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PREFACE TO THE FOURTH EDITION.

IN this work will be found all the Propositions which
usually appear in treatises on Theoretical Statics. To the
different Chapters Examples are appended, which have
been principally selected from the University and College
Examination Papers; these will furnish ample exercise
in the application of the principles of the subject.

Some of the Examples in the earlier Chapters assume
results which are obtained at a later part of the book ; the

" student who has no previous acquaintance with the subject

may therefore, on his first perusal of the book, omit the
more difficult Examples of the first six Chapters.

The subject besides being valuable for its own sake is
important as the first, according to the usual order of
study, which involves the application of the higher parts
of pure mathematics to physics. Thus, for instance, the
Chapters on the Centre of Gravity and on Attraction, be-

. sides their direct use in establishing interesting results in

Mechanics, are indirectly of great advantage by illustrating
the processes of the Integral Calculus, and special attention.
has been paid to this circumstance by the discussion of
numerous examples.

In the fourth edition the work has been revised, and
some additions have been made which it is hoped will
increase its utility.

1. TODHUNTER.

St JoHN’s COLLEGE, CAMBRIDGE,
June, 1874,
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STATICS.

CHAPTER L
INTRODUCTION,

~ 1. A BODY is a portion of matter limited in every direction,
and is consequently of a determinate form and volume. A
material particle is a body indefinitely small in every direc-
tion ; we shall speak of it for shortness as a particle.

"2. A body is in motion when the body or its parts occupy
successively different positions in space. But we cannot
Jjudge of the state of rest or motion of a body without com-
paring it with other bodies, and for. this reason all motions
which come under our observation are necessarily relative

motions.

3. Force is that which produces or tends to produce motion
in a body. ‘

" 4« When several -forees .act simultaneously on a body, it
may happen that they neutralise each other; when a body
remains at rest though acted on by forces, it is said to be in
equilibrium ; or, in other words, the forces are said to main-
tain equilibrium. »

5. Mechanics is the science which treats of the laws of
rest and motion of bodies. Statics treats of the laws of the
equilibrium of bodies, and Dynamics of the laws of motion of
bodies.

6, There are three things to consider in a force acting
on a particle: the position of the particle: the direction of

T, S, 1



2 INTRODUCTION.

the force, that is, the direction in which it tends to make
the particle start; and the untensity of the force. As the
dimensions of a particle are indefinitely small its position
may be determined in the same manner as that of a point
in geometry, and the direction of the force may be determined
in the same manner as that of a straight line in geometry.
We proceed then to consider the magnitude or intensity of
a force.

7. Forces can be measured by taking some force as the
unit, and expressing by numbers the ratios which other forces
bear to this unit. Two forces are equal when being applied
in opposite directions to a particle they maintain equilibrium.
If we take two equal forces and apply them to a particle in the
same direction we obtain a force double of either; if we unite
three equal forces we obtain a triple force ; and so on.

‘When we say then that a force applied to-a particle is a
certain multiple of another force, we mean that the first force
may be supposed to be composed of a certain number of forces
equal to the second and all acting in the same direction. In
this way forces become measurable quantities, which can be
expressed by numbers, like all other quantities, by referring
them to a unit of their own kind. Forces may also be repre-
sented by straight lines proportional in length to these num-
bers, drawn from the point at which the forces act and in the
directions in which they act.

8. Experience teaches us that if a body be let free from
the hand, it will fall downwards in a certain direction ; how-
ever frequently the experiment be made, the result is the
same, the body strikes the same spot on the ground in each
trial, provided the place from which it is dropped remain the
same. The cause of this undeviating effect is assumed to be
an affinity which all bodies have for the earth, and is termed
the force of attraction. If the body be prevented from falling
by the interposition of a table or of the hand, the body exerts
a pressure on the table or hand. . Weight is the name given to
the pressure which the attraction of the earth causes a body to
exert on another with which it is in contact. '
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9. A solid body is conceived to be an aggregation of
material particles which are held together by their mutual -
affinities. - This appears to be a safe hypothesis, since experi-
ments shew that any body is divisible into éuccessively smaller
and smaller portions without limit, if sufficient force be exerted
to overcome the mutua.l action of 'the parts of the body.

10. A ngld body is one in which the particles retain in-
variable positions with respect to each other. No body in
nature is perfectly rigid; every body yields more or less to
the forces which act on it. If, then, in any case this com-
pressibility is of a sensible magnitude, we shall suppose that
the body has assumed its figure of equilibrium, and then
consider the points of a,pphcatlon of the forces as a system of
invariable form, By body, hereafter, we mean rigid body.

11. When a force acts on a body the effect of the force
will be unchanged at whatever point of its direction we sup-
pose it applied, provided this point be either one of the points
of the body or be invariably connected with the body. This
principle is known by the name of the & unsmissibility of a
Jorce to any point in dts line of action; it is assumed as
an axiom or as an experimental fact. We may shew the
amount of assumption involved in the axiom, by the follow-
ing process.

Suppose a body to be kept in equilibrium by a system
of forces, one of which is the force P applied at
the point 4. Take any point B which lies on
the direction of this force, and suppose B so con-~
nected with 4 that the distance A Bis unchange-
able. Then, if at B we introduce two forces,
Pand P, equal in magnitude and acting in oppo-
site directions along the straight line 4.5, it seems
evident that no change is made in the effect of
the force P at 4. Let us now assume that P
at A and P’ at B will neutralise each other, and
may therefore be removed without dwturbmg the
equilibrium of the body ; then there remains the
force P at B producing the same effect as when b3
it acted at 4.

P
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12. We shall have occasion hereafter to assume what may
be called the converse of the principlé of the transmissibility of
force, namely, that if a force can be transferred from its point
of application to a second point without altering its effect,
then the second point must be in the direction of the force.

See Art. 17,

13. 'When we find it useful to change the point of applica-
tion of a force, we shall for shortness not always state that the
new point is vnvariably connected with the old point, but this
must be always understood.
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CHAPTER IL

THE COMPOSITION AND EQUILIBRIUM OF FORCES ACTING
ON A PARTICLE.

14. 'WHEN a particle is acted on by forces which do not
maintain equilibrium it will begin to move in some deter-
minate direction. It is clear then that a single force may
be found of such a magnitude, that if it acted in the direction
opposite to that in which the motion would take place this
force would prevent the motion, and consequently would be
in equilibrium with the other forces which act on the par-
ticle. If then we were to remove the original forces and
replace them by a single force, equal in magnitude to that

described above, but acting in the opposite direction, the par-

ticle would still remain at rest. This force, which is equiva~
lent in its effect to the combined effect of the original forces, is
called their resultant, and the original forces are called the
components of the resultant.

It will be necessary then to begin by deducing rules for
the composition of forces; that is, for finding their resultant
force. After we have determined these, it will be easy to
deduce the analytical relations which forces must satisfy when
in equilibrium. :

15.. To find the resultant of a given number of forces acting
on a particle in the same straight line ; and to find the condition
which they must satisfy that they may be in equilibrium.

When two or more forces act on a particle in the same
direction it is evident that the resultant force is equal to their
sum and acts in the same direction.

‘When two forces act in different directions, but in the same
straight line, on a particle, it is equally clear that their re-
sultant is equal to their difference and acts in the direction of
the greater component.

cmmed e -



6 FORCES IN THE SAME STRAIGHT LINE.

‘When several forces act in different directions, but in the
same straight line, on a particle, the resultant of the forces
acting in one direction is equal to the sum of these forces,
and acts in the same direction ; and so of the forces acting in
the opposite direction. The resultant, therefore, of all the.
forces is equal to the difference of these sums, and acts in the’
direction of the greater sum.

If the forces acting in one direction are reckoned positive,
and those in the opposite direction negative, then their re-
sultant is equal to their algebraical sum ; its sign determines
the direction in which it acts.

In order that the forces may be in equilibrium, their
resultant, and therefore their algebraical sum, must vanish.

16. There is another case in which we can easily deter-
mine the magnitude and direction of the resultant.

Let AB, AC, AD be the directions of three equal forces
acting on the particle 4; suppose these forces all in the
same plane and the three angles BAC, CAD, DAB each
equal to 120°; the particle will remain at rest, for there is
no reason why it should move in one direction rather than
another. Each of the forces is therefore equal and opposite
to the resultant of the other two.
But if we take on the directions
of two of them, 4 B, AC, two equal
straight lines AG, AH to repre-
sent the forces, and complete the .
parallelogram G'AHE, the diago- A
nal A Ewill lie in the same straight :
line with 4D. Also the triangle ;! G
A G Ewill be equilateral, and there- ¢ \
fore AE=AG@. Hence, the diago- B
nal AE of the elogram con-
structed on AG, AH represents
the resultant of the two forces which AG and AH respec-
tively represent. :

D

This proposition is a particular case of one to which we:
now proceed., ~
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- 17. If two forces acting at a potnt be represented in direc-
tion and magnitude by two straight lines drawn from the
point, and a parallelogram be described on these straight lines
as adjacent svdes, then the resultant will be represented in di-
rection and. magnitude by that diagonal of the parallelogram
which passes through the point.

This Proposition is called the Parallelogram of Forces.

I. To find the direction of the resultant. -

When the forces are equal it is clear that the direction
of the resultant will disect the angle between the directions
of the forces; or, if we represent the forces in magnitude
and direction by two straight lines drawn from the point
where they act, and describe a parallelogram on these straight
lines, that diagonal of the parallelogram which passes through
the point will be the direction of the resultant.

Let us assume that this is true for forces p and m inclined
at any angle, and also for forces p and » inclined at the same
angle; we can shew that it must then be true for two forces
2 and m +n also inclined at the same angle.

Let A be the point at which the forces p and m act;
AB, AC their directions and pro- A c ®

- portional to them in magnitude:

complete the parallelogram BC, and
draw the diagonal AD; then, by
hypothesis, the resultant of p and m

acts along A4D. B D G
Again, take CE in the same ratio J\ \
to AC that n bears to m. By Art. 11 ¥

we may suppose the force n which acts in the direction AE
to be applied at 4 or C; and therefore the forces p, m, and =,
in the straight lines 4B, AC, and CE, are the same as p and
m+n in the straight lines 4B and AE.

Now replace p and m by their resultant and transfer its
point of application from 4 to D; then resolve this force
at D into two parallel to 4B and A( respectively; these
resolved parts must evidently be p and m, the former acting
in the direction DF, and the latter in the direction DG.
Then transfer p to C and m to G.

L. A— T L |



8 PARALLELOGRAM OF FORCES.

But, by the hypothesis, » and n acting at C have a Te-
sultant in the direction CG; therefore p and n may be
replaced by their resultant and its point of application trans-
ferred to G. And m has also been transferred to G. Hence
by this process we have removed the forces which acted
at A to the point ¢ without altering their effect. We may
infer then (see Art. 12) that G is a point in the direction of
the resultant.of p and m +n at 4; that is, the resultant of p
and m + n acts in the direction of the diagonal A4 @, provided
the hypothesis is correct. But the hypothesis is correct for
equal forces, as p, p, and therefore it is true for forces p, 2p;
consequently for p, 3p, and s0 on ; hence it is true for p, r.p.

Hence it is_true for p, r.p, and p, r.p, and consequently
for 2p, r.p, and so on; and 1t is finally true for sp and . p,
where r and s are posmve integers.

We have still to shew that the Proposxtlon is true for
tncommensurable forces.

This may be inferred from the fact that when two mag-
nitudes are incommensurable, so that the ratio of one to the
other cannot be expressed ezactly by a fraction, we can still
find a fraction which differs from the true ratio by a fraction
less than any assigned fra,ctlon. Or it may be estabhshed
indirectly thus.

Let AB, AC represent two such forces. Complete the.
parallelogram BC. Then if their '
resultant do not act along AD sup-
pose it to act along AK; draw EF
parallel to AC. Divide ‘AC into &
number of equal portions, each less
than DE; mark off from CD por- e
tions equal to these, and let K be © "I ~IK
the last division ; this evidently falls B no
between D and E draw G K parallel to AC. Then two forces
represented by 4 C A @ have a resultant in the direction 4K,
because they are commensurable therefore the forces A C
and 4B are equivalent to a force along AK together with a
force équal to QB applied at 4 along 4B, And we may
assume as obvious that the resultant of these forces must lig

C:
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between AK and AB; but by supposition the resultant is
AE which is not between AK and 4B. This is absurd.

In the same manner we may shew that every direction
besides 4D leads to an absurdity, and therefore the resultant
must act along 4D, whether the forces be commensurable or
incommensurable. :

II. To find the magnitude of the resultant.

Let AB, AC be the directions of the given forces, 4D
that of their resultant; take AE opposite to E
AD, and of such a length as to represent the
magnitude of the resultant. Then the forces g
represented by AB, AC, AE, balance each
other. On AE and AB as adjacent sides
construct the parallelogram A4 BFE; then the A
diagonal AF 1s the direction of the resultant
of AE and AB. '

Hence AC is in the same straight line B c
with AF; hence FD is a parallelogram ; and :
therefore AE= FB=AD. Hence the result-
ant is represented in magnitude as well as in
direction by the diagonal of the parallelogram,

Thus the proposition called the Parallelogram of Forces is
completely established. :

18. Hence if P and Q represent two component forces
acting at an angle a on a particle, the resultant R is given

by the equation
R'=P+ @ +2PQ cosa.

19.  When three forces acting on a particle are in equi-
Libriwm they are respectively in the same proportion us the
sines of the angles ncluded by the directions of the other
two.

For if we refer to the third figure of Art. 17 we have

P:Q:R:: AB: AC (or BD) : AD
:: 8in ADB : sin BAD ; sin ABD
:: 5in OAE : sin BAE :sin BAC. /
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Conversely if three forces act on a particle, and each force
is as the sine of the angle between the directions of the other
two, it may be shewn that one of the forces is equal in mag-
nitude to the resultant of the other two, and acts either in
the same direction or in the opposite direction: in the latter
case the three forces are in equilibrium.

It should be noticed that if the sides of a triangle be drawn
parallel to the directions of the forces, the length of any side
will be proportional to the sine of the angle between the
forces which correspond to the other two sides,

20. Any force acting on a particle may be replaced by
two others, if the sides of a triangle drawn parallel to the
. directions of the forces have the same relative proportion
that the forces have. For by the parallelogram of forces
the resultant of the latter two forces is equal to the given
force.
This is called the resolution of a force.

21. Since the resultant of two forces acting on a particle
is represented in magnitude and direction by the diagonal
of the parallelogram constructed upon the straight lines which
represent these forces in magnitude and direction, it follows
that, in order to obtain the resultant of the forces P, P, P,,...
which act on a particle 4, and are represented by the straight
lines 4P,, AP, AP,... we may proceed thus:

~ Find the resultant of P, and P, compbund this resultant
with P, this new resultant with P, and so on, It follows
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from this, that if we construct a polygon 4P, BCD, of which
the sides are respectively equal and parallel to the straight
lines. AP, AP,,... and join 4 with the last vertex D, the
straight line 4D will represent in magnitude and direction
the resultant of all the forces.

We may conclude that the necessary and sufficient con-
dition for. the equilibrium of a number of forces acting on
a particle is, that the point D should coincide with 4 ;
that is, that the figure AP,B... D should be a complete
polygon. The forces in the figure are not necessarily all in
one plane. : '

The result here obtained may be enunciated thus: If the
sides of any polygon taken tn order are respectively proportional
to the magnitudes of forces acting at a pownt, and parallel to
the directions of the forces, then the forces unll be tn equalibrium.

This proposition is called the Polygon of Forces.

The student must carefully notice the conditions under
which this proposition is asserted to hold ; the forces are sup-
“posed all to act at one point, and are to be represented by the
sides of a polygon taken tn order. As an example of the
latter condition, suppose a quadrilateral ABCD); then if forces
which may be represented by 4B, BC, CD, DA, act at a
point the forces will be in equilibrium: but the forces will not
be in equilibrium if represented by 4B, BC, DC, DA, or by
4B, B%’, CD, AD. :

The direction and magnitude of the resultant may also be
determined analytically, as in the following Articles.

22. Any number of forces act on a particle in one plane ;
rzguluired to find the magnitude and the direction of their
resultant.

Let P, P, P,,... be the forces, and a,, a,, &,,... the angles
their directions make with a fixed straight line drawn through
the proposed point. Take this fixed straight line for the axis
of #, and one perpendicular to it for that of y. Then, by
Art. 20, P, may be resolved into P, cosa,, and P, sin a,, acting
along the axes of # and y respectively. The other forces may
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be similarly resolved. By algebraical addition of the forces
which act in the same straight line we have

P, cosa,+ P, cosa, + P, cosa,+ ... along the axis of z,

P, sin g, + P, sin a, + P, sin a, + ... along the axis of y.

We shall express the former by 2P cosa and the latter by
3P sin«, where the symbol 3, denotes that we take the sum
of all the quantities of which the quantity before which it is
placed is the type.

If we put P, cosa,= X, and P, sina,= Y, and use a similar
notation for the other components, we have two forces replacing
the whole system, namely ZX along the axis of # and ZY
along that of Y. If R denote the resultant of these forces and

a the angle at which it is inclined to the axis of z, we have,
by Art. 17, '

R'=(CX) '+ (SY)® tana= %.

X . Y
Also csa="—p; sina=—p.
~ 23.  T0 find the conditions of equilibrium when any number
of forces act on a particle in one plane.
When the forces are in equilibrium we must have E=0;

therefore
EX)+(EY)=0;
therefore . 2X=0; ZY=0; _
and these are the conditions among the forces that they may
be in equilibrium. ,
Hence a system of forces acting in one plane on a particle
will be in equilibrium if the sums of the resolved parts of the

Jorces along two rectangular axes in the plane through the
point vanish.

Conversely, if the forces are in equilibrium the sum of the ‘

resolved parts of the forces along any straight line through
the point will vanish.

24. Three forces act on a particle in directions making
right angles unth each other; required to find the magnitude
and direction of their resultant, :

- L et T Sens s — T
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Let AB, AC, AD represent the three forces X, Y, Zin
magnitude and direction. Complete the parallelogram BC,
and draw the diagonal 4E; then A represents the resultant
of X and Y in magnitude and direction, by Art. 17. Now

D

C ) E

the resultant of this force and Z, that is, of the forces repre-
sented by AE, 4D, is represented in magnitude and direction
by AF, the diagonal of the parallelogram DE. Hence the
resultant of X, Y, Z isrepresented in magnitude and direction
by AF. Let R be the magnitude of the resultant, and a, b, ¢
the angles the direction of R makes with those of X, Y, Z.
Then, since

AFP=AE'+ AD*=AB*+ AC*+ AD’,

therefore ) RB=X'+Y'+2" R
Also cosa=£B=§ cosb=é_5_'=Z cosc=42=£
AF R’ AF R’ AF R’

Thus the magnitude and direction of the resultant are deter-
mined, :

25. It follows from the last Article that any force R the
direction of which makes the angles a, b, ¢ with three rect-
angular axes fixed in space, may be replaced by the three
forces R cosa, R cosb, K cosc, acting simultaneously on the
particle on which R acts, and having their directions parallel
to the axes of coordinates respectively.
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26. Any number of forces act on a particle in any direc-
tions ; required to find the magnitude. and the direction of their
resultant.

Let P, P, F,,... be the forces; let a,, 8,, vy, be the angles
which the direction of P, makes with three rectangular axes
drawn through the proposed point; let a,, 8,, vy, be the angles
which the direction of P, makes with the same axes; and
80 on.

Then, by Art. 25, the componeﬁts of P, in the directions of
the axes are :

P, cosa,, P cosB,, P, cosy, (or X,, Y,, Z, suppose).

Resolve each of the other forces in the same way, and reduce
the system to three forces, by adding those which act in the
same straight line, Art. 15; we thus have

P, cosa,+ P,cosa,+... or %Pcosa, or X,
P,cosB, + P,cos B,+... or ZPcosp, or 3Y,
P, cosry,+ P,cosry, +... or SPcosy, or =7,

acting in the directions of the axes of z, y, and £ respectivély.

If we call the resultant R, and the angles which its direc-
tion makes with the axes a, b, ¢, we have, by Art. 24,

B'=EX)+(EY)+ (32),
¥ 32

d X sb
an cosa="5, cosb="5, cosc="p

27. To find the conditions of equilibrium when any wumber
of forces act on a particle. -

‘When the forces are in equilibrium, we must have R=0;
therefore .
EX)'+ (2Y)'+ (22) =0,
therefore 3X=0; ZY=0; 3Z2=0;

and these are the conditions é.mong the forces that they may
be in equilibrium, .
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28. * The expression for the magnitude of the resultant in
Art. 26 may be rendered independent of the position of the
axes. For, from Art. 26, :

R'=(P,cosa,+ P,cosa,+...)' + (P, cos B, + P, cos B, +...)*
‘ + (P, cosqy, + P, cos ey, + ...)%
When the expressions on the right-hand side are developed,
we shall find that the coefficient of P is
cos’a, + cos'B, + cos’y,,
and that the coefficient of PP, is
2 (cos a, cos a, + cos 3, cos B, + cos y, cosry,).

Now we know from Analytical Geometry of three dimensions
that .
cos’a, +cos* B, + cos’y, =1
and that :
cos a, cos @, + cos B, cos B, + cos ¢, cos vy,

is equal to the cosine of the angle between the directions of
the forces P, and P,, which we may denote by cos (P, P,).
Similar values will be found for the coefficients of the other
terms ; and the result may be expressed thus,

R*=3P*+ 23 PP cos (P, P),
where by P, P’ we mean any two of the forces.

29. The equation Rcosa=23Pcosa, in Art. 26, shews
that the resolved part of the resultant in any direction is equal
to the sum of the resolved parts of the components in the same
direction ; for since the axes were taken arbitrarily, that of
might have been made to coincide with any assigned direc-
tion. Or we may establish the proposition thus. Suppose
a straight line drawn through the point of application of the
forces, and incliped to the axes at angles o, &, /. Take the
three equations of Art. 26,

Rcosa= P cosa, + P,cosa,+......
Rcosb=P,cos B, + P,cos B,+......
R cosc= P, cosy,+ P, cosy, +......
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Multiply the first by cos «’, the second by cos 8, and the third
by cos o/, and add. Then, if 6,, 6,... denote the angles which
P, P.... make with the arbitrarily drawn straight line, and
6 the angle which the resultant B makes with it, we have, by
the formula quoted in Art. 28 for the cosine of the angle be-
tween two straight lines, :

Rcosf@= P, cosf,+ P, cos 6, +......

30. From Art. 20 it is obvious that a given force may
be resolved into two others in an infinite number of ways.
‘When we speak of the resolved part of a force in a given
direction, as in the preceding Article, we shall always suppose,
unless the contrary 18 expressed, that the given force is re-
solved into two forces, one in the given direction and the
other in a direction at right angles to the given direction. The
former component we shall call the resolved force in the given
direction.

‘When forces act on a particle it will be in equilibrium,
provided the sums of the forces resolved along any three
directions not lying in one plane are zero. For if the forces
do not balance, they must have a single resultant; and as
a straight line cannot be at right angles to three straight
lines which meet at a point and are not in the same plane, the
resolved part of the resultant, and therefore the sum of the
resolved parts of the given forces, along these three straight
lines, could not vanish, which is contrary to the hypothesis.

81l. In Art. 26 we resolved each force of a system into
three others along three rectangular axes. In the same way
we may, if we please, resolve each force along three straight
lines forming a system of oblique axes. For whether the
figure in Art. 24 represent an oblique or rectangular parallele-
piped, the force AF may be resolved into 40 and AE, and
the latter again resolved into AB and AC. Hence the re-
sultant of a system of forces may be represented by the diago-
nal of an oblique parallelepiped, and for equilibrium it will
be necessary that this diagonal should vanish, and therefore
that the edges of the parallelepiped should vanish.

The following three Articles are particular cases of the
equilibrium of a particle. -
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32. T determine the condition of equilibrium of a particle
acted on by any forces and constrained to remain on a gien
smooth curve. :

By a smooth curve we understand a curve that can only
exert force on the particle in a direction normal to the curve
at the point of contact.

Let X, Y, Z denote the forces acting on the particle in
directions parallel to three rectangular axes, exclusive of the
action of the curve. Let @, y, z denote the co-ordinates of
the particle, and s the length of the arc measured from some
fixed point up to the point (x, v, 2). Then by Analytical
Geometry of three dimensions the cosines of the angles which
the tangent to the curve at the point (, y, z2) makes with the

de dy dz respectively. The forc ti
axes are ——, o, o, Tesp y. es acting on .
the particle being resolved along the tangent to the curve,
their sum is

dz Yy dy , ,dz
X78+Y£+st'

Unless this vanishes, there will be nothing to prevent the
particle from moving ; for equilibrium then we must have
dx

dy , pdz_
XZ+YL 27 =0,

Conversely if this relation holds the particle will remain at
rest, for there is no force to make it- move along the curve,
which is the only motion of which it is capable.

We have supposed the particle to be placed inside a tube
which has the form of the curve. If, however, the particle
be merely placed in contact with ‘@ curve, it will be further
necessary for equilibrium that the resultant of the forces
should press the particle against the curve and not move it
Jrom the curve.

’

'33. To determine the conditions of equilibrium of a particle
acted on by any forces and constrained to remain on a given
smooth surface.

T.S. 2
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A smooth surface is one which can exert no force on the
particle except in a direction normal to the surface.

Let X, Y, Z denote the forces acting on the particle in
directions parallel to three rectangular axes, exclusive of the
action of the surface. The resultant of X, Y, Z must act In
a direction normal to the surface at the point where the
particle is situated ; for if it did not, we might decompose
1t into two forces, one in the normal and one at right angles
-to the normal, of which the latter would set the particle in
motion. The cosines of the angles which the resultant of
X, Y, Z makes with the axes are proportional to X, Y, Z
respectively; and if F (z, y, 2) =0 be the equation to the
surface, the cosines of the angles which the normal to the
surface at the point (, y, z) makes with the axes, are by
Analytical Geometry of three dimensions proportional to
dF dF dF

@ dy and T respectively. Hence for quilibrium we
must have ,

X _ Y _Z

i ks 2

dz dy dz

If these relations are satisfied,.the resultant force is directed
along the normal; herce, if we suppose the particle incapable
of leaving the surface, the above conditions will be sufficient
“to ensure its equilibrium; but-if the particle be merely placed
on a surface, it will be further necessary that X, ¥, Z should
act so that their resultant may press the particle against the
surface. For exa.mﬁle, if the particle be placed on the out-
side of a sphere, the resultant of X, Y, and Z must act
towards the centre of the sphere.

34. Suppose it required to determine the action which the
curve or the surface exerts on the particle in the preceding
cases. Denote it by R, and let a, B, v be the angles its direc-
tion makes with the axes. Since R and the forces X, Y, Z
maintain the particle in equilibrium, we have by Art. 27,

Rcosa+X=0, Rcos B+ ¥Y=0, Rcosy+Z=0......(1).
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Also when the particle rests on a curve surface whose equation

is F'(z, y, 2) =0, cosa, cos B, and cos y are known in terms

of the co-ordma.tes of the particle, since they are proportional
dF dF dF

to & Ay & respectively. Hence the equations (1) and

that to the surface will determine z, ¥, 2z, and R, if X, Y, Z ‘

be given.

If the particle rest on a curve line, then, since the direc-
tion of R is perpendicular to that of the tangent to the curve,
we have the following equation from Ana.lytlcal Geometry of
three dimensions,

dz d dz :
cosa%+cosﬁd—‘7s/+coscy%=0....; .......... 2).

Since “if, (‘li , and % can be expressed, theoretically at
least, in terms of #, y, and z, the equation (2) gives a relation
_ between cos a, cos 8, and cos v, and z, y, and z. Thus (1) and
(2) together with the two equations to the curve and the
equation

cos’a+ cos’ B+ cosly=1,

are sufficient to determine the seven quantities B, z, y, 2,
"cos a, cos B, and cosv. :

We may observe that from (1)
B=X'+Y'+2*

35. Duchayla’s proof of the Parallelogram of Forces which
we have given in Art. 17, rests on the principle of the trans-
missibility of force; see Art.11. We shall give another proof
which does not involve this principle; this proof is Poisson’s
with a slight modification. We assume that if two equal
forces act on a patticlé, the direction of the resultant bisects
the angle between the directions of the components. Also, if
P denote the magnitude of each of two equal forces, 2z the
angle between their directions, and R the magnitude of the
resultant, then B must be some function of P and z; suppose

R=f(P, a).
In this equation, if we change our unit of force, the numerical
‘ 2—2
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values of ‘P and R will change; but as the above eﬁuation
must be true, whatever unit of force we adopt, it follows that the
function f(P, «) must be of the form P¢(x). Hence we have

R =P ().
Let M represent the position of the particle; M4, MB
the directions of the equal forces M

“acting on it; MD the direction of the
resultant. Draw the four straight lines
MC, MG, MH, ME, making the an- -~
gles OMA, GMA, HMB, EMB all ;°

ual, and let z denote the magnitude
of each angle. Suppose the force P
acting along MA to be resolved into
two equal forces acting along #C and
M@ respectively; denote each of these . D
components by @; then

P=Q¢(2).

Resolve P acting along MB in like manner into two
forces each equal to @, acting along ME and MH respec-
tively. Thus the two forces P are replaced by the four
forces Q; and consequently the resultant of these four forces
must coincide in magnitude and direction with the resultant
R of the two forces P. '

Let ¢ denote the resultant of the two forces @, acting
‘along MG and MH; since GMD = HMD =z — 2, we have

Q, = Q¢ (a" - z)’
and MD is the direction of ¢'.

Similarly, the resultant Q" of the other forces @ will act
.along' MD; and since CMD = EMD =z + 2, we have
. Q”=Q¢($+Z).
Since ¢ and Q" both act along the straight line MD, their

resultant, which is also the resultant of the four forces ¢,
must be equal to their sum; hence '

 E=Q¢+(Q"
But we have B =P¢ (z) = Q(2) ¢ (2).
Hemoo @S =@+ + 1) e (1.
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This equation admits of more than one solution; for exam-
Ple, if ¢(2) =2coscz, or if ¢ (z) =™+ ¢, where ¢ is any
constant, the equation is satisfied; we shall however shew
that the only solution admissible in the present question is
the following,

‘We may observe that we need not consider any value of =
greater than E, for the directions of two forces acting at a .

point will always include an angle less than 7 ; we may then
assume it as obvious that ¢ (#) must be a pos1t1ve quantity.

We shall first shew that if ¢(z) =2 cosz when = has any

value o, then ¢ (z) must =2 cos z when  has the value = 3 In

(1) put = and 2z each equal to 2, so that ¢(x+z) becomes
equal to 2 cosa; thus .

¢ (%) ¢ (%) =¢(0)+2C08& cuerrurenre. (3).

But the resultant of two equal forces acting in the same
straight line is equal to twice either of the component forces;
thus ¢ (0) =2; therefore by (3)

a
¢ (%) ¢ (§)=2(l +cos @) = 4 cos’5.
Hence ¢ ( ) +2 cos ; but by supposmon 5 is less than
2—;, and ¢ (%) must be a positive quantity; thus
o a
¢ (§) = 2 cos -2'.
- Similarly if ¢(«) =2 cosz when m— 5, then ¢(x) =2 cos

when = Z’ and so on. Thus we conclude that if ¢ (x) =2 cos
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when z =gq, then ¢ (#) =2 cos  when z = %,,where nis any
positive integer. .

We shall next shew that if ¢(z) =2 cosz when #=4, and
when z=r, and when =/ —r, then ¢ () =2 cosx when
z=8+¢. From (1) ‘ o .

$B+7)=0¢(8) () - (B~

=4 e0s B cosy — 2 cos (B ~1y)

=2cos (B+ ).
Thus if (2) holds when == g, it will hold when z=28; this
we obtain by supposing y=8. Then if (2) holds when =8
and when £ =28, it also holds when 2= 388; and so on; that
is, if (2) holds when z =2 it will hold when #=mB. Thus
we conclude that if (2) holds when z=g it will hold when

z= 'ré_z:_z , Where m and « are any integers.
But since the numbers m and n may be as great as we
please, we can take them such that the expression % may

differ as little as we please from any assigned value of .

We may therefore consider (2) as completely demonstrated

if it holds for any value of # different from ‘zero. But by

Art. 16, it does hold when z=4}m, for then ¢ (2)=1=2 cos {7; .

hence it holds always. Hence ' ‘
. R=2Pcosz.

If then the forces P be represented by straight lines drawn
from their point of application, the, resultant 2 will be repre-
sented by that diagonal of the parallelogram described on
these straight lines which passes through the point of appli-
cation. ‘

Next, let two unequal forces P and @ act on the particle M
along the straight lines M 4 and MB; N M o
represent their intensities by the ;
straight lines MG and MH taken
on their directions, and complete
the parallelogram MGKH.

First suppose AMB a right an-
gle. Draw the two diagonals MK
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and G'H, which meet at L; through @ and H draw GN and
HO parallel to ML, meeting at N and O the parallel to GH
drawn through M. Then

GL=LH=LM.

Hence NL and OL are equilateral parallelograms, and there-
fore, by what has been already proved, the force G may be
regarded as the resultant of MN and ML, and the force MH
as the resultant of MO and ML. Hence we may substitute
for MG and M H the forces MN, M O, and the two forces ML;
MN and MO, since they are equal and opposite, destroy each’
other, and we have remaining the two forces ML, which
together give a force represented in magnitude and direction
by MK.

Secondly, suppose the angle AMB ‘ .
not a rig}z;; anglgos Through gG and H N N —
draw GE and HF perpendicular to the :
diagonal MK, and GN and HO parallel to
this straight line. Through M draw NM O
at right angles to MK. Then we have
GE=HF. As we have already shewn,
the force M@ may be replaced by MN g;
and -ME, and the force MH by MO and
MF. Since MN and MO are equal and
opposite, they will destroy.each other, and A&
MF and MFE remain; since MF= KE,
we have MK as the resultant in mag-
tude and direction of M @G and MH.

" Hence the Parallelogram of Forces is complétely proved.

KX

86. A proof of the Parallelogram of Forces has been
given by Laplace (Mécanique Céleste, Liv. 1. Chap. 1). In this
proof the component forces are at first supposed to be at right
angles; the magnitude of their resultant is then determined
and afterwards its direction. The first part of the proof is so
simple, that it may be conveniently introduced here; it is
substantially as follows. Let « and y denote two forces which
are inclined at a right angle, and let z denote their resultant;

*we propose to find the value of z. It is obvious that if the
components instead of being « and y were 2z and 2y respec-
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tively, the resultant would be 2z and would have the same
direction as before; so if the components were 3z and 3y
* respectively, the resultant would be 3z and would have the
game direction as before; and so on. We may therefore
assume conversely, that if the inclination of the resultant to
each component remains unchanged, the ratio of each com-
ponent to the resultant will also remain unchanged. Now
consider the force z as the resultant of two forces #’ and z”, of
which #' is in the direction of z, and #” is at right angles to
that direction. Then by the principle just assumed, we have

] "

Z =z &
=2 ang LY,
z z z z
= z
so that w'=—z-,andw"=~z‘—y.

Similarly y may be resolved into %’ along the direction of z

and '1;- at right angles to that direction. Thus the forces

x and y are equivalent to four forces, two in the direction of z

and the other two at right angles to that direction; the latter

two are equal in magnitude and opposite in direction, so that

they counteract each other; hence the resultant of the former
_ two must be equal toz. Thus

¥

§+ ==z therefore 2*=a* + 3.

We shall now give some simple propositions which will
serve to exemplify and illustrate the principles of the present
. Chapter. .

I. ABC is a triangle; :
D, E, F are the middle points
of the sides BC, CA, AB
respectively: shew that forces
represented by the straight
lines AD, BE, COF will be in
equilibrium. A r B
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It is known that the straight lines AD, BE, CF meet at a
point: see Appendiw to Fuclid. Let G denote this point.
The three forces may be supposed to act at G.

Since D is the middle point of BC, the parallelogram de-
scribed on 4B and A4 C as adjacent sides will have a diagonal
in the direction 4D; hence twice .AD will represent the
resultant of two forces represented by ABand AC. And
conversely the force represented by 4.0 may be resolved into
two forces represented by half AB and half AC. Similarly
the force BE may be resolved into half BC and half B4; and
the force CF may be resolved into half C4 and half CB.

But the force half AB is equal and opposite to the force
half BA4; and so on. Thus, finally, the forces 4D, BE, CF
are in equilibrium.

II. 1In the figure of the preceding proposition forces re-
presented by the straight lines G'4, GB, GC will be in
equilibrium.

The resultant of the forces GB and GC acts along GD.
If then there is not equilibrium the three forces G4, G'B,
G C have a resultant acting either from 4 towards D or from
D towards 4, that is in the straight line 4D. But in the
same way it may be shewn that if the forces G4, GB, GC
are not in equilibrium their resultant must act in the straight
line BE, and also in the straight line CF. But it isimpossi-
ble that the resultant can act in three different straight lines.
Therefore the forces G4, G'B, GC must be in equilibrium.

As the student is probably aware, it may be shewn by
‘Geometry that A @& is equal to twice G'D; and thus the pre-
sent theorem may be established directly; but we have used
the method here given for the purpose of illustrating me-
chanical principles. We may observe that we have thus by
the aid of mechanical principles, in fact, demonstrated that
AG=2@D; for the resultant of GB and GC is represented
by twice G'D.

Since AD =3GD, BE=3GE, and CF=3GF, the forces
AD, BE, CF have the same relative proportion as the forces
GD, GE, GF; so that the first proposition may be deduced
immediately from the second.
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JII, Forces act at the middle points of the sides of a tri-
angle, in the plane of the triangle, at right angles to the sides
and respectively proportional to the sides: shew that if they
all act inwards or all act outwards they will be in equilibrium.

The directions of the forces meet at a point, namely, the
centre of the circle which circumscribes the triangle. And .
the angle between the directions of two forces is the supple-
ment of the angle between the corresponding sides. Thus
each force is as the sine of the angle between the other two.
Hence by Art. 19 the forces are in equilibrium.

IV. Forces act at the angular points of a triangle along
the perpendiculars drawn from the angular points on the
respectively opposite sides; and the forces are respectively
proportional to the sides: shew that the forces w111 be in
equilibrium.

It is known that the perpendiculars meet at a point: see
Appendiz to Euclid. Hence by the same method as in the
preceding proposition the forces are in equilibrium.

V. ABCisa triangle; H, I, K are points in the sides
BC, CA, AB respectively such that
BH _CI_AK

Shew that if forces represented by AH, BI, CK actat apomt
they will be in equilibrium.

A K F B

Let D, E, F be the middle points of the sxdes and suppose
AD, BE and CFto be drawn. |
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The force AH may be resolved into the forces 4D, DH ;
the force BI into the forces BE, EI; and the force CK into
the forces CF, FK. See Art. 20.

The forces AD, BE, CF are in equilibrium by the first

proposition.
And we have from the hypothesis as to H, I, K,
DH EI FK

so that the forces DH, EI, FK are prop'ortional to the sides
of the triangle ABC taken in order; and they are therefore
in equilibrium by Art. 21 if they act at a point.

" Hence if the forces AH, BI, CK act at a point they are
in equilibrium.

The straight lines AH, BI, CK by their intersections form
a triangle ; and therefore by Art. 19 the sides of this triangle
are proportional to the forces. Hence we arrive by mechanical
principles at the following geometrical result: the sides of
the triangle formed by the intersections of AH, BI, CK are
proportional to AH, BI CK respectively.

VI. A4, B, Care three points on the circumference of a
circle ; forces act along AB and BC inversely proportional to
these stralght lines in magnitude : shew that the resultant
acts along the tangent at B.

Denote the forces by A_B and B—"'C, respectively. Resolve

them at right angles to the tangent at B; thus we obtain by
Euclid, 11, 32,

‘ z’%sinAOB—l—;%,sin CAB;
and this is zero, since V
BC _sin CAB
AB sindCB’

Hence the resultant must act along the tangent at B,
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VII. If one of two forces be given in magnitude and
position, and also the direction of-their resultant, the locus
of the extremity of the straight line representing the other
force will be a straight line.

Let @ and r denote the magnitudes of two forces ; suppose
the former to make an angle a with the direction of the
resultant, and the latter an angle 6.

Then, resolving along the straight line which is at right
angles to the direction of the resultant, we have

asina—rsin =0,
Now a and a being given, while  and # are variable, this

equation represents a straight line which is parallel to the.

direction of the resultant, and at a distance a sin a from it.
See Conic Sections, Chap. II.

VIII. From any point within a regular polygon perpen-

diculars are drawn on all the sides of the polygon : shew that

the direction of the resultant of all the forces represented .

by these perpendiculars passes through the centre of the
circle cireumscribing the polygon, and find the magnitude of
the resultant.

icular from the centre on a side,
it which the forces act from the
iis distance makes with a fixed
s with the perpendicular from
number of siges in the polygon ;

e m® force may be denoted by
irection of this force will make
straight line.

»f the forces parallel to the fixed
gles to it, will be respectively,

and Z {p— ccos (mB — @)} sinmp,
m to be taken with respect to m
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Also cos (mf8 —~a) cosmB= % {cos (2mB —a) + cos a},

cos (m@— o) sin m@ = [sin (2mB—a) + sina).
Then effecting the summation, (see T'rigonometry, Chap. XX11,)
we obtaiﬁ for the resolved parts, — %cos a and —%csin a.
Hence, with the notation of Art. 22,

tan ¢ = tan a, R=%c.

The former equation shews that the direction of the re-
sultant coincides with the straight line which joins the
-centre to the point at which -the forces act; and the latter
equation determines the magnitude of the resultant.

. IX. Suppose three forces P, @, R to act in one plane
at a point O, and to be in equilibrium; let a circle be de-
scribed with O as centre, and any radius, cutting the direc-
tions of the forces at the points 4, B, C respectively: then
shall P, @, R be respectively proportlonal to the areas of the
tnangles OBC, 0C4, OAB.

This follows at once from Art. 19, since the area of a
triangle is expressed by half the product of two sides into the
sine of the included angle.

Conversely, if P, @, R, are respectively proportional to
these areas, they will be in equilibrium.

X. Suppose four forces F, ¢, R, S to act at a point 0,
and to be in equilibrium; let a sphere be described with O
as centre, and any radius, cutting the directions of the forces
at the points 4, B, C, D respectlvely then shall P, Q, R, S
be respectively proportlonal to the volumes of the pyramlds
OBCD, OCDA, ODAB, OABC.

Take O as the origin of ‘a set of rectangular axes, let
x, ¥, 2, be the co-ordinates of 4; z,, y,, 2, the co-ordinates

-of B; and so on. Then, by Art. 27,

: Pz, + Qz, + Bz, + Sz, =0,
Py, + Qy, + By, + Sy, =0,
Pz, 4+ Qz, + Rz, + 82,=0.-
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Hence, eliminating @ and R, we shall obtain
P =g 8t —y) + 4, (07— 2) + 2, (@Y, — 2y,)
&z, (yszs - ?/az:) +4 (zswl - z:r'”x) +2, (wsys - :v,y,)
Hence, by the aid of the expression for the volume of a

pyramid given in works on Analytical Geometry of three
.dimensions, we have i

P _ volume of pyramid OBCD
8 volume of pyramid 04BC"’

)

Conversely, if P, @, R, S are respectively proportional to
these volumes they will be in equilibrium,

Similarly we obtain the value of & and of 2.

EXAMPLES, ’
1. Two forces P and @ have a resultant B which makes

an angle ¢ with P; if P be increased by R while @ remains
unchanged, shew that the new resultant makes an angle

@,
wathP.

-2. Two forces in' the ratio of 2 to /3 —1, are inclined to
each other at an angle of 60°; what must be the direction
and magnitude of a third force which produces equilibrium ?

Result. The required force must be to the first of .the
given forces as 4/6 to 2; and its direction produced makes
an angle of 15° with that force,

3. The resultant of two forces P and @ is equal to Qy/3,
and makes an angle of 30° with P; find P in terms of ¢.

Result. Either P=Q or P=2(; in the former case the
angle between P and @ is 60°, in the Iatter 120°
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-4, 'If D, E, F be the middle. points of the sides of
the triangle ABC and O any other point, shew that the
system of forces represented by OD, OF, OF is equivalent to
that represented by 04, 08, 0C.

5. The resultant of two forces is 10lbs., one of them is
equal to 81bs., and the direction of the other is inclined to

the resultant at an angle of 36°. Find the angle between
the two forces, - ,

Resuli, Sin™ % (10—2y5)4

-6. The resultant of two forces P, Q, acting at an angle 6,
is equal to (2m +1) y/{P* + Q*); when they act at an angle
m—0, it is equal to (2m—1)4/(P'+ @'); shew that

m—1
tanf=""3

+7. Two forces F and F" acting in the diagonals of a
parallelogram keep it at rest in such a position that one of
1ts edges is horizontal, shew that

Fseca' =F' seca= Weosee (a+d),

where W is the weight of the parallelogram, « and &’ the
-angles between its diagonals and the horizontal side.

8. If a particle be placed on a sphere, and be acted on
by three forces represented in magnitude and direction by
three chords mutually at right angles drawn through the
particle, it will remain at rest. '

9. Three forces P, @, R acting on a point and keeping
" it at rest are represented by straight lines drawn from that
point. If P be given in magnitude and direction, and @ in
magnitude only, find the locus of the extremity of the line
_which represents the third force R.

Result. A sphere.



32 .EXAMPLES OF FORCES AT A POINT.

10. A circle whose plane is vertical has a centre of con-
stant repulsive force at one extremity of the horizontal dia-
meter ; find the position of equilibrium of a particle within
the circle, the repulsive force being equal to the weight of
the particle.

Result. The straight line joining the particle with the
centre of the circle makes an angle of 60° with the horizon.

11. A particle is placed on a smooth square table whose
side is a at distances ¢, ¢, ¢, ¢, from the corners, and to it
are attached strings passing over smooth pullies at the cor-
ners and supporting weights P, P, P, P,; shew that if there
is equilibrium,

ALoB A By _ (R Ij)’ (AN
(cl+c,+c,+c.)a _(c,+c, +(c,+a)'

Shew also that
(BT By Byelmdi g (B )

3
c, ¢ ¢ ¢, a G €

1

12. Two small rings slide on the arc of a smooth vertical
circle; a string passes through both rings, and has three
equal weights attached to it, one at each end and one be-
tween the rings; find the position of the rings when they
are in equilibrium. The rings are supposed without weight.

Result. Each of the rings.must be 30° distant from the
highest point of the circle.

13. The extremities of a string without weight are fast-
ened to two equal heavy rings which slide on smooth fixed
rods in the same vertical plane and equally inclined to the’
vertical ; and to the middle point of the string a weight is
fastened equal to twice the weight of each ring; find the
position of equilibrium and the tension of the string.

If the point to which the weight is fastened be not the
middle point of the string, shew that in the position of equi-
librium the tensions of its two portions will be equal.
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14. A light cord with one end attached to a fixed point
passes over a pully in the same horizontal line with the fixed
point and supports a weight hanging freely at its other end.
A heavy ring being fastened to the cord in different places
between the fixed point and the pully, it is required to find
the locus of its positions of equilibrium. If the weight of the
ring be small compared with the other weight, the locus will
" be approximately a parabola.

- 15. If two forces acting along chords of a circle are
inversely proportional to the lengths of the chords, their
resultant will pass through one or other of the points of
intersection of straight lines drawn through the extremities
of the chords. '

16. A particle rests on an ellipse acted on by forces Az",
uy”, parallel to the axes of « and y respectively; find its
position of equilibrium, Explain the case in which n=1.

17. A particle is placed on the outer surface of a smooth
fixed sphere and is acted on by a fixed centre of force lying
vertically above the centre of the sphere, at a distance ¢ from
it and attracting directly as the distance. Shew that the
particle will rest on any part of the sphere if the weight of
the particle equals the attraction on it by the fixed centre o:
force when at a distance ¢ from it. :

18, A particle is placed on the surface of an ellipsoid in
the centre of which is resident an attractive force: determine
the direction in which the particle will begin to move.

. . & iy 2
19. Find the point on the surface atpta= 1, where

a particle attracted by a force to the origin will rest in equi-
librium.

20. ABCD is a quadrilateral inscribed in a circle, and
forces inversely proportional to 4B, BC, 4D, DO act along
the sides in the directions indicated by the letters: shew that
their resultant acts along the straight line joining the inter-
gection of the diagonals with the intersection of the tan-
gents to the cirele at B, D. ] ,

T.S 3
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. CHAPTER IIL

RESULTANT OF TWO PARALLEL FORCES. COUPLES.

87. To find the magnitude -and the direction of the re-
sultant of two parallel forces acting on a rigid body.

Let P and @ be the forces; A and B their points of ap-

AP

plication : let Pand Q act in the same direction. The effect
of the forces will not be altered if we apply two forces equal
in magnitude and acting in opposite ‘directions along the
straight line 4B. Let S denote each of these forces, and
suppose one to act at 4 and the other at B.

Then P and S acting at A4 are equivalent to some force P
acting in some direction AP inclined to AP (Art. 17) ; and
Q and 8 acting at B are equivalent to some force ¢ acting in
some direction B@' inclined to BQ.

Produce P'4, ¢B to cut each other at C, and draw CD
allel to 4P, meeting AB at D; suppose C rigidly con-
nected with 4B,

Transfer P’ and @ to C (Art. 11), and resolve them along

CD and a straight line parallel to AB; the latter parts will
each be equal to S but act in opposite directions, and the sum
of the former is P+ Q. Hence R, the resultant of Pand @,
= P + @ and acts parallel to P and Q in the straight line CD.
. We sﬁaél now determine the point where this straight line
cuts . . :

i . .
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The sides of the triangle 4 CD are parallel to the directions
of the forces P, S, P'; therefore by Art. 19

P CD .. S DB
$=DA’ and sxmﬂa.rlyq—UD—,
therefore g=%=“;—”, if AB=q and AD=z;
z_ Q@ |
tbergfore a=P+0Q’

this determines the point D through which the direction
of the resultant passes. It will be observed that 4B is
divided at D into segments which are inversely as the forces
at A and B respectively.

If the force P act in a direction opposite to that of Q

a similar process will lead us to

@ .
-7op

$.
R=Q—P, and p

which may be derived from the formul® of the preceding
case by changing P into — P. '

It will be observed that 4B produced is divided at D into
segments which are inversely as the forces at .4 and B re-

spectively.

32
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88, The point D possesses this remarkable property: that
however P and  are turned about their points of application
A and B, their directions remaining parallel, D) determined as
above remains fixed. This point is in consequence called the
centre of the parallel forces P and Q.

89. .If P=(Q in the second case of Art. 37, then R=0
and « = o0, a result perfectly nugatory. It shews us that the
method fails by which we have attempted to compound two
. equal and opposite parallel forces. In fact the addition of the
two forces S still gives, in this case, two equal forces parallel
and opposite in their directions.

~ Such a system of forces is called a Couple.

We shall investigate the laws of the composition and
resolution of couples, since to these we shall reduce the com-
position and resolution of forces of every description acting on
a rigid body. : :

40. From Art. 39 we might conjecture that two -equal

forces acting in parallel and opposite directions do not admit
of a single resultant, which may be shewn as follows.

[
2R

P

Suppose, if possible; that the single force R will maintaid
equilibrium with two forces, each denoted by P, acting in
parallel and opposite directions. -

Draw a straight line meeting at 4 and B the directions of
the forces P, and that of R at K. Make 4D = BE, and apply
at D two forces 7" and § each =R and parallel to R but
-in opposite directions ; this will not disturb the equilibrium.
-Hence the five forces, B, P, P, S, T are in equilibrium. But
since P, P and B form a system in equilibrium, 50, by sym+

-
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metry do P, P and 7" Hence if we remove the last three
we shall not disturb the equilibrium, and we accordingly have
R and S left maintaining equilibrium. But this is obviously
impossible, since they act in the same direction. Hence the
two parallel forces P cannot be balanced by a single force,
and therefore do not admit of a single resultant.

41. A couple consists of two equal forces acting in parallel
and oppostte directions.

The arm of a couple is the perpendicular distance between
the directions of its forces. :

The moment of a couple is the product of either of its forces
into the perpendicular distance between them.

The azis of a couple is a straight line perpendicular to the
plane of the couple and proportional in length to the moment.

Two couples in the same plane may differ with respect to
direction. For suppose the middle point of the arm of a
couple to be fixed, and the arm to move in the direction in
which the two forces of the couple tend to urge it; there are
two different directions in which the arm may rotate. Sup-
pose a perpendicular drawn to the plane of the couple through
the middle point of its arm, so that when an observer is
placed along this sttaight line with his feet against the plane,
the rotation which the forces give to the arm appears to take
place from left to right ; the perpendicular so drawn we shall
take for the axis of the couple.

We shall now give three propositions shewing that the
effect of a couple is not altered when certain changes are made
with respect to the couple. It is to be supposed in all these
propositions that a rigid body is in equilibrium under the
action of certain forces, including an assigned couple; and it is
shewn that then the equilibrium will not be disturbed by the
specified changes with respect to the couple.

42. The effect of a couple is not altered if its arm be turned
through any angle about one extremity in the plane of the
couple. . :
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Let the plane of the paper be the plane of the couple, 4B
the arm, and A B its new position; the forces P,, P, are equal

and act on the arm 4AB. At B’ and A4 let the equal and
opposite forces P, P,, PP,, each equal to P, or P, be applied,
acting at right angles to 4.B’; this will not affect the action
of P, and P,.

Let BP,, B'P, meet at C'; join AC; AC manifestly bisects
the angle BAB'.

Now P, and P, are equivalent to some force in the direction
04, and P, and P, are equivalent to an equal force in the direc-
tion AC. Therefore P, P,, P,, P, are in equilibrium with
each other; therefore the remaining forces P,, P, acting at
B, A respectively produce the same effect as P,, P, acting at
B, A respectively. Hence the proposition is true.

‘We may now turn the arm of the couple through any angle
about B'; and by proceeding in this way we may transfer the
couple to any position in its own plane.

43. The effect of a couple s not altered if we transfer the
couple to any plane parallel to its own, the arm remaining
parallel to stself.

Let AB be the arm, A’B’ its new position parallel to 4B.

b

-
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Join AR, A'B bisecting each other at @. At 4’ B apply
two equal and opposite forces each =P, or P, and parallel to
them ; and let these forces be P,, P,, P,, P,; this will not
alter the effect of the couple.

But P, and P, are equivalent to 2P, acting at G in
the direction Ga parallel to the direction of P,, and P, and
P, are equivalent to 2P, acting at & in the opposite direc-

tion G.

Hence P, P,, P,, P, are in equilibrium with each other;
therefore the remaining forces P, and P, acting at 4’ and B’
respectively produce the same effect as j’l and P, acting at 4
and B respectively. Hence the proposition is true.

44. The effect of a couple 1s not altered if we replace it by
another couple of which the moment is the same; the plane
remaining the same and the arms being in the same straight
line and having a common extremity.

Let .A.B be the arm ; let P, P=Q+R
P be the forces, and suppose
P=Q+ R;let AB=a, and let
the new arm AC=0%; at C g 13

& a Ta

apply two opposite forces each
= () and parallel to P; this
will not alter the effect of the P-Q+R
couple. ' :
Now R at 4 and Q at C will balance @ + R at B,
if AB: BC = Q : R, (Art. 37),
orif AB: AC : Q: Q+R,

that is, if Q.b=P.a;
we have then remaining the couple @, @ acting on the arm
AC. Heuce the couple P, Pacting on AB may be replaced
by the couple @, @ acting on AC, if Q.b=P.a, that is, if
their moments are the same.

45. From the last three Articles it appears that, without
altering the effect of a couple, we may change it into another
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of equal moment, and transfer it to any position, either in
its own plane or in a plane parallel to its own. The couple
must remain unchanged so far as concerns the direction of
the rotation which its forces would tend to give the arm, sup-
posing its middle point fixed as in Art. 41. In other words,
the straight line which we have called the axis, measured as
indicated in that Article, must always remain on the same
side of the plane of the couple.

46. We may infer from Art. 44 that couples may be mea-
sured by their moments. Let there be two couples, one in
which each force = P, and one in which each force = @, the
arms of the couples being equal; these couples will be in the
ratio of Pto @. For suppose, for example, that Pis to Q as
3 to 5; then each of the forces P may be divided into 3 equal
forces and each of the forces @ into 5 such equal forces. Then
the couple of which each force is P may be considered as the
suh of 3 equal couples of the same kind, and the couple of
which each force is @ as the sum of 5 such equal couples.
The effects of the couples will therefore be as 3 to 5. Next,
suppose the arms of the couples unequal, and denote them by
p and ¢ respectively. The couple which has each of its
forces = @ and its arm =g is equivalent to a couple having

each of its forces=%z and its arm = p, by Art. 44. The

couples are therefore by the first case in the ratio of Pto @ ,
i

that is of Pp to ¢q.

With respect to the effect of a couple, we may observe
that it is shewn in works on rigid dynamics that if a couple
act on a free rigid body it will set the body in rotation about
an axis passing through a certain point in the body called
its centre of gravity, but not necessarily perpendicular to the
- plane of the couple.

47. To find the resultant of any number q}" couples actz
on a body, the planes of the couples being paralgel to efﬁ
other.

First, suppose all the couples transferred to the same plane
(Art. 43); next, let them be all transferred so as to have
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‘their arms in the same straight line, and one éxtremity com-
mon (Art. 42); and lastly, let them be replaced by other
couples having the same arm (Art. 44).

Thus if P, @ R, ......... be the forces, and

a b ¢, ..uou.... be their arms,

we shall have them replaced by the following forces (sup-
posing a the common arm),

P-g, Q-g, RS, ... acting on the arm a.

Hence their resultant will be a couple of which each force
equals

and the arm =q,
or of which the moment equals
Pa+Q.b+R.c+..ecen...

Hence the moment of the resultant couple is equal to the
sum of the moments of the original couples.

If one of the couples, as Q, @, act in a direction opposite to
the couple P, P, then the force at each extremity of the arm
of the resultant couple will be

and the moment of the resultant couple will be
P.a—Q.b+R.c+.uuueunas ,

or the algebraical sum of the moments of the original
couples; the moments of those couples which tend in the
direction opposite to the couple P, P being reckoned ne-
gative.
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48. T0 find the resultant of two couples not acting in the
same plane.

Let the planes of the couples intersect in the straight line

e
.'.'-'1.

i r
R \ A
R

1 id B Q

AB, which is perpendicular to the plane of the paper, and let
the couples be referred to the common arm 4B, and let their
forces thus altered be P and Q. :

In the plane of the paper draw Aa, 45 at right angles to
the planes of the couples P, Pand @, Q; and equal in length
to their awes.

Let R be the resultant of the forces Pand @ at 4, acting
in the direction AR ; and of P and @ at B, acting in the
direction BR. .

Since AP, AQ are parallel to BP, BQ respectively, there-
fore AR is parallel to BR.

Hence the two couples are equivalent to the single couple
R, B acting on the arm AB.

Draw Ac perpendicular to the plane of R, R, and in the
same proportion to Aa, Ab that the moment of the couple
R, B 1s to those of P, P and @, @ respectively. Then A¢
is the axis of B, B. Now the three straight lines da, Ac, 45
make the same angles with each other that AP, AR, AQ
make with each other; also they are in the same propor-
tion in which AB.P, AB. R, AB.Q are; that is in which
P, R, Q are.

- But R is the resultant of P and Q; therefore Ac is the -
diagonal of the parallelogram on Aa, 4b (see Art. 17).

Hence if two straight lines, having a common extremity,
represent the axes of two couples, that diagonal of the paral-
lei‘c))gram described on these straight lines as adjacent sides
which passes through their common extremity represents the
axis of the resultant couple.
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49. To find the magnitude and position of the couple which
13 the resultant of three couples which act 1n planes at right
angles to each other.

Let AB, AC, AD be the axes of the given couples (see
fig. to Art. 24). Complete the parallelogram OB, and draw
AFE the diagonal. Then A E is the axis of the couple which
is the resultant of the two couples of which the axes are
4B, AC. Complete the parallelogram DE, and draw AF
the diagonal. Then 4F is the axis of the couple which is
the resultant of the couples of which the axes are AE, AD,
or of those of which the axes are AB, 4C, AD.

‘Now AF=AE'+AD*=AB*+ AC*+ AD

Let @ be the moment of the resultant couple; L, M, N
those of the given couples;

therefore @=L+ M+ N*;

and if A, g, v be thé angles the axis of the resultant makes
with those of the components,

AB L

COSA=——=—; COS _%. coOsSy=—
TAFT @ ®ET@ =G

50. Hence conversely any couple may be replaced: by
three couples acting in planes at right angles to each other;
their moments being G cosA, G cosu, G cosv; where G is
the moment of the given couple, and A, u, v the angles its
axis makes with the axes of the three couples.

Thus couples follow, as to their composition and resolution,
laws similar to those which apply to forces, the azis of the
couple corresponding to the direction of the force and the
moment of the couple to the sntensity of the force. Hence.
for example, by Art. 29, the resolved part of a resultant
couple in any direction is equal to the sum of the resolved
parts of the component couples in the same direction.

51. In Chapter IL we treated of forces acting at a point ;,
in the present Chapter we have passed to the consideration
of forces which do not act at the same point, and this subject
will be further developed in the following Chapters. Mistakes
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are frequently made by students in consequence of neglecting
the difference between the case in which forces are ‘given
acting at the same point, and the case in which the forces

are not so given,

It may be observed that by the aid of what has already
been explained, it is theoretically possible to discuss any
problem respecting forces which all act in the same plane;
we have only to make repeated use of the principles of trans-
ference and composition. For take any two of the forces,
produce the directions of the forces to meet, and suppose the-
two forces to act at the common point; then replace the two-
forces by their resultant. Next this resultant may in like
manner be compounded with any third force; and so on.
Thus we shall always be able to reduce any forces which
act in the same plane either to a single force, or to a couple.
The next Chapter will shew us how to proceed in a more
systematic manner; but, as we have said, the explanations
already given are theoretically sufficient.

For example. Forces are represented in magnitude and °
line of action by the sides 4B, BC, and CA of a triangle:
find their resultant.

The two forces AB and BC may be supposed to act
at B; their resultant will be a force through B, Parallel
to AC, and denoted in magnitude by AC. Then this force
and the force represented by CA constitute a couple; the
moment of the couple will be represented by the product
of CA into the perpendicular from B on C4; that is by
twice the area of the triangle ABC.

Again. Forces are represented in magnitude and line
of action by the sides 4B, BC, and AC of a triangle: find
their resultant.

Here, as before, the two forces ABand BC are equivalent
to a force through B parallel to AC; thus the final resul-
tant is a force parallel to A4C, passing through the middle
point of 4B, and denoted in magnitude by twice 4AC.
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EXAMPLES.

1. Forces 1,—~2, —3, 4 act on a rod at right angles
to it, and at equal distances in the same plane: find their
resultant.

2. Forces P, —3P, —5P, TP act on g rod at distanees
from one end proportional to their respective magnitudes;
the forces are parallel and in the same plane: find their
resultant.

3. ABCD is a quadrilateral; forces are represented in
magnitude and line of action by 4B, BC, and CD: find
their resultant. . o

4. ABCD is a quadrilateral ; forces are represented in
magnitude and line of action by 4B, BC, and DC: find
their resultant.

5. ABCD and A'B'C'D’ are parallel faces of a parallele-
piped, the edges 44', BB, CC’, DD', being parallel to
each other ; if forces represented by the edges B4, BC, D' C,
ID’'A’ act respectively along these edges, shew that they are
equivalent to a couple acting in the plane passing through
BB and DIV, and represented in moment by the area of
the section of the parallelepiped made by that plane.
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CHAPTER 1IV.

RESULTANT OF FORCES IN ONE PLANE. CONDITIONS OF
EQUILIBRIUM. MOMENTS,

52. To find the resultant of any number of parallel forces
acting on a rigid body in one plane.

Let P, P, F,..... denote the forces. Take any point in
b4
Pl
Pl
o AL -
Pl

the plane of the forces as origin and draw rectangular axes
Oz, Oy, the latter parallel to the forces. Let 4, be the
point where Ox meets the direction of P, and let 04, ==z,

Apply at O two forces each equal and parallel to P, in
opposite directions. Thus the force P, is replaced by 1’1 at
O along Oy, and a couple of which the moment is P,. 04,,
thatis P,.a,. Transform the other forces in a similar manner,
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using a similar notation, and the whole system will be re-
duced to a force P, + P, + P, +......... or P along Oy, and a
couple Pz, + Pz, + Pz, +......... or %Pz in the plane of
the forces and tending to turn the body from the axis of =
to the axis of 3.

53. To find the conditions of equilibivum of a system of
parallel forces acting on a rigid body in one plane.

A system of parallel forces can be reduced to a single
force and a couple. If neither of these vanish equilibrium
isimpossible, because a single force cannot neutralize a couple
(Art. 40). If the single force alone vanish equilibrium is
impossible, because there remains an unbalanced couple. If
the couple alone vanish equilibrium is impossible, because
there remains an unbalanced force. Hence, for equilibrium
it is necessary that both the force and the couple should
vanish ; that is _

SP=0 and 3Pz =0.

