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PREFACE TO THE FIRST EDITION.

IN the following exposition of the Calculus of Finite Dif-

ferences, particular attention has been paid to the connexion

of its methods with those of the Differential Calculus a

connexion which in some instances involves far more than

a merely formal analogy.

Indeed the work is in some measure designed as a sequel

to my Treatise on Differential Equations. And it has been

composed on the same plan.

Mr Stirling, of Trinity College, Cambridge, has rendered

me much valuable assistance in the revision of the proof-

sheets. In offering him my best thanks for his kind aid, I

am led to express a hope that the work will be found to bo

free from important errors.

GEORGE BOOLE.

QUEEN'S COLLKOE, CORK,

April 18, 1800.



PREFACE TO THE SECOND EDITION.

WHEN I commenced to prepare for the press a Second

Edition of the late Dr Boole's Treatise on Finite Differ-

ences, my intention was to leave the work unchanged save

by the insertion of sundry additions in the shape of para-

graphs marked off from the rest of the text. But I soon

found that adherence to such a principle would greatly

lessen the value of the book as a Text-book, since it would

be impossible to avoid confused arrangement and even much

repetition. I have therefore allowed myself considerable

freedom as regards the form and arrangement of those

parts where the additions are considerable, but I have strictly

adhered to the principle of inserting all that was contained

in the First Edition.

As such Treatises as the present are in close connexion

with the course of Mathematical Study at the University

of Cambridge, there is considerable difficulty in deciding

the question how far they should aim at being exhaustive.

I have held it best not to insert investigations that involve

complicated analysis unless they possess great suggestiveness

or are the bases of important developments of the subject.

Under the present system the premium on wide superficial

reading is so great that such investigations, if inserted,

would seldom be read. But though this is at present the case,
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there is every reason to hope that it will not continue to be

so; and in view of a time when students will aim at an

exhaustive study of a few subjects in preference to a super-

ficial acquaintance with the whole range of Mathematical

research, I have added brief notes referring to most of the

papers on the subjects of this Treatise that have appeared

in the Mathematical Serials, and to other original sources.

In virtue of such references, and the brief indication of the

subject of the paper that accompanies each, it is hoped that

this work may serve as a handbook to students who wish

to read the subject more thoroughly than they could do

by confining themselves to an Educational Text-book.

The latter part of the book has been left untouched.

Much of it I hold to be unsuited to a work like the present,

partly for reasons similar to those given above, and partly

because it treats in a brief and necessarily imperfect manner

subjects that had better be left to separate treatises. It

is impossible within the limits of the present work to treat

adequately the Calculus of Operations and the Calculus of

Functions, and I should have preferred leaving them wholly

to such treatises as those of Lagrange, Babbage, Carmichael,

De Morgan, &c. I have therefore abstained from making

any additions to these portions of the book, and have made

it my chief aim to render more evident the remarkable

analogy between the Calculus of Finite Differences and the

Differential Calculus. With this view I have suffered myself

to digress into the subject of the Singular Solutions of Differ-

ential Equations, to a much greater extent than Dr Boole

had done. But I trust that the advantage of rendering the
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investigation a complete one will be held to justify the

irrelevance of much of it to that which is nominally the

subject of the book. It is partly from similar considerations

that I have adopted a nomenclature slightly differing from

that commonly used (e.g. Partial Difference-Equations for

Equations of Partial Differences).

I am greatly indebted to Mr R. T. Wright of Christ's

College for his kind assistance. He has revised the proofs

for me, and throughout the work has given me valuable

suggestions of which I have made free use.

JOHN F. MOULTON.

CHRIST'S COLLEHF,

Oct. 1872.



CONTENTS.

DIFFERENCE- AND SUM-CALCULUS.

CHAPTER I.

PAGE

NATURE OP THE CALCULUS OF FINITE DIFFERENCES . 1

CHAPTER II.

DIRECT THEOREMS OF FINITE DIFFERENCES . 4

Differences of Elementary Functions, 6. Expansion in factorials, 11.

Generating Functions, 14. Laws and relations of E, A and -
, 16.

Secondary form of Maclaurin's Theorem, 22. HerscheFs Theo-

rem, 24. Miscellaneous Expansions, 25. Exercises, 28.

CHAPTER III.

VON INTERPOLATION, AND MECHANICAL QUADRATURE . 33

Nature of the Problem, 33. Given values equidistant, 34. Not equi-

distant Lagrange's Method, 38. Gauss' Method, 42. Cauchy's

Method, 43. Application to Statistics, 43. Areas of Curves, 46.

Weddle's rule, 48. Gauss' Theorem on the best position of the

given ordinates, 51. Laplace's method of Quadratures, 53. Befer-

ences on Interpolation, &c. 55. Connexion between Gauss* Theo-

rem and Laplace's Coefficients, 57. Exercises, 57.

B. F. D. b



X CONTENTS.

CHAPTER IV. PAGE

FINITE INTEGRATION, AND THE SUMMATION OP SERIES 62

Meaning of Integration, 62. Nature of the constant of Integration,

01. Definite and Indefinite Integrals, G5. Intcgrable forms

and Summation of series Factorials, 65. Inverse Factorials, 66.

Kational and integral Functions, 68. Integrable Fractions, 70.

Functions of the form ax
<j>(x) 9 72. Miscellaneous Forms, 75.

Repeated Integration, 77. Conditions of extension of direct to

inverse forms, 78. Periodical constants, 80. Analogy between

the Integral and Sum-Calculus, 81. References, 83. Exercises,

83.

CHAPTER V.

THE APPROXIMATE SUMMATION OF SERIES 87

Development of S, 87. Analogy with the methods adopted for the

development of f 87 (note). Division of the problem, 88. De-

velopment of 2 in powers of D (Euler-Maclaurin Formula), 89.

Values of Bernoulli's Numbers, 90. Applications, 91. Deter-

mination of Constant, 95. Development of 2W , 96. Development
of 2ux and 2nux in differences of a factor of ux) 99. Method of in-

creasing the degree of approximation obtained by Maclaurin

Theorem, 100. Expansion in inverse factorials, 102. References,

103. Exercises, 103.

CHAPTER VI.

BERNOULLI'S NUMBERS, AND FACTORIAL COEFFICIENTS . 107

Various expressions for Bernoulli's Numbers DC Moivre's, 107. In

terms of 2-2n , 109. Raabe's (in factors), 109. As definite inte-

grals, 110. Euler's Numbers, 110. Bauer's Theorem, 112. Fac-

torial Coefficients, 113. References, 116. Exercises, 117.

CHAPTER VII.

CONVERGENCY AND DIVERGENCY OF SERIES 123

Definitions, 123. Case in which ux has aperiodic factor, 124. Cauchy's

Proposition, 126. First derived Criterion, 129. Supplemental
Criteria Bertrand's Form, 132. De Morgan's Form, 134. Third

Form, 135. Theory of Degree, 136. Application of Tests to

the Euler-Maclaurin Formula, 139. Order of Zeros, 139. Refer-

ences, 140. Exercises, 140.



CONTENTS. XI

CHAPTER VIII. PAGE

EXACT THEOREMS . . . .145
Necessity for finding the limits of error in our expansions, 145. Ke-

mainder in the Generalized Form of Taylor's Theorem, 146. Be-

mainder in the Maclaurin Sum-Formula, 149. References, 152.

Boole's Limit of the Remainder of the Series for 2ux ,
154.

DIFFERENCE- AND FUNCTIONAL EQUATIONS.

CHAPTER IX.

DIFFERENCE-EQUATIONS OF THE FIRST ORDER . 157

Definitions, 157. Genesis, 158. Existence of a complete Primitive,

160. Linear Equations of the First Order, 161. Difference-equa-

tions of the first order but not of the first degree Clairault's

Form, 167. One variable absent, 167. Equations Homogeneous
in M, 168. Exercises, 169.

CHAPTER X.

GENERAL THEORY OF THE SOLUTIONS OF DIFFERENCE- AND

DIFFERENTIAL EQUATIONS OF THE FIRST ORDER . 171

Difference-Equations their solutions, 171. Derived Primitives, 172.

Solutions derived from the Variation of a Constant, 174. Analo-

gous method in Differential Equations, 177. Comparison between

the solutions of Differential and Difference-Equations, 179. As-

sociated primitives, 182. Possible non-existence of Complete Inte-

gral, 183. Detailed solution of ux=x&ux + (&ux)*, 185. Origin

of singular solutions of Differential Equations, 189. Their ana-

logues in Difference-Equations, 190. Remarks on the complete

curves that satisfy a Differential Equation, 191. Anomalies of

Singular Solutions, 193. Explanation of the same, 194. Prin-

ciple of Continuity, 198. Recapitulation of the classes of solu-

tions that a Difference-Equation may possess, 204. Exercises, 205.

CHAPTER XI.

LINEAR DIFFERENCE-EQUATIONS WITH CONSTANT

COEFFICIENTS .... 208

Introductory remarks, 208. Solution of/ (E)ux = 0, 209. Solution of

f(E)ux=X, 213. Examination of Symbolical methods, 215. Spe-

cial forms of X, 218. Exercises, 219.



xii CONTENTS.

CHAPTER XII
PAGE

MISCELLANEOUS PROPOSITIONS AND EQUATIONS.

SIMULTANEOUS EQUATIONS . . .221

Equations reducible to Linear Equations with Constant Coefficients,

221. Binomial Equations, 222. Depression of Linear Equa-

tions, 224. Generalization of the above, 225. Equations solved

by performance of A", 228. Sylvester's Forms, 229. Simultane-

ous Equations, 231. Exercises, 232.

CHAPTER XIII.

LINEAR EQUATIONS WITH VARIABLE COEFFICIENTS.

SYMBOLICAL AND GENERAL METHODS . . 236

Symbolical Methods, 236. Solution of Linear Difference-Equations

in Series, 243. Finite Solution of Difference-Equations, 246.

Binomial Equations, 248. Exercises, 263.

CHAPTER XIV.

MIXED AND PARTIAL DIFFERENCE-EQUATIONS . 264

Definitions, 264. Partial Difference-Equations, 266. Method of

Generating Functions, 275. Mixed Difference-Equations, 277.

Exercises, 289.

CHAPTER XV.

OF THE CALCULUS OF FUNCTIONS . .291

Definitions, 291. Direct Problems, 292. Periodical Functions, 298.

Functional Equations, 301. Exercises, 312.

CHAPTER XVI

GEOMETRICAL APPLICATIONS . . .316

Nature of the problems, 316. Miscellaneous instances, 317. Exer-

cises, 325.

ANSWERS TO THE EXERCISES . . .326



FINITE DIFFEBENCES.

CHAPTER I.

NATURE OF THE CALCULUS OF FINITE DIFFERENCES.

1. THE Calculus of Finite Differences may be strictly
defined as the science which is occupied about the ratios of

tl.e simultaneous increments of quantities mutually depen-
dfcnt. The Differential Calculus is occupied about the limits

to which such ratios approach as the increments are indefi-

nitely diminished.

In the latter branch of analysis if we represent the inde-

pendent variable by #, any dependent variable considered as

a function of x is represented primarily indeed by <f> (x), but,

when the rules of differentiation founded on its functional

character are established, by a single letter, as u. In the

notation of the Calculus of Finite Differences these modes of

expression seem to be in some measure blended. The de-

pendent function of x is represented by ux9 the suffix taking
the place of the symbol which in the former mode of notation

is enclosed in brackets. Thus, if ux s <f> (a?),
then

and so on. But this mode of expression rests only on a con-

vention, and as it was adopted for convenience, so when con-

venience demands it is laid aside.

The step of transition from a function of x to its increment,
and still further to the ratio which that increment bears to

the increment of x, may be contemplated apart from its sub-
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ject, and it is often important that it should be so contem-

plated, as an operation governed by laws. Let then A, pre-
fixed to the expression of any function of #, denote the

operation of taking the increment of that function correspond-

ing to a given constant increment A# of the variable x.

Then, representing as above the proposed function of x by uxt

we have

and

Here then we might say that as -7- is the fundamental ope-

ration of the Differential Calculus, so -v is the fundamental
'

Aa?

operation of the Calculus of Finite Differences.

But there is a difference between the two cases which

ought to be noted. In the Differential Calculus -7- is not a
dec

true fraction, nor have du and dx any distinct meaning as

symbols of quantity. The fractional form is adopted to

express the limit to which a true fraction approaches. Hence

-7- , and not d, there represents a real operation. But in the

Calculus of Finite Differences - is a true fraction. Its nu-
A#

merator AM* stands for an actual magnitude. Hence A might
itself be taken as the fundamental operation of this Calculus,

always supposing the actual value of Ace to be given; and the

Calculus of Finite Differences might, in its symbolical charac-

ter, be defined either as the science of the laws of the operation
A, the value of Aa? being supposed given, or as the science of

the laws of the operation -r . In consequence of the funda-

mental difference above noted between the Differential Calcu-

lus and the Calculus of Finite Differences, the term Finite

ceases to be necessary as a mark of distinction. The former

is a calculus of limits, not of differences.
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2. Though AOJ admits of any constant value, the value

usually given to it is unity. There arc two reasons for this.

First. The Calculus of Finite Differences has for its chief

subject of application the terms of series. Now the law of a

series, however expressed, has for its ultimate object the deter-

mination of the values of the successive terms as dependent
upon their numerical order and position. Explicitly or im-

plicitly, each term is a function of the integer which ex-

presses its position in the series. And thus, to revert to

language familiar in the Differential Calculus, the inde-

pendent variable admits only of integral values whose com-
mon difference is unity. For instance, in the series of terms

I 8 98 V 4**1,4,0,4,...

the general or #th term is a?. It is an explicit function of xy

but the values of x are the series of natural numbers, and
Aa=l.

