -2) and >12 (2 , 0). •

Exercises to Chapter 13

1. Prove that if A, B, C, D are four points in a space A", with AB = CD,
then AC = BD.

2. Prove that (A + p) + q = A + (p + q), where A is any point from A"
and p and q are vectors from R".

3. Prove that two distinct straight lines in space A" can only have a single

point in common.
4. Prove that three points A, B, C in a^space A" lie on the same straight

line if and only if the vectors AB and AC are collinear.

5. A point in A" divides the line segment X,Xi in the ratio a:(3 if

XiX = (a/f})XX2 - Deduce the formula

OX = OX, +
a + 0

a
OX2

a + 0

for the radius vector of point X dividing the line segment in the ratio a:0.

6. Prove that any three noncollinear points A, B, C in space A" belong to

a two-dimensional plane and that this plane is unique.

7. Find which of the indicated domains on the plane are convex: (1) y ^ x2
,

(2) y < x

\

(3) x2 + y
2 < 1, (4) x2 + 2y

1
^ 3, (5)

(6) x2 - / s: 1.
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8. Let M be a domain in the plane and M be its complement (to a complete
plane). Can it be that the domains M and M are convex?

9. Find the convex polygonal domains in the plane defined by each system
of inequalities:

(a)

0
fX - y + i ^ X + y - i »

3x + 2y - 6 » 0 (b) X - y + i »
-3x - y + 9 0 -x + y + i >

lx + y s*

(c)

2x - y + 7

-4x + y + 11

-x + 3y - 7

x - 2

^ 0

» 0

0

< 0

x - y - 5 < 0

Which of the domains are convex polyhedrons?

10. Suppose a convex polyhedral domain M is defined in the plane by

[

a\x + biy + Ci > 0

+ biy + C2 > 0

Prove that if M contains a ray with the direction vector p =
<X, Y), then

[

a,X + b,Y > 0

a2X + b2 Y^0

Formulate a similar problem for a three-dimensional space.
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