54. The product of a force into the perpendicular drawn
upon its direction from any point, is called the moment of
the force with respect to that point, or round that point.
Hence the conditions of equilibrium which have just been
obtained may be thus enunciated :

A system of parallel forces acting on a rigid body in one
plane will be in equilibrium if the sum of the forces vanishes,
and the sum of the moments of the forces round an origin in
the plane also vanishes.

Conversely, if the forces are in equilibrium their sum must
vanish, and also the sum of their moments round any origin
in the plane.

The word sum must be understood algebraically. Forces
which act in one direction being considered positive, those
which act in the opposite direction must be considered nega-
tive. Also moments being considered positive when the cor-
responding couples tend to turn the body in one direction,
they must be considered negative when the corresponding
couples tend to turn the body in the oppesite direction,
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55. When the sum of the forces vanishes in Art. 52,
the forces reduce to a couple.
When 3P is not zero, the ¥
forces can be reduced to
a single resultant. For if AZT TP
SPr=0, then SP acting
at O is the single resultant.
If SPr be not =0, let the .
couple be transformed to one A T
in which each of the forces
is equal to 2P, and conse-
quently, by Art. 44, the arm P
is é—% . Let SPactingat 4 |,
and 3P acting along Oy’ form this couple. The latter force
is destroyed by the force Z.P along Oy. Hence the single
resultant is 2P acting at 4, that is, at a point the distance

of which from O is %% .

56. To find the resultant of any number of forces which
act on a rigid body in one plane.

Let the system be referred to any rectangular axes Oz, Oy
in the plane of the forces.

]

2

By

. Let P, P, P,...... denote the forces; a,, a,, @, ......
the angles which their directions make with the axis of z
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let #,, 7, be the co-ordinates of the point of application of P ;
let z,, y, be those of the point of application of P,, and so on,

- Let A, be the point of application of P,. At O suppose
two forces applied in opposite directions each equal and
parallel to P,. Draw Op, perpendicular to P, 4,.

Hence P, acting at 4, is equivalent to P, acting at O
and a couple of which Op, is the arm and each force is P,,
which tends to turn the body from the axis of # to that of
y. Now

Op,= z,sina, —y, cosa,.
Hence the moment of the couple is
P, (z,sina, —y, cosa,).
The other forces may be similarly replaced. Hence the
system is equivalent to the forces
P,P,P, ... acting at O,

in directions parallel to those of the original forces ; and the
couples of which the moments are

P, (2 sina, —y, cosa),
P, (z,sina, — y,cos a,),
P, (z,sin a, — y, cos a,),

acting in the plane of the forces. It will be found that any
one of the above expressions for the moments of the couples
is positive or negative, according as that couple tends to turn
the body from the axis of z towards that of g, or'in the
contrary direction.

Let R be the resultant of the forces acting at O, let a be
the angle which B makes with the axis of z, and G the
moment of the resultant couple; then (by Art. 22)

Rcosa=3Pcosa; Rsina=3Psina;

and (by Art. 47)

G=3P (zsina—ycosa). . ,

T. S. 4

-
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If P cosa,=X, and P sina,= Y, and a similar notation
be used for the other forces, the above equations may be
written

Y

R=CX)r +EY)4 tana=35—;

and ‘ Q=3 (Yz— Xy).

57. To find the conditions for the equilibrium of a system
of forces acting on a rigid body in one plane.

Any system of forces acting in one plane may be reduced
to a single force B, and a couple whose moment is @ If
neither B nor G vanish equilibrium is impossible, since a
single force cannot balance a couple. If R alone vanish equi-
librium is impossible, because there remains an unbalanced
couple G'; if G alone vanish equilibrium is impossible, be-
cause there remains an unbalanced force. Hence, for equi-
librium we must have R=0 and G=0. Also B=0 requires
that X=0and 2Y=0.

Since G is equal to the sum of the moments of the forces
with respect to 0, we may enunciate the result thus: A4 sys-
tem of forces acting in one plane on a rigid body will be in
equilibrium if the sums of the resolved parts of the forces pa-
rallel to two rectangular axes tn the plane vamish, and the sum
of the moments round an origin in the plane also vanishes.

Conversely, if the forces are in equilibrium the sum of
the resolved parts of the forces parallel to any direction will
vanish, and also the sum of the moments of the forces round
any origin.

58.  If three forces acting in one plane maintain a rigid
body in equilibrium thewr directions either all meet at a point or
are all parallel. '

For suppose two of the directions to meet at a point, and
take this point for the origin; then the moment of each of
these two forces vanishes, and the equation G= 0 requires
that the moment of the third force should vanish, that is, the
third force must also pass through the origin. Hence, if any
two of the forces meet, the third must pass through their point
of intersection, which proves the proposition. This pro-




IN ONE PLANE, 51

position may also be established without referring to Axt. 57.
For if two of the forces meet ata point, they may be supposed
both to act at that point and may be replaced by their re-
sultant acting at the same point; this resultant and the third
force must keep the body on which they act in equilibrium,
and must therefore be equal and opposite; that is, the third
force must pass through the point of intersection of the
first two.

59. If R=0 in Art. 56, the forces reduce to a couple: if
R be not =0, the forces can be reduced to a single resultant;
and the equation to its line of action may be found.

For if the couple G =0, the resultant force is R acting at
the origin. If the couple G be not=0, let it be trans-
formed into one having each of its forces = R and its arm con-

7

«R

SV

sequently =% (Axt. 44). Let this couple be turned in its own

plane, until one of its forces acts at the origin exactly opﬁosﬂ,e
to the force R, which by hypothesis acts at the origin. Hence
these forces destroy each other and we have left B acting

at the extremity of the arm 04, in a direction inclined to

the axis of # at an angle a, found by the equation tan @ =§——§£—:

(Art. 56). If this direction meet the axis of z at B, we have

- _G E_G
OB= OAcoseca—R.z =57
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and the equation to the line of action of the single resultant is
' 2 Y ' _g ) .
¢ (“ v/’
or, ZE2Y =y 3 X =3 (Yz— Xy),

', y being the variable co-ordinates.

60. The result of the last Article may also be obtained
thus. Suppose that the given forces have a single resultant
acting at the point (', y), and equivalent to the components
X’ and Y’ parallel to the co-ordinate axes. It follows that
the given forces will, with — X', — Y’ acting at the point
(z',y), form g system in equilibrium. Hence, by Art. 57,

2X—-X'=0, 3Y-Y'=0, G-Y2'+X'y=0.

Of these three equations the first determines X', the second
Y’, and the third assigns a relation between z’ and %, which
is in fact the equation to the line in which the single re-
sultant acts and at any point of which it may be supposed
toact. If SX and 3 Y both vanish, it is impossible to find
values of 2’ and ¥’ that satisfy the last equation of the three,
80 long as G does not vanish; this shews that if the forces
reduce to a couple, it is impossible to find a single force equi-
valent to them.

61. In Art. 56, we have for the moment of the force P,
about the origin the expression

P, (z, sin dl —Yy, cosa,),
and tbis we may express by

Yo - Xy.

11

Since X, and Y, are the rectangular components of P, we
see by comparing the two expressions that the moment of
a force about any origin is equal to the algebraical sum of
the moments of its rectangular components about the same
origin. (See Art. 54.) There are many such theorems con-
nected with moments, and the demonstration of some of them
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is facilitated by observing that according to the definition
of a moment, it may be geometrically represented by twice
the area of the triangle having for its base the straight line
which represents the force and for its vertex the point about

which moments are taken. For example, we may prove the
theorem which we have already deduced.

62. The algebraical sum of the moments of two component
Jorces with respect to any point in the plane containing the two
Jorces is equal to the moment of the resultant of the two forces.

Let AB, AC represent two component forces; complete the
parallelogram and draw the 0 ,
diagonal 4D representing the - - R
resultant force. - AN TN

(1) Let O, the point about >
which the moments are to be -~ .
taken, fall without the angle‘\/
BAC and that which is ver-
tically opposite to it. Join ¢
04, OB, 0C, OD.

The triangle OAC having for its base AC and for its
height the perpendicular from O on AC is equivalent to a
triangle having 4 C for its base and for its height the perpen-
dicular from B on 4 C, together with a triangle having BD
for its base and for its height the perpendicular from O on BD.
This is obvious since BD is equal and parallel to 4 C, and the
perpendicular from O on AC is equal to the perpendicular
from O on BD together with the perpendicular from Bon 4C.
Hence we have

AA0C=ABOD+AACD.
Hence, adding the triangle 4 OB, we have
AA40C+AAOB=ABOD+AABD+AAOB=AAOD;

that is, the moment of 4C + the moment of 4B = the mo-
ment of 4.D. : : ’
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(2) Let O fall within the angle BAC or its vertically
opposite angle. :

AAO0C=AABD-ABOD
=AAOB+AAO0D. ,

Therefore :
AAOD=AAO0C—-AAO0B;

that is, the moment of .AD =the moment of AC— the
moment of 4B. As the moments of 4C and 4B about O
are now of opposite characters, the moment of the resultant
is still equal to the algebraical sum of the moments of the
components.

The proposition may also be readily shewn in the case
where the two component forces are parallel ; ‘see Art. 37.

In this example, however, nothing is gained in brevity or -
simplicity by the aid of Geometry; for the required result is
an immediate consequence of the mechanical principle that the
resolved part of the resultant along a straight line through 4 .
at right angles to 4 0 is equal to the algebraical sum of the
resolved parts of the components in the same direction.

63. Forces are represented in magnitude and position by
the sides of a plane polygon taken in order ; required the re-
sultant.

Y

ya
Let the sides of the figure ABCDEF represent the forces
in magnitude and position ; the first force being supposed to
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act in the straight line 4B from A4 towards B, the second in
the straight line BC from B towards C, and so on.

As in Art. 56, the forces may be replaced by a resultant
force at an arbitrary origin O and a couple. The former is
composed of all the forces 4B, BC,...... moved each parallel

to itself up to O; the resultant force consequently vanishes
by Art. 21.

The moment of the resultant couple is the sum of the
moments of the component couples, and is therefore repre-
sented by twice the triangle 4 OB+ twice the triangle BOC
+...; that is, by twice the area of the polygon. Hence the
forces reduce to a resultant couple measured by twice the area

- of the polygon.

We may observe that the algebraical sum of the moments
of the two forces which form a couple is the same about
whatever point it be taken ; it is in fact equal to the moment
of the couple. '

64. If the sum of the moments of the forces P, P, B,,...
be required about a point whose co-ordinates are )z, k instead
of about the origin, we must in the expression for &, in
Art. 56, put o, —h, @,—h, ... for z, @,, ... respectively, and
y,—k y,—k, ...fory , y,, ... respectively. Hence, denoting
the result by G,, we have

¢,=3{Y(@—h)—X(y-B)
=kZX-13Y+3 (Yr—Xy)
=kSX-hSY+G.

Hence the value of @, depends in general on the situation
of the point about which we take moments. . If, however,

k2 X —hE Y =a constant,

that is, if the point (k, %) move along any straight line
parallel to the direction of the resultant force R, then @,
remains unchanged.
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If three different points exist with respect to which the sum
of the moments vanishes, we have three equations
kEX-22Y+ @=0,
E2X-h32Y+ G=0,
EZX—-h2Y+ G=0.
Hence we deduce
(k,— k) ZX = (h,— h,) 27,
(k,—k)ZX=(h,—h)ZY.

Unless the point (h,, k), the point (h,, k), and the point
(h,, k) lie in a straight line, it is impossible that

kl—ks_ks—'kx.
hx—hr— h:"}‘a,

we must therefore have
3X=0, 3Y=0, G=0.

Hence if the sum of the moments of a system of forces in one
plane vanish with respect to three points in the plane not in a
straight line, that system s in equilibrium.

When a syst;am of forces in one plane can be reduced to a
single resultant, we have found in Art. 59 that the equation
to the direction of the resultant is

 d3Y —y3X =3 (Yz— Xy).
This may be written
S{Y (@ —2)- X —g)}=0.

The equation to the direction of the resultant thus in fact
determines the locus of the points for which the algebraical
sum of the moments of the forces is zero. '

65. Hitherto we have supposed our axes rectangular. If
they are oblique and inclined at an angle , we may shew,
as 1 Art. 56, that a system of forces in one plane may be
reduced to 3 X along the axis of #, 2Y along the axis of y,
and a couple the moment of which is stn 0% (Yz— Xy). The
latter part will be easily obtained, since the moment of the
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force P, is equivalent to the algebraical sum of the moments
of its components X, and Y,; and the perpendicular on the
former from the origin is y, sin w, and on the latter z,sinw. -

The conditions for equilibrium are, as before,
2X=0, 3Y=0, Z(Yz—Xy)=0.

The following Examples may be solved by means of the
principles given in the preceding Articles. When different
rigid bodies occur in a question, the equations of Art. 57
must hold with respect to each, in order that there may be
equilibrium. . In cases where only three forces act on a body,
it is often convenient to use the proposition of Art. 58. Since
by Art. 57 the moments of the forces with respect to any
origin must vanish, we may, if we please, take different origins
and form the corresponding equation for each. See Art. 64.

In some of the Examples we anticipate the results of the
subsequent Chapters so far as to assume that the weight of
any body acts through a definite and known point, which is
the centre of gravity of the body. When two bodies are in
contact it is assumed that whatever force one exerts on the
other the latter exerts an equal and opposite force on the
former; if the bodies are smooth this force acts in the direction
of the common normal to the surfaces at the point of contact.
We restrict ourselves to the supposition of smooth bodies
until Chapter X. :

In attempting to solve the problems the student will find
it advisable when the system involves more than one body
to confine his attention to one at a time of those bodies which
are capable of motion, and to be careful to take into con-
sideration all the forces which act on that body. When
bodies are in contact some letter should be used to denote
the mutual force between them, and the magnitude of this
force must be found from the equations of equilibrium of the
body or bodies which are capable of motion. And when
two of the bodies are connected by a string a letter should
be used to denote the tension of the string, and the magnitude
of the tension must be found. from the conditions of equi-

[ S |
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librium of the body or bodies which are capable of motion.
Beginners often fall into error by assuming incorrect values
for the tensions of strings and the mutual forces between
bodies in contact, instead of determining the correct values
from the equations of equilibrium.

We will give here two propositions, respecting forces acting
in a plane, which involve important results.

L Forces act at the middle points of the sides of a rigid
polygon in the plane of the polygon; the forces act at right
angles to the sides, and are respectively proportional to the
sides in magnitude: shew that the forces will be in equili-
brium if they all act inwards or all act outwards.

The result here enunciated has been already shewn to be
. true in the case of a triangle; see the Proposition 1. at the
end of Chapter I; the general proposition is obtained by
an inductive method.

Suppose for example that the proposition were known to be
true for a four-sided figure also;
then we can shew that it must be
true for a five-sided figure.- Let
ABCDE be a five-sided figure; and
B let forces act at the middle points of
3  the sides in the plane of the figure,

at right angles to the sides and re-

spectively proportional to the sides
in magnitude: suppose for the sake of distinctness that the
forces all act outwards. '

D c

A

Join AD. By hypothesis a certain system of forces acting
outwards on the four-sided figure 4BCD would be in equili-
brium; and from this it follows that the assigned forces acting
on AB, BC, CD must be equivalent to a single force acting
at the middle point of AD, towards the inside of the four-
sided figure 4B CD, proportional to AD in magnitude.

Also the assigned forces acting on DE, E4 must in like
manner be equivalent to a single force acting at the middle
point of AD, towards the inside of the triangle AED, pro-
portional to 4.D in magnitude.
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Hence the two single forces balance each other; and the
system is in equilibrium.

In this manner, knowing that the result is true for a tri-
angle, we can shew in succession that it is true for a figure
of four, five, six,... sides.

II. Rigid rods without weight are joined together by
smooth hinges at their extremities, so as to form a plane
polygon. Forces act at the middle points of the sides of the
polygon in the plane of the polygon; the forces act at right
angles to the sides, and are respectively proportional to the
sides in magnitude; shew that, if the forces all act inwards
or all act outwards, when there is equilibrium, a circle can
be described round the polygon.

Let ABCDEF represent the polygon. Consider one of the
rods as AB. Thisrod is acted
on by a force at the middle
point H at right angles to 4B,
and by actions from the hinges
at 4 and B. The former force
is proportional to .45, and may
be denoted by w.4B. The
three forces must meet at a
point, suppose K; then by re-
solving parallel to 4B, we find
that the actions at 4 and B
_ maust be equal; we will denote
them by B. Resolve the forces at right angles to 4.B: thus

pAB=2Rsin ABK.

The action at B on the rod BC is equal and opposite to
that on the rod B4 ; hence we obtain in the same manner

#BC=2Rsin CBL.
Therefore sinABK _AB_sin ACB
sin CBL  BC sin C4AB°

This shews that KBL touches at B the circle described
round 4BC. ‘

BSimila.rly AK touches at A the circle described round

AF. :
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But 4K and BK are equally inclined to 4B. Hence the
two circles must coincide; that is, the points F, 4, B, C lie
an the circumference of a circle.

In this way we shew that any four consecutive angular
points of the polygon lie on the circumference of a circle;
and hence it follows that all the angular points must lie on
the circumference of the same circle. '

It will be seen from the preceding results that the action
at every hinge is the same, and is denoted by the product of
p into the radius of the circle described round the polygon.

EXAMPLES.

1. ABCD is a quadrilateral and is acted on by forces
which are represented in magnitude and direction by 4B,
AD, CB, CD; shew that the resultant coincides in direction
with the straight line which joins the middle points of the
diagonals AC, BD, and is represented in magnitude by four
times this straight line.

2. Forces whose intensities are proportional to the sides
of an isosceles triangle act along the sides of the triangle,
those acting along the equal sides tending from the vertex;
find the magnitude and position of their resultant.

Result. The required resultant is represented by a straight
line which passes through the middle point of the base of the
triangle, is parallel to one of the sides, and double that side
in length. '

3. The upper end of a uniform heavy rod rests against
a smooth vertical wall; one end of a string is fastened to the
lower end of the rod and the other end of the string is fastened
to the wall; the position of the rod being given, find the point
of the wall to which the string must be fastened, in order that
the rod may be in equilibrium. ‘

- 4. A uniform heavy rod is placed across a smooth hori-
zontal rail, and rests with one end against a smooth vertical
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wall, the distance of which from the rail is 1: th of the léngth

of the rod; find the position of equilibrium.
Result. The rod makes an angle of 60° with the horizon.

5. ABC is a triangular lamina; AD, BE, CF are the
perpendiculars on the sides, and forces represented by the
straight lines BD, CD, CE, AE, AF, BF are applied to the
lamina; shew that their resultant will pass through the
centre of the circle described about the triangle.

6. AB, AC are two equal beams connected by a hinge
at 4, and by a string joining the extremities Band C: 4B
is fixed vertically, and a sphere of given weight and radius
is supported between the two beams: find the pressure of the
sphere on each beam, and the tension of the string.

7. An elliptic lamina is acted on at the extremities of pairs
of conjugate diameters by forces in its own plane tending
outwards, and normal to its edge: shew that there will be
equilibrium if the force at the end of every diameter be
proportional to the conjugate diameter.

8. A heavy sphere hangs from a peg by a string whose
length is equal to the radius, and it rests against another
peg vertically below the former, the distance between the
two being equal to the diameter. Find the tension of the
string and the pressure on the lower peg.

Results.. The tension is equal to the weight of the sphere
and the pressure to half the weight of the sphere.

9. Two equal rods without weight are connected at their
middle points by a pin which allows free motion in a vertical
plane; they stand upon a horizontal plane, and their upper
extremities are connected by a thread which carries a weight.
Shew that the weight will rest half way between the pin and
the horizontal line joining the upper ends of the rods.

10. Two equal circular discs with smooth edges, placed on
their flat sides in the corner between two smooth vertical
planes inclined at a given angle, touch each other in the
straight line bisecting the angle. Find the radius of the least
disc which may be pressed between them without causing
them to separate.
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11. A flat semicircular board with its plane vertical and
curved edge upwards rests on a smooth horizontal plane, and
is pressed at two given points of its circumference by two
beams which slide in smooth vertical tubes; find the ratio
of the weights of the beams that the board may be in equi-
librium.

12. Two smooth cylinders with their axes horizontal, of
equal radii, just fit in between two parallel vertical walls, and
rest on a smooth horizontal plane without pressing against
the walls; if a third cylinder be placed on the top of them,
find the resulting pressure against either wall

13.. A smooth circular ring rests on two pegs not in the
same horizontal plane; find the pressure on each peg.

14: Two spheres are supported by strings attached to a
given point, and rest against one another; find the tensions
of the strings.

~ 15. Two equal smooth spheres, connected by a string, are
laid upon the surface of a cylinder, the string being so short
as not to touch the cylinder; determine the position of rest
and the tension of the string.

16. A heavy regular polygon is attached to a smooth
vertical wall by a string which is fastened to the middle
point of one of 1ts sides; the plane of the polygon is vertical
- and perpendicular to the wall, and one of the extremities of
the side to which the string is attached rests against the wall;
shew that whatever be the length of the string when the
polygon is in equilibrium, the tension of the string and the
pressure on the wall are constant.

17. A straight rod without weight is placed between two
pegs, and forces P and @ act at its extremities in parallel
directions inclined to the rod; required the conditions under
which the rod will be at rest and the pressures on the pegs.

Result. P and @ must be equal and in opposite directions.

18. Forces P, Q, R, 8 act along the sides of a rectangle;
find the direction of the resultant force.

19. Two weights .P, P are attached to the ends of two
strings which pass over the same smooth peg and have their



OF FORCES IN ONE PLANE, 63

other extremities attached to the ends of a beam 4B, the
weight of which is W; shew that the inclination of the beam
to the horizon =tan™ (‘(%:—II: tan a); a, b being the distances
of the centre of gravity of the beam from its ends, and
sing =g,

20. .A square is placed with its plane vertical between
two small pegs which are in the same horizontal line ; shew
that it will be in equilibrium when the inclination of one

2_ 2
of its edges to the horizon = }sin™ k! c,c s 2a being the
length of a side of the square, and ¢ the distance between
the pegs. Shew that the equilibrium will not be affected by
the application of any force which bisects the straight line
joining the pegs and passes through the lowest point of the
square. _

21. One end of a string is fixed to the extremity of a
smooth uniform rod, and the other to a ring without weight
which passes over the rod, and the string is hung over a
smooth peg. Determine the least length of the string for
which equilibrium is possible, and shew that the inclination of
the rod to the vertical cannot be less than 45°

22. A string nine feet long has one end attached to the
extremity of a smooth uniform heavy rod two feet in length,
and at the other end carries a ring without weight which slides
on the rod. The rod is suspended by means of the string
from a smooth peg; shew that if § be the angle which the

rod makes wij;h the horizon, then tan §=8%—83,

23. A square rests with its plane perpendicular to a
smooth wall, one corner being attached to a point in the wall
by a string whose length is equal to a side of the square;
shew that the distances of three of its angular points from the
wall are as 1, 3, and 4.

24. One end of a beam, whose weight is W, is placed
on a smooth horizontal plane ; the other end, to which a string
is fastened, rests against another smooth plane inclined atan
angle a to the horizon ; the string passing over a pully at
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the top of the inclined plane hangs vertically, supporting
a weight P. Shew that the beam will rest in all positions if
a certain relation hold between P, W, and a.

25. If a weight be suspended from one extremity of a rod
moveable about the other extremity 4, which remains fixed,
and a string of given length be attached to any point B in
the rod, and also to a fixed point C above 4, and in the same
vertical line with it, then the tension of the string varies
inversely as the distance 4 B.

26. One end of a uniform beam is placed on the ground
against a fixed obstacle, and to the other end is attached a
string which runs in a horizontal direction to a fixed point in
the same vertical line as the obstacle, and passing freely over
it, is kept in tension by a weight W suspended at its extremity,
the beam being thus held at rest at an inclination of 45° to
the horizon. Shew that if the string were attached to the
centre instead of to the end of the beam, and passed over the
same fixed point, a weight =/2 W would keep the beam in
the same position. '

27. Two equal beams 4B, AC connected by a hinge at
A are placed in a vertical plane with their extremities B, C
resting on a horizontal plane ; they are kept from falling by
strings connecting B and C with the middle points of the
opposite beams ; shew that the ratio of the tension of each
string to the weight of each beam

. =3s(9cot’0+1),
0 being the inclination of each beam to the horizon.

28. One end of a string is attached to a beam at the point
B, and the other end is fastened to the highest point 4 of a
fixed sphere of radius . If the points of contact of the beam
and string trisect the quadrant 4 C, shew that the distance
between B and the centre of gravity of the beam must be
2r (2 —4/3).

29. A heavy rod can turn freely about a fixed hinge at
one extremity, and it carries a heavy ring which is attached
to a fixed point in the same horizontal plane with the hinge
by means of a string of length equal to the distance between
the point and the hinge. Find the position in which the
rod will rest. : . .
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30. Two equal heavy beams of sufficient length, and
connected by a hinge, are supported by two smooth pegs in
the same horizontal line ; a sphere is placed between them,
determine the position of equilibrium,

81. Forces P, Q, R act along the'sides BO, C4, AB of
a triangle, and their resultant passes through the centres of the
inscribed and circumscribed circles ; shew that

P:Q:RB:cosB—cosC:cos C—cos.d : cosd—cosB.

82. Find the position of equilibrium of a uniform beam
resting in a vertical plane with one end pressing against a
vertical wall, and the other end supported by the convex arc
of a parabola in the vertical plane, whose vertex is at the
foot of the wall and axis horizontal.

33. A uniform beam P @ of given weight and length rests
in contact with a fixed vertical circle whose vertical diameter
is A B, in such a manner that strings 4P, BQ attached to the
rod and circle are tangents to the circle at the points 4 and B.
Find the tensions of the strings, and shew that the conditions
of the problem require that the inclination of the beam to the

vertical must be less than sin™ ﬁ/% .

34. Shew that no uniform rod can rest partly within and
partly without a fixed smooth hemispherical bowl at an incli-

nation to the horizon greater than sin";/lg .

85. The sides of a rigid plane polygon are acted on by
forces at right angles to the sides and proportional to them in
magnitude, all the forces acting in the plane of the polygon,
and being inwards; also the sides taken-in the same order
are severally divided by the points of application in the con-
stant ratio of p to ¢ ; shew that the system of forces is equi-
valent to a couple whose moment is

l"(p—q) e
2(p+9)2a’

where pa represents the force applied to any side a of the
polygon, and 3a* the sum of the squares of the sides.

T. S, _ b
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CHAPTER V.

FORCES IN DIFFERENT PLANES.

66. To find the magnitude and direction of the resultant of
any number of parallel forces acting on a rigid body, and to
determine the centre of parallel forces.

Let the points of application of the forces be referred to a
system of rectangular co-ordinate axes. Let m,, m,,... be the

1 /”‘
P,
I
m,
A

L2 L

& ———_

L

points of application; let z,, y,, z,, be the co-ordinates of
the first point, #,, ¥,, 2, those of the second, and so on; let
P, P,,...be the forces acting at these points, those being
reckoned positive which act in the direction of P,, and those
negative which act in the opposite direction.

~ Join m;m, ; and take the point m on m,m, such that

N .
mm = .mm,;

P+ P

1 2
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then the resultant of P, and P, is P, + P,, and it acts through
m parallel to P. (Art. 87.) :

Draw ma, mb, mgc perpendicular to the plane of (z, 3),
meeting that plane at a,d, ¢; draw m de parallel to abc meet-
ing mb at d and me at e. Then, by similar triangles,

mm _md_mb—z

mm, me z,—z,°
therefor. mb—z,=—T2_ (s _ 23,
erefore ‘—PI+P,Z’ z);
N
therefore mb—w.

This gives the ordinate parallel to the axis of z of the point
of application of the resultant of P, and P,

Then supposing P, and P, to be replaced by P, + P, acting
at m, the resultant of P, + P, and P, is P, + P, + P,, and the
ordinate of its point of application

_(B+P)mb+ Pz, Pz +Pg+ Py,
- P +P,+P, P,+P+P, °’
and this process may be extended to any number of parallel

forces. Let R denote the resultant force and z the ordinate
of its point of application ; then

2P
SP°

Similarly, if , ¥ be the other co-ordinates of the point of
application of the resultant,

_ __g__Py'
=3P’ Y=3P°

The values of z, y, z are independent of the angles which
the directions of the forces make with the axes. Hence if
these directions be turned about the points of application of
the forces, their parallelism being preserved, the point of

5—2

R=3P, 7=
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application of the resultant will not move. For this reason
this point is called the centre of the parallel forces.

67. The moment of a force with respect to a plane is the
product of the force into the perpendicular distance of its point
of application from the plane.

In consequence of this definition, the equations for deter-
mining the position of the centre of parallel forces shew that
the sum of the moments of any number of parallel forces wnth
respect to any plane 1s.equal to the moment of their resultant.

68. If the parallel forces all act in the same direction the
expression 2P cannot vanish; hence the values of the co-
ordinates of the centre of parallel forces found in Art. 66 cannot
become infinite or indeterminate, and we are certain that the
centre exists. But if some of the forces are positive and some
negative, 2P may vanish, and the results of Art. 66 become
nugatory. In this case, since the sum of the positive forces is
equal to the sum of the negative forces, the resultant of the
former will be equal to the resultant of the latter. Hence the
resultant of the whole system of forces is a couple, unless the
resultant of the positive forces should happen to lie in the
same straight line as the resultant of the negative forces.

We shall give another method of reducing a system of
parallel forces. '

69. To find the resultant of a system of parallel forces
acting upon a rigid body.

Let P, P,, ... denote the forces. Take the axis of z
ga.rallel to the forces. Let the plane of (x, y) meet the

irection of P, at M,, and suppose «,, y, the co-ordinates of
this point.

Draw M, N, perpendicular to the axis of # meeting it at &,.
At the origin 0O, and also at N,, apply two forces each equal
and parallel to P, and in opposite directions. Hence the
force P, at M, is equivalent to the following system,

(1) P,at O; ,
(2) a couple formed of P, at M, and P, at N,;
(8) a couple formed of P, at N, and P, at 0,
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i

'y I
e M —=
M
1

4, M

The moment of the first couple is Py,, and this couple,
without altering its effect, may be transferred to the plane of
(y, 2), which is parallel to its original plane. The moment
of the second couple is Pz, and the couple is in the plane
of (z, 2).

If we effect a similar transformation of all the forces, we
have, as the resultant of the system the following system,

(1) a force 2P acting at O;
(2) a couple 2Py in the plane of (y, 2);
(8) a couple 3Pz in the plane of (z, 2).

The first couple tends to turn the body from the axis of y to
that of z, and the second from the axis of z to that of 2. We
may therefore take Oz as the azis of the first couple according
to the definition in Art. 41. - For the second couple, however,
we must either take Oy’ as the axis, or consider 1t as a couple
turning from 2z to «, of which the moment is — 2Pz and the
axis Oy. Adopting the latter method, we may replace the
tvirlo couples by a single couple of which the moment is @,
where

G'=(3Pz)" + (SFy)’,
and the axis is inclined to the axis of z at an angle a given
by the equations
—3Pz
T

cosa,=§1—3‘y—' sihag =
i G’
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70. To find the conditions of equilibrium of a system of
parallel forces acting on a rigid body.

A system of parallel forces can always be reduced to a
single force and a couple. Since these cannot balance, and
neither of them singly can maintain equilibrium, they must
both vanish. That is,

SP=0, and G=0;
the latter requires that
SPr=0, and ZPy=0.

Hence a system of parallel forces acting on a rigid body will
be in equilibrium if the sum of the forces vanishes, and also the
sum of the moments vanishes with respect to two planes at right
angles to each other and parallel to the forces.

Conversely, if the forces are in equilibrium the sum of
the forces will vanish, and also the sum of the moments with
respect to any two planes at right angles to each other and
parallel to the forces.

71. When S P=0, the forces reduce to a couple of which
the moment is @ When ZPis not = 0, the forces can always
be reduced to a single force ; this has already appeared in
Art. 66, and may also be shewn thus. The forces will reduce
to a resultant R acting at the point (z, 3'), parallel to the
original forces, provided a force — I acting at this point will
with the given forces maintain equilibrium. The necessary
and sufficient conditions for this are, by Art. 70,

SP-R=0, SPr—Ra'=0, ZPy—Ry =0.

_ , XPx , 3Py
Hence R=3P, #=355 ¥Y=3p-

These results agree with those of Art. 66.

72. To find the resultants of any number of forces acting
on a rigid body vn any directions.

Let the forces be referred to three rectangular axes Oz, Oy,
Oz; and suppose P, P,, P,,... the forces; let x,, y,, 2, be the
co-ordinates of the point of application of P,; let «,, y,, 2,
be the co-ordinates of the point of application of I’,; and
S0 on.
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Let A4, be the point of application of P,; resolve P, into

compopents X, Y, Z, parallel to the co-ordinate axes. Let

x o
By
Za—"x
o, TM =
| %
o,

the direction of Z, meet the plane of (z, y) at M, and draw
M N, perpendicular to Oz. Apply at NV, and also at O two
forces each equal and parallel to Z, and in opposite directions.
Hence Z, at A, or M, is equivalent to Z at O, and two
couples, the former having its moment = Z,. N, M, and which
. may be supposed to act in the plane of (y, 2), and the latter
having its moment = Z, . ON, and acting in the plane of (2, z).

We shall consider those couples as positive which tend to
turn the body round the axis of « from y to 2, also those
which tend to turn the body round the axis of y from z to «,
and those which tend to turn the body round the axis of 2
from z to y.

Hence Z, isreplaced by Z at O, a couple Zy, in the plane
of (y, z), and a couple — Z z, in the plane of (2, ). Similarly
X, may be replaced by X: at O, a couple Xz, in the plane
of (2, z), and a couple — Xy, in the plane of (z, ). And Y,
may be replaced by Y, at O, a couple Y&, in the plane
of (2, y), and a couple — Yz in the plane of (3, 2). Therefore
the force P, may be replace(i by X,, Y,, Z, acting at O, and
the couples of which the moments are, ,by Art. 47,

Zy, — Yz, in the plane of (3, 2),
X2, — Z® eeevenrinnnnannns (2, ),
Yo, — Xy, covvereenirencnens (=, o),
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By a similar resolution of all the forces we shall have them
replaced by the forces

X, %Y, 37,
acting at O along the axes, and the couples
3 (Zy — Yz) = L suppose, in the plane of (y, 2),
S(Xe—Za)=KM ......... s vecevensarensenene (2, =),

Let B be the resultant of the forces which act at 0; a, b, ¢
the angles its direction makes with the axes; then, by Art. 24,

B=@EX)r+ G+ (32),
cosa=z—X cosb—g oosc—z—Z
.R ’ - .R ’ = .R .
Let G be the moment of the couple which is the resultant
of the three couples L, M, IN; A, u, v the angles its axis
makes with the co-ordinate axes; then, by Art. 49,

@=L+ M+ N,
L M ~
COBA= -, COS,U-—-G, COSV—a.

The convention adopted in the present Article for distin-
guishing the signs of couples agrees with that in Art. 41 when
the axes of #, y, and z are drawn as in the present figure, but
the conventions will not necessarily coincide if the figure be
modified ; for example, if the axes of y and z be retained as in
the figure, but the positive part of the axis of z directed to the
left instead of the right, they will not coincide. The conven-
tion of the present Article is that which we shall hereafter
always retain.

73. To find the conditions of equilibrium of any number of
JSorces acting on a rigid body in any directions.

A system of forces acting on a rigid body can always
be reduced to a single force and a couple. Since these can-
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not balance each other and cannot separately maintain equi-
librium they must both vanish., Hence R=0, and G'=0;

therefore CEX)P+EY)'+(E2)=0,
and L*+ M+ N*=0,
These lead to the six conditions
] 3X=0, 3Y=0, 3Z=0,
2 (Zy—- Y2)=0, X (Xe—Zx)=0, % (Yz—Xy)=0.

74. A verbal enunciation may be given of the last three
equations by means of a new definition. For the sake of
convenience, we repeat two definitions .already given in
Arts, 54 and 67.

Moment of a force with respect to a poinf. The moment
of a force with respect to a point is the product of the force
into the perpendicular from the point on the direction of the
force.

Moment of a force with respect to a plane. The moment
of a force with respect to a plane is the product of the force
into the distance of its point of application from the plane.

Moment of a force with respect to a straight line. . Resolve
the force into two components respectively parallel and per-
pendicular to the straight line ; the product of the component
perpendicular to the line into the shortest distance between
the straight line and the direction of this component is called
the moment of the force with respect to the straight line.

Hence the moment of a force with respect to a straight line
is equal to the moment of the component of the force perpen-
dicular to the straight line with respect to the point at which
a plane drawn through this component perpendicular to the
straight line meets the straight line. Hence, by Art. 62, the
moment of the force may be found by taking the sum of the
moments of any two forces into which the perpendicular com-
ponent may be resolved. '

If the force is parallel to the given straight line, its moment -
about the straight line is zero. If the force is perpendicular
to the given straight line, its moment about the straight line
is the product of the force into the shortest distance between it
and the given straight line. o ; PR
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75. Suppose we require the moment of the force P, about
the axis of z; we resolve P, into the forces Z, para.]lel to the
axis of z and Q, erpendlcula.r to the axis of 2z, where @, is
itself the resultant of X, and Y,. The moment of @, wWith
respect to the axis of # is equal to the algebraical sum of the
moments of its components X, and Y}; that is, to Yz, — X ..
Hence N in Art. 72 denotes "the sum of the moments of the
Jorces round the axis of 2z, and similar meanings arise for L
and M.

Hence, the forces acting on a rigid body will be in equili-
brium if the sums of the resolved parts of the forces parallel to
three straight lines at right angles to each other vanish, and
the sums of the moments of the forces with respect to these
straight lines also vanish.

Conversely, if the forces are in equilibrium, the sum of
the resolved parts of the forces in any direction will vanish,
and also the sum of the moments of the forces with respect to
any straight line.

76. In order to interpret the meaning of G we observe
that if we keep to the same origin, the moment of this couple
and the direction of its axis must be independent of the
directions of the co-ordinate axes. For R, being the resultant
of all the given forces, supposing them applied at a point, is of
course independent of the directions of the axes. If by a new
choice of axes we obtain G as the resultant couple, then R
and G must be equivalent to B and &, and therefore
R, G, — R, — (" must form a system in equlhbnum. But
this is impossible unless G = @ and the axes of @ and G' are
coincident or parallel.

Since the direction of the co-ordinate axes is arbitrary, sup-
pose the axis of = to coincide with the axis of G; then M =
N=0, and L and G are identical.

~ Hence G 1s equal to the sum of the moments of the given
Jforces with respect to the straight line which is the axis of G.

77. Suppose a force P acting at the point (z, y, 2), and let
X, Y, Z be its components parallel to the axes. Then, by
.Art. 72 P at the point (z, y, 2) is equivalent to P at the
origin, togetherWlth the couples Zy — Yz, Xz — Zz, Yo — Xy.
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round the axes of @, y, z respectively. Let H be the resultant
couple, r the distance of the point (z, y, 2) from the origin,
and a the angle between r and P; then

H*=(Zy— Y2)* + (X2 — Zx)* + (Y~ Xy)'
=@+y'+2) (X+ T+ 2%) - (X +yY +22)
- 2 X yY 22\

. —HP_RP’(FP"'FP"';P)

- =r"P(1-cos'a),

therefore H = rPsin a.

Thus, as we might have anticipated, H is the moment of the
couple formed by P at the point (z, y, 2), and a force at the
origin equal to P and acting in a parallel and opposite direc-
tion. Hence & is the couple formed by compounding the
couples similar to H arising from all the forces of the system.

78. As an example of Art. 73 we may take the case in
which all the forces are parallel. Let a, B, ¥ be the angles
which the direction of the forces P,, P,,...... makes with the
axes. Then the equations of equilibrium reduce to

SP=0,
3P (ycosy—zcosB) =0,
S P(zcosa—xcosy) =0,
2P (xcosB—ycosa)=0.
The last three equations may be written thus:
- 2Pr 3Py 3Pz

cosa cosB cosy’

Hence we can deduce the conditions that a system of parallel
forces may maintain a body in equilibrium, however they may
be turned about their points of application. For the preceding
equations must then hold whatever «, 8, y may be. Thus we
must have -

SP=0, 3Pz=0, 3Py=0, ZPz=0.
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79. In"Art. 72 we have reduced the forces acting on a body
to a force R and a couple G. If G vanish there remains a
single force ; and if R vanish, a single couple. If neither B
nor (¢ vanish the forces may reduce to a single force ; we pro-
ceed to shew when this is possible.

To find the condition among the forces that they may have @
single resultant.

Any system of forces can be reduced to a single force B
and a couple &; if then the forces can be reduced to a single
resultant &S, it follows that G, R, and — S are in equilibrium.
If B and — S do not form a couple, they can be reduced to a
couple G' and a force R'; therefore R must balance the
couple compounded of G and G'. This is impossible by
Art, 40. Hence R and — 8 must form a couple, and this
couple must have its plane coincident with that of @, or
parallel to that of (7, in order that it may balance @. There-
fore that the forces may have a single resultant, the direction
of B must be parallel to the plane of G, or coincident with
it ; that is, must be at right angles to the axis of G. Hence,
using the notation of Art. 72,

cos @ ¢os A + cos b cos 4 cos ccosv =0,
therefore IZX4+M3Y+N3Z=0,

80. Conversely, if L3X+M3Y + N3%Z=0,and 3X, 37,
3.Z do not all vanish, the forces can be reduced to a single force.
For the plane of the couple G' may be made to contain the
force R, and the couple may be supposed to have each of its

forces =R and its arm consequently = the couple may

35‘5
then be turned round in its own plane until the force at one
end of its arm balances the resultant force B, and there re-

mains R at the other end of the arm.

81. When the forces are reducible to a single resultant, to
find the equations to the straight line in which it acts. .

Let L, M, N denote the moments of the forces round the
co-ordinate axes; L', M', N’ the moments of the forces round
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axes parallel to the co-ordinate axes drawn through the point
(@, ¥, /). Then L' is found by writing y, —3' for y,, y,— ¥
for y,...... z,— 2 for 2, 2,—2 for 2,...... in the expression

2 (Zy— Yz). Therefore
L=3{Z{y—y)—-Y(:-2)}
=L—-y3Z+ 7ZY.

M'=3(X(z—5) - Z(o—)}
=M-23X+a'327,

N'=Z2{Y(z—2)—X (y—y)}
= N—oSY+y3X

If a:'; /, 2’ can be so taken as to make L', M’, and N
vanish, the forces reduce to a single resultant passing through
the point (2, , 2'). The three equations

Lo ySZ4dSY=0 o, @,
M—23X+a'2Z=0....cccooviunnn(2),
N-aZY+y2X=0..cc.ceurererunn.. (8),

are equivalent to two independent equations; for if we elimi-
nate 2z’ from (1) and (2), we have

ISX 4+ M3V +SZ(@SY—y3X)=0.
But LZX+ M3Y+ N3Z=0, by Art. 79,
therefore N-oZY+y2X=0.

Thus (3) is & necessary consequence of (1) and (2). Hence
(1) and (2) will determine a straight line at every point of
which the resultant couple vanishes; that is, the straight
line in which the single resultant force acts..

82. By the following method we may determine at once
the condition for the existence of a single resultant and the
equations to its direction.

Suppose that the forces can be reduced to a single force
acting at the point (2, ', 2/). Let the single force be resolved
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into components X', Y, Z' parallel to the co-ordinate axes;
then if we add to the given system — X', — Y’, and — Z/,
acting at the point (2, ¥, £') parallel to the axes respectively,
there will be equilibrium. Hence, by Art. 73,

5X~-X'=0, 3¥—-Y'=0, 3Z-2'=0......... ),
L—'Z’y"" YI 1=0
M—X2 427 =0\ oo @).

N-Yad+Xy=0]
Equations (1) determine X', Y’, Z'. Tt might at first appear
that equations (2) would determine &, ¥/, z’; but if we pro-
ceed to solve them, we find that they cannot be simultane-
ously true unless
: LEX+ MIY+N2Z=0;

and if this condition be satisfied, and 2X, 2 Y, =7 do not all
vanish, then any one of the equations may be derived from
the other two, so that there are only two independent equations.
Hence that the forces may have a single resultant the above
condition must be satisfied, and then any two of equations (2)
will determine the locus of points at which this single result-
ant may be supposed to act. From the form of equations (2)
it 1s obvious that this locus is a straight line, and that its
direction cosines are proportional to X', Y’, Z', as might
have been anticipated. :

In order that the force which replaces the system may pass
through the origin, we must have '

L=O, M:O, N=0.

83. Although a system of forces cannot always be reduced
to a single resultant, it can always be reduced to two forces.
For we have shewn that the system may be replaced by a
force R at the origin, and a couple G lying in a plane through
the origin ; one of the forces of G may be supposed to act at
the origin, and may be compounded with £ so that this
resultant and the other force of GF are equivalent to the whole
system. Since the origin is arbitrary, we see that when a
system of forces is mot reducible to a single force it can be
reduced to two forces, one of which can be made to pass

through any assigned point.
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84. When three forces maintain a body in equilibrium,
they must lie in the same plane.

. Draw any straight line intersecting the directions of two
of the forces and not parallel to the third force, and take this
straight line for the axis of 2. Then the first two forces have
no moment round the axis of z; therefore the equation L=0
requires that the third force should have no moment round
the axis of z; that is, the direction of the third force must
pass through the axis of #. Since then any straight line,
which meets the directions of two of the forces, and is not
parallel to the direction of the third, meets that direction, the
three forces must lie in one plane.

Combining this proposition with that in Art. 58, we see
that if three forces keep a body in equilibrium, they must all
lie in the same plane and must meet at a point or be parallel.

85. If the axes of co-ordinates be oblique, suppose I, m, n
to denote the sines of the angles between the axes of y and 2,
z and z, # and g, respectively; then we may shew, as in
Art. 72, that any system of forces can be reduced to 2X,X Y,
2.Z, acting at the origin along the axes of =, y, z respectively,
and three couples in the three co-ordinate planes, having their
moments equal to IL, mM, nN respectively, where, as before,

L=3(Zy—~Y:), M=3(Xz—2Zz), N=3 (Yz— Xy).
Also for equilibrium, we must have, as before, '
3X=0, 2Y=0, %2Z=0;
L=0, M=0, N=0.

That the forces may admit of a single resultant we must have,
as before, '

LEX+ MY+ N2Z=0,
and 32X, 3Y, 3Z not all vanishing.

The following propositions are connected with the subject
of the present Chapter.
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I TForces act at the angular points of a tetrahedron in
directions respectively perpendicular to the opposite faces and

proportional to the areas of the faces in magnitude: shew that.

the forces will be in equilibrium.

A Let ABCD represent the tetrahe-
dron.

(1) Resolve the forces parallel

to AB. Let p denote the perpen-
dicular from A on the face BCD;
then the resolved part of the force

B / Catdis AP;B x area of BCD, that is,
3 volume of tetrahedron
D AB °

We obtain the same expression for the resolved part of the
force at B. The forces at C and D have no resolved part
parallel to AB. Thus the forces resolved parallel to 4B
vanish.

. (2) Take moments round AB. Let ¢ denote the perpen-
dicular from C on the straight line AB; @ the angle between
the planes BAD and BAC. Then the moment of the force
at Cis g cos 8. area of ABD, that is,

gABcos0. area of ABD o 2 cos f.area of ABC.area of ABD
4B r 4B .

We obtain the same expression for the moment of the
force at . Thus the moments round 4B vanish. )

Since these results hold for any edge of the tetrahedron
the forces must be in equilibrium.

II. Four forces act on a tetrahedron at right angles to
the faces and proportional to their areas, the points of
application of the forces being the centres of the circles
circumscribing the faces: shew that if the forces all act
inwards or all act outwards they will be in equilibrium.

In this case the forces all pass through a point, namely
the centre of the sphere described round the tetrahedron.

|
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Hence we only require the first part of the investigation in.
the preceding proposition to establish that the forces are in
equilibrium.

Or we may resolve the forces at right angles to a face
instead of parallel to an edge, and thus obtain the result.
For resolve the forces at right angles to the face BCD;
we have one force represented by the area BCD, and the
resolved parts of the other forces are represented by the pro-
jections of the respective areas BAC, CAD, DAB on BCD.
And the sum of these projections is equal to BCD. Thus
the forces resolved at right angles to BCD vanish.

Similarly the forces resolved at right angles to any other
face vanish. :

III. - By a process similar to that used in establishing the
Proposition L at the end of Chapter Iv. we can extend the
preceding Proposition to the case of any polyhedron bounded
by triangular faces. Thus we obtain the following result:
Forces act on a polyhedron bounded by triangular faces at
right angles to the faces and proportional to their areas, the
points of application of the forces being the centres of the
circles circumscribing the faces; shew that if the forces all act
inwards or all act outwards they will be in equilibrium.

IV. 1If four forces acting on a rigid body are in equi-
librium, and a tetrahedron be constructed by drawing planes
at right angles to the directions of the forces, the forces will
be respectively proportional to the areas of the faces.

This is the converse of 11. and may be readily demon-
strated : for by resolving the forces in any direction, and
projecting the areas on a plane at right angles to that direc-
tion, we find that the four forces are connected by the same
linear relation as the four areas.

We infer from this result that the areas in the present
theorem must be respectively proportional to the volumes
considered in the Proposition X. at the end of Chapter 11:
thus we indirectly arrive at a geometrical truth,

T. 8. 6
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V. Parallel forces P, @, B, 8, T act at the corners of a
regular pentagon: find under what conditions their centre
will coincide with that of the pentagon.

Let ¢ stand for 2 cos 36°; then, by Art. 66, the following
condition is necessary and sufficient in order that the centre
of the parallel forces should fall on the straight line through
the centre of the pentagon and the point at which P acts:

CQ+RB=cT+S..cceeuiiiuinunnnnnn. ).

Similarly, the following condition is necessary and suf-
ficient in order that the centre of the parallel forces should
fall on the straight line through the centre of the pentagon
and the point at which Q acts:

R4+ 8=cP+T.......ccccvuvuunenn.. (2). .

Hence (1) and (2) are the necessary and sufficient condi-
tions in order that the centre of the parallel forces may
. coincide with that of the pentagon.

We may observe that in the same manner as (1) and (2)
were obtained we have the following as the necessary and
sufficient condition that the centre of the parallel forces
should fall on the straight line through the centre of the
pentagon and the point at which R acts:

SB+T=cQ+P..u.cuucenninniannennnn. (3).
If we eliminate R between (1) and (2) we obtain
FQ+cP=C-1)T+ (c+1)8.cccuunnn.nen. (4).

In order that (3) and (4) may agree we must have
¢—¢c—1=0. Thus we see that from statical considera-
tions we can obtain an equation for determining the value
of cos 36",
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EXAMPLES.

1, Four parallel forces act at the angles of a plane quad-
rilateral and are inversely proportional to the segments of its
diagonals nearest to them ; shew that the point of application
of their resultant lies at the intersection of the diagonals.

2. Parallel forces act at the angles 4, B, Cofa triangle
and are respectively proportional to a, b, ¢; shew that their
resultant acts at the centre of the inscribed circle.

3. A cone whose vertical angle is 30°, and whose weight
is W, is placed with its vertex on a smooth horizontal plane;
shew that it may be kept with its slant side in a vertical
position by a couple whose arm is equal to the length of the

slant side of the cone, and each force

16 °

4. Six equal forces act along the edges of a cube which
do not meet a given diagonal, taken.in order; find their re-
sultant.

Result. A couple, the moment of which is 2Pa /3, where
P denotes each force and a the edge of the cube.

5. A cube is acted on by four forces; one force is in a
diagonal, and the others in edges no two of which are in the
same plane and which do not meet the diagonal; find the
condition that the forces may have a single resultant.

Result. (XY+ YZ+ ZX)y3+P(X+ Y+ Z)=0; where
%, Y, Z denote the forces along the edges, and P the force
along the diagonal. A

6. If a triangle is suspended from a fixed point by strings
attached to the angles, the tension of each string is propor-
tional to its length. _

7. A uniform heavy triangle is sup{lorted in a horizontal
position by three parallel strings attached to the three sides
respectively ; shew that there 1s an infinite number of ways

6—2
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in which the strings may be relatively disposed so that their
tensions may be equal, but that the situation of one being
given, that of each of the other two is determinate.

8. A sphere of given weight rests on three planes whose
equations are

wcosa+ycosB+zcosy=0,
z cosa,+y cos B+ 2z cosy, =0,
zcosa,+ycosB,+2zcosy,=0,.
the axis of z being vertical ; find the pressure on each plane.

9. A heavy triangle ABC is suspended from a point by
three strings, mutually at right angles, attached to the angular
points of the triangle ; if § be the inclination of the triangle
to the horizon in its position of equilibrium, then

3
~(1 +sec.4sec Bsec C)°

. 10. An equilateral triangle without weight has three un-
equal particles placed at its angular points; the system is
suspended from a fixed point by three equal strings at right
angles to each other fastened to the corners of the triangle;
find the inclination of the plane of the triangle to the horizox.

. . W+ W+ W,
Result. The cosine of the angle is 4[3(1’1}."" Wit W)’

where W,, W,, W, represent the weights of the particles.

cos 0=

11. Four smooth equal spheres are placed in a hemisphe-
rical bowl. The centres of three of them are in the same
horizontal plane, and that of the other is above it. If the
radius of each sphere be one-third that of the bowl, shew
that the mutual pressures of the spheres are all equal; and
find the pressure of each of the lower spheres on the bowl.

Results. Let W be the weight of each of the spheres;
then each of the mutual pressures between the spheres is

:%; and %ia the pressure of each of the lower spheres on

‘the bowl.
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12. Three equal spheres hang in contact from a fixed
point by three equal strings; find the heaviest sphere of given
radius that may be placed upon them without causing them

to separate.

Result. Let W be the weight of each of the equal spheres,
0 the angle which each string makes with the vertical, ¢ the
angle which the line joining the centre of one of the three
equal spheres with the centre of the upper sphere makes with
the vertical ; then the weight of the upper sphere must not

od 3W tan @ .
exceee tan ¢—tand’

13. ABCD is a tetrahedron in which the edges 4B, AC,
AD are at right angles to each other; forces are represented
in magnitude and direction by AB, AC, AD, BC, CD, DB;
determine their resultant. ’

14. Three equal hollow spheres rest symmetrically inside
a smooth paraboloid of revolution, whose axis is vertical ; a
solid sphere of equal radius is placed upon them: shew that
the equilibrium will be destroyed if the radius of the spheres

i8 less than , Where [ is the latus rectum ; the weight of

L
2 4/6
the hollow spheres being neglected in comparison with that
of the solid one.
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CHAPTER VI
EQUILIBRIUM OF A CONSTRAINED BODY.

86. 7o find the conditions of equilibrium of forces acting
on a rigid body when one point 13 fized.

Let the fixed point be taken as the origin of co-ordinates.
The action of the forces on the bod’y will produce a pressure
on the fixed point; let X', Y’, Z~ be the resolved parts of
this pressure parallel to the axes. Then the fixed point will
exert forces — X', — Y', —Z’ against the body; and if we
take these forces in connexion with the given forces, we may
suppose the body to be free, and the equations of equilibrium

are
3X-X'=0, 2Y-Y'=0, 3Z2-2'=0,
L=0, M=0, N=0.

The first three equations give the resolved parts of the
pressure on the fixed point; and the last three are the only
conditions to be satisfied by the given forces. Thus the forces
will be in equilibrium if the sums of the moments of the forces
with respect to three straight lines at right angles to each other,
and passing through the fized point, vanish. .

Conversely, if the forces are in equilibrium the sum of the
moments of the forces with respect to any straight line
through the fixed point will vanish.

From the equations X'=3X, Y'=3Y, Z' =37 it follows
that the pressure on the fixed point is equal to the resultant
of all the given forces of the system moved parallel to them-
selves up to the fixed point.

If all the forces are parallel, we may take the axis of &
passing through the fixed point parallel to the forces. Then
“all the forces 1ncluded in 3X vanish, and so do all the forces
included in X Y'; thus N vanishes, M reduces to — 3 Zx, and
L reduces to 2Zy. Hence X’ and Y’ vanish and the equa-
tions of equilibrium reduce to

3Z-7'=0, SZ=0, 3Zz=0;
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the first determines the pressure on the fixed point, and the
other two are conditions which must be satisfied by the given
forces.

If all the forces act in one plane passing through the fixed
point, and we take this plane for that of (z, ), all the forces
included in 3Z vanish ; also the ordinate parallel to the axis
of z of the point of application of each force is zero. Thus
L and M vanish ; also Z’ vanishes, and the equations of equi-
librium reduce to

3X-X'=0, 3Y-Y'=0, 3 (Yx—Xy)=0;

the first two determine the pressure on the fixed point, and the
third is the only condition which the forces must satisfy.
Thus the forces will be in equilibrium if the sum of the mo-
ments of the forces with respect to the straight line perpendicular
to their plane, and passing through the fized point vanishes ;
and conversely, if the forces are in equilibrium the sum of the
moments of the forces with respect to this straight line will
vanish.

87. To find the condition of equilibrium of a body which
has two points in it fized. :

Let the axis of z pass through the two fixed points; and
let the distances of the points from the origin be 2’ and 2.
Also let X', Y, Z' be the resolved parts of the pressures
on one point, and X", ¥”, Z" those on the other point.

Then, as in Art. 86, the equations of equilibrium will be
3 X-X'-X'=0, 3Y-Y-Y"=0, 2Z2-2'-2"=0,

L+YZ+Y"2"=0, M-X'2'—X"2"=0, N=0.

The first, second, fourth, and fifth of these equations will
determine X', X", Y', Y"; the third equation gives Z'+2",
shewing that the pressures on the fixed points in the direction
of the line joining them are indeterminate, being connected
by one equation only. The last is the only condition of
equilibrium, namely N =0. Thus the forces will be in equi-
librium if the sum of the moments of the forces with respect to
the straight line passing through the fized points vanishes; and
conversely, if the forces are in equilibrium the sum of the
moments of the forces with respect to this straight line will
vanish,
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88. The indeterminateness which occurs as to the values
of Z' and Z" might have been expected ; for if two forces,
—Z' and —Z", act on a rigid body +n the same straight
line, their effect will be the same at whatever point in their
line of action we suppose them applted, and consequently
they may be supposed both to act at the same point, or one
of them to be increased provided the other be equally di-
minished. If it be objected that in any experimental case
there really would be some definite pressure at each fixed
point, we must reply, that no body on which we can ex-
periment fulfils the condition-of perfect rigidity, on which
our conclusions depend. See Poisson, Art. 270 ; and Poinsot,
Arts: 128...132.

The case which we have been considering is that of a body
which is capable of turning round a fized azis; for an axis
will be fixed if two of its points are fixed.

89. If the body, instead of having two fixed points, can
turn round an axis and also slide along <t, then in addition to
the condition N=0, we must have 2= 0, supposing the axis
of z directed along the straight line on which the body can
turn and slide. For the axis will not be able, as in the last
case, to furnish any forces —Z’ and —Z" to counteract 27, and
therefore 22 must = 0.

90. To find the conditions of equilibrium of a 'ngzd body
resting on & smooth plane.

Let this plane be the plane of (z, y); and let , & be the
co-ordinates of one of the points of contact, B’ the pressure
which the body exerts against the plane at that point. Then
the force — R, and similar forces for the other points of
contact, taken in connexion with the given forces, ought to
satisfy the equations of equilibrium ; hence

3X=0, SY=0, 3Z—R —~R'~...=0,
L-Ry-R'Y'—..=0, M+R%+R'a +..=0, N=0.

If only one point be in contact with the pla.ne then the
third equation gives the pressure, and we have five equations
of condition,

3X=0, 2Y=0, L- y’EZ 0, M+2'2Z=0, N=0,
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If two points be in contact, then the equations
,yl_l_Rlyu = L, le'r +Rllwll = —M,
. L'+ My" ,_ L+ My
gve  E= ooy Eeyi—ay
and the equations of condition are

SX=0,3Y=032-L& =2 +M"~y)_, .4 N-o.
gy —ay

If three points are in contact, then the pressures are
determined from the equations

R +R'+R"=32,
Rly’ + -R'Iyll + RII " = L,
e’ + R'a" + Rz =— M,
and the conditions of equilibrium are
2X=0, 2Y=0, N=0.

If more than three points are in contact, then the pressures
are indeterminate, since they are connected by only three
equations ; but the conditions of equilibrium are still

2X=0, 2Y=0, N=0.

91. The equations at the commencement of the preceding
Article shew that if a body rests in equilibrium against a
plane, the forces which press it against the plane must reduce
to a single force acting in a direction perpendicular to the
Plane, for the condition

LEZX+ M3Y+ N3Z=0

is satisfied, since 2 X, 3 Y, and N vanish. Hence the forces
reduce to a single force ; and since 3X and 3Y vanish, this
force must be perpendicular to the fixed plane.

Also, this single force must counterbalance the forces
— R, — R’..., which are all parallel and all act in the same
direction. Hence, from considering the construction given
in Art. 66 for determining the centre of a system of
parallel forces, it follows that the point where this resultant
cuts the plane must be within a polygon, formed by so joining
the points of contact as to include them all and to have

no re-entering angle. .



MISCELLANEOUS EXAMPLES.

1. The lid ABCD of a cubical box, moveable about
hinges at A and B, is held at a given angle to the horizon
by a horizontal string connecting C with a point vertically
over A: find the pressure on each hinge.

2. Two equal forces act on a cube whose centre is fixed,
along diagonals which do not meet of two adjacent faces:
find the couple which will keep the cube at rest.

Result. Let P denote each force, a the edge of the cube;
Pay3 Pa
G — OF 5 ac-

cording to the directions of the two given forces.

the moment of the required couple is either

3. Three equal heavy rods in the position of the three
edges of an inverted triangular pyramid are in equilibrium
under the following circumstances: their upper extremities
are connected by strings of equal lengths, and their lower
extremities are attached to a hinge about which the rods
may move freely in all directions. Find the tension of the
strings.

4. A given number of uniform heavy rods, all of the
same weight, have their extremities jointed together at a
common hinge, about which they can turn freely; and being
introduced through a circular hole in a horizontal plane
with their hinge end downwards, are spread out symmetri-
cally along the circumference of the hole like the ribs of
a conical basket. If a heavy sphere be now placed in the
interior of the system of rods, so as to be supported by them,
determine the position of rest.

5. A cylinder with its base resting against a smooth
vertical plane is held up by a string fastened to it at a point
of its curved surface whose distance from the vertical plane
is h. Shew that k& must be greater than b — 2a tan 6 and less
than b, where 2b is the altitude of the cylinder, a the radius -
of thga}.)a.se, and 6 the angle which the string makes with the
verti : 4
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6. A cylinder rests with its base on a smooth inclined
plane; a string attached to its highest point, passing over
a pully at the top of the inclined plane, hangs vertically
and supports a weight ; the portion of the string between the
cylinder and the pully is horizontal. Determine the con- .
ditions of equilibrium.

Results. Let W be the weight of the cylinder, W' the
weight attached to the string, « the inclination of the plane
to the horizon; then W' = Wtana, and tan ¢ must not ex-
ceed the ratio of the diameter of the base of the cylinder to
the height of the cylinder.

7. A cone of given weight W is placed with its base
on an inclined plane, and supported by a weight W’ which
hangs by a string fastened to the vertex of the cone and

assing over a pully in the inclined plane at the same
Eeight as the vertex. Determine the conditions of equilibrium.

Results. Let a be the inclination of the plane to the
horizon, @ the semi-vertical angle of the cone; then

W’ = Wtana, and tan @ must not be less than g sin 2z,

8. A smooth hemispherical shell whose base is closed
includes two equal spheres whose radii are one third of that
of the shell. The shell is fixed with its base vertical ; find
the mutual pressures at all the points of contact.

Results. Let R, be the pressure between the upper sphere
and the shell, R, that between the two spheres, B, that be-
tween the lower sphere and the base of the shell, R, that
between the lower sphere and the curved part of the shell ;
then
4w

F%~

w 2w 3w
1=;7§’ 'Ra R,=

- 4/3 ’ '3 v3 ’

9. A rectangular table is supported in a horizontal posi-
tion by four legs at its four angles: a given weight W being
placed upon a given point of it, shew that the pressure on
each leg 18 indeterminate, and find the greatest and least value
it can have for a given position of the weight,

R R,
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CHAPTER VIL

GENERAL THEOREMS ON A SYSTEM OF FORCES.

92. IN Art. 72 it is proved that the forces acting on a
rigid body may be reduced to a force B and a couple G, and
that =L+ M*+ N°, where L, M, N are the moments of
the forces round three rectangular axes arbitrarily chosen.
It is obvious that neither L, M, nor N can be greater than G ;
hence, for a given origin, the resultant moment G 1s greater
than the moment of the forces about any other axts. For this
reason G is called the principal moment of the forces.