Secondly. When the general term of a series is a function

of an independent variable t whose successive differences are

constant but not equal to unity, it is always possible to

replace that independent variable by another, x, whose com-
mon difference shall be unity. Let

<f> (t) be the general term
of the series, and let A = h

;
then assuming t = hx we have

Atf = AAa?, whence A# = 1.

Thus it suffices to establish the rules of the Calculus on the

assumption that the finite difference of the independent
variable is unity. At the same time it will be noted that this

assumption reduces to equivalence the symbols
- - and A.

We shall therefore in the following chapters develope the

theory of the operation denoted by A and defined by the

equation

But we shall, where convenience suggests, consider the more

general operation

where A# h.



CHAPTER II.

DIRECT THEOREMS OF FINITE DIFFERENCES.

1. THE operation denoted by A is capable of repetition.

For the difference of a function of xy being itself a function of

x, is subject to operations of the same kind.

In accordance with the algebraic notation of indices, the

difference of the difference of a function of #, usually called

the second difference, is expressed by attaching the index 2 to

the symbol A. Thus

In like manner

AAX SAX,
and generally

AA*XsAX (1),

the last member being termed the nth difference of the function

ua . If we suppose ux
= 3

,
the successive values of ux with

their successive differences of the first, second, and third orders

will be represented in the following scheme :

Values of a; 12345 6...

It may be observed that each set of differences may either

be formed from the preceding set by successive subtractions
in accordance with the definition of the symbol A, or calcu-

lated from the general expressions for Aw, AX ... by assign-
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ing to x the successive values 1, 2, 3, .... Since ux = x3
,
we

shall have

=
(a; + 1)

8 -of = 3** + 3x+ 1,

AX =6.

It may also be noted that the third differences are here

constant. And generally if ux be a rational and integral

function of x of the nih
degree, its nth

differences will be

constant. For let

ux = ax* + lx*~
l + ...,

then

6
t ,

6
2 ,

... being constant coefficients. Hence &ux is a

rational and integral function of x of the degree n 1.

Repeating the process, we have

a rational and integral function of the degree n 2; and so on.

Finally we shall have

A"M, a= a(w-l)(n-2)...l,

a constant quantity.

Hence also we have

AV = 1.2...n. (2).

2. While the operation or series of operations denoted

by A, A8
, ...,A* are always possible when the subject-function

ux is given, there are certain elementary cases in which the

forms of the results are deserving of particular attention, and

these we shall next consider.
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Differences of Elementary Functions.

1st. Let %=#(# 1) (# 2) ... (# w+1).
Then by definition,

When the factors of a continued product increase or de-

crease by a constant difference, or when they are similar

functions of a variable which, in passing from one to the

other, increases or decreases by a constant difference, as in

the expression

sin x sin (x + h) sin (x+ 2h) . . . sin [x + (m 1) A},

the factors are usually called factorials, and the term in which

they are involved is called a factorial term. For the particular
kind of factorials illustrated in the above example it is com-

mon to employ the notation

o?(#-l)...(#-m + l)
= arW (1),

doing which, we have
A^-flM*"^ (2).

Hence, x
(mr

~
1}

being also a factorial term,

and generally

AVm)= m(w-.l)...(m~7i + l)^
w-n)

(3).

2ndly.

Then by definition,

... (# + m-

( + 2)...

(4).
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Hence, adopting the notation_
) ... (x + m-1)

'

we have
Axt-^-m^-*-1

*

(5).

Hence by successive repetitions of the operation A,

= (- l)
w m (m + 1) ... (m + n - 1) x^^ (6),

and this may be regarded as an extension of (3).

3rdly. Employing the most general form of factorials,

we find

ux^2 (7),

.

uxux ...uxxx+l ... x+m_t ^ x^... x+m

and in particular if ux= ax + J,

^ . . . ux_m^ (9),

^m
(10).

In like manner we have

A log ug = log u^ log ux = log
-^

.

Wig

To this result we may give the form

A log ux
=

log ( 1 H 2
J (11).

So also

A log (if.i*^t
... w^J =

log^- (12).

4thly. To find the successive differences of a*.
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We have
Aa*= a"

+1 a9 ^

= (a-lX
'

(13).

Hence

and generally,

AV^a-l^a* (14).

Hence also, since a*
1*=

(a
m
)*, we have

Awanw = (a
w
-l)

n awa! (15).

5thly. To deduce the successive differences of sin (ax + b)

and cos (ax + b).

A sin (ax + b)
= sin (ax + b + a) sin (ax + 6)

. a f a\= 2 sin ^ cos ( ax + b + ~ 1

^ . a . f , a + TT\= 2 sin
g

sin f cw? + 6 +~^J

By inspection of the form of this result we see that

Aa
sin (ax + b)

=
^2

sin
|J

sin (ax+ b + a + TT) (16).

And generally,

sn

In the same way it will be found that

A" cos (ax + b)
=

(2
sin

^cos
Lx + b +

n^^\ (18).

These results might also be deduced by substituting for the
sines and cosines their exponential values and applying (15).

3. The above are the most important forms. The follow-

ing are added merely for the sake of exercise.
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To find the differences of tan u9 and of tan"
1

^.

A tan ux = tan ux+l
tan ux

_ sin u
x+l

sin UK
~"

cos ux^l cos we

_ sin (ux+l
-

u.)

cos ux+l cos ux

__ sin A^g
,jv~"

cos w
x+1

cos^
Next,

A tan'1^ =

I+ux.

From the above, or independently, it is easily shewn that

A 4-
S"1 a /Q\A tan ax =--

t
-rr (3),

cos ax cos a (x + 1)
N

A tan'
1
oa: = tan"-- (4).

Additional examples will be found in the exercises at the

end of this chapter.

4. When the increment of x is indeterminate, the opera-

tion denoted by -r merges, on supposing A# to become
A&

infinitesimal but the subject-function to remain unchanged,

into the operation denoted by 3- . The following are illus-

trations of the mode in which some of the general theorems

of the Calculus of Finite Differences thus merge into theorems

of the Differential Calculus.
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Ex. We have

A sin x _ sin (x + A#) sin x
Aa?

"~
A#

O 1 A ' f ,

Aff + 7lA
2 sin A# sin ( x H ^

1

Aa?

And, repeating the operation n times,

An . (2 sin Aa)
n
sin fa? + nAn smaj v * '

\ 2
a).

It is easy to see that the limiting form of this equation is

(2),

a known theorem of the Differential Calculus.

Again, we have

And hence, generally,

AV

Supposing A# to become infinitesimal, this gives by the

ordinary rule for vanishing fractions

=
(log a)" a' (4).

But it is not from examples like these to be inferred that
the Differential Calculus is merely a particular case of the
Calculus of Finite Differences. The true nature of their con-
nexion will be developed in a future chapter.
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Expansion by factorials.

5. Attention has been directed to the formal analogy
between the differences of factorials and the differential

coefficients of powers. This analogy is further developed in

the following proposition.

To develope <j> (a?), a given rational and integral function

of x of the mth
degree, in a series of factorials.

Assume

(x) =a + bx + cx(*} + da} ...+hx (1).

The legitimacy of this assumption is evident, for the new
form represents a rational and integral function of x of the mth

degree, containing a number of arbitrary coefficients equal to

the number of coefficients in
<j> (x). And the actual values

of the former might be determined by expressing both mem-
bers of the equation in ascending powers of x, equating coeffi-

cients, and solving the linear equations which result. Instead

of doing this, let us take the successive differences of (1).

We find by (2), Art. 2,

(x)
= I + 2cx + 3dte(i)

. . . + mM*-" (2),

(3),

Aw < (x)
= m(m - 1) ... 1h (4).

And now making # = in the series of equations (1)...(4),

and representing by A< (0), A
a
< (0), . , . what A^> (#), A

2

^> (),
. . % become when x = 0, we have

0(0) = a,

Whence determining a, 6, c, ... h, we have

If with greater generality we assume

(a?)
= a + bx + ex (x

-
h) -}- dx (x

-
K) (x- 2A)
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we shall find by proceeding as before, (except in the employ-

ing of for A, where Aa?= &,)

(6),

where the brackets
{ }

denote that in the enclosed function,
after reduction, x is to be made equal to 0.

Maclaurin's theorem is the limiting form to which the
above theorem approaches when the increment A# is inde-

finitely diminished.

General theorems expressing relations between the successive

values, successive differences, and successive differential coef-
ficients offunctions.

6. In the equation of definition

At*, = 1^-14,
we have the fundamental relation connecting the first differ-

ence of a function with two successive values of that function.

Taylor's theorem gives us, if h be put equal to unity,

u - u -^ +!^ +_L^,*+l U*~ dx
+ 2d#2+ 2.3d^ + ""

which is the fundamental relation connecting the first differ-

ence of a function with its successive differential coefficients.

From these fundamental relations spring many general theo-
rems expressing derived relations between the differences of

the higher orders, the successive values, and the differential

coefficients of functions.

As concerns the history of such theorems it may be ob-

served that they appear to have been first suggested by par-
ticular instances, and then established, either by that kind of

proof which consists in shewing that if a theorem is true for

any particular integer value of an index n, it is true for the
next greater value, and therefore for all succeeding values

;

or else by a peculiar method, hereafter to be explained,
called the method of Generating Functions. But having
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been once established, the very forms of the theorems led to

a deeper conception of their real nature, and it came to be
understood that they were consequences of the formal laws
of combination of those operations by which from a given
function its succeeding values, its differences, and its differ-

ential coefficients are derived.

7. These progressive methods will be illustrated in the

following example.

Ex. Eequired to express u^ in terms of ux and its suc-

cessive differences.

We have

u* + Aw* + A (ux + &ux

AX-

Hence proceeding as before we find

These special results suggest, by the agreement of their

coefficients with those of the successive powers of a binomial,
the general theorem

u*
2

(1).

Suppose then this theorem true for a particular value of ?i,

then for the next greater value we have

,
n (n 1) A 2~

X + -* AX + . . .
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the form of which shews that the theorem remains true for

the next greater value of n, therefore for the value of n still

succeeding, and so on ad infinitum. But it is true for n = 1,

and therefore for all positive integer values of n whatever.

8. We proceed to demonstrate the same theorem by the

method of generating functions.

Definition. If
<f> (t) is capable of being developed in a

series of powers of t, the general term of the expansion being

represented by ujf, then
<f> (t) is said to be the generating

function of ux . And this relation is expressed in the form

Thus we have

since - ^ is the coefficient of f in the development of e\
1.2...x r

In like manner

?
~

1 .2.. .(#+ !)'

since -
-

n
- is the coefficient of t

x
in the development

of the first member.

And generally, if Oum
= <

(i), then

fl-W-*^ ...... OW-^ (2).

Hence therefore

But the first member is obviously equal to G&ux , therefore

(3).
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And generally

To apply these theorems to the problem under considera-

tion we have, supposing still Gux
=

<f) (t),

Hence

which agrees with (1).

Although on account of the extensive use which has been
made of the method of generating functions, especially by
the older analysts, we have thought it right to illustrate its

general principles, it is proper to notice that there exists an

objection in point of scientific order to the employment of
the method for the demonstration of the direct theorems of

the Calculus of Finite Differences ;
viz. that G is, from its very

nature, a symbol of inversion (Diff. Equations, p. 375, 1st Ed.).
In applying it, we do not perform a direct and definite ope-
ration, but seek the answer to a question, viz. What is that
function which, on performing the direct operation of deve-

lopment, produces terms possessing coefficients of a certain

form ? and this is a question which admits of an infinite

variety of answers according to the extent of the development
and the kind of indices supposed admissible. Hence the
distributive property of the symbol 6r, as virtually employed
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in the above example, supposes limitations which are not

implied in the mere definition of the symbol. It must be

supposed to have reference to the same sj
Tstem of indices in

the one member as in the other; and though, such conven-

tions being supplied, it becomes a strict method of proof, its

indirect character still remains*.

9. We proceed to the last of the methods referred to in

Art. 6, viz. that which is founded upon the study of the ulti-

mate laws of the operations involved. In addition to the

symbol A, we shall introduce a symbol E to denote the ope-
ration of giving to # in a proposed subject function the incre-

ment unity; its definition being

Laws and Relations of the symbols Ey
A and -,- .

ax

1st. The symbol A is distributive in its operation. Thus

A K + V. + .

.)
= A^ + A^+... (2).

For

-

In like manner we have

AK-^ + - )=A^-A^+ ... (3).

2ndly. The symbol A is commutative with respect to any
constant coefficients in the terms of the subject to which it is

applied. Thus a being constant,

(4).

And from this law in combination with the preceding one,
we have, a, 6,... being constants,

A (aux + bvg -f- ... )=aAwa. + 6Av
a.-f ... (5).

* The student can find instances of the use of Generating Functions in

Lacroix, Diff. and Int. Cal. in. 322. Examples of a fourth method, at once

elegant and powerful, due originally to Abel, are given in Grunert'a Archiv.

xvin. 381.
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Srdly. The symbol A obeys the index law expressed by
the equation

AmAX = Am+X (G),

m and n being positive indices. For, by the implied definition

of the index m,

AmAX = (AA. . .m times) (AA. . .n times) us

= {AA. . . (m + n) times} ux

= Am
+X-

These are the primary laws of combination of the symbol
A. It \vill be seen from these that A combines with A and
with constant quantities, as symbols of quantity combine with

each othor. Thus, (A -f a) u denoting Aw 4- au, we should

have, in virtue of the first two of the above laws,

(A + a) (A + b) u = {
Aa + (a -f b) A + ab} u

= Afw -f (a + b) Aw + abu (7),

the developed result of the combination (A -f a) (A + 6) being
in form the same as if A were a symbol of quantity.

The index law (6) is virtually an expression of the formal

consequences of the truth that A denotes an operation which,

performed upon any function of x, converts it into another
function of x upon which the same operation may be repeated.

Perhaps it might with propriety be termed the law of repe-

tition; as such it is common to all symbols of operation,

except such, if such there be, as so alter the nature of the

subject to which they are applied, as to be incapable of

repetition*. It was however necessary that it should be dis-

tinctly noticed, because it constitutes a part of the formal

ground of the general theorems of the calculus.