From the equations in Art. 72, which determine the direc-
tion of the axis of @, it follows that G cos ¢ is the moment
of the forces about an axis which passes through the given
origin, and makes an angle ¢ with the axis of principal
moment,

93. The value of B in Art. 72 is independent of the
position of the origin of co-ordinates; R is in fact the re-
sultant of the given forces, supposing each of them moved
parallel to itself until they are all brought to act at the same
point. The value of G, however, depends on the origin we
assume., If we take a point whose co-ordinates are &, ¥/, 2/,
and denote by L', M’, N’ the moments of the forces round
straight lines through this point parallel to the co-ordinate
axes, and by G the principa;) moment of the forces with respect
to this point, we have, by Art. 81,

r =_L—-y'2Z+z'EY;
M'=M——z'2X+¢’2Z,

N’ =N_x'zy+y:zx’ .................. (1)
@F=L"+M"+N",
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We proceed to apply these equations to find the least
value of @',

To find the locus of the origins which give the least principal
zznents, the magnitude of those moments, and the position of
r azes.

Multiply the first of equations (1) by %X, the second by
XY, and the third by 2Z and add ; thus

LEZX+M3Y+NZ2Z=L3X+ MY +N3Z... (2)
Also ,
RG" = (EX) + (SY)'+ CZ}L + M* + N7}
=(NSY-M3Z) +(L'3Z- N'SX)*
+ (MEX-L3Y)y+ (LZX+ MY+ N3Z)... (3).

Of these four terms the last is constant for all values of
z, y, Z by (2); hence we obtain the least value of @' by
making the three preceding terms vanish, which gives

L M N
27 = i_.—Y-: 22 .................. (4!) )
that is,
L-y37+s5Y M-s3X+d37_N-a3V+y3X
=X = SY SZ el

Hence the required locus is a straight line.

From (4) it appears that L', M’ N' are proportional to
32X, 3Y, 37 respectively, which shews that the axis of the
principal moment at any point on the straight line (5) is
parallel to the direction of the resultant B. By (3) the value
of the least principal moment is

L3X+ M3Y+N3Z
R Ll
Each of the fractions in (5) is, by a known theorem,
equal to .
L3X+ MY+ N3Z
EX)>+@EY)+E2)"°
EEX + M3Y 4+ N3Z

that,is,. to Vo .
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The equations (5) may by suitable transformations be
reduced to the ordinary symmetrical equations to a straight
line. We have

L—y3Z+73Y LEX+MIY+N3Z,
X T & ’

therefore

L{EY)+CE2)} +(2Y-y3S2)R’=(M3Y+N2Z)3X;
therefore
(FR—M2ZX+L3Y)3Y=(yR*—L3Z+ N3X)3Z;
therefore
1 ¢, LE3Z-N3ZX 1/, M3X-L3Y

sy(V-"% ) =sz(f-—F% ).
Hence we conclude that the equations (5) may be written
1 ( , NZY—MEZ) 1 ( , LEZ—NEX)

sx\*77 )Ty Fm
_ 17, MEX-’-LEY).
“EZ(Z B )

from which we see that the straight line determined by (5) is
parallel to the direction of B. Hence this straight line has
the following properties: at every point of it the value of the
principal moment is the same, and s less than it 18 for any
point not in the line ; also for every point in the line the position
%" the axis of principal moment is the same, being the line stself.
This line is called the central axus.

‘We have supposed in the investigation that R is not zero.
If B be zero we have for every origin

L'=L M=M, N'=N,
G*=L"+ M*+ N2, , !

94. The equation (2) of Art. 93 may be written

X ..SY 37 33X, .3Y .37
LS+ MG+ Ny =L+ M5 + N
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This shews that if we resolve L/, M, N' along a straight
line parallel to the direction of B, and add the resolved parts,
we obtain the same result whatever origin be chosen. Thus
the resolved part of any principal moment in the direction of B
18 constant. By the resolved part of the principal moment in
the direction of R we mean that part of the moment which has
118 axts in the direction of E, :

95. From equations (1) of Art. 93 it appears that L'= L,
M'=M, and N =N, provided

that is, if the point (', 3/, 2') be on a straight line through
the origin parallel to the direction of B. Since the origin is
arbitrary, we may therefore assert that the principal moment
remains unchanged, when the point to which it relates moves
along any straight line parallel to the direction of R.

96. The equation to the plane through the origin perpendi-
cular to the direction of R is

X+ y3SY+23Z=0...cc0uvuu..n. @. -

If we combine this equation with equations (5) of Art. 93,
we obtain the co-ordinates of the point of intersection of this
plane with the central azis. .

‘We thus find for these co-ordinates _
N3Y-M3Z L3Z-N3X M3IX-L3Y
R? ’ B ? B ’

which we will denote by &, %, I respectively.

If o, 3y, 2 satisfy (1), then N'ZY -M2Z
o (N—odSY+ySX)SY—(M—23X+252) 37

" =NIY-M3Z-2R'=R (h—2).
Similarly L3Z~N3X=R'(k-y),
' MEX-L3Y=R(I-2).
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Therefore from equation (3) of Art. 93
@ =B (b =) + (k=) + (1))
LEX+ MY + N3Z\'
+( R )

Hence @ remains constant for all points in the plane (1)
for which (h—a)*+ (k—y')*+ (! — 2)* is constant; that is,
for all points in (1) which are at a constant distance from the
central azis. From this and Art. 93 it follows, that if a right
cylinder be described round the central axis, the principal
moment has the same value for any pont on the surface of this
cylinder. ' ,

97. Of the two expressions which compose G in equation
(2) of Art. 96, the latter, by Art. 94, is the resolved part of
@ parallel to the direction of B; hence the former part is the
resolved part of G' perpendicular to the direction of B. Call
the former part @, and ¢ the angle which the direction of the
axis of @ makes with that of RB; then sin ¢ =g, , and this
is constant so long as & is, that is, for every point on the
surface of the cylinder in the preceding Article.

98. The propositions already given in this Chapter admit

‘of other modes of demonstration, which we proceed to in-

dicate.

To shew that any system of forces can always be reduced
to a force and a couple, the axis of the latter being parallel
to the direction of the former.

The forces can be always reduced to a force B and a couple
@, and the angle ¢ between the former and the axis of the
latter is given by the equation
L3X+ MY+ N3Z

G.R '

Resolve the couple @ into two others ; one having its axis

cos ¢ =

parallel to the direction of B and its moment equal to G cos ¢,

the other having its axis perpendicular to the direction of R
and its moment equal to @ sin¢. The forces of the latter
couple are therefore in a plane parallel to .R; and by pro-
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perly placing this couple in its own plane, and making each
of its forces equal to R, one of its forces may be made to
balance the force B. We shall then have remsining the
couple @ cos¢ and a force R, the direction of which is
parallel to the:axis of the couple, and which is moved to

‘G'sin ¢

a distance — from its original position. The system is
thus reduced to a force R and a couple LIX+ M§Y+ NZZ,

the axis of the latter being parallel to R, and therefore its
plane perpendicular to .

Since the resultant couple must be independent of the direc-
tion of the axes of co-ordinates we conclude that

LEX+ MXY+ N3Z
R

must be constant whatever be the direction of the axes; and
as Ris constant it follows that LZEX + MY + N3Z must be
constant whatever be the direction of the axes. The expres-
sion also remains the same whatever origin be chosen, as ap-
pears from equation (2) of Art. 93. :

99. When a system of forces 18 reduced to a force and a
couple in a plane perpendicular to the force, the position and
magnitude of the force are always the same.

The magnitude of the force is always the same, for it is the
resultant of the given forces supposing each of them moved
parallel to itself until they are all brought to act at the same
point. We shall now shew that there is a definite straight
line along which the resultant force must act.

Let 2/, 9/, 2’ be the co-ordinates of an origin such that the
axis of the resultant couple coincides with the direction of
the resultant force. Then, with the notation of Art. 93,
we have ’

L _» _N

X %Y =2
for the direction cosines of the axis of the couple are propor-
tional to L', M', and N’, and those of the direction of the

T. 8. 7
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force are proportional to £X, 3Y, 2Z. Hence the locus of
the origins is the straight line determined by equations (5)
of Art. 93,

100. It appears from the last Article that there is only
one position of the resultant force in which it is perpendicular
to the plane of the resultant couple. If we wish to transfer
the resultant force to any other point, we can do it by
introducing two forces, B and — R, at that point ; the latter
with the original force B will form a couple; and if this
couple be compounded with the original couple we have
a new couple, the moment of which is 4/ (K* + E’"), where
K denotes the original moment and p the distance to which
R has been moved. This moment is greater than K; and
hence the straight line in which R acts when perpendicular to
the plane of the resultant couple is the azis of least principal

moment. Itis therefore the central azis.

L3X+M3Y+N3Z
.R LI

K ig shewn in Art. 98 to be =

101. The principal moment will be the same for every
point of the central axis, since when we have reduced the
forces to a single force and a couple in a plane perpendicular
to the force, the force may be supposed to act at any point
in its line of application, and the plane of the couple may be
moved parallel to itself into any new position. See also Art. 95.
Hence if we draw any plane perpendicular to the central axis,
and describe a circle in the plane with radius p, and having its
centre at the intersection of the central axis, then, by the
last Article, the principal moment for any point in this circle
will be 4/ (K*+ B’p®), and the angle ¢ at which the direction
of its axis is inclined to the direction of R is given by the

equation tan ¢ = z}g .

102. When a’system of forces acting on a rigid body ts
reduced to two forces, and these are represented by two straight
lines which do mot meet and are not parallel, the volume of the
tetrahedron of which the two straight lines are opposite edges
18 constant.
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Let the straight lines 4 B and 4B’ represent the two forces
AA’ being a straight line at right :
angles to both. Suppose two paral- -
lel lines Az, A2’ drawn, each at
right angles to 44', and Ay, A'y,
respectively at right angles to Az, °
Az, and also at right angles to
AA'. Let BAz=¢, BAZ =¢),
and let 7'and 7" denote the inten- _ 7
gities of the forces in AB and A'B’
respectively. Then T may be resolved into T'cos ¢ and
Tsin;ﬁ acting at 4 along Az and Ay respectively, and 7"
into 7" cos ¢', T'sin ¢' acting at A" along A’z and A’y
respectively. Let a be the inclination of AB and 4'B), so
that ¢'=¢+a. Now determine ¢ by the equation

Tcosp+T cosd'=0,..ccuuuennnnennn. 1),
that is Tcosp+ T cos (p +a) =0.

Then by (1) the forces T'cos ¢ and 7" cos ¢’ will form a couple
in the plane 244'z' ; and T'sin ¢ and 7" sin ¢’ will have a
single resultant perpendicular to the plane of this couple,
for they cannot form a couple since then the whole system of
forces would reduce to a single couple which is contrary to the
supposition. Let P denote the intensity of this single force
so that

P=Tsing+T'sin'..cccevrnvennnnns (2).

The moment of the couple is 4A4’'x Tcos¢. Hence, by
the latter part of Art. 98, 44'x P x Tcos ¢ is constant
whatever be the position and magnitude of the forces 7' and
T", so long as they are equivalent to a given system of forces.

Now the volume of the tetrahedron of which AB and 4'B’
are opposite edges is 4 AB. A'B' . AA'sina. For the base
may be considered to be the triangle A4'B’, the area of
which is $4.4'. A’'B’; and the height will then be 4B sin a.

But from (1) and (2) we have 7' sina = Pcos ¢. Hence the
volume of the tetrahedron becomes 3}4A’.T. P cos ¢, which
we have just seen to be constant. :

This result is due to Chasles; see Mcbius, Lehrbuch der
Statrk, 1. 122, B

-2

.
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103. When a system of parallel forces acting on' a rigid
body has a single resultant, that resultant always passes
through a fixed point in the body whatever may .be the
position of the!body. When:any system of forces acts on
a rigid body we might investigate the consequences of turn-
ing the body from one position.intg another while the forces
retain their original directjons, or. of turning the:forces in
such a manner as to leave their relative directions unchanged
while the body remains fixed. 'We shall here give some
examples of the general theorems that have been demon-
strated on this subject. The forces are supposed to act at
fixed points in the body. .

104. Let P4 and QA4 be the directions of two forces
lying in one plane, acting at the
points P and @ respectively; 74
the direction of their resultant.
Suppose the forces in PA, Q4 to
be turned round the points P and Q
respectively through the same an-
gle a towards the same direction ;
since P4 and QA will include the
same angle as before, their point
of intersection will move on a circle
passing through P and Q. And
as the magnitudes of the forces are supposed unchanged, the
magnitude of the resultant and the angles which it makes
with the components remain unchanged. Hence if 7" be the
intersection of the resultant and the circle originally, it will
always be so, since the arcs PT and QT are proportional to
the angles PAT and QA T'; the resultant will therefore have
turned through the angle a round the point 7'

The same conclusion holds if instead of supposing the body
to be fixed and the forces to revolve, we suppose each force -
to remain parallel to itself and the body to be turned through
any angle round a perpendicular to the plane of the forces.

The point 7" through which the resultant always passes
may be called the centre of the forces which act at P and Q.
It is evident, in like manner, that if a third force pass
throygh a fixed point S and meet the straight line 74, we

L
- Fl
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may find the centre of the forces at 7"and 8, that is, the centre
of the forces at P, @, and S; and generally we may infer
that every system of forces in one plane which 1s reducible to
a single resultant has a centre; or, in other words, if there
be a system of forces acting in a plane and having a single
resultant, and we know the magnitude of each force, the
angles the directions of the forces make with each other,
and one point in the direction of each, then we can deter-
mine the magnitude of the resultant, the angle its direction
makes with those of the component forces, and one point in
its direction. ' '

105. If a system of forces maintain a body in equilibrium,
and equilibrium also subsist after the body has been turned
through any given angle which is not a multiple of two right
angles, about any axis, then equilibrium will still subsist
when the body is turned about the same axis through any
angle whatever, the forces being supposed to act with the
same intensity and in parallel directions throughout.

. Take the axis of z to coincide with the straight line about
which the body is turned. Since there is equilibrium in its
first position, we have

: 3X=0, S¥Y=0, 3Z=0.recccrererre ,
3(2Zy— Y5)=0, 3(Xz—Za)=0, 3(Yo—Xy)=0...(2).

If equilibrium subsist when the body is. turned through an
angle 6, the equations (1) and (2) must hold when we put
zcos @ —ysin § for , and sin @+ ycosf for y. Hence (2)

become -
sin 03 (Zx) +cos 0% (Zy) —=(Yz)=0...... (3),
3 (Xz)—cos 02 (Zx) +sin 03 (Zy)=0...... 4),
cos 0% (Yo — Xy) —sin 03 (Xz+ Yy) =0...... (5).

By means of (2), equations (3) and (4) become
s8in 03 (Xz) — (1 —cos ) = (Yz) =0,
(L =cos 0) = (X2) +sin 03 (Yz) =0.

As these equations hold for some value of sin @ different from
zero we must have -

3 (X2) =0, and = (¥2)=0....civiverrena(6)s

P
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Then, by (2), we infer

3 (Zx) =0, and 3 (Zy)=0......ccoeu.... (0.
And from (2) and (5),
3 (Yz—Xy)=0, and 2 (Xz + Y) =0 ...... (8).

And when (6), (7), and (8) are true, (3), (4), and (5) are true
for all values of 6.

It appears from the preceding investigation that when
forces act in one plane on a rigid body and maintain equi-
librium, the necessary and sufficient additional condition in
order that equilibrium may subsist after the body has been
turned round an axis perpendicular to the plane while the
forces remain parallel to their original directions, is

3 (Xz+ Yy)=0.

106. A system of forces acts on a rigid body: determine
the conditions which must hold in order that when the system
is resolved parallel to any straight line these resolved parts
may be in equilibrium. -

Take a straight line whose direction cosines are I, m, n.
In order that the resolved parts of the forces parallel to
this straight line may be in equilibrium we must have, by
Art. 78, :

S(IX+mY+nZ2)=0,
(I X+mY+nZ)x Z(IX+mY+nZ)y
) - m
 _2(X+mY+nZ)s
n

Aﬁd as tl;ese- are to be true for all ratios of I, 4n, n we
must have '
2X=0, 2Y=0, 3Z=0,
Xy =0, 3Xz=0, 3Yz=0, 3Yz=0, 32z = 0, 22y =0,
3Xx=3Yy=132.
These are the necessary and sufficient ¢onditions,
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107. We have remarked in Art. 9 that the property
of the divisibility of matter leads us to the supposition that
every body consists of an assemblage of material particles or
molecules which are held together by their mutual attraction.
Now we are totally unacquainted with the nature of these
molecular forces; if, however, we assume the two hypotheses
that the action of any two molecules on each other is the
same, and also that its direction is the straight line joining
them, then we shall be able to deduce the conditions of equi-
librium of a rigid body from those of a single particle. :

To deduce the conditions of equilibrium of a rigid body from
those of a single particle.

Let the body be referred to three rectangular axes; and
let «,, ,, 2, be the co-ordinates of one of its constituent par-
ticles; Xl, Y,, Z, the resolved parts, parallel to the axes, of
the forces which act on this particle exclusive of the mole-
cular forces; P, P, P, ...... the molecular forces acting on
this particle; a,, B,, v,; g, Byy g5 eeeees the angles their re-
spective directions make with the three axes of co-ordinates.
Then, since this particle is held in equilibrium by the above
forces, we have, by Art. 27,

X+ P, cosa,+ P, cosa, +...... =0...... 1),
Y, 4+ PcosB,+ P, cos By +...... =0...... (2),
Z, + P cosey, + P, cosey, +...... =0...... 3).

We shall have a similar system of equations for each particle
in the body ; if there be n particles there will be 3n equations.
These 3n equations will be connected one with another, since
any molecularforce which enters into one system of equations
must enter into a second system ; this is in consequence of
the mutual action of the particles.

There are two conditions which will enable us to de-
duce from these 8n equations siz equations of condition,
independent of the molecular forces. These will be the
equations which the other forces must satisfy, in order that
equilibrium may be maintaix}qd. . ,
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The first condition is this, that the molecular actions are
mutual ; and that, consequently, if P, cos a, represent the
resolved part parallel to the axis of # of any one of the
molecular forces involved in the 3» equations, we shall like-
"wise meet with the term — 2, cos @, in another of those equa-
tions which have reference to the axis of «. ' Consequently,
if we add all those equations together which have reference
to the same axis, we have the three following equations of
condition independent of the molecular forces,

3X=0, 3Y=0, %Z=0.

The second consideration is this: that the straight lines
joining the different particles are the directions in which the
molecular forces act.

Thus, let P, be the molecular action between the particles
whose co-ordinates are (z,, y,, 2,) and (=,, ¥,, 2,),

P,cosa, P,cosfB, P,cosy,
— P cosa, —P,cosfB,, —Pcosy,,

the corresponding resolved parts of P, for the two particles.
Then :
%—%

y COSfy = ,

T, — -
cosa, = 'r L cos,81=y————’ry'

where r=N{@@,~2)"+ @, — 1.)'+ (z,— 2)%}.

These enable us to obtain three more equations free from
molecular forces; for if we multiply (1) and (2) by y, and ,
respectively, and then subtract, we have

Yo, - Xy, +...+ P {z,cosB —y cosa}+..=0...(4)

By the same process we obtain from the system of equations
which refer to the particle (z,, y,, 2,),

Y, - X,y,+...— P,{w,co8 B, — y, cosa} +... = 0... (5).

But the values of cos &, and cos B, given above lead to thé
condition '.
(g —=) cos B, — (y,— ) cosa, = 0.
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‘Wherefore the equation _
Yo, - Xy +.... + Yo, — Xy +...... =0

1'”1 1

will not involve P,, the molecular action between the particles
whose co-ordinates are z,, y,, 2, and x,, y,, #, respectively.

Tt follows readily from what we have shewn, that if we form
all the equations similar to (4) and (5), and add them together,
we shall have a final equation

. 2 (Yz—Xy) =0,
independent of the molecular forces.

" In like manner we should obtain
2(Zy—Yz)=0, Z(Xz—2Zx)=0.

Moreover we can shew that these six equations are the only
equations free from the molecular forces, supposing the body
to be rigid, and consequently the molecules to retain their
mutual distances invariable. For if a body consist of three
molecules, there must evidently be three independent mole-
cular forces to keep them invariable; if to these three mole-

cules a fourth be added, we must introduce three new forces
to hold it to the others; if we add a fifth molecule we must
introduce three forces to hold this invariably to any three of
those which are already rigidly connected ; and so on ; from
which we see that there must be at least 343 (n—3) or 3n—6
forces. Hence the 3n equations resembling (1), (2), and (3)

contain at least 3n—6 independent quantities to be ehmmated
and therefore there cannot be more than stz equations of con-
dition connecting the external forces and the co-ordinates of-
thexr points of apphcatmn.

MISCELLANEOUS EXAMPLES.

1. Determine the central axis when there are two forces
Pand @ whose lines of action are defined by z=c, y=2 tan qa,
and z = —¢, y = — tan a respectively.
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2. If Pand Q are two forces whose directions are at right
angles, shew that the distances of the central axis from their
lines of action are as P° to @ '

3. [Parallel forces act on a rigid body and maintain it
in equilibrium, the points of application being all in one
plane: shew that the forces will maintain the body in equi-
ﬁbrium however they may be turned about their points of
application.

4. A system of forces acting on a rigid body is equiva-
lent to a single force: shew that it will also be equivalent to
a single force after the body has been turned through any
angle about the axis of z, the directions of the forces remain-
ing the same, if

3(X) 3 (Y2)=3(Y) = (X2),
and (X)) 3 (Z0) + (Y) 3(%) = 3(2) 2 (Xw + Ty).

5. Forces act at the angular points of a tetrahedron in
directions respectively perpendicular to the opposite faces,
and proportional to the areas of the faces in magnitude:
shew that the forces have the property considered in Art. 106.

6. Shew that within a quadrilateral there is but one
point, at which forces acting towards the corners and pro-
portional to the distances of the point from them, can be
in equilibrium.

7. Two forces acting at a point are represented in i-
tude and direction by straight lines drawn from that point:
their sum is constant and their resultant is constant both in
magnitude and direction. Find the locus of the extremities -
of the straight lines which represent the forces.

8. If forces P, Q, R acting at the centre O of a circular
lamina along the radii 04, OB, OC be equivalent to forces
P, Q, R acting along the sides BC, CA, AB of the inscribed
triangle, shew that .

P.P Q.Q R.R
B0t o4 TAB

e o -

=0.

PR
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9. A uniform rigid rod, of length 2a, can turn in a hori-
zontal plane about its middle point. At one end a string is
tied which passes over a fixed pully, vertically above that
end, and at a distance b from it, and is then fastened to a
given weight. The rod is then turned through an angle 6,
and kept at rest in that position by a horizontal force P per-
pendicular to the rod through its other end. Prove that P
will be a maximum if

-
tan 2T+

10. Prove that a system of forces can be reduced in an
infinite number of ways to a pair of equal forces, whose direc-
tions make any assigned angle with one another; and find
the distance between these forces when the angle is given.
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CHAPTER VIIL
CENTRE OF GRAVITY.

108. 'WEIGHT is measured like other quantities by means
of an arbitrary unit. If a certain upward force be necesst
to prevent a body from falling, then another body whic
requires an equal force to sustain it is said to have a weight
equal to that of the first. When two weights have been
recognised to be equal, a body which requires to sustain it
a force equal to the sum of the two equal forces which would
sustain the two equal weights, is said to have a weight double
- that of either of the two equal weights; and so on.’

It appears from experiment that the weight of a given body
is invariable so long as the body remains at the same place on
the earth’s surface, but changes when the body is taken to a
different place. We shall suppose therefore when we speak of
the weight of a body that the body remains at one place.

When a body is such that the weight of any portion of it is
proportional to the volume of that portion it is said to be of
uniform density ; the density of such a body is measured by
the ratio which the weight of any volume of it bears to the
weight of an equal volume of some arbitrarily chosen body of
uniform density.

The product of the density of a body into its volume is
called its mass. '

When a body is not of uniform density its density at any

int is measured thus: find the ratio of the weight of a
volume of the body taken so as to include that point to the
weight of an equal volume of the standard body ; the limit of
this ratio, when the volume is indefinitely diminished, is the
density of the body at the assumed point.,
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109. It was shewn in Arts. 66 and 68 that there is a
point in every body such that, if the particles of the body be
acted on by parallel forces in the same direction and this
point be fixed, the body will rest in whatever position it be
placed. .

Now the weight of a body may be considered as the resultant,
of the weights of the different elementary portions of the body,
acting in parallel and vertical lines. In this case the point
above described as the centre of parallel forces is called the
centre of gravity of the body. We may define the centre of
gravity of any system of heavy particles as a point such that
if it be supported and the particles rigidly connected with it,
the system will rest in any position.

In the present Chapter we shall determine the position of
the centre of gravity in bodies of various forms, We shall
first give a few elementary examples.

. (1) Given the centres of grawity of two parts which compose
a body, to find the centre of grawty of the whole body.

Let G, denote the centre of gravity of one part, and G, the
centre of gravity of the other part; let m, denote the mass of
the first part and m, the mass of the second part. Join @, G,
and divide it at G so that gg‘ =%, then @ is the centre

of gravity of the whole body (Art,’ 37).‘

(2) Gliven the centre of gravity of a body and also the centre
of gravity of a part of the body, to find the centre of grawty of
the remainder.

Let G denote the centre of gravity of the body, and @, the
centre of gravity of a part of the body; let m denote the mass
of the body, and m, the mass of the part. Join GG and pro-

duce it through @ to G,, so that GG, _m then @, is the

Qq, m-m’
centre of gravity of the remainder.

3

(8) To find the centre of gravity of a triangular figure of
uniform thickness and density.
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Let 4 BC be one surface of the triangular figure ; bisect BC
at E; join AE; draw ceb parallel to
CEB cutting AE at e. Then, by
similar triangles,

ce: CE :: de : AE,
and be : BE = Ae : AE,
therefore ce : CE :: be : BE; )
but  CE= BE, therefore ce=be. © ® B

Hence A E bisects every straight line parallel to BC. There-
fore each of the strips similar to ceb, into which we may
suppose the triangle to be divided, will balance on AE, and
therefore the centre of gravity must be in the straight line AE.

Bisect AC at F and join BF; let this cut AE at G.
Then, as before, the centre of gravity must be in BEF; but
it must be in AE; and therefore G is the centre of gravity.

Join EF. Then, because CE = BE and CF= AF, there-
fore EF is parallel to 4B and AB=2FE; and by similar
triangles, :

EQ : EF :: AG : AB, therefore EG=1A4G.

Hence to find the centre of gravity of a triangle, bisect any
side, join the point of bisection with the opposite angle, and the
centre of gravity lies a third of the way up this straight line.

The centre of gravity of any plane polygon may be found
by dividing it into triangles, determining the centre of gravity
of each triangle, and then by Art. 66 deducing the centre of
gravity of the whole figure.

We may observe that the centre of gravity of a triangle
coincides with the centre of gravity of three equal particles
placed at the angular points of the triangle. For to find the
centre of gravity of three equal particles placed at 4, B, C
respectively, we join CB and bisect it at E'; then E is the
centre of gravity of the particles at C and B; suppose these
particles collected at E'; then join AE and divide AE at G so
that £G may be to A G as the mass of the one particle at 4 is
to that of the two at E, that is, as 1 is to 2;" then @ is the centre
of gravity of the three equal particles, From the construction
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G is obviously also the centre of gravity of the triangle
ABC.

Let the co-ordinates of A referred to any axes be z,, y,, 2,;
those of B, x,, ,, 2,; and those of C, =, y,, 2,; then, by
Art. 66, the co-ordinates 7, y, z of the centre of gravity of
three equal particles placed at 4, B, C respectively, are

5=% (w1+w,+a:,); g= 3 (y1+yz+yn); ;=%(z1+ 2+ za)‘

By what we have just proved, these are also the co-ordinates
of the centre of gravity of the ¢triangle ABC.

It may be remarked that in Art. 66 the co-ordinates may
‘be rectangular or oblique.

(4) The centre of gravity of any rectilinear figure might be
found by cutting it up into triangles, and replacing each tri-
angle by three equal particles at its angular points. If the
triangles are all equal the particles will be all equal; but if
the triangles are not all equal, the particles which are sub-
stituted for any triangle must be taken proportional to the
‘area of that triangle. For example, we willpdetermine the
position of the centre of gravity of any quadrilateral.

Let ABCD denote the quadrilateral ;. let the diagonals
AC and BD intersect at E.

Let BE=n, and ED=n,; then the areas of the triangles
ABC and ACD will be proportional to n, and n,;, and may
be denoted by un, and un, respectively. Let y,, v,, ¥,, ¥,
be the ordinates of A, B, C, D respectively ; then replace
the triangle ABC by three particles at A, B, C respectively
each equal to un, ; and replace the triangle 4CD by three
particles at A4, D, C respectively each equal to un,. Lety
denote the ordinate of the centre of gravity of the system,
that is, of the given quadrilateral ; then

- W+ Y.+ Y) +on, (v, +y,+9,)
3 (un, + pny)

_ : "|y2+n9?/4_
"%(3’1‘*‘.%)‘*' 3(n1+ng)

This may be simplified by making use of the ordinate of
the point £; denote this by y: then, by Plane Co-ordinate
Geometry, Art. 10, we have ~ -
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— MY +ny,,
y n+n,
therefore g+ % =34+ Y%+ +Y),
so that ¥y=3@+%m+s+y.-y)-

. Similarly the abscissa of the centre of gravity can be ex-
pressed in terms of those of 4, B, C, D and E.

(3) To find the centre of grawty of a pyramid on a tri-
angular base. _
Let ABC be the base, D the vertex; bisect AC at E; join
BE, DE; take EF=}EB, then F is the centre of gravity
of ABC. Join FDj; draw ab, be, ca-parallel to AB, BC, CA

respectively, and let DF meet the plane abc at f; join bf
and produce it to meet DE at e. Then, by similar triangles,

ae=c¢c; also
Y _Df_ o .
BF DF EF°
but EF =1} BF, therefore ef =}bf;
therefore f is the centre of gravity of the triangle abc; and
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if we suppose the pyramid to be made up of an indefinitely
great number of .indefinitely thin triangular slices parallel
to the base, each of these slices has its centre of gravity in
DEF. Hence the centre of gravity of the pyramid is in DF.

Again, take EH=}ED; join HB cutting DF at G. Then,
a8 before, the centre of gravity of the pyramld must be in
‘BH; but it is in DF; hence @, the point of intersection of
these straight lines, is ‘the centre of gravity.

' Join FH; then FH is parallel to DB. Also because
EF=}EB, therefore FH = 3DB, and

FG@ DG,
FE= DB’ but FH =} DB, therefore FG'= }DG iDF,

Hence the centre of gravity is one-fourth of the way up the

straight line joining the centre of gravity of the base w1th the
vertex.

- In'the same way as the corresponding results were demon-
strated for the triangle, we may establish the following: -

The centré of gravity of a pyramid coincides with the cen-
tre of gravity of pa.rt1cles of equal mass placed at the a.ngula.r
points of the pyramid. - -

- Let z,, y,, #, be the co-ordinates of one angular pomt
o Yar 2, the co-ordinates of another ; and so on; let Z, Y2 be
the co-ordinates of the centre of gra.VIty of the pyramld then,
by Art. 66,

' z=1(2,+2,+2,+2,
=1 G+5+y+9),
z—}(z +2,+2,+2).

lafﬁ) ; To find the centre of grawity of any pymmzd having @
plane base.

Divide the base into triangles; if any part of the base is
curvilinear then suppose the curve to be divided into an in-
definitely great number of indefinitely short straight lines.

- Join the vertex of the pyramid with the centres of gravity of
all the triangles, and also with all their angles. Draw a
plane parallel to the base at a distance from the base. equal to
one-fourth of the distance of the vertex from the base; then

T. 8, . 8
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this plane cuts every straight line drawn from the vertex to
the base in parts having the 'same ratio of 3 to 1; and there-
fore the triangular pyramids have their centres of gravity in
this plane, and therefore the whole pyramid has its centre
of gravity in this plane.

Again, join the vertex with the centre of gravity of the
base ; then every section parallel to the base will be similar
to the base, and if we suppose the pyramid divided into an
indefinitely large number of indefinitely thin slices by planes
parallel to the base, the centre of gravity of each slice will lie
on the straight line joining the vertex with the centre of
gravity of the base. Hence the whole pyramid has its centre
of gravity in this straight line. :

Therefore the centre of gravity is one-fourth of the way up

the straight line joining the centre of gravity of the base
with the vertex.

This result will hold also for any cone, right or oblique }
for the cone may be decomposed into an infinite number of
infinitesimal pyramids having a common vertex,

"~ (7) Ta find the centre of gravity of the frustum of a pyra-
mid formed by parallel planes. ,

Let ABCabc be the frustum;
G, g the centres of gravity of
the pyramids DABC, Dabc; it
is clear that the centre of gravity
of the frustum must be in g & pro-
duced; suppose it at @'

Let Ff=¢, AB=a, ab=b.

Since the whole pyramid DABC
is made up of the frustum and
the small pyramid, therefore,

GG’ _ weight of small pyramid
Gg ~  weight of frustum

L TSN, SR
) : -

- vol. of small Py _ &
" vol. of large pyr. —vol, of small pyr.  @*—5*’
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since similar solids are as the cubes of their homologous
edges; '

and . Gg=DG-Dg=3(DF-Df)=ic;
3 ¥
therefore Ga:T.m.

Also GF=}DF=}(DF- DY) a_'i-b by similar figures,

=2, % .
T 4%a-=-b’
- c a 3b*
therefore F@¥ = F& - @@= 5 {2720
_ca'+2ab+ 30

T4 d*t+ab+ 8

This ig true of a frustum of a pyramid on any base, @ and b
being homologous sides of the two ends.

(8) We may by the aid of the theory of the centre of gravity
demonstrate some geometrical propositions. For example:
the straight lines which join the middle points of the opposite
edges of a tetrahedron meet at a povnt which bisects each
strarght line.

For suppose equal icles placed at the corners of a
tetrahedron ; tb:x(xl to ﬁmhe cell:tre of gravity of the system
we may proceed -thus: The centre of gravity of any pair
of particles is at the middle point of the edge which joins
them ; and the centre of gravity of the other pair is at the
middle point of the opposite edge: then the centre of gravitlyl
of the system is at the middle point of the straight line whic
joins the middle points of tﬁg selected edges. And the
same point will of course be obtained for the centre of
%ra.vity of the system, whatever pair of edges be selected.

ence the required result is obtained.

8—2
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(9) Particles are placed at the corners of a tetrahedron, the -
mass of each particle being proportional to the area iof the
opposite face: shew that the centre of grawty of the system
comncides with the centre of the sphere inscribed in the tetra:
hedron.

Let A, B, C, D be the anguIa.r points of ‘the tetrahedron.
Let p be the perpendicular from D on the face ABC.
Then the distance of the centre of gravity of the system from
the plane ABC » :

p X area of face’ ABC
= sum of the areas of the faces

_ 8 x volume of tetrahedron
~ sum of the areas of the faces *

And this expression is equal to the radius of the sphere
inscribed in the tetrahedron.

Hence the required result is obtained.

(10) 4 polyhedron is eircumscribed about a sphere; at the
points of contact masses are placed which are ;'Ziq)ortwnat to the
areas of the corresponding faces of the polyhedron : shew that
the centre of grawity of these masses covncides with the centre
of the sphere.’

Take the centre of the sphere for origin, a.nd any plane
through the origin for the plane of (z, y).

Let 4, 4, A4,,...... denote the areas of the faces of the
polyhedron et z 2, 2,, Zg,... denote the ordinates .of the points
of contact ; 2 the ordinate of the centre of gravity. Then, by
Art. 66,

AZ+AZ+Aﬁ

A +A +A,+. . :
Now the projection of the area A4, on the plane of (z, y)

z=

is AT‘z—‘, where 7, is the radius of the sphere ; and similarly

for the other projections. And the sum of such prOJectlons
is zero. Thus 2=0; and since the plane of (z, y) is any
plane through the centre of the sphere, the centre of gra.v1ty
must coincide with the centre of the sphere, -

P
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 (11) From any point within an equiangular’ polygon per-
pendiculars are drawn on all the sides of the polygon, and
are produced in a constant ratio; at the extremities of the
straight lines thus drawn e particles are placed : deter~
mane the centre of gravity of the system. '

* Let ¢ be the distance of the point from which the perpens
diculars are drawn from a fixed origin, and « the angle whiclr
this distance makes with a fixed straight line which coincides
with one of the perpendiculars. Let n be the number of
sides in the polygon, and B:%:—':. Let p,, denote the per-

pendicular from the origin on the m™ side of the polygon;
then the corresponding perpendicular from the assumed point
is p,—ccos(mB—a). Let r denote the counstant ratio.
Then if #,, and y,, are the co-ordinates of the m™ particle we
have C ' ' ’
Zp="7{Pa — ¢ cos (mB—a)} cos mB +c cos a
Yu="7{Pn— ¢ co8 (mB —a)} sin mB + ¢ sin a.
. Hence proceeding as in Proposition vIiL. at the end of
Chapter 1L we obtain for the co-ordinates of the centre of
gravity
— re
’x=E——§-cosa+c o8 &,

. re . .
y=n—-§sma+csma,

where = z ZpncosmB, . 9= £ 2p,, sin mB.

- Hence if =2 we have
z=§, y=n;

80 that in this case the position of the centre of gravity is
independent of the position of the assumed point.

We proceed now to the analytical calculations.

110: In all the cages in which the Integral Calculus is
employed 10 ascertdin the centre of gravity of a body the
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rinciple is the same; the body is divided into an indefinitely
Eu'ge number of indefinitely small elements; the volume of
an element is estimated, and this being multiplied by the

density gives the mass of the element.  The mass is multi- .

plied by the abscissa of the element, and we find the sum
of the values of this product for all the elements; the result

" corresponds to the 3Pz of Art. 66. Also we find the sum
of the masses of all the elements and thus obtain a result
corresponding to the ZP of the same Article. Divide the
former result by the latter ‘and we have the value of z;
similarly ¥ and 2z can be found. In the following examples
the student must not allow the details of the Integral Cal-
culus to obscure his recognition of the fundamental formula
of Art. 66; he must consider in every case what corresponds
to the P, a, y, 2z of that Article, that 1s, he must carefully as-
certain into what elements the body is decomposed.

Plane Area.

111. Let CBEH be an area bounded by the ordinates
BC and EH, the curve ’
BE, and the portion CH
of the axis of z; it is re- ~
quired to find the centre
of gravity of the area. Or
instead of the area we
may ask for the centre of
gravity of a solid bounded : -
by two planes parallel to - : L M ' =»
the plane of the paper and equidistant from it,and bya straight
line which moves round the boundary CBEH remaining al-
ways perpendicular to the plane of the paper. Divide CH into
n portions, and su[:{)ose ordinates drawn at the points of divi-
gion. Let LP and MQ represent two consecutive ordinates,
and draw PN parallel to LM,

Let OL=2, LP=y, LM=As, O0C=¢, OH=h.

The area of the rectangle PM is yAz; suppose u to denote
the area of PQN, and Jet o’ be the abscissa of.the centre of
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gravity of the area PQLM. Then if % denote the thickness
of the solid and p its density, %p (yAz + u) is the mass of the
element PQML. Hence, if # be the abscissa of the centre o
gravity of the whole figure CBEH, by Art. 66,

= _ Zkpa' (yAz + u) _ 22 (yAr+u)
© Shp (yAztu) ~ Z(yba+u) *

supposing the thickness and -density uniform. The summa-
tion is to include all the figures like PQML, which are com-
prised in CBEH. ' '

. Now suppose n to in¢rease without limit, and each of the
portions LM to diminish without limit; then the term 3y in
the denominator of  vanishes; for it expresses the sum of
all the figures like P QN, and is therefore less than a rectangle
having for its breadth Az and for its height the greatest
ordinate comprised between CBand HE. Also the term Zx'u
in the numerator of @ vanishes, for it is less than the product
h3u, and as we have just shewn, this ultimately vanishes.
Hence the expression for =z becomes, when the number of
divisions is indefinitely increased and each term indefinitely
diminished,

SdyAx
SyAz *

Moreover, «' must lie between # and « + Az: suppose it
equal to  + v, where v is less than Az ; then the numerator
of z may be written

SxyAz+ SvyAz; _
and as the latter term cannot be so great as AzZyAs, it
ultimately vanishes, Hence we have

2zyle,
o SyAz’
that is, the above formula will give the correct value of z
when we increase the mumber of divisions indefinitely and
dimanish each term indefinitely, and extend the summation over
the space CBEH. This will be expressed according to the
ordinary notation of the Integral Calculus thus;

__freyds

&= f:y@ oooooooo -.: ------ ;ot ooooooo (1)0

T=
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- In'theé same manner we may shew that

= _yyde

¥y [Fydz , |
where y' is the limiting value of the ordinate of the centre
of gravity of the element PQML when its breadth is indefi-
nitely diminjshed ; ' is therefore =4y ; hence

Y ,
y= [ogdg oo ROSIPPR . (2).

* 'We have now- only to substitute in (1) and (2) for y its
value in terms of z, and then to effect the integration by the
ordinary methods, '

© 112, Tt will not be necessary for the student in solving
an example to repeat the whole of the preceding process.
When he understands how the necessary exactness may be
iven, if required, he may proceed shortly thus. The figure
PQML = yAz ultimately, and the co—orginates of its centre
of gravity are = and 4y ultimately. Hence
— _ Jaydz d = _ Jbyydw

O fyds T fyda
the integrations being taken between proper limits.

Unless the contrary be specified, we shall hereafter sup-
pose the bodies we consider to be of uniform density, and
shall therefore not introduce any. factor to represent the
density, because, as in the preceding Article, the factor will
disappear. ot

113. Ex.1. Letthe curve be a parabola whose equation is
| y=24(az).
[ryeds _ [224(az) ade _ [tatde
JTydz — [S2(am)dm " (azidy
i 1G]
IR

Here z=
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. ' ¢=0, @=3h, which determines the abscissa of the
oentre of gravity of a portion of a parabolic area beginning:
at the vertex, Also

}L"‘y’clx 2af" xdx &/af"a:dm va (B —c%)
[*yds  2yaf*abde i ‘da: gt-dh) ”
When ¢ = 0, y=%4/(ak) o

y=
Ex.2. Lot the éurvé be an ellipse whote e;’luation is
y—— v(a* — ).

ba
[} yodo f b2, et e _Pov(d =) ds
R yda fbv(a s ICEETTN

Here z =

Now Jz y/(a —af)dw=—§(a, —a:')’
therefore f,a:d(a’ 2y di=} @ -t -1 (@ "’7")‘

Aqd: N(a a,’)dx “/(““"’)J,E'Am 2
therefore

Jen(a® w')da: h\/(a —h’) —cJ(a --c’) 2(sm Z-sm"c)

Qa

Hence z is known, . .
[fa bpe- 2
Also y= a,
L ydw fc '\/(a —:cr)d:c .
_b_{ o (h=g)— —c’}

EV(a— zcv.(a‘ c,) \_(; (sm 2 sm"Z),,, -
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If we require the centre of gravity of the quadrant of the
ellipse, we must put c=0 and h=a, Hence -

=_da - _4b
=3r Y=3z°

Ex. 3. Let the curve be a cycloid whose eqﬁatioh is
y=4/(2aa;—x’) +avers“2;

and suppose we require the centre of grav1ty of half the area
of the curve; then :
= o ywde _iryde
o yde U [yds

Now fywdw =4 —fz d.'c

ya:’ f J(&z a:

Also, whenz 0 y=0 and whena: 2a, y=ma;

- therefore j'o yxde =3} {wa (2a)'} — 3 Jo 2 4/ (20 — &) di:

and as [ ,/(2az — 2%) dz will be found = }ura’, we have
L j;"_ yxdy =2mwa’ — }wa’ =} . .

Again, fydw yz—f

—yw—N(2aw—m’)dw
therefore [ *yde=2ma’— [ 4/(2ax — a:’) dr

= 2wa’ — }mwa’ =§wa’;

L S

g
- —me—
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Also

| [y‘dz=y’w—2fym%dz-
=y~ 2 fyy/(Qas — o) d
= Yw=2 (20w~ ") do— 2a [ ¥(2az ) vers* 2 d
=y’x-—2az’+2,3—x’-—-2af4/(2dz—at’)vers"§ ;

. 8 %a
therefore [+ de=2n'a’~"5 — 2 [ (2~ &7) vers™ 7 da.

By assuming vers“a—: = 0, we may shew that

at
4 L ]

f“4(2am_— o) vers™ z dz =
Hence [y de =§n'a’ - §a’;
thorere = 12ETB - gy,

- 114. If a eurve have a branch below the axis of x sym-
metrical with one above the axis, and we require the centre
of gravity of the area bounded by the two branches and or-
dinates drawn at the distances ¢ and A.from the origin, we

have _
- _2fryzde _[tyeds .
T2 lyda T [iydm’
and | . g=0.

115. We have hitherto supposed .the axes rectangular;
if they are oblique and inclined at an angle , then the figure
PQML (see fig. to Art, 111) will =sn oyAz ultimately.
Hence the formuls (1) and (2) of Art. 111 remain true, for:
sin @ occurs as a factor in the numerator and denominator,
and may therefore be cancelled. . . . . ;
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116. It is sometimes convenient to use polar formule, .
Let DE be the arc of a curve; and sui)pose e requiré

the centre of gravity of the area comprised between the arc-
DE and the radii OD, OE drawn from the pole O,

3

-

Divide the angle DOE into a number of angles, of which
POQ represents one; let OP=7r, POz =60, POQ=A6. The
area P0Q=13%rA6 ultimately (Di?ereﬂt'ial Calculus, Art.
313). Also the centre of gravity of the figure POQ will be
ultimately, like that of a triangle, on a straight line drawn
from O bisecting the chord PQ, and at a distance of two-
thirds of this straight line from 0. Hence the abscissa and
ordinate of the centre of gravity of PO @ will be ultimately

. 4rcos 6, .and $rsin 6 respectively.

[4rcos 03°d0 3 jr* cos 040

Hence T =

T Jde T jrae
_ [3rsin03r°d 3 Jr* sin 6d0
Y=""TiPds = jrdo -

. In these formuls® we must put for.r its value in terms of
given by the equation to the curve; we must then integrate
from 6= a to 0= B, supposing @ and B the angles which 0D
and OF respectively make with the fixed straight ling Oz.. :



..POLAR.FORMULA, @ 125

117. Ex. Let O be the focus of a parabola, and the
fixed straight line Ox pass through the vertex; then

=% .
. 7= o 16’ -
Where 4a is the latus rectum of the parabdla, ;
P cos 0 |
b

| Hence ﬁ}_ ’

.cosw

cos @ cos 30 — sin’ §0
Now [o5rpdf= f g e 400

= /(1 tan* §0) (1 + tan* }6) sec* }6d0
= [(1—tan* }6) sec’ }0d0 = 2 (tan 30 — } tan® 16) ;

cos 0

o b d0=2(tan}8—tan o) —} (tan*}6—tan’a).

therefore f
Ak f cosr 30 =/ (1-+tan’40) soc*}0d0=2 tan 30+ § tad® 10;
thei‘efore f‘_co_;d%_é=2 (ta.n %B — tan %a) + g (ta.n' %B _ tan, *a) : .

tan 38 — tan ja — § (tan® 48 — tan® §a)
tan 48 —tan a2+ ﬁ(tan'éﬁ—tan’%a) :

therefore Z=3a.

“ . [sin@ sin }0
Again, fcbs‘%@ dj= 2f s §0 = cos &0 3
therefore f Fc%i% @6 = sec* §8 — sec a ;
: ,sec‘},B—sec‘a}d o
tan §B—ten Ja+§ (tan’ §8—tan"$s) "

therefore ;17.== ia.
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Plane Area. Double Integration,

118. There is another method of dividing a plane area
into elements, to which we now proceed.

Let a series of straight lines be drawn parallel to the axis of
y, and another series of straight lines parallel to the axis of z.
Let st represent one of the rectangles formed by these straight
. lines; and suppose @ and y to be the co-ordinates of s, and
x + Az and y + Ay the co-ordinates of & Then the area of
the rectangle st is AzAy, and the co-ordinates of its centre
of gravity are ultimately « and y. Hence, to find the abscissa
of the centre of gravity of any plane area, we can take the
sum of the values of 2AzAy for the numerator, and the sum
of the values of AzAy for the denominator, Az and Ay being
indefinitely diminished. This is expressed thus,

= JJxdxdy
[fdzdy °
Similarly, 5 = vty

Y= (fdzdy *
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119, Suppose, for example, that the area is bounded by
the two on})inates BbC, EeH, and the two curves BPQE,
bpge. Let y =¢ () be the equation to the upper curve, and
y=1v (x) the equation to.the-lower curve; let OC=c,
OH=~h. The sum of the product @AzAy for all the rect-
angles similar to s¢, which are contained in the strip PQqp, is
equal to 2Az multiplied by the sum of the values of Ay, for
Az has the same value for each of these rectangles. Since
the sum of the values of Ay is Pp or ¢ (z) — g:), we have
xAz . {¢ () — (x)} as the result obtained by considering all
the rectangles in the strip PQgp. We have then to sum up
the values of zAx {¢(z) —(x)} for all the strips similar to
PQqp comprised between Bb and Ee; that is, we must deter-
mine the value of [}z a?(a: — v (x)} de. Considerations of a
similar kind apply to the denominator of z, and we obtain

[21$@-¥ @) do
L @) - (2)} d=

In the numerator of y we observe that yAy Az represents
that portion of it which arises from the element s¢; hence we
shall find the result obtained from all the elements in the

strip PQqp, if we determine the sum of all the values of yAy,
and multiply the result by Az. Now the sum of the values of

by is [~ ydy, or 3[(p @) ~ (¥ @] 1f wo multiply by

Az, and find the sum of the values of the product for all the
strips between Bb and Ee,we obtain the numerator of y. Hence

y = 1L @)~ {¥ @)} dw
L@ —¥ @}d=

The value of ¥ may be written thus

= _['4{ @) +¥ @)} {6 (@) — ¥ (@)} dz
y NP @)~V (@) de ’

The meaning of the factors in the numerator is now ap-
parent ; for {¢ («) — ¥ (2)} Az ultimately represents the area
of the strip P@gp, and ? (=) + ¥ («)}, which is the ordinate
of the middle point of Pp, will ultimately be the ordinate

x=
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of the-centre of gravity of Pqu Hence the above equation
agrees with that given in Art. 66,

$

— Elfl/
~3P -
The process and the figure in the preceding two Articles
would have been unnecessary if our only object had been to
establish the formule for z and 7, since these formula® can be
obtained more simply as we have just shewn. But we shall
re uire hereafter other formule involving double integration,
have therefore directed the reader’s attention to these
ln order to accustom. h1m to the subject. : \

120. Ex. Let OPEbea parabola having for its equatlon
y’ =4az, and OF a straight line having for its equation y = kz;
find the centre of gravity of the area OPF between the curve
and the straight line. , ,

. y .

——

0 7 =

' Here ¢ (z) =2 4/(ax), \lr(a:) Icz, c=0; k is to be found
from the equation 2 N (ah) = .

therefore k—F

Jiz (2 (az) — kz}dx

12 ¥ (az) — kx} d .
_abt =g ga— gk 4=}
T gvaht— gt dWa— VR T §=1

_2h_sa
=3 s | | y

Thus z=:
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= 3 [} (daz — B'2") dz
J# {2 ¥(az) — ka} da
_ 1 (2R’ - IE'K’) _ } v/h (22 — &)
4vaht 3k #Wa—dkvh
_«}Vh(2a—-§a)= _2a
=iva—va ~ V=T
121. Sometimes it will be more convenient to integrate
the formule in Art. 118, first with respect to  and then with
respect toy. For example, if t.he given area is comprised be-

tween the straight lines y =¢', and y =7/, and the curves
x =+ (y), and = = ¢ (y), we obtain

_H.{ He @)= ()] dy
Loy —v@idy °

Y@ —+¥@)ldy
e @-v@)ldy

If we apply these to the example given in Art. 120, we have
P(y)= 4a oy —17:’ ¢'=0, and k' is to be found from the

Similarly, 7

equation — W _h therefore A’ _%a.

k 4a’
_ 21'(10’ 16a)

Hence x=

The results will of course be the same as before.

For fuller explanations and illustrations of double integra-
tions the student is referred to treatises on the Integral Calcu-
lus. (See especially Integral Calculus, Art. 141.and Art. 152.)

T. S, i -9
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122. We will now give polar formule involving double

integration.

Let a series of straight lines be drawn from a pole O, also a
geries of circles be described from O as a centre. Let st be one
of the elements formed by this mode of dividing a plane area ;
let » and 6 be the polar co-ordinates of 8, »+Ar and 6+ A6 the
co-ordinates of ¢; then the area of the element sz will be ulti-

!

’

mately A6 Ar, and the abscissa and ordinate of its centre of
gravity will be rcos @ and rsin @ respectively. Hence we
obtain
Jfrcos@rd@dr _ [fr* cos 6 d6 dr

[frd0dr — —  [frdfdr °
—_ffr*sin@dbdr
Y=""Trdoar °

Suppose the area bounded by the curves BPQE, bpge, and
the radii ObB, OcE. Let r=¢ (f) be the equation to the
first curve, 7 =+ (f) that to the second ; and let a and 8 be
the angles which OB and OF make respectively with Ox.

The sum of the values of * cos § Ar A8 for all the elements
comprised in the strip PQgp, will be found by multiplying
the sum of the values of *Ar by cos §A8; the former sum
is ultimately

[ o ox 3118 @ -ty

T =

Similarly
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" Hence the numerator of the value of z is

38 cos 8[(¢ () — (¥ (B)F'] 46,
and the denominator, in like manner, is
18 [{e O))— (¥ O))]d6;
eretore 5 HLCSOLD @~ (¥ 011 a8
Pl OF -y ©0))F1d0 -
.. __#[sinb[{p(O))—{¥(0)}'] 46
Sy, Y= "FeOr-wOna

123. Ex, 1. Find the centre of gravity of the area com-
prised between two semicircles Opb and OPB,

0 ] A . *< .
Let Ob c, OB=h; ¢ () =hcosb, ¥ () =ccosf; a=0,
B=4m; th
-_3 (h’—c’) J,* cos* 640
(B*— ¢®) J,¥* cos® 640
_23R=¢
T84
1R+ ket
T2 h+to
(See Integral Calculus, Art. 35).

— _% (A —¢) [}rsin 6 cos’ 6d0
(A*— ¢%) fi™ cos® 6d0
_3®-c)t_2M the+()
=@F-or sGrgm

Also
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Ex. 2. The sector of a circle.

Let B OF be the sector, sub- A
tending an angle 8, OB =a.

In this example we may
with equal facility integrate
first with respect to 6 and then
with respect to r, or first with
respect to r-and then with re-
spect to 6. o

—_ [s[fr’cosfdrdf _sinB[ir'dr _2asin8
Y= T Brdrdd Blrdr ~ 38 '

Iof”'r’smedrdo (1 — cos B) [er*dr 2a(1—cos/3)
T T iFrdrdd B ferdr 38 )

It will be instructive for the student also to notice the
solution of this example when rectangular formul® are used.
The equation to the straight line OE sy = =ztan /3 ; and the
equation to the circle EBis 2 + y=a

If we integrate with respect to « first we must integrate
from z=ycotB to =4/(a’—y"); since when we integrate
with respect to & we have to collect all the eleméntsin a strip
which is parallel to the axis of , and is bounded by OF at
one end and by EB at the other. These strips extend from
the axis of z up to E, and the ordinate of £ is asin 8. Hence
we integrate with respect to y from y=0 to y=asinpg.
Therefore

]‘ f ¢(l)x dy dee j‘ 'f‘(i)y dy da
3=t y=
f o7 ¥y) dy d ‘ f o' Vi) dy da

where ¥ (y) =y cot B, ¢ (y) =#(a'—3"), ¥ =asinB.
The integrations may be easily effected. '

If we wish to integrate with respect to y first, we shall
have to divide the figure into two parts by a stra.lo'ht line
drawn from E perpendicular to OB. For the part to the
left of the dividing line the limits of y are 0 and 2 tan 8, and
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those of z are 0 and @ cos 8. For the part to the right of the
dividing line the limits of y are 0 and 4/(a’ —&%), and those
of 2z are acos 8 and a. Hence .

faoogpfzhnpxdwdy_-'-fam [q[(a#-a,‘)zdxdy
T = e T O g
T B fa“’].ﬁl da:dy |

f: ﬁdxdy+

Similarly ¥ may be expressed.

We have treated this example as an illustration of integra-
tion rather than for the purpose of obtaining the result in the
simplest form. 'We might proceed thus; the centre of gravity
must lie on the straight line which bisects the angle EOB.
Hence taking this straight line for the initial line and using
polar co-ordinates, we have y =0, and

| f“f"’r-medrdo _
Jos

Solid of Revolution.

124. Let a surface be generated by the revolution of the
curve BPQE round the
axis of @, and suppose 3]
we require the centre of .
gravity of a portion of the
solid bounded by this sur-
face and by planes perpen-
dicular to the axis of revo-
lution.

Let the co-ordinates of .
a point P in the curve be = and y, and z + Az the abscissa
of an adjacent point Q. As the curve revolves round the
axis.of , the area PQML will generate a volume which is
ultimately equal to my’Azx. Also the abscissa of its centre
of gravity will be 2 ultimately.. Hence

- _mypads _[yede
frde = [y
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The centre of gravity of the solid is obviously in the straight
line Oz, so that we only require the value of  in order to
determine its position. -

©125. Ex. 1. Let it be required to find the centre of
gravity of a portion of a paraboloid. Suppose y*'=4ax -
the equation to the generating parabola, and that the. solid
is bounded by planes distant ¢ and % respectively from the
vertex ; then )
frad'de _2 K —c°
X daxdz — 3 K="

If we put ¢=0 we find for the centre of gravity of a seg-
ment of a paraboloid commencing at the vertex
: ' - 2h

€T =

3

Ex. 2. Required the centre of gravity of a portion of a
sphere intercepted between two parallel planes.

Let y*=a’—a’ be the equation to the generating circle ;
7@ =) ade _ ja* (B — &) — F (W' —C)
TRE—dd - dh—0-3F=0)
If we put ¢=0 and h=a, we find for the centre of gfavity
of a hemisphere
z=a.

Ex. 3. Find the centre of gravity of the solid generated
by the revolution of the cycloid y =/(2ax— %) +avers"‘g

T=

round the axis of .

Here r= m_

T="0" .
' .{o y’ da . .
2

Now 3*=2az — &’ + 2a 4/ (2ax — 2*) vers"g+a'(vers"§) .
Thus the numerator of & consists of three integrals of
which we will give the values ; these values may be obtained

without difficulty by transforming the integrals where vers"g
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occurs by the a.ssumptlon vers™ = = 0, so that z=a (1 — cos 9)
and then integrating by parts. We shall find

[ (2az—a") oo = 22,

2afhw4(2az—z')ve dx 20,(4;’ W;a'),

of e e (-0

Hence the numerator of z is (7—2—, - %6) a'

Also the denominator of z consists of three integrals which
have the following values,

r(2am—a.’)da:=i,
2afk4/(2aa: o) vers™ —da: 2a1';2

af:'(vers )dz (=*—4)a’

Hence the denominator of z.is ( 8\

- (7%,“16) _(637°~64)a -

Therefore z= 3T 8) . 6(97"—16)"
. -——-—g a

126. If & solid of revolution be formed by revolving a
curve round the axis of y, we find for the position of the

centre of gravity
= _ [maiydy _ [atydy
Jm*dy  [ardy ”
For example, let the cycloid y=+/(2az— ") + a vers™ 2,
revolve round the axis of y, and suppose that we require the
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centre of gravity of the volume Igenerated by that half of the
curve for which y is positive. Here

_dydy
f. ®a wﬂdy

Now [a'ydy = [a’y %dx; thus in the present case,

Fwydy-—/ a:'y Y

Similarly f Sy = foa,’%dw.

B 2a—x\}
Thus -=J’_q_:y( d ) dz=.[o“.'/"7’\/(2u_w')dw
y 2a — z\1 [P (2az—a) dz
[[e(55) e
]
The numerator of y consists of two integrals which have
the following values,

f:'x(zax—a’) do=22",

afjwd@az—w")vers Sde= a(9 +1r;a

The value of the denominator of 7 is 3 Ta
4a* 4a* wat
-3 9t % 16, 7\2
Therefore  y= - = (— + *—) —.
T3 9  4/)=x
2
*127. ~ We may also find it convenient in'some cases to use
formule involving double integration.

Suppose the figure in Art. 118 to revolve round the axis
of z; let @, y be the co-ordinates of 8; and z + Az, y + Ay
those of ¢. Tgllm area st generates by revolution an elementary
ring, the volume of which is 7 (y + Ay)* Az — wy’Az; this
may be put ultimately equal to 2myAyAz. The centre of
gravity of this ring is on the axis of @, and its abscissa is
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ultlma.tely z. Hence by proceeding as before we shall have

ultimately
f f ) wdxdy
'b(.r

where y= 1[»(:5) is the equation to the lower bounding curve
and y = ¢(z) to the upper, and ¢ and k are the abscisse of
the planes which bound the solid of revolution perpendicu-
larly to its axis: .

Similarly, if the solid is formed by revolving the area in-
cluded between two curves round the axis of y, we shall

have
f . IIW)wy dy dzx o

Or we may lise polar formulae Suppose the figure in Art.
122 to revolve round the axis of «; let r, 6 be the polar co-
ordinates of s; and r+ Ar, 6+ A those of & The volume
of the ring generated by the revolution of the area st is ulti-
mately 27rsin §rArAf; and the abscissa of the centre of
gravity of the ring is ultimately » cos 6. Hence

__Jfr*sin 6 cos 6 df dr
= J[rsin@dfdr °

Similarly, if the figure revolve round the axig of y

— _[fr®cosOsin 6d6 dr
" [[ffcos6dbdr °

We have hitherto assumed the solid of revolution to be
of uniform density ; if this be not the case the formula must
be modified. For example, take the first formula in the
present Article; suppose that p denotes the density at the
point (z, y). Then the mass of the ring considered will be
ultimately 27py Ay Az. Hence

8l
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h [$(x)
. x dxd;
oy PYT IRy

Z=io¥a.
f pydedy

And p being supposed a known function of # and g, the
integrations present no theoretical difficulty.
. Similarly the polar formule may be modified. For example,
instead of the formula given above for  'we now obtain

e Jfpr*sin @ cos 6 d8 dr
= [lpr*sin6dfdr

In this case p must be expressible as a function of 7 and
0, in order that the integrations may be practicable. The
most common cases are two ; in one the density depends only
on the distance from a fixed point in the axis of revolution,
so that by taking this point as origin p is a function of r; in
the other case the density depends only on the distance from
the axis of revolution, so that p is a function of 7 sin 6.

Any Solud.

128. To find the centre of gravity of a solid we divide it
into elements as follows: draw a series of planes perpen«

.
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dicular to the axis of #, then two consecutive planes will
include between them a slice such as LplmgM in the figure;
draw a second series of planes perpendicular to the axis of v,
then each slice is divi(fed into strips such as Ppg@Q in the
figure ; lastly, draw planes perpendicular to the axis of 2,
then each strip is divided into parallelepipeds such as st in
the figure. Let 2, y, 2 be the co-ordinates of 3, and z + Az,
y+ Ay, z+ Az those bf ¢; then AzAyAz is the volume of s,
and as the co-ordinates of its centre of gravity are ultimately
x, y, and 2, we have ‘

g lzdedydz o _[llydedyds - _ [[[zdvdyds
[[fdzdyds * * "~ [fjdedyda ’ [dzdydz

129. In applying the above formul® to examples, great
care is neces in assigning prﬁper limits to the integra-
tions; this we shall illustrate by Examples.

Ex. 1. Find the centre of gravity of the eighth part of
an ellipsoid cut off by three principal planes. -

Let the equation to the surface be
' & o 2
stpta=l
Then the equation to the curve in which the surface meets
the plane of (z, ) is '
2 3 :
p + ok 1,
Integrate first with respect to 2, and take for the limits 2 =0
and z=¢ (1 - g—:-— %—:) ; we thus include all the elements
like st which form the strip PpgQ. Next integrate with re-
spect to ¥, and takelfor the limits y=0 and y= b,\/(l —2;:);

we thus include all the strips like Ppq @ which form the slice
LplmgM. Lastly integrate with respect to «, and take for
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the limits =0 and #=a; we thus include all the slices
like LplmgM which form the solid we are considering. Hence

[ 52 dedyds
Ay ds

where we put z, for c«/(l—g;—g—:),
andyjoer(l—%.
Now fﬁldz=z‘=c«/(l—§:—§);

[ /(-5 ")dwdy
””'\/1_;,_ dady

And f:‘,\/(l—a—,—%:)dy, or I—}me@l’-_y’)d ;%.';

therefore z= tadl

=

therefore =

Similarly 37:%, = %6,

We may in this example effect the integrations with equal
simplicity in anim order we please; if we integrate first for ,
then for y, and lastly for 2, we shall have

fof‘fo zdzdyd’c

f f " a‘dzdydaa
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where 2, stands for a J (1 -

zl
and g, stands for bJ(l -5).
This will be easily seen b; drawmf a figure so as to make
the planes bounding the slice parallel to that of (z, y), and
the edges of the strip parallel to the axis of a.

Ex. 2. Let it be required to find the centre of gravity of
the solid bounded by the planes 2z = 8z, 2z = o, and the cylin-
der y*=2ax—a’. We shall have

f"’ [ ) j" wdxdydz
f /_m / dedyds

where g, is put for y/(2ax — z*).