The laws which have been established for the symbol A
are even more obviously true for the symbol JH. The two

symbols are connected by the equation

* For instance, if
<f>
denote an operation which, when performed on two

quantities x, y, gives a single function X, it is an operation incapable of repe-
tition in the sense of the text, since 1

(, ?/)
= # (X) is unmeaning. But if it

be taken to represent an operation which when performed on x, y, gives the
two functions X, Y, it is capable of repetition since a

(x, y)~<p(Xj Y), which
has a definite meaning. In this case it obeys the index law.
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since

Eux
= ux + &ux

=
(1 + A) ux (8),

and they are connected with y- by the relation

E= (9),

founded on the symbolical form of Taylor's theorem. For

_ _ du*
1 <PU 1 dsux

It thus appears that E, A, and -r- , are connected by the

two equations

J0=1+A = <* (10),

and from the fact that E and A are thus both expressible by

means of -r- we might have inferred that the symbols E, A,

and ,- * combine each with itself, with constant quantities,

and with each other, as if they were individually symbols of

quantity. (Differential Equations, Chapter XVI.)

10. In the following section these principles will be

applied to the demonstration of what may be termed the
direct general theorems of the Calculus of Differences. The
conditions of their inversion, i. e. of their extension to cases in

which symbols of operation occur under negative indices, will

* In place of
j-

we shall often use the symbol D. The equations will

then be E=l +A= />

, a form which has the advantage of not assuming that

the independent variable has been denoted by x.
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be considered, so far as may be necessary, in subsequent

chapters.

Ex. 1. To develope u
X4/n

in a series consisting of ux and
its successive differences (Ex. of Art. 7, resumed).

By definition

Therefore

n
(2).

Ex. 2. To express AV,. in terms of us and its successive

values.

Since AM* = u
x+l ux Eux uxy we have

and as, the operations being performed, each side remains a

function of x,

Hence, interpreting the successive terms,

. + (- 1)X (3).

Of particular applications of this theorem those are the

most important which result from supposing ux = xm.

We have

-2)
m- ... (4).
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Now let the notation A"0m be adopted to express what the

first member of the above equation becomes when x=
;
then

n(n-l)(n-2)- n (n
-

1) (n
-

2) (
-
8)*___

The systems of numbers expressed by A
n
O** are of frequent

occurrence in the theory of series*.

From (2) Art. 1, we have

and, equating this with the corresponding value given by (5),

we have

1.2...n = n*-tt(n-l)" + ~i^-2)--... (6)f.

Ex. 3. To obtain developed expressions for the ?i
ih

differ-

ence of the product of two functions ux and vx.

Since

where .Z? applies to ux alone, and Ef
to vx alone, we have

AM.V. = (EE
f -

1) uxvx9

and generally

1)
W^^ (7).

It now only remains to transform, if needful, and to de-

velope the operative function in the second member according
to the nature of the expansion required.

Thus if it be required to express A
nua.va? in ascending differ-

* A very simple method of calculating their values will be given in Ex. 8

of this chapter.

f This formula is of use in demonstrating Wilson's Theorem, that

1 +
1

n - 1 is divisible by n when n is a prime number.
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ences of vx , we must change E' into A' -f 1, regarding A' as

operating only on vx. We then have

= A-

Remembering then that A and E operate only on ux and A'

only on vx ,
and that the accent on the latter symbol may be

dropped when that symbol only precedes vxt we have

______ +A--X+2 .AX+... (8),

the expansion required. -----------

As a particular illustration, suppose ^ = a*. Then, since

we have

AW, = a* {(a
- 1)X + n (a

(9).

Again, if the expansion is to be ordered according to suc-

cessive values of vx ,
it is necessary to expand the untrans-

formed operative function in the second member of (7) in

ascending powers of E' and develope the result. We find

-
. . .

} (10).

Lastly, if the expansion is to involve only the differences

of ux and vx , then, changing E into 1 -f A, and E' into 1 + A',

we have

AX**= (
A + A' + AA')X"* (11),

and the symbolic trinomial in the second member is now to

be developed and the result interpreted.
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Ex. 4. To express A*X in terms o

ficicrits of ux .

By (1 0), Art. 9, A = <F - 1. Hence

Ex. 4. To express A*X in terms of the differential co-

efficients of uf .

Now t being a symbol of quantity, we hjtve

(13),

on expansion, A t , A 2 , being numerical coefficients. Hence

and therefore

The coefficii^nts ^1,, ^4
?
,... may be determined in

various ways, the simplest m principle being perhaps to de-

velope the right-hand member of (13) by the polynomial
theorem, and then seek the aggregate coefficients of the suc-

cessive powers of t. But the expansion may also be effected

with complete determination of the constants by a remarkable

secondary form of Maclaiirin's theorem, which we shall pro-
ceed to demonstrate.

Secondaryform of Maclaurin's Theorem.

PROP. The development of <f> (f) in positive and integral

powers of t, when such development ispossible, may be expressed
m theform

where < f
^TV)

Om denotes what < f -r-
j
#m becomes when x = 0.
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First, we shall shew that if (x) and ty (x) are any two
functions of x admitting of development in the form

then

provided that x be made equal to 0, after the implied opera-
tions are performed.

For, developing all the functions, each member of the

above equation is resolved into a series of terms of the form

/ d\mA
(-j-J

xn, while in corresponding terms of the two members

the order of the indices m and n will be reversed.

(d\

m

-T-J
xn is equal to if m is greater than n, to

1 . 2...n if m is equal to n, and again to if m is less than n
and at the same time x equal to

;
for in this case xn

~m
is a

factor. Hence if x= 0,

and therefore under the same condition the equation (15) is

true, or, adopting the notation above explained,

Now by Maclaurin's theorem in its known form

+ ... (17).

Hence, applying the above theorem of reciprocity,

. + ... (18),

the secondary form in question. The two forms of Mac-
laurin's theorem (17), (18) may with propriety be termed

conjugate.
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A simpler proof of the above theorem (which may be more

shortly written
<f> (t)

= < (D) e'') is obtained by regarding it

as a particular case of Herschel's theorem, viz.

*(0 = *(1) +*(tf)0. t + 4>(E)ff.^ +
... (19),

or, symbolically written, <f> (e')
=

<f> (E) e -'.* The truth of the

last theorem is at once rendered evident by assumingAne
nt

to

be any term in the expansion of
<f> (e') in powers of e'. Then

since An e
n ' = A n

E*eQft the identity of the two series is

evident.

But
<f> (t)

= $ (log e')
= $ (log E) 6-'

(by Herschers theorem)

which is the secondary form of Maclaurin's theorem.

As a particular illustration suppose <j) (t)
= (e*-l)

w
, then

by means of either of the above theorems we easily deduce

But A"0m is equal to ifm is less than n and to 1 . 2 . 3. . .n

if m is equal to n, (Art. 1). Hence

_

Hence therefore since Anw = (e** l)
nu we have

Aw
On+ d*

+
*u AnOn+a

the theorem sought.

The reasoning employed in the above investigation pro-
ceeds upon the assumption that n is a positive integer. The

* Since both A and D performed on a constant produce as result zero, it

is obvious that 0(D) C=<t>(0) (7=0 (A)<7, and <f>(E) C= 0(1) C. It is of

course assumed throughout that the coefficients in are constants.
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very important case in which n = 1 will be considered in

another chapter of this work.

Ex. 5. To express -v-n in terms of the successive differences

ofu. &
*.

Since e"* = 1 -f- A, we have

therefore
Q^Y

=
Jlog

(1 +
A)]"

(22),

and the right-hand member must now be developed in as-

cending powers of A.

In the particular case of n = 1, we have

du A A2
M A3w A*H

x_ =AK__ +___ + ... (23).

11. It would be easy, but it is needless, to multiply these

general theorems, some of those above given being valuable

rather as an illustration of principles than for their intrinsic

importance. We shall, however, subjoin two general theo-

rems, of which (21) and (23) are particular cases, as they
serve to shew how striking is the analogy between the

parts played by factorials in the Calculus of Differences and

powers in the Differential Calculus.

By Differential Calculus we have

Perform <(A) on both sides (A having reference to t

alone), and subsequently put t = 0. This gives

... (24),

of which (21) is a particular case.
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By (2) we have

Perform
<j>

( -3-
J
on each side, and subsequently put t =

;

of which (23) is a particular case.

12. We have seen in Art. 9 that the symbols A, E and

7
~ or D have, with certain restrictions, the same laws of com-

ax
bination as constants. It is easy to see that, in general,
these laws will hold good when they combine with other

symbols of operation provided that these latter also obey
the above-mentioned laws. By these means the Calculus of

Finite Differences may be made to render considerable assist-

ance to the Infinitesimal Calculus, especially in the evaluation

of Definite Integrals. We subjoin two examples of this;
further applications of this method may be seen in a Memoire

by Cauchy (Journal Polytechnique, Vol. xvn.).

Ex. 6. To shew that B (m + 1, n) = (- 1)
WAW - , where m

is a positive integer.

We have -

n

z*~
l

(z l)
m dz (assuming z = e~*)

o

, n).
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r o+1

Ex. 7. Evaluate u =/ Am ^
-

s dz, m being a positive
J o * J

I *

integer greater than a
;
A relating to n alone.

Let 2/c be the even integer next greater than a + 1, then

Now the first member of the right-hand side of (26) is a
rational integral function of n of an order lower than m. It

therefore vanishes when the operation A
m

is performed on it.

We have therefore

"

(27)v '

. Art. 255, 3rd Ed.)

This example illustrates strikingly the nature and limits

of the commutability of order of the operations I and A.

Had we changed the order (as in (27)) without previously

preparing the quantity under the sign of integration, we
should have had

AW7(

which is infinite if a be positive.

The explanation of this singularity is as follows :

If we write for Am its equivalent (E l)
m and expand

/
Am<

(a?, n) dx expresses the integral
j
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of a quantity ofm -f 1 terms of the form Ap <f> (x, n +p), while
/- 00

Am
J ^ (#, n) dx expresses the sum of m + 1 separate into-

grals, each having under the integral sign one of the terms of

the above quantity. Where each term separately integrated

gives a finite result, it is of course indifferent which form is

used, but where, as in the case before us, two or more would

give infinity as result the second form cannot be used.

13. Ex. 8. To shew that

<f> (E) Ou = E<f>' (E) On
'\ (28).

Let A
r
Er

O
n and 13rA

f
Er

*Q*'~
l be corresponding terms

of the two expansions in (28). Then, since each of them

equals A rr
n
,
the identity of the two series is manifest.

Since JE= 1 +A the theorem may also be written

and under this form it affords the simplest mode of calcu-

lating the successive values of AW W
. Putting <f) (A)

= Am,

we have

Aw
O
n = E . wAM-1

O
w-1 = m (A^O*-

1 + A"^1

),

and the differences of O
n can be at once calculated from those

of O"-
1
.

Other theorems about the properties of the remarkable
set of numbers of the form AmOn will be found in the accom-

panying exercises. Those desirous of further information on
the subject may consult the papers of Mr J. Blissard and
M. Worontzof in the Quarterly Journal of Mathematics,
Vols. VIII. and ix.

EXERCISES.

1. Find the first differences of the following functions :

2*sinJ, tan~, cot (2* a).Z 22
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2. Shew that

A -* = t^At^

y*

3. Prove the following theorems:

2

AO*-^ 0* + &c. = (a?
> 1)M

in (<n "H |r& Aw+i/yi+i^ \
1
^A"(r2 + ...+ T

-i=-~ = a V
.

1.2 n m m 4-1

4. Shew that, if m be less than r,

5. Express the differential coefficient of a factorial in

factorials. Ex. x(n}
.

6. Shew that

ABOn
,
An

O
n+1

......

form a recurring series, and find its scale of relation.

7. If Px
n = - shew that

8. Shew that

What class of series would the above theorem enable us

to convert from a slow to a rapid convergence \
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9. Shew that

and hence calculate the first four terms of the expression.

10. If Pn
= :-?- + 0/

1

1V + ... +-^T, shew that
l.n 2

(?i 1) n .1

Prove that

{log E}
n Om = 0,

unless m = n when it is equal to
|n,

11. Prove that

12. If a; = e*, prove that

VAO* d A2Q
n A3Qtt

13. If A^ = u^lt ,,

- w
tf

and if AnuXiV be expanded
in a series of differential coefficients of u

Xtyt shew that the

general term will be

i

AW dxp
dy

q
'

14. Express An
oj
w

in a series of terms proceeding by
powers of x by means of the differences of the powers of 0.

By means of the same differences, find a finite expression
for the infinite series
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where m is a positive integer, and reduce the result when

m = 4.

15. Prove that

(xE)
mux = (xETf(x& + m) ux,

gous theorem

16. Find ux from the equations

and find the analogous theorems in the Infinitesimal

Calculus.

m
(1)

(2)

_

17. Find a symbolical expression for the ?i
fch difference

of the product of any number of functions in terms of the

differences of the separate functions, and deduce Leibnitz's

theorem therefrom.

18. If Pn be the number of ways in which a polygon
of n sides can be divided into triangles by its diagonals, and
*
2

<
(*)

= GPn , shew that

*19. Shew that

n and a being positive quantities.

*20. Shew that

""Ida**

if 2n > m > a all being positive.

* In Questions 19 and 20 A acts on n alone.
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r
^ sin

m
oj

Hence, shew that I sin 2nx . m+A . dx is constant for

JQ

all values of n between and oo .

21. Shew that if p be a positive integer

1.2.3 2p

(Bertrand, Cal. Int. p. 185.)

22. Shew that

An
I1*"1

4. A 71
"1

lp

THTi
"

23. Demonstrate the formula

An F*1 =
(n + 1) A

n
1* 4- nA71

"1
1*

and apply it to construct a table of the differences of the

powers of unity up to the fifth power.