Now f Tds=(y—B) z,
. Bx
%a
. f ” o' dzedy
therefore T=-t "0
' / / a:dzdy
Also dy=24/(2az ) ;
f it £
2
f Sy (- do
therefore x="2 _—.—g .

2a
f x /(202 — o) d
(4
(See Integral Calculus, Ex. 5 to Chap. 111.)
Similarly we may find

y=0’ E=5@(38+'y).
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— _ [[fpr®sin® @ cos ¢ dp dO dr
T [ersin0dpdodr
— _ [ffpr’sin’ @ sin ¢ dop dO dr
Y="" Tforsnod¢dddr *
= _ [[fpr® sin @ cos 6 d¢ d6 dr
2= fforsin0dpdidr °

181, Ex. 1. Apply the preceding formule to find the
centre of gravity of a hemisphere whose density varies as the
n' power of the distance from the centre.

Take the axis of # perpendicular to the plane base of the
hemisphere. Let a be the radius of the hemisphere, and
p=pr", where u is a constant. First integrate with respect ta
r from 0 to a; we thus include all the elements like pgst com-
prised in the pyramid OPQS. Next integrate with respect to
6 from 0 to 4, we thus include all the pyramids in the slice
COML. Finally, integrate from ¢ =0 to ¢ =27; we thus’
include all the slices. Thus '

—_ fohfohfoa”'“ﬂ sin @ cos 0 d¢ dédr
= E r sn 0dpdidr ’

_n+3 j;”o*"sinﬂcosed¢d9_n+3 a,
_n+4a fos,ohsingd‘i,dg “rntd2’
z and y each=0.

Ex. 2. A right cone has its vertex on the surface of a
sphere and its axis coincident with a diameter of the sphere,
find the centre of gravity of the solid included between the
cone and sphere. Take the axis of 2 coincident with that
of the cone; suppose a the radius of the sphere, 8 the semi-
vertical angle of the cone. The polar equation to the sphere,
i8 = 2a cos 6, and to the cone § =8. Hence we have

f:r /: /:aoosorx cos.@sin 0 dp dodr
f:'f:f?mofsin 8 dp 40 dr

N

z2=

z and y each =0,
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" Curve.

132. Suppose a circle of variable radius to move so that
its centre describes a given curve and its plane is always
perpendicular to the tangent line of the curve, we may require
the centre of gravity of the solid generated The simplest
case is that in which the radius is constant and the solid of
uniform density ; the result depends solely on the nature of
the curve described by the centre of the circle, and for short-
ness the process is -called finding the centre of gravity of @
curve. -

Let BPQE be a plane curve; BP the length measured
from some fixed point B,
BP=s, PQ=As; z, y the Y !
. co-ordinates of P. Letk de-
note the area of a transverse @
section ; then the volume of P
the element PQ is kAs, and 3
the co-ordinates of its centre
of gravity are ultimately x

and y. Hence x
z= _%k% 'G'Zﬁs .. (1) if & be constant,
— _ Jkyds _ [yds

= flcds _W”. (2).

Sin i—i = \/ {1 + (%)'} , We may also write

N L
@ T @)

From the equation to the curve y and Z— are known in

-+(3)-
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terms of ; their values must be substituted in the preceding
expressions and the integrations then effected.

If we use polar co-ordmates we have z=rcos 6§, y=rsin 6,

15/ 1"+ (@)}

Hence

] rcose«/{rw }de rsm&,\/{r'+ '}
f«/{ﬂ fx/{'”’ ,......(4);

for » and 50 we must substitute theu' values in terms of 8

given by the equation to the curve,

'133. Ex, 1. A straight rod of uniform thickness and
density. :

Taking the origin on the line we have y = Bz, where 8 is
. constant; hence, by equations (3) of Art. 132, supposing the
origin to be at one end of the rod and 4 the. abscissa of the
other end,

= _flxede b _ _Bflzdz_Bh

=2 VS ham 2
That is, the centre of gravity is the middle point of the rod.

Ex. 2. Suppose the transverse section of the rod to vary
as the n'® power of the distance from one end. Take the
origin at this end, and suppose the axis of = to coincide
with the axis of the rod ; llien y=0, and in equation (1) of
Art. 132 we put ua” for k where u is constant, Hence, if A
be the length of the rod,

- foh nti ds fo s+l dx n + 1
TS T de Tt
T.8. 10

ks
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© Ex. 8. ‘An aro of a circle.

Take the origin at
the centre of the circle,
and the axis of « bi- ‘
secting the arc. Then .
y=0; and supposing o
24 to be the angle sub- o T x
tended at O bythe given _ '
arc, and a the radius of
the circle, we have, by
Art, 132, equation (4),

’j",,cosede asma
aft.dd T a

Ne

T =

Ex. 4. The arc of a semicycloid.
Take the ongm at the vertex, and the axis of y a tangent

there ; then (dy ) ~2a—= : hence
dz x

ol o
f WE) i 2@t 3
Lo/G)= f" ol

f ,\/ 2a dos f“dm -

Mdz= 2y~/a:—2f~/w-‘—l‘—idw

Y do=
: Nowfva—’dz—2fydx
=2y Vo —2[V(2a—x) dz =2y Vo + § 20— 2)};
therefore - f —v%okv=27ra(2a)}-§(2a)?r ;

therefore y= 2ma (2;1:;;53 <2a)§ =(mr—-4$a.-
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" Ex. 5. The curve y=ic (e;+e_-s)'. .

If 8’ denote the length of an arc of the curve measured from
the point whose co-ordinates are 0, ¢, to the point (', y ), we
have for the co-ordinates of its centre of gravity

: a2 . o
fwg—;dz yg:dw
e el e
gy 1. % %
Now (Tz.——ﬁ(e —e°),
s £ s
therefore . 1+ (%) =i (e+e°),
ds dy\y 1,2 -2
and d—z=l\/{1+((7;)}=§(e"+e°);
c -z = : cg ._8_’
thus s=§(e°—e ‘), and s'=§(e°—e °).
Also fda: a:(e’-i-e )dx

=FE-)-3 f (¢~
2 S
=3 e—e ) g +e ),
A B
therefore f @ do="2 5 ( ——2-(e°+e °)+¢*
=a's’ — ¢y’ +¢',

and 5=w'_c_(yT—°l_

ds N
Also fya‘—vdx=f—ij(e"+e°) (e+e°)dx
10—2
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2 R I
=%f(e°+2+e-°)dx=%(e°—e °) +92§,

r

therefore - f"’dz (e —-e o)+,_
_ys o
=% te

and y=%+2%.

134. If the curve be of double curvature, the formule
(1) and (2) of Art. 132 still hold ; in order to effect the inte-
grations we may use the formula

e o () (@),

and from the two equations to the curve we must find Z—;

and %’ in terms of z. ~ (See Integral Calculus, Art.120.) For
example, in the helix

x=acosnz, y=asnnz;
ds N ’
therefore = ¥ (1 + n'a%),.

_ [N +n'a"adz _ fa cos nzdz
T WA+nal)dz T fdz T
If we take for the limits 2 =0 and z=h, we have

—  asinnh
="0h ¢

'y= a(l—cosnk) -

Similarly A , z2=1h.
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Surface of Revolution.

135. Let BPQE be a curve which by revolving round
the axis of = generates a surface. Suppose a shell of
which this surface is the
exterior boundary, and of Z]
which the interior boundary
is another surface of revolu-
tion round the axis of z in-
definitely near to the former.
Required thecentre ofgravity
of a portion of this shell cut
off by planes perpendicularto ‘ x
the axis of .

Let P, Q, be ad_]a.cent points in the exterior generating
curve ; suppose B a fixed point in the curve, let BP =3, and
PQ = As; let z, y be the co-ordinates of P; k the thickness of
the shell at 2. The volume of the element contained between
two planes perpendicular to the axis of « through P and @
respectively is ultimately 2mykAs, and the abscissa of the
centre of gravity of this element is ultimately « ; hence

_J2mykxds _ [yrds
_ [2mykds — [yds’
if & be constant.

Stnce f—il;;— J {1+ (Zx)} we have :
f =/ 1+ (@)} 2
Jon/ I+ @)}

where ¢ and h are the distances from the origin of the bound-
ing planes.

Since the centre of gravity required is on the axis of z, we
need only the value of  in order to determine its position.
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Similarly, if the curve BPQE generates a surface by re-
volving round the axis of y, we have

[z, /f1+ (%)
W{HG")}@

where ¢ and & denote as before the absclssae of the extremities
of the curve.

If we use pola.r co-ordinates, we have £ =7 cos§, y=rsin#,

and ‘E=,\/{’;+ (7.59)}’

thus if the curve revolves round the axis of , we have

 sin 0 cos {r’+ Ja0
v Jir Gl
: r81n0«/{r’+ @)}do _
and if the curve revolves round the axis of y, we have
:’7=fr’cos Gsihel\/{r’+ (Z——;).}dﬂ
fr cos 0,\/{1" + (%ré)"} do

The limits of the integrations are the values of @ which
correspond to the extremities of the curve,

-

Ex. 1. A cylindrical surface.

Take the axis of the cylinder as the axis of z; then y =the |
radius of the cylinder, and is constant; hence
f".lez (=) _h+e
[dx h—c ~ 2 °

Ex. 2. A spherical surface.
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Here y=y(a'—2"),
Ay
da:__ '\/(az_wl),
ds___a __a,
dw—«/(a’-w”)—y",
_Jlaxdz _c+h
therefore = radz 5 "

Hence in both these examples the centre of gravity is equi-
distant from the two bounding planes.

Ex. 3. The surface of a cone.

Here y =« tan a, where « is the semivertical angle,
ds

do=eca .

_J tanawsecada; 2R =c") _2(W*+he+ ).
[ tanasecadw 3(k'=¢)  8(h+c)

Ex. 4. Suppose the cycloid
y= v (2az — «*) + a vers™ Z

to revolve round the axis of .

S VS e
L/ [
T Ee e

fyac’}dz—-—— §f *dydz

thus

=?—3——§]a:~/(2a—w) dz;
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therefore [ - v =222 4 [ (00 o) do;
[ ] [ )

and [z /(2a-7) h=—w+§f(2a—w)§dz

2z (2a-2)t 4 .
-y 15 @a-2),

3
therefore r zy (2a. —z)dz= i% (20)¥;
o
2ma (2a)F 8 _ .
thus f:' yzdde= %)_ -5 (2a)%

Also f' yaddz = 2ma (20)} — 3 (20)}, (see page 146),
°

2ma(2a)f 8 4

2 (2a)} 3 (2)}
47 32 2a( _8_ )

&I

therefore '

_ 373 _3\" 15
= == —

Ex. 5. Suppose the cycloid.
Y= (20 —2*) +avets"z

to revolve round the axis of y, and that we require the centre
of gravity of the surface generated by tha.t half of the curve
for which y is posmve

Le/()e Lo
T

The value of the numerator was found in the preceding

example ; and
fh atde= ; (2a)%,
0

L.
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2"“ 7 at - 2 (2a)f

therefore , g=

2
3 (2a)}

—a(n-B).
= ( =
Ex. 6. Find the centre of gra,vnty of the surface formed

ll)%r revolving the curve 7 =a (1 4 cos §) round the initial line.
ere

db

therefore d 5= /\/ { } =2a cos g .

f 7t sm000302acosod6

Z—z.——asme r’+( ’) = 24* (1 + cos 6),

Thus Z=122 7
f r8in 0 2a cos = df
° 2
* 0/ ) . 0
;6 2 v
=2a,[o co8 —2-(2008 3~ 1) 81§2d0‘
f "cos‘g sin,g dé .
° 2
e 0 6 ) 4 ,0 2 f .
Now |cos 2(2cos§ 1) sm2d8—-—~§ §+7cos72,
0 4 2
f-herefore_ ‘/; cos? (2 cos 3 1) sin d() 57
Similarl / ”cos‘g sin o di ==
prrary ), gty 5 ’
4 2
2a ( ) .
9 7/ 50d
therefore a:‘—' T =%3" .
5 ‘
: Any Surface -

136. Let there be a shell having any given surface for
one of its boundaries, and suppose its thickness indefinitely
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small. Let x, y, # be the co-ordinates of any point of the
given surface, k& the thickness at that point, AS the area of
an element of the surface there, then ¥AS is ultimately the
volume of this element, and , y, # the co-ordinates of its
centre of gravity ; hence

_JEkzdS s
" [kdS’
and similar expressions for ¥ and 2.
It may be shewn (see Integral Caloulus, Art. 170) that if

we take AS such that its projection on the plane of (z, y) is
the rectangle Ax Ay,

Aii {1 + (ZZ) + (Zy)'} ultimately.
N/ > - (;’;) faeay
ﬁ"«/{“ dz )}dxdy

Ex. The surface of the elohth part of a sphere.

Here 2 + _1/’+z’=a’,
dz dz\*
Vi@ @) e
ﬂ‘ @ dx dy
V(@ — 2 —y) —m’—

Hence 5:

ffm“‘fiy A

First integrate with respect to y from y =0 to y=4/(a’*—2");
we thus include all the elements that form the strip of sur-
face of which LlmM is the projection on the plane of (z, y);
see fig. to Art. 128.

Vi) dy
N [ e =
- ' «/(};_ da ,,*} «Zr’
e x
therefore jrde frdo T
The limits of the integration for z are 0 and a;
therefore ' z=1a.

Similarly y=3a, z=13a.
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.~ 187. In the preceding Articles we have given the usual
formule for finding the centres of gravity of bodies, but par-
ticular cases may occur which may be most conveniently
treated by special methods. We add some examples.

(1) A circle revolves round a tangent line through an

P
y Q

angle of 180°; find the centre of gravity of the solid generated.
Let Oy be the tan§ent line about which the circle revolves,
and let the plane of the paper bisect the solid; the centre of
gravity will therefore lie in the axis of @. Let OM=ug,
MP=y=,/(20x—a"), MN= Ax. The figure PQqgp will by
its revolution generate a semi-cylindrical shell whose volume
is ultimately 2ymazAx; the centre of gravity of this shell will

be in the axis of # at & distance 2;"’ from O (see Art. 133,
Ex. 3);

2— 2y7rxdw F ya' dz

T =
T 2ymzx dx f yede

2] x’V?ax—x’)dz

wf x4/ (2az — a:’)d:c

therefore .

It will be found that 7 = 2% .
. 2w
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(2) The density of a right cone varies as the n'* power of
the distance from the axis; find the centre of gravity of the .
cone, '

Let OAB be the right-angled triangle which by revolving

B

taly

round Oz generates the cone. Let PS and QR be drawn
parallel to the axis of « at distances y and y+ Ay respec-
tively. Let

OA="h, angle BOA=a.
Then OM=ycota, PS=h-ycota

The volume of the cylindrical shell generated by the revolu-
tion of PQRS round Oz is ultimately

2my Ay (h—y cot a).
Its density is uy", where p is constant; therefore, its mass is
2mpuy™' Ay (b — y cot a).

' The distance of its centre of gravity from O is ultimately (see
Art, 135, Ex. 1)

3 (OM + 0A), that is § (k +y cota)}

htan a
2mpy™ (h—y cot a) § (h+y cot a) dy

therefore & ="-2 Etana
f © 2mpy™ (b — y cot a) dy

1]
1 htana 41 : ] 2 ] ;
Ef Ly (B —y'cot’a)dy -
= olltlbnu ;
f ¥ (h—y cot a) dy
]

and the integrations can be easily performed.
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(8) A shell has for its outer and inner boundaries two
‘similar and similarly situated ellipsoids; required the centre
of gravity of the eighth part of it included between three
principal planes. Let a, b, ¢ be the semi-axes of the exterior
ellipsoid, ra, rb, rc those of the inner elhpsmd r being a
quantity less than unity.

If a, b, ¢ be the semi-axes of an ellipsoid ; the volume of
_the eighth part is 4wrabe, and the co- ordinates of its centre of
gravity are 8a, $b, and §c (see Art. 129). Hence
$a.ymwabe = §ra . fwr*abe + x (ymrabe — ymriabe) ;
g (1= _ - 1+r+r7+7
I 8 T Iy

If we suppose the shell mdeﬁnitely thin, we must put r=1,
and then x = fa. Similar results may be found for y and .

therefore 2=

(4) An ellipsoid is composed of an infinite number of in-
definitely thin shells; each shell has for its outer and inner
boundaries two similar and similarly situated ellipsoids; the
density of each shell is constant, but the density varies “from
shell to shell according to a given law ; determine the centre
of gravity of the eighth part of the elhpsmd mcluded between
three principal planes.

Let @, y, 2z represent the three semi-axes of an ellipsoid ;
then the volume of the ellipsoid is %’rxyz, Suppose that
y=ma and z=nx, where m and n are constants, then the

: : 4mmn
volume becomes

3

having z + Az for the semi-axis corresponding to the semi-
axis @ of the first ellipsoid, the volume of the second ellipsoid

will be 41rmn (z + Az)®. Hence the volume of a shell bounded
by two s1m11ar and similarly situated ellipsoids may be de-
noted by h e {(x+ Az)* — 2°], and therefore by 4mrmnz’Ax

when the thlckness is indefinitely diminished. Let ¢(x) de-
note the density of the shell, then its mass is 4rmn¢ () 2* Az,

«’®, and if there be a stmilar ellipsoid
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Thus the mass of the eighth part of the shell is # ¢ (z)z*Az.
And the abscissa of the centre of gravity of the shell measured
along the semi-uis xis g, by the preceding example. Thus
for the abscissa Z of the centre of gravity we have

o “amn @ o
5=foT¢(z)§wd:c
[ I3 $ (@) atdm

. : f : 2 (2) dw
f aa:’¢ (x) d

o

1

where @ is the semi-axis of the external surface corresponding
to the semi-axis . When ¢ (z) is given the integrations
may be completed ; and when z is known, the other co-ordi-
nates of the centre of gravity may be inferred from symmetry.

. (5) A chord of an ellipse cuts off a segment of constant
area; determine the locus of the centre of gravity of the
segment,

If a chord cuts off a segment of constant area from a circle,
it is evident from the symmetry of the figure that the locus of
the centre of gravity of the segment is a concentric circle.
Now if the circle be projected orthogonally upqn a plane in-
clined to the plane of the circle the circle projects into an
ellipse ; and the segments of the circle of constant area project
into segments of the ellipse of constant area; also the con-
centric circle projects into a second ellipse similar to the first
ellipse and similarly situated.

Thus the required locus is an ellipse similar to the given
ellipse and similarly situated.

his problem might have been solved without making use
of projections, in the manner shewn in the next example.

(6) A plane cuts off from an ellipsoid a segment of con-
stant volume ; determine the locus of the centre of gravity of
‘the segment, : :
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Let the cutting plane have any position; and refer the
ellipsoid to conjugate semi-diameters as axes; let the plane
of (y, 2) be parallel to the position of the cutting plane, and
suppose the equation to the ellipsoid to be

x* 2t
atpta=1

Now suppose the segment cut off by the plane to be divided
into an indefinitely large number of indefinitely thin slices by
planes parallel to the plane of (y, z). By the properties of
the ellipsoid these slices will be bounded by ellipses which
have their centres on the axis of z; and thus we see that the
centre of gravity of the segment cut off will be on the axis of
. Consider one of the slices bounded by planes which have
for their absciss® 2 and =+ Az respectively; then it will be
found that the volume of the slice is ultimately

wb'c' (1 - :—:’—,) sin o sin aAz,
where o is the angle between the axes of y and 2, and a is
the angle which the axis of z makes with the plane of (y, 2).

Suppose V to denote the constant volume, and Aa’ the ab-
scissa of the plane cutting off the segment ; then

V=mb'¢ sinwsinafa’ (1 - Z:,)dx

Ml
o 1 ,
=ma't'c’ sinwsina {1 -7\—:—3 1-M}
Now by the properties of the ellipsoid

7a'b'c’ sin @ sin a = wabe,

where a, b, ¢ are the semi-axes of the ellipsoid ; thus
Vmmabo (1= A5 (1 =N coverrresseen ).

And, if z be the abscissa of the centre of gravity of the.
segment cut off,
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' s . . o AN
wbc’smwslnaf a:(l—-T,)da:
F= - z
7a™b'c’sine sina (1 1
- - {§ 1 -x)—z(l—x‘)}

=I“Vl°{.12_ a-m-30 -x)}a'..._.........(z). |

Now (1) gives a constant value for A, and then (2) shews
that = bears a constant ratio to a’,

~ Thus the locus of the centre of gravity of segments of an
ellipsoid of constant volume is an ellipsoid similar to the
original ellipsoid and similarly situated.

(7) Find the centre of gravity of a portion of an ellipsoid
comprised between two cones whose common vertex is at the
centre of the ellipsoid and whose bases are parallel.

_ The volume between the two cones may be divided into an
indefinitely large number of shells which have the centre of
-the ellipsoid as their common vertex, and their bases in planes
parallel to the bases of the two cones. We shall first shew
that if the planes which contain the bases of the shells are
equidistant the shells are all equal. Take conjugate semi-
diameters as axes, and let the plane of (¥, 2) bé parallel to
the bases of the two cones. The volume of the cone which
has the centre of the ellipsoid as vertex, and for its base the
plane curve formed by the intersection of the ellipsoid with
the plane which has & for its abscissa, is

3wb'd sinwsina (1 - g,) z,

where the notation is the same as in the preceding example.
The volume of the cone which has the centre of the ellipsoid
as vertex, and for its base. the plane curve formed by the
intersection of the ellipsoid with the plane which has z + Az
for its abscissa, is
vy e . (x+ Az)") , . )
b sinwsina {1 - - (= + Az).

a
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The volume of the slice between the planes whose abscissa
are z and « + Az respectively is ultimately

7b'¢’ sin w sin a (1 - %) Ax.

Hence we obtain for the volume of one of the shells ulti-
mately the product of 7b'c’ sin  sin a into

z " :
l}(l—- a,—,)a:+ (1 —;,—,)Aa;—gf{l —(—”%,Ai)} (w+Aa:)] ;
this product is ultimately

27b’c’ sin » sin aAz
—3 |
The centre of gravity of each shell is on the axis of 2 at a
distance from the vertex of the cone, which is equal to three
fourths of the abscissa of the plane in which the base of the
cone is situated (see Ex. (6) of Art. 109). Let x denote the
abscissa of the centre of gravity of the proposed solid ; then if

h and % be the absciss® of the plane bases of the two cones,

b

k27b'c sinwsina
=4 5 " 3w _

k2mbc sinwsina ,  8(k—h)
[Ty

3
S (k+A).

(8) O is the centre of a regular polyhedron, Sis any point
within it ; from § perpendiculars are drawn on the faces, and
equal particles are placed at the feet of those perpendiculars :
shew that the centre of gravity of the system of particles is

on the straight line OS, at the distance % 08 from O.

Take S for the origin of three rectangular axes, and let OS

%té)duced through S be the direction of the axis of #. Let
=c

Let p denote the length of the perpendicular from O on
one of the faces of the polyhedron; let 6, ¢, 4» be the angles
which it makes with the axes of z, y, z respectively. Then
the length of the perpendicular from S on the face is p— ccosd;
and therefore the co-ordinates of the foot of the perpendicular
from S on the face will be respectively,

(p—ccosf)cos b, (p—ccos)cos¢, (p—ccosb)cosy.
T. 8. 11
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Hence if n be the number of faces of the polyhedron we
have for the co-ordinates of the required centre of gravity

_Z(p—ccosf)cosf

8!

n

~ 3 (p—ccosf)cosd

y= . :

E=2(p—ccos0)cos1[r
- n ’

where the summation is to be taken with respect to the
perpendiculars on all the faces.

Now it is obvious that
Spcosf=0, Zpcosp=0, Zpcosy=0,

because the centre of gravity of a system of equal particles
placed at the feet of perpendiculars from O on the faces
would by symmetry coincide with O.

Moreover it follows from the principles explained in Sphe-
rical Trigonometry, Arts. 177 and 183, that

2cos’0=§, | Scosfcosp=0, Zcosbcosyr=0.

Thérefore 5=—§, y=0, z=0.

Thus the required result is established.

(9) Water is gently poured into a vessel of any form :
shew that, when so much water has been poured in that
the centre of gravity of the vessel and water 1s in the lowest
possible position, it will be in the surface of the water.

Suppose that when any quantity of water has been poured
in the centre of gravity of the vessel and tbe water is above
the surface of the water. Let a small additional quantity of
water be poured in; then the centre of gravity of the whole
system is at some point between its former position and the
centre of gravit} of the additional water: that is, the centre
of gravity of the system has descended slightly. In this
manner we shew that the centre of gravity of the system
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continually descends until it reaches the ascending surface
of the water; and after that it continually ascends.

Although the problem may be solved in this simple manner,
yet the formal application of the Integral Calculus is very
instructive. (

Take the origin at the bottom of the vessel; let M denote
the mass of the vessel, & the height of its centre of gravity
above the origin. Let ¢ () denote the area of the horizontal
section of the vessel at a height @ from the bottom ; then
when the water is at the height £ the height of the centre of
gravity of the fluid is

N
[¢@a

Suppose the density of the water to be denoted by unity;
then the height, z, of the centre of gravity of the system
is determined by

Mh+ f * (2) ade

M+ [:qb @) de

T =

Now to find the minimum value of Z we must put g—g =0.
By the Integral Calculus, Chapter I1X. we find that

s £9© [ sl -4 10+ ¢ o) ate]
- {M+ j:¢ @) dx}g

dx

%

.

Thus to make — vanish we must have
&
Mh+ f ¢ (2) wde
— of Ky
M+ f ¢ (z) do
[']

so that then z=£.
11—2
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In order to establish the existence of a minimum it must
o
be shewn that ﬁ—;— is then positive. The corresponding value

%

of Fra is easily seen to be
] ad Rk P N
{M+f:¢(z)dz} M+ f:qb(x)dm

and this is obviously positive. _

We shall conclude this Chapter with a few general pro-
positions involving properties of the centre of gravity.

138. If the mass of each of a system of particles be mul-
tiplied into the square of 1ts distance from a given point, the
sum of the products is least when the given povnt is the centre
of grawvity of the system.

Let the centre of gravity of the system be made the
origin ; let a, B, ¢, be the co-ordinates of the given point; -
x,, Y., 2,, the co-ordinates of the first particle; «,, y,, 2,
those of the second; and so on; m, m,, ... the masses of the
particles; p,, p,,... the distances of the particles from their
centre of gravity; r,, r,, ... the distances of the particles from
the fixed point; then

rl=a'+ B +9" =2 (ax, + By, +4z) +p.,
12’=a'+6’+'yl—2(aw2+ﬁy2+'yzﬁ)+Pﬁ"

...................................................

Multiply these equations by m,, m,, m,,... respectively, and
add; then

Smr® = (a* + B + ) Zm — 2 (aSma + BSmy + yS=mz) + Smp*,

But, since the origin is the centre of gravity of the system,
Smx=0, Zmy=0, Smz=0,

therefore Zmr' = (a’+ B* + o) Zm + Zmp”.

Now Zmp' is independent of the position of the given
point ; hence the least value of Zms* is that which it has
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when a®+ 8* + " vanishes, that is, when the given point is
at the centre of gravity of the system.

139. Leta,, B,,,, be the angles which p, makes with the
axes; ag, B, v,, the angles which p, makes with the axes;
and so on; then we have, supposing the origin the centre of
gravity of the system,

Smpcosa=0, ZmpcosB=0, Zmpcosy=0.

Square each of these equations and add the results; then if
m, m’ represent any two masses, and (p, p') the angle between
the straight lines which join them with the centre of gravity,

Zm*p* + 2Zmm/pp’ cos (p, p) =0.
But 2pp’ cos (p, p') =p’ + p' —
where % denotes the distance of m and m’. Hence
2m'p* + Smm' (p* + p* — u¥) =0.
If we select the coefficient of p*, we find it 'to be
m2 +m, (m, +m,+...), or m,Zm,

and the other coefficients are similar. Hence the above
equation may be written

Sm3Zmp* = Smm'u’.

140. If a particle be acted on by a number of forces each
passing through a fized point and proportional to the distance
Jrom that pownt, the resultant force unll pass through a fized
point and be proportional to the distance from that point.

Take any position of the particle as the origin; let
x,, y,, 2,, be the co-ordinates of a fixed point ; 7, the distance
of this point from the origin; wr, the force which acts on
the particle from this fixed point. Similarly let z,, ¥,, 2,,
be the co-ordinates of a second fixed point; r, its distance
from the origin, and u,r, the corresponding force on the
particle, and so on. Let X, Y, Z denote the whole force
acting on the particle along the axes of «, y, z; then, by
Art. 26,
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X=pr x —'+[.a,'r,x%+,usr,x LR
1 2 8
= Ty BTyt BTyt eens
Similarly Y= py, + gy, + sy, + -..... )
and Z=pz + p2, + 2, + ...

Let 7, ¥, z be the co-ordinates of the centre of gravity
of a system of particles, whose masses are proportional to
fbys Hys Hy--- Placed at the respective fixed points; then

__Zpz - Zpy __ Zpz,
XT= 2“, y—’z—’u‘, .Z——*E/T,
therefore X=23p, Y=y3u, Z=2z3pu.

These equations shew that the resultant force is equal to
73u, where 7 is the distance of the centre of gravity from
the origin, and that. its direction passes through the centre of
gravity. Hence when the particle is situated at the centre of
gravity the resultant force vanishes and the particle is in
equilibrium.

141. A body s placed on a horizontal plame, to find when
1t unll be supported. ’

The only force acting on it besides the resistance of the
plane is its own weight, and this acts in a vertical direction
through the centre of gravity of the body. Hence, by
Art. 91, the body will not be in equilibrium unless the
vertical through the centre of gravity of the body falls
within a polygon formed by so joining the points of contact
of the body and the plane as to include them all and have
no re-entering angle.

When a body 1s suspended from a point round which it can
move freely, it will not rest unless its centre of gravity be in
the vertical line passing through the point of suspension.

For the body is acted on by two forces, its own weight
which acts vertically through its centre of gravity and the
force arising from the fixed point ; for equilibrium these forces
must act in the same straight line and in opposite directions;
thus the centre of gravity must be in the vertical line passing
through the point of suspension,
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Hence if a body be suspended successively from two points
the vertical lines drawn through the points of suspension will
both pass through the centre of gravity; therefore the point
at which they intersect is the centre of gravity.

If a body be capable of revolving round an axis which vs
not vertical it will not rest unless the centre of gravity be in
the vertical plane passing through the axis. For the body is
acted on by its own weight and the forces arising from the
fixed axis; by Art. 87, the moment of the weight round the
fixed axis must vanish, and this requires the centre of
gravity to be in the vertical plane through the fixed axis,

The student will readily perceive as an experimental fact
that there is an important difference between the position of
equilibrium in which the centre of gravity is vertically above
the fixed point or fixed axis, and that in which it is vertically
below it. In the former case, if the body be slightly disturbed
from its equilibrium position and then left to itself, it will
begin to recede from its original position. In the latter case,
if the body be slightly disturbed from its equilibrium position
and then left to itself, it will begin to return to its original
position. The former position of equilibrium is called unstable,
and the latter stablee We shall return to this point in
Chap. x1v.

142. The volume (V) of a portion of a cylinder inter-
. cepted between two planes, one of which is perpendicular to
the axis of the cylinder, is given by the equation

V = [[zdzdy,

where the plane of (z, y) is supposed perpendicular to the
axis, and 2z is the ordinate of a point in the other plane.
The limits of the integrations depend on the curve in which
the plane of (=, y) cuts the surface. This follows from the
Integral Calculus.

Let ¢ denote the angle between the two planes; the
area of an element of the other section of which Az Ay is
the projection on the plane of (z, y) is Az Aysec ¢. Let 4
denote the area of the section of the cylinder by the plane of
(, ), and consequently 4 sec ¢ the area of the other section ;
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let 2 denote the ordinate of the centre of gravity of the plane
area formed by the intersection of the cylinder with the
second plane; then

Asecd.z=[[zsecddrdy,
or . ‘ .AE = ffz dw dy,
therefore V=Az.

The volume is therefore equal to the area of the base multi-
plied by the perpendicular upon it from the centre of gravity
of the other section.

The centres of gravity of the two plane sections are on
the same straight line parallel to the generating lines. For
the co-ordinates of the centre of gravity of the section by
the plane of (z, y) are

[fededy . [[ydzdy
= and VR

and those of the upper section are

[Jzsecpdz dy djj'ysectﬁdxdy
Asec¢ an Asecp

which ag'ree with the former values.

Thus the centres of gravity of all plane sections of a
cylinder are situated on a straight line parallel to the gene-
rating lines of the cylinder.

If a portion of a cylinder be cut off by two planes,
neither of which is perpendicular to the axis, we may sup-
pose it to be the difference of two portions which have for
their common base a section perpendicular to the axis. The
difference of the straight lines drawn from the centres of
gravity of the oblique sections perpendicular to the ortho-
gonal section will be the straight line joining those centres
of gravity. Hence the volume of a portion of a cylinder
contained between any two planes is equal to the product
of the area of an orthogonal section into the straight line
Jjoining the centres of gravity of the oblique sections.

143. Through the centre of gravity of each face of a
tetrahedron o jforce acts at right angles to the face, and pro-



GENERAL PROPERTIES. 169

portional to the area of the face: if the forces all act inwards
or all act outwards they will be in equilibrium.

Let 4, B, C, D denote the angular points of the tetrahe-
dron. The force acting on the face ABC, at its centre of
gravity, may be replaced by three equal forces acting at right
angles to the face at the points 4, B, C respectively. Simi-
lar substitutions may be made for the other forces. Thus we
have, acting at the point 4, three forces respectively at right
angles to the three faces which meet at 4 and proportional to
the areas of those faces; and, by what has been shewn in the
Propositions at the end of Chapter v. these three forces are
equivalent to a single force acting at A4 in the direction per-
pendicular to the face BCD, and proportional to the area of
that face. Hence, by Proposition I. at the end of Chapter v,
the proposed system of forces will be in equilibrium.

The preceding result may now be extended to the following
proposition : Through the centre of grawity of each face of a
polyhedron a force acts at right angles to the face, and pro-
portional to the area of the face : if the forces all act inwards
or all act outwards they will be in equilibrium.

For each face of the polyhedron may be divided into -
triangles ; and the force acting at the centre of gravity of
the face may be replaced by forces acting respectively at
the centres of gravity of the triangles, and proportional to
the areas of the triangles. Then the polyhedron may be
supposed to be made up of tetrahedrons which have a com-
mon vertex, and two equal and opposite forces may be
supposed applied at every common face, acting through the
centre of gravity of the face at right angles to the face and
proportional to the area of the face. Hence the required
result follows from the former part of this Article in the
manner already exemplified in Proposition I. at the end of
Chapter 1v.

The preceding general result was first brought under the
notice of the present writer by the late Bishop Mackenzie ;
it was given in an examination paper in Gonville and Caius
College in 1849, probably by himself. The method by which
he demonstrated it will be found interesting and instruc-
tive by the student who is acquainted with Hydrostatics.
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Imagine a fluid in equilibrium acted on by no forces; then
the pressure will be constant throughout the mass. Sup-
pose a portion of the fluid in the form of a polyhedron to
become solid ; then the equilibrium will not be disturbed.
The forces acting on the faces of the polyhedron will be
respectively at right angles to the faces and proportional to
the areas of the faces, ‘and will act through the centres of
gravity of the faces. Hence the required result follows.

The proposition may have been enunciated previously;
however a very eminent mathematician stated at the meeting
of the British Association at Cheltenham in 1856, that he
had been unable to find it in print.

By means of Art. 50 we can deduce the following proposi-
tion respecting couples: 4 system of couples represented in
position and magnitude by the faces of a polyhedron will be
wn equilibrium, supposing the axes of the couples all to be
directed inwards or all outwards. This is given by Mcbius ;
Lehrbuch der Statik, Vol. 1. page 87.

Guldinus’s Properties.

144. 1If any plane figure revolve about an axis lying vn its
plane, the content of the solid generated by this figure in re-
volving through any angle s equal to a prism, of which the
base 1s the revolving figure and height the length of the path
;escnbed by the centre of gravity of the area of the plane

gure.

The axis of revolution in this and the following proposition
is supposed not to cut the generating curve.

Let the axis of revolution be the axis of z, and the
plane of the revolving figure in its initial position the plane

of (z, y); let B be the angle through which the figure
revolves.

The elementary area Az Ay of the plane figure in revolving
through an angle Af generates the elementary solid whose
volume is yAf Az Ay ; “therefore the whole sohg

= [[[7y de dy df = B(fy du dy.
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The limits of # and y depend on the nature of the curve.
But if y be the ordinate to the centre of gravity of the plane
figure, then, by Art. 118,

37=ffydelz/
[fdrdy ’

the limits being the same as before,

Therefore the whole solid = B[y dz dy =yBf(dz dy = the
arc described by the centre of gravity multiplied by the area
of the figure.

If any plane figure revolve about an axis lying in its plane,
the surface of the solid generated is equal in area to the rect-
angle, of which the sides are the length of the perimeter of the
generating figure and the length of the path of the centre of
gravity of the perimeter. ‘

The surface generated by the arc As of the figure revolving
through an angle Af is yAf As; therefore the whole surface

=({Py dsdf =By ds.

The limits depend on the nature of the curve. But if 5 be
the ordinate to the centre of gravity of the perimeter,

_[yds

the limits being the same as before.

Therefore the whole surface =y8[ds=the arc described
by the centre of gravity, multiplied by the length of the
perimeter.

Ex. 1. 7o find the solid content and the surface of the ring
Jormed by the revolution of a circle round a straight line in 1ts
own plane which it does not meet.

Let the distance of the centre of the circle from the axis of
revolution be @ ; let b be the radius of the circle; then the
length of the path of the centre of gravity of the area of the
figure is 27a, and the area of the figure is 7b*;

therefore the content of the solid = 27*ab’.
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Also the length of the path of the centre of gravity of the
perimeter is 27ra, and the length of the perimeter is 27b;

therefore the surface of the solid = 4n’ab.

Ex. 2. To find the centre of gravity of the area and also of
the arc of a semicircle.

A semicircle by revolving about its diameter generates

a sphere ; the content of the sphere is gvra’, and the surface

4ma’, the radius being a; the area of the semicircle is 5 ma’,

2
and the perimeter ma; therefore, the distance of the centre
of gravity of the area from the diameter

content of sphere 4a
= 24r. area of semicircle 37’

the distance of the centreof gravityof the arcfrom the diameter

_ _surface of sphere _ 2a
27r arc of semicircle =

Ex. 3. To find the surface and the solid content of the solid
Jormed by the revolution of a cycloid round the tangent at its
vertex.

In Art. 138 we have found 2.Ta, for the distance of the centre

of gravity of the arc of a cycloid from its vertex; and the
whole length of the arc is 8a. Therefore the surface of the
solid generated is .

27 X 20 x 8a; that is §2«mz".
3 3
And in Art. 113 we have found that the distance of the centre
of gravity of the area included between the cycloid and its
base from the vertex is %a; and the area so included is
3ma’. Hence the area of the portion which in the present
case revolves round the tangent is 4ma’—3wa’, that is ma’.
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And the centre of gravity of this area may be shewn to be at a
dista.nceg from the vertex. (See Ex. (2) of Art. 109.) There-

a

3 wa’®, that

fore the solid content of the figure generated is 27

is w'a’.

EXAMPLES.

1. Find the centre of gravity of five equal heavy par-
ticles placed at five of the angular points of a regular
hexagon.

2. TFive pieces of a uniform chain are hung at equidistant
points along a rigid rod without weight, and their lower ends
are in a straight line passing through one end of the rod;
find the centre of gravity of the system.

3. A plane quadrilateral ABCD is bisected by the dia-
gonal AC, and the other diagonal divides 4 C into two parts
in the ratio of p to ¢; shew that the centre of gravity of the
quadrilateral lies in A C and divides it into two parts in the
ratio of 2p + ¢q to p+ 2q.

4. From the fact that any system of heavy particles has
one centre of gravity and only one, deduce the property that
the straight lines joining the middle points of the opposite
sides of any quadrilateral figure bisect each other.

5. A pyramid stands on a square base: given the co-or-
dinates of the vertex, and the co-ordinates of two opposite
corners of the base, determine the co-ordinates of the centre
of gravity of the pyramid.

6. ABC is a triangle; D, E, F are the middle points of
its sides ; shew that the centre of gravity of the sides of ABC
coincides with the centre of the circle inscribed in DEF.

7. A piece of wire is formed into a triangle; find the
distance of the centre of gravity from each of the sides, and
shew that if #, y, z be the three distances, and r the radius
of the inscribed circle, then'

dayz—r (z+y+2)—1r"=0.
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8. If the centre of gravity of a four-sided figure coincide
with one of its angular points, shew that the distances of
this point and the opposite angular point from the straight
line joining the other two angular points are as 1 to 2.

9. Shew that the common centre of gravity of a right-
angled isosceles triangle, and the squares described on the
two equal sides, is at a distance=';/—§a from the point in

which those sides meet, a being the length of one of them.

10. Prove the following construction for the centre of
gravity of any quadrilateral. Let E be the intersection of
the diagonals, and F the middle point of the straight line
which joins their middle points; draw the straight line EF
and produce it to @, making FG =}EF; then G shall be
the centre of gravity required.

11. A triangle ABC is successively suspended from the
angles 4 and B, and the two positions of any side are at
ngit angles to each other; shew that

5¢* =a’+ b
12. A right-angled triangular lamina 4 BC is suspended

from a point D in its hypothenuse 4B; prove that in the
position of equilibrium 4B will be horizontal if

AD :DB:: AB*4+ AC?: AB*4 BC*.

13. A given isosceles triangle is inscribed in a circle ; find
the centre of gravity of the remaining area of the circle.

14. If three uniform rods be rigidly united so as to form
half of a regular hexagon, prove that if suspended from one
of the angles, one of the rods will be horizontal.

15. If ABC be an isosceles triangle having a right angle
at C, and D, E be the middle points of 4 C, 4B respectively,
prove that a perpendicular from £ upon B.D will pass through
the centre of gravity of the triangle BDC.

16. ABCDisany plane quadrilateral figure, and a, b, ¢, d
are respectively the centres of gravity of the triangles BOD,
CDA, DAB, ABC; shew that the quadrilateral abed is
similar to ABCD. ,
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17. A, B, C, D, E, F are six equal particles at the angles
of any plane hexagon, and a, b, ¢, d, ¢, f are the centres of
gravity respectively of ABC, BCD, CDE, DEF, EFA, and
FAB. Shew that the opposite sides and angles of the
hexagon abcdef are equal, and that the straight lines joining
opposite angles pass through one point, which is the centre of
gravity of the particles 4, B, C, D, E, F.

18. A straight line ED cuts off %th part of the right-

angled triangle 4 BC of which 4 is the right angle. 4B=aq,
AC=>. Shew that the centre of gravity of CEDB describes
the curve whose equation is

2 Bn—1)y—nb} 3 (n—1) s —nal.

19. The distance of the centre of gravity of any number
of sides 4B, BC, CD...... KL of a regular polygon from the
centre of the inscribed circle

_ AL x radius
T AB+BC+CD+...... +KL°

20. A frustum is cut from a right cone by a plane bisect-
ing the axis and parallel to the base; shew that it will rest
with its slant side on a horizontal table if the height of the
cone bear to the diameter of its base a greater ratio than

V7 to y17.

~ 21. If particles of unequal weights be placed at the an-
gular points of a triangular pyramid, and G, be their common
centre of gravity; @, G,,... their common centres of gravity
for every possible arrangement of the particles; shew that the
centre of gravity of equal particles placed at &,, &,,...is the
centre of gravity of the pyramid.

22. If a cone have its base united concentrically to the
base of a hemisphere of equal radius, find the height of the
cone that the solid may rest on a horizontal table on any
point of its spherical surface. Result, ry/3.

23. If any polygon circumscribe a circle, the centre of
gravity of the area of the polygon, the centre of gravity of
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the pervmeter of the polygon, and the centre of the circle, are
in the same straight line ; also the distance of the first point
from the third is two-thirds of the distance of the second
point from the third.

24, If any polyhedron circumscribe a sphere, the centre
of gravity of the wolume of the polyhedron, the centre of
gravity of the surfuce of the polyhedron, and the centre of
the sphere, are in the same straight line ; also the distance
of the first point from the third is three-fourths of the distance
of the second point from the third.

25. From a right cone the diameter of whose base is equal
to its altitude is cut a right cylinder the diameter of whose
base is equal to its altitude, their axes being in the same
straight line and the base of the cylinder lying in the base of
the cone; from the remaining cone a similar cylinder is cut,
and so on, indefinitely ; shew that the distance of the centre of
gravity of all the cylinders from the base of the cone is 3; of
the height of the cone, and that the distance of the centre of
gravity of the remaining portion from the base of the cone
18 4 of the altitude of the cone.

26. A square is cut from an equilateral triangle, a side
of the square coinciding with a side of the triangle; from
the equilateral triangle which remains another square is cut,
and so on, ad wnfinitum : find the centre of gravity of the sum
of the squares.

27, Find the centre of gravity of the area contained be-

tween the curves y* =ax and y’=2axz— 2", which is above

the axis of 2. —~ 15m—44 _ a
Results. z—a.'lm, y=m.

28. Find the centre of gravity of the area enclosed by

the curve r=a (1 + cos 6). Result. z=}a.
29. Find the centre of gravity of the area included by a
loop of the curve r = a cos 26. —_128ay2
Result. == .
1057
30. Find the centre of gravity of the area included by a
loop of the curve r = a cos 36. Result. 5= SLY5@

807r °
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31. The locus of the centre of gravity of all equal seg-
ments cut off from a parabola is an equal parabola,

32. Find the centre of gravity of a segment of a circle.
33. Find the centre of gravity of the area included by
the curves y* = ax and "= by.
Results. %= f;a*b}, 5= fabh.
34. Find the centre of gravity of a portion of an equi-

lateral hyperbola bounded by the curve, the transverse axis,
and a radius vector drawn from the centre. .

It z_ ¥y 2 .
Results. Y o —a 8log(@+y)—3loga’

where o/, y’ are the co-ordinates of the point of intersection of
the curve and the bounding radius vector.

35. Two equal circles of radius @ are drawn, each passing
through the centre of the other, and a third circle touches
both, having one of their points of intersection for its centre ;
the distance of the centre of gravity of the smaller area in-
cluded between the outer and inner circles from the common
radius of the first two is

12—271'4[.‘?a
2r—34/8

. 36. The density of a triangle varies as the n*™ power of
the distance from the base ; determine n when the centre of
gravity of the triangle divides the straight line joining the
vertex with the middle point of the base in the ratio of 3 to 1.

Result. n=—3%.

87. Find the centre of gravity of the volume formed by
the revolution round the axis of « of the area of the curve

y'—azy’+a'=0. Result. &= 3%

38. TFind the centre of gravity of the volume generated by
the revolution of the area in Ex. 27 round the axis of y.

- 5a
Result. y= m..-

T.8. . ' 12
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39. TFind the centre of gravity of a hemisphere when the
density varies as the square of the distance from the centre. -

— ba
.Result. &T = 1‘2 .

40. Find the centre of gravity of the solid generated by
a semiparabola bounded by the latus rectum revolving round
the latus rectum. .

Result. Distance from focus = ¢ of latus rectum.

41. The solid included between the surfaces of a con-
tinuous hyperboloid and its conical asymptote is cut by two
planes perpendicular to their common axis ; find the position
of the centre of gravity of that portion which lies between
the planes.

Result. Midway between the planes.

42. A solid sector of a sphere hangs from a point in its
circular rim with its axis horizontal, find its vertical angle.

Result. The cosine of the semi-vertical angle is §.

43. A solid is generated by the revolution of a semicircle
about a straight line perpendicular to the diameter, and
which does not meet the semicircle: find the distance of the
centre of gravity from the plane generated by the diameter.

4r
Result. g
44. A is a point in the generating line of a right cylinder
on a circular base, and B, C are two others in the generating
line diametrically opposite. The cylinder is bisected by a°
plane ABC, and one of the semicylinders is cut by two planes
at right angles to A BC, passing t{rough ABand AC. Shew
that if the solid ABC be placed with its convex side on a
‘horizontal plane, the plane 4BC will be inclined to the hori-
zon at an angle tan™ (#w), when there is equilibrium.

45. A solid cone is cut by two planes perpendicular to
the same principal section, one through its axis, and the
other parallel to a slant side; find the limiting value of the



_EXAMPLES OF CENTRE OF GRAVITY. 179

cosine of the vertical angle of the cone, that the piece cut
out may rest on its curved surface on a horigontal plane.
Result, 5.

46. A quadrant of a circle revolves round one of its
-extreme radii through an angle of 30° find the centre -of
gravity of the solid traced out, the density being supposed
to vary as the distance from the centre. :

Results. 5=§5‘3; g=35—“(2-43); z=g5‘i‘,. The axis of
is supposed to coincide with the initial position of the revolv-
ing radius. '

47. A solid is formed by the revolution of the area of the
curve y™*=az"™ round the axis of «; shew that the dis-
tance of the centre of gravity of any segment of this solid
from the vertex bears to the height of the segment the ratio
of 1 tom The segment is supposed cut off by a plane per-
pendicular to the axis.

48. Tind the centre of gravity of the surface of the solid
2*+ y* = 2az, cut off by the plane z=c.
- L .
Result. 5=(3c a) (@ +2¢)*+a ]
5 {(a + 20)% —at}

49. Apply Guldinug’s theorem to find the volume of the
frustum of a right cone in terms of its altitude and the radii

of its ends. Result l";—r(R'+Rr+r’).

50. Find the surface and the volume of the solid formed
by the revolution of a cycloid reund its base.

2
Results. 64ma

38

51. A segment of a circle revolves round its chord, which
subtends an angle of 90° at the centre ; find the surface and
_volume of the solid generated.

Results.

; br'a’,

ma'(d—7) o' (10-3m)w
V2 T eyz "
12—2
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52. An ellipse whose excentricity is % revolves about

any tangent line. Prove that the volume generated by one
portion into which the ellipse is divided by its minor axis
varies inversely as the volume generated by the other portion.

53. A plane area moves in such a manner as to be always
normal to the curve along which its centre of gravity moves;
prove that the volume generated is equal to the given area
multiplied by the length of the path of the centre of gravity.

Hence find the volume of a cycloidal tube whose normal
section is of constant area.

54. Extend Guldinus’s theorem for finding the volume of
a ring to the case in which the ring is formed by the revolu-
tion of a plane area about a straight line parallel to its plane.

A ring is formed by the revolution of the lemniscate
(whose*equation is 7* = a* cos 26) about a straight line parallel
to its plane situated in a plane drawn through its double
point and pe: andicula.r to 1ts axis : shew that the volume of

NP o : :
this ring is W
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CHAPTER IX.

MACHINES.

145. A MACHINE is an instrument, or a system of solid
bodies, for the purpose of transmitting force from one part to
another of the system. -

It would be endless to describe all the machines that have
been invented; we shall consequently confine ourselves to
those of simple construction. The most simple machines are
denominated the Mechanical Powers. These we shall ex-
plain, and also a few combinations of them.

146. A Lever is an inflexible rod moveable only about a
fixed axis, which is called the fulcrum. The portions of the
lever into which the fulcrum divides it are called the arms of
the lever: when the arms are in the same straight line, it is
called a straight lever, and in other cases a bent lever.

Two forces act on the lever about the fulcrum, called
the Eo'we'r and the weight : the power is the force applied by
the hand, or other means, to sustain or overcome the other
force, or the weight. There are three species of levers : in the
first the fulcrum is between the power and the weight; in the
second the weight acts between the fulcrum and the power;
and in the third the power acts between the fulecrum and the
weight. .

147. To find the conditions of equilibrium of two forces
acting in the same plane on a lever. :
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Let the plane of the paper be the plane in which the
forces act, and also be

perpendicular to the axis,
of which C is the pro-
jection, and about which
the lever can move; 4, B
the points of application
of the forces P, W; a, B
the angles which the direc-
tions of the forces make
with any straight line ¢ Cb -
drawn through C on the
paper. Let % be the pres-
sure on the fulerum, and @ the angle which it makes
with the straight line a(Cb; then if we apply a force R
in the direction OR, we may suppose the fulcrum re-

moved, and the body to be held in equilibrium by the
forces P, W, R.

We shall resolve these forces in directions parallel and
perpendicular to aCb; and also take their moments about C;
then by Art. 57 we have the following equations:

Pcosa— WeosB—Rcosf=0............ @),
e Psina + Wsin8— Rsinf =0............ (2),
and P.CD-W.CE=0....... weeer(8)s

OD and CE being drawn perpendicular to the directions of
Pand W.

 These three equations determine the ratio of P to W when
there is equilibrium ; and the magnitude and direction of the
pressure on the fulcrum,

~ For equation (8) gives

P CE _ perpendicular on direction of W
W OD ~perpendicular on direction of P

Also by transposing the last terms of (1) and (2), we have
' Recos@=Pcosa— Wcogﬂ, C
Rsin §=Psina+ Wsinf.
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Add their squares; therefore :
R'= P+ W*—2PWcos (2 + ),
which gives the magnitude of R.

- From (1) and (2) by transposition and division
Psina+ Wsin 8
Pcosa— WeosB’.
which gives the direction of the pressure.

tan 6=

If we suppose B to be the fulecrum and take the moments
about B instead of C, we bave instead of equation (4) the
following :

P _ perpendicular on direction of B 5)
R~ perpendicular on direction of P*****"""""" '

This is not a new equation of condition; but is a conse-
quence of the three already given, (1), (2), (3). To shew this,
imagine 4D and BE produced to meet CR: they will meet
this straight line at the same point, since the distances by these
two constructions are CD cosec (6 —a) and CE cosec.(0+ 8);
and these are made equal, by equations (1), (2), (3), if we
eliminate Pand W. Suppose, then, F'to be the point at which

, these straight lines meet. By multiplying (1), (2), respec-
tively by sin 8 and cos 83, and adding, we have

P _sin(0+B)_ FBsin(60+8)

B sin(a+pB) FBsin(a+P)
_ perpendicular on direction of B
" perpendicular on direction of P

therefore this equation is a consequence of the equations
(1), (2), (3), as might have been anticipated.

It follows, then, that the condition of equilibrium in a lever
of any species 1s that the two forces must be inversely as the
perpendiculars drawn on their directions from the fulcrum and
the forces must act so as to tend to turn the lever in oppostte
directions round the fulcrum.

148. This property of the lever renders it a useful in-
strument in multiplying the efficacy of a force. For any two
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forces, however unequal in magnitude, may be made to balance
each other simply by fixing the fulerum so that the ratio of its
distances from the directions of the forces shall be equal to the
inverse ratio of the forces. If the fulerum be moved from this
position, then that force will preponderate from which the ful-
crum is moved and the equilibrium will be destroyed. We are
thus led to understand how mechanical advantage is gained
by using a crow-bar to move heavy bodies, as large blocks of
stone: a poker to raise the coals in a grate: scissors, shears,
nippers, and pincers; these last consisting of two levers of
the first kind. The brake of a pump is a lever of the first
kind. In the Stanhope printing-press we have a remarkable
illustration of the mechanical advantage that can be gained
by levers. The frame-work in which the paper to be printed
is fixed, is acted on by the shorter arm of a lever, the other
arm being connected with a second lever, the longer arm of
which is worked by the pressman. These levers are so ad-
Jjusted that at the instant the paper comes in contact with the
types, the perpendiculars from the fulcra on the directions
of the forces acting at the shorter arms are exceedingly short,
and consequently the levers multiply the force exerted by the
pressman to an enormous extent.

- As examples of levers of the second kind, we may mention
a wheelbarrow, an oar, a chipping-knife, a pair of nutcrackers.

It must be observed, however, that as the lever moves
about the fulcrum the space through which the weight is
moved is, in the first and second species of lever, smaller
than the space passed through by the power: and therefore
what is gained 1n power is lost in despatch. For example
in the case of the crow-bar : to raise a block of stone through
a given space by applying the hand at the further extremity
of the lever, we must move the hand through a greater space
than that which the weight describes.

But in the third species of lever the reverse is the case.
The power is nearer the fulcrum than the weight, and is con-
sequently greater ; but the motion of the weight is greater
than that of the power. In this kind of lever despatch is
gained at the expense of power. An excellent example is
the treddle of-a turning lathe. But the most striking ex-
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ample of levers of the third kind is found in the animal frame,
in the construction of which it seems to be a Erevai]ing prin-
ciple to sacrifice power to readiness and quickness of action.
The limbs of animals are generally levers of this description.
The condyle of the bone rests in its socket as the fulcrum; a
strong muscle attached to the bone near the condyle is the
power, and the weight of the limb together with any re-
sistance opposgd to its motion is the weight. A slight con-
traction of the muscle gives a considerable motion to the limb.

149. The lever is applied to determine the weight of
substances. Under this character it is called a Balance. The
Common Balance has its two arms equal, with a scale sus-
pended from each extremity; the fulcrum being above the
centre of gravity of the beam and therefore above the centre
of gravity of the system formed by the beam, the scales, and
the weights in the scales. The substance to be weighed is

laced in one scale, and weights placed in the other till the

eam remains in equilibrium in a perfectly horizontal posi-
tion ; in which case the weight of the substance is indicated
by the weights by which it is balanced. If the weights differ
ever go slightly the horizontality of the beam will be dis-
turbed, and after oscillating for some time, in consequence of
the fulcrum being placed above the centre of gravity of the
system, it will, on attaining a state of rest, form an angle
with the horizon, the extent of which is a measure of the
sensibility of the balance.

When we take the weight in the other scale as a measure of
the weight of the substance we are weighing, we assume that
the arms of the lever are of equal length and that the beam
would be itself in equilibrium if the scales were empty. We -
can ascertain if these conditions are satisfied by observing
whether equilibrium still subsists when the substance is trans-
ferred to the scale which the weight originally occupied and
the weight to that which the substance originally occupied.

150. In the construction of a balance the following re-
quisites should be attended to. )

(1) When loaded with equal weights the beam should be
perfectly horizontal.

(2) When the weights differ, even by a slight quantity,
the sensibility should be such as to detect this difference,
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(8) When the balance is disturbed it should readily return
to its state of rest, or it should have stability.

‘We shall now consider how these requisites may be satisfied.

To find how the requisites of a good balance may be satisfied.
- Let P and @ be the weights in the scales; let 4B = 2a.

Let C be the fulecrum, 4 its distance from the straight line
which joins 4 and B. Let W be the weight of the beam,
k the distance of the centre of gravity of the beam from C;
this centre of gravity being supposed to lie on the perpen-
dicular from C on the straight line which joins 4 and B.
Let S be the weight of each scale; so that P and S act
vertically through 4, and @ and 8 vertically through B.
Let 6 be the angle which the beam makes with the horizon
when there is equilibrium,

The sum of the moments of the weights round C will be
zero when there is equilibrium, by Art. 57. Now the length
of the perpendicular from C on the line of action of Pand §
is acos@ —hsin @; the length of the perpendicular from C
on the line of action of @ and S is acos@+ Asin@; and the
length of the perpendicular from C' on the line of action of W
is k sin 6. Therefore

(@+8) (acos+ksin ) — (P+8) (acos @ —hsin 6) + Wiksin6=0;

_ (P-Qa
therefore tane-(P_l_ 028 Ry WE
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This determines the position of equilibrium. The first
requisite—the horizontality when P and @ are equal—is
satisfied by making the arms equal.

For the second we observe that for a given difference of P
and @ the sensibility is greater the greater tan 6 is; and for
a given value of tan @ the sensibility is greater the smaller
the difference of P and @ is: hence %’f—z i8 a correct measure
of the sensibility : and therefore the second requisite is ful-

filled by making (P+ @+ 28) % + ng as small as possible.

The stability is greater the greater the moment of the
forces which tend to restore the equilibrium when it is de-
stroyed. Now this moment is '

{(P+ Q+28)h+ Wk}sin— (P— Q) acosb,
or supposing P and @ equal it is
A(P+Q+28)h+ Wk}sin 6.

Hence to satisfy the third requisite, this must be made as
large as possible. This is, in part, at variance with the
second requisite. They may, however, both be satisfied by

“making (P+ Q + 28) 2 + Wk large, and a large also: that is,
by increasing the distances of the fulcrum from the beam
and from the centre of gravity of the beam, and by lengthen-
ing the arms,

It must be remarked that the sensibility of a balance is of
more importance than the stability, since the eye can judge
pretty accurately whether the beam makes equal oscilla-
tions on each side of the horizontal line; that is, whether
the position of rest would be horizontal ; if this be not the
case, then the weights must be altered till the oscillations are
nearly equal.

" 151. Another kind of balance is that in which the arms
are unequal, and the same weight is used to weigh different
substances by varying its point of support, and observing its
distance from the fulcrum by means of a graduated scale.
The common steelyard is of this description.
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152. To shew how to graduate the common steelyard.
Let 4B be the beam of the steelyard. A the fixed point

] r &
as l"a'4 HB

from which the substance to be weighed is suspended, @
being its weight ; C' the fulecrum ; W the weight of the beam
together with the hook or scale-pan suspended from 4; G
the centre of gravity of these.

Suppose that P suspended at N balances @ suspended from
4 ; then, taking the moments of £, @, and W about C, we

have:
: Q.A0-W.CG—-P.CN=0;
N+ .06
therefore Q= TP'
Take the point D, so that CD= v?}r C@; therefore
' _ON+0D, DN
O=—Z¢ P=Zo

Now let the arm DB be graduated by taking Da,, Da,
Da,,...... equal respectively to 4C, 24C,340C...... ; let the
figures 1, 2, 3, 4, ...... be placed over the points of gradua-
tion, and let subdivisions be made between these. Then by
observing the graduation at N we know the ratio of @ to P;
and P being a given weight we know the weight of ¢. In
this way any substance may be weighed.

153. The second of the Mechanical Powers is the Wheel
“and Axle. This machine consists of two cylinders fixed
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together, with their axes in the same straight line: the larger
cylinder is called the wheel, and the smaller the axle. The
cord by which the weight is suspended is fastened to the
axle, and then coiled round it, while the power which sup-
ports the weight acts by a chord coiled round the circumference
of the wheel, by spokes acted on by the hand, as in the cap-
stan, or by the hand acting on a handle, as in the windlass. -

164. To find the ratio of the power and weight in the
Wheel and Axle when in equilibrium.

Let AD be the wheel and CC'B the axle; P the power
represented by a weight suspended
from the circumference of the wheel
at A; W the weight hanging from
the axle at B.

Then since the axis of the machine
is fixed, the condition of equilibrium
is that the sum of the moments of
the forces about this axis vanishes,
(Art. 87) ; therefore

P x rad. of wheel = W x rad. of axle;

W _rad. of wheel
P rad. of axle °

It will be seen that this machine is only a modification of
the lever. In short it is an assemblage of levers all having
the same axis: and as soon as one lever has been in action the
next comes into play; and in this way an endless leverage is
obtained. In this respect, then, the wheel and axle surpasses
the common lever in mechanical advantage. It is much used
in docks and in shipping.

therefore

155. The third Mechanical Power is the Toothed Wheel.
It is extensively applied in all machinery; in cranes, steam-
engines, and particularly in clock and watch work. If two
circular hoops of metal or wood having their outer circum-
ferences indented, or cut into equal teeth all the way round,
be so placed that their edges touch, one tooth of one circum-
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ference lying between two of the other (as re(i)resented in the
figure) ; then if one of them be turned round by any means,
the other will be turned round also. This is the simple con-
struction of a pair of toothed wheels. :

156. To find the relation of the power and weight n
- Toothed Wheels.

Let 4 and B be the fixed centres of the toothed wheels

Q

on the circumferences of which the teeth are arranged; Cthe

oint of contact of two teeth; QCQ a normal to the surfaces
1n contact at C. Suppose an axle is fixed on the wheel B,
and the weight W suspended from it at £ by a cord; also
suppose the power P acts by an arm 4D ; draw 4a, Bb per-

endicular to QCQ. Let the mutual pressure at C be Q.
Then, since the wheel 4 is in equilibrium about the fixed
axis 4, the sum of the moments about 4 equals zero; there-

fore
P.AD—- Q.Aa=0.

Also since the wheel B is in equilibrium about B, the sum of
the moments about B equals zero; therefore

Q.Bb— W.BE=0.
Then by eliminating @ from these two equations,
P_P Q_Aa BE
W QW 4D By’ '
moment of P _ 4a
moment of W Bb*
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when the teeth are small this ratio very nearly

_ rad. of wheel 4
" rad. of wheel B’

157. 'Wheels are in some cases turned by means of straps
passing over their circumferences. In such cases the minute
protuberances of the surfaces prevent the sliding of the straps,
and a mutual action takes place such as to render the calcu-
lation exactly analogous to that in the Proposition.

For the calculation of the best forms for the teeth, the
reader is referred to works which discuss the subject of
machinery.

158. The fourth Mechanical Power is the Pully. There
are several species of pullies: we shall mention them in order.
The simple pully is a small wheel moveable about its axis:
a string passes over part of its circumference. If the axis is
fixed the effect of the pully is only to change the direction of
the string passing over it: if however the axis be moveable,

then, as will be presently seen, a mechanical advantage may
‘be gained.

It is sometimes assumed as axiomatic that if a perfectly
flexible string passes over a smooth surface the tension of the
string will be the same throughout; we shall see, however, in
the Chapter on Flexible Strings that this result admits of
demonstration. In the present Chapter we shall only require
a part of the general proposition. We shall suppose the pul-
lies to be circular, and assume that the tensions of the two
portions of any string which are separated by a portion in
contact with a pully are equal. And this may be shewn to
be necessarily true if we merely admit that the string is
a tangent to the circle at the point where it ceases to be in
contact with the pully. For since the pully is smooth the
directions of all the forces which it exerts on the string must
pass through the centre of the pully; hence if we take the
moments with respect to this point of the forces which act on
the string we see that the string cannot be in equilibrium
unless the tensions of the two portions are equal.
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159. To {ind the ratio of the power and weight in the
single moveable Pully.
" I Suppose the parts of the string divided by the pully
are parallel.

_

| @

Let the string ABP have one extremity fixed at 4, and
after passing under the pully at B suppose it held by the
hand exerting a force P, or it may be passed over a fixed
pully. The weight W is suspended by astring from the
centre C of the pully.

Now the tension of the string A BPis the same throughout.
Hence the pully is acted on by three parallel forces, P, P,
and W; hence

2P - W=0; therefore %V =2,

IL. Suppose the portions of the string are not parallel.
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Let a and o be the angles which 4a and Pb make with
the vertical..

Now the pully is held in equilibrium by W in CW, P in

ad, and Pin bP. Hence, resolving the forces horizontally
and vertically, :

Pging— Psina'=0 ........ veeentenne (1),
Peosat+Pcosa —W=0 ..c.ccovurennnn @
the equation of moments round C is an identical equation.
By (1), sina=sina’ and a=4';
therefore, by (2), —g =2 cosa,

which is the relatién required.

160. To find the ratio of the power and weight in a system
of pullies, in which each pully hangs from a fized point by a
separate string, one end being fastened in the pully above it and
the other end on a fized beam, and all the strings betng parallel.

Let n be the number of moveable pullies. -

I. TLet us neglect the weight of the
pullies themselves. Then -

tension of b, W= W;
tension of abb,=1W;

tension of a,b,b,=2l, w;
tension of ab,c = ;;, W,

and so on; and the tension of the string

passing under the n'* pully = 21—_ W, and

this is equal to P ; therefore
w

—- =2"

P . .
T. 8. 13
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II. Let us suppose the weights of the pullies to be con-
sidered ; and let w,, w,, w,,...®, be these weights.

Then if p,, p,, Py-..ps be the weights which they would
sustain at P, and #, the weight which W would sustain at
P, we have

o, o, w

pl=§:’ P:=2T—n ...... p.=?, Pl'—‘ﬁ;
therefore P=p +p,+...... +p.+ P,

or P=%{W+ml+ 20,4+ 2’0, +...... +2"‘m,,}

fo=0,=0,=...=0,

P=21;{W+ (@ ~1)m), that is P—w, =2, (W-w,).

161. To find the ratio of the power and weight when the
system 18 the same as wn the last Proposition, but the strings
are not parallel.

We shall neglect the weights of the blocks. The pullies
will evidently so adjust themselves that the string at the
centre of any pully will bisect the angle between the strings
touching its circumference. .

Let 2a,, 22, 21,,...22, be the angles included between

the strings touching the first, second, third, ...... a*" pullies
respectively. ' ‘
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Then, by Art. 159,
tension of aBb, = 50— ;
2cos a,
tension of @b, = ’____W_’___
2* cos a, cos a,
tension of abc = W
2* cos a, cos a, cos a,
w

tension of the last stl'illg = 2* cos a, CO8 a, COS &, ...CO8 a, ’

and this is equal to P; therefore
W_on
y = 2" cos a, CO8 a, COS a,...CO8 a,,.

162. To find the relation of the power and weight in a
system of pullies where the same string passes round all the
pullies.

This system consists of two blocks, each containing a
pumber of the pullies with their axes coincident. The weight, |
is suspended from the lower block, which is moveable, and
the power acts at the loose extremity of the string, which
passes round the respective pullies of the upper and lower
block alternately.

Since the same string passes round all the pullies, its
tension will be everywhere the same, and equal to the power
P. Let n be the number of portions .of string at the lower
block ; then n.P will be the sum of their tenslons therefore

W=n.P.

If we take into account the weight of the lower block, and
call it B, then

W + .B =n. .P .
If the strings at the lower block are not vertical, we must
take the sum of the parts resolved vertically, and equate it to

W. But in genera thls deviation from the vertical is so
slight that it 1s neglected.

13—2
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163. As the weight is rising or falling, it will be observed
that in general the pullies move with different angular mo-
tions. '%he degree of angular motion of each pully depends
upon the magnitude of its radius. Mr James White took
advantage of this, to choose the radii of the pullies in such a
manner as to give those in the same block the same angular
motion, and so to prevent the wear and resistance caused by
the friction of the pullies against each other. This being the
case, the pullies in each block might be fastened together, or,
instead of this, cut out of:one mass.

It will be seen without much difficulty, that if the weight
W hbe raised through a space a, each of the portions of string
between the two blocks will be shortened by the length a;
and therefore, that the portions of string which move over.
the pullies in the two blocks, taken alternately, will have
their lengths equal to a, 2a, 3a, 4a... Suppose the end of
the string fastened to the lower block ; then if the radii of
the pullies of the upper block be proportional to the odd
numbers-1, 3, 5,...... these pullies will move with the same
angular velocity, and might be made all in one piece, as
mentioned above. And if the radii of the lower pullies be
proportional to the even integers 2, 4, 6,... these also will
move with a common angular velocity, and might therefore
be cut out of one piece.

164. To find the ratio of the power to the weight when all
the strings are attached to the weight. '
- If we neglect the weights of the pullies, Fa

the tension of. the string b,a, = P; the ten- ]
sion of ab,=2P; and so on: if there be
n pullies, then the sum of the tensions of
the strings attached to the weight '

=P +2P+2'P+ ...+ 2" P=(2"-1) P;

therefore g =" - 1.

If we suppose the weights of the pullies are
©, 0y Oy, ... reckouning from the lowest, and
o, »’, ”,... the portions of W which they-
respectively support, since they evidently
assist P, and W’ the portion of W sup-
ported by P; then ‘

-
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W' =(2"-1) P, '

o' =(2"1=1) o,
0 =2 -1)o,

0" N=(2~-1)w

n-1)

therefore W= W'+ +...... =@Q"-1)P+(2"'-1) o,
+@7-Do,+..... +2-1o,_.
If o,=0,=0,=......
We=(2—1) P+ {2 4 2% 4 eoov 42 = (1~ D)} o,

=2 -1)P+ 2 —n-1) o,

165. The fifth Mechanical Power is the Inclined Plane.

By an inclined plane We mean a plane inclined to the
horizon. A weight W may be supported on an inclined
plane by a power P less than W.

166. 7o find the ratio of the power and weight in the
tnclined plane.

Let AB be the inclined plane; 2
a the angle which it makes with the
horizon. Let the power P act on R A
the weight in the direction CP, P
making an angle e with the plane.
Now the weight at C is held at
rest by Pin CP, Win the vertical ¢
CW, and a pressure B in CR, at
right angles to the plane. w
Hence, by Art. 27, if we resolve
these forces perpendicular and par- %
allel to the plane, we have B

R+Psine— Wecosa=0.....u....... (1),
Pcose— Wsina=0............... (2).

. . . . P sina
The second equation gives the required relation W oose’

and the first equation gives the magnitude of the pressure R.
If P act horizontally, ¢ =—a, and P = W tan a.

& owem. s w amr . .. EEREERE NP, e A aree e e e e
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If P act parallel to the plane, e =0, and P= Wsina.
If P act vertically, e=4m —q, and P= W,

167. The sixth Mechanical Power is the Wedge. This
'is a triangular prism, and is used to separate obstacles by
introducing its edge between them and then thrusting the
wedge forward. This is effected by the blow of a hammer or
.other such means, which produces a violent pressure for a
short time, sufficient to overcome the greatest forces.

168. An sosceles wedge is kept in equilibrium by pressures
on s three faces; to find the relation between them.

2P

The above three figures represent the wedge and obstacles
together and separately.

Let 2P denote the force acting perpendicularly to the thick
end of the wedge ; R and R’ the forces which act on the other
faces of the wedge : these forces are perpendicular to the faces
since the wedge 1s supposed smooth.

Let 2a be the vertical angle of the wedge.

Resolve the forces which act on the wedge in directions
perpendicular and parallel to.the thick end; then for the
equilibrium of the wedge we have

2P=(R+R)sing,
Rcosa= R cosa;
therefore R=R,
P=Rsina
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We do not write down the equations of equilibrium of the
obstacle, because we do not know the forces exerted on it at
different points of its base by the ground on which it rests.

It is usual to resolve the force £ which acts on the wedge
and obstacle into two components; one along the straight line in
which 4, the point of the obstacle in contact with the wedge,
would begin to move if the wedge were pushed further into the
obstacle, and the other at right angles to this direction. Let
AB be the first direction, making an angle ¢ with the direction
of R ; then the resolved part of £ in this direction is R cos g,
which we will call S;

therefore S ost"
As however nothing is known about the value of the angle <,
the result is of no practical value.

169. The last Mechanical Power is the Screw. This
machine in its simple construction

consists of a cylinder AB with a F%
uniform projecting thread abcd... B

traced round its surface, and making «

a constant angle with straight lines. 5(;4 -

parallel to the axis of the cylinder. ke

This cylinder fits into a block D ]

pierced with an equal cylindrical /~ (_~ Ed
aperture, on the inner.surface of (D 3
which is cut a groove the exact 7 = p
counterpart of the projecting thread

abed......

It is easily seen from this de-

scription, that when the cylinder is introduced into the block,
the only manner in which it can move is backwards or for-
wards by revolving about its axis, the thread sliding in the
groove. Suppose W to be the weight acting on the cylinder,
including the weight of the cylinder itself, and P to be the
power acting at the end of an arm 4 C at right angles to the
axis of the cylinder; the block D is supposed to be firmly
fixed, and the axis of the cylinder to be vertical.

170.  To find the ratio of the power and weight in the Screw
when they are in equilibrium.
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Let the distance of C from the axis of the cylinder =a;
and the radius of the cylinder =b.

Now the forces which hold the cylinder in equilibrium are
W, P, and the reactions of the pressures of the various por-
tions of the thread on the corresponding portions of the lower
surface of the groove in which the thread rests; these re-
actions are indeterminate in their number but they all act in
directions at right angles to the surface of the groove, and
therefore their directions make a constant angle with the axis

of the cylinder. Let g —a be the angle which the thread of

the screw makes with the axis of the cylinder, then « is the
angle which the direction of each reaction makes with the
axis of the cylinder. If, then, R be one of these reactions,
Rcosa, Rsina are the resolved parts vertically and horizon-
tally ; the horizontal portions of the reactions act each at
right angles to a radius of the cylinder. Hence, resolving
the forces vertically, and also taking the moments of the
forces in horizontal planes, we have

W—2.Rcos8a=0.ccceierrirunrnnne. 1,
Pa—3,, Rbsina=0......... crrneneees 2):
we might write down the other four equations of equilibrium,

but they introduce unknown quantities with which we are
unconcerned in our question.

i W acosas.R
Hence P isnaS R’ because b and a are constant,
acosa 2ma

“bsina 2nbtana

_ circnmference of circle of which the radius is a
~ vertical dist. between two successive winds of the thread °

The Screw is used to gain mechanical power in many ways.
In excavating the Thames Tunnel, the heavy iron frame-work
which supported the workmen was gradually advanced by
means of large screws.
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MISCELLANEOUS EXAMPLES.

1. If one arm of a common balance be longer than the
other, shew that the real weight of any body is the geometri-
cal mean between its apparent weights as weighed first in one
scale and then in the other.

2. The arms of a false balance are unequal, and one of
the scales is loaded ; a body whose true weight is P lbs. ap-
pears to weigh Wlbs. when placed in one scale, and W’ lbs.
when placed in the other scale: find the ratio of the arms
and the weight with which the scale is loaded.

wW-P WW-P
Results. PW P-wW" .

3. A triangular lamina 4 BC, whose weight is W, is sus-
pended by a string fastened at C': find the weight which
must be attached at B that the vertical through C may bisect
the angle ACB.

Result. X 2=9,
3 a

4. Two equal weights are suspended by a string passing

freely over three tacks, which form an isosceles triangle whose

base is horizontal: find the vertical angle when the pressure
on each tack is equal to one of the weights,  Result. 120"

5. A uniform heavy rod, at a given point of which a
given weight is attached, is sustained at one end; determine
1ts length when the force which applied at the other end will
keep it horizontal is least.

6. ABGC, DEF are two horizontal levers without weight ;
B, F their fulcrums: the end D of one lever rests on the
end O of the other; HK is a rod without weight suspended by
two equal parallel strings from the points E, G. Prove that
a weight P at 4 will balance a weight W placed anywhere
on the rod HK, provided

EF BG ., P BG

7F=Bc ™ w=aB
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7. If the axis about which a wheel and axle turns coin-
cide with that of the axle, but not with the axis of the wheel,
find the greatest and least ratios of the power and weight
nﬁgessa.ry for equilibrium, neglecting the weight of the ma-
chine.

8. In the system of pullies where each string is attached
to the weight, let one of the strings be nailed to the block
through which it passes, then shew that the power may be
increased up to a certain limit without producing motion.
If there be three pullies, and the action of the middle one
be checked in the manner described, find the tension of each
string for given values of P and W.

9. A weight w is supported on an inclined plane by two
forces, each equal to %, one of which acts parallel to the
base. Shew that equilibrium may be possible when the in-
clination of the plane is not greater than 2 tan™ (1%) , n being

& positive integer.

10. A weight is suspended from the two ends of a straight
lever without weight whose length is 5 feet, by strings whose
lengths are 8 and 4 feet. Find the position of the fulcrum
that the lever may rest in a horizontal position. '

Result. At a distance 3} feet from that end of the lever to
which the longer string is fastened.

11. A uniform steelyard 4B, having a constant weight P,
and a scale-pan of weight P, suspended at B and 4 respec-
tively, is used as a balance by moving the rod backwards and
forwards upon the fulecrum C, on which the whole rests.
Shew that the beam must be graduated by the formula

_ 143K :
Aa_n+k+k'+1'AB’

the weight of the rod being %'P, and n being each of the
natural numbers 1,2, 3, ... taken in succession.
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12. ABis a rod without weight capable of turning freely
about its extremity 4, which is fixed; CD is another rod
equal to 245, and attached at its middle point to the ex-
tremity B of the former, so as to turn freely about this point:
a given force acts at C in the direction CA, find the force
which must be applied at D in order to produce equilibrium.

13. A lever without weight in the form of the arc of a
circle, having two weights P and ¢ suspended from its ex-
tremities, rests with its convexity downwards on a horizon-
tal plane: determine the position of equilibrium.

Result. Let a be the angle which the arc subtends at the
centre of the circle, @ the inclination to the vertical of the
radius at the extremity of which P is suspended ; then

_ —@sina
tana_P+.Qcosa' ‘

14. The sides of a thombus ABCD are hinged together
at the angles; at 4 and C are two pulling forces (P, P)
acting in the diagonal 4C; and at B and D there are two
other pulling forces (@, @) acting in BD: shew that

_r-¢
COSBAD—W.

15. 4B, BC are two equal and uniform beams connected

by a hinge at B; there is a fixed hinge at 4; a string fast-
" ened at C passes over a pully at D and is attached to a

weight P; AD is horizontal and equal to twice the length of
either beam : shew that if P be such as to keep BC horizontal
P=TW.y$ and tan =2 tan ¢ =24/2, where @ and ¢ are
the angles which 4B, CD make with the horizon, and 2 W
the weight of each beam.

16. A string ABCDEP is attached to the centre 4 of a
pully whose radius is »; it then passes over a fixed point B
and under the pully which it touches at the points €' and D;
it afterwards passes over a fixed point £ and has a weight P
attached to its extremity; BE is horizontal and = §», and
DE is vertical : shew that if the system be in equilibrium the
weight of the pully is §P, and find the distance AB.

8
Result. AB= W
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17. Three uniform rods rigidly connected in the form of a
triangle rest on a smooth sphere of radius »; shew that the
tangent of the inclination of the plane of the triangle to the

horizon is W'G—T' where a is the distance of the centres of

the circles inscribed in the triangle itself and in the triangle
formed by joining the middle points of the rods, and p is the
radius of the circle inscribed in the triangle.

18. If a steelyard be constructed with a given rod whose
weight is inconsiderable compared with that of the sliding
_weight, the sensibility varies inversely as the sum of the
sliding weight and the greatest weight which can be weighed.

19. A heavy equilateral triangle hung up on a smooth
peg by a string, the ends of which are attached to two of its
angular points, rests with one of its sides vertical : shew that
the length of the string is double the height of the triangle.

© 20. Three equal heavy spheres lying in contact on a hori-
zontal plane are held together by a string which passes round
them. A cube, whose weight is W, is placed with one of its
diagonals vertical so that 1ts lower faces touch the spheres;
shew that the tension of the string is not less than 277? .

21. A roof of given span is to be constructed of two beams,
which are to be connected at the vertex by a single pin, and
the weight of the roof would increase in proportion to the
length of the beams: find the angle of inclination to the
horizon, when the whole pressure on the wall is the least
possible.

Shew that the direction of the line of pressure will then
make the same angle with the vertical line which the beam
makes with the horizontal line.

22. An endless string supports a system of equal heavy
pullies, the highest of which 1s fixed, the string passing round
every pully and crossing itself between each. If a, 8, %, &c.
be the inclinations to the vertical of the successive portions of
string, prove that cos a, cos B, cosry, &c. are in arithmetical
Pprogression, " T
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23. Three equal heavy cylinders, each of which touches
the other two, are bound together by a string and laid on a
horizontal table so that their axes are horizontal: the tension
of the string being given, find the pressures between the
cylinders. '

Results. The horizontal pressure = T—%, the other
=T+ % ; where 7T'is the tension of the string, and W the
weight of each cylinder. :

24. A string of equal spherical beads is placed upon a
smooth cone having its axis vertical, the beads being just in
contact with each other, 8o that there is no mutual pressure
between them. Find the tension of the string; and deduce the.
limiting value when the number of beads is.indefinitely great.

25. A smooth cylinder is supported on an inclined plane
with its axis horizontal, by means of a string which, passing
over the upper surface of the cylinder, has one end attached
to a fixed point and the other to a weight W which hangs
freely: if a be the inclination of the plane to the horizon,
and 6@ the inclination to the vertical of that part of the string
which is fastened to the fixed point, the weight of the

cylinder is
sin 36 cos (a + 36)
sin a ‘

26. An inextensible string binds tightly together two
smooth cylinders whose radii are given: find the ratio of the
pressure between the cylinders to the tension by which it is
produced. o

4(rr) . .

Result. T{_—;;' ; where », and 7, are the given radii.

1 ]

27. A ring whose weight ig P is moveable along a smooth
rod inclined to the horizon at an angle a; another ring of
weight P is moveable along a rod in the same vertical plane
as the former and inclined at an angle a' to the horizon; a
string which connects these rings passes through a third ring
of weight 27 shew that the system cannot be in equilibrium
unless ' '

2w

Ptana—P tand + W (tana — tan a’) =0,
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28. A ball of given weight and radius is hung by a string
of given length from a fixed point, to which is also attached
another given weight by a string so long that the weight
hangs below the ball : find the angle which the string to
which the ball is attached makes with the vertical.

Result. Let Q be the weight of the ball, P the weight
which hangs below the ball, @ the radius of the ball, [ the
length of the string; then the inclination of the string to the

P a
s 1o
vertical is sin ( PrQatl l) .

29. A right cone whose axis is a and vertical angle is

2 sin™ ~/ (g) is placed with its base in contact with a smooth

vertical wall, and its curved surface on a smooth horizontal
rod parallel to the wall: shew that it will remain at rest if
the distance of the rod from the wall be not greater than a
nor less than o.

7

30. A paraboloid is placed with its vertex downwards and
axis vertical between two planes each inclined to the horizon
at an angle of 45°: find the greatest ratio which the height of
the paraboloid may have to its latus rectum, so that, if it be
divided by a plane through its axis and the line of intersec-

tion of the inclined planes, the two parts may remain in-

equilibrium ; also find the least ratio.

Result. Let h be the height and 4a the latus rectum ; then
the greatest and least ratios are determined respectively by

32 32 :
3a=m;,/(qh), h+ﬁ-_’;~/(ah)=3a

81. Three bars of given length are maintained in a hori-
zontal position, and tied together at their extremities so as
to form a horizontal triangle; and a smooth sphere of given
weight and size rests upon them. Find the pressure of the
sphere on each bar.

A
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. 32, One end of a string is fastened to a point in a smooth
vertical wall, the other to a point in the circumference of the
base of a cylinder; the cylinder is in equilibrium, having a
point of its upper end in contact with the wall: find the
distance of this point below the point in the wall to which
the string is fastened.

Result. Suppose « the required distance, ! the length of
the string, h the height of the cylinder, b the diameter of its

base; then
=0 —-h -0

33. The ends of a string are fastened to two fixed points,
and from knots at given points in the string given weights
are hung ; shew that the horizontal component of the tension
is the same for all the portions into which the string is
divided by the knots. Shew also that if the weights are all
equal the tangents of the angles which the successive portions
of the string make with the horizon are in Arithmetical Pro-
gression. (Such a system is called a Funicular Polygon.)

34. Two uniform beams loosely jointed at one extremity
are placed upon the smooth arc of a parabola, whose axis is
vertical and vertex upwards. If ! be the semi-latus rectum
of the parabola, and a, b the lengths of the beams, shew that
they will rest in equilibrium at right angles to each other, if

l(a+d) (a*+ 8t =a'b*;
and find the position of equilibrium,

33. A quadrilateral is formed by four rigid rods jointed at
the ends ; shew that two of its sides must be parallel in order
that it may preserve its form when the middle points of either
pair of opposite sides are joined together by a string in a state
of tension.

86. Four rods, jointed at their extremities, form a quadri-
lateral, which may be inscribed in a circle: if they be kept
in equilibrium by two strings joining the opposite angular
points, shew that the tension of each string is inversely pro-
portional to its length.

37. Four equal and uniform heavy rods being jointed by
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hinges so as to form a square, two opposite angles are con-
nected by a string ; this frame-work stands on a fixed point,
the string being horizontal : find the tension of the string.

Result. Twice the weight of a rod.

38. Four equal and uniform heavy rods are connected by
hinges ; the system is suspended by a string attached to one
hinge, and the lowest hinge is in contact with a horizontal
plane: find the tension of the string and the pressure on the
plane.

. Result. Each is twice the weight of a rod.

39. A regular hexagon, composed of six equal heavy rods
moveable about their angular points, is suspended from one
angle which is connected by threads with each of the opposite
angles. Shew that the tensions of the threads are as 4/3 : 2.
Find also the strain along each rod.

40. A regular hexagon is composed of six equal heavy
~ rods moveable about their angular points ; one rod is fixed in
a horizontal position, and the ends of this rod are connected
by vertical strings with the ends of the lowest rod: find the
-tension of each string.

Result. § W; where W is the weight of a rod.

41. Suppose that in the preceding Example each end of
the fixed rod is connected with the more remote end of the
lowest rod, so that the strings instead of being parallel are in-
clined at an angle of 60°: find the tension of each string,

Result. W3,

42. A regular hexagon is composed of six equal heavy
rods moveable about their angular points, and two opposite
angles are connected by a horizontal string; one rod is placed
on a horizontal plane, and a weight is placed at the middle
point of the highest rod: find the tension of the string.

Result. Let W be the weight of each rod, and W’ the
weight placed on the highest rod ; then the tension is
SW+w’
- 73
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CHAPTER X.

FRICTION.

171. IN the investigations of the preceding Chapter, we
have supposed that the surfaces of the bodies in contact are’
perfectly -smooth.” By a smooth surface is meant a surface
" which opposes no resistance whatever to the motion of a body
upon it. A surface which does oppose a resistance to the
motion of a body upon it is said to be rough. In practice it is
found that all bodies are more or less rough. :

" The friction of a body on a surface is measured by the
least force which will put the body in motion along the
surface. Friction acts in the direction opposite to that in
which motion is about to take place. '

172. Coulomb made a series of experiments upon the fric-
tion of bodies against each other and deduced the following
laws. Mémoires......des Savans Etrangers, Tom. X.

" (1) The friction varies as the normal pressure when the
materials of the surfuces in contact remain the same. When
the pressures are very great indeed, it is found that the fric-
tion is somewhat less than this lJaw would give.

. (2) The friction 18 independent of the extent of the surfaces
wn contact so long as the mormal pressure remains the same..
When the surfaces in: contact are extremely small, as for in-
stance a cylinder resting on a surface, this law gives the
friction much too great. : ‘

These two laws are true when the body is on the point of
moving and also when it is actually in motion; but in the
case of motion the magnitude of the friction is not always the
same as when the body is in a state bordering on motion:
when there is a difference the friction is greater in the state
bordering on motion than in actual motiona. o,

T.8 14
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(8) The friction is independent of the velocity when the body
18 1n motion.

It follows from these laws that if P be the normal pressure
between two surfaces, then the friction is uP, where u is a
constant quantity for the same materials and is called the co-
éfficient of friction.

The following results, selected from a table given by Pro-
fessor Rankine, will afford an idea of the amount of friction as
determined by experiment ; these results apply to the friction
of motion.

For iron on stone u varies between ‘8 and 7.

For timber on timber.....cccccvveennienes ‘2 and 5.
For timber on metals ........ccceeuuvennn. *2 and ‘6.
For metals on metals ...coceevenvinennennns *15 and ‘25.

For full particulars on this subject we refer the reader to
Coulomb’s papers, and to the Memoirs published in the Mé-
morres de U Institut, by M. Morin ; see also Rankine’s Manual’
of Applied Mechanics, and Moseley’s Mechanical Principles
of Engineering and Architecture.: v

- 178. Angle of Friction. Suppose a body acted on only by
its weight to be placed on a honzontal plane and the plane
to be turned round a horizontal line until the body begins to
slide. Let W be the weight of the body and a the angle the
plane makes with the horizon. The pressure of the body on
the plane will be equal to the resolved part of its weight
perpendicular to the plane, that is to W cos . The friction
is equal to the resolved part of the weight parallel to the
plane, that is to Wsina, If u be the coefficient of friction,
we have
Wsina=puWcosa;
therefore tan a = p.

This experiment will enable us to determine the value of the
coefficient of friction for different substances. The inclination
of the plane when the body is just about to slide is called
the angle of friction.

174. Tn Art. 32 we have found the condition of equilibrium
of a particle constrained to rest on a smooth curve ; we proceed
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to the case of a icle on a rough curve. Suppose the curve
a plane curve; }i::tX, Y be the forces whichpa%: on the par-
ticle parallel to the axes of 2 and y exclusive of the action
of the curve. The sum of the resolved parts of X and Y
along the tangent to the curve is

dx dy

The sum of the resolved parts along the normal is

d dx
If u be the coefficient of friction the greatest friction capable
of being called into action is
d dz

Hence, the condition of equilibrium will be that the numerical

value of X :—: +Y Z—g must be less than the numerical value
of (X %— Y%) , without regard to sign in either case.

This may be conveniently expressed thus,

dz dy\* o (v Ay dz\*
(XE"- Yz;) must be less than u (Xm— YE)'
* We may exhibit this condition in a different form, as will be
seen in the following Article,

175. Next let the curve be of double curvature. Let P
denote the resultant force acting on the particle exclusive
of the action of the curve; X, Y, Z the components of P~
parallel to the axes; [, m, n the direction cosines of the tan-
gent to the curve at the point where the particle is placed;
the angle between this tangent and the direction of P. The
resolved part of P along the tangent is P cos §, and that at
right angles to the tangent is P sin . Hence, if 4 be the co~
efficient of friction, we must have for equilibrium

Peos § < pPsin 0
14—2
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therefore cos'@<pu'(l—cos*d);
therefore cos® § < —“—; H
. . 1+
X+ Ym + Zn\* o
therefore ( . P ) <q rrl
It is easy to shew that this result includes that of the former
. . dy dz
Article by putting n=0, m =%’ l= "

176. A particle 18 constrained to remain on a rough sur-
Jace : determane the condition of equalibrium. 4

Let P be the resultant force on the particle exclusive of
the action of the surface ; ¢ the angle between the direction of
Pand the normal to the surface at the point where the particle
is placed ; » =0 the equation to the surface; z, y, z the co-
ordinates of the particle. The resolved part of P along the
normal is P cos ¢, and that at right angles to the normal is
Psin ¢. Hence, for equilibrium we must have

Psing <pPcos¢;
therefore sin*p <pu'cos'P; .
therefore - cos'p> Tr g

(xj—:+ Y% + z%)’ .

o f (du\* du’.du">1+p,"
P {(dw) + (dy) +‘(dz) }

177. In the following Articles of this Chapter we shall
investigate certain equations which hold when the equilibrium
of different machines is on the point of being disturbed. The
equations in such cases will involve the forces acting on the
machine and u the coefficient of friction. When we have
found one of these limiting equations, we can draw the follows
ing inferences :

(1) If in order to satisfy the equation for a given set of
forces it is necessary to ascribe to u a value greater than its

therefore
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extreme value for the substances in question, which is known
by experiment, equilibrium is impossible.

(2) If the limiting equation can be satisfied by ascribing
to p values less than its extreme value, equilibrium may be
possible. We say may be possible, because the limiting equa-
" tion may not be the only equation of equilibrium, and of
course for equilibrium it is necessary that all the appropriate
equations be satisfied.

We may illustrate the subject of friction by the solution of
the following problem : '

A weight W is placed on a rough horizontal plane ; a string
is attached to W and passes over a fixed smooth pully, and

-to the other end of the string a weight P is attached. Deter-
mine the limiting inclinations to the vertical of the string
which passes from W to the fixed pully, when there is equi-
librium. :

Let @ be the inclination of this string to the vertical. The
tension of the string is equal to 2. The body on the rough
horizontal plane is acted on by the tension of the string, by
its own weight, by the resistance of the plane, which is at
right angles to the plane, and by the friction along the plane:
denote the resistance by R, and the friction by uR.

Then resolving the forces horizontally and vertically we

have
uR = Pgin 6,
R+ Pcos@=W.
Hence, eliminating R, we have
p(W—=Pcosf)=Psinb;

therefore p= %oo?t—?

- sin @
k—cos 8’

‘where k i8 put for FTE’ .

We may, without any real loss of generality, suppose that
0 is a positive angle not exceeding a right angle. g
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sin 6
k—cos@
this result wxll be useful as

It may be shewn that the differential coefficient of

. k cos 0 1
with respect to 6 is = 0), 3

we proceed,
I. Suppose W less than P, so that % is less than unity.

Now u may have any value from zero up to a certain limit,
known by experiment, which we shall denote by tane. Thus
at the limit

sin 0
tan e = k—cos@’
therefore cot e+ cot = i— ,
Y
therefore - sin (0 +¢) =k sine.

hLet. a be the least angle which has % sin e for its sine, so
that
sin (0 + ¢) =sina.

- And as a is less than e the only solution admissible here is

O+e=m—a.

- The expression I—c% is not positive unless @ is greater

than the value which makes cos @ = %; and for greater values
of @ the expression decreases as @ increases, and has its least

value with which we are concerned when 6= 2; its value

. P
then bemg 5 that is, W
Hence we have the following results :

If the coefficient of friction is less than p'l; there is no posi-
tion of equilibrium,
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If the coefficient of friction is greater than T.l; equilibrium

will subsist for all values of @ between 7 — g — e and 12_r

II. Suppose W greater than P, so that % is greater than
unity.
In this case a is greater than ¢, and the equation
sin (0 +¢€) =sina
has two solutions which may be admissible, namely,
f+e=a, and 0 +e=m—a.

The expression Ici—l::l:ﬂ is always positive, and as 6 in-

creases from 0 to g the expression increases up to a maximum
value and then decreases. The maximum value is when
1 that is ———P——-.
v -1)’ "N(W - P
Hence we shall obtain the following results : ‘
If the coefficient of friction is not less than

cose=%_, and is

N
NUGE Ik

equilibrium will subsist for all values of  between 0 and g—

If the coefficient of friction is less than v—l;, equilibrium
will subsist for all values of 6 between 0 and a —e. :
If the coefficient of friction lies between —I;and WI;-I”T’
equilibrium will subsist for all values of § between 0 and

a—e¢, and between 7 —a— ¢ and g

III. Suppose W=_P. In this case there is equilibrium
when 6 =0, no friction being then exerted; and besides this
we have results which may be deduced from those in the
first case. Here a=e¢; if the coefficient of friction is less
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than unity there is no other position of equilibrium; if the
coefficient of friction is greater than unity equilibrium will

also subsist for all values of § between m —2¢ and 7 .

Or the results for the third case may be deduced from those
given in the second case, observing that a =e,

Equilibrium of Machines with Friction.
178. Inclined Plane.

Let a be the inclination of the plane tothe horizon. Sup-
pose a force P, acting at an in-
clination @ to the plane and the & P
body on the Eoint of moving down
the plane. Let B be the normal
action of the plane, uR the friction
which acts up the plane, W the :
weight of the body. Resolve the - L'_

forces along-and perpendicular to*
the plane; then, for equilibrium
we have '
: P cos 0+ puR— Wsina=0............... (1),
R+ Psinf—Wecosa=0............... (2).

Substitute in (1) the value of R from (2); thus

P = Wsina —uW cos a
1 cos@ — usinf

Next, suppose P, a force acting at an inclination 6 to the
plane, such that the body is on the point of moving up the
plane. Friction now acts down the plane, and we shall tind
_ Wsina+puWeosa
*° .cosO+pusinf °

This result may be deduced from the former by changing the
-gign of u.

There will be equilibrium if the body be acted on by a
\force_ P, the magpig;qde of which lies between F; a.qd P,
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Suppose ¢ to be the angle of friction, so that tan ¢ =y,
_ Wsina—taneWcosa _ Wsin (2 —¢)
then  P,= cos@—tanesind cos(6+e)

Similarly :l’,, = F([;:_u(lo(a__ief_) .

Suppose we require to know the least force which will -
suffice to prevent the body from moving down the plane.
The expression for P, will be least when cos (6 +¢) is
greatest, that is when 6+ e=0, that is when § =—¢; and
then P, = Wsin (a —¢). :

Again, suppose we require to know the least force which
will suffice to move the body up the plane. The expression
for P, will be least when cos (6 —¢) is greatest, that is when
6=¢; and then P,= Wsin(a+¢); a force which is just
greater than this would move the body up the plane.

The following problem will illustrate the subject of the
inclined plane with friction. A weight W is placed on a
rough inclined plane, and is attached by a string to a point
above the plane: determine the limiting positions of equi-
librium,

Let a be the inclination of the plane to the horizon, 8 the
inclination of the string to the plane, 7' the tension of the
string, R the resistance of the plane. Since the body is con-
strained to remain at a constant distance from the fixed point,
it must be situated on the circumference of a certain circle
described on the plane; suppose @ the angular distance of the
position of the body from the lowest point of the circum-
ference. The forces which act on the body at right angles
to the plane are Wcos a, T'sin 3, and B. Thus

R+ TsinB— Woosa=0......veeernnen.. (1.
The forces which act on the body in the plane are Wsina, -
Tcos B, and the friction uR, Resolve these forces along the

radius and tangent at the point of the circumference at which
the body rests, Thus

TcosB— Wsinacos§=0......ccoernueeen. (2),
pB—Wiainasin0=0 ....cccoeeeeeeenn(8)s
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From (1) and (8) we obtain
pTeinB=puWcosa— Wsinasinf;

hence by (2)
=“oosa—sinasin9
ptan B sin a cos 6
sin g sin 0
Therefore b= osa—sinatan B cos &
cot Bsin 8

cotacot 8 —cosf "

This result may then be developed in the manner already
exemplified in Art. 177,

179. Lever unth Friction.
Suppose a solid body pierced with a cylindrical hole through

which passes a solid fixed cylindrical axis. Let the outer
circle in the figure represent a section of the cylindrical hole
made by a plane perpendicular to its axis, and the inner circle
the corresponding section of the solid axis. In the plane of
this section, we suppose two forces P and @ to act on the
solid body at the points 4 and B. Also at the point of con-
tact C tl{ere is a normal force B and a tangential force F.
These four forces keep the body in equilibrium.

Since R and F have a resultant passing through C, it fol-

lows, by Art, 58, that the resultant of Pand @ must also pass -
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through C. . Let 4 be the angle between the directions ot
P and @, and 8 the resultant of Pand Q; then

8'=P'+ @ +2PQ cosvy.

Let the direction of S be represented by the dotted line
making an angle 6 with B, Then since F, R, and § are in

equilibrium,
R=28¢080....cccccvvrveurrennns ..(1),
F=88In0.ccccciueiniiiiiiiinnnnn (2)
For the limiting position of equilibrium F'= pR ; therefore
tan @ =pruceenrreninnnnns wessonesasses 8.

‘We may now find the relation between P and @, by taking
moments round the centre of the exterior circle ; let r be the
radius of this circle; a and b the distances of 4 and B from
its centre; a and B the angles which the directions of P and
@ make with these distances; then

Pasina+Fr=QbsingB;
or by (2) and (8),”

Pa sina+(1:—’;,);(1”+q'+2pq cos y)} = Qb sin B...(4).

If we suppose the friction to act in the opposite direction to
that in the figure, we shall obtain

Pasina— — % (P*4 Q"+ 2P Qcosy)t= Qbsing...(3).
Equilibrium will not subsist unless P, @, a, b, a, B, y are so
adjusted that (4) or (5) can be satisfied without giving to x
a value greater than its limit known by experiment.

The following form may be given to the limiting equation.
Let s be the length of the perpendicular from the centre of the
outer circle on the dotted line. Since F, R, and S are in equi-
librium, we have by taking moments

Fr=8s;
o

— =s.

(1+p)t

therefore
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180. Wedge with Friction. (See Art. 168.).

Suppose the wedge to be on the point of moving in the
direction’in which 2P urges it, and
assume for simplicity that each face
is similarly acted on by the obstacle.
The forces which maintain the wedge
in equilibrium are 2P perpendicular
to the thick end, B perpendicular to
each face, and pR along each face
towards the thick end. Hence, re-
solving the forces parallel to the direc-
tion of 2B, -~ . .-

P=Rsina+ pRcos@....ccvrerrarnnse. (1).

Forces equal and opposite to R and uR act on the obstacle
at each point of contact. If R’ be the resultant of B and uR,

we have _
R=RyA+pDeue.n.. R (2).

Let S be the resolved part of R'along a direction making
an angle ¢ with that of R and ¢’ with that of B’ (see Art. 168);

then
8=R cos?
=Rcost +puRsINtecuieriiiriiininnnnen. (3.
(1), (2), and (3) will give the ratio of Pto R' and of Pto S.

181. Screw with Friction. (See Arts. 169, 170.)

. If the surfaces of the screw are rough it is kept in equi-
librium by W, P, a system of forces perpendicular to the
surface of the groove, and a system of forces arising from
friction. Let R, denote one of the forces perpendicular to the
surface of the groove, uR, the corresponding friction ; then R,
makes an angle « with the axis of the cylinder on which the
screw is raised, and uR, an angle 47 — a with the axis of the
cylinder. Suppose W about to prevail over P; then resolving
the forces parallel to the axis of the cylinder, and takin

moments round it, we have :

W—3.R (cosa+ psina) =0,
Py —ZR(sina—pucosa)b=0.
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£ b (sin a — p cos a)

Therefore W a(cosa+psina)
‘ _b tana—p
. “altptana
=—b tan (d - G),
if : p= tan €

If we suppose P about to preva,ll over W, we shall ﬁnd
similarly
P b

W——ta.n(a+e)
EXAMPLES,

1. A rectangular prism, whose breadth is. 2. 83 feet and,

" thickness less than 2 mches is laid with its axis horizontal,
and with its smaller face on an inclined plane where the
coefficient of friction is 4. Shew that if the inclination of
the plane is gradua.lly increased, the prism will roll before it
will slide,

2. If the roughness of a plane which is inclined to the
horizon at a known. angle be such that a body will just

rest supported on it, find the least force requisite to draw

the body up. .
Results. Let a be the inclination of the plane, W the weight

of the body ; then the force must be just greater than W sin 2a,

and act at an inclination a to the plane.

3. Two rough bodies rest on an inclined plane, and are
connected by a string which is parallel to the plane; if the
coefficient of friction be not the same for both, ﬁnd the
Ell-;aatest inclination of the plane whlch is oonslstent w1th equi-

rium

w,W, + w W,
Result tan9 ‘—WTP{’
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4. A rectangular table stands on a rough inclined plane,
and has two sides horizontal : if the coefficient of friction of
the lowest feet be u and that of the others be u/, find the
inclination of the plane when the table is on the point of
sliding. '

5. Two unequal wei%}lts on a rough inclined plane are
connected by a string which passes through a fixed pully in
the plane: find the greatest inclination of the plane consistent
with the equilibrium of the weights.

tan q= A (Wt W)
Result. tana= m'— .
6. A heavy uniform rod whose length is 2a is supported
by resting on a rough peg, a string of length / being attached
to one end of the and fastened to a given point in the
same horizontal plane with the peg. If when the rod is on the
point of sliding the string is perpendicular to it the coefficient

of friction is o -
. 7. Two weights P, Q of similar material rest on a rough.
double inclined plane, and are connected by a fine string
passing over the common vertex : Q is on the point of motion
down the plane, shew that the weight which may be added to
P without producing motion is : :

: . Psin2¢sin (a+B)

sn(B-g)sm(@—¢)"

a, B being the angles of inclination of the planes and tan ¢.
the coefficient of friction. - :

- 8. A weight P is attached to a point in the circumference
of a rough circular ring whose weight is W : shew that the.
ring will hang on a horizontal rod in a plane perpendicular to
it with any point of the ring in contact with the rod, if the
coefficient of friction be not less than : )
' -1
N (7" + 2n) :
9. Two equal heavy rings are moveable on a horizontal
rough rod; a string, of given length which passes through

', where n=¥.
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them has both ends attached to a given weight: find the
greatest possible distance between the rings.

10. Three egual hemispheres, having their bases down-
wards, are placed in contact with each other upon a horizontal
table; if a smooth sphere of the same substance and equal
radius be placed upon them, shew that there will be equilibrium
or not, according as the coefficient of friction between the
hemlspheres and the table is greater or less than }4/2.

11. A uniform rod rests wholly within a rough hemi-
t‘Ehenca.l bowl in a vertical plane through its centre, prove
at the limiting position of equilibrium will be given by the"
equation '
sin 2¢

2cos (B+e€)cos(B—e¢)’
6 being the inclination of the rod to the horizon, 28 the.

angle 1t subtends at the centre, and tane the coeﬁiclent of
friction.

tan 0 =

12. A thin rod rests in a horizontal position between two
rough planes equally inclined to the horizon, and whose
inclination to each other is 2a: if u be the coefficient of
friction, then the greatest possible inclination of the line of

intersection of the planes to the horizon is tan™ ﬁ

13. A surface is formed by the revolution of an equi-
lateral hyperbola about one of its asymptotes which is ver-
tical ; shew that a particle will rest upon it, supposing it
rough ~anywhere beyond the intersection of the surface vnth
a certain circular cylinder.

14, A heavy partlcle under the action of gravity will rest
on a rough paraboloi m‘+%‘ =2z, if it be placed on the
surface at any point above the curve of intersection of the
surface with the cylinder $+‘Z, =u'; the axis of the para- .

boloid being vertical, its vertex upwards and u the coefficient
of friction, o
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15. A rough elliptic pully of weight W can turn. freel
about one extremity of its major axis, and two weights, P, &
are suspended by a string which passes over the pully; when
in equilibrium its plane is vertical, and its axis inclined at
60° to the horizon, prove that the excentricity of the ellipse
is equal to
v{(38Q+ W—P)(Q—- W-3P)]
(@-P)w3 '
-"16. A heavy hemisphere rests with its convex surface on

a rough inclined plane. Find the greatest possible inclina--
tion of the plane.

17. One end 4 of a heavy rod ABC rests against a rough
vertical plane ; and a point B of the rod is connected with a
point in the plane by a string, the length of which is equal
to AB: determine the position of equilibrium of the rod, and
shew how the direction in which the friction acts depends
upon the position-of B. :

18. Three equal balls, placed in contact on a horizontal
plane, support a fourth ball. Determine the least values of
the coefficients of friction of the balls with each other and
with the plane, that the equilibrium may be possible. )

Results. Let W be the weight of each of the three lower
balls, W’ the weight of the upper, ¢ the angle which the
straight line joining the centre of the upper ball with the
centre of one of the lower balls makes with the vertical ; then

the coefficient of the friction between the balls is tan g, and
the coefficient of the friction between the balls and the plane
. ' ¢ :

is ——W,+3Wtan 5 If¢all four balls are equal we have
. 1 _ ra_
sm¢=;/—3,sothattan-§—4/3 2. |
©19. Determine the curve on the rough surface of an
ellipsoid, at every point of which a particle acted on by three
equal forces whose directions are parallel to the axes of the
ellipsoid, will rest in a limiting position of equilibrium,
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20. BCDE is a square board ; a string is fixed to a point
A4 in a rough wall and to the corner B of the board. Shew
that the board will rest with its plane perpendicular to the
wall, and its side CD resting against it, if .4 C be not greater
than uBC.

21. A rectangular parallelepiped of given dimensions ig
placed with one face in contact with a rough inclined plane ;
determine the limits of its position in order that equilibrium
may exist,

22. A board, moveable about a horizontal straight line in
its own plane, is supported by resting on a rough sphere
which lies on a horizontal table: find the greatest inclination
at which the board can rest.

Result. Let 0 be the inclination of the board to the hori-
zon ; then tan g = u, where p is the coefficient of the friction
between the board and the sphere.

23. A string PCB passes over a smooth pully C, and
has a given weight P attached to one extremity, while the
other extremity B is attached to one end of a heavy uniform
beam 4B at B. The other end 4 of the beam rests upon
a rough horizontal plane ; determine the position of the beam
when in equilibrium.

24. A hemisphere is supported by friction with its curved
surface in contact with a horizontal and vertical plane: find
the limiting pasition of equilibrium.

Result, If 6 be the inclination of the plane base to the
8u (1+p)

B+

25. When a person tries to pull out a two-handled drawer

by pulling one of its handles in a direction perpendicular

to its front, find the condition under which the drawer will
stick fast.

horizon, sin 8=

26. Determine the condition under which a given weight
may be supported on a rough vertical screw without the

T. 8. ‘ 15
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action of any force ; for example, if the coefficient of friction
be 3§, find the least number of turns which may be given to
a thread on a cylinder 2 feet-long and 6 inches in circum-
ference. Result, Eight.

27. Two uniform beams of the same length.and material
placed in a vertical plane, are in a state of rest bordering
on motion under the following circumstances: their upper
ends are connected by a smooth hinge, about which they
can move freely ; their other ends rest on a rough horizontal
plane, and the beams are perpendicular to each other: find
the coefficient of friction between the beams and the hori-
zontal plane. * Result. p=3.

28. A straight uniform beam is placed upon two rough
planes whose inclinations to the horizon are a and o, and
the coefficients of friction tan A and tan A': shew that if 6 be
the limiting value of the angle of inclination of the beam to
the horizon at which it will rest, W its weight, and R, B’ the
pressures upon the planes

2 tan 6 = cot (' + ") —cot (a— 1),
R _ 4 _ w
cosAsin (2 +\) cosA'sin (e —A) sin(a—A+a'+N) "

29. A heavy right cylinder is placed with its base on a
rough horizontal plane, and is capable of motion round its
axis: find the least couple in a horizontal plane which will
move it.

30. Two weights of different material are laid on an in-
clined plane connected by a string extended to its full length,
inclined at an angle 8 to the line of intersection of the inclined
plane with the horizon ; if the lower weight be on the point
of motion find the magnitude and direction of the force of
friction on the upper weight.

31. A carriage stands upon four equal wheels; given the
coefficient of friction between the axles and the wheels find
the greatest slope on which it can remain at rest neglecting
the weight of the wheels,
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CHAPTER XL

FLEXIBLE INEXTENSIBLE STRINGS.

182. A STRING is said to be perfectly flexible when any
force, however small, which is applied otherwise than along
the direction of the string, will change its form. For short-
ness, we use the word flexible as equivalent to perfectly
Sflexible. Sometimes the word chain is used as synonymous
with string.

If a flexible string be kept in equilibrium by two forces,
one at each end, we assume as self-evident that those forces
must be equal and act in opposite directions, so that the
string assumes the form of a straight line in the direction of
the forces. In this case the fension of the string is measured
by the force applied at one end.

Let ABC represent a string kept in equilibrium by a
force T' at one end 4 and an equal force 77 _____
at the other end C acting in opposite direc- 4 B 0
tions along the line 4C. Since any portion 4B of the string
is in equilibrium it follows that a force 7' must act on A B"
at B from B towards C in order to balance the force acting
at 4 ; and similarly, a force 7 must act on BC from B to-
wards A in order that BC may be in equilibrium. This result
is expressed by saying that the tension of the string 18 the same
throughout.

Unless the contrary be expressed, a string is supposed
inextensible and the boundary of a transverse section of it is
su};;l)l.osed to be a curve, every chord of which is indefinitely
sm

183. When a flexible string is acted on by other forces
besides one at each end it may in equilibrium assume a
curvilinear form, If at any point of the curve we suppose

15—2
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a section made by a plane perpendicular to the tangent, the
mutual action of the portions on opposite sides of this plane
must be in the direction of the tangent, or else equilibrium
would not hold, since the string is perfectly flexible.

184. A heavy string of uniform density and thickness is
suspended from two given points; required to find the equa-
tion to the curve in which tlg
Uibrium,

Let 4, B be the fixed points to which the ends are
attached ; the string will rest in a
vertical plane passing through 4
and B, because there is no reason
why it should deviate to one side
rather than the other of this ver-
tical plane. Let 4CB be the form
- it assumes, C being the lowest
point ; take this as the origin of
co-ordinates ; let P be any point in
the curve; CM, which is vertical,
=1y ; MP, which is horizontal, =z;
CP=s. , _
" The equilibrium of any portion CP will not be disturbed
if we suppose it to become rigid. Let ¢ and ¢ be the lengths
of portions of the string of which the weights equal the
tensions at ¢ and P. Then CP is a rigid body acted on
by three forces which are proportional to ¢, s, and ¢, and act
respectively, horizontally, vertically, and along the tangent
at P. Draw PT the tangent at P meeting the axis of
in T'; then the forces holding CP in equilibrium have their
directions parallel to the sides of the triangle PMT, and
therefore bear the same proportion one to another that these
sides do (see Art. 19); therefore

PM _ tension at lowest point or de ¢
MT"~ weight of the portion CP* ™ dy s’
dy_s i B__ 8
therefore o= and Frbv ek

therefore y+e=y/0E+8) i, @®;

.~

string hangs when it s in equi-
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the constant added being such that y =0 when 8 =0; there-
fore

F=9Y+2YCeuiirrnriiriiiinernnns 2
de_c ¢
A PR ROES D
: 2
therefore x=clog yret \,c(y +20) e (3),

the constant being chosen so that « and y vanish together.
The last equation gives

o’ =y +c+ /(¥ + 2y0).
Transpose and square ; thus
2= o=
de* —2(y+c)ee +=0;

therefore Y+ e=30(E+6°) cuinmrennns e (4),
Also s=v{(y+0)’— ¢} by (2)
‘ = }c (eg— 250 IR (5)

Any one of these five equations may be taken as the equation
to the curve. If in equation (4) we write %’ for y + ¢, which
amounts to moving the origin to a point vertically below the
lowest point of the curve at a distance ¢ from it, we have

C LY =le(@+e).
When the string is uniform in density and thickness, as in
the present instance, the curve is called the common catenary.
185. To find the tension of the string at any pomt

Let the tension at P be equal to the weight of a length ¢ of
the string; then, ag shewn in the last Article,
tension at P _ PT therefore & = ds
weight of CP~ TM’ "0 "8 dy’



230 CATENARY,

But &*=y* + 2yc by equation (2) of Art. 184, therefore
‘ t=y+c=y.
This shews that the tension at any point is the weight of

a portion of string whose length is the ordinate at that point,
the origin being at a distance ¢ below the lowest point.

Hence, if a uniform string hang freely over any two points,
the extremities of .the string will lie in the same horizontal

line when the string is in equilibrium.

186. To determine the constant c, the position of the points
of suspension and the length of the string being given.

Let 4 and B be the fixed

extremities, C thelowest point
of the curve. 3

0C=c, OM=a,
ON=d, MA=b,
NB=V, CA=1, CB=l. ¥

Also let . a+d=h
D=0 =k} evrrerierncrnrncnnsanes D;
I+l =\

then h, k, -\ are known quantities, since the Jength of the string
and the positions of its ends are given. From Art. 184

b=14c (e°!+ e_s)
b'=§c(e%'+e—5’) <
=fo(e —o)
F=jo(e—67) J
Equations (1) and ¢2) are theoretically sufficient to enable

us to eliminate @, @, b, ¥, I, and I and to determine c. We
may deduce from them

vereresererenerens @).

I 4 4

A=1ic (ef — +6°~¢ °),

k=§c (e$+e-5_e%_-6;%); B

4]
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therefore Atk=c(—e °),

x—k=c(e%—e—5);

atal
therefore AM—k=c(° +e ° -2

.4 =
=cd(C+e°—2);
»

therefore N —E)=¢c (e’% ) R (8).

This is the equation from which ¢ is to be found, but on
account of its transcendental form it can only be solved
by approximation. If the exponents of ¢ are small, we may
expand by the. exponential theorem and thus obtain the ap-
proximate value of ¢. In order that the exponents may be
small, ¢ must be large compared with A ; since % = ——z?fm
by Art. 184 it follows that when ¢ is large, compared with
the length of the string, % is small, and therefore the curve
does not deviate much from a horizontal straight line. Hence,
when the two points of support are nearly in a horizontal line
and the distance between them nearly equal to the given

length of the string, we may conclude that . will be small.
In this case, we have from (3)
h 1 /h\* 1 (kY
s __ = Ay —[Z el Al .
VO — ) %{2°+|§.(2) 5 (3) +} ...... ®;
3 .
therefore W(\'—&)=h+ —2%—0, approximately.
" The right-hand member of (4) continually decreases as ¢*

inc;'ea.ses; 8o that there cannot be more than one value of ¢
which satisfies the equation.

187. To find the equations of equilibrium when a flexible
string 18 acted on by any forces.

Let 2, y, 2 be the co-ordinates of a point P of the string;
let s denote. the length of the curve BP measured from some



232 . FLEXIBLE STRING.

fixed point B up to P, and & the length of the arc PQ
between P and an adjacent point Q. Let « be the area of a
section of the string at P, and p the density at P; let 7" be the
tension of the string at P; then Ti‘?, T%, and T% are
the resolved parts of 7' parallel to the co-ordinate axes; and
the resolved parts of the tension at @ parallel to the axes will
be, by Taylor’s Theorem,

dz d
ds Tds

% d( @)SH .............. y

.T ( T g;) 88 + terms m (3s)?, &e,

ds Tas \ " ds

dz d (,,dz ‘

T Td‘: + (—l‘; (T d—s') 88 F ceeeveccniocens o
Let Xpxds, Ypxds, Zpxds be the external forces which act
on the element PQ parallel to the axes. The equilibrium
of the element will not be disturbed by supposing it to

become rigid; hence, by Art. 27, the sum of the forces
parallel to the axis of # must vanish ; thus

de ~ d
ds Tds

(T5)8+...+ Xowdo— T 22 =0,

T ds

4y, .
or g (T(TB) + Xpx = 0 ultimately.

. . d d;
;Slmﬂarly A (Tjg)+ Ypx =0, and

4 (T%) +Zok=0.

The product xp may be conveniently replaced by m, so
that if m be constant m! represents the mass of a length /
of the string, and therefore m the mass of a unit of length
of the string. If m be not constant, conceive astring havin
its length equal to the unit of length and its section an
density throughout the same as those of -the. given string at
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the point (z, , #), and then m will be the mass of such sup-
posed string. .

The element 8s of the string, the equilibrium of which
we have considered, becomes more nearly a particle the more
we diminish 8s; hence it is sufficient to consider the three
equations of Art. 27 instead of the six equations of Art. 73.

The three equations which we have found are theoretically
sufficient for determining 7 y, and 2 as functions of «, remem-

bering that gﬁ = «/{1 + (d,n) + (Zi) } and when we know |

the values of y and 2 in terms of @, we know the equations
to the curve which the string forms.

. 188. The equations for the equilibrium of a flexible strmg. :
may be wntten thus:

d’w+dex
ds' ' ds ds
Ly, 47 dy
ds " ds ds

.
T‘fi,+f‘z+ mZ=0

T +Xo

T + Y__ b eeeesecssscence (1).

Multlply these equa.tlons by Za’ 38 , 8l gs respectively and

a.dd then, since ‘ '
(&) +(@) +(%§) -1,

de d'z  dy d'y  dz dz

and Gart s deTadr ="
ar dx dy dz .
we havex I"' (Xd8+Yds+st) ....... (2;

d dz
therefore T+fm( -+ YdZ+st)ds=eonst.;ant...(3). ’
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If the forces are such that m (Xdz+ Ydy + Zdz) is the im-
n}lledia.te differential of some function of z, y, z, as f (=, ¥, 2),
then

T+f (=, y, ) = constant.

If the forces are such that their resultant at every point

of the curve is perpendicular to the tangent at that point,

we have ' ’
dz dz

dy _
X+ Y 4725 =0,

therefore, by (3), T'is constant.

In the equations (1) transpose the terms mX, mY, mZ to
the right-hand side, then square and add ; thus

t PR | dl 2 dl L] dT 2
{(%) + (G + (%) b (4) =me (x4 724 29,
Hence if p be the radius of absolute curvature of the curve

formed by the string, and Fmds the resultant external force
on the element &8s, 8o that F*=X*+ Y*+ 2%,

(%“)'J, (%%_')Lm'ﬁ"....................(f).

If T be constant %‘g; 0; hence in this case mF varies as %

From the equations of equilibrium in Art. 187, we deduce by
. integration,

dz ,
dy _
T P JmYds,
dz
Square and add ; then
T? = {fmXds})* + {fmYds})* + {fmZds}® ......... (5).

The constants that enter when we integrate the differential
equations of equilibrium must be determined from the special
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circumstances of each particular problem. Thus the co-
ordinates of fixed points to which the ends of the strmg
are attached may be given, and the length of the strin
Or, besides the forces represented by m.Xds, m Y3s, and m
acting on each element, given forces F; and F, may act at
the extremities of the string; in this case if 7| and T, denote
the values of 7' at the two extremities of the stnng, we must
have T, equal in magmnitude to ¥, and opposite to it in
direction, and similarly for 7 and Fl

189. From equations (1) of Art. 188, eliminate T' and —— T,

then we have ds’
x (d'y dz d' dy) LY (d'z dz d'z dz)

ds’ ds ds* ds ds* ds ds' ds
dzdy dydo .
z (ds’ Y- -0
this shews that the resultant external force which acts on an
element s of the string lies in the osculatmg plane at the
point (z, y, 2).
190. The general equations of equilibrium become, when
all the forces are in one plane, namely, that of (z, y),

%(T%’)+mX=O, %(ng)+ Y=0...... (1).

Suppose X =0, so that the external force is parallel to the
axis of y; the first equa.tlon gives

T priatd §onstant, C say,

therefore ‘ IT= T reeeeeeeeeenensaneneanas (2).

Hence the second equation becomes
d (dy
¢ 5 (2)+mr=0,
cl'c/ d'z:

CAMY=0 ovcerrernn e (3).
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. For example; required the form of the curve when its
weight is the only force acting on it, and the area of the
gection at any point is proportional to the tension at that
point. Here Y is constant and may be denoted by — g, the
axis of y being.vertically upwards. And 7 varies as m, so
that I'=X\m where A is a constant. Thus from (2) and (3)

we obtain
oy d_w)
(@) =%
; A d’y dw)’ 1
: Put a for FE thus o (3—8 2
vy
therefore _d"”_’ﬁ = 2,

14+ (éz)

n=g
A

dix

therefore tan™ i‘lg =z <+ constant.
: dr a

The constant vanishes if we suppose the origin at the lowest
point of the curve; therefore

dy x
’—'l - tan '& ’
: Ye z :
therefore p log cos g e secivonne (4).

Since in this case the area of the section at any point is pro-
portional to the tension at that point, the curve determineﬁ by
(4) is called the Catenary of equal strength.

Since 7'=Am=mag, we have the following result: the
tension at any point is equal to the weight of a length a of
a uniform string of the same area and density as the string
actually has at the point considered.

191. The equations (1) of the preceding Article may be

written JE
To3+ 5 ZAMT=0 e (D).

d'y  dT dy
Tds'+3; %+mY=0 cesseeteusnnes (2.
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Multiply (1) by % and (2) by % and subtract; thus

r(Eed Syd, o (x Yy

ds* ds ds' ds ds ds
de &’z - dy d*
from which, since oA daf dZ d;f =0, we find
mdai
dy . dr
T—T(X YE) .......... o)

Again, ﬁmltiply (1) by 7 a.nd (2) by ‘% and add ; then

ar de dy B
Stm (X£+Yds)‘0 ................. (4).
Erom 3) a.nd ® by eliminating T, we deduce
d‘” -
daz dy\  d dy dx
(de+Yds> ds{d“ (de Yds)} 0.
ds' :

which is the genera.l equa,tmn to the curve when given forces
act in one-plane.
192. In Art. 188 we have found the equations

aT dx dy dz
mtm(XG Y +2g)=0

- 1’>'+ %Z)'=m'r ............. e (2)-

- Let ¢ be the angle which the resultant force mF5 makes
with the tangent at the point (z, y, 2); then ,

dz dy dz

FcosqS de+ Yds+st,
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therefore by (1),

and therefore, by (2), -

(%’)':WF' L W e (4).

If the force be such that its direction always passes through
a fixed point, the whole string will lie in a plane passing
through its ends and through the fixed point, for there is
no reason why it should lie on one side rather than the
other of this plane. Let r be the distance of the point
(x, 3, 2) of the curve from the fixed point, p the perpendicular
from the fixed point on the tangent at (z,y, 2) ; then (3) and
(4) may be written

y P F ;P TTIIIE TR (5),
T__pP
; —— F ; oooooooooooooooooo t00cevesrane (6)0
1dT rdr_ ldp,

Hence TE——ﬁI‘J——Pds’

therefore log T'= constant — log p,

or . Tp =C.

Also, from (5), T = — [mFdr.

Therefore ‘ g =— [mFdr.

Put ¢ (r) for — fmFdr; then
s0=C= a2 G

and from this differential equation the relation between r and

0 must be found. . .
The equation 7p=C may also be obtained simply thus:

suppose a finite portion of the string to become rigid; this
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portion is acted on by the tensions at its two ends and by
other dfo'rce.s' which all pass through a fized point; take moments
round this fixed point ; hence the product of the tension into
the perpendicular from the fixed point on the tangent must
have the same value at the two ends of the finite portion of
the string. Thus 7 = constant.

193. The results of the last Article give us the form of a
string when acted on by any central force; these results may
also be obtained directly in the following manner. o

Let O be the centre of force, P a point in the curve, @ an

o — 2

adjacent point ; », 6 the polar co-ordinates of P; let s be the
length of the curve measured from some fixed point up to P,
and PQ=28s. Draw PL the tangent at P; and PN, QN nor-
mals at P and @ respectively, then P is ultimately the radius
of curvature at P. Let 7 denote the tension at P, 7487 the
tension at @, Fmds the force acting on the element PQ, which
will ultimately be in the direction OP produced.

Let PNQ =+, and ¢ be the angle between PL and OP
produced. Resolve the forces acting on the element along PL
and PN; then ‘

(T+8T)cosyr + Fmds cosp — T=0,
(T+8T) siny — FmSs sin ¢ = 0.

Now sin yr = % ultimately, and cos ¥ =1.
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Hence the equations become

OT + Fmds cos ¢ =0,

aT
or : 7;—+chos¢=0,
and %eFmSin¢=40,

and the solution may be continued as in the last Article.

We have supposed the force repulsive. that is, tending‘
Jrom O if it act towards O the figure will be convex towards
O and we shall have the results
dT

T .
. mEF cos =0, > —mF'sin ¢= 0.

194. A string 18 stretched over a smooth plane curve; to
Jind the tension at any point and the pressure on the curve.

First suppose the weight of the string néglected.
Let APQB be the string, 4 and B being the points where

it leaves the curve. Let P, Q be adjacent points in the string ;
let the normals to the curve at P and @ meet at O; let @ be
the angle which PO makes with some fixed straight line, and
0+ 360 the angle which QO makes with the same line. The
element PQ 1s acted on by a tension at P along the tangent .
at P, a tension at @ along the tangent at (), and the resistance
of the smooth curve which will be ultimately along PO. )
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. Let 8'be the length of the curve measured from some fixed
point up to P, and PQ =0s; let Rds denote the resistance of:
the curve on PQ, T the tension at P, T4 8T the tension
at Q. Suppose the element PQ to become rigid, and resolve
the forces acting on it along the tangent and normal at P;
then

T—(T+8T) cos80 =0 ......cuuuveuunn.. (1),
R3¢ — (T4 8T) sin 80=0 ......... verrerens(2)e
—q (80" (36)°
NOW 00888—1_1'2+—LT-'..
hence (1) gives by division by 89
8T 30 (80)*
N (T+8T) {-f—(é) +....}=o;
therefore ultimately
ar_,
do 7
therefore T = constant........ ceessvecssnns (3).