CHAPTER III.

ON INTERPOLATION, AND MECHANICAL QUADRATURE.

1. THE word interpolate has been adopted in analysis to

denote primarily the interposing of missing terms in a series

of quantities supposed subject to a determinate law of mag-
nitude, but secondarily and more generally to denote the

calculating, under some hypothesis of law or continuity, of

any term of a series from the values of any other terms sup-

posed given.

As no series of particular values can determine a law, the

problem of interpolation is an indeterminate one. To find

an analytical expression of a function from a limited number
of its numerical values corresponding to given values of its

independent variable x is, in Analysis, what in Geometry it

would be to draw a continuous curve through a number of

given points. And as in the latter case the number of pos-
sible curves, so in the former the number of analytical ex-

pressions satisfying the given conditions, is infinite. Thus
the form of the function the species of the curve must be

assumed a priori. It may be that the evident character of

succession in the values observed indicates what kind of

assumption is best. If for instance these values are of a

periodical character, circular functions ought to be employed.
But where no such indications exist it is customary to assume
for the general expression of the values under consideration

a rational and integral function of x, and to determine the

coefficients by the given conditions.

This assumption rests upon the supposition (a supposition
however actually verified in the case of all tabulated func-

tions) that the successive orders of differences rapidly dimi-

nish. In the case of a rational and integral function of x of

the nth
degree it has been seen that differences of the n + 1 th
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and of all succeeding orders vanish. Hence if in any other

function such differences become very small, that function

may, quite irrespectively of its form, be approximately repre-
sented by a function which is rational and integral. Of
course it is supposed that the value of x for which that of

the function is required is not very remote from those, or

from some of those, values for which the values of the func-

tion are given. The same assumption as to the form of the

unknown function and the same condition of limitation as to

the use of that form flow in an equally obvious manner from
the expansion in Taylor's theorem.

2. The problem of interpolation assumes different forms,

according as the values given are equidistant, i.e. corre-

spondent to equidifferent values of the independent variable,
or not. But the solution of all its cases rests upon the same

principle. The most obvious mode in which that principle
can be applied is the following. If for n values a, 6, ... of

an independent variable x the corresponding value wa ,
u

b> ... of

an unknown function of x represented by ux ,
are given, then,

assuming as the approximate general expression of ux9

ux
= A + Bx + Ca?...+Exn' 1

(1),

a form which is rational and integral and involves n arbitrary

coefficients, the data in succession give

a system of n linear equations which determine A, B...E.
To avoid the solving of these equations other but equivalent
modes of procedure are employed, all such being in effect

reducible to the two following, viz. either to an application
of that property of the rational and integral function in the

second member of (1) which is expressed by the equation
An

i6x
=

0, or to the substitution of a different but equivalent
form for the rational and integral function. These methods
will be respectively illustrated in Prop. 1 and its deductions,
and in Prop. 2, of the following sections.

PJIOP. 1. Given n consecutive equidistant values M
O ,
u

lt
...

un^l
of a function ux , to find its approximate general expres-

sion.
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By Chap. II. Art. 10,

Hence, substituting for a?, and x for w, we have

a'