Also 8s = pd6 ultimately, p being the radius of curvature at P,
therefore, from (2), we have

Since 7' is constant, the string will not be in equilibrium
unless the forces pulling at its two ends are equal; this is
usually assumed as self-evident in the theory of the pully.

The whole pressure on the curve will be [Rds; therefore by
(4), the whole pressure

-/ %’ ds = [T40,
Since T'is constant, [7d= T9 + constant;
therefore the whole pressure = T'(, — 6,), supposing 6, the
valué of 8 at 4, and 0, the value of & at B.
T.8. 16
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Next suppose the weight of the string taken into account,

and the plane of the string vertical.
0 v
Y
4 Q
N
x

Take the axis of y horizontal and that of = verticall
downwards. The element PQ is acted on by a tension at
along the tangent at P, a tension at () along the tangent at
@, the weight of the element vertically downwards, and the
resistance of the smooth curve which will be ultimately alon,
the normal at P. Let @ be the acute angle which the norm
PN makes with the axis of =, @ + 89 the angle which the
normal QN makes with the axis of . Let & be the length
of the curve measured from some fixed point up to P, and
PQ=25s; let T be the tension at P, and 7'+ 8T the tension
at Q; let mgds be the weight of the element, and R8s the
resistance of the smooth curve on the element. Suppose the
element PQ to become rigid, and resolve the forces acting on
it along the tangent and normal at P; then

T—(T+8T) cos 80 — mgds sin 0 =0 ......... (5),
R8s — (T + 8T) sin 80 — mgds cos =0 ......... (6).
From (5) we obtain ultimately
: aT

_‘T‘.=—mgsin0.....; ......... ........(7),
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and from (6) ‘
R=%'+mgoost9 ................... veeee(8),

where p is the radius of curvature of the curve at P,

Since the curve is supposed to be a known curve, s and
may be supposed known functions of 6; thus (7) and (8) wiﬁ
enable us to find 7"and B in terms of §, Or we may express
T and R in terms of the rectangular co-ordinates of the point,
P; for if we denote these co-ordinates by # and y, we have

sin0=‘—i—w cos § é‘z

d’ ?
thus (7) may be written
ar da
P77 T
therefore, if m be constant,
‘ =—mgz+ C,

where O is some constant ; the value of this constant will be
known if the tension of the string be known at some given
point, for example at 4 or at B,

Also from (8)

_C—mgzx dy.

and p and % will be known in terms of z and y since the
curve is known. '

In the above investigations we stated that the resistance
of the curve on the element PQ acts ultimately along the
normal at P; and in forming the equations of equilibrium
of the element of the string we supposed the resistance to act
strictly along the normal at P. It is easy to shew that no
error i8 thus introduced. For at P the resistance is along
the normal at P, and at Q the resistance is along the normal

16—2
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at Q, hence the resistance on the element PQ may be taken:
to be a force which acts in some direction intermediate be-
tween - the directions of thése two normals; suppose ¢ the
angle which its direction makes with that of the normal at F.
‘We should then write R8s cos instead of R3s in the. equa~
tions (2) and (6), where - is an angle less than 86 ; hence in
the limit cosyr=1 and equations (4) and (8) remain un-
changed. Also the term Rds sin 4 must be introduced into
equations (1) and (3) ; thus equation (1) becomes '

T — (T+ 8T) cos 30 — R8s sin ¥ =0;

8T 30 (86)* S .
therefore S0 (T+ 81") {'2—_5 gl;%u.*- n-} +.R Y sin 1p'= 0;

~ . ¢« -

and ultimately % =p and sin y+=0; hence as before .

ar_o.

v -d—a - 0. -
Similarly we may shew that equation (7) remains true after
the introduction of the term R3s sin 4 into equation (5).

. 195. A string 18 stretched over a rough plane curve ; to find
the tension at any point and the pressure on the curve in the
FLimating position of equilibrium. B ‘

First suppose the weight of the string neglected. See the
first figure of Article 194. : ‘

The element PQ is acted: on by a tension at P along the
tangent at P, a tension at  along the tangent at @, the re-
sistance of the curve which will be ultimately along the nor-
mal at P, and the friction which will be ultimately along the’
tangent at P and in the direction opposite to that in which.
the element is about to move. Let 7' denote the tension at
P, T+ 8T that at Q, Rds the resistance, uRds the friction;
suppose the string about to move from 4 towards B. Sup-
pose the element PQ to become rigid, and resolve the forces
acting on it along the tangent and normal at P; then

T+ uR8s — (T+8T) cos 80 =0............ 1), .
Rse - (T+ sns-in80=0 soseesesncce (2).. ias
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From (1) we have ultimately -

$= “R -- €rvcececenscsccsscnnvnne (3),
T s

and from (2), o =Recieieiiianinnannn, prieeens (4), -
where p is the radms of curva.ture ﬁt P;

pdl_ o 1aT_
therefore T d‘ or 75 aa =t
therefore lpg 7= 4 + constant,
therefore - T=Ce.

Let T, be the force which a.cts on the stnng at the end 4,
and therefore the value of T at this point; and let 7 be the
force at B; let 6, and 6, be the corresponding values “of 9;

then ¢ I= Cg-'- T, = Ce;
. ‘ . " ) = ‘-.l) ¢

therefore { . T =g

and - T=T@t-W =T, .

Ao fRdo fT -deo=1'fa=«-mda‘

= -Z—‘d‘(‘ o4 constant; . .

thé;éfore the whole pressure on ﬂxe curve =
' ~noy s
Z' e_. (0% — o) B_Z_'I;_Z;

Next suppose the welght of the string taken into a.ccount
and the plane of the string vertical. FProceeding as in the
second case of Art. 194, and supposing the string about 1'0
move from 4 to B, we have

T~ (T+ 8T) cos 88 — mgds sin 0 + pR8s=0. ....(5),
B¢ ~(T+ 8T) sin 80 — mgds cos 6 = 0.,... (6), 0
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From (5) we obtain ultimaf.ely
aT

I-“R—mgsino,
T
and from (6) R=-;+mgoos0;
therefore %=“T?’+ mg (u cos 6 — sin 6),

therefore p%%'—yT=mg(p.oosﬁ—sin€) I’

that is %—g-'-pT:mg (e cos @ — gin 6) p.

Thus we have a differential equation for finding 7}, and we
may proceed in the ordinary way to obtain the solution.
Multiply both sides of the last equation by e-**; thus

‘%(Te-w)gme-u (1 co8 8 —sin §) p;

thercfore T = [ mge™»* (u cos 6 sin 6) pdb.

Hence when p is known in terms of & we shall only have
to integrate a known function of @ in order to obtain the value
of T'in terms of 0. -

-+ 196. To form the equations of equilibrium of a string
stretched over a smooth surface acted on by any forces.

Let 8 be the length of the string measured from some fixed
})oint B to the point P; x, y, # the co-ordinates of P; &s the
ength of the element of the string between P and an adjacent
point @ ; mds the mass of the element ; R3s the resistance of
the surface on this element, the direction of which will be
ultimately the normal to the surface at P; let a, B, ¢ be the
angles which the normal at P makes with the axes; Xmds,
Ymds, Zmds the forces parallel to the axes acting on the
element, exclusive of the resistance Rds., Hence, in the equa-
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tions of Art. 187, for Xm we must put Xm+ R cosa, and’
make similar substitutions for Ym and Zm ; therefore

4 (Ti”) +Xm+ R cosa=0 veuennn. (1),

a\" %
d(,d

E(Tdy)+Ym+Rcos/8=0 ..... o @)y
d(,d |
a—a(sz)+Zm.+Rcoscy=0 ....... . (@

Multiply (1) by %2, (2) by %, and (3) by %2 and add;

then, since

Zcosa+gcosﬁ+g:cosy—0,

because a tangent to the surface at any point is perpendicular
to the normal at that point, we have, as in Art. 188,

aT dz | o dy , ,de
.d?+m(xds+yds+zds) o.........(4).
Agdmn mul;lply (1) by cosa, (2) by cos 8, and (3) by cosy,
then

d® d% d*
T{Eg-cosa+ p cos13+ d;cos'y}

+m{Xcosa+ Y cos 8+ Zcosy} + R=0...(5).

Let Fmds be the resultant of Xmds, Ymds, Zmds, and
the angle its direction makes with the normal to the surface
at the point (z, y, 2); then

Xcosa+ Y cos B+ Zcosy=F cos .

Let p be the radius of absolute curvature of the curve formed
by the string at the point (z,y, 2); o/, 8, o the angles its
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direction makes with the axes; ¢ the angle its direction makes
with the normal to the surface; then

. @_w_oosa _ql_',z__cosﬁ‘ ' is;:cos'y'
.. dﬁ.—. P 2 dsz_' P ’ dsl P
Hence (5) becomes

%'cos¢+Fm cosY +R=0....cc......... (6).

Let % =0 be the equation to the surface; then

-t cos@ cosB cos
T =gt =N suppose.

dv dy ds

Hence (1). may be writtéh
d'z dT d= du
T+ 7 +Xm + —- % s TAN o =
and (2) ‘and (8) may be sxmllarly expressed

Ehmmate ‘ﬂ'and RN' and we obtam

(Tf"—fwm)(ﬁ’;ﬁ; £

If we put for T 1ts value from (4), -the resulting equatlon
together with =0, w1ll determine the curve formed by the
string,

It appears from Art. 189 that the resultant of Fmds and
[R3s must lie in the osculating plane of the curve at the pom:t
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(=, y, 2). If the direction of Fmds be always normadl to the
surface u =0, then, since that of Rds is also: normal to the
surface, it follows that the normal to the surface lies in the
osculating plane to the curve. This we know to be a property
of the lines of maximum or minimum length that can be
drawn on a surface between two given points. Hence, when
a string is stretched gver a smooth surface and acted -on enly
by forces which are in the directions of normals to the surface
at their points of apilicat,iqn,'it forms_the line of maximum
or minimum length that can be drawn on the surface between
the extreme points of its contact with the surface. :
When Fmga is always normal to the surface, it follows
from (4) that 7'is constant, - ST

197. We will now give gsome miscellaneous theorems con-
nected with the subject of flexible strings.

I Required the abscissa. of the centre of gravity of an
assigned portion of any string at rest, supposing its ends fixed,
and gravity the only force.

This may be obtained by the ordinary process of integra~
tion, or more simply in the following manner.. Imagine any

rtion of the string to become rigid : then it is kept in equi-

brium by its weight and the tensions.at the ends; these
tensions act in the directions of the tangents at the ends,

Hence the centre of gravity of any portion must be vertically

over the point of intersection of the tangents at the extre-

mities of the portion. - SN

. IL. Suppose in Art. 192 that the string is uniform, and
that the force is attractive, and varies as the n'* power of the

distance, Thus we may put F'=— ur"; therefore L
: C mur™t. ‘ . ;
‘P n+l'+°°nsmt' o

In the particular case in which the constant here introduced
is zero we can easily complete the solution of the problem,
We have. C M- ‘ : :

- S e

o PN
where %-is pub for».o—(l'm-:il

i N e e Ve v v el
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Put % for r; then
: du\? 1
2 —_—) =
v+ (dﬂ) h’u;ii‘ '

S 13,
therefore (3—:) = !—ﬁ%— s
do A

therefore du = T =V 3

Therefore, by integration,
(n + 2) @ + const. =sin™ (Au™") ;

therefore ! % =3gin {(n+2) 0+ constaixt}.

If we fix the position of the initial line so that » may have
its least value where # = 0, we shall determine the constant,
and obtain

™ =2Asec(n+2)0;
or denoting by a the value of » when =0,
' r"=q"sec (n+2) 0.

III. Suppose a flexible string to be in equilibrium under
the action of a central force. Imagine any portion of the
string to become rigid: then it is kept in equi.Ebrium by the
tensions at the ends and the resultant of the action of the
ocentral force on the elements of the string; this resultant will
be some single force acting through the centre of force. Thus
the portion of the string may be considered to be in equi-
librium under the action of three forces; and these forces
will therefore meet at a point. Hence we obtain the follow-
ing theorem : The resultant action of the central ﬁorce on an

1on of the string 18 directed along the straight line whi
Joins the centre of force with the point of intersection of the
tangents at the ends of the portion. .
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IV. Suppose that a flexible string is in equilibrium under
the action of a central force which varies as the distance.
Let » be the distance of any point from the centre of force ;
#, y the co-ordinates of the point referred to axes having the
centre of force as origin. Let the force on an element of the
string of which the length is 8¢ and mass mds situated at the
point (, y) be-urmds; then this force can be resolved into
puaxmds and uymds parallel to the axes of  and y respectively.

Hence the components, ‘pa'.ra.llel to the axes of «x and y, of
the action of the central force on any portion of the string
are ufzmds and pfymds respectively, the integrations ex-
tending over the portion considered. Now if Z and ¥ be the
co-ordinates of the centre of gravity of the portion, we have

Z= femds . _ [ymds
Jmds® Y= fmds * A
Hence we obtain the following theorem: The straight line
which joins the centre of grawty of. any portion of the string
to the centre of force coincides with the drection of the resultant

~ central force on the portion.

Hence combining this theorem with that obtained in IIL
‘we obtain the following property of the flexible string which
i8 in equilibrium under the action of a central force varying
as the distance : The centre of gravity of any portion lies on
the straight line which joins the centre of force with the point
of intersection of the tangents at the extrematies of the portion.

Thus by IL. we see that the property here enunciated will
hold for a uniform string in the form of the curve

7*=a’ sec 36.

V. Two weights are connected by a string which passes
over a rough horizontal cylinder in a plane perpendicular to
the axis: it is required to determine the resultant of the
normal actions between the string and the cylinder in the
state bordering on motion,

" The normal action on any element 3s of the string may be
denoted by R8s, and the friction on the element by ;45283 ; thug
the friction on the element bears a constant ratio to the normal
action, and the directions of the two forcgs are at right angles.
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‘Let P be the resultant nermal action, and suppose’its
direction to make an angle @ with the vertical; then -the
resultant friction will be uP, and .its direction will make an

angle 5 — 0 with the vertical on the other side of it. Hence,

st;ll}}iposmg the stnng to beoome ngld, and resolvmg honzon-
Ys

.Psm0 - pP sin (— —0)

‘ Aga.m, resolvmg vertically, and denotmg by . Wtbe sum
of the weights of the system which hangs over the cylmder,
Ye have

..Pcosﬂ+p.Pcoa(—--—0) W 0.

Hence we obtam ta.n 0 = p, ) .
[ - W : oot ‘v
Ipose 8 heavy stnng whlch is mnot of umform
densmy and thickness to be suspended from two fixed points,
and to be in equilibrium.. Let ¢ be the tension at any point,
0 the angle which the tangent at that point makes with the
horizon ; then tcos @ will be constant. For imagine any por-
tion of the string to become rigid,'then the only horizontal
forces which act on it are the resolved parts of the tensions at
:ﬁce:‘lef?nd and these must therefore be equa.l in magmtude :
~ ore

e

- teos 8 =constant =1 suppose...........cs... (1), :
Let w be the weight of the portion of the string contained
between any fixed point. and the variable point considered.

Then by resolvmg the forces vertically we obtain in a smnla.r
ma.nner

¢sin 6 —w = constant ;
therefore -° W=7 tand+ constant .oeevueecereenees ()

-Again, proceeding. as in Art, 193, that is resolvmg the
forces which act on an ‘element along the normal, we find -

".:‘,;?93’3.-"-?!'.." =0 cergennnnsgesseseenns (8)

)
~ae



EXAMPLES, 958

where ngs is taken as the welght of the element 83 Hence,
from (1) and (8), 4 ,

—= gm cos’ 6.

EXAMPLES

1. In the common catenary shew that the welght of the
string between the lowest point and -any other point is the’
geometrical mean between the sum and dlﬁ'erence of the'
tenswns at the two points.

‘2, If a and B are the inclinations to the horizon of the.
tangents at the extremities of a portion of a common catenary,
and ! the length of the portion, shew that the helght of one’
extremity above the other is- -

a+ 8
sm—2—

o -
2

the portion is supposed to be all on the same side of the
lowest point. :

1/

cos

.
b

'8. A uniform heavy chain 110 feet long is suspended from
two points in the same horizontal plane 108 feet asunder:
shew that the tension at the lowest point is 1°477 times the
weight of the chain nearly. :

4. A uniform chain of length 2! is suspended from two
fixed points in the same horizontal plane ; 2a is the distance
between the fixed points and ¢ the length of chain whose
weight is equal to the tension at the lowest point: shew that
when [ is such that the tension at the points of suspension is the

least possible that tension is equal to the weight of a Iengt.h -
of the chain, and  and ¢ are determined by '

S dejeld—6Y), @+ d=aP . ..
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5. If a uniform chain be fixed at two points, and any
number of links 4, B, C, ... be at liberty to move along
smooth horizontal lines in the same vertical plane, prove that
the loops 4B, BC, CD, ... will form themselves into curves
which will all be arcs of the same catenary.

- 6. Three links of a chain 4, B, and C are moveable
freely along three rigid horizontal straight lines in the same
vertical plane. If when 4 and C are pulled as far apart as
possible, their horizontal distances from B are equamew
that this will always be the case when they are held in
any other position.

7. A chain hangs in equilibrium over two smooth points
which are in a horizontal straight line and at a given distance
apart : find the least length of the chain that equilibrium may
be possible. .

Result, The least length is he, where & is the given dis-
tance.

8. Prove that the exertion necessary to hold a kite
diminishes as the kite rises higher, the force of the wind
being independent of the height, and the pressure of the
wind on the string being neglected.

-9, A uniform heavy string rests on an arc of a smooth
curve whose plane is vertical, shew that the tension at any
point is proportional to .its vertical height above the lowest
point of the string. If the string rests on a parabola whose
axis is vertical, determine the vertical distance of its ends
below the highest point so that the pressure at this point
may be equal to twice the weight of a unit of length of the
string. :

Rfmlt. The vertical distance is equal to half the latus
rectum of the parabola.

10. One end of a uniform heavy chain hangs freely over
the edge of a smooth table, and the other end passing over a
fixed pully reaches to the same distance below the table as

- the pully 1s above it. Supposing half the chain to be on the -
table in the position of equilibrium, compare its whole length
with the height of the pully. : :

Result, The length is to the height as 6 + 2 /3 is to 1,



EXAMPLES, 255,

- 11. A uniform heavy chain is fastened at its extremities
to two rings of equal weights which slide on smooth rods
intersecting in a vertical plane and inclined at the same angle
a to the vertical : find the condition that the tension at the
lowest point may be equal to half the weight of the chain;
and in that case shew that the vertical distance of the rin,
from the point of intersection of the rods is :

%cot alog (1 +#2),

where 7 is the length of the chain.

12. The density at any poiut of a catenary of variable
density varies as the radius of curvature: determine the equa~-
tion to the catenary.

Result, The curve in Art, 190,

13. A heavy cord with one end fixed to a point in the
surface of a smooth horizontal cylinder is passed below the
cylinder and carried round over the top, the other end being
allowed to hang freely. Shew that unless the portion which
hangs vertically be longer than the diameter of the cylinder,
the cord will slip off, so as to hang down from the fixed point
without passing below the cylinder.

- 14. If a uniform string hang in the form of a parabola
by the action of normal forces only, the force at. any point P

varies as (SP)-%, S being the focus,

15. If a string without weight touch a given cylinder in
th part of its circumference and in a plane perpendicular to
1ts axis, what tension at one extremity will support a weight
of 1001bs. suspended at the other, friction being supposed to
be fsth part of the pressure? To what will this tension be
reduced if the string 18 wound round 1}th circumferences ?

16. If u=1, and a string without weight passes twice
round a post, prove, by taking approximate values of ¢ and ,
that any force will support another more than twenty times
as great.

17. . If two scales, one containing a weight P and the
other & weight @, be suspended by a string without. weight
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dver a rough- spheré, and if Q be on the point of descending,
then the weight 5 — but into the opposite scale w111 make-

t"hat scale be on the point of descending.

18, Two equal weights P, P’ are connected by 4 string
without weight which passes- over a rough fixed horizontal .

cylinder : compare the forces required to raise P according as
IZ is pushed up or F’ pulled down.

19. A, B, C are three rough pegs in a vertical plane:
F, Q, R are the greatest weights which can be severally
supported by a weight W, when connected with it by strings
without weight passing over 4, B, C, over 4, B, and over.
B, C’ respectively : shew that the coeﬁiclent of friction-at B
is = lo Q.2 ‘

EP W

20 A hght thread whose length is 7a, ha.s its extremxtles_
fastened to those of a uniform heavy rod whose length is’
5a, and when the, thread is passed over a thin round peg, 1t'
is found that the rod will hang at rest, provided the poin
of support be anywhere within a space a in the middle of
the thread : determine the coefficient of friction between the
thread and the peg when the rod hangs in a position border-
ing on motion, and find its inclination to the horizon and
the tensions of the different parts of the string. ‘

Results. The coefficient of friction is determined by the
equatxon et* =4 The inclination of the rod to the honzon

is cos™ 25

21. From a fixed pomt a heavy uniform chain hangs-
down so that part of the chain rests on a rough horizontal
plane: find the least length of chain that may be in contact

with the plane.

22. A heavy chain of weight W rests entirely in contact
with the arc of a rough closed vertical curve in a state bor-.
dering on motion. If tana be the coefficient of friction,
shew that the resultant normal pressure on the curve is equal’
to Weosa, and that its direction: makes an angle a w1th the
Vemcal. . L o '
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23. A heavy chain of length ! rests partly on a rough
horizontal table, and the remainder passing over the smooth
edge of the table, (which is rounded off into the form of a
semi-cylinder of radius a) hangs freely down: shew that if z
be the least length on the table consistent with equilibrium,

z(p+l)=l-}ra+ta

24. A heavy uniform chain is hung round the circum-
ference of a rough vertical circle of given radius. How much
lower must one end of the chain hang than the other when it
is on the point of motion ? -

Result. Let a be the lengfh of the longer piece which
hangs down, b the length of the shorter piece, r the radius of
the circle, tan 8 the ooefficient of friction ; then

<ctang _ @ —7sin 28
¢ T b+rsin2B’

25. A uniform beam of weight W is moveable about a
hinge at one extremity, and has the other attached to a string
without'weight which, passing over a very small rough peg
placed vertically above the hinge, and at a distance from it
equal to the length of the beam, supports a weight P: shew
that if  be the inclination of the beam to the vertical when
it is just on the point of falling, then

Wsin §0 = P &2

Find also the strain on the hinge,

L]

26. One end of a heavy chain is attached to a fixed point
4, and the other end to a weight which is placed on a rough
horizontal plane passing through A4, and the chain hangs
through a slit in the horizontal plane. Shew that if [ be
the length of the chain, @ the greatest distance of the weight
from A4 at which equilibrium 1s possible, u the coefficient of
friction, and n twice the ratio of the given weight to the
weight of the chain,

a
p(1+n) ek T =1 4 y{L+p (1+n)]).
T. S, . 17
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27. A uniform string acted on by a central force assumes
the form of an arc of a circle ; determine the law of the force,
the centre of force being on the circumference of the circle.,

Result. The force varies inversely as-the cube of the
distance.

28. A smooth sphere rests upon a string without weight
fastened at its extremities to two fixed points; shew that if
the arc of contact of the string and sphere be not less than
2 tan™ 48, the sphere may be divided into two equal portions
by means of a vertical plane without disturbing the equi-
librium, ‘

29. Shew that if a chain exactly surrounds.a smooth ver-
tical circle, so as to be in contact at the lowest: point without
pressing, the whole pressure on the circle is double the’
weight of the chain, and the tension at the highest point is
three times that at the lowest,

30. Two strings without weight of the same-length have
each of their ends fixed at each of two points in the same
horizontal plane. A smooth sphere of radius » and weight
W is supported upon them at the same distance frem each of
the given points. If the plane in which each string lies -
makes an angle a with the horizon, prove that the tension of
each is %" coseca; a being the distance between the points,

31. A uniform heavy chain hangs over two smooth pegs at
a distance 2a apart in the same horizontal plane. When there
is equilibrium, 23 is the length of the chain between the pegs,
which hangs in the form of a catenary, ¢ is the length of a
portion of the chain whose weight is equal to the tension at
the lowest point, and % the length of the end that hangs
down vertically. -If 8s and &k be the small increments of
- 8 and & corresponding to a small uniform expamsion of the
chain, shew that &s : dA=s.c— h.a : h.c — s.a.

32. A uniform heavy chain is placed on & rough inclined
plane; what length of chain must hang over the top of the
plane, in order that the chain may be on the point of slipping
up the plane ? ' -



EXAMPLES, 259

.33. A uniform rod of length & has its ends attached to
the ends of a flexible string without weight of length a ; this
string is passed over a very small cylindrical peg, and when
the rod hangs in its limiting position of equilibrium, the
parts of the string on opposite sides of the peg are inclined
to each other at an angle a. Shew that the coefficient of
friction between the string and peg is

1, at v = (a' =) tan’ Jo}
m—a °a-—y{b'— (a’—b’) tan’ §a} *

34. AB, AC are two equ.al and uniform rods moveable
about a fixed hinge at 4, C’B;h a uniform chain, equal in
length to AB or AC and G') of its weight, connects the
ends B and C; shew that in the position of equilibrium, the
angle 6§ which either rod makes with the horizon is given

approximately by the equation

: 1
c080=%—m,

n being large compared with unity,

35. A heavy uniform beam has its extremities attached to
a string which passes round the arc of a rough vertical circle ;
if in the limiting position of equilibrium the beam be inclined
at an angle of 60° to the vertical, and the portion of string in
contact with the circle cover an arc of 270° shew that the

1
3—7—rlog 3'

coefficient of friction is

36. A uniform string just circumscribes a given smooth
circle, and is attracted by a force varying as the distance to
a point within the circle. Find the tension at any point, sup-

posing it to vanish at the point nearest to the centre of force,

and shew that the force at the greatest distance

_ whole pressure on circle
" mass of the string

17—2
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37, A heavy string whose length is 'Ea rests on the cir-

cumference of a rough vertical circle of radms a; if the string
be in a position of limiting equilibrium, and "if B be the
angular I tance of its hlghest extremity from the vertex of
the cn'cle, shew that

"

1 -p +2/.w!

a.hd explain this result when (1 - u*) ¢% — 9/1. is negative.

Also if 4 be such that 8 =0, shew that the whole pressure
on the curve is to the weight of the string as 2 is to mu,
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CHAPTER XIL
FLEXIBLE EXTENSIBLE STRINGS.

198. IN the preceding Chapter we considered the equi-
librium of flexible inextensible strings; we now proceed to
some propositions relative to flexible extensible strings. Such
strings are also called elastic strings. '

When a uniform extensible string is stretched by a force,
it is found by experiment that the extension varies as the
product of the original length and the stretching force. Thus
if T represent the force, I’ the original length, / the stretched
length,

I'T

where A is some constant depending on the nature of the
string.

The fact expressed by this equation is called Hooke’s law;
from the name of its discoverer. -

The quantity A is sometimes called the modulus of elasticity.

-V

In the equation l—l’=%—1-' if we puﬁ T=2\ we obtain

l=2l'; thus the modulus of elasticity for any uniform elastic
string is equal to the tension required to stretch that string
to double its natural length, -

199. An elastic string has a weight attached to one end, it
18 fastened at the other and hangs vertically ; determine the ex~
tension of the string, taking its own weight into account.
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Let A'B’ represent the natural length of the string; 4B
the stretched length. Let A'P =2, P'Q =8z

Suppose A'P’ stretched into AP, and P'¢ into & ,

PQ; le¢t AP=a, PQ=30%xr. Let A'B'=d,

w=the weight of the string, and W be the !

attached weight. ' ¢ (p
Let T be the tension at P, and T+ 8T the ra

tension at . Then the element PQ is acted on ,

by the forces T and 7'+ 8T at its ends, and by ®

its own weight; i,ts weight is the same as that

of P'Q, thati;s—fw; ﬁ

) ’ .

therefore T+8T-T+ Sai,w=0,

L arT_ w ..

or =" ultimately .................. 1);

therefore g=—";? + constant.

The value of the constant must be found by observing that
when &’ =a', T'= W; therefore

W = —w + constant ;
therefore T=Wiw (1 - g,) ................ ceeee (2)

Also the element PQ may be considered ultimately uniform
and stretched by a tension 7'; hence, by the experimental
law, '

<

s[4 T
80=82/ (143 ) ccvvre S ®;
therefore éw-,=1+.? ,
aw A
W w x
Integrate; thus )
S —a 1+_‘Zt1")_£
o= ( Py a

No constant is required because =0 when &’ =0. -
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- Let a denote the stretched length of the string; then put-
ting ' =a’, we have |
y W+w\ wa' W+ w
a=a (1"" » ) =2 (“' x )
Thus the extension is the same as would be produced if an
elastic string of length o', the weight of which might be neg-
lected, were stretched by a weight W+ 3w at its end.

200. In the solution of the preceding problem we might
have arrived at equation (2) by observing that the tension at
any point must be equal to the weight of the string below "
that point together with W; but the method we adopted is
more useful as a guide to the solution of similar problems.
It is perhaps not superfluous to notice an error into which
students often fall; since the element 8z is acted on by a
‘tension T' at one end, and 7'+ 8T or ultimately 7' at the
other end, 27 is considered the stretching force, and instead
of (3)

o | &=8x’ (1'+‘¥')

is used. This would be of no consequence if wuniformly
adopted, for it would only amount to using 4\ instead of A in
(8); but mistakes arise from not adhering to one system or
the other. It should be observed that if a string without
weight be acted on by a force 7" at each end, it is in the same
state of tension as if 1t were fastened at one end and acted on
by a force T'at the other. :

201. The equations of Art. 187, and Art. 196 may be ap-
plied to an elastic string in equilibrium. They may also be
meodified as follows, if we wish to introduce the unstretched
length of the string instead of the stretched length.

Let &' and 8’ represent the natural lengths which become
& and 8 by stretehing ; let m'8s’ be the mass of an element
before stretching, and mds the mass of the same element after
stretching ; then '

-m&.? m'd, 8s=38 (1 +—i') ;

therefore m (1 + —TX) =m.
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Hence the first equation of equilibrium of Art. 187 may be
written
d Tda;) mX
ds ( 7 B
and the other two equations may be written similarly.
Equation (2) of Art. 188, or equation (4) of Art. 196 becomes

(1+ T)Zf"‘ (‘Y‘;':_l_ YZZ.{.ZZ?Z) 0; therefore

ds "~ ds
provided m’ be constant; that is, provided the product of

the density into the area of the section of the string in its
unstretched state is constant : see Art. 187,

x(1+T)+2mf<X +Ydy+Zdz)ds=constant, '

T\ rds\* ‘
Since (1 + f) = ( Jé’) » the last equation may be used to
connect s and &', and thus find the extension of the string.

202. We may apply the preceding Article to the case in
which the weight of the string is the only force acting on it,
the string bemg supposed originally uniform, and fixed at
two points.

_In this case X =0, Y=—g, Z=0, as in Art. 190 ; therefore

;fll; (T%):O... ......... SO ,
(1+T)Z(T3§{) R ST @.

From (1) T f—g = a constant = m'cg suppose;

therefore T=mcgsec.curecerenrrnrnninenn.. (3),

where + is the angle which the tangent to the curve at the
point (z, y) makes with the axis of g.
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* Hence (2) gives

m'cq dtany 1
(1+Tsecxlr> Y L 8
' m cg dtanydz 1
therefore (1 +— 1#) oo’
thus cosyr (1 + — q \p) ‘_i_'@"_li" = 1 =

1 dy micg dtany 1

that is cosydz’ A dx ¢ ;

therefore, by intecrratxon,

m'cg

x
cos'\]rda: A tan\[r=—

1 d"' d‘l" 1 + sin
and f cos Y da: f sy ; thus
1+ )
log co:l:ll,.q’ + = d cg tan '\I’ = %’ ............. (o’)).

No constant is required in the integration if we suppose the
axis of y to pass through the lowest point of the curve, for
there Yr = 0.

From (4) we may deduce

smw]r(l + mcqsec 1#) dtan atany 1 ........... (6)y
therefore, by integration,
secyr + gta.n‘«[r—% ................... (7

No constant is required in the integration if we suppose the
origin of co-ordinates to be at the distance ¢ below the lowest
_ point of the curve,
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From equation (7) we may find sec - in terms of y, and
then cosyr and sin Y can also be found ; thus by substituting
in (5) we could obtain the equation between x# and y: this
equation however would be very complex, -

In a particular case we may easily obtain an approximate
value of y in terms of @. Let A=mgl; then (5) may be

written
“1+sing S-fuay
cosyr !
o8y . Lty
therefore ' Tsny =e ;
therefore by addition and reduction
2 -y -ftjmay
cosy € te ’
x_e _x e
therefore tan® =1 (¢° pand_ oty *)..

Now suppose % is a very small quantity, put u for § (¢ —¢ °)

and v for } (e’;f +6°°); then the last equation gives
o cu , o, .
tan'\[r_.u- 'l—t&n‘\ll"l'mtan \'I‘ ——B?ta.n ‘\P‘+...,

from this we can find tan+ approximately, and then sec yr
will be known approximately, and by substituting in (7) we
shall obtain approximately y in terms of .

Equation (2) may also be written

d ay\ _ .,
s (T "ds) =mg
d ’ d ’
therefoxjg a5 ( cg ‘7‘%) =mlg;

therefore, by integration,

S

]
o 1%
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here &' denotes the natural length of that portion of the string
which is between the lowest point and the point (z, ).

Hence for tan 4 in (5) and (7) we may put ‘:—’, and make

corresponding substitutions for sinyr and cosyr. Thus (7)
becomes
‘ m'gs™
V@80 + 5= g, ().
- As an example of these formul® suppose that a heavy uni-
form elastic string hangs in equilibrium over two smooth pegs
in a horizontal plane, and let it be required to find the.depth
of the ends of the string below the vertex of the curved
portion,
From (3) the tension at any point of the curve is*
~m'g o/ (" +87).

Let U be the natural length of the portion which hangs over
one of the pegs; then the weight of this portion is m'gl. Let
&' denote the unstretched length of the portion between the
vertex and one peg; then by equating the two expressions for
the tension, we have

8

Wl =mgy@+s
therefore V(G £ 9)3
thus from (8) and (9) ‘
S ’ o T
U+ ’"—9—%—) =Y e, (10).

Suppose ! to be the length to which a string of natural
length !’ hanging vertically would be stretched; then by
Art. 199, o .

=r(12m9 ‘
zz(1+2h) ..................... (11)

By (10) and (11)
m'gc’

l=y+ o

4 . . P

A}
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Thus the end of the string descends to the depth =5 mg ¢ be-

" low the axis of @, and therefore to the depth c(l + mc_q )

below the vertex of the curve.

EXAMPLES.

- 1. Two equal heavy beams, AB, CD, are connected dia-
gonally by similar and equal elastic strings AD, BC; and
AB is fixed in a horizontal position : shew that if the natural
length of each string equals 4B, and the elasticity be such
that the weight of 4B would stretch the string to three
times its natural length, then :

11,1
AB~ BC " AC”
2. An elastic stnng will just reach round two pegs in
a horizontal plane; a ring whose weight would double the
length of the string hanging from a point is slung on it

shew that if 6 be the inclination of two portions of the strmg
to the horizon,

sin20=2 (V2 -1).

3. An elastic string has its ends attached to those of a
uniform beam of the same length as the unstretched string,
the weight of the beam being such as would stretch the
string to twice its natural length ; shew that when the system
is hung up by means of the string on a smooth peg, the
inclination 6 of the string to the vertical will be given by
the equation

tan 6 4+ 2sind —2=0.

4. Three equal circular discs are placed in contact in
a vertical plane with their centres in the same horizontal
line, and an endless elastic cord wound alternately above and
below them, 8o as to touch every point of their circumferences
without bemg stretched beyond its natural length. When
the support of the middle dise is rémoved, the centres of the
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three form a right-angled triangle. Shew that the modulus

of elasticity of the cord is . 227, 77 being the weight
of the disc.

24—

5. A fine elastic string is tied round two equal cylinders
whose surfaces are in contact and axes parallel, the string
not being stretched beyond its natural length; one of the
cylinders is turned through two right angles, so that the
axes are again parallel: find the tension of the string, sup-
posing a weight of 11b, would stretch it to twice its natural
length.

T—2
+2

6. - Two equal and similar elastic strings 40, BC, fixed
at two points 4, B in the same horizontal line, support a
given weight at ¢. The extensibility and original lengths
of the strings being given, find an equation for determining
the angle at which each string is inclined to the horizon,
and deduce an approximate value of the angle when the
extensibility is very small.

Result‘.

of a 1b.

7. Six equal rods are fastened together by hinges at each
end, and one of the rods being supported in a horizontal posi-
tion the opposite one is fastened to it by an elastic string join-
ing their middle points. Supposing the modulus of elasticity
is equal to the weight of each rod, find the original length of
the string in order that the hexagon may be equiangular in
its position of equilibrium. :

Result. avs
. 4

8. An unstretched elastic string without weight hasn equal
weights attached to it at equal distances, and is then sus-
pended from one end. Prove that the increase of length is
half what it would be if the same string were stretched by a
weight equal to n + 1 of the former hanging at one end.

, Where g is the length of a rod.

9. Three equal cylindrical rods are placed symmetrically
round a fourth of the same radius, and the bundle is then
surrounded by two equal elastic bands at equal distances
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from the two ends; if each band when unstretched would
just pass round one rod, and a wei%] t of 11b. would just
stretch it to twice its natural length, shew that it would
require a force of 9 lbs. to extract the middle rod, the co-
efficient of friction being equal to 3.

10. Two elastic strings are just long enough to fit on a
sphere without stretching ; they are placed in two planes at
right angles to each other, and the sphere is suspended at
their point of intersection. If 26 be the angle subtended at
the centre by the arc which is unwrapped, shew that ’

ST W

T4 N?
6 being supposed small,
11 In the common cstenary, if the string be slightly
extensible, shew that its whole extension will be proportional
to the product of its length and the height of its centre of
gravity above the directrix.

12, A uniform rough cylinder is supported with its axis
horizontal by an elastic string without weight ; the string lies
in the plane which is perpendicular to the axis of the cylinder,
and passes through its centre of gravity; the ends of the
string are attached to points which are in the same horizontal
plane above the cylinder and at a distance equal to the dia-
meter of the cylinder. Find how much the string is stretched.

Result, Let 2W be the weight of the cylinder, @ the
radius of the cylinder, &' the natural length of each vertical
portion of the string; then the extension is

4
2b’W+2a100_7\,+ We*
Py b A+W?

13. A heavy string very slightly elastic is suspended
from two points in the same horizontal plane ; shew that if
¢, I be the lengths of unstretched string whose weights are
respectively equal to the tension at the lowest point and the
modulus of elasticity, the equation to the catenary will be
very approximately '

y= % {ef_’ +e°— Z_l (€—e°)
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14. A weight P just supports another weight @ by means
of a fine elastic string passing over & rough cylinder whose
axis is horizontal. If A be the modulus of elasticity, u the
goeficient of friction, and a the radius of the cylinder, shew
that the extension of that part of the string which is in con-
tact with the cylinder is

a, Q4+
p log Prn’

15. A sphere placed on a horizontal plane is divided by &
vertical plane into two equal parts, which are just held toge-
ther by an elastic string, which passes round the greatest
horizontal section : find the original length of the string,

32\7a
Result. Ton+3W°
16. Four equal heavy rods are fastened to one another by
hinges so as to form a square ABCD ; A and C are connected
by an elastic string whose natural length is equal to the dia-
gonal AC, and the system is suspended from the point 4 :
find the position of equilibrium.

Result. Let W be the weight of a rod, @ the inclination

of each rod to the vertical ; then
1 2w

17. An elastic band, whose unstretched length is 2a, is
placed round four rough pegs 4, B, C, D, which constitute
the angular points of a square whose side is @ ; if it be taken
hold of at a point P, between 4 and B, and pulled in the
direction 4B, shew that it will begin to slip round 4 and B
at the same time if

Ap=_12

l1+e7
18. An elastic string without weight of variable thickness
is extended by a given force : find the whole extension.

19. An elastic string whose density varies as the distance
from one end, is suspended by that.end and stretched by it
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own weight. If W be the weight of the string, I’ its un-
stretched length, [ its stretched length, shew that

z=z'(1+-23l;’).

20. A circular elastic string is placed on a smooth sphere
8o that the whole string is in one horizontal plane ; the string
subtends when unstretched an angle 2a at the centre, and an
angle 20 when in a position of equilibrium : shew that

8in9=sina<1+gsinatan0),

where g =radius of sphere, and ¢ depends on the nature of
the string.

. 21, A heavy uniform elastic string rests horizontally on a
portion of a surface of revolution, of which the axis is vertical,
1n every position : prove that the generating curve is a para-
bola a diameter of which is the axis of revolution,

22. A heavy elastic string surrounds a smooth horizontal '
cylinder, so that the surface of the cylinder is subject to no
pressure at the lowest point; find the pressure at any point
of the cylinder, and the tension of the string; its modulus
of elasticity being equal to the weight of a portion of string

the natural length of which is § of the diameter of the cylinder.

23. A uniform heavy elastic string, whose natural length
is @, is stretched and placed in equilibrium on a rough in-
clined plane; find the tension at any point, and shew that
the direction of the friction changes at a point of the string,
the natural distance of which from the upper end is

a tan a\
2 (1 + o ) !
where  is the inclination of the plane to the horizon. ‘

24. A heavy elastic cord is passed through a number
~of fixed smooth rings, Shew that in the position of equi~
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librium its extremities will lie in the same horizontal plane.
The same will also be the case if the cord rest upon any
smooth surface. o '

25. An elastic string is laid on a cycloidal are, the plane
of which is vertical and vertex upwa.rds, and when stretched
by its own weight is in contact with the whole of the cycloid ;
the modulus of elasticity is the weight of a portion of the
string whose natural length is twice the diameter of the gene-
rating circle: find the natural length of the string.

Result. Tt is equal to the circumference of the generating
circle. ‘ :



CHAPTER XIIIL

ATTRACTION.

203. It appears from considerations which are detailed in
works on Physical Astronomy, that two particles of matter
placed at any sensnble distance apart attract each other with
a force directly proportional to the product of their masses,
and inversely proportional to the square of their distance.

Suppose then a particle to be attracted by all the particles
of a body ; if we resolve the attraction of each particle of the
body into components parallel to fixed rectangular axes, and
take the sum of the components which act in a given direc-
‘tion, we obtain the resolved attraction of the whole body on
the particle in that direction, and can thus ascertain the re-
sultant attraction of the body in magnitude and direction.
We shall give some particular examples, and then proceed to
general formulze.

204. To find the attraction of a uniform straight line on
an external point.

By a straight line we understand a cylinder such that the
section perpendicular to its axis is a curve, every chord of
which is indefinitely small.

Let AB be the straight line, P the attracted pa.rtlcle take
A for the origin, and 4B
for the direction of the axis -
of . Draw PL perpen-
dicular to Az; let AB=1,
AL=a, PL=b. Let M
and N be adjacent points
inthestraight line, A M=ux,
MN =8z If p be the 4 My R r =
density of the line, and « the area of a section perpendicular
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to its length, the mass of the element is pxd2. Let m be the
mass of P; then the attraction of the element MN on P is
(Art. 203) :
pm px 8z
(PM)I >
where p is some constant quantity. Hence, the resolved part
of the attraction of the element parallel to the axis of z, is

pmokdxz ML _ pmpk(a—2z) bz

.PM’ ..PM or {bﬂ+(a -’E)’}

Also the resolved part of the attraction of the element parallel
to the axis of y, is ‘
pm px 8z PL pm pxbdx

P Pu° {b"+(a a:’}*

Let X and Y be the resolved parts of the attraction of the
straight line, parallel to the axes of x and y respectively ; then

4
X=p/mpr
[

(a—mz)dz _ 1
Now f{b"l' (@— w)’}% '+ (a— a:)}

! (a—a)dx _ 1
therfore | B r@-a) Fr@-ip {b'+a'}‘
f dz _ a—x

Fr@-orf FpT @)

(D)

therefore

t bdx = l 2 - a- z cone .
f oo r@—appt b [(b' +a) P+ (a- z)t}i] @
18—2
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Hence, putting f for upx, we have

X=fm {% - I—}Z} ..................... (3),
Y= P%{%AL” -%BL-} ..................... (4).

Let APL=a, BPL=8, APB=v; then
X='£%(cosﬁ—-cosa), =E(sina—sinﬂ);
therefore /(X' + Y7) = £EL v/ {(cos B—cosa)’+ (sin a — sin B)°}

= %4(2—2 cosry) =2P'[1"71' sin 3y....(5).

This gives the magnitude of the resultant attraction. Also

X _ cosB—cosa a+ B

Y= sina—smpB = tan g e (6).
This shews that the direction of the resultant attraction bisects
the angle A PB.

If L fall between 4 and B, it will be seen from (1) and (2)
that the expression for X in (3) remains unchanged, but that
for Y in (4) is changed to

fo (42, 20}
4 PL\PA" PBJ*

This will not affect the result in (5), and the direction of the

resultant will still bisect the angle APB.

From the investigation it appears that X is the resolved
attraction parallel to the axis of = directed towards the axis of
y, and Y the resolved attraction parallel to the axis of y and
towards the axis of z.

The attraction of the straight line may also be obtained by
modifications of the process, which will furnish exercise for
the student ; for example, the origin of co-ordinates may be
put at the attracted particle, and the axis of y taken parallel
to the straight line,
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205. In the above investigation we have taken m to
denote the mass of the attracted particle ; in future we shall
always suppose the mass of the attracted particle to be
denoted by unity. In order to form a precise idea of the
quantity pu, we may suppose two particles each having its
mass equal to the unit of mass, then u will be the whole
force which one of these exerts on the other when the dis-
tance between them is the unit of length. As, however, by
properly choosing the unit of mass we may make u=1, we
shall not in future consider it necessary to introduce u.

206. To find the attraction of 'y
a ctreular arc on a particle situated
at the centre of the circle.

Let AB be any circular arc; B
through O the centre of the circle
draw a line bisecting the angle
AOB, and take this line for the
axis of . Let POx=46, QOP=386, ° )
AOB=2a, OB=1r. The attrac-
tion of the element PQ resolved
parallel to the axes of z and y
respectively is, if p and « have the AVgr
same meaning as-in Art. 204,

e

xprd0
r’

cos @ and ﬂ;:&g sin 4

+a
therefore X= frﬁ f cos 0df = g,:ﬂ.sin 2,

=*P [**4in 646 = 0.
r

By comparing these results with thosein Art. 204, it ap-
' pears that the attraction of a circular arc on a particle at the
centre is the same in magnitude and direction as that of any
straight line A'B’ which touches the arc ABand"is terminated .
by the lines 04 and OB produced, the arc and the straight
Jine being supposed to have the same density, and the areas
of their transverse sections equal,
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If OP and OQ be produced to meet the straight line 4'B’
in points P’ and Q' respectively, it may be shewn that the
attraction of the element P'¢f on a particle at O is equal to
that of PQ, and in this manner we might prove what we have
Just shewn, that the attractions of 4B and A'B’ on a particle
at O are equal and coincident. This proposition is given in
Earnshaw’s Dynamacs, p. 326.

It easily follows, that if a particle be attracted by the three
sides of a triangle, it will be in equilibrium if it be placed at
the centre of the circle inscribed in the triangle.

207. To ﬁind the attraction of a uniform circular lamina
on a particle situated in a straight line drawn through the
centre of the lamina at right angles to its plane.

Suppose C the centre of the circle DAB, the plane of the

paper coinciding with one face of
the lamina, and the attracted par-
ticle being in a straight line drawn

through C perpendicular to the Q
lamina and at a distance ¢ from

C. Describe from the centre C B
two adjacent concentric circles, one

with radius OP=r, and the other
with radius CQ=r+dr. Let « :

denote the thickness of the lamina, >
which is supposed to be an in- :

definitely small quantity, then the mass of the circular ring
contained between the adjacent circles is 2mpirdr. Every
particle in this circular ring is at a distance 4/(c* +7*) from
the attracted particle; also the resultant attraction of the ring
is in the straight line through Cat right angles to the lamina,
and is equal to
' 2mprrdr c
¢+r VE+P)’

e . o .
the factor WTETa) being the multiplier necessary in order to

resolve the attraction of any element of the ring along the .
normal to the lamina through C, ‘
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Hence, the resultant attraction of the whole lamina is

2mprc f b-—-—t‘—ir—
e AP
where b is the radius of the boundary of the lamina.

Now f rdr- - 1 .
J e+t v +r)’
b  rdr 1 1
therefore f = ;
@+t o VD

therefore the resultant attractlon

PSS .

If we suppose b to become infinite, we obtain for the at-
traction of an infinite lamina on an external particle, the
expression 2mpk, which is independent of the distance of the
attracted particle from the lamina.

From the last result we can deduce the resultant attrac-
tion of a uniform plate of finite thickness, but of infinite
extent, on an external particle. For, suppose the plate
divided into an indefinitely large number of lamina, each
of the thickness «; then the attraction of each lamina acts
in a straight line through the attracted particle perpendicular
to the surfaces of the plate, and is equal to 2wpx. Hence,
the resultant attraction will be found by adding the attrac-
tions of the lamina, and will be 27rph if h be the thickness
of the plate.

If a particle be placed on the exterior surface of an infinite
plate, the result just found will express the attraction of the
plate on the particle. If it be placed in the interior of the
xlate at a distance h from one of the bounding planes and

from the other, the resultant attraction will be 2-rrp (h —h)
towards the latter plane.

208. By means of the preceding Article we can find
the resultant attraction of a uniferm right circular cylinder
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on a particle situated on its axis. Suppose the cylinder
divided into an indefinitely large number of lamins by planes
perpendicular to its axis; let 2 be the distance of a lamina
from the attracted particle, 8z the thickness of the lamina,
b the radius of the cylinder; then the attraction of the lamina

18

2mp {1 —V(z"—a:-b")} Sz,

Suppose the attracted particle outside the cylinder at a
distance ¢ from it; let A be the height of the cylinder: then
the resultant attraction of the cylinder '

c+h x
=2 [ {1 - e
=2mp [h— W{(c+h)"+ 8} + /(" + 8]
If we suppose ¢ = 0 so that the particle is on the surface of
the cylinder the resultant attraction is
2mp {h— N (A*+0*) + B},

209. To find the attraction of a uniform right circular
cone on a particle at its vertex, we begin with the expression

&
2o {1 - s} 2
for the attraction of a lamina of the cone. Also, if a be the
semivertical angle of the cone, we have
' x
V(@ + b*)
hence, the resultant attraction

=Co8d;

=2mp (1 —cosa)f“d.v=27rp(l —cosa)k;
[

where A is the height of the cone.

It is easily seen that the same expression holds for the
attraction of the frustum of a cone on a particle situated at
the vertex of the complete cone, h representing in this case
~ the height of the frustum, : C
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If the cone be an oblique cone the base of which is any plane
figure it is still true that the attraction of a frustum on a par-
ticle at the vertex varies as the thickness of the frustum.
Consider two indefinitely thin parallel lamin® at different
distances from the vertex of such a cone, then the attractions
of these lamine on the particle at the vertex will be the same.
For take any indefinitely small element of area on the surface
of one of the laming, and let a conical surface be formed by
straight lines which pass throughthe perimeterof this area and
through the attracted particle ; this conical surface will inter-
cept elements in the two laminz which are bounded by similar
plane figures. Now, supposing the laminz of the same thick-
ness, the masses of the elements will vary as the squares of
their distances from the attracted particle, and thus they will
exert equal attractions on this particle. The same result holds
for every corresponding pair of elements in the two laminz,
and thus the two lamina exert on the particle at the vertex
attractions which are equal in amount and coincident in direc-
tion. From this it follows that the attraction of a frustum
varies as its thickness.

210. We have hitherto considered the attracting. body
to be of uniform density, but considerable variety may be
introduced into the questions by various suppositions as to
the law of density. Suppose, for instance, that in the case
of the circular lamina in Art. 207 the density at any point
of the lamina is ¢(r), where ris the distance of that point
from the centre ; ¢ (r) must then be put instead of p in Art.
207 and must be placed under the integral sign, Therefore
the attraction of the lamina will be

b (r) rdr

o (P4

Ife(r)= g, where o is a constant, the result is

5 dr or 2mkab )

o (E+F T e+ b0t ,
211. 7o find the resultant attraction of an assemblage of

particles constituting a homogeneous spherical shell of very
small thickness on & particle quiside the shell.

2mer

2mexo
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Let C be the centre of the shell, M any particle of it, P the

attracted particle. Let CM=r, PM=y, CP=c, =the
angle PCM, ¢ = the angle which the plane PCM makes with
the plane of the paper, 8r =the thickness of the shell, and
let p denote the density of the shell,

The volume of the elementary solid at Mis »* sin 0 &r 86 3¢
(see Art. 130). The attraction of the whole shell acts along
PC; the attraction of the element at M resolved along PC is

pr'sin 6 8r 8084 c—rcosf
y y

We shall eliminate @ from this expression by means of the
equation

y¥=c"+r'—2rccosf;

therefore - gin @ Z—Z = —g. ,
’ —
c—7cosf = y+é-r
2¢

Therefore the attraction of M on P along PC

- (142D,
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Hence the resultant attraction of the whole shell

L5 w25

_mprdr __4mpr*Sr _mass of the shell
=—a 2r+2r)= 7= 3 .
This result shews that the shell attracts the particle at P in
the same manner as if the mass of the shell were condensed
at its centre.

212, It follows from the preceding Article, that a sphere
which is either homogeneous or consists of concentric spheri-

cal shells of uniform density, attracts the particle at P in the
same manner as if the whole mass were collected at its centre.

2138. To find the attraction of a homogeneous spherical shell
of small thickness on a particle placed within 1t.

‘We must proceed as in Art. 211; but the limits of y arein
this case r — ¢ and » +c; hence the resultant attraction of the
shell

aordr [T 7 —c Tprdr
= —’;,— B (1 e dy = ’;, (2¢~2¢)=0.
Therefore a particle within the shell is equally attracted in
every direction.

Suppose a particle inside a homogeneous sphere at the dis-
tance » from 1ts centre ; then b{: what has just been shewn all
that portion of the sphere which is at a greater distance from
the centre than the particle produces no effect on the particle.
Also by Art. 211, the remainder of the sphere attracts the
particle in the same manner as if the mass of the remainder
were all collected at the centre of the sphere. Thus if p be
the density of the sphere the attraction on the particle is

4
g™
= that is —5
Thus inside a homogeneous sphere the attraction varies as the
distance from the centre.

214. The Fropositions respecting the attraction of a uni-
form spherical shell on an external or internal particle were

47rpr
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given by Newton (Principia, Lib. 1. Prop.70,71). The result
with respect to the internal particle was extended by Newton
to the case of a shell bounded by similar and similarly situated
surfaces formed by the revolution of an ellipse round an
axis. (Principia, Lib. 1. Prop. 91, Cor. 3). The propo-
sition is also true when the shell is bounded by similar and
similarly situated ellipsoidal surfaces, which we proceed to
demonstrate in the method given by Newton for the surfaces
of revolution.

215. If a shell of uniform density be bounded by two_ellip-
sovdal surfaces which are concentric, similar, and similarly
sttuated, the resultant attraction on an internal particle vanishes,

Let the attracted particle P be the vertex of an infinite
series of right cones. Let NMPM'N’ and nmPm'n’ be two
generating lines of one of these
cones, and suppose the curves in
the figure to represent the inter-
section of the surfaces of the shell
by a plane containing these gene-
rating lines. The curves will be
similar and similarly situated el-
lipses, and by a property of such
ellipses,

MN=MN' and mn=m'n'.

By taking the angle of the cone small enough, each of the’
" two portions of the shell which it intercepts will be ultimately
a frustum of a cone, and being of equal altitude and having a
common vertical angle, they will ezercise equal attractions on
P. (See Art. 209.) Similar considerations hold with respect
to each of the infinite series of cones of which P is the vertex,
and consequently the resultant attraction of the shell vanishes.

This result being true, whatever be the thickness of the
shell, is true when the shell becomes indefinitely thin.

216. In a somewhat similar way we may establish the
following proposition which is due to Poisson; the resultant
attraction of an indefinitely thin shell bounded by two ellip-
sotdal surfaces which are concentric, similar, and similarly
situated on an external particle 18 in the direction of the ams
of the enveloping cone which has its vertex at the given par-

Nn

¥
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ticle. (Crelle'sJournal, Vol. XI1.p.141.) Denote the external
particle by @ ; and suppose P in the preceding figure to be
the point where the axis of the enveloping cone intersects the
plane of contact of the cone and the ellipsoidal shell. Draw
any straight lines NMM'N" and nmm'n’ as in the preceding
figure. Let u denote the mass of the element Mn and u'
the mass of the element M'n’.

The attraction of x is equal to Q’fT‘- and it acts along QM;

the attraction of u’ is equal to Q—%,—, and it acts along QM’, .

L
Now P‘Mx PM*’
and it is known that QM and QM’ make equal angles with
QP (see Conic Sections, Chap. Xv., last example); therefore

PM_PH.
QM QU
m_ K
and therefore Qi = QI

Thus the elements x and u’ exert equal attractions on Q; and
gince the directions of these attractions make equal angles
with QP, the resultant attraction of these two elements acts
along QP. A similar result holds for every pair of elements
into which the ellipsoidal shell may be decomposed; and thus
the proposition follows. It appears from the course of the
demonstration that any plane through P divides the shell into
two parts which exercise equal attractions on Q.

It follows from this result, by proceeding to the limit, that
the resultant attraction of the indefinitely thin shell on a
particle in contact with the external surface is in the direction
of the normal to the surface at the point of contact.

In the next two Articles some propositions will be given
which mag serve as exercises; the approximate results which
will be obtained may be subsequently verified by an exact

investigation : see Art. 226. Two terms will be first defined.

The figure formed by the revolution of an ellipse round its
minor axis will be called an oblatum ; and the figure formed
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by the revolution of an ellipse round its major axis will be
called an oblongum. The former figure is often called an
oblate spheroid, and the latter a prolate spheroid ; but these
terms are inconvenient because the word spheroid is used by
some writers to denote a figure which is nearly spherical, and
by others to denote a figure not limited to any -particular
form : see page xiii. of the author’s History of the Mathema~
tical Theories of Attraction and of the Figure of the Earth.

217. To find the atiraction of a homogeneous oblatum of
small excentricity on a particle at its pole.

Let 2¢ be the length of the minor axis and 2a that of the
major axis of the generating ellipse. The oblatum may be
supposed made up of a concentric sphere, the radius of which
is ¢, and an exterior shell ; we shall calculate the attractions
of these portions separately.

Let a section be made of the sphere and the oblatum by a
plane perpendicular to the axis of revolution of the oblatum
at a distance x from the attracted particle. This plane cuts the
sphere and the oblatum in concentric’circles; the area of the
former being 7y’ and of the latter m;’y’, where 3*=2cx —2*;

: ]
the difference of these areas is = (% - 1) 3. If a section be

made b)" a second plane, parallel to the former and at a
distance 8z from it, the volume of the portion of the shell

2
intercepted between the planes will be 7 (% - 1) y'dz. The

distance of every particle of the annulus thus formed from

the attracted particle is approximately #/(2cz), and, as the
resultant attraction of the annulus will act along the axis of

the oblatum, it will, approximately,

a* z yOx __ (a* 2t — &
=7 (5= 1) 7 B = (6 1) <t

Therefore the resultant attraction of the shell

_mp(@ =) (*o §_ § ;. _ 8mp(a’—cY
gigh ), (Bew = &) de=—"1rm

ox.
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If we suppose c=a (1 —e¢), € being very small, we have
a' — ¢* = 2c% approximately ;
therefore the resultan i = 16mpe0
erefore the resultant attraction of the shell = 15— *
Also the attraction of the sphere, by Art. 212, =$mpc;
therefore the attraction of the oblatum on the particle

=4mp (1 +4e)c.

This method is due to Clairaut ; see Art. 165 of the History
of the Mathematical Theories of Attraction...

218. To find the attraction of a -homogeneous oblatum of
small excentricity on a particle at its equator.

Let 2¢ be the length of the minor axis, and 2a that of the
major axis of the generating ellipse. The oblatum may be
f;gposed to be the difference between a concentric sphere of

1us a and a shell, and the attractions of the sphere and shell
may be separately calculated. Let a section be made of the
sphere and the oblatum byaplane perpendicular to the straight
line joining the attracted particle with the common centre of
the sphere and oblatum, and at a distance # from the at-
tracted particle; this plane will cut the sphere in a circle the

- area of which is 7y’, where y* = 2az — 2, and it will cut the
oblatum in an ellipse of which the semi-axes are respectively

y and 9::! , and the area of which is therefore '%cy’ The dif-

ference of the two areas is (1-—2) y*. If a section be

made by a second plane parallel to the former, and at a
distance 8z from it, the volume of the portion of the shell

intercepted between the planes will be 7 (1 - f—z) y*8z. The

distance of every particle of the annulus thus formed from the
attracted particle is approximately »/(2ax); and as the result-
ant attractionof the annulus will act along the straight line join-
ing the attracted particle with the centre, it will approximately

§_ b
o=t (-9 5
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Therefore the resultant attraction of the shell

_m@a=c) s 3 4 4. _8mpla—c)
= T gtgh f. (200’ - 2) do =—"75

- 8mpae
15
Also the attraction of the sphere, by Art. 212, =4$mpa;
therefore the attraction of the oblatum on the particle

= gmpa = 2TP% 4o (1~ ) a= gmp (1 + §8) .

In the same manner it might be shewn that the attractions
of a homogeneous oblongum of small excentricity on particles
at the pole and equator are respectively

#mp (1—4e) ¢ and gmp (1—-3e)c,
2¢ being the axis of revolution of the oblongum, and
a=c(l—e)

219. One more example may be given. It is sometimes:
useful to compare the attraction exerted by the Earth on a
Ea.rticle at the top of a mountain with the attraction exerted

y the Earth on the same particle at the ordinary level of the
Earth’s surface. The investigation is given by Poisson,
(Mécanique, Tom. I. pp. 492...496). Let r denote the Earth’s
radius,  the height of the mountain, g the attraction of the
Earth on a particle of a unit of mass at the ordinary level of
the Earth’s surface. If there were no mountain the attraction
of the Earth on the particle at a distance « from its surface

would be g (—r—:—m),: we have then to add to this expression
the attraction exerted by the mountain itself, Suppose the
mountain to be of uniform density p, and consider it to be
cylindrical in shape, and the particle to be at the centre of its
upper surface ; then by Art. 208 the resultant attraction is

2mrp {&— N/ (a* + b") + B},
where b is the radius of the cylinder. If b is so large in com-

parison with & that the square of % can be neglected, this

,ifc=a(l-¢).
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expression reduces to 2mpz. Thus if g’ denote the attraction
at the top of the mountain

911
g= r+a) + 21rpa:.

Let o denote the mean density of the Earth, so that the
mass of the Earth is 4WW‘; then

3
_Amar® _ dmor
g_ 3,'.: = 3 ’

7~ 3px
thus g=g {(r+a:) +§;r}-

This result is substantially due to Bouguer; see Art. 363
of the History of the Mathematical Theories of Attraction...

Now the mean density of the Earth is known to be about
five and a half times that of water, and from what may be
conjectured of the density of matter at the Earth’s surface, we

P And
g

[y

may suppose

2
-(1 ) 1-2 tel
r+ w)- + = approximately ;

2z 3z 5z
thus g = y(l——+ ) g(l—E).

How far the approximations made in this Article are allow-
able might be difficult to estimate; from Article 207, it ap-
pears that in taking 2mpz to represent the attraction of the
mountain, we do in fact make the mountain to consist of a
uniform plate of finite thickness «, but of infinite extent.

We have hitherto confined ourselves to simple examples
of the ordinary law of attraction; we now proceed to consider
some other laws of attraction, and also some more complex
cases of the ordinary law.

220. If the particles of a body attract with a force varying
as the product of the mass into the distance, the resultant at-
traction of the body 1s the same as if the whole mass of the body
were collected at its centre of gravity.

T. 8. 19
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Take the centre of gravity of the attracting body as the
origin of co-ordinates, and let @, b, ¢ be the co-ordinates of
the attracted particle. . Divide the attracting body into inde-
finitely small elements; let z, %, z be the co-ordinates of an
element, m its mass, and » its distance from the attracted
particle. Then the attraction of this element is mr, and by
resolving it parallel to the co-ordinate axes, we obtain

a—zx b—y c—z

mr. , mr.—=, mr.—,
r r r

respectively. Hence, if X, Y, Z denote the resolved parts of
the whole attraction, we have

X=3m(@—-=z), Y=3m(b-y), Z=3m(c—2).

But, since the origin is the centre of gravity of the attracting
body, we have .

Smz=0, Zmy=0, Smz=0;
therefore ~ X=a3m, Y=03m, Z=c3m.

But these expressions are the resolved attractions of a mass
3m placed at the origin, which establishes the proposition.

221. To find the attraction of a homogeneous spherical shell
on a particle without 1t; the law of attraction being represented
by ¢ (y), where y 1s the distance.

. If we proceed as in Art. 211, we find the resultant attrac-
tion of the shell on P along PC

=T [T - ) 6 5) dy

C

Suppose [$(y) dy =4, 9), and [y,() dy=+ @)
Then, integrating by parts, we have '

[ +e-mgwiy=@+e-m g0 -2[s8.0) dy

) = @+ 1) 4, 4) - 20 ();
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therefore '”p’:&r

[[w+e-meway

= 2mprdr {24 041)= T, 0-r) - jp )+ b o)
]

This last form is introduced merely as an analytical artlﬁce to
simplify the expression.’

222.  To find the attraction of the shell on an internal par-
ticle.

" The calculation is the same as in the last Article, except
that the limits of y are » —c and r+c¢. Hence, the attrac-
tion of the shell

e e N )
L{pera=vie=o,

= 2mprdr —

223. The formule of the preceding two Articles will give
the attraction when the law of attraction is known.

Exa.mple 1. Let ¢ (r) == ; therefore ¢, (r)=—= + 4,
¢(r)=—r+%Ar’+ B;
A and B being constants.

Therefore the attraction on an external particle

:ii_c{—ltr+A(c+2?’—A(c—r)'}

4-n'p'r *or

=2mprdr

, (Art. 211).
19—2

= 2prdr 3 (-2 4 24r) =
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The attraction on an internal particle )
d {— 4c+A(r+c)'—A4A (r—rc)’}

= 2mprér Z %
= omprér & (2.4 241} =0, (Art, 213).
Example 2. Let ¢(r)=r;

thergfore ¢ (N)=3"+4, ¥y()=p*+}47+B.

The attraction on an external particle

= 2mprdr gc {,(C"' ) —(c—7 '+ 4;1(}(«: +7)' =44 (c— r)*}

= 2mprdr & (P 492 4 2.47]

= 4rpr’cdr = mass X ¢.

The attraction therefore is the same as if the shell were
collected at its centre. This property we discovered for the
law of the inverse square. We shall now ascertain whether
there are any other laws which give the same property.

224. To find what laws of attraction allow us to suppose
a spherical shell condensed into its centre when attracting an
external particle.

Let ¢ (r) be the law of force; then, if ¢ be the distance of
the centre of the shell.from the attracted particle, » the ra-
dius of the shell, and Y (r) = [{r [¢ () dr} dr, the attraction of

the shell
—mptr , {4 D= e}

But if the shell be condensed into its centre, the attraction
= 4mpr'drd (c);
therefore gc {1P (c+1) ; ¥ (c = r)} = 2r (o).
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Expand v (c+ 7) and ¥ (¢ —r) in powers of #; then using
V¥’ (c) for —52—= d\[r( ) , &c., we have

24 () =2 % {«1»()+,,E,,«x»"'(c)+ }
—wpe+rg v e+

dfr w _
therefore d—c{ﬂi ¥ (c) + } =0,

whatever r may be; therefore

4 {w;(c)}:o, 4 {4r_<>}=0 %o

But ¥ (o) =cf¢(c)de;
therefore ¥ (e)=[p(c)dc+cd(c);
therefore V" () =2¢ (c) + ¢’ (¢)-

Therefore, by the first of the above equations of condition
for ¥ (o),
24’ © + ¢' (¢) =a constant.

Put 3A for this constant ; multiply both sides of the equa~
tion by ¢* and integrate; thus

cp(c)=A4c+B;
therefore ¢ (c) =Ac+ !i

This value satisfies all the other equations of condition for
¥ (c) ; therefore the required laws of attraction are those of
the direct distance, the inverse square, and a law compounded
of these.

See also Art. 1046 of the History of the Mathematical
Theortes of Attractwn oo ,
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225. To find for what laws the shell attracts an internal
porticle equally in every direction.

When this is the case,
dfpera=y=d)_,,

de c
3
therefore ¥ (r) + CE.«[/" (r+..=4,

whatever c is, 4 being a constant independent of c¢; therefore
¥ (r)=4, ¥ (r)=0, &
From the second condition, we have
v ()=B+Br+B'r,
where B, B’, and B" are constants.

Hence V' (r) ot rf¢ (r)dr=B +2B'r;

therefore fp(r)dr= g +2B";

therefore ¢ (r)=-— i_}':

with this value of ¢ (r) all the other equations of condition
are satisfied : hence the only law which satisfies the condition
is that of the inverse square.

226. To find the attraction of a homogeneous ellipsord of
revolution on a particle within its mass, the law of attraction
being that of the inverse square of the distance.

Let a and ¢ be the semi-axes; and let the equation to the
ellipsoid of revolution referred to its centre as origin be
d+y 2

Rl Dt T (1).

Let £, g, b be the co-ordinates of the attracted particle; r
the distance from the attracted particle of any point of the
attracting mass; 6 the angle which » makes with a straight
line parallel to the axis of z; ¢ the.angle which the plane
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eontaining » and a straight line through the point (f, g, &)
parallel to the axis of z makes with the plane of (z, 2). The
volume of an element of the attracting mass

=1"sin 6 80 8¢ or,

as in Art. 130. Let p be the density of the ellipsoid of
revolution ; then the attraction of this element on the at-
tracted pa.rtlcle is psin 030 8¢ &r; and the resolved parts of
this parallel to the axes of , ¥, 2, are

p sin® @ cos ¢ 80 8¢ &r, p sin® O sin ¢ 86 8¢ or,
and psin 6 cos 6 86 8¢ or,

respectively. Hence the attractions of the whole ellipsoid of
revolution will be found by integrating these expressions be-
tween proper limits. We proceed to find these limits.

In equation (1) put
f+rsinf cos¢ for z,
g +rsin @ sin ¢ for v,
h+1rcos @ for z;
then the equation to the ellipsoid of revolution becomes.
(f+rsin0cos ¢)* + (g + 7 sin Osin ¢p)* + (R + 7cos 0)’= 1

aﬂ cﬂ )
sin’@ | cos*d fsinf cos¢ + gsinfsing = hcosd
rr’{a e }+2r{ o += }
f3+gi ’lﬂ .
==t e
e 2
Put s‘—z,f + 2 bk,

fsin0005¢+gsin0sin¢+h_chs_f=F,

Pex(1-L22 - 5)
a ¢

then K 4 2KFr+ FP=H....coovvveene. @).
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Equation (2) will give two values for , one positive and the
other negative ; these values we may denote by r, and —7,

where
~F+yH F+vH

n=—x - h"TTFK -
Hence to find the whole attraction of the ellipsoid of revo-
lution parallel to the axis of #, we first integrate the ex-
pression psin® @ cos ¢ 80 8¢ 8r with respect to r between the
limits » =0 and r =7, and also between the limits »=0 and
r=r, and take the d‘iﬁ'erence; we thus obtain

psin’ @ cos ¢ (r, —r,) 86 8¢ ;

this must be integrated between 0 and 7 for ¢, and 0 and =
for 6. If A denote the whole attraction parallel to the axis
of @, acting towards the origin, we have then

A=2pf'f'-11—’;sin*ecos¢ded¢.
[ ]

We may simglify this expression by omitting those terms
which vanish by the principles of the Integral Calculus; thus

A=2fbc’f:f: Bin’GCOs’d,ded(ﬁ_ﬂﬁw,f: sin®4 dé

c*sin’d + a’cos’d c*sin’*d + a*cos'0”

The integrations will take different forms according as a is
greater or less than ¢. 'We will take the former case, that is
we will suppose the ellipsoid of revolution to be an oblatum.

" (1 — cos*§) sin 0 df
—_— 2
Thus A= =fpc fo (@ = M oos 0

. .
e {c’ e spind} &
. |

Tat-¢ + (a*—¢*) cos’@

(€=,

Ta—¢ lev(@=7) c

Let ¢*=a® (1 —¢'); then the result may be written
A=2mfp {‘/(lej %) ginte— 1 e‘,"’} .
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In the same manner, if B denote the whole attraction of an
oblatum parallel to the axis of y,

B=2mgp {V( =€) sin™ e — 1—;,—6'} .

Let C denote the whole attraction of the ellipsoid of revo-
lution parallel to the axis of 2z, then

o [T["F.. oy s [" [*sin8cos’0d0 d
O=2p " [ goinOcon0d0ap=shpat " "L 0

As before we will suppose a greater than K that is we will
take the case of an oblatum.

i _ 2whpa® [~ (. c*sin 6

Thus C= a"_—?,/; {smo_c’+(a,’—c’) cos’@} d0
_ 4mhpa’ c ot V(a*—¢)
*a'-o'{l JaE—a }

= 4mrhp {1 ‘\/(l va—€) sin™ e}

eﬁ

If the body be an oblongum a is less than ¢. It may be
shewn then that

A=21:ﬁzc {1 a* 1 c+~/(c’—a')}’

c—a " cy(c—a) 8 a
B {1 sy e =),
It may be noticed that in ‘both cases
4,80,

227. From the expressions in the preceding Article we see
that the attraction is independent of the magnitude of the
ellipsoid of revolution and depends solely upon the excen-
tricity.
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Hence the attraction of the ellipsoid of revolution similar
to the given one and passing through the attracted particle,
is the same as that of any other similar and similarly situated
concentric ellipsoid of revolution comprising the attracted par-
ticle in 1ts mass. Hence a shell the surfaces of which are
similar, similarly situated, and concentric ellipsoids of revo-
lution attracts a particle within it equally in all directions.
This has been already established ; see Art. 215.

If we put the ellipticity of the body =e¢, and suppose e
very small so that we may neglect its square, we have for the
oblatum, since c=a (1 —¢),

2
=1~ ‘c? =1- (1 — €)= 2¢ approximately.

After expansion and reduction we shall obtain apf)roximately

A=4gmp (1 -3 f,

B=4mp (1-3e)g,

C=4mp (1 +4e)h.
For the oblongum, since a =c¢ (1 —¢),

2
g e’=1-—g,-=1-—(1—e)’=2e.

After expansion and reduction we shall obtain approximately

A=gmp(1+39) £
B=4mp(1+3e)9,
C=4mp (1 —4e) k.
228. To find the attraction of a homogeneous ellipsoid on

a particle within its mass, the law of attraction being that of
the inverse square of the distance. ‘

z?
—.‘=

C

Let the equation to the ellipsoid be ZL: + :Z;-i- 1.

Let f, g, 2 be the co-ordinates of the attracted particle.
Then, proceeding as in Art. 226, we put

f+rsinfcos¢ for z,
g+rsinfsin ¢ for y,
h+7rcosf for z;
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thus the equation to the ellipsoid becomes
T2 2 In? In? 2
" {sm Ha(:os ¢ 4o 8b§1n ¢ + cocs’ 0}
+or { fsin G’cos ¢ +9 sin €2sin ¢ + k coss 0}
a b c
Lyl By
+ 2T + p 1=0,

which we may denote thus

. 2

LY A LS Y
a b

This quadratic equation will give two values of 7, one positive

and the other negative; these values we may denote by r,,
and —7,.

Now if p be the density, and C denote the attraction
parallel to the axis of z we have

' C=pfffsinocosﬂd6d¢dr.‘

First integrate with respect to » between the limits 0 and
r,, and also between the limits 0 and r,, and take the dif-
ference; we thus obtain

C-—-pffsin@cose(r,—rl)de(ﬁ
=2pff§sinécos€d0d¢.

The limits are 0 and 7 for ¢, and 0 and 7 for 6. We may
simplify this expression by omitting those terms in F which
vanish by the principles of the Integral Calculus; thus we get
o [T [T sin @ cos’ 0 df dp
O=2pa’% hfo f, b%c’ sin’ @ cos® ¢ + a’c* sin® @ sin’ P + a’b’ cos® 6

T T
2

a7 [ sin @ cos® 0 d6 do
=8 @ b h[o— o b'c*sin’® @ cos® ¢ + a'c* sin® @ sin’ ¢ + a’b* cos’ 6
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The integration with respect to ¢ may be effected.

For f dé
b'c*sin® @ cos* ¢ + a’c® sin® 0 sin* ¢ + a'b’ cos* §
_ f sec’ ¢ do
~J b%c*sin* 6 + a®b® cos® @ + (a’c’sin’ 6 + a*F? cos® 6) tan® ¢
- 1
(%" sin’ 6 4 a'd® cos® 0) 4/(a’c’ sin® 6 + a’b” cos” §)

__ A/(a*" sin” 8 + a'b* cos’ )
~ /(0% sin’ @ + a*b* cos’ 6)

tan §,-

where | ¢

tan ¢.

When taken between the limits this gives

1 a

ab /(c*sin’ 6 + a” cos’ §) 4/(c*sin* 6 + b' cos* 6) 2 °
Therefore

3 sin @ cos® 6 d@
0=4s7rpabhfo ;\/(c’sin’0+a*008'0) V(c’sin’0+b’ 008’0) .

The values of 4 and B may be immediately obtained by
symmetrical changes in the letters g, b, ¢, and £, g, A.

If we change @, 3, ¢ into a(1+n), b(1+n), ¢c(1+n)
respectively, the expression for C remains unchanged ; and so
also the expressions for 4 and B remain unchanged. This
shews that a shell of any thickness, the internal and external
boundaries of which are similar and similarly situated con-
centric ellipsoids, exerts no attraction on a particle within
the inner boundary. This has been already established ; see
Art. 215.

The definite integral which occurs in the expression for ¢'
admits of various transformations. Thus put « for cos 6, then
we obtain

2 [ o d
O= 4"”?“6}‘[0 ‘\/{ca T (aa_ 02) xs} ‘\/{cﬂ T (bx_ca) .'L'*} .




~
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: ]
Again put w’=(—},(;_—t; so that t=0 when2=1,and t=w
when # = 0. Thus we obtain
) dt
O=2mpabeh [~ sy

where @ stands for /{(a"+ 8)(5"+ ¢)(c' + 9)}.

229. Suppose we require the attraction of a homogeneous
ellipsoid of revolution on an external particle.

In the equation (2) of Art. 226, we shall now have F* - H
a positive quantity, and the two roots of that quadratic equa-
tion will have the same sign. Hence we shall find

A=2pff~’7?sin'ocos¢d¢do.

The limits of the integration with respect to 8 will involve ¢,
for these limits will be found by putting H =0, and this leads
to the following quadratic equation for determining tan @:

o {({onbtgsn o) 1y 40 )

a c

3 k
+2hta:.n G.fcos¢+’gsm¢+§’(l __f’+’_q)=o.
c a a

Then the limits of ¢ are to be determined from the condition
that the values of tan @ furnished by this quadratic equation
must be equal; this leads after some reduction to the following
equation for determining the limits of ¢,

(fcos p+ gsin ¢)*=f*+ g"—a’.
It is however unnecessary to proceed with these complicated
integrations, for we can obtain the result indirectly by means -
of Ivory’s theorem, which furnishes a relation between the
attractions of homogeneous ellipsoids on external and internal
particles ; this theorem will be true for ellipsoids of revolu-
tion as they are included among ellipsoids, and since the at-
traction of an ellipsoid of revolution on an internal particle
has been already found, the theorem will enable us to deter-
mine the attraction of an ellipsoid of revolution on an external

particle,
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230. We shall require a preliminary definition and pfo-
position before we give Ivory’s theorem,

Corresponding points on two ellipsoids are Eoints whose
co-ordinates are proportional to the axes to which they are
respectively parallel.

In confocal ellipsoids the distance between two points, one on
each ellipsoid, s equal to the distance between their corre-
sponding points.

Let (z, y, 2) and (&, 9, £) denote two points P and @ on ans
ellipsoid whose semi-axes are @, b, ¢; then the corresponding
points P’ and ¢ on an ellipsoid whose semi-azes are @', %', ¢,
will be denoted by

'.'Iihus PQ”=( —‘%)'+(y—l%7),+ z—‘%{),,
po-(e-5+ (- 5+ (-2

Therefore PQ*— P'Q =

[

@-0(1-%)+@-m (1-5) + -0 (1-5)

=(a'— a”) {Z—:-g+%’;—%+i—g}.

a ¢ ¢
because the ellipsoids are confocal, and therefore
a'—a’=b—-b*=c"—c"
. e 3/’ zg— ._g ﬂl ;_4
Bt GEteTlTatyEts

therefore PQ*— P'Q*=0; thus PQ = P'Q.

Ivory’s Theorem. The attraction of an ellipsoid on a par-
ticle on the surface of a confocal ellipsoid resolved parallel to
an axis 18 to the attraction of the second ellipsovd on the
corresponding point on the surface of the first ellipsoid, so
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resolved, as the product of the other two axes of the first
ellipsoid is to the corresponding product in the second ellipsoid :
the two ellipsoids being homogeneous and of the same density.

Let a, , ¢ be the semi-axes of the first ellipsoid ; o', &', ¢’
those of the second. Let (£ g, 2) denote a point on the sur-
face of the first ellipsoid; (f", ¢’, ) the corresponding point
on the surface of the second ellipsoid.

The attraction of the first ellipsoid on a particle at (£, ¢', &),
resolved parallel to the axis of « is

ff[px_flqb (r) dx dy dz,

r
where = (z—f)V+@—g)+ (- k),
and the law of attraction is represented by ¢ () ; w is a con-

stant: the integration is to extend throughout the volume of
the first ellipsoid.

Let [¢ (r) dr =+ (r). Integrate with respect to x; and,
let , and r, denote the values of » at the extremities of a
chord of the ellipsoid parallel to the axis of @. Thus the
resolved attraction is

T () =¥ ()} dy de.

In the same way the resolved attraction of the second

ellipsoid on the corresponding point on the surface of the
first ellipsoid may be expressed by

T @)= 0} dyds.
Now suppose that we always make

)

¥_¥ 32 7%.
b b andc ¢’

then we have by the preliminary proposition
r,=7, and r,=17;
and we have also
dydz _ be
dy' dz’ - blcl .
Hence the first resolved attraction is to the second resolved
attraction as b¢ is to b'c’; and this establishes the theorem.
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It will be seen that the.demonstration establishes some-
thing more than Ivory’s theorem enunciates, namely the fol-
lowing : take any elementary prism of the first ellipsoid the
edges of which are chords parallel to an axis, and take the
corresponding elementary prism of the second ellipsoid ; then
the attractions of these prisms resolved parallel to the axis on
the corres onding points are as the products of the other
axes: and Ivory's theorem follows from the fact that the-
ellipsoids may be supposed to be formed of corresponding
elementary prisms.

‘We observe that one of these ellipsoids lies entirely within
the other. For if not the points at which they intersect would
lie on the curve of which the equations are

¥y 2 2 o &L
gtpta=l amd Gtm+a=l;

the co-ordinates of the points of intersection must therefore
satisfy the equation

x‘(%,—%,)+y’(;—,—bl..)+z’(:—,-g—,) =0.

Since the ellipsoids are confocal this becomes
« 9 2

t4
antpptoa=0

and this equation can only be satisfied by supposing x, ¥,
and z to vanish; and these values do not satisfy the equa-
tions to the ellipsoids. Thus the ellipsoids do not intersect

at any point.

Hence to find the attraction of an ellipsoid of which the
semi-axes are a, b, ¢ on an external particle of which the co-
ordinates are f’, ¢, k', we must first calculate the attraction,
resolved parallel to the axes, of an ellipsoid of which the
semi-axes are o, b, ¢ on an internal particle of which the
co-ordinates are f, g, & ; these six quantities being determined
by the equations

a?*=-d'=a'=0 a'—¢'=da'-C’,
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e 73 2
f—,;+%;+§;=l,
f_Qf, p b;)],', k__ch’

and then the resolved parts of the required attraction will be
these three calculated results, multiplied respectively by

be ca = ab
bl 7y cl a’ ’ ’ bl .
It may be shewn that there is only one ellipsoid which can

have its semi-axes a', &', ¢ satisfying the conditions required
in Ivory’s theorem.

Suppose that a, | b, ¢ are in descending order of magnitude.
Put ¢ for ¢®; let a’—c*=p, and b'—c'=g, so that p and ¢
are positive quantities. We have then

=p+t bVi=q+t;
thus we obtain the following equation for determining ¢,

AR
Py t+g it 1=0.

By examining the changes of sign of the expression which
forms the left-hand member of this equation, we see that
there is a root between —p and — ¢, a root between — ¢ and 0,
and a root between 0 and . Corresponding to the first root
we should obtain an hyperboloid of two sheets; correspond-
ing to the second root an hyperboloid of one sheet ; and cor-
responding to the third root an ellipsoid.

It should be remarked that what is called Zvory’s Theorem
is strictly speaking Ivory’s demonstration of Laplace’s Theo-
rem : see Art. 804 of the Hustory of the Mathematwal Theories
of Attraction...

231.  To prove that the resultant attraction of the particles
of a finite body of any figure on a_particle of whwhp the dus-
tance 1s very great in comparison with the greatest diameter of
the attracting body, is very nearly the same, as if the particles
were condensed at their centre of grawvity and attracted ac-
cording to the same law, whatever that law be.

T.S. : 20
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Let the origin of co-ordinates be taken at the centre of
gravity of the attracting body, the axis of x through the
attracted particle; let ¢ be its abscissa, and z, g, z the co-
ordinates of any particle of the body, p the density of that
particle.

Then the distance between these two particles, or 7,
= Vie— ) +y+ .
Let »¢ (") be the law of attractiong then the whole attrac-
tion parallel to the axis of
= [lfo (c— @) $ (¢* - 20w + 2+ g+ 2) dwdy ds,

the limits being obtained from the equation to the surface
of the body. This attraction therefore

=[llp (c—2){$ () — (202 — 2"~ y* = 2) $'() + ...} dwdy dz

—op =2 (142 s £+ ) dndy

= Mo )+ ¢ )| fpwazm By dst ., (4),

M being the mass of the body, and [[fpx dz dy dz=0, since =
is measured from the centre of gravity of the body.

Now suppose &, ¥, z to be exceedingly small in comparison
with ¢; then all the terms of (4) after the first are extremely
small in comparison with that term, it being observed that
¢’p’ (¢") is of the same order as c¢ (¢*) in terms of c. Hence
the resultant attraction is very nearly Me ¢ (¢*) ; that is, it is
very nearly the same as if the particles were condensed at
their centre of gravity and attracted according to the law
determined by the function r¢ (+%).

232. From Art. 224, it appears that when the law of
attraction is that of the inverse square of the distance, a
sphere composed of shells, each of which is homogeneous,
attracts an external particle with a resultant force, which is
the same as if the sphere were condensed at its centre. It
may be shewn also that two such spheres attract each other



GENERAL FORMULZ. 307

in the same manner as if each were condensed at its centre.’
For consider any element of mass forming part of the first
sphere; the attraction of this on the second sphere will be
equal and opposite to the resultant attraction of the second
sphere on 1t, and will therefore be the same as if the
second sphere were collected at its centre. Similarly, the
attraction of any other element of the first sphere on the
second will be the same as if the second were collected at
its centre. Proceeding thus, we find that the whole action of
the first sphere on the second is the same as if the second .
were collected at its centre, and therefore the mutual attrac-
tion of the spheres is the same as if each were collected at
its centre.

If the law of attraction be that of the direct distance, then
two bodies of any shape attract each other with a resultant
force which is the same as if each were collected at its centre
of gravity.

We proceed to general formulz for the attraction of bodies
of any form.

233. Let there be a body of any form; let p represent the
density of an element, the volume of which is dzdydz, @, vy, 2
being the co-ordinates of the element. Suppose the attraction
between the particles of masses m and m’ respectively, at a
distance 7, to be mm’ F(r); then the components X, Y, Z
parallel to the axes, and from the origin, of the attraction of
the body on a particle whose mass is unity, and co-ordinates
a, b, ¢ are found by the equations

X= f f f 022 F(r) dadyds,

v=[ fpyT"” F(r) dedyds,

Z=fffpz_ ¢ F(r) dedydz,

r
7 being = {(z — a)* + (y — b)* + (2 — o)*}2.

The integrations are to be taken so as to include all the ele-
ments of the attracting body.

20—2
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Let ¢> () be such afunction of » that F'(r) is its differential
eoefficient with respect to 7, and let

U = [{lp$ (r) dadydz, |
the integrations being extended so as to include all the ele-
ments of the attracting body; then will

au aUu au
“—d Y@ @

dqb(r) _d¢(r)dr —F(r )i‘lf_—p'(r)"’

da dr da
therefore X=- f f f pd—?;? dzdydz

=~ 2 [[o¢ @) deya !
U

T da’

Similarly, the equations ¥ = — @and Z=- %cgma,y be

db
established.

It may be observed that if in any case, for example that
of an infinite solid, the integral U becomes infinite, but the
dU dU dU
da’ db’ do
ing values of X, Y, Z will still be correct.

differential coefficients —— are finite, the preced-

For suppose we take a finite portion of the solid; the com-
ponents of its attraction will have for values the differential
coefficients of U. Suppose now that we extend without limit
the portion of the mass considered,. the components of the
attraction will always be

_dU _4aU _4vu
da’ " db’ " de’

whether U increase without limit or not. Hence, if these
three expressions tend to limits, those limits will be the com-
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ponents of the attraction of the infinite solid. And if they
increase indefinitely, we may conclude that the attraction
increases without limit as the portion of the body considered
increases; this we express by saying that the attraction of
the solid is infinite.

234. If the law of attraction be that of the inverse square,
we have

1 1
F(r)=;,, and ¢(r)=—;.
Let V'=— U, that is, let

V=fffp_d_x:lii§ ..................... 1);

then, as in the preceding Article, we have for the attractions
parallel to the axes of z, y, z respectively, and from the origin,

av av av
X_da’ Y—db’ Z_dc°
The equation which gives ¥ is equivalent to the following
operation:—decompose the attracting mass into indefinitely
small elements, and divide the mass of each element by the
distance of that element from the attracted particle; the sum of
these quotients s V. Hence, the value of ¥V will be quite
independent of the axes, rectangular or polar, which we may
find 1t convenient to employ. Suppose we use the ordinary
polar formule, and take the position of the attracted particle .
for the origin; then the element of volume is (Art. 130)
7* gin 0 8¢ 86 &r; therefore

V= prsin 0 dp d0 dr-......... (2).

Suppose the attracted particle forms part of the attracting
mass; then, since r vanishes for those particles of the attract-
ing mass which are in contact with the attracted particle,
from equation (1) it would be doubtful if V is finite in this
case; but from (2) we see that it really is finite.

235. To express by means of V the attraction resolved
along any line.

Let s be the length of the arc of any curve measured from
a fixed point up to P the attracted particle; I, m, n the direc- .
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tion cosines of the tangent to this line at P; R the attraction
resolved along this tangent ; then
R=IX+mY+nZ
av . dv  av

Now, if we restrict ourselves to points lying on the line s,
V will become a function of s alone; for V is a function of
a, b, and ¢, and each of these may be regarded as a function
of 8; thus we shall have by the differential calculus,

dV_dVda dVdb dVdc
ds dads T abds T do ds

d si egl?—l @—m @— t
an! smcds—,ds— y ds—n,wege
dv
. B=-

236. To examine the meaning of the function V.

This function is of so much importance that it will be well
to dwell a little on its meaning.

In the first place it may be observed that the equation (1)
contains a physical definition of ¥, which has nothing to do
with the system of co-ordinates, rectangular, polar, or any
other, which may be used to define algebraically the posi-
tions of P and of the attracting particles. Thus ¥V is to be
contemplated as a function of the position of P in space, if
such an expression may be allowed, rather than as a function
of the co-ordinates of P; although, in consequence of its de-
pending upon the position of £, ¥ will be a function of the
co-ordinates of P, of whatever kind they may be..

Secondly, it may be remarked that although an attracted
particle has hitherto been conceived as situated at P, yet V
has a definite meaning depending upon the position of the
point P, whether any attracted matter exist there or not.
Thus V is to be contemplated as having a definite value at
each point of space, irrespective of the attracted matter which
raay exist at some places.

The function ¥V is called the potential of the attracting
mass. :
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237. To calculate the value of V in the case of a spherical
shell, the density being a function of the distance from the
centre.

Let a be the distance of P from the centre ; % the distance
of any point in the attracting shell from the centre 0 and ¢
the other polar co-ordinates of this point ; let 6 be ‘measured
from the straight line joining the centre of the sphere with
the attracted particle P, which is obviously the direction of
the resultant attraction. The mass of the element at this
point is pu’sin 6 du 86 8¢, and

V=f"-j"j"" pu’sinadudﬂdtﬁ,

where %, and u, are the internal and external radii of the
shell ; hence,

Ve 2Trf"*f"pu’ sin 0 du df
= S
Now r=u'—2aucos 0 +a*;
therefore sin 0 Ze z ,
r au
and V= %7" f f pu du dr.

We must now distinguish three cases.

I. When P is beyond the external surface, the limits of r
are ¢ — % and a+w; therefore

V=— fulfa“pfu dudr

=-a——fulpudu e R R TX T PR RRTTR S (1).
But if M denote the mass of the spherical shell,

M= iwfu‘pu’du;
"
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therefore = %l .

Now the resultant -attraction = g:—g , 8o that it is
the same as if the mass of the shell were collected at its

centre ; this was proved in Art, 212.

II. When P is within the internal surface, the limits of
are v —a and % +a ; therefore

uta
V=%E/“’f pududr

This is equivalent to the result found in Art. 213.

III. By combining the results contained in equations (1)
and (2), we see that if P be between the bounding surfaces
of the shell,

= %1_1' f: pu'du + 4 J-"'pu du.
) a

From this we may deduce a result involved in Arts. 212 and
213, namely, that the resultant attraction is the same as if all
the matter which is nearer to the centre than P were collected at
the centre, and the rest of the matter neglected.

238. At any point (a, b, c) where there is no particle of the
attracting mass, the function V satisfies the partial differential
equation

av &3V &V
T ar Tar =
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For since r = {(z — a)* + (y — b)*+ (z — o)*}},
d l)__w—a a l)_y—b d 1)_z—-c
da(r T db(r - dc(; T

L0)-2ez

therefore a (l) + gb:" (;) + % (%) =0.

Now V=fff__pdxfydz;

av a1
therefore i@ = f f f 7 (;) pdxdydz,

2
and similar expressions hold for ‘(i;TI’a.nd %’; therefore
&V &V, &3V
dai

=0.

T e

This result holds so long as the attracted particle is not in
contact with the attracting mass. If, however, the attracted
particle is in contact with the attracting mass,  can vanish,

and therefore 7—1' and its differential coefficients become infinite;

the preceding demonstration does not hold in this case.

239. At an internal point (a, b, ¢) about which the density
18 p, the function V satisfies the equation

a‘'v 4V d'Vv '
dar g T ar =
av av d4dv.

To determine the value of in this case,

T ar Tar
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suppose a sphere described in the body so that it shall include
the attracted particle, and let V=V, + V_, where V refers to
the sphere and V, to the remainder of the attra.ctgng body ;
then
av &V 4dv_da'v, d'v,  dv,
Tttt w Ty T
av, a&'v, d'v,
o taE e
a'v, dav, d'v,
= T e
by what has be¢n already proved.

Now the centre of the sphere may be chosen as near the
attracted particle as we please, and the radius of the sphere
may be taken so small that its density may be considered
ultimately uniform, and equal to that at the point (g, b, c).

Let a, B, v be the co-ordinates of the centre of the sphere;
then the attractions of the sphere on the particle parallel to
the axes are, by Art. 213, :

smpa—a) TLG-g), TP (o—);

dV,  4mp d’V, _ 4mp
therefore %————?’—(a—a), =5
dv,  4mp ~dV, _ dmp
»="3 0P =g
2V, __ 4w, IV,
de 8 TV gFT T3
a'v, a'v, d'Vv, .
therefore - + T + dc”——4wp’
av _arv av
therefore —d7+ Eb-, +'d—c,‘ —-—47rp.

240. Application to the Sphere. In ‘Art. 237 we have
calculated ¥ by direct integration in the case of a body com-
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posed of homogeneous spherical shells, 'We may also deduce
its value by means of the equations in Arts. 238 and 239.
This we shall now do. If a sphere be composed of homo-
geneous shells, ¥ will be a function of the distance = of the
centre of the sphere from the attracted particle ; the resultant
attraction will act along the straight line which joins these two

points, and will be denoted by Y .
The equation
r=a'+0"+c'
il give dr _a dr_b dr_c,
wilg da r’ db r’ dc 7’
dV_dVdr dVa,

hence da " drda=drr

therefore 7 = F‘ @ty 7d7‘? dar’

imilarl a’v_¥u d’V+1ﬂ7_§’dV
siraliarly v P d? T rdr Pdr’
: QY _edv 1av_cdav
an d "R Trdr Tt dr
By adding these equations we have, by Art. 238, at a point
where there is no particle of the attracting mass, -
&V, 247
drt " r dr
This may be written
4 1pdr) o,

dr

=0,

&

therefore d—V = g s

where C is some constant.

Suppose the sphere to be hollow, and that the attracted
particle is within the inner surface, the radius of which we
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shall denote by r,. Since the attraction ought evidently

to vanish when = 0, we must have C'=0; therefore %—TI—, =0.

Hence the attraction always vanishes, and the particle is in
equilibrium whatever be its position within the unoccupied
part of the sphere.

Suppose next that the particle forms part of the mass of
the sphere ; we have, by Art. 239,

d’V 2dV
art 'rd'r

p being a given function of r.

— 4arp,

Multiply by %, and integrate from the value 7, of r; since
=0 for all points in the interior, it is so at the limit r;

thus ” %’—7 - ',nﬂ dr.

But f r4mr’pdr is the mass comprised within that surface of

the sphere which passes through the attracted particle. If we
call it M’, we have .

av__ ﬁf_'
dr~
The absolute value of the attraction will therefore be o

it is the same asif the mass M’ acted alone and were collected
at its centre.

If the attracted particle is on the exterior surface having
its radius =r,, we have, if M be the whole mass of the hollow
sphere,

av__M
dr = Y’

and the attraction exercised upon this particle will have for

its value ——}{, .
rﬁ
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Lastly, consider a particle outside the sphere; that is, for
which r is greater than r,; we have, as in the first case,

av_¢C

dr
But in consequence of the discontinuity arising from the
particles of the mass, the constant C is not restricted to
have the same value as for the interior points. To deter-
mine it we put r=r,; then, from the preceding case, we
ought to have

av__M
ar ¥’
therefore C=-M;
and we shall have for external points,
av__HM
dr 7

The attraction will therefore have for its value % . This

rﬁ
agrees with Art. 212.

The preceding application to the sphere serves very well to
illustrate the formuls, but it does not give an independent
demonstration of the results which it involves; because the
process in Art. 239 assumes that the attraction of a sphere on
an internal particle is known. But we may easily obtain the
facts connected with the attraction of a spherical shell with-
out using Art. 239.

Consider a spherical shell where the density is any function
of the radius; then we have, as shewn at the commencement
of the present Article, the result

av_o
dr

where C'is constant when we pass from point to point without
entering the attracting mass.

For any point within the inner surface of the shell =0,
because the attraction must vanish when r=0.
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For any point without the outer surface of the shell
C'= — M, because for points at an indefinitely great distance
the resultant attraction of the shell must be the same as if the
shell were condensed at its centre of gravity ; see Art. 231.

Thus the required results are obtained.

241. Application to an indefinite cylinder. Consider next
a hollow indefinite cylinder composed of homogeneous shells,
the density being a function of the distance from the axis of
the cylinder which we take for the axis of 2. Its action upon
any particle will be directed towards the point where the axis
is cut by a perpendicular plane passing through the attracted
particle. Take this point of the axis for origin; let r be its
distance from the attracted parti(:;eV; the attraction will depend
dr’

But for the points which are not part of the mass of the
cylinder, we have, by Art. 238, observing that V is inde-
pendent of ¢,

only on 7, and its value will be

av . av

da T ap
&V 14V

@ rar

=0,

whence

Multiplying by », we have

dir(r%; =0;

therefore —_———,

O being some constant.

We observe, as in the case of a hollow sphere, that the
points exterior to the cylindrical shell and those in the interior
being separated by those of the shell, for which the circum;
stances are different, there is a discontinuity in passing from
values of r greater than the radius of the external surface, to
those of » less than the radius of the internal surface.
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For points of the interior of the shell C is invariable; but it
is obviously =0 when r=0; therefore for all points in the
interior v

& =0

Hence we conclude, that an indefinite hollow cylinder composed
of homogeneous shells exercises no attraction on a point situ-
ated within the interior of its internal surface.

Let us now find the value of %TZ for points belonging to the

mass of the cylinder; for these points we have, by Art. 239,
&V, 1av |
dr* " r dr
and we find by integration, calling #, the radius of the internal
surface, v

r
r—— =—4m | prdr.
N

=— 4arp,

dr

No constant is necessary, because Z—Z =0 when r=r,, since it

is 5o for all the points of the interior of the surface of which
the radius is . Put r=7,, then

aV_ Aw (n .
E: T 7'_' "1pr "
For external points we ought to have
av_ ¢
ar 7T
Make r =r,, then, by reason of the preceding equation,
=—47 f r’prdr.
L4

The constant being thus determined, we have for all values of
r greater than r,,
av_o

dr r’

and the attraction of the cylinder will be g
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It ought to be observed, that in the example of this Arti-
cle, V is infinite, as may be readily shewn; but this does
not invalidate the process which really involves only the
finit tities av and i
nite quantities - pE

We shall now give some propositions extracted from an
article by Professor Stokes, in the fourth volume of the Cam-
bridge and Dublin Mathematical Journal, to which we have
been already indebted in Art. 236.

242. A surface of equilibrium is one on which a particle
would rest in equilibrium if acted on by the forces of the
system, the surface being supposed fixed.

If V be the potential of an attracting body on a particle,
then V= constant, is the equation to a surface of equilibrium
with respect to the attraction of the body. For we have
shewn in Art. 235, that ‘—Zd—fis equal to the attraction resolved
along the tangent to a curve drawn through the attracted
particle, but if this curve be on the surface ¥ =-constant,
then %7=0; that is, there is no force acting on P in the
direction of any tangent to the surface ¥'=constant. Hence,
if P be placed on the surface, it will remain in equilibrium.
(Art. 33.)

Lines of force are curves traced so that the tangent at
any point is the direction of the resultant force at that point.
Hence the lines of force are perpendicular to the surfaces of
equilibrium.

243. If 8 be any closed surface to which all the attracting
mass 18 external, dS an element of S, and dn an element of the
normal drawn outwards at dS, then

av

—d—;ds=0,

the integral being taken throughout the whole surface S.
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Let m' be the mass of any attracting particle which is
situated at the point P, P’ being by hypothesis external to 8.
Through P’ draw any straight line L cutting 8, and produce
it indefinitely in one direction from P'. The straight line L
will in general cut § in two points; but if the surface S be
re-entrant (that is, a closed surface which may be cut by a
tangent plane), it may cut it in four, six, or any even num-
ber of points. Denote the points of section, taken in order,
by P, P,, P, &c., P, being that which lies nearest to P
With P’ for vertex, describe about the straight line L a
conical surface containing an infinitely small solid angle
measured by the area a which the conical surface cuts out
from a sphere of radius unity, with the vertex of the cone as
its centre; and denote by 4,, 4,, ... the areas which the
conical surface cuts out from S about the points P,, P,, ......
Let 6,, 0, be the angles which the normals drawn outwards at

P,P,..... make with the straight line Z, taken in the direc-
tion from P, to P'; N,, N,,...... the attractions of m’ at P,,
P,..... resolved along the normals; », 7,,...... the dis-
tances of P, P,, ...... from P'. It is evident that the angles
0,0,..... will be alternately acute and obtuse. Then we
have :
Nl=zn—§c089,, N,=—7i,cos (m—8,), &c.
rl rﬂ
We have also in the limit,

4, =ar’secl,, A,=ar'sec(mr—0,), &e.;
and therefore
NA,=am’, NA,=—am’, NA,=am’, &c.;

and therefore, since the number of points 7, P,,... is even, .
NA,+NA,+NA,+NA,...=am' —am' + am’ —am'... =0.

Now the whole solid angle contained within a conical
surface described with P’ for vertex, so as to circumscribe 5,
may be divided into an infinite number of elementary solid
angles, to each of which the preceding reasoning will apply ;

and it is evident that the whole surface S will thus be ex-
hausted. We have, therefore,

* limit of SNA=0;
T.S. 21
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or, by the definition of an integral,
JNdS=0.

The same will be true of each attracting particle m’; and there-
fore, if IV refer to the attraction of the whole attracting mass,
we shall still have [NdS=0. But, by Art. 235, N= Z—Z’

which proves the proposition.

244. IfV be the potential of any mass M,, and if M, be the
portion of M, contained within a closed surface S, then

av
fd—n d8=—4nH,,

dn and dS having the same meaning as in Art. 243, and the
integration being extended to the whole surface S.

Let m' be the mass of an attracting particle situated at the
point P’ inside 8. Through P’ draw a straight line L, and
produce it indefinitely in one direction. This straight line
will in general cut S in one point; but if S be a re-entrant
surface, it may be cut by L in three, five, or any odd number
of points. About L describe a conical surface containing an
infinitely small solid angle «, and having its vertex at P, and
let the rest of the notation be as in Art. 243. In this case,
the angles 6,,8,, ... will be alternately obtuse and acute, and
we shall have

m m
N‘=_r_f cos (wr—0,) = Py cosd,,
A, =ar’sec(mr—6)=—ar’secl,
and therefore NA,=—am.

Should there be more than one point of section, the terms
N, 4,, N A4,, &. will destroy each other two and two, as in
Art. 243. Now all angular space round P may be divided
into an infinite number of solid angles such as a, and it is
evident that the whole surface S will thus be exhausted.
We get, therefore, '

limit of SNA =— Sam’ =—m'3a;
or, since Sa=4m, [NdS=-—4mwm'.
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F
l( ) ATTRACTION, REFERENCES. 323
|

ticle, and it has been shewn in Art. 243, that for an external
particle [NdS=0. Hence, adding together all the results,
and taking N now to refer to the attraction of all the par-
ticles, both internal and external, we get [NdS=—4mwM,

But N= %:—:, which proves the proposition.

245. For the researches of M. Chasles on the attraction
of ellipsoids, we refer to Duhamel’s Cours de Mécanique, or to
the original memoirs in the Journal de I'Ecole Polytechnique,
tom. XV., and the Mémoires...des Savans Etrangers, tom, IX.
In the original memoirs will be found copious references to
preceding writers on the subject.

On the general theory of attractions, the student may con-

sult a memoir by Gauss, translated in Taylor’s Scientific

Memorrs, vol. 111, and in Liouville’s Journal de Mathématiques,
tom. vIL; and also a memoir by M. Chasles in the Con-
nazssance des Temps pour U'année 1845. A

Notes by Plana on some of Newton’s propositions re-
specting attractions will be found in the Memorie della Reale

ccademia...dv Torino, second series, vol. XI1., 1851.

Some further references will be seen in the article by Pro-
fessor Stokes already cited.

For the application to the theory of electricity, we refer to
a series of articles by Professor Thomson in different volumes
of the Cambridge and Dublin Mathematical Journal. See
vol. 1. p. 94, and vol. 111 p. 140.

Additional information on the subject of Attraction will
be found in the History of the Mathematical Theories of
Attraction and the Figure of the Earth.

246. The following propositions will illustrate the sub-
ject of the present Chapter.

I. To find the attraction of a uniform lamina in the form
of a regular polygon on a particle situated in a straight line
drawn through the centre of the lamina at right angles to its
plane.

Let n be the number of sides in the polygon, a the length of
the perpendicular from the centre of the polygon on a side.

21—2
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Let axes of 2 and y be drawn through the centre of the
polygon, the axis of « being perpendicular to aside. Let ¢ be
the distance of the particle from the lamina. The resultant
attraction acts along the straight line which joins the particle
-with the centre of the lamina; and its value is

ff (c’iiljyy’)*

where u is the product of the mass of the particle into the
thickness and density of the lamina.

The integration must extend over the area of the polygon.
To effect the integration it is convemient to transform to
polar co-ordinates ; thus we obtain .

s f f rdrdf
@+t
‘We must integrate with respect to » from »=0 to r=asec 6,

and then with respect to 8 from 8 =0 to =" ot and multiply

the result by 2n.
Now f rdr - 1
(& + 1))} @+
taking this between the limits we obtain
1 cos 6
¢ VicosO+at
Hence the required result is

2n,u,cf%{1-— cos @
o6 Ncfcos*l+a f

that is

Vcos 6de

Sy — 2mpuc [
W — Spo V(a+c—c ' sin’d) ’

that is
. T
csin —
n

2umr — 2np sin T@T
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II. To find the attraction of a uniform lamina in the form
of a rectangle on a particle situated in a straight line drawn
through the centre of the lamina at right angles to its plane.

Let 2a and 2b be the length and breadth of the rectangle,-
¢ the distance of the particle from the lamina. Proceeding as
before we obtain the expression

. /’rdrdo
Pllerat

We have to divide the integral into two parts. For one °
part we integrate with respect to » from =0 to r=asecé,

and then with respect to 6 from =0 to & =tan™ g. For

_the other part we integrate with respect to » from »=0

to »=>5 cosecd, and then with respect to @ from 6 = tan"g

to 0 =%. ‘We multiply the result by 4.

ascd rdr 1 cos 6
fo (c’+r')*—° V(c* cos’ 0 + @)
Integrate with respect to 6; thus we get
6 1 int ¢sin @
c N@+ce)’
f"m’ rdr 1 sin 6
e P L I ET ok
Integrate with respect to 6 ; thus we get
1. ccosf

E+581n —4/(b'+¢')'
Hence the required result is
dp {Zr —s8in'— b sin™ 8 }
2 @@ TR N @RV

or 4 {cos‘1 cb 4 —gin™? ca
” V@@ +¢) V@ + )&+ )’
ab

or 4u sin™ N T
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IIL. Required the form of a homogeneous solid of revolu-
tion of given volume, which shall exercise the greatest at-
traction in a given direction on a given particle, the attrac-
tion varying as any inverse power of the distance.

Take the given particle as the origin, and the given direc-
tion as the straight line from which to measure angular
distance ; let #, @ be the polar co-ordinates of any point in
a fixed plane passing through the given direction. Then if
the attraction vary inversely as the 2" power of the distance,
the attraction of an element whose co-ordinates are r and 6

may be denoted by %; and the resolved part of this attrac-

tion in the given direction will be ;’% cos 6. Hence the

equation

®

/= C08 0 = constant
represents a curve such that a given element placed at any
point of it will exert the same attraction on the given particle
along the given direction. Hence this equation will represent
the curve which by revolving round the given direction will
generate the required solid of greatest attraction, the constant
being determined so as to give to the solid the prescribed
volume. It is obvious that such is the case, because the
surface we thus obtain separates space into two parts, and
any element outside the surface exercises a less attraction
along the given direction than it would if placed within
the surface.

The history of this problem will be found by consulting
the entry Silvabelle's Problem in the Index to the History of
the Mathematical Theories of Attraction...

IV. Every element of the arc of a polar curve attracts
with a force which varies inversely as the n*™ power of the
distance : determine the form of the curve when the resultant
attraction of any arc on a particle at the pole bisects the angle
between the radii vectores of the extremities of the arc.

Take the pole as origin, and any straight line through it as
the initial line. Let » and @ be the polar co-ordinates of

I
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an element ds of the arc. Resolve the attraction of the arc
on a particle at the pole along the initial line, and at right
angles to it; we obtain for these two components

fa'ucosed‘;dﬁa.ndf ’u'smedsde
0

d

where the arc considered extends from §=0 to 0=a Hence,
by hypothesis,

”' sm0dsd0 '
0 9 — a
'“,u, —-tané.
f ?cosedode
Put ¢ (6) for }d_sa thus we have

f " (6) sin 6.6 = tan § f “8 (8) cos 0.d6.

Now this relation is to hold for all values of a, and there-
fore we may differentiate both sides with respect to a. Thus,
by Integral Calculus, Chapter 1X., we have

(a)sma——sec f¢ cos@d0+tan2¢(a)cosa,

therefore
24 (2) (Sina - ta,ng cos a) cos’:z:—a =f: ¢ (6) cos 0 d6,
that is ¢ (a) sina= f " (8) cos 0 d6.
]

Differentiate again with respect to a; thus
¢ (a) cos a + sin “%4’(“):4’ (a) cos z;

d
therefore ZP@=0.
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Thus ¢ () is constant for all values of a, that is

14
™ do

This result might have been anticipated : it expresses that
elements of the curve which subtend equal infinitesimal angles
at the pole exert equal actions on the particle there.

dr

Therefore 4+ ( 70

= a constant =% say.

) =kr™;

this leads to either g—a— 0, or else

dgy' 1
(ﬂ) =1
The former supposition makes r consta.nt and so gives a

circle. Taking the latter, and puttmg ! for r we have

wdu
do :15—1
V=)
w—l
so that (n—-1)0+ 0=sin"'T,

where C is a constant.

Therefore =ksin{(n—1)0 + C}.

n—l =

7

If n=2 we obtain
1=Fkrsin (0 + C),
which is the equation to a straight line: see Art. 204.
If n=3 we obtain
" 1=kr*sin (204 C),

whlch is the equation to a rectangular hyperbola, the pole
being at the centre.

—
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EXAMPLES.

In the following Examples the ordinary law of attraction is
to be assumed, unless the contrary be stated.

1. A solid is generated by the revolution of a sector of a
circle about one of its bounding radii ; find the attraction on a
particle at the centre. Result. map sin® B.

2. The rim of a hemispherical bowl consists of matter
repelling with a force varying directly as the distance; shew
that a particle will rest when placed anywhere on the concave
surface.

3. A tube in the form of a parabola is placed with its axis
vertical and vertex downwards ; a heavy particle is placed in
the tube, and a repulsive force acts along the ordinate upon
the pa.rtlcle find the law of force that it may sustain the par-
ticle in any position.

4. A portion of a cylinder of uniform density is bounded
by a spherical surface, the radius of which is greater than that
of the cylinder, and the centre coincides with the middle point
of the base ; find the attraction on a particle at this point.

2
Result. 2mpa — ﬂ;)i ; where a is the radius of the cylinder

and b the radius of the sphere.

5. Find the resultant attraction of a spherical segment on
a particle at its vertex.

Result. 2mhp {1 -3 J 2h }

where a is the radius of the sphere and % the height of the

'seorment

6. Find the resultant attraction of a spherical segment on
a particle at the centre of its base. : :

_2mhp

Result,
3(a—hy

W {8a% — 3ah + h* — (2a — h)*hl).
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7. Find the locus of a point such that its resultant attrac-
tion on a fixed straight line may always pass through a fixed
point in the straight line. Result. A sphere.

8. Find the attraction of a segment of a paraboloid of re-
volution, bounded by a plane perpendicular to its axis, on a
particle at the focus.

z+a
a
bounding plane from the vertex.

 Result. 4mpa log

9. Round the cireumference of a circle n equal centres of
force are ranged symmetrically ; each force is repulsive and
varies inversely as the m® power of the distance. A particle
is placed in the plane of the circle very near its centre;
shew that approximately the resultant force on it tends to the
centre of the circle and varies as the distance of the particle
from the centre, except when m = 1.

10. Eight centres of force, resident in the corners of a
cube, attract, according to the same law and with the same
absolute intensity, a particle placed very near the centre of
the cube; shew that their resultant attraction passes through
the centre of the cube, unless the law of force be that of the
inverse square of the distance.

11. If the law of force in the preceding example be that
of the inverse square of the distance, find the approximate
value of the attraction on a particle placed very near the
centre.

Result. Take the centre of the cube as origin and the axes
parallel to the edges of the cube; then if «, g, z be the co-
ordinates of the particle the attraction parallel to the axis of
is approximately

56z . s

towards the origin ; 2a being the length of an edge.

12. The attraction of a uniform rod of indefinite length on
an external particle varies as (distance)™ of the point from the

, where z is the distance of the .
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rod. Prove this, and supposing the asymptotes of an hyper- -
bola to consist of such material, shew that a particle will be in
equilibrium at any point of the hyperbola, and that the pressure
on the curve at any point is proportional to the length of the
tangent intercepted by the asymptotes.

13. An elliptic lamina attracts an internal particle (x, %)
with a force varying inversely as the distance ; shew that if
X, Y be the whole attractions parallel to the axes,

iY + Z = constant.
z Yy

'14. If A, B, C be the attractions of an ellipsoid in direc-
tions parallel to its axes on an internal particle situated at the
point (£, g, &), shew that :

7+—+Z=4ﬂfp.

(See Arts. 228 and 239.)

15. The resultant attraction of a particle which attracts
according to the inverse cube of the distance on a plane
lamina is the same as on that part of the spherical shell
described about the particle as centre and touching the plane
of the lamina, which is cut off by straight lines from the
centre to the edge of the lamina.

16. A particle attracted by two centres of force at 4 and
B is placed in a fixed groove. Shew that the particle re-
mains at rest at whatever point it is placed, provided that
the form of the groove be such that

(AP —c)(BP-C) =cc,
where ¢, ¢’ are constants dependent upon the absolute forces.

17. If a portion of a thin spherical shell, whose projections
upon the three co-ordinate planes through the centre are
A4, B, C, attract a particle at the centre with a force varying
as any function of the distance, shew that the particle will
begin to move in the direction of the straight line whose equa-
tions are
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18. The particles of a thin hemispherical shell attract with
a force = u (distance), and those of a right conical shell repel
with a force = u (distance). The rims of their bases coincide,
and their vertices are turned in opposite directions, shew that
a particle will rest in the common axis produced at a distance
from the vertex of the sphere = length of the axis of the cone,
the vertical angle of the cone being 2 tan™ 4.

19. Shew that if the attraction vary inversely as the dis-
tance an indefinitely thin plane ring exerts no force on a
particle in the plane of the ring within its inner circum-
ference.

[This and the following example depend on the integral
™ (a—ccosf)df
0@ +c*—2accos @’
for which see Integral Calculus, Chapter 1v.]

20. Shew that if the attraction vary inversely as the dis-
tance an indefinitelythin plane ring attracts a particle in the
plane of the ring beyond its outer circumference in the
same manner as if the mass of the ring were collected at
its centre. '

21. If a straight line be the attracting body, shew that
the lines of force are hyperbolas and the surfaces of equi-
librium ellipsoids of revolution. (Cambridge and Dublin
Mathematical Journal, Vol. 11L. p. 94.)

22. From the proposition established in Art. 244, deduce
- that established in Art. 239. (Cambridge and Dublin Mathe-
matical Journal, Vol. v. p. 215.)
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CHAPTER XIV.

VIRTUAL VELOCITIES.

247. 'WE proceed to establish a general theorem respect-
ing the equilibrium of a body or system of bodies, called the
Principle of Virtual Velocities. :

When a system of particles is in equilibrium, and we
suppose each of them placed in a position indefinitely near
that which it really occupies, without disturbing the con-
nexion of the parts of the system with each other, the straight
line which joins the first position of a particle with the second
18 called the wrtual velocity of that particle,

The term velocity is used because we may conceive all the
displacements to be made in the same indefinitely small time,
and then the spaces described are proportional to the velocities.
The word virtual is used to intimate that the displacements
are not really made, but only supposed. We retain the
established phraseology, but it is evident from these explana-
tions that the words wirtual velocity might be conveniently
replaced by hypothetical displacement.

By the words, without disturbing the connexion of the parts
of tZe system with each other, we mean, that any rigid body
which exists in the system is supposed to remain of invariable
form, and that any rods or strings which connect different
parts of the system are to remain unbroken. This, at least,
will serve for a preliminary statement to assist the reader,
and we shall recur to the subject again; see Art. 257.
Hence, by reason of this limitation the virtual velocities of
the different parts of a system are frequently so connected
that when those of a definite number of points are assumed,.
those of all the rest necessarily follow.

248. The virtual velocity of a particle estimated in a

- given direction is the projection of the virtual velocity on

this direction; it is considered positive when the direction
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of the motion of the particle, in passing from its first position
to its second, makes an acute angle with that along which
we are estimating the velocity. Thus the virtual velocity
of a particle estimated along any given straight line is found
both in magnitude and sign, by multiplying the absolute
virtual velocity by the cosine of the angle which its direction
makes with the given straight line.

The virtual moment of a force is the product of its intensity
by the virtual velocity of its point of application estimated in
the direction of the force.

We can now enunciate the principle of virtual velocities.

If any system of particles is in equilibrium, and we con-
ceive a displacement of all the particles which is consistent
with the conditions to which they are subject, the sum of the
virtual moments of all the forces is zero, whatever be the dis-
placement. - And conversely, if this relation hold for all the
virtual displacements, the system is in equilibrium.

249. The student will derive from the demonstrations
which follow a better notion of the meaning of the principle
" than from the mere enunciation of it ; it is, in fact, necessary
to obtain a general view of the whole subject before at-
tempting fully to comprehend the preliminary definitions and
statements. One remark may be made for the purpose of
anticipating a difficulty ; each wrtual moment is by definition
an indefinitely small quantity, that is, ultimately vanishes,
so that the principle seems to amount only to this, fake each
Jorce of the system and multiply it by a quantity which wulti-
mately vanishes, then the sum of these products vanishes. The
principle, however, implies more than this statement, as w.
shall see. :

The convenient term virtual moment is given by Duhamel;
it may, however, be useful to enunciate the principle of virtual
velocities without introducing this term, and we therefore give
the following.

Suppose a material system held in equilibrium by any
forces, and suﬁ)pose the points of application of the forces
moved through very small spaces in a manner consistent
with the connexion of the parts of the system with each

-
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other. Let perpendiculars be drawn from the new positions
of the points on the directions of the forces acting at the
points in their positions of equilibrium. The distance be-
tween the foot of any perpendicular and the original point
of application of the corresponding force, is called the vir-
tual velocity of the point with respect to that force, and is
estimated positive or negative, according as the perpendicular
falls on the side of the point towards which the force acts
or on the opposite side. Then the principle is this, the
algebraical sum of the product of each force of the system
and the corresponding virtual velocity vamishes. And con-
versely, if the sum vamishes for every displacement the system
18 1 equiltbrium.

Before we proceed to a general demonstration, we will
consider two simple cases, that of a particle, and that of
a rigid rod acted on by forces at its ends.

250. Suppose that forces act on a single particle and
maintain it in equilibrium. Let P,, P,,... denote the forces;
‘@, a,, ... the angles which their directions respectively make
with any fixed straight line arbitrarily chosen ; then by Art. 29,

S Pcosa=0.

If every term of this equation be multiplied by the arbi-
trary quantity r, we have 2Pr cosa=0. But r cosa, is the
projection of the length 7, measured along the fixed line, on
the direction of the force P,; a similar meaning may be
assigned to r cosa,, 7cos a,,... Also » may be considered as
the distance of the first position of the particle from a second
position arbitrarily chosen, and therefore, when r is indefi-
nitely diminished, »cosa,, 7 cosa,,... become the virtual ve-
locities of the particle with respect to P,, P,,... Hence, the
principle holds in this case.

Convessely, if 2Prcosa =0 for all directions of displace-
ment ; then, 3P cos a=0 for all directions, and the particle is
in, equilibrium under the action of the given forces.

In this case, we observe that the hypothetical displacement
of the particle may be of any magnitude we please, and that
the sum of the products of each force into the projection of
the displacement on its direction is not only wltimately, but
always zero,
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251. Since when a system of forces acting on a particle
is in equilibrium, each force is egual and opposite to the re-
sultant of all the other forces, and, as we have just seen, the
sum of the products of each force into its virtual velocity is
zero, it follows, that the product of any force into its virtual
velocity is numerically-equal to the sum of such products for
any system of forces which it balances, but is of the opposite
sign. Hence if a single force is the resultant of a system of
forces acting at a point the product of the single force into
its virtual velocity is equal to the sum of such products for the
system of forces.

252, Next, suppose a rigid rod acted on by a force at each
end. Let @, y, z be the co-ordinates of one end, and 2/, 3/, 2’
those of the other; I the length of the rod ; then

(=) + @y—y)V+ (-2 =0"............ 1).

Suppose the rod displaced; let 8z, 8y, 6z be the changes
made in the co-ordinates of one end ; 8z, 8y, 82’ those made
in the co-ordinates of the other end ; then

(248 —a' —8z ) *+(y+8y—y'— 8y )+ (2+02—2' - 82')* =D ... (2).
From (1) and (2), ’
2(z—a) Sz —52)+2 (y —3) By — &) +2 (¢ — ) (52— &)
+ (S — 8a') + (Sy — 8y )* + (82 — 82)*=0......... (3).

Let a, 3, y be the angles which the original direction of the
rod makes with the axes; then '
o —x=1lcosa, y'—y=1lcosB, 2’ —z=1cosqy...(4).

If then, in (3), we neglect the terms (dx — 8x'), (8y — &y')?,
(82 — 82")* in comparison with those we retain, we have

(=) (b0~ &) + (y—¥) By — &) + (e = &) B2 =) =0,
or, by means of (4),
Szcosa+8ycos B+ 8z cosy=0z'cosa-+8y cosB+82 cosry...(5).

Suppose P the resultant of the forces acting at one end of
the rod, and P’ the resultant of those acting at the other end;
then, in order that there may be equilibrium, these forces
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must be equal in magnitude and must act along the rod in
opposite directions. This is obvious, or may be easily shewn
by Art. 73. Since then P’'=— P, we have by (5)

P (8 cosa+ 8y cos B+ 8z cosvy)
+ P’ (82 cos a + 8y’ cos B + 82" cos ) =0...... (6).

Since P acts along the rod, the first term is the product of
P into the resolved virtual velocity of its point of application,
and the second term is a similar product for 7’; hence, the
principle of virtual velocities holds in this case.

The converse of this theorem is true in this case, but we
shall not give a separate demonstration of it; the general
demonstration of Art. 253 will sufficiently illustrate this
point.

If (5) were absolutely true, then in the case of a rod, as in
that of a single particle, the sum of the products of each force
into the projection of the displacement of its point of applica-
tion on the direction of the force would be zero, whether the
displacement were finite or infinitesimal. But (5) instead of
being absolutely true is obtained from (3) by neglecting
squares and products of the resolved displacements 8z, 8z, 8y,...

253. We proceed to establish the truth of the principle in
the case of a rigid body. We shall assume that any possible
displacement of arigid body may be produced, by first making
the body rotate about some axis, and then moving all the
particles of the body through equal spaces in parallel direc-
tions. See Spherical Trigonometry, Chapter Xv. Suppose,
for simplicity, that the axis of z is made to coincide with the
axis about which the body is turned; let 6 be the angle
through which the body is turned, then the co-ordinates of a
particle which were originally « and y will become, f we
neglect the square and higher powers of 6, x —y6 and y + x0
respectively ; the co-ordinate z of the particle remains un- .
changed.

Let the body be now further displaced, so that each particle
moves through a space of which a, b, ¢ are the projections on

T. 8. 22
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the co-ordinate axes; then, if 8z, 8y, 8z denote the whole
changes made in the co-ordinates , y, z of a particle, we have

Sx=a—y0, Sy=>b+axh, &z=c.

Since the forces which act on the rigid body are supposed
to keep it in equilibrium, we have by Art. 73,

5X=0, 3Y=0, 3Z=0,
S (Zy-Ye)=0, 3 (Xz—Zz)=0, = (Yz—Xy)=0.

Multiply the first of these equations by a, the second by b,‘
the third by ¢, and the sixth by 6, and add ; we then find

2{X(a—y0)+ Y (b+x0)+ Zc} =0,
or 3 (X8x+ Y8y + Z8z)=0.

Let P, denote the force of which X, Y, Z, are the com-
ponents, and P, P,,...... bave similar meanings; and let
LK be the resolved virtual velocities correspond-
ing to these forces ; then, by Art. 250, the above equation
may be written ,

: 2Psp=0.

This proves the principle in the case of a rigid body.

. Conversely, if the sum of the products of the forces and the.
resolved virtual velocities vanishes for every possible displace-
ment of a rigid body, the forces keep the body in equilibrium.

For suppose, in the first place, the body is so displaced
that every point of it moves parallel to the axis of z over a
space @ ; then we have, by hypothesis,

3Xa=0;
therefore 2X=0.
Similarly, by suitable displacements, we may prove that
3Y=0, and 2Z=0.

Next, suppose the bbody turned round the axis of z'through
a small angle @; then, by hypothesis, :

- 2 (Xor + Y3y) =0,
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and Se=-y0, &y=2a9;
therefore 6% (Xy — Yz)=0;
therefore 2 (Yz—Xy) =0,

Similarly, by suitable displacements, we may prove
2 (Zy—Y2)=0, 2 (Xz—Zx)=0.
Hence, the six equations of equilibrium hold.

If there be a system of two or more rigid bodies, then, since
the principle of virtual velocities holds for any possible dis-
placement of any one of the bodies, it holds for any possible
displacement of the system.

254. In Art, 253 we have simplified the proof of the first
part of the principle of virtual velocities, by supposing the
axis of 2 to coincide with that about which the body was
made to undergo an angular displacement. The following
will be the process, if we suppose the displacement made
about a straight line passing through the origin, and inclined
to the axis at angles whose direction cosines ‘are [, m, n.