But on the assumption that the proposed expression is

rational and integral and of the degree n 1, we have Anwx
=

0,

and therefore A*M
O
= 0. Hence

~~~

the expression required. It will be observed that the second

member is really a rational and integral function of x of the

degree n 1, while the coefficients are made determinate by
the data.

In applying this theorem the value of x may be con-

ceived to express the distance of the term sought from the

first term in the series, the common distance of the terms

given being taken as unity.

Ex. Given log 3'14 = '4969296, log 315 = -4983106, log
3-16 = '4996871, log 317 = '5010593; required an approxi-
mate value of log 314159.

Here, omitting the decimal point, we have the following
table of numbers and differences :

The first column gives the values of U
Q
and its differences

up to A8w Now the common difference of 314, 315, ....
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being taken as unity, the value of x which corresponds to

3-14159 will be '159. Hence we have

ux = 4969296 + 159 x 13810 + z!> x (
-

45)1 . 4

(159) (159-1) (-169 -2) a+
172 73

x 2 '

Effecting the calculations we find ux = '4971495, which is

true to the last place of decimals. Had the first difference

only been employed, which is equivalent to the ordinary rule

of proportional parts, there would have been an error of 3 in

the last decimal.

3. When the values given and that sought constitute a

series of equidistant terms, whatever may be the position of

the value sought in that series, it is better to proceed as

follows.

Let U
Q ,
u

lt
u

z , ...un be the series. Then since, according to

the principle of the method, Anw = 0, we have by Chap. II.

Art. 10, {,

^-nu^ +*!^-... + (-1)^=0 (3),

an equation from which any one of the quantities

may be found in terms of the others.

Thus, to interpolate a term midway between two others

we have

0; .-. ,-!fe+!S (4).

Here the middle term is only the arithmetical mean.

To supply the middle term in a series of five, we have

t/ - 4^ + 6z*
2
- 4u

9 + u
4
= 0;
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-00

Ex. Representing as is usual I e~
a 6*~

l dd by F (n), it is

required to complete the following table by finding approxi-

mately log F ( ^ )
:

Let the series of values of logF(n) be represented by
u

l9
u

,
...u9 , the value sought being that of us . Then pro-

ceeding as before, we find

8.7 8.7.6
,

or,

whence

- 8K 28
f)
~ 56

Substituting for u
t ,

we find

log

2 , ..., their values from the table,

-24853,

the true value being '24858.

To shew the gradual closing of the approximation as the

number of the values given is increased, the following results

are added :
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Data Calculated value of uv

u
4

u
e ............... -25610,

3,^ u^u, ............... '24820,

w
2 , ust

u
4

u
e ,
u
l9
u
8 , ............... -24865,

u
l9 u^ y

u
a ,
w
4

w
e ,
u

7 ,
u
s ,
u

9
............... -24853.

4. By an extension of the same method, we may treat

any case in which the terms given and sought are terms, hut

not consecutive terms, of a series. Thus, if u , w4 ,
u
6
were

given and u
3 sought, the equations A

8^ =
0, A w

a
= would

give

from which, eliminating wa ,
we have

3u
6
- Su4 + 6u

a
- tt

t
=

, (7),

and hence u
z
can be found. But it is better to apply at once

the general method of the following Proposition.

PROP. 2. Given n values of a function which are not
consecutive and equidistant, to find any other value whose

place is given.

Let ua , ub ,
ucJ ... uk be the given values, corresponding to

a, 6, c ,..,fc respectively as values of x, and let it be required
to determine an approximate general expression for ux.

We shall assume this expression rational and integral,
Art. 1.

Now there being n conditions to be satisfied, viz. that for

x = a, x = b . . . x = AT, it shall assume the respective values

ua ,
u

bt
... uk,

the expression must contain n constants, whose
values those conditions determine.

We might therefore assume

ux= A + Bx + Ca? ... + JEkT1

(8),

and determine A, B, G by the linear system of equations
formed by making as = a, 6 ... k, in succession.

The substitution of another but equivalent form for (8)
enables us to dispense with th,e solution of the linear system.
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Let uK =A (x-b) (x-c) ... (a?-*)
''

'^

+ B(x-a) (x-c) ... (* -jfe)
2 T

+ (7(a?-a) (-&) ... (x-k)
'"

+ ...
(9)

'

to ?i terms, each of the n terms in the right-hand member
wanting one of the factors x a, # &,...# &, and each

being affected with an arbitrary constant. The assumption
is legitimate, for the expression thus formed is, like that

in (8), rational and integral, and it contains n undetermined
coefficients.

Making x = a, we have

ua
=A (a b) (a c) ... (a k) ;

therefore

(a 6) (a c) ... (a k)'

In like manner making x = 6, we have

n_ ^
(&-a)(6-c) ...(&-&)'

and so on. Hence, finally,

the expression required. This is Lagrange's ^.theorem for

interpolation.
^

'~-^**~- a!f^^5
vl;

If we assume that the values are consecutive and equi-

distant, i.e. that u ,
u

t
... un^ are given, the formula be-

comes

-* 1.2. 3. ..(-

* Journal de VEcole Polytechnique, n. 277. The real credit of the discovery

must, however, be assigned to Euler ; who, in a tract entitled De eximio x?/

methodi interpolationum in serierum doctrina, had, long before this, obtained a

closely analogous expression.
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_s(s-l)...Qp-n + l) f iyt _ un_, \
.

1

7i~l (a-n-fl ^-71 + 2"
1
"

'"J
{ } >

[n-I
where

This formula may be considered as conjugate to (2), and

possesses the advantage of being at once written down from
the observed values of um without our having to compute the
successive differences. But this is more than compensated for

in practice, especially when the number of available obser-

vations is large, by the fact that in forming the coefficients in (2)
we are constantly made aware of the degree of closeness of

the approximation by the smallness of the value of Anw ,

and can thus judge when we may with safety stop.

As the problem of interpolation, under the assumption that

the function to be determined is rational and integral and of

a degree not higher than the (n l)
th

,
is a determinate one,

the different methods of solution above exemplified lead to

consistent results. All these methods are implicitly contained
in that of Lagrange.

The following are particular applications of Lagrange's
theorem.

5. Given any number of values of a magnitude as ob-

served at given times
;
to determine approximately the values

of the successive differential coefficients of that magnitude at

another given time.

Let a, fc, ... k be the times of observation, uay ub ,
... uk the

observed values, x the time for which the value is required,
and ux that value. Then the value of ux is given by (10),
and the differential coefficients can thence be deduced in the

usual way. But it is most convenient to assume the time

represented above by x as the epoch, and to regard a, 6, ... k
as measured from that epoch, being negative if measured

backwards. The values of --, -r-r w^ then be the

coefficients of xt x
9
, ... in the development of the second

member of (10) multiplied by 1, 1 . 2, 1 . 2 . 3, ... successively.
Their general expressions may thus at once be found. Thus
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in particular we shall have

T r 4.

dx (a-b a-c...a-* a '"

dx*

Laplace's computation of the orbit of a comet is founded

upon this proposition (Mecanique Celeste).

6. The values of a quantity, e. g. the altitude of a star at

given times, are found by observation. Required at what
intermediate time the quantity had another given value.

Though it is usual to consider the time as the independent
variable, in the above problem it is most convenient to con-

sider the observed magnitude as such, and the time as a

function of that magnitude. Let then a, 6, c, ... be the values

given by observation, ua> ub ,
u

e ,
... the corresponding times,

x the value for which the time is sought, and ux that time.

Then the value of ux is given at once by Lagrange's theorem

(10).

The problem may however be solved by regarding the time
as the independent variable. Representing then, as in the

last example, the given times by a, 6, ... A, the time sought

by x, and the corresponding values of the observed magnitude
by ua , u^ ... uk ,

and u
x ,
we must by the solution of the same

equation (10) determine x.

The above forms of solution being derived from different

hypotheses, will of course differ. We say derived from dif-

ferent hypotheses, because whichsoever element is regarded
as dependent is treated not simply as a function, but as a

rational and integral function of the other element ;
and thus

the choice affects the nature of the connexion. Except for

the avoidance of difficulties of solution, the hypothesis which

assumes the time as the independent variable is to be pre-
ferred.
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Ex. Three observations of a quantity near its time of

maximum or minimum being taken, to find its time of maxi-
mum or minimum.

Let a, b, c, represent the times of observation, and ux the

magnitude of the quantity at any time x. Then ua) ud and
u

e are given, and, by Lagrange's formula,

& ~~b) ( c) (x c) (# a) (x a) (x b)U*~ U" + U
*

(a -6) (a- c) *(b
-

c) (6 -aj
c

(c
-

a) (c
-

6)
'

and this function of a? is to be a maximum or minimum.
Hence equating to its differential coefficient with respect
to x, we find

(V-<f) ti.+ (c
a - a8

) *,+ (a
2 -&2

) MC

2{(&-c). + (c-aK+(a-&)ti.}
This formula enables us to approximate to the meridian

altitude of the sun or of a star when a true meridian observa-

tion cannot be taken *.

7. As was stated in Art. 4, Lagrange's formula is usually
the most convenient for calculating an approximate value of

ux from given observed values of the same when these are

not equidistant. But in cases where we have reason to

believe that the function is periodic, we may with advantage
substitute for it some expression, involving the right number
of undetermined coefficients, in which # appears only in the

arguments of periodic terms. Thus, if we have 2n + 1 obser-

vations, we may assume

ut
= A 4- A t

cos x 4- -4
2
cos 2x + . . . + An cos nx

4- B
l
sin x + J5

a
sin 2x + . . . + Bn sin nx (15),

and determine the coefficients by solving the resulting linear

equations.

Gaussf has proved that the formula

sin & (x 6) sin
^ (x c) . . . sin

^ (x k)

*>=* -
j
-

1 l
- u.+ ... (16),

sin 5 (a 6) sin 5 (a c) . . . sin ^ (a k)
JL A &

* A special investigation of this problem will be found in Grunert, xxv. 237.
t Werke, Vol. in. p. 281,
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is equivalent to (15), uaj ub,...uk being assumed to be the

27i+l given values of u*. It is evident that we obtain
UK
= ua when for x we substitute a in it, and also that when

expanded it will only contain sines and cosines of integral

multiples of x not greater than nx\ and as the coefficients

of (15) are fully determinable from the data, it follows that

the two expressions are identically equal.

8. Cauchy* has shewn that if m + n values of a function

are known, we may find a fraction whose numerator is of

the nth
, and denominator of the (m l)

th

degree, which will

have the same m-f n values for the same values of the

variable. He gives the general formula for the above frac-

tion, which is somewhat complicated, though obviously satis-

fying the conditions. We subjoin it for the case when

m = 2, n = 1,

__

When m = 1 it reduces of course to Lagrange's formula.

Application to Statistics.

9. When the results of statistical observations are pre-
sented in a tabular form it is sometimes required to narrow
the intervals to which they correspond, or to fill up some

particular hiatus by the interpolation of intermediate values.

In applying to this purpose the methods of the foregoing
sections, it is not to be forgotten that the assumptions which

they involve render our conclusions the less trustworthy in

proportion as the matter of inquiry is less under the dominion
of any known laws, and that this is still more the case in

proportion as the field of observation is too narrow to exhibit

fairly the operation of the unknown laws which do exist.

The anomalies, for instance, which we meet with in the at-

tempt to estimate the law of human mortality seem rather to

*
Analyse Algttraique, p. 628, but it is better to read a paper by Brassine

(Liouville, xi. 177), in which it is considered more fully and as a case of a more
general theorem. This must not be confounded with Cauchy's Method of
Interpolation, which is of a wholly different character and does not need notice

here. He gives it in Liouville, n. 193, and a consideration of the advantages
it possesses will be found in a paper by Bienayme, Comptes Rendus, xxxvn. or

Liouville, xvm. 290*
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be due to the imperfection of our data than to want of conti-

nuity in the law itself. The following is an example of the

anomalies in question.

Ex. The expectation of life at a particular age being
defined as the average duration of life after that age, it is

required from the following data, derived from the Carlisle

tables of mortality, to estimate the probable expectation of

life at 50 years, and in particular to shew how that estimate

is affected by the number of the data taken into account.

Age. Expectation. Age. Expectation,

10 48-82 =
1*,

60 14-34 = w6

20 41-46 = u
2

70 918 = w
7

30 34-34 = ^
3

80 5'5l=u
8

40 27-61=^ 90 3*28 =w
9

The expectation of life at 50 would, according to the above

scheme, be represented by u
6
. Now if we take as our only

data the expectation of life at 40 and 60, we find by the

method of Art. 3,

|

If we add to our data the expectation at 30 and 70, we
find

*V= K + *0 - \ ("> + *)
= 20-71 (&)

If we add the further data for 20 and 80, we find

And if we add in the extreme data for the ages of 10 and

90, we have

8 4
.= JQ K + U )

-
10

+
ft (.+

-^ K + *)
- 20776 (d).

We notice that the second of the above results is consider-

ably lower than the first, but that the second, third, and
fourth exhibit a gradual approximation toward some value

not very remote from 20*8.
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Nevertheless the actual expectation at 50 as given in the

Carlisle tables is 21*11, which is greater than even the first

result or the average between the expectations at 40 and CO.

We may almost certainly conclude from this that the Carlisle

table errs in excess for the age of 50.

And a comparison with some recent tables shews that this

is so. From the tables of the Registrar-General, Mr Neison*
deduced the following results.

Age. Expectation. Age. Kxpectation.

10 477564 60 14-5854

20 40-6910 70 9'2176

30 34-0990 80 5-2160

40 27-4760 90 2*8930

50 20-8463

Here the calculated values of the expectation at 50, corre-

sponding to those given in (a), (6), (c), (cZ), will be found
to be

21-0307, 20-8215, 2CL8464, 20'8454.

We see here that the actual expectation at 50 is less than
the mean between those at 40 and 60. We see also that the

second result gives a close, and the third a very close, approxi-
mation to its value. The deviation in the fourth result, which
takes account of the extreme ages of 10 and 90, seems due to

the attempt to comprehend under the same law the mortality
of childhood and of extreme old age.

When in an extended table of numerical results the differ-

ences tend first to diminish and afterwards to increase, and
some such disposition has been observed in tables of mor-

tality, it may be concluded that the extreme portions of the

tables are subject to different laws. And even should those
1aws admit, as perhaps they always do, of comprehension
under some law higher and more general, it may be inferred

that that law is incapable of approximate expression in the

particular form (Art. 2) which our methods of interpolation

presuppose.

* Contributions to Vital Statistics, p. 8.
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Areas of Curves.

10. Formulae of interpolation may be applied to the ap-

proximate evaluation of integrals between given limits, and
therefore to the determination of the areas of curves, the con-

tents of solids, .... The application is convenient, as it does

not require the form of the function under the sign of in-

tegration to be known. The process is usually known by the

name of Mechanical Quadrature.

PROP. The area of a curve being divided into n portions
bounded by n+l equidistant ordinates U

Q ,
ul)t ..un) whose

values, together with their common distance, are given, an

approximate expression for the area is required.

The general expression for an ordinate being u*, we have,
if the common distance of the ordinates be assumed as the

unit of measure, to seek an approximate value of I uxdx.
J o

Now, by (2),

ux
= a?(a?-l) A2-

72 . 3

Hence

rrnuxdx = u
Q

l

J Q

and effecting the integrations

+ ... (18).
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It will be observed that the data permit us to calculate

the successive differences of u up to AX- Hence, on the

assumption that all succeeding differences may be neglected,
the above theorem gives an approximate value of the integral

sought. The following are particular deductions.

1st. Let n = 2. Then, rejecting all terms after the one

involving A
2w > we have

o

2u + 2Aw + iA\.

But ku^u^-u^ Aau = 1^-2^ + 1^; whence, substi-

tuting and reducing,

If the common distance of the ordinates be represented by
h, the theorem obviously becomes

and is the foundation of a well-known rule in treatises on
Mensuration.

2ndly. If there are four ordinates whose common distance
is unity, we find in like manner

i O... i - . \

(20).

Srdly. If five equidistant ordinates are given, we have in
like manner

r
JUX X

45

4thly. The supposition that the area is divided into six

portions bounded by 7 equidistant ordinates leads to a re-
markable result, first given by the late Mr Weddle (Math.
Journal, Vol. ix. p. 79), and deserves to be considered in
detail.

Supposing the common distance of the ordinates to be