Let 7 be the distance of any point (z, 3, 2) from the origin ;
¢ the angle this distance makes with the given straight line ;
p the perpendicular from (z, y, 2) on the given straight line ;
then

. rﬂ=x!+y3+z3,

lz my mnz
cosp=—+—"4—;
r r r
therefore p* or r*sin’¢ ="+ '+ 2* — (lz + my + n2)™.

Suppose the body turned through a small angle 6 round
the given line ; let @+ 8z, y + 8y, 2 + 8z, be the co-ordinates
of that point of the body which was originally at (z, g, 2).

Since r and p are u.nchan%ed by the displacement, we have,
by neglecting (8z)°, (8y)", (%2)" in comparison with 3z, dy, &z,

0 =28z + ydy + 282,
0= Bz + mdy + ndz;

oz Sy 8z
- = = = A SUPPOSCesesss 1 o
therefore Giam = P/ A suppose (1)
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And since  {(82)*+ (8)* + (82)*}} = 2psin 36,
M(yn — 2m)* + (el —zn)* + (zm — yI)}2 = 2p sin 34,
or M@+ 3t + 2 = (lo + my +n2)'}} =2psin 36;
therefore A=0 i, 2),
neglecting 6° and higher powers of 6.

Suppose the body to be further displaced, so that each
particle moves over spaces a, b, ¢ parallel to the co-ordinate
axes; if dx, 8y, 8z denote now the whole displacement of the
partlcle whose original co-ordinates were , ¥, 2, we have

Sx—(]/n—zm) 0+a,
= (zl—an) 0+,
Bz = (xm—yl) 6 +c.
Mu]tlply the six equations in Art. 73 by a, b, ¢, — l6, —m80,
—nb, respectively, and add, then

2 (Xoz + Yoy + Z82) =

255. We shall illustrate the principle of virtual velocities
in the solution of the following problem.

A beam in a vertical plane rests on a post B and against a
wall at 4 ; required the circumstances of equilibrium. - -

Let the distance of B from the wall =43 let G be the centre
of gravity of the beam ; AG'=a; and the inclination of the

beam to the wall=60. The reaction (P) of the post at B is

C” ¢
&

FR

w| R

perpendicular to the surfaces in contact, and therefore to the
beam ; the reaction (£) of the wall is perpendicular to the
wall for the same reason; let W be the weight of the beam.
We may consider the beam in equilibrium under the a.ctlon
of P, B, W, and suppose the post and wall removed.

.

" b ——— .
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Now the object of the problem might be, solely to deter-
mine the position of equilibrium, or also to determine P and
not R, or R and not P, or to determine both Pand R and also
the position of equilibrium. We shall solve the problem by
the principle of virtual velocities under these four suppositions,
in order to explain the method of proceeding so as to avoid
as much trouble as possible according to the nature of the
question.

(1) Suppose the position of equilibrium only required.
We must then give the beam a small arbitrary geometric
motion such that the unknown pressures P and R shall not
occur in the equation of virtual velocities; the beam must

therefore remain in contact with the wall and the post, as
in the figure.

Let 86 be the increase of 6 owing to the displacement.
Then the height of G' above the horizontal straight line
through B, (or z), before displacement

=GB cos 0 =(a—bcosec ) cos @ =acosd —bcot 8}

the height after displacement is found by changing @ into
0+ 86 in this expression; therefore, the vertical space described
by G or &z :

= a cos (8 + 86) — b cot (0 + 88) — (a cos @ — b cot 6)

b .
= (m—as.m 0) 80,
and, by the principle of virtual velocities, T3z = 0; therefore
. 3
b—asin’0=0, sinf= \/é s
a -

and this determines the position of equilibrium.

(2) But suppoée we wish to find the pressure P as well

as the position of equilibrium.

‘We must in this case move the beam off the post, in order
that the virtual velocity of B with respect to. P may not
vanish, and consequently P not disappear as in the first case.

Let 44’ =c, and let, as before, 86 be the change of ..
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We have to find the displacement of B estimated along

the line of action of P. Now conceive the beam brought
into its second position by two steps; first let it be moved
parallel to itself till the lower end comes to 4’, and next let
1t revolve round A4’ through a small angle 80. By the first
step B moves through a space parallel and equal to 44"; by
the second step B describes a small arc of a circle the length
of which is 4.B.80, that is & cosec 80. Thus the displace-
ment of Bestimated along the line of action of Pis ultimately
csin @ — b cosec 8 86.

Similarly by the first step G moves through a space equal
and parallel to 44", and by the second step & c})escribes a
small arc of a circle the length of which is ad6. Thus the
dissplacement of G resolved vertically downwards is ultimately
adf sin 6 —c.

Therefore, by the principle of virtual velocities,

W (asin 630 — ¢) + P (c sin 6 — b cosec 630) =0 ;
therefore, 80 (Wa sin 6 — Pb cosec ) —c (W —Psin6)=0;
and, since ¢ and 36 may be any independent small quantities,

Wa sin @ — Pb cosec =0, W— Psin8=0;

therefore sin 0 = J g , and —11;,= ;/ % .

(8) Suppose we wish to know R and the position of
cquilibrium, and not P.

Then we should displace the beam 8o as to give to 4 a
virtual velocity with respect to R, but not one to B with
respect to P.

- The beam must therefore still remain in contact with the
post.. Let AA4'=c, and let a be the angle which 44’ makes

e - ——————— -
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with the vertical. Now conceive the beam brought into its
second position by two steps; first let it be moved parallel

& W‘L

to itself till the lower end comes to 4, and next let it revolve
round 4’ through an angle 86 so as to bring the beam again
into contact with the post. The displacement of 4 estimated
along the line of action of R is ¢ sina. The displacement of
G estimated vertically downwards is ad6 sin 8 — ¢ cosa.

Moreover there is a relation between 86, ¢, and a, arising
from the fact that the whole displacement of the beam is such
a8 to keep the beam still in contact with the post. From the
triangle 4BA’, we have

_sind) 44"
sin(@—a) AB’
50 = csin (6 —a) sin
=

Therefore by the principle of virtual velocities

hence, ultimately.

W{%csin"esin (60— @) —cco.sa}+Rcsina=O;

that is .
Iind
W(a SIbn 0_ 1) ¢ cos o + (R— K;;—zsin’ﬁcose)c sina=0;

and ¢ cos ¢ and ¢ sin « are independent ; therefore

C.’
‘ﬁ%‘_f-_-1=0, R——Wl;—asin’ecose=0;

b G
therefore  sinf = \/ 2’ and W= g
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(4) Lastly, suppose we wish to determine P and B and
the position of equilibrium.

Then we must give the beam the most general displace-
ment possible in the plane of the forces; let 44'=¢, and

let « be the angle which 44" makes with the vertical. Now
conceive the beam brought into its second position by two
steps; first let it be moved parallel to itself till the lower exid
comes to A4', and next let it revolve round A4’ through an
angle 80. The displacement of 4 estimated along the line
of action of R is csina. The displacement of G estimated
vertically downwards is »

adfsin @ — ¢ cos a.

The displacement of B along the line of action of Pis

¢ Ccos (a + ;_r - 0) — b cosec 636,
that is, ¢ sin (0 —a) — b cosec 6s6.

Therefore by the principle of virtual velocities
W (ad0sin 6 — ¢ cos @) + Re sin a
+ P {csin (0 —a) — b cosec 636} =0;

that is,

(Wa sin 8 — Pb cosec 6) 80 + (Psin 9— W) ccosa

+(R—Pcosb)csina=0,

and 36, ¢ cos a, and ¢ sin @ are independent ; therefore
Wa sin 0 —Pb cosec 6 =0, Psin@—W=0, BR—Pcosf= 0.
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These three equations are the equations which we should
have obtained by the principles of Art. 57 ;. they give by
elimination : :

. 2/b P _/a\k R Jd-bY
ind=p/o 5= (i) =T

We have thus illustrated the method of application of this
principle; and we observe, in general, that when the object
of the problem does not require certain unknown forces, we
must give the body the most arbitrary geometrical motion

possible without giving the points of application of these
forces any motion in their directions,

256. In applying the principle of virtual velocities to de-
duce the conditions of equilibrium of any system, it is often
convenient to give the body such a displacement as to make
the wrtual moments of some of the forces separately vanish.
This has been exemplified in the preceding Article, and we
will now enumerate some cases in which the virtual moment
of a force vanishes, :

(1) In the hypothetical displacement, if any particles of
the system have remained in their original places, the virtual
moment of forces acting at such points is obviously zero. If
a body, for example, have one point fixed, then the virtual
velocity of this point is zero for any hypothetical displacement
of the body, which does not break the condition of this point
being fixed. o :

(2) Suppose a body compelled to remain with one point
in contact with a smooth fixed. plane, so that the plane exerts
a force on the body at the point of contact in a direction
perpendicular to the plane. Let the body be displaced so as
to have the same point still in contact with the fixed plane,
then the perpendicular drawn from the new position of the
point of contact on the old direction of the action of the fixed
plane meets that direction at the old position of the point of
contact; that is, the virtual velocity of the point of contact
relative to the force exerted by the plane is zero.

Similarly, if the body have more than one point in con-
tact with the plane, and be so displaced that the same points
of the body remain in contact with the fixed plane, the
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virtual moment of each force which the plane exerts on the
body vanishes..

(8) Let two smooth bodies be in contact ; then each exerts
a force on the other along their common normal. Suppose
one of them so displaced, that the. point in it which was
originally in contact with the other body still remains in con-
tact with it; the case is similar to that of a body in contact
with a fixed plane; the virtual velocity of the point of contact
relative to the normal force is not zero, but is indefinitely
small compared with the absolute virtual velocity.

Let BAC be a section of one body made by a plane which

contains the common normal to the surfaces, and DAE the
section of the other made by the same plane; 4 the point of
contact. Suppose the body BAC displaced into the position
B'A'C’, so that the point 4 is moved to 4. Draw 4'M per-
pendicular to the common normal to the surfaces. "Then AM
represents the virtual velocity of the point of contact with
respect to the normal force, while the straight line joining 4
and A’ is the absolute virtual velocity. Since M4 A4’ is ulti-
-mately a right angle, AM vanishes compared with 44",

© (4) Suppose two bodies in contact at a single point, and
let them be botk displaced so that they still remain with the
same point of each body in contact. Let P denote the force
in the normal on one body, and therefore — P that on the
other; then, if Pdp denote the virtual moment of the normal
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force with respect to the first body, — P8p will be the virtual
moment with respect to the.second body. Hence, by taking
the sum of the virtual moments for the two bodies, the mutual
action P disappears.

- A similar result holds if the bodies be in contact at more
points than one.

(5) Suppose a body in contact with a smooth fixed plane
at a single point, and let the body be displaced by rolling it
on the fixed plane.

Let BACbe a section of the body made by a plane through
: o I
\ .

B N\ , cv
n XQ\ /’/

D A Al E

the point of contact 4 containing the common normal to the
surfaces, and suppose this section a circle. Let DAE be the
intersection of this plane with the fixed smooth plane. Sup-
pose B'A’'C' the position of the body after displacement, 4’
being the new point of contact, and let @ be the point in the
body which was originally in contact with the fixed smooth
plane. Draw an perpendicular to the normal AN; then, An
represents the resolved virtual velocity of the point of contact
with respect to the normal force. Now An is equal to the
product of the chord 4'a and the sine of the angle between
this chord and 4'4; and as this angle is ultimately indefi-
nitely small, 47 is indefinitely small compared with the chord
A’a, and therefore also compared with the arc A’a or 44',
Hence if we neglect powers of 44’ higher than the first, the
virtual moment of the force along the normal acting at the
point of contact is zero.

A similar result holds if BAC, DAE be any curves instead
of a circle and straight line respectively.

If a displacement is made up of two, oue like that in the
second case, and one like that in the present case, the fixed
plane being smooth, the virtual moment of the force exerted
by the plane will vanish., ' «
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(6) Let us suppose the bodies in contact to be rough, and
a displacement to be made by rolling one upon the other as in
the preceding case. The action of each body on the other will
not be directed along the normal AN, but may be resolved
into two, one along AN and the other at right angles to AN.
The virtual moment of the former force vamshes as we have
shewn in the preceding case; and since the direction of the
stralght line joining A and a ultimately coincides with AN
and is therefore perpendicular to the second force, the virtual
moment of the second force vamshes in the same manner as
in the third case.

The result depends on the hypothesis that the bodies roll
on each other; if there is sliding the virtual moment of the
force at right angles to AN will not vanish.

(7) Suppose an inextensible string to have one end at-
tached to a fixed point, and the other end to a particle either
isolated or forming part of a rigid body; one of the forces of
the system is then the tension ‘of this string which acts along
its length. Let the particle be so dlsplaced as to keep the
string stretched, then it may pass from its first to its second
position by moving over an arc of a circle, and in the same
manner as in the third case, we see that the virtual velocity
of the particle with respect to the tension which the string
exerts, is indefinitely small compared with the absolute virtual
velocity of the particle. Hence, the tension of the string dis-
appears from the equation of virtual velocities.

(8) Suppose an inextensible string connecting two parti-
cles of the system, and let the particles be displaced along the
direction of the string, the string being kept stretched. Then,
if one particle be displaced through a space 3p, and P denote
the tension of the string, and therefore the force exerted by
the string on this particle, Pdp is the virtual moment of the
force which the string exerts on this particle; also — Pdp will
be the virtual moment of the force which the string exerts on

the second particle. Hence, by taking the sum of the virtual °

moments for the two partlcles, the tension of the string dis-
appears from the equation of virtual velocities.

(9) If we suppose a further displacement of the system in
the preceding case, by keeping one particle fixed and making
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the other describe an arc of a circle, then, by the seventh
case, the tension of the string disappears from the equation:
of virtual velocities.

By a combination of the displacements considered in the
seventh and eighth cases, we can produce any displacement
that the two particles can undergo, so long as the string is
kept stretched. Hence, the tension of a string connecting two
particles disappears from the equation of virtual velocities.

‘We have supposed the string to pass in a straight line from
one particle to the other, but the same result would hold if
the string were deflected by passing through one or more
smooth fixed rings, supposing it always kept stretched. The
demonstration would not hold for an extensible string.

257. We can now understand more distinctly the meaning
of the words, without disturbing the connexion of the parts of
the system with each other, which are introduced into the enun-
ciation of the theorem. The theorem is shewn in Art. 250 to
be true for a particle; if then we considér a rigid body to be
a collection of particles held together by molecular forces, the
theorem will hold for every displacement of the particles of
the rigid body, provided we include the molecular forces and
estimate their several virtual moments. But from the demon-
stration in Art. 253 it appears that we need not consider the
molecular forces, provided we give to the different particles
such displacements only as are consistent with the unbroken
rigidity of the body. So with respect to such forces as are
enunciated in the preceding Article, we may, if we take them
into consideration, give to the system any displacements we
please; but if we do not take them into consideration, we
must give such displacements only as we can prove will not
introduce the virtual moments of these forces. Hence, the
words which we are explaining amount to a direction to be
careful to include every force of the system, except such as
we know have their virtual moments zero for the particular.
displacement we are considering.

258. The following example will shew how the principle
of virtual velocities may assist in the solution of problems.-
Six equal rods are fastened together by hinges at each end,
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and one of the rods being supported in a horizontal position
the opposite one is fastened to it by an elastic string joining
their middle points; determine the tension of this string.

Let W denote the weight of each rod, 7'the tension of the
string. Suppose the system displaced slightly so that the
lowest rod descends vertically through a space #. Then it
will be easily seen that the centre of gravity of each of the
two rods which are adjacent to the highest rod descends
E
two rods which are adjacent to the lowest rod descends

through a space 7 ; and the centre of gravity of each of the

through a space %!f; the point of application of the tension

on the lowest rod descends through a space 2. Therefore by
the principle of virtual velocities '

WL+ 2WL 4 Wo— To=0;

therefore - T=3W.
The mutual actions at the hinges disappear from the equation

furnished by the principle of virtual velocities, and thus the

required result is readily obtained.

259. The following is the process by which we may de-
duce the equations of equilibrium of any system from the
principle of virtual velocities.

Let P, P, P, ... denote the forces which act on a system;
Pdp,, Pop,,...their respective virtual moments for any dis-
placement; then, by the principle,

Pop,+Plp,+ Pdp,+...=0............ (1).
This equation we proceed to develope.
Let a,, B,, v, be the angles which the direction of P, makes

with the co-ordinate axes; z,, y,, 7, the co-ordinates of the

point of application of F,; then

&p, = cos a, 8z, + cos B,8y, + c0s4,82,.........(2);
this is rigorously true, and similar equations hold for 8p,,
8}’,, ces .
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Now, in consequence of the connexion of the system, for
example, the rigidity of some parts of it, or the junction of
parts by rods or strings, relations will hold between the co-
ordinates «,, ¥,, 2,, ®,, s Z,,... in virtue of which all of
them may be expresse(f in terms of a certain number of them;
or all of them may be expressed in terms of certain other
independent co-ordinates and angles,

Suppose €, &, &, ... ¢,, b, P;,... to denote these inde-
pendent co-ordinates and angles. Then, if we neglect the
squares and products, and higher powers of 8z, &y,, ... 8,
8k,, ... 8¢,, 6¢,, ..., we shall obtain equations of the form

oz, = A O + ASE, + ... + a8, +add, + ...,
ox,= BRE, + BSE,+... + b0, + 584, + ...,

......................................................

where 4, A,,... B,, B,,...a,, a,,...b,, b,,... are functions of
the variables, but do not contain the increments 8¢, 8§, ...

5p., 86,...

Let the values of 8x,, 8y, ... be substituted in the equations
of which (2) is the type, and then let the values of &p,, dp,, ...
be substituted in (1); this equation will take the form

QOF, + QB +... + ¢80, +¢.0¢,+ ... =0...... (3).
The conditions for the equilibrium of the system are
Q,=0, @,=0,... ¢,=0, ¢,=0.........(4).

For since 8, 8E,, ... 8¢,, &¢,, ... are by supposition inde-
pendent, we might have given the body such a displacement
as to leave &, &, ... ¢,, ¢,, ... unchanged; and then (3)
would reduce to

Q,88, = 0; therefore Q,=0.
Similarly, we may shew that the other equations of (4) hold.

260. We will give a simple example in illustration of the
method of the preceding Article. A string of given length has
one end fixed at a pointin the line of intersection of two ver-
tical planes at right angles to each other, and at the otherend.
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carries a heavy particle which is repelled from these planes by
forces of which one is constant and the other varies as the
distance from the plane; find the positions of equilibrium.

Take the vertical plane from which the particle is repelled
by a constant force as the plane of (z, z), and the other ver-
tical plane as the plane of (g, 2) ; take the point to which the
end of the string is fixed as the origin, and let the axis of 2z
be vertically downwards. Let «, 9, 2 denote the co-ordinates
of the particle in a position of equilibrium, and ! the length
of the string. Let W be the weight of the particle, F' the
constant repulsive force, ux the force which varies as the dis-
tance of the particle from the plane of (y, 2z). Conceive the
particle displaced into an adjacent position, the co-ordinates
of which are 248z, y+98y, 2+8z. Then by the principle
of virtual velocities

pxdr + Foy+ Woz=0 ....cocovvvennnnn 1);

the tension of the string has no virtual moment by Art. 256.
Also B+ +2 =1 i (2);
therefore R T S | 3).

By (3) we can express 8z in terms of &z and 8y; thus (1)

becomes
(/w— %z‘) 8w+( - m/) Sy =0.

z
Therefore px— IZ—'—” =0, and F— —zl =0.
From the first of these equations we obtain either z= —ZK , OT

else z=0. If we take the former solution we obtain y = 1—?,

and then z is known from (2); thus ene position of equili-
brium is determined. If we take the solution =0, then y
and z must be found from the equations

Fz—-Wy=0, y'+2'=0;

thus another position of equilibrium is determined.

mmaseus e a——— w a4
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261. The principle of virtual velocities is useful in Statics
in the solution of such problems as that in Art. 255, where
forces occur which have their virtual moments zero for certain
displacements. The following i1s an important general pro-
position to which the principle leads.

A system of rigid bodies under the action of no forces but
‘their weights, mutual pressures, and pressures upon -smooth
tmmoveable surfaces, will be in equilibrium, +f placed so that
the centre of gravity is in the lowest or highest position it can
possibly attain by moving the system consistently with the con-
nexion of its parts with one another. '

-Let z,, 2,,... denote the distances below a fixed horizontal
plane of the different particles of the system; w,, w,, ... the
weights of these particles. That the system may be in equi-
librium, we must have

w0z, + w0z, + wdz,+...=0............ @;

for by Art. 256 the virtual moments of all the other forces
which act on the system vanish. Let z denote the depth’ of
the centre of gravity of the system below the fixed horizontal
plane; then .
W2+ W2+ Wz + ..

W+ W+ Wyt ... S
therefore (w, +w,+w,+...) Sz =w 3z + w52, + w,dz,+...(2).
Now when 2z has a maximum or minimum value,

zZ=

(see Diff. Calc. Arts. 232, 238).

Hence when the centre of gravity is at a maximum or
minimum distance from the fixed horizontal plane, (1) is
satisfied and the system is in equilibriun.

The equation (3) is a necessary but not a sufficient con-
dition for 7z having a maximum or minimum value; hence,
wé cannot assert conversely, that when the system is in
equilibrium, the centre of gravity must be at a maximum or
minimum depth.

If the system of rigid bodies be such that the centre of
gravity is always in the same horizontal plane, every position

T. 8. 23
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is a position of equlhbnum. For in this case z is a constant,
and therefore 8z always =

~ If some of the bodies are rough the result will still hold if
the friction be such as to prevent any sliding; see case (6)
of Art. 256.

262. Suppose a system in equilibrium, and that an in-
definitely small displacement is given to it; if it then tend
to return to its original position, that posmon is said to be
-one of stable equilibrium; if the system tend to move further
from its original position, that position is said to be one of
unstable equilibrium,

To determine in any case whether the equilibrium of a
system is stable or unstable, is a question of dynamics on
which we do not enter. The reader may refer to Poisson,
Art. 570, or Dubamel, Tom. 11. Art. 69; the best investi-
gation of the questlon, however, will be found in the Cours
Complémentaire &’ Analyse et de Mécanique Rationelle, par
J. Vieille, Pars, 1851,

The followmﬁ general theorem is demonstrated. Suppose
the forces which act upon a system such that

3 (Xda+ Ydy + Zdz)

is the immediate differential of some function of the co-ordi-
nates, ¢; then, for every position of equilibrium, ¢ is, in
general a mazimum or minvmum; in the former case the
equilibrium is stable and in the latter unstable.

An important particular case is that of the system in
Art. 261, in which the equilibrium is stable when the centre
of gravity has its lowest position, and unstable when it has
its highest position.

263. We will now illustrate the principle contained in
~ the preceding Article by application to two examples.

I, A uniform heavy beam is placed with its ends in con-
tact with a fixed smooth vertical curve in the form of an
ellipse with its directrices horizontal: determine the position
of stable equilibrium, the length of the beam bemg supposed
not less than the latus rectum,
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Let P and @ denote the extremities of the beam ; let PM
and @N be perpendiculars on the lower directrix, and S the
focus corresponding to this directrix. Then the height of
the centre of gravity of the beam above this directrix is

1 (PM + QN ; for stablo equilibrium this height should be a

minimum, If ¢ be the excentricity of the ellipse we have -
PM+ QN= % (SP+8Q);

and therefore SP + S@ must be a minimum, But SP 4 SQ
is always greater than P@Q, except when 8 is in the straight
line PQ. Therefore the position of stable equilibrium is that
in which PQ passes through the focus.

Since the beam is in equilibrium under the action of its own
weight and the normal resistances of the curve, it follows that
the straight line which joins the point of intersection of nor-
mals at the ends of a focal chord of an ellipse with the middle
point of the chord is parallel to the major axis: this result
may be verified geometrically.

II. The principle of Art. 262 may be applied to a liquid
which may be regarded as a collection of indefinitely small
smooth heavy particles.

Suppose a set of rectangles, all of the same length, but with
any breadths. Let them be connected along their lengths by
smooth hinges, 8o as to form a hollow prism without ends;
and place the system vertically on a smooth horizontal plane.
Let some .liquid be poured into the vessel thus formetf In
the position of stable equilibrium the centre of gravity of the
liquid will be at a minimum height above the horizontal
plane; and therefore the area of a horizontal section of the
prism will then bave a maximum value.

But by the principles of Hydrostatics the rectangles which
form the vertical sides of the vessel are acted on by pressures
from the fluid which form a system of forces like that in
Prop. 1L at the end of Chap. 1v.: and therefore when there is
equilibrium the horizontal section of the prism must form a
polygon which can be inscribed in a circle.

23—2
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Hence we obtain the following result: if an area is to be
bounded by given straight lines the area is greatest when the
straight lines are all chords of a circle. See also Differential

Calculus, Example 2 of Chapter XVL
264. The following is a simple example of distinguishing
the nature of equilibrium.

A heavy body rests on a fixed body; to determine the nature
of the equilibrium, the surfaces being supposed rough.

Let BAC be a vertical section of the upper body made

by a plane through its centre of gravity G, and DAE the
section of the lower body made by the same plane. We
‘suppose these sections both circular; let » be the radius of
the upper section and B that of the lower. Let the upper
body be-displaced into the position B'A’C’, and suppose a
that point in the upper body which was originally at 4 ;
.at 4" the new point of contact draw the common normal
OA'N, meeting at O the radius 4 O of the lower surface, and
at N the radius alV ‘'of the upper surface. Draw a vertical
line through 4’ meeting aN at M ; let g be the new position
of the centre of gravity of the upper body. If we suppese
the surface rough enough to prevent all sliding, the upper
body will turn round 4’, and the equilibrium will be unstable
if g falls further from a than M, and stable if g be between

M and a.
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Let A0A'=0, aNA'=4.

Since we suppose the upper body displaced by rolling on the
lower, we have . :

arc AA" =arcad';

therefore RO =r¢.
MN gin @ sin @
Also 5 == =
WA RO g (12 T
1 .
=— ultimately ;
1+ r
heref MN=_"_
therefore = 7B’
‘ * - Rr
and == BT Rt
Hence, the equilibrium is stable or unstable according ag
. Rr
ag, or AQG, is less or greater than B

If the lower surface be eoncave instead of conver, it may
be shewn in the same way that the equilibrium is stable or
unstable according as A & is less or greater than Rlﬁ‘r .

The results of this Article will hold when the sections BA C'
and DAE are not circles; r and B will then stand for the
radii of curvature of the upper and lower sections at the
point 4. If the lower surface is plane, R is infinite, and for
stable equilibrium 4G must be less than .

265. If AG= Rlifr in the first case, or= R’Zirr in the
second case, the equilibrium has been called neutral. In this
case, a further investigation will have to be made to deter-
mine whether the equilibrium is stable or unstable. Suppose,
for example, that a portion of a paraboloid rests in neutral
equilibrium with its vertex in contact with a horizontal plane,
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it is required to determine whether the equilibrium is stable
or unstable.

Since the equilibrium is neutral, the centre of gravity G
must coincide with the centre
of curvature of the generating

arabola at the vertex; now, if

ifferent points be taken in a
parabola, the further the assumed

int is from the vertex, the
urther is the point of intersec-
tion of the normal and the axis
from the vertex. Hence, the
normal A'N in the figure meets A
the axis of the parabola further from a than G is, and the
equilibrium is stable. '

It is easy to shew generally, that if a portion of a solid
of revolution rest in neutral equilibrium with its vertex on
a horizontal plane, the equilibrium is really stable or unstable,
according as the radius of curvature of the generating curve
has a minsmum or maximum value at the vertex,

266. The results of Art. 264, when the sections BA C and
DAE are circles, may also be obtained by using the theorem
which we have quoted in Art. 262,

Let z denote the height of the centre of gravity g above
the horizontal line through O, and let Ng=c; then

2= (B+1)cosf—ccos(0+¢)
=(R+1r)cos@ —ccos (1 + I;i') 0.
Expand the cosines in powers of the angles; thus

z=R+r-c+{c(1+§)'—(R+r)}§

- {c 1 +§)'-'(R+r)} EJ"“
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Suppose the coefficient of & not to be zero; then when
is indefinitely small 2 is greater or less than R +r—', ac-
cording as the coefficient of 6" is positive or negative ; in the
former case R 4 r—c is & minimum value of 2, and in the
latter case it is a mazimum value. Therefore the equilibrium:

is stable if ¢ be greater than ‘E"—:-_r , and unstable if ¢ be less

_r
R+r’
Suppose however that ¢= 1%;’ then the coefficient of 6*

is zero; in this case the equilibrium is said to be neutral.
‘We must now examine the coefficient of #* in the value of z;
this coefficient is

_L&{c (1+§)'-(R+r)},

. 1 (BR+1) .
that is, - - 'E‘ {( ri") - (R+r)} ’
. R(R+7)(R+2r)

that is, - r i ;

since this is a negative quantity it follows that B+ r—c is a
mazimum value of z and the equilibrium is really unstable.

267. The following problem will furnish an instructive
example. A frame formed of four uniform rods of the length
@ connected by smooth hinges, is hung over two smooth pegs

in the same horizontal line at a distance 52, the two pegs

being in contact with different rods ; shew that the frame is
in equilibrium when each angle is 90°, and determine whether
the equilibrium is stable or unstable.

Denote the pegs by 4 and B; suppose the beam in con-
tact with 4 to make an angle @ with the horizon, and the
beam in contact with B to make an angle ¢ with the horizon;
let w denote the depth of the centre of gravity of the system
below AB. Then it may be shewn that

csin @sin ¢

u=gGind+sing) - S0
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- a
where c= 72
Thus % i3 a function of the two independent variables @
and ¢, and in order that » may have a maximum or minimum
value 6 and ¢ must be taken so as to satisfy %=0 and
du =0. It will be found on trial that 9=;—r and ¢=g are

d
szsitable values. But it will be found that with these values

for  and ¢ we get
du__o du _ _, $w__o
d¢* 2’ davdp 7 d¢
d*u \* du d*u
so that (d_0d¢) ~ 7 dT”
mazvmum nor & minimwm when 0 ='£ and ¢.=%. All the

foregoing is a simple example of the Differential Calculus;
we proceed to apply it to the Mechanical Problem in question.

is positive and u is neither a

Let u denote the change'in u conéequent upon changing

z to g + 86, and the value of ¢ from

;: to g+8¢; then it follows from the preceding investiga-

tions that

the value of 8 from

Su =7 {(30)" +4368¢ + (34"} + &e,

‘where under the &c. are included terms in 8¢ and 8¢ of a
higher order than the second. Now although u is neither

. o . . ™
a maximum nor a minimum when 8 and ¢ are each —, yet

there is equilibrium then because & is then zero so far as
terms of the first order in 86 and 8¢. (See Art. 261.) But
as u is netther a maximum nor a minimum the equilibrium
cannot be stated to be either stable or unstable universally;
it is in fact stable with respect to some displacements and
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unstable with respect to other displacements. - If, for example,
we consider only such displacements as make 86 =3¢, then
Ou i8 certainly negative when 86 and 3¢ are taken small

- enough ; thus the centre of gravity is raised by the displace-
ment and so the equilibrium is stable. If, again, we consider
only such .displacements as make 86 = — &8¢, then Su is cer-
tainly positive when 86 and 3¢ are taken small enough ; thus
the centre of gravity is depressed by the displacement and so
the equilibrium is unstable.

268. Of all curves of a given length drawn between two
fized points in @ horizontal line, the common catenary is that
which has its centre of gravity furthest from the straight line
Joining the points.

This proposition belongs to the Calculus of Variations, but
an imperfect proof of it may be obtained from some of the
preceding principles. Since the string which hangs in a com-
mon catenary is in equilibrium we conclude that the depth of
its centre of gravity from the horizontal line is a maximum
or minimum. (See however Art. 261.) And we may infer
that the depth 1s a mazimum and not a minimum from the
experimental fact that if the string be slightly displaced it
will return to its position of equilibrium so that its equili-
brium is stable. (See Art.262) Hence in any other position
of the string than that of equilibrium the centre of gravity
will be nearer to the given horizontal line. And as the string
which hangs in the common catenary is of uniform density
and thickness its centre of gravity coincides with that of the
curve. Thus the proposition is established.

269. Lagrange has given a demonstration of the principle
of virtual velocities, which does not assume a knowledge of
the conditions of equilibrium of any system of forces; this
demonstration is difficult and has not been universally re-
ceived. We shall place it here and refer the reader to
Poisson, Art. 337, and to the article ¢ Virtual Velocities’ in
the Penny Cyclopedia, for further information.

We have first to shew how any system of forces may be
replaced by a string in a state of tension passing round a
combination of pullies, :
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Let forces P, Q, R, ...... acting at the points 4, B, C,.......

maintain a system in equilibrium ; let pullies be fixed to the
system at the points 4, B, C,... and let the pullies g, b, ¢,...
be attached to fixed blocks, so that Aa may be the direction

of the force P, Bb that of @, and so on. Let a string have a
weight Wattached to one end, and bzpassed round the pully
N and then round the pullies a and 4 a sufficient number of
times to render the sum of the tensions equal to P. Let the
same string then pass on to the pully , and be passed round b
and B a sufficient number of times, until the sum of the ten-
sions is equal to Q. The string is then passed on to ¢, and
round ¢C, and s0 on; the end of the string is fastened to a
fixed point M. Thus the system of forces P, @, R,... may
be replaced by a single string, the tension of whichis W. We

here assume that the forces P, @, R,... are commensurable.

‘We proceed now to the proof, in which we follow La-
grange’s words very closely.

It is evident, in order that the system may remain in equi-
librium, that the weight W must {

when any indefinitely small displacement whatever is given to
the points of the system; for since the weight always tends to
descend, if there were any displacement of the system which

e incapable of descending -

-

[ S
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would allow it to descend, it would necessarily descend and
produce this displacement in the system,

- Let a, B, v,...denote the indefinitely small spaces, ‘which-
any displacement would cause the points of the system to
describe in the direction of the forces, which respectively act
at them, and let p, ¢, 7... denote the number of parallel
strings which are attached to the pullies 4, B, C,... It is
obvious that the spaces a, B, v,... are those by which the
Pulh'es A4, B, C,... will approach a, b, c,... and that the string
oining these pullies will thus be diminished by ﬁ)a, g8, 1y, .ot
JI'hus, in consequence of the inextensibility of the string, the
weight W would descend through the space pa+ g8 +ry+-...
Hence, in order that the system of forces P, @, R,... may be in
equilibrium, we must have

_p1+QB+T‘7+u.=O;
and therefore, since P=pW, Q=¢W,...

Pa+ QB+ Ry+...=0.

This equation is the analytical expression of the principle of
virtual velocities.

If the quantity Pa+ @8+ Ry+ ..., instead of being zero,
were negative, it might appear that this condition would be
sufficient to ensure equilibrium, since it is impossible that the
weight could of itself ascend. But we must remember, that
whatever may be the connexion of the parts of the system,
the relations which consequently hold between the indefinitely
small quantities a, B, v, ... can only be expressed by differen-
tial equations, and which are therefore linear as to these
quantities; so that there will be necessarily one or more of
them which remain indeterminate and may be taken with a
positive or negative sign; thus the values of these quantities
will be always such that they can simultaneously change their
gign. Hence, it follows that if for a certain displacement
of the system, the quantity Pa + Q8+ Ry +...is negative, it
would become positive by changing the signs of 4, 8,9, ... ;
thus the opposite displacement is equally possible, and this
would make the weight descend and destroy the equilibrium.
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Conversely, if the equation
Pat QB+ RBy+..=0

holds for every possible indefinitely small displacement of
the system, it will remain in equilibrium. For, the weight’
remaining unmoved during these displacements, the forces
which act on the system remain in the same condition, and-
there is no reason why they should produce one, rather than:
the other, of the two displacements, for which a, 8, ¥, ... have'’
different signs. This is the case of a balance which remains
in equilibrium, because there is no reason why it should in-
cline to one side rather than the other.

. The principle of virtual velocities being thus proved for
commensurable forces, will also hold when the forces are in-.
commensurable ; for we know that any proposition which can
be proved for commensurable quantities may be extended by a
reductio ad absurdum to incommensurable quantities.

EXAMPLES.

1. A cone whose semi-vertical angle is tan™ %2 is enclosed

in the circumscribing spherical surface ; shew that it will rest
in any position.

2. A heavy uniform rod of length @ moves in a vertical
plane about a hinge at one extremity. A string fastened
to the other, passes over a pully in a vertical line above the
hinge, and is attached to a weight equal to half that of the
rod, which rests on a curve. The length of the string and
the height of the pully above the hinge are each equal to the
length of the rod, and the system is in ‘equilibrium in all
positions. Shew that the equation to the curve is

o 1 = 4a sin’46,
the pully being the origin and the prime radius being vertical.
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8. Two rods each of length 2a have their ends united at
an angle a, and are placed in a vertical plane on a sphere of
radius 7. Prove that the equilibrium is stable or unstable

‘according as sin @ is greater or less than %1-' .

« 4 An oblongum rests with its smaller end on a horizontal
table. Is the equilibrium stable or unstable ?

- 5. A cylinder rests with the centre of its base in contact
with the highest point of a fixed sphere, and four times the
altitude of the cylinder is equal to a great circle of the
sphere ;. supposing the surfaces in contact to be rough enough
to prevent sliding, shew that the cylinder may be made to
- rock through an angle of 90°, but not more, without falling
off the sphere. '

. 6. A very small bar of matter is moveable about one
extremity which is fixed halfway between two centres of
force attracting inversely as the square of the distance; if
1 be the length of the bar, and 2a the distance between the
centres of force, prove that there will be two positions of
equilibrium for the bar, or four, according as the ratio of the
absolute intensity of the more powerful force to that of the less
a+2l

a-20’
between the stable and unstable positions.

powerful is, or is not, greater than and distinguish

7. Two particles connected by a string support each other
on the arc of a vertical circle ; shew that the centre of gravity
s in the vertical through the centre of the circle. What is
the nature of the equilibrium ?

8. A sphere of radius a, loaded so that the centre of
gravity may be at a given distance b from the centre of
figure, is placed on a rough plane inclined at an angle a to
the horizon. Shew that there will be two positions of equi-
librium, one stable and the other unstable, in which the
distances of the point of contact from the centre of gravity
are respectively,

a cos @ — /(5" — a® sin*a),
and . acos &+ /(8" — o’ sin’ a).



366 EXAMPLES,

Hence, find the greatest inclination of the plane which will
allow the sphere to rest. Is the equilibrium stable or un-
-gtable in this limiting case ? ..

9. A sphere of radius » rests on a concave sphere of
radius R ; if the sphere be loaded so that the height of its
centre of gravity from the point of contact be §r, find R so
that the equilibrium may be neutral. Result. R=3r,

10. A heavy cone rests with the centre of its base on
the vertex of a fixed paraboloid of revolution; shew that the
equilibrium will be neutral if the height of the cone be equal
to twice the latus rectum of the generating parabola. Shew
that the equilibrium is really stable. :

11. A heavy particle attached to one extremity of an elastic
string is placed upon a smooth curve, the string lying upon the
curve and its other extremity being fixed to a point in the
curve ; find the curve when the particle rests in all positions.

: Result. A cycloid.

12. A uniform square board is capable of motion in a
vertical plane about a hinge at one of its angular points;
a string attached to one of the nearest angular points, and
passing over a pully vertically above the hinge at a distance
from it equal to the side of the square, supports a weight
whose ratio to the weight of the board is 1 to 4/2. Find the
_positions of equilibrium and determine whether they are re-
spectively stable or unstable, ’

13. Two small smooth rings of equal weight slide on a
fixed elliptical wire of which the major axis is vertical, and
are connected by a string passing over a smooth peg at the
upper focus ; prove that the rings will rest in whatever posi-
tion they may be placed,

14. A small heavy ring slides on a smooth wire in the
form of a curve whose plane is vertical, and is connected by
a string passing over a fixed pully in the plane of the curve
with another weight which hangs freely ; find the form of the
curve that the ring may be in equilibrium in any position,

Result. A conic section having its focus at the pully. -
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15. If an elliptic board be placed, so that its plane is
vertical, on two pegs which are in the same horizontal plane,
there will be equilibrium if these pegs be at the extremities
of a pair of conjugate diameters. What are the limits which
. the distance between the pegs must not exceed or fall short
of, in order that this position of equilibrium may be possible 2
Shew that the equilibrium is unstable.

16. A solid of revolution, whose centre of gravity coincides
with the centre of curvature at the vertex, rests on a rough
‘horizontal plane. Shew that the uil‘i'bxiuzn is stable or un-
- 2,
stable according as the value of 3 (d?y) - Z-;; » When @ and y
vanish, is positive or negative, 2 and y being co-ordinates of
the generating curve, measured along the tangent and normal
at the vertex,

17. If a plane through one extremity 4 of the base
of a cylinder and be inclineg at an angle of 45° to the axis,
the piece so cut off will rest in neutral equilibrium, if placed
with its circular end on the vertex of a paraboloid whose latus
rectum is five-eighths of the diameter of the base, the point of
contact being also at this same distance from 4.

18. A piece of string is fastened at its extremities to two
fixed points; determine from mechanical considerations the
form which must be assumed by the string in order that the
surface generated by its revolution about the straight line join-
ing the fixed points may be the greatest possible.
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CHAPTER XV.
MISCELLANEOUS PROPOSITIONS.

270. THE proposition called the Parallequm of Forces
is the foundation of the whole science of ‘Statics, and nu-
merous demonstrations have been given of it. An account
of several of these demonstrations will be found in a
dissertation published at Gottingen in 1817, entitled Prae-
cipuorum inde a Neuttmo conatuum, composmonem nrium
demonstrands, recensio. Auctore Carolo Jacobi... A more
recent dissertation of the same kind, also pub]ished at
.Géttingen, is entitled Ueber die Beweise Siir das Parallelo-
gramm der Krifte... Von A. H. C. Westphal.

Some new varieties of demonstration are also contained in
pages -8...18 of the Legons de Mécanique Analytique, par
M. L' Abbé Moigno 1868. From this work we will borrow
an elementary process which will serve to complete the in-
Vestigation given in Art. 36 after Laplace.

‘We suppose then that the resultant of two forces acting at
a point at right angles to each other is known to be repre-
sented by .the diagonal through the point of the rectangle
constructed on the components, so far as relates to the mag-
nitude: we have to shew that it is also represented in di-
rection by this diagonal. This proposition is obvious in the
case where the components P and @ are equal; for then the
resultant must necessarily bisect the angle between the di-
rections of P and (), and will therefore coincide with the

diagonal.
The proposition may next be shewn to be true in the case
where Q= Py2. For consider three forces, each equal to P,

acting in directions mutually at right angles. The forces
may be represented by the three edges of a cube which meet
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at a point. The resultant of two of the forces, by what we
have already shewn, is Py/2, and acts along the diagonal of
that face of the cube of which these two forces are edges.
Hence the resultant of the three forces must lie in the
plane which passes through this diagonal and that edge of
the cube which is at right angles to this face. In a similar
manner another plane can be assigned in which the resultant
of the three forces must lie, by beginning with another pair -
out of the three equal forces. Therefore the resultant of the
three equal forces must lie in the common intersection of the
two planes, that is in the diagonal of the cube which passes
through the point of application of the forces. But this
resultant is also the resultant of two forces P and Py/2, which
act at right angles; and the diagonal of the cube coincides
with the diagonal of the rectangle constructed on the sides
which represent these forces. Thus the proposition is true
in the case where Q = Py/2.

We shall now shew that if the proposition is true when
Q@=Pym it is true when Q= Py/(m+1).. For consider
three forces P, P, and Py/m, acting in directions mutually at
right angles. The forces may be represented by the three
edges of a rectangular parallelepiped which meet at a point.
Then, by first compounding Py/m with one of the forces P,
we see that the resultant of the three forces must lie in
the plane passing through the diagonal of the rectangle
corresponding to the first two forces, and also through the
edge which corresponds to the other force P. In a similar
manner another plane ean be assigned in which the resultant
of the three forces must lie. Therefore the resultant of the
three forces must lie in the common intersection of the two
planes, that is in the diagonal of the rectangular parallele-
piped which passes through the point of application of the
forces. But this resultant is also the resultant of the two
forces P and P4/(m+ 1) which act at right angles; and the
diagonal of the rectangular parallelepiped coincides with the
diagonal of the rectangle constructed on the sides which repre-
sent these forces. Thus the proposition is true in the case
where Q = Py/(m + 1).
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Hence we see that the proposition is true when Q= Pym,
where m is any integer.

Finally consider three forces P, Py/m, and Pa/n, where m
and n are any integers, acting in directions mutually at right
angles. The forces may be represented by the three edges
of a rectangular parallelepiped which meet at a point. Then
the resultant of the three forces must lie in the plane which
contains the edge Pu/n, and the diagonal P4/(m +1); it
must also lie in the plane which contains the edge Py/m, and
the diagonal Py/(n+1). Hence the resultant of the three
forces must lie in the common intersection of the two planes,
that is, in the diagonal of the rectangular parallelepiped which
passes through the point of application of the forces. Hence
the resultant of Py/m and P/n must lie in the plane which
contains the edge P, and the diagonal of the rectangular
parallelepiped ; and this gla.ne cuts the plane of Py/m and
P y/n in the diagonal of the face which corresponds to these
edges. Therefore the direction of the resultant of the forces
Py/m and Py/n is the diagonal of the rectangle constructed
on the sides which represent these forces. Hence the pro
sition is true for forces which are in the ratio of Py/m to Pa/n,

that is, in the ratio of Pto P,\/ﬁ, where m and n are any

integers. But by properly choosing m and n we may make
this as close as we please to the ratio between any two
assigned forces. Therefore the proposition is true whatever
may be the ratio between the forces.
The proposition may be extended to the case in which the
c;;tnponenbforces are not at right angles as in the last part of
. 35.

271. The result of Art. 28 may be expressed conveniently

thus:

R*=P8 + P8, +PFS,+...
where S, denotes the sum of all the forces resolved along the
direction of P,. '

N For suppose there are three component forces; then we
ave
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‘RI=1):2+P’3 +P:
+ 2P, P, cos (P P,) + 2P, P,cos (P,P,) + 2P,P, cos (P,P,)
= P,{P,+ P, o5 (B,P) + P, cos (P.P)}
+P2{P2+Pl cos (Pxpa) +.PBCOS (I)’P‘)}
+ P, (P,+ P,cos (BB + P,cos (BLB)}.
This shews that B'=P.S + P,S,+ P,S,; and the same

formula will manifestly subsist for any number of component
forces.

272. In cases IX and X, on pages 29 and 30 we have
pointed out an analogy between the conditions for the equi-
librium of three forces in one plane acting at & point, and the
conditions for the equilibrium of four forces not in one plane
acting at a point. In the former case the forces must be .
proportional to certain areas, and in the latter case the forces
must be proportional to certain volumes. In the latter case, if
we express the volumes by the aid of the formul® given in
Spherical Trigonometry, Art. 192, we arrive at the following
result : if four forces not in one plane, acting at a point, are
in equilibrium, each force is as the sine of the solid angle
formed by the directions of the other three forces; this is
analogous to Art. 19.

There is still another form in which the conditions of equi-
librium may be put, so as to manifest the analogy. Let
three forces in one plane acting at a point be represented in
magnitude and direction by three straight lines drawn from
the point : then if the forces are in equilibrium, the triangles
formed by joining the ends of the straight lines are equal.

Let four forces not in one plane acting at a point be
represented in magnitude and direction by four straight lines
drawn from the point: then if the four forces are in equi-
librium, the four triangular pyramids which 'can be formed
by taking three of the straight lines as conterminous edges
are equal.

This form follows immediately from that given before.
273. It will be observed that in Chia\;)ters VI and VII, we

have the expression L3ZX + M3Y + N3Z frequently oc-
curring : we shall give here a few remarks relating to it.

24—2



372 MISCELLANEOUS PROPOSITIONS.

We see from Art. 79 that this expression must vanish
if the given system of forces reduces to a single resultant ;
hence the expression may be appropriately called the cri-
terton expression.

We propose to shew that the numerical value of the cri-
terion expression for a given system of forces is independent
of the origin and of the system of rectangular axes which may
be used. This has already appeared indirectly in Art. 98.

For abbreviation put :
U for Zy— Yz, V for Xz—Zr, W for Yz — Xy;
then U, will stand for Zy, — Y 2,, and so on.

If there be only one force the criterion expression vanishes ;
for obviously

X(Zy— Yz)+ Y (X2 — Zx) + Z( Yo — Xy) =0.

Now let there be two forces; then the criterion expression
becomes ’

(X +X) (G4 0) +(Y,+ 1) (N +V)+(4,+ 2) (W,+W,);

and this by what has just been shewn for a single force
reduces to

XU+ XU+ V,V,+ YV, + ZW,+ Z,W,;
and by development this may be put in the form
(@ —=,) (lern_zslfn)
+ (ys_yx) (XlZs —stx) + (za —zx) (Y1X2_ K'XJ'

Now we know that the effect of a force is the same at
whatever point in its line of action the force may be applied ;
so that we may be sure the above expression will remain
unchanged whatever point (z,, y,, #,) may denote of the line of
action of the corresponding force: and it is easy to verify
this. For if (£ 9, ) denote any point on the line of action
of the force which passes through (z,, y,, 2,) we have

E__fl = "_Yyl = c_,il =t say,

1 1 1

so that
’ wx=f— ‘Yv .’/1=’7—th 21=§—tzx;
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and if we substitute these values for z,, y,, and 2, respec-
tively in the expression, we find that ¢ disappears, and we are
left with the expression having £, %, and ¢ respectively in the
place of z,, y,, and z,.

Similarly (z,, ,, #2,) may be any point on the line of
action of the corresponding force.

Hence we may take (z,, 7,, 2,) and (z,, ,, 2,) to be those
points in the directions of the respective forces which are at
the extremities of the straight line at right angles to both
directions. These points may be represented by the 4 and
A’ of the diagram in Art. 102.

Let » denote the length of the straight line which joins
the points (z,, 9,, 2,) and (x,, y,, 2,) When thus chosen; and
let A, p, v be the direction cosines of this straight line. Then

&g — a:1=7\r, Yo~ Y= H7, 2,— 2, =00,
Moreover AX,+uY,+vZ =0, and A X, + uY,+vZ = 0.
Hence 7\' = ad = Y 1
ZY,-4Y, XZ-XZ YX,-YX k"

where & is some quantity to be determined. And since
M4+ pi+1'=1 we have

kB=(2Y,—2Y)+ (XZ,—-X2Z)+ (Y,X,- Y, X)"
Substitute for z,—=,, y,—y,, and 2z,— 2z, in the criterion
expression ; thus it becomes

H@x -2y + 52— X2+ (X, - 7.},

that is r%.
But = (X4 Y+ Z0) (X4 Yo+ 2~ (XX 4 V.YV, + 2.2
- =R’R}?— (R.R,cosa)’=R'R’sin’,

where R, and R, denote the two forces, and a the angle
between their directions.

Thus the criterion expression is numerically equal to
R Ryrsina; and this is independent of the origin and of
the system of rectangular axes which may be used,
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274. By the aid of Art. 102 we may state the result thus :
the criterion expression in the case of two forces is numeri-
cally equal to six times the volume of the tetrahedron of
which the forces represent opposite edges.

Or we may give a mechanical form to the result, and say
that the criterion expression in the case of two forces is
numerically equal to the product of one of the forces into the
moment of the other force round the direction of this as
an axis. For let the direction of B, be taken as the axis;
resolve the other force into R, cos a pa.ra.llel to the axis, and
R, sin q at right angles to the axis: the former component
has no moment round the axis, while the moment of the
latter is R, sin a.

It is easy to extend the result to the case of any number
of forces. We may say that the criterion expression is equal
to the aggregate obtained by taking for each pair of forces
the product of one force into the moment of the other
round the direction of this as an axis.

But in this case we shall have to attend to the signs of the
terms which compose the aggregate. Suppose for instance
that there are three forces £, £, and R,; then the term
which arises from B, and R, will have the same sign as that
which arises from R and RB, provided the forces R, and R,
tend to turn the same way round the direction of R, as an
axis. To shew this, suppose the axis of z to coincide with

- the direction of R then the term which arises from R,
and R, will be found to be B {Y,(x,—2,) - X,(y,— yl)}
and the term which arises from Rl and B, wi
R {Y,(@,— ) — X,(¥,—y,)}: the signs of these terms w111
be the same or contrary according as R, and R, tend to turn
in the same way or in contrary ways round the axis of z.

Similarly we may say that the criterion expressmn is equal
to six times the aggregate obtained by taking for each; pair
of forces the volume of the tetrahedron of which they repre-
. sent opposite edges. But the signs of the terms must be
regarded, and must be settled by the rule already given.
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275. To find the value of the potential of a homogeneous
ellipsord at its centre. .

Let 2a, 2b, 2¢ denote the axes of the ellipsoid, p the
density. Then, as usual, we denote an element of mass
by pr*sin 6 d0 d¢ dr; thusthe potential ¥ is to be found from
the equation

v=p [[[FER0LRA_, ([ sin6 a0 dg .

The integration with respect to = is to be taken from 0 to
the value assigned by
7* sin’ chos’ ¢ + r*sin’ 0 sip’ b + " cos’ 6

a [ ¢ =L

Thus

Ve pa’b’cr f f sin 0 d6 d¢
T2 b%c* sin* @ cos* ¢ + a’c’ sin® @ sin® ¢ + &’b* cos* 0

The limits for 6 are from 0 to =, and for ¢ from 0 to 2.
Or we may take the limits in each case to be 0 and g, and

multiply the result by 8.

The integration with respect to ¢ may be effected as in
Art. 228 ; and thus we shall obtain

™

3 sin 6 df
o A(c*sin® 0 +a® cos® 8) 4/(¢*sin® 6 + b* cos’ @)

We may transform the definite integral by putting

cos? =cTc+—2, and thus we have V'=mpabc L %. where @

has the value assigned in Art. 228.

V = 2mwpabc*

We may now express the value of the potential at any
interior point of the ellipsoid. Let f, g, h be the coordinates

. av av
of the point ; then we know that ~df Tdg’ "k express

respectively the attractions parallel to the coordinate axes.
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Hence by Art. 228,

_ (g
V——wpabcfo (a"+t+b’+t+c’+t g+ constant.
Here the constant is some quantity independent of f, g,
and %; and to determine it we may suppose f, g, and & all
to vanish. Then the value of V¥ is that for the centre of the
ellipsoid which has been previously found. Thus the constant

is (f:atermined, and we have finally for any internal point

S I AT
V""pabcf., {1 @?+t B+t o+t Q°

276. An important theorem was given by Green in his-
Essay on the...Theories of Electricity and Magnetism, which
is connected with the investigations relative to the Potential
Function. As the demonstration presents no difficulty to a
student who has read Chapter X1i1. we will reproduce it.

Let U and ¥V be two functions of the rectangular coordi-
nates z, ¥, 2, which remain finite as well as their first and
second differential coefficients throughout the space bounded

. a’U da'U d'U
by a given closed surface. Let 2=t e + be denoted
by AU for abbreviation, and let a similar notation be used
with respect to V. Then will

[ 7o as-|| [onVasayis=[vS0as- [[[vav dedyae;

where dS denotes an element of the given closed surface,
and dn an element of the normal to the surface drawn out-
wards at dS. The single integrals are to extend over the
whole given closed surface, and the triple integrals are to
extend throughout the space within the closed surface.

Let W denote the triple integral

dUdV dUAV+dUdV
Il dzdydz{d—w wtay Fz_d—z}’
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the integral extending throughout the space within the . .

closed surface. We shall shew that W may be transformed
into either of the expressions which we assert to be equal,

By integration by parts we have

dU dv av
dz dwdx U fU

suppose the integrals taken between the appropriate llmltq
for «; then the term outside the integral sign gives rise to
a result which we may denote by

av av
(%), (7 %),
Thus when we proceed to integrate with respect to y and 2
we have the expression

(o)~ (v )} aves

Let A denote the cosine of the angle made with the axis
of by the normal to the surface drawn outwards at the
point (x, %, ). Then instead of the expression just given we

may use
[ N4 2 38,

the integral extending over the whole given closed surface.
For if A, and A, denote the values of A which correspond to
the limits of the integration with respect to «, we have

A dS =dydz, and \dS=- dyda.
Proceeding in this manner we see that
av., 4V, 6 dv
W=fu(x Ty +v ) ds-ff UAV dedyde,

where o and v denote the direction cosines of the angles
which the normal to the surface drawn outwards at the point
(@, y, z) makes with the axes of y and z respectively.

dv a4V dV av

And 7\.2—5 +[lv‘ dz d
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othast W= [0 as— [[[vavizay
In the same manner we may shew that
W= f 14 %gds - f f f VAU dodydz.

Thus by equating the two forms for W we obtain the
proposed theorem,

In demonstrating the theorem we have supposed the given
closed surface to be such that a straight line parallel to the
axis of # meets it at only two points ; but the theorem is true
even when the surface has folds, so that a straight line may
meet it in ahy even number of points.

Suppose for instance that a straight line parallel to the
axis of  meets the surface at four points. Then instead of

(%)~ (v%)} e

we now have such an expression as

B (), + (0 5) - (08 v

and this as before may be replaced by [AU (—g—,d&

We have assumed that U and ¥ remain finite throughout
the space within the given closed surface. Suppose however
that U becomes infinite at a point (£, #, {) which is within
the surface. Describe any arbitrary surface, say a spherical
surface, which shall include the point (£, #, {) and yet fall
entirely within the given surface. Then the theorem still
subsists with the following modifications: the triple integrals
must extend throughout the space bounded by the two
surfaces ; and the single integrals must extend over both the
surfaces, provided we subtract the result for the spherical sur-
face from the result for the given surface.
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For example suppose that near the point (£, #, {) we have
U sensibly equal to the reciprocal of the distance from this

point, say :—. Describe a spherical surface of infinitesimal
radius a, having its centre at the point (£, 9, §).

Then the part of f U g d8S which depends on the surface

of the sphere will ultimately vanish ; for U varies as %‘ and

dS varies as »°,

Next consider the part of f vV ‘%ds which depends on the

spherical surface. We shall have Z—g=— }, .
put dS =7"dw, where dw is the element of a surface of radius
unity. Hence ultimately we obtain — 47V, where V, de-
notes the value of V at the point (£, 9, {). And as this is
to be subtracted we have 4wV,

Also we may

The part of the triple integral / f f UAV dwdyds which is

to be omitted, as enclosed by the sphere, is of the order of a*
and therefore vanishes ultimately. Thus finally we obtain

| '[U%I—:ds'—fﬂUAVdaidydz=4ero

+[v %gds-ﬁfVAdedydz,

where the single integrals extend over the whole of the
given closed surface, and the triple integral on the left-hand
side throughout the space bounded by the surface. The
triple integral on the right-hand side extends also throughout
this space, except that part of it which is within the infini-
tesimal sphere. But as AU is zero within this sphere, at
least except at the centre, we may say that the triple inte-
gral extends throughout the space bounded by the given
closed surface, on the understanding that AU 1s to be con-
sidered zero even at the centre.
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MISCELLANEOUS EXAMPLES.

1. A uniform wire is bent into the form of three sides
AB, BC, CD of an equilateral polygon; and its centre of
gravity is at the intersection of 4C and BD. Shew that the
polygon must be a regular hexagon.

2. Three forces act along three straight lines which may
"be considered as generating lines in the same system of a
hyperboloid of one sheet; shew that if the forces admit
of a single resultant, it must act along another generating
line of the same system.

3. A gate moves freely about a vertical axis, along which
it also slides; while a point in the plane of the gate, and
rigidly connected with it, rests on a given rough inclined
plane; find the limiting position of equilibrium.

4. Suppose straight lines to be drawn from one of the
centres of the four circles that touch the sides or the sides
produced of a given triangle to the other three centres, and
let these straight lines represent three forces in magnitude and
direction ; then the straight line joining the first centre with
the centre of the circle circumscribing the triangle will re-
present in magnitude and direction one-fourth of the resultant.

5. A particle rests in equilibrium in a fine groove in the
form of a helix, the axis of which is inclined to the horizon
at a given angle a. Find the distance of the particle from
a vertical plane passing through the axis. Also find the
greatest value of a for a given helix in order that there may
be a position of equilibrium of the particle.

6. A quadrilateral figure possesses the following property;
any point being taken and four triangles formed by joining
this point with the angular points of the figure, the centres of
gravity of these triangles lie in the circumference of a circle;
prove that the .diagonals of the quadrilateral are at right
angles to each other. ,
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7. A square board is supported in a horizontal position
by three vertical strings; if one of them be attached to a
corner, where must the others be attached in order that the
weight which can be placed on any. part of the board without
overturning it may be the greatest possible ?

8. A triangular plate hangs by three parallel threads
attached at the corners, and supports a heavy particle. Prove
that if the threads are of equal strength, a heavier particle
may be supported at the centre of gravity than at any other
point of the disc.

9. ABCisa triangle; D, E, F are the middle points of
the sides opposite to 4, B, C respectively; P is any point;
PD,PE, PF are divided in a given ratio at 4’, B, C' respec-
tively : shew by the theory of the centre of gravity that 44’,
BB, and CC’ meet at a point.

10. A right cone is cut obliquely and then placed with its
section on a horizontal plane; prove that when the angle of
the cone is less than sin™ }, there will be two sections for
which the equilibrium is neutral, and for intermediate sections
the cone will fall over. ’

11. A right cylinder on an elliptic base (the semiaxes of
which are a and b) rests with its axis horizontal between two
smooth inclined planes inclined at right angles to each other;
determine the positions of equilibrium, (1) when the inclina-

tion of one of the planes is greater than tan™ ‘bj’ (2) when the
a
X

12. A pack of cards is laid on a table; each projects in
the direction of the length of the pack beyond the one below
it ; if each projects as far as possible, prove that the distances
between the extremities of the successive cards will form an
harmonic progression.

13. Find the least excentricity of an ellipse in order that
it may be capable of resting in equilibrium on a perfectly
rough inclined plane.

_Result e’ =_28_in_a_
* 1+sina’

inclination of both planes is less than tan™
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14. Two mutually repelling particles are placed in a para-
bolic groove, and connected by a thread which passes through
a small ring at the focus ; shew that if the particles be at rest,
either their absciss® are equal, or the two parts of the thread
form one straight line.

15. Each element of a parabolic arc bounded by the vertex
and the latus rectum is acted on by a force in the normal
proportional to the distance of the element from the axis of
the parabola. Shew that the equation to the straight line
in wEich the resultant acts is

15y + 10z = 26a.

16. Each element of the arc of an elliptic quadrant is
acted on by a force in the normal proportional to the ordinate
of that point. Shew that the equation to the straight line
in which the resultant acts is

6by — 3mwax + 4a* — 45*=0.

17. A smooth body in the form of a sphere is divided into
hemispheres and placed with the plane of division vertical
upon a smooth horizontal plane; a string loaded at its ex-

tremities with two equal weights hangs upon the sphere,.

passing over its highest point and cutting the plane of division
atright angles; find the least weight which will preserve the
equilibrium.

18. The locus of the centre of gravity of segments of
equal area 4 in an ellipse is a similar concentric ellipse whose
minor axis is

2
g% sin® 5 » Where A= %b (¢ —sin ).

19. The foci of a rough oblongum'attract directly as
the distance ; if a particle without weight be placed on the
oblongum, find within what limits it must be placed so as
to be 1n equilibrium. Shew that if the coefficient of friction

. :

be greater than s where e is the excentricity, the

e
2y(1-¢)
particle will rest anywhere on the surface.

20. A circular disc of mass m’ and radius ¢ rests in con-
tact with two equal uniform straight rods 4B, 4 C, which are
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joined at 4 by a smooth hinge, and which attract each other
and the disc with a force varying as the distance; also the
disc attracts the rods similarly. Shew that there is equili-
brium if

m'c (2¢ cos a — @ sin a) =ma’ sin* & cos a,
where m is the mass of each rod, a the length of each rod,
and 2a their inclination to each other. :

21. A square picture hangs in a vertical plane by a string,
which passing over a smooth nail has its ends fastened to two
points symmetrically situated in one side of the frame. Deter-
mine the positions of equilibrium, and whether they are stable
or unstable. '

Results. Let I be the length of the string, ¢ the distance of
the two points to which the ends of the string are fastened,
k the length of a side of the square; then if Z& be greater
than c4/(c*+A%) there is only ome position of equilibrium,
namely, the ordinary position, and the equilibrium is stable;
if Ik be less than ¢ 4/(c* + %°) there. are two oblique positions
. of stable equilibrium, besides the ordinary position of equi-
librium, which is stable with respect to some displacements
and unstable with respect to other displacements.

22. A flexible thread is placed in a tube of any form and
is acted on by any forces. The diameter of the tube is equal
to that of the thread and is infinitesimal. Determine the
position of equilibrium.

23. Two equal particles are connected by two given
strings without weight, which are placed like a necklace on
a smooth cone with its axis vertical and vertex upwards ; find
the tensions of the strings.

24. A triangle of area 4 revolves through an angle ¢ about
an axis in its own plane taken parallel to one side ; shew that
the least amount of surface generated is

(@+b+¢)—2a’

4.4 2(@+c)a ’

where a is the greatest side.
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