unity, we find, on making n = 6 in (18) and calculating the
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coefficients,

,
+ 27A\ + 24AX + j$AX

oo A R .
41 A

L

41 42 3Now the last coefficient ^-^ differs from
^775

or
TTJ by the

small fraction
,
and as from the nature of the approxima-

tion we must suppose sixth differences small, since all suc-

ceeding differences are to be neglected, we shall commit but
3

a slight error if we change the last term into^ AV . Doing

this, and then replacing AMO by u^ u and so on, we find, on

reduction,

{u + u
z + u

4 + us + 5 (u, + u
6) + 6w

3},

which, supposing the common distance of the ordinates to be

A, gives

ru dx = '

J
*

10

the formula required.

It is remarkable that, were the series in the second member
of (22) continued, the coefficient of A7w would be found to

vanish. Thus while the above formula gives the exact area

when fifth differences are constant, it errs in excess by only

: A6wn when seventh differences are constant.

The practical rule hence derived, and which ought to find

a place in elementary treatises on mensuration, is the fol-

lowing:

The proposed area being divided into six portions by seven

equidistant ordinates, add into one sum the even ordinates

5 times the odd ordinates and the middle ordinate, and mul-
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3
tiply the result by =^

of the common distance of the ordi-

nates.

Ex. 1. The two radii which form a diameter of a circle are

bisected, and perpendicular ordinates are raised at the points
of bisection. Required the area of that portion of the circle

which is included between the two ordinates, the diameter,
and the curve, the radius being supposed equal to unity.

The values of the seven equidistant ordinates are

2
'

3
'

6
' '

6
'

3
'

2
'

and the common distance of the ordinates is ^. The area
b

hence computed to five places of decimals is '95661, which, on

comparison with the known value
-^
+ r- , will be found to

be correct to the last figure.

The rule for equidistant ordinates commonly employed
would give '95658.

In all these applications it is desirable to avoid extreme

differences among the ordinates. Applied to the quadrant
of a circle Mr Weddle's rule, though much more accurate

than the ordinary one, leads to a result which is correct only
to two places of decimals.

Should the function to be integrated become infinite at or

within the limits, an appropriate transformation will be

needed.

IT

Ex. 2. Required an approximate value of I log sin Odd.
Jo

The function log sin becomes infinite at the lower limit.

We have, on integrating by parts,

flog sin 0d0 = log sin -
J

cot 0d0t



50 ON INTERPOLATION, [CH. III.

hence, the integrated term vanishing at both limits,

P log sin 0d0 = -i0 cot 0d0.
J o J o

The values of the function cot being now calculated for

the successive values = 0, 0= 1 o> ^ ==
TO" ^ = o

l 16 L

the theorem being applied, we find

ir

-
1

2

cot 0d0= - 1-08873.
Jo

The true value of the definite integral is known to be

7T f\\
o l g o >

or -1-08882.

11. Lagrange's formula enables us to avoid the interme-

diate employment of differences, and to calculate directly the

coefficient of um in the general expression for I uxdx. If we

represent the equidistant ordinates, 2n -f 1 in number, by
w

0>
t*

1
...w

2n ,
and change the origin of the integrations by

assuming x n = y, we find ultimately

uxdx=A un+A l (un+l+un_l) +A 9 (un+9+un_2)... +A n fa^

where generally

Ar =
1 : 2...(n + f)~i.2...(n-r)

A similar formula may be established when the number of

equidistant ordinates is even.

12. The above method of finding an approximate value

for the area of a curve between given limits is due to Newton
and Cotes. It consists in expressing this area in terms of

observed values of equidistant ordinates in the form
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where A
Q> A^ ... are coefficients depending solely on the

number of ordinates observed, and thus calculable beforehand
and the same for all forms of ux. It is however by no
means necessary that the ordinates should be equidistant;

Lagrange's formula enables us to express the area in terms of

any n ordinates, and gives

f
J q

uxdx = Aaua + A bub + .... (25),

where A. =
c

dx (26).
J,(a-&)(a-c)...

v '

Now it is evident that the closeness of the approximation
depends, first, on the number of ordinates observed, and

secondly, on- the nature of the function ux . If, for instance,
ux be a rational integral function of a? of a degree not higher
than the (n l)

th
, the function is fully determined when n

ordinates are given, whether these be equidistant or not, and
the above formula gives the area exactly.

If this be not the case, it is evident that different sets of

observed ordinates will give different values for the area, the

difference between such values measuring the degree of the

approximation. Some of these will be nearer to the actual

value than others, but it would seem probable that a know-

ledge of the form of ux would be required to enable us to

choose the best system. But Gauss* has demonstrated that

we can, without any such knowledge, render our approxi-
mation accurate when ux is of a degree not higher than the

(2?i l)
th

if we choose rightly the position of the n observed

ordinates.

This amounts to doubling the degree of the approximation,
so that we can find accurately the area of the curve y ux
between the ordinates to x =p, x = q, by observing n properly
chosen ordinates, although u* be of the (2?t l)

th
degree.

The following proof of this most remarkable proposition
is substantially the same as that given by Jacobi (Crelle>

Vol. I. 301).

*
Werke, Vol. in. p. 203.
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fP

Let
|
uxdx be the integral whose value is required, where

J q

ns is a rational and integral function of the (2n l)
th

degree.
Let ua ,

w
ft
...be the n observed ordinates, and/ (x) the ex-

pression which they give for ux by substitution in Lagrange's
formula. Let

A(x-a) (*-ft) ... = M,

where A is a constant.

Since ux f(x) vanishes when # = a, 6,... it must be

equal to MN where N is rational, integral, and of the

(n l)
th

degree, and the error in the approximation is

I MNdxf
which we shall now shew can be made to vanish

by properly choosing M9
i.e. by properly choosing the ordi-

nates measured.

Now

= &c.

denoting by MK the result of integrating M K times, and by
N^ the result of differentiating N K times

;
and remembering

that N(n
~
l} is a constant.

Taking the above integrals between the given limits, we
see that the problem reduces to making Mr vanish at each
limit for all values of r from r = 1 to r = n.

This is at once accomplished by taking

' + &c. - (-

for it is thus a rational and integral function of x of the

n'u degree, such that all its first n integrals can be taken
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to vanish at the given limits. That this is the case is

seen at once when we consider that the parts independent
of the arbitrary constants will contain some power of

(
x p) (* ?) as a factor, and will thus vanish at both limits.

The coefficients Aa , A^...iu I f (x) dx will of course be

functions of p and q of the form given in (26). In order
to save the trouble of calculating them for all values of the
limits, it is usual to transform the integral, previously to

applying the above theorem, so as to make the limits 1 and
1. We then have

+
1 . 2 . 27i (2n- 1) (2n

-
2) (2n- 3)

and a, 6, c ... are the roots ofM= 0, which are known to be
real, since those of (x* l)

n = are all real.

13. We shall now proceed to demonstrate a most im-

portant formula for the mechanical quadrature of curves.
It was first given by Laplace*, and will be seen to be closely
allied to (18).

Since

+ -
, . . =

-g
=

|

___
AW =;T:

Integrate between limits 1 and 0, remembering that

*
Mteanique Ctleste, iv. 207.

t The coefficients of the powers of t in ^ -^
-. may be calculated either

directly, or by the method in Ex. 18 at the end of this Chapter.
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and we easily get, writing ux for

/i
tyfcc, ... and

i

adding, we obtain

(27),

since

This formula has the disadvantage of containing the dif-

ferences of un ,
which cannot be calculated from the values

w
, Wj ... un. We may remedy this in the following way:

A \
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Removing the first two terms from each side since they
are obviously equal, and writing un for Awn, we get

~
12

AM" + 21
AX-=-^ A M - 1 AV. - ...

and the formula becomes

(28).

In the above investigation we have in reality twice per-

formed the operation on both sides of an equation. We

shall see that Aux
= &vx only enables us to say ux vx + C

and not u, vt \ hence we should have added an arbitrary
constant. But the slightest consideration is sufficient to

shew that this constant will in each case be zero.

14. The problems of Interpolation and Mechanical Quadrature are of the

greatest practical importance, the formulas deduced therefrom being used
in all extended calculations in order to shorten the labour without affecting

greatly the accuracy of the result. This they are well capable of doing;
indeed Olivier maintains (Crclle, n. 252) that calculations proceeding by
Differences will probably give a closer approximation to the exact result

than corresponding ones that proceed by Differential Coefficients. In con-

sequence of this practical value many Interpolation-formulae have been
arrived at by mathematicians who have had to do with actual calculations,
each being particularly suited to some particular calculation. All the most
celebrated of these formula* will be found in the accompanying example?.
Examples of calculations based upon them can usually be found through
the references; the papers by Grunert (Archiv, xiv. 225 and xx. 361), which
contain a full inquiry into the subject, may also be consulted for this pur-

pose. Numerical examples of the application of several Interpolation-for.

multe may also be found in a paper by Hansen (RelationenzwischenSummenund
Differenzen, Abhandlungen der Ki'm. Sachs. Gesellschaft, 1865), in which also

he gives a very detailed inquiry into the various methods in use, with numerical
calculation of coefficients, We must warn the reader against the notation,
which is unscientific and wholly in defiance of convention, e.g. Ay,*.* and
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A*?/, are used to represent the Ay, and &*y9 -i of the ordinary notation.

A good paper on the subject by Encke (Berlin. Astron. Jahrbuch, 1830), from
which Ex. 7 is taken, labours under the same disadvantage ; and Stirling's

formula (Ex. 9) is seldom found stated in the correct notation.

In speaking of the developments which the theory has received we must
mention an important Mtmoire by Jacobi (Crelle, xxx. 127) on the Cauchy
Interpolation-formula of Art. 8. In it the author points out the advantages
that it possesses over others, and subjects it to a very full investigation,

representing the numerator and denominator in various forms as determi-

nants, and considering especially the case when two or more of the values

of the independent variable approach equality. A paper by Bosenhain
which follows immediately after it treats also of the above formula in repre-

senting the condition that two equations 0()=0 and/()=0 should have

a common root, in terms of the values of the expression
t~~ for different

values of x.

But the most important researches in the theory of Interpolation have had
reference to the Gauss-formula of Art. 12. Minding (Crelle, vi. 91) extends

it to the approximate evaluation of double integrals between constant limits.

Christoffel (Crelle , LV. 61) investigates the more general problem of deter-

mining the ordinates we should choose for observation when certain ordinates

are already given, so that the approximation may be as close as possible.
Mehler (Crelle, LXIII. 152) shews that a closely analogous method enables
us to calculate integrals of the form

/ 1-

with great accuracy, the position of the ordinates chosen being in this case

determined by the roots of the equation of the nth
degree

(1 -sJ-A (l + *)-M^ |(1
_*)fA (l +

*)+MJ
=0,

X and p being each > - 1.

Jacobi had previously examined the case in which X=^u= --; in other

words, he had shewn that in

the positions of the co-ordinates to be chosen after the analogy of the Gauss-
formula are given by the roots of

2m 4- 1
which is equivalent to cos (n cos-

1
x) = 0. Hence x= cos = a-.

An

In this case the coefficients A a , A b1 ... (see (26), page 51) are all equal,

each being - , and the formula becomes
n
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In most of the above papers the magnitude of the error caused by using
the approximate formula instead of the exact value of the function is

investigated.
The special importance of the method becomes evident when we con-

sider the close relation between it and the celebrated Laplace's functions.
This is seen by comparing the expression for the nth

Laplace's coefficient

of one variable,

"~2*|n- dx
'

with the value of M in Art. 12; and the similarity of the corresponding
expressions for two variables is equally great. In fact the Gauss-method may
be represented as follows :

Let uz be a rational integral function of the (2n
-

l)
th

degree, and Yn be the
nth

Laplace's coefficient. Divide ux by YnJ and let N be the quotient and

/ (x) the remainder which is of the (n - l)
th

degree. Thus ux=f (x) + Yn .N.
Integrate between the limits 1 and -

1, and since N is of a lower degree

f
1

f
1

than Fn ,
I YnNdx=Q, and we are left with I f(x)dx which is accurately

found by the Lagrange-formula from the n observed values of UK .

In consequence of this close connexion the method is of great import-
ance in the investigation of Laplace's Functions and of the kindred subject
of Hypergeometrical Series. Heine's Handbuch dcr Kugclfunctionen will

supply the reader with materials for discovering the exact relation in which

they stand to one another, or he may compare a paper by Bauer on Laplace's
functions (Crelle, LVI. 101) with that by Christoffel given above. For in-

stances of numerical calculation he may consult Bertrand (Int. Col. 330),

where, however, the limits 1 and are taken.

EXERCISES.

1. Required, an approximate value of log 212 from the

following data:

log 210 = 2-3222193, log 213 = 2*3283796,

log 211 = 2-3242825, log 214 = 2-3304138.

2. Find a rational and integral function of x of as low a

degree as possible that shall assume the values 3, 12, 15,

and 21, when x is equal to 3, 2, 1, and 1 respectively.

3. Express i
f
and v

3 approximately, in terms of V
Q , vlt v4 ,

and v
8 , both by Lagrange's formula and the method of (7),

Art. 4.
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4. The logarithms in Tables of n decimal places differ

5
from the true values by ..

nn+1
at most. Hence shew that

ths errors of logarithms of n places obtained from the Tables

by interpolating to first and second differences cannot exceed
1 1 9^ -f e and ~

n x - + e respectively, e 'and e' being the
1U 10 o

errors due exclusively to interpolation. (Smith's Prize.}

5. The values of a function of the time are a,, a
2 ,
a
g , a4 ,

at epochs separated by the common interval h\ the first dif-

ferences are dlt d'lt d'\ 9
the second differences are c

2 , d\, and
the third difference d

3
. Hence obtain the following formulae

of interpolation to third differences:

or
d' t^ da t*

t being reckoned in the first case from the epoch of a2 ,
and in

the second from that of aa .

6. If P, Q, R, S, ... be the values of X, an unknown
function of x, corresponding to x=p, q, r, s, ..., shew that

(under the same hypothesis as in the case of Lagrange's

formula),

where generally

-

r)7.~.

+
(j
-

"(s
-

7. Shew that, in the notation of the last question, if

f i
A'P

fo2.n*i = lT2T3-;
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and apply the theorem to demonstrate that

*(-!) (* + !) (*-!) (-8)+
1.2.3

AB
-i + 172.3.4

8. Shew that the function

t-g t-

becomes unity when t = a, and zero when =
&, c, ..., and

deduce Ex. 6 therefrom.

9. Demonstrate Stirling's Interpolation-formula

1.2.3.4
-2 "

(Smith's PrzX 1860.)

10. Deduce Newton's formula for Interpolation from

Lagrange's when the values are equidistant.

11. If
fju

radii vectores
(//, being an odd integer) be drawn

from the pole dividing the four right angles into equal

parts, shew that an approximate value of a radius vector (ue)
which makes an angle 6 with the initial line is

u. f

where a, 6, ... are the angles that the
ytt

radii vectores make
with the initial line.
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12. Assuming the formula for resolving

into Partial Fractions, deduce Lagrange's Interpolation-
formula.

13. If ^ (x)
= be a rational algebraical equation in x

of any order, and zv z^...zk be taken to represent (1),

<f> (2), ... (&), find under what conditions

, rr ... kr
may be taken as an approximate root of the equation.

14. Demonstrate Simpson's rule for finding an ap-

proximate value for the area of a curve, when an odd number
of equidistant ordinates are known, viz.: To four times the

sum of the even ordinates add twice the sum of the odd

ones; subtract the sum of the extreme ordinates and multiply
the result by one-third the common distance.

15*. Shew that Simpson's rule is tantamount to consider-

ing the curve between two consecutive odd ordinates as pa-
rabolic. Also, if we assume that the curve between each

ordinate is parabolic, and that it also passes through the

extremity of the next ordinate (the axes of the parabolae

being in all cases parallel to the axis of y), the area will be

given by

-^
16f. Given ux and UM , and their even distances, shew

that

* On the comparative merits of these and similar methods see Dupain
(Nouvelles Annales, xvn. 288).

t The notation in this formula (due to Gauss) is that referred to on the

top of page 56.
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17. Shew that

In what cases would the above formula) be especially
useful ?

18. Shew that the coefficient of A\ in (27) is equal to

and hence shew the exact relationship in which (27) and

(18) stand to each other.

19*. If from the values ua ,
ub ... of a function corre-

sponding to values a, 6, c ... of the variable, we obtain an

Interpolation-formula,

shew that

At^ C=J*B_ jA^
a ca a a

where A< (a, J, ...)
=

</> (6, c, ...)
-

< (a, 6, ...).

Deduce (2), page 35, from the above formula.

* Newton's Principia, Lemma v. Lib. in. This is the first attempt at

finding a general Interpolation-formula, and gives a complete solution of the

problem. The result is of course identically that obtained by Lagrange's

formula, though in a very different form.



CHAPTER IV.

FINITE INTEGRATION, AND THE SUMMATION OF SERIES.

1. THE term integration is here used to denote the process

by which, from a given proposed function of x, we determine

some other function of which the given function expresses the

difference.

Thus to integrate ux is to find a function vx such that

AV, = ux.

The operation of integration is therefore by definition the

inverse of the operation denoted by the symbol A. As such,
it may with perfect propriety be denoted by the inverse form
A"1

. It is usual however to employ for this purpose a distinct

symbol, 2, the origin of which, as well as of the term inte-

gration by which its office is denoted, it will be proper to

explain.

One of the most important applications of the Calculus

of Finite Differences is to the finite summation of series.

Now let u
,
uv uv ... represent successive terms of a series

whose general term is ux ,
and let

(1).

Then, a being constant so that ua remains the initial term,
we have

+ ux .
(2).

Hence, subtracting (1) from (2),

It appears from the last equation that A"1

applied to u9

expresses the sum of that portion of a series whose general
term is uxt which begins with a fixed term ua and ends with

account A"1 has been usually replaced by the
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symbol S, considered as indicating a summation or integra-
tion. At the same time the properties of the symbol 2,
and the mode of performing the operation which it denotes,

or, to speak with greater strictness, of answering that question
of which it is virtually an expression, are best deduced, and
are usually deduced, from its definition as the inverse of the

symbol A.

Now if we consider %ux as defined by the equation

(3),

it denotes a direct and always possible operation, but if we
consider it as defined by the equation

SU.-A-X (4),

and as having for its object the discovery of some finite ex-

pression v^y which satisfies the equation Avx
= u

:s ,
it is inter-

rogative rather than directive (Diff. Equat. p. 376, 1st ed.),

it sets before us an object of enquiry but does not prescribe

any mode of arriving at that object ;
nor does it give us the

assurance that there is but one answer to the question it

virtually propounds. A moment's consideration, indeed, will

assure us that the number of expressions that can claim to

be denoted by A"1^ is infinite, since it includes the quantity

whatever value a may be supposed to have, provided only
that it is one of the series of integral values which x is sup-

posed to take. We cannot therefore consider the definitions

of 2ux contained in (3) and (4) as identical, and shall there-

fore proceed to investigate the relation between them and

the restrictions as to the use of each.

It is obvious that the 2^ of (3) is one of the functions

represented by the A~~V, in (4), since it satisfies the equation

Ai^ = ux. But this is of no value to us unless we can recog-
nize to which of the functions represented by A~X in (4) it

is equal, or obtain an expression for it in terms of any one
nf thtim. This last we shall now r>roceed to do.
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Let (x) be a function such that A0 (x)
= ux.

= 2w.in (3).

Hence retaining for 2w the definition of (4) we should

write (3) thus :

(5).

Again suppose Swx to be defined by (3) and be equal to

(f) (a?),
and let the 2ux of (4) be given generally by </> (#) -f- wx ,

then ux = A {</> (a;) -f w*}
= A<

(a?) + Aw, = ux -f A^ ;

.'. Awz
= 0, or w, does not change when x is increased by

unity ;
hence it remains constant while x takes all the series

of values which it is permitted to take in any problem in

Finite Differences. Since then wx will remain unchanged,
so far as we shall have to do with it, we shall denote it by
C and regard it as a constant, and examine its true nature

later OIL (Art. 4, Ch. n.)

Hence regarding 3<ux as defined by (3) we should write

(4) thus :

A'X-Stt.+ C (6).

* Were it not that in so fundamental a theorem it is advisable to use only
such methods as are beyond all suspicion as to their rigour, we might have
arrived more easily at the same result symbolically, thus:

-
1) A-'ua= ('-- 1) 2ua , from (4)...(7),

= Zwa -Z fl (8),

which agrees with (5). But the method in the text IB preferable, since the

steps in (7) and (8) presuppose a rigorous examination into the nature of the

symbols A~
l and 2 before we can state the arithmetical equivalence of the

quantities with which we are dealing, i.e. some such investigation as that in

the text.



ART. 2,] AND THE SUMMATION OF SERIES. 65

We shall not dwell farther on this point, since the differ-

ence between the 2w* of (3) and that of (4) is precisely

analogous to that between the definite integral /

J a

and the indefinite integral I
<f> (x) dx, and the precautions

necessary to be taken in using them are identical with those

to which we are accustomed in the Integral Calculus. In
fact we adopt a notation for definite Finite Integrals stri-

kingly similar to that for Definite Integrals in the Infi-

nitesimal Calculus, writing the *S,ux of (3) in the form

Integrable Forms.

2. As in Integral Calculus, we shall be able to obtain

finite expressions for the integrals of but few forms, and must
be content to express the integrals of others in the form of

infinite series. Of such Integrable forms the following are

the most important, as being of frequent recurrence and re-

ducible under general laws.

1st Form. Factorial expressions of the form

x (x 1) ... (x ra + 1) or x(m]

in the notation of Ch. n. Art. 2.

We have

or ^(^-.^...(^--m +^^- + C (1).

Taking this between limits x = n and x = ra, (n > ra),

we get

n (n 1) . ..(nm)
m+l

*
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Or we may retain C and determine it subsequently, thus

...+(/i--m)...(rz-2)(ri--l)

_ n(n-l) ...(n-m) ^
m

Put n m + 1 and the series on the left-hand side reduces

to its first term, and we obtain

Thus also if ux = aa? + 6, we have

^^-*^Fir + (2).

Ex. 1. Sum the series

3.5.7 + 5.7.9+ ... tow terms.

Here a = 2, 6 = 5, m=3, and since we have to -find the

sum of n terms we must change n into n + 1 in the last

formula, and we obtain

But n = 1 gives us

3 5 7 _
9 *7x5 x 3

c t G==_]M t

4.2 >
-g->

.'..3.5.7 + 5.7.9+ ... to n terms

(2yi + 7) ^2n + 5) (2?l + 3) (2n + 1 ) 125
8 8

'

2nd Form. Factorial expressions of the form

1
-TT or a?

(
~
m)

.
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We have by Ch. n. Art. 2,

So also if ux = ax + 6, we have

A_*

uxux+l ...

.-. 2 = (7-
uxux+l

... ux+m

or, writing ra 1 for m,

2 = (7 -.

T (5).uxux+l . . . um^,l
a (m - 1) fi,uw . . . ?^ fm_2

'

It will be observed that there must be at least two factors

in the denominator of the expression to be integrated. No

finite expression exists for 2 . .r ax + b

Ex. 2. Find the sum of n terms of the series

1 1

We have here a=3, b = 2, ra = 3.

.'. Sum of (n 1) terms

1 1

3x2xun .uM

6(3n-2)(3n+l)'

Put n= 2 and we obtain

_J o--1
-; .-.0-1.
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Hence (writing n forn 1 and therefore n + 1 for n)

Sum of n terms -5 -
6(8|| + 1){Sj| + ^.

As all that is known of the integration of rational functions

is virtually contained in the two primary theorems of (2) and

(5), it is desirable to express these in the simplest form*.

Supposing then ux =ax + 6, let

then

+C (6).

whether m be positive or negative. The analogy of this result

with the theorem

is obvious.

We shall now shew how to reduce other forms to one of

the preceding.

3rd Form. Rational and integral functions.

As most of the summations of series whose n* term is a rational

function of n will have to be effected by these methods, and as such sum-
mations are of very frequent occurrence, it is still more important to have a

readily applicable rule for effecting them. The following is perhaps the most
convenient form for finding the sum of n terms of such series :

" Write down the nth term with its factors in ascending order of mag-

nitude. ] i i. f * 4. 4.1* v*
*

f divide by the number of

factors now remaining, and by the coefficient of x (in each factor), and

It is scarcely necessary to add that the upper line in the brackets must be
taken when the terms are of the form c w^... w,-m+i and the lower when

of the form
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By Ch. II. Art. 5

1.2
" T " x '

Let
<f> (a?)

= Sv, and put for (0),

and the number of terms will be finite if vm be rational and

integral.

The series in (6) comes from the equivalence of the opera-
tions denoted by the symbols E* and (1 + A)*. In like

manner we may obtain a cognate expression from the

equivalence of E~x and (1 -f A)~*. This gives us, when we

perform them on
<f> (x),

Putting as before 0(#)
= 2v* and C for 0(0), and trans-

posing, we get

.- , ... .

In applying the above to the summation of series we may
avoid the use of an undetermined constant and render the

demonstration more direct by proceeding as follows :

*.That the constants in (7) and (8) are the same appears evident when we
consider that (8) may be obtained from (7) by mere algebraical transforma-
tion. The series-portions are in fact the results of performing the equivalent

direct operations

"
and on ..
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Here all the operations performed on va are direct, and the

result is given in differences of the first term.

Ex. 3. To find the sum of x terms of the series I
2
-}- 2

2
-f . . .

Applying* (7) we have (since Av =
l, A2

v = 2)

Putting x = 2 we see that C is zero, and adding x* to both
sides we obtain

6

Ex. 4. Find the sum of n terms of the series whose 71
th term

is n3
4- 7n.

We shall here apply formula (9).

The first terms are 8 22 48 92 ......

differences 14 26 44 .........

second 12 18 .............

third 6 ................

. . sum of n terms = 8n 4- 14
J. 2

4th Form. Any rational fraction of the form

* In practice it will be found better to resolve the 71
th term into factorials

and apply the rule given in the note to page 68.
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ux being of the form ax + 6, and (x) a rational and integral
function of a? of a degree lower by at least two unities than
the degree of the denominator.

Expressing ^ (x) in the form

A, B ... being constants to be determined by equating coeffi-

cients, or by an obvious extension of the theorem of Chap. 11.

Art. 5, we find

+

+ ...+.E2-
\

and each term can now be integrated by (5).

Again, supposing the numerator of a rational fraction to be
of a degree less by at least two unities than the denominator,
but intermediate factors alone to be wanting in the latter to

give to it the factorial character above described, then, these

factors being supplied to both numerator and denominator,
the fraction may be integrated as in the last case.

Ex. 5. Thus ux still representing ax+ 6, we should have

^r X v- XUf,*

with the second member of which we must proceed as before.

Ex. 6. Find the sum of n terms of the series

_*_+_!- +
1.3.4! 2.4. 5^""

Here the 7i
tb term

n + l
"

n (n + 2) (n + 3) n (n + 1) (n + Z) (n + 3)
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The sum of n. terms therefore, by the rule on page 68,

________
n + 3 2(w + 2)(w + 3) 3 (n+ 1) (n + 2) ( + 3)

17
and (7 can easily be shewn to equal ^ .

oO

We thus can find the sum of n terms of any series whose
nth term is

<j> (n\ provided that (n) be either (1) a rational

integral function of n, or (2) a fraction whose denominator
is the product of terms of an arithmetical series that re-

main a constant distance from the ntt
term, and whose

numerator is of a degree lower by at least two than its

denominator*.

5th Form. Functions of the form a* or a*$(x) where

$ (x) is rational and integral.

* Since
<J> (n) 6^=0 (D) e* we may write

and the series may therefore be summed by the methods of Differential Cal-
cuius or Differential Equations according as <j> (n) is an integral function of n
or not. That the result thus obtained is identical with that in the text
follows from the identity demonstrated in (16) page 23, viz.

For this gives

which agrees with the previous expression.
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From (13) page 8, we obtain at once 2a* = -----=-. For
CL A

the integration of a*^>(x) we shall have recourse to sym-
bolical methods.

a" {a (1 + A)
-

to which of course an arbitrary constant must be added.

It will be found that the direct application of this theorem^
is the simplest method of summing such series as have their

Xth term of the form a*. <j>(x).

*
By means of the well-known formula /(/>)e" 0(z)= e"*/(D + ro) (x).

The proof of this formula is given in Boole's Dijf. Eq. (First Ed., p. 385),
and in many other books.

t The demonstration of (10) can be still farther simplified by quoting the

theorem,

This may be deduced from the formula above quoted, but is more readily
demonstrated independently, since if AnEn be one term of the expansion

off(E) in powers of E we have

An En ax<f>(x)=Ana
x+n

<f> (x + n) =a* . An a* E 0(a>)=a

summing all such terms we get

f(E)a*<t>(x)=a*f(aE)<t>(x),

and the demonstration of (10) runs thus,

A-1 ax (x)
= (E - 1)-

1
a*0 (x)

= a*(aE
-
1)-

1
(x)
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Ex. 7. Find the sum of the series

Sum to n terms

(7.

The method just given may be generalized to apply to all

functions of the form ux ,^(x)^ where <(#) is rational and
integral, and u

x is a function such that we know the value
of A~n

,.
for all integral values of n. In this case we have

(comp. Ex. 3, p. 20)

2w.$(aO = (EE' - l)-X0(a>) = (A#' + AT^a)
(E

1

and A' being supposed to operate on
<f>
and E and A on

ux alone)

1
f A' A'2

A2

<(#-3)-... (11),

dropping the accents as no longer necessary.

Ex. 8. A good example of the use of the above formula is

got by taking us = sin (ax 4- 6), From (17), page 8, we get
easily

.

sin

Let us take then the series whose wth term is

(n 7) sin (an + J) ;
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the sum of n terms will be

(n
-

7) sin (an -f 6) +2 (n
-

7) sin (an + b)

= (n
-

7) sin (an -f 6) + (n
-

8) .
-

2sin^

sin {an + b - (a 4- *)} . ^~
, rtS a T

6th. Miscellaneous Forms. When a function proposed for

integration cannot bo referred to any of the preceding forms,

it will be proper to divine if possible the/orm of its integral
from general knowledge of the effect of the operation A, and
to determine the constants by comparing the difference of the

conjectured integral with the function proposed.

Thus since

where ty(x)
=

a<f> (x + 1) </> (a), it is evident that if <f>(x) be

a rational fraction -<fr(x) will also be such. Hence if we had

to integrate a function of the form a*^r(a?), ^(#) being a ra-

tional fraction, it would be proper to try first the hypothesis
that the integral was of the form a

x
<j)(x) ) <j>(x) being a ra-

tional fraction the constitution of which would be suggested

by that of

Thus also, since Asin"ty(a:), A tan'ty (a;), &o., are of the

respective forms sin'1^ (#), tan"1

^^), &c., ^(#) being an

algebraic function when <f>(x)
is such, and, in the case of

tan~
1

<^(o;), rational if <f>(x) be so, it is usually not difficult to

conjecture what must be the forms, if finite forms exist, of

2 sin-Sjr(rc), 2 tan"ty(a?) f ...,

\fr(os) being still supposed algebraic.

The above observations may be generalized. The opera-
tion denoted by A does not change or annul the functional
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characteristics of the subject to which it is applied. It does

not convert transcendental into algebraic functions, or one

species of transcendental functions into another. And thus,

in the inverse procedure of integration, the limits of conjec-
ture are narrowed. In the above respect the operation A is

unlike that of differentiation, which involves essentially a

procedure to the limit, and in the limit new forms arise.

Instances of the above will be given in the Examples at

the end of the chapter, but we subjoin the following by way
of illustration.

Ex. 9. To sum, when possible, the series

278 874 475

n* x*
The wth

term, represented by un , being /
4. iff

we have

nV

Now remembering that the summation has reference to
,

assume

v n*x*

(n + 2)

Then, taking the difference, we have

_ ( a(n-fl)+6 an-fi)
:

r
~^

z"t ZTI
(n +!)

That these expressions may agree we must have

a(*-l) = l, (2a + 6)(a;~l) = 0, (a + b)x-2b = 0.

Whence we find

l 2
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The proposed series is therefore integrable if x = 4*, and
we have

*

C_ _
(n+l)(n+2) 3'n-hl

Substituting, determining the constant, and reducing, there

results

1.4 2'.4a " n 4 *-l 2

3. 2 is of course, like A, E, and D, an operation capable
of repetition and therefore obeying the index-law

; 2Vp being
defined as 2 (2wx). Our symbolical methods will render it an

easy matter to obtain expressions for 2n
(or A~

n
) analogous

to those already obtained for 2, but we shall have to add, as

in Integral Calculus, a function of the form

(where <7
,
C

lt
... are arbitrary or undetermined constants) in-

stead of the single arbitrary constant which we added in the

previous instance. We shall merely give the formula for 2n

analogous to (10) and leave the others as an exercise for the

ingenuity of the student. It is

The explanation of Ibis peculiarity is very easy :

4 1

(12).

and the summation of the above series would require a finite expression for

S if oc had not such a value that the term ^ which occurs in the
n r+

(r+ l)th term exactly cancelled the term -
^

that occurs in the r^ term,

i.e. unless* =--4.
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It will be found that the 1
st

, 3rd
,
and 5 th forms can have

their nih Finite Integrals expressed in finite terms, but that

the 2nd and 4th

only permit of this if n be not too great.

Conditions of extension of direct to inverse forms. Nature

of the arbitrary constants.

4. From the symbolical expression of 2 in the forms

(e
n

I"1

), and more generally of 2n in the form (e
7'

!)"
11

,

flow certain theorems which may be regarded as extensions

of some of the results of Chap. n. To comprehend the true

nature of these extensions the peculiar interrogative character
d

of the expression (e
u

l)""^ must be borne in mind. Any
legitimate transformation of this expression by the develop-
ment of the symbolical factor must be considered, in so far

as it consists of direct forms, to be an answer to the question
which that expression proposes; in so far as it consists of

inverse forms to be a replacing of that question by others.

But the answers will not be of necessity sufficiently general,
and the substituted questions if answered in a perfectly un-

restricted manner may lead to results which are too general.
In the one case we must introduce arbitrary constants, in the

other case we must determine the connecting relations among
arbitrary constants ;

in both cases falling back upon our prior

knowledge of what the character of the true solution must be.

Two examples will suffice for illustration.

Ex. 1. Let us endeavour to deduce symbolically the ex-

pression for 2%, given in (3), Art. 1.

Now 2tt,
= (J0-l)"X
=

(
JST

1 + E~* + &c.) ux

Now this is only a particular form of 2^ corresponding
to a = oo in (3). To deduce the general form we must
add an arbitrary constant, and if to that constant we assign
the value

we obtain the result in question.
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Ex. 2. Let it be required to develope %uxvx in a series

proceeding according to 2^, 2V,, ....

We have by (11), page 74,

2w,v, = u^ 2v. - A^_2 2V, + AX-s 2V,

In applying this theorem, we are not permitted to introduce
unconnected arbitrary constants into its successive terms. If

we perform on both sides the operation A, we shall find that
the equation will be identically satisfied provided A2*X in

any term is equal to S"'
1^ in the preceding term, and this

imposes the condition that the constants in 2""
J

M, be retained

without change in 2*X.. And as, if this be done, the equa-
tion will -be satisfied, it follows that however many those

constants may be, they will effectively be reduced to one.

Hence then we may infer that if we express the theorem in

the form

Sty;. = C + u^ 2v.
- Au^l 2V, + AX-2 2VX .(1),

we shall be permitted to neglect the constants of integration,

provided that we always deduce 2w
tk by direct integration

from the value of 2w~ 1
va. in the preceding term.

If ux be rational and integral, the series will be finite, and
the constant C will be the one which is due to the last inte-

gration effected.

We have seen that C is a constant as far as A is con-

cerned, i.e. that AGy = 0. It is therefore a periodical con-

stant going through all its values during the time that x
takes to increase by unity. The necessity of a periodical
constant G to complete the value of 2ux may also be esta-

blished, and its analytical expression determined, by trans-

forming the problem of summation into that of the solution

of a differential equation.

Let 2tt,
=

y, then y is solely conditioned by the equation

Ay=t4, or, putting e** 1 for A, by the linear differential

equation
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Now, by the theory of linear differential equations, the

complete value of y will be obtained by adding to any par-
ticular value vx the complete value of what y would be, were
ux equal to 0. Hence

2^ = v* + Cjf* + Cj->*+ . . . , (2),

(7,,
(7

2 ,
... being arbitrary constants, and m

lt
ra

a ,
... the

different roots of the equation

Now all these roots are included in the form

m= 2tVV^l
>

i being or a positive integer. When i= we have m= 0,

and the corresponding term in (2) reduces to a constant. But
when i is a positive integer, we have in the second member
of (2) a pair of terms of the form

which, on making C+C' = A t , (CC') V-l = ^<> is re-

ducible to A i cos 2i7r + jB
4
sin 2i7T. Hence, giving to i all

possible integral values,

2wx
= vx 4- C + -4j cos 27r# + -4, cos 4nrx + A a

cos

-I- J?
t
sin ZTTX 4- ^B

2
sin kirx -f- jB

3
sin CTTOJ -f . . . .(3).

The portion of the right-hand member of this equation
which follows vx is the general analytical expression of a

periodical constant as above defined, viz. as ever resuming
the same value for values of #, whether integral or fractional,

which differ by unity. It must be observed that when we
have to do, as indeed usually happens, with only a particular
set of values of x progressing by unity, and not with all

possible sets, the periodical constant merges into an ordinary,
i.e. into an absolute constant. Thus, if x be exclusively

integral, (3) becomes

c being an absolute constant.
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It is usual to express periodical constants of equations of

differences in the form
<j> (cos 2 THE, sin ZTTX). But this nota-

tion is not only inaccurate, but very likely to mislead. It

seems better either to employ (7, leaving the interpretation
to the general knowledge of the student, or to adopt the

correct form

A, cos ZITTX + Bt
sin 2tV<c) (4).

We shall usually do the former.

5. The student will doubtless already have perceived how much the branch
of mathematics that forms the subject of our present consideration suffers

from its not possessing a clear and independent set of technical terms. It is

true that by its borrowing terms from the Infinitesimal Calculus to supply
this want, we- arc continually reminded of the strong analogies that exist

between the two, but in scientific language accuracy is of more value than
suggestiveness, and the closeness of the affinity of the analogous processes
is by no means such that it is profitable to denote them by the same terms.
The shortcomings of the nomenclature of the subject will be felt at once if

one thinks of the phrases which describe the operations analogous to the
three chief operations in the Infinitesimal Calculus, i.e. Differentiation,

Integration, and Integration between limits. There is no reason why the

present state of confusion should be permanent, so that we shall in future

(in the notes at least) denote these by the unambiguous phrases, performinu A,

taking the Difference-Integral (or performing 2), and summing', and bhall

name the two divisions of the calculus, the Difference- and the Sum-Galculni

respectively, and consider them as together forming the Finite Calcnlu-*.

The preceding chapters have been occupied with the Difference-Calculus

exclusively the present is the first in which we have approached problems
analogous to those of the Integral Calculus; for it must be borne in mind
that such problems as those on Quadratures are merely instances of use

being made of the results of the Difference-Calculus, and have nothing to do
with the Sum-Calculus, except perhaps in the case of the formula on page 5.>.

Enough has been said about the analogy of the various parts of our earlier

chapters with corresponding portions of the Differential Calculus, and we
shall here speak only of the exact nature and relations of the Sum-Calculus.

If the nth term of a series be known, and its sum be required, it is tanta-

mount to seeking the difference-integral, and our power of finding the

difference-integral is coextensive with our power of finding the sum of any
number of terms. Hence the summation of all series, whose sum to n terms
can be obtained, is the work of the Sum-Calculus. It is true that there arc

many series, that can be summed by an artifice, of which we have taken no

notice, but that is not because they do not belong to our subject, but because

they are too isolated to be important. But it must be remembered that the

difference-integral is only obtainable when we can find the sum of any
number of consecutive terms we may wish.

But there are many cases in which we seek the sum of n terms of a

series which is such that each term, of the series inrolve* n, e.g. we might
desire the sum of the series 1 . n + 2 . (H-!) + 3 . (n-2)+ ... to n terms.

Now in a certain sense this is not a case of summation ; we do not seek the
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sum of any number of terms, but of a particular number of terms depending
on the first term of the series itself. And, as might be expected, this opera-
tion has not the close connexion that we previously found with that of

finding the difference-integral of any term ;
for though the knowledge of the

latter would enable us to sum the series, yet the knowledge of the sum of the
series will not enable us to find the difference-integral of any term. These
must be called definite difference-integrals, and hold exactly the same posi-
tion that Definite Integrals occupy in the Infinitesimal Calculus. No one
would think of excluding from tho domain of Integral Calculus the treatment

of such functions as the definite integral /
of (a x)

m
dx, because the know-

'o

ledge of its value does not give us any clue to that of the indefinite integral

Jd(a-x)
m
dx, and is obtained indirectly without its being made to depend

on our first arriving at the knowledge of the latter.

By similar considerations we shall arrive at a right view of the relation

of infinite series to tho Sum-Calculus. It is often supposed that it has

nothing to do with such series that the summation of finite series is its

business, and that this is wholly distinct from the summation of infinite

series. This is by no means correct. Tho true statement is that such scries

are definite difference-integrals, whose upper limit is oo
,
and so far they as

much belong to our subject as / c-x*dx does to the Infinitesimal Calculus,
'o

How is it then that the whole subject of scries is not referred to this

Calculus, but is separated into innumerable portions, and treated of in all

imaginable connexions' It is that in the exj)ression of such series as those
we are speaking of, reference being only made to finite quantities, there is

nothing to distinguish them from ordinary algebraical expression*, except that

the symmetry is so great that only a few terms need be written down. Hence
when it is summed by an artifice, and not by direct use of the laws of the

Sum-Calculus, there is nothing to distinguish the process from an ordinary
algebraical transformation or demonstration of tho identity of two different

expressions. Now in Definite Integrals that are similarly evaluated by an

artifice, there is perhaps just as littlo claim for tho evaluation to be classed

as a process belonging to the Infinitesimal Calculus, but the expression of the

subject of that process involving the notation and fundamental ideas of the

Calculus, it is naturally classed along with processes that really belong to

the Calculus. Thus the Infinitesimal Calculus has a wide field to which no

recognized branch of the Finite Calculus corresponds, not because it does
not exist, but because it is not reserved for treatment here. No doubt this

has its disadvantages. Series would be more systematically treated, and tho

processes of summation more fully generalized, if they were dealt with collec-

tively ; yet on the other hand it is a great advantage in the Finite Calculus

to have to do only with such processes as really depend on its laws, and not
with processes that are really foreign to it, and are only connected therewith

by the fact that their subject-matter in these particular instances is expressed
in the form of a series, i.e. in the notation of the Calculus.

It is not usual to speak of such identities as Definite Difference-Integrals,
but a certain class of them arc considered in this light in a paper by Libii

(CreUe, xn. 240).

Before leaving the subject of Definite Difference-Integrals we must men-
tion a paper by Leslie Ellis (Liouvillet

iz. 422), in which he demonstrates a
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theorem analogous to the well-known one on the value of

ffff...f(*+y+...)dxdydz...,

where x+ 3/4- z -f ...5 1. The method is a very beautiful one, but we must
not be supposed to endorse it as rigorous, since one part involves the

00

evaluation of 2 x(*> cos ax.
o

The fundamental operations of the Finite Calculus are taken as A with its

correlative 2. In this view of the subject the sign of each term is supposed
to be + ,

not that its algebraical value is supposed to be positive, but that its

sign must bo accounted for by its form. Thus if we take the series

UQ-UI + US- ..., wo must call the general term
(
-

l)
xux. To avoid this com-

plication in the treatment of series whose terms are alternately positive
and negative, some have wished to have a second Calculus whose fundamental

operation is f ~l +E t
the correlative of which, f"1

, would of course denote
the opcratio'n of summing such a series. A series of papers by Oettinger, the
inventor of it, will be found in Crelle, Vols. xi. xvi. In these he developes
the new Calculus in a manner strictly analogous to that in which he subse-

quently treats the Difference-Calculus, connects them similarly with the
Infinitesimal Calculus, demonstrates analogous formulae, and applies them at

first to simple cases and then to more complex ones, especially to those
series whose terms are products of the more simple functions and those most
suitable to such treatment. The work is unsymbolical, and therefore clumsy
and tedious compared with more recent work, and we should not have
referred to tho papers here (for we consider it highly unadvisable to invent a
new Calculus for a comparatively unimportant class of questions that can

very easily be dealt with by our present methods) were it not that his results

are very copious and detailed. The student who desires practice in the

symbolical methods cannot do better than take one of these papers and

employ himself in demonstrating by such methods the results there given.
Should ho desire however a statement of the nature and advantages of this

more elaborate treatment of series, he will find it in a review by Oettinger.

(Grunert, Archiv. xiu. 36.)

This is not the only attempt to introduce a new Finite-Calculus. A
certain class of series is treated in a paper by Werner (Grunert, Archiv.

xxn. 264), by means of a calculus whose fundamental operation, A^E vv is

almost the most general form of linear fundamental operation that can be

imagined.

EXERCISES.

1. Sum to n terms the following series :

1.3. 5. 7 + 3. 5. 7.9 + ...

1
. L_ +

1.3.5.7 3.5.7.9
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1.3. 5. 10 + 3. 5. 7. 12 + 5. 7. 9. 14+...

10
,

12
,

14
,

i f\ & rr ' e fT f\ '

1.3.5^3.5.7 5.7.9

1 . 8 . 5 . cos + 3 . 5 . 7 . cos 20 + 5 . 7 . 9 . cos 30 + . . .

1 + 2a cos + 3aJ
cos 20 4- 4a

8
cos 30 + ...

2. The successive orders of figurate numbers are defined

by this
;

that the #th term of any order is equal to the

sum of the first x terms of the order next preceding, while

the terms of the first order are each equal to unity. Shew
that the x* term of the nth order is

3. If 2' ux denote the sum of the first n terms of the

series w
,
u

2 ,
u

4 ,
&c. shew that

and apply this to find the sum of the series

5.7.9 + 9.11.13+....

4. Expand 2< (#) cos ?n:c in a series of differences of

<t> (*)

5. Find in what cases, when iix is one of the five forms

given as integrable in the present Chapter, we can find the

sum of n terms of the series

t

and construct the suitable formulas in each case.

G. Sum the following series to n terms :

V l l

sin0 sin20 sin40
n

1
.

1

cos . cos 20 cos 20 . cos 30
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7. Shew that cot"
1

(p -f qn 4- rn
2

)
is integrable in finite

terms whenever

9
2 -r2

Obtain

v* -i , V , -
2 tan * -

? rr-o , and S &
on
-

, and 5 ,

I+n(nI)ar 2 7i(

8. It is always possible to assign such values to s, real or

imaginary, that the function

(a -I- @x + <yx* + ... -f- vx") s*

shall be integrable in finite terms
; a, & v being any con-

stants and ux = oa?+ b.

(Herschel's Examples of Finite Differences, p. 47.)

9. Shew that

U
Q + W.COS20 + W-COS404- ... =^- A

U
\a01 2 2 4 sin v

. .--,98 sin 9 16 sm a 32 sin

10. If A^ = ux+h w^ and \ = -5 =
, shew that

"~*

= a"" {(a*
-

1) SaX + X

Find the sum of n terms of the series whose nth terms are

(a+ n _ i)art and (a + n - 1)
1
"1^^1

.

11. Prove the theorem

12. If (f>(x)
= v

l>
+ v

l
x + vj?+ ....shewthat

&c. = u
a<f>(x)
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and if
<f>(x)

= v + v
t
x + v

a
ce

(2) + ..., then

xc

(Guderman, CVe/fo, vn. 306.)

13. Sum to infinity the series

14. If ^(/t) = v 4- v^ + v
2
aj

2
-f . . . , shew that

...J,

where a is an 71
th
root of unity.

15. If l
tt

-I- 2" + ... +mn = 8n and m(m + 1) =jp, shew that

8n =p*f(p) or (2m + l)pf(p), according as n is odd or even.

(Nouvelks Annales, x. 199.)



CHAPTER V.

THE APPROXIMATE SUMMATION OF SERIES.

1. IT has been seen that the finite summation of series

depends upon our ability to express in finite algebraical terms
the result of the operation S performed upon the general term
of the series. When such finite expression is beyond our

powers, theorems of approximation must be employed. And
the constitution of the symbol S as expressed by the equation

renders the deduction and the application of such theorems

easy.

Speaking generally these theorems are dependent upon the

development of the symbol 2 in ascending powers of D.

But another method, also of great use, is one in which we

expand in terms of the successive differences of some im-

portant factor of the general term, i. e. in ascending powers of

A, where A is considered as operating on one factor alone of

the general term, and is no longer the inverse of the S we are

trying to perform*.

* Let us compare these methods of procedure with those adopted in the

Integral Calculus. If C<f> (x) dx cannot be obtained in finite terms it is usual

either

(1) To expand (x) in a series proceeding by powers of x and to integrate
each term separately ;

(2) To develops\t$ (x) dx by Bernoulli's Theorem (i.e. by repeated inte-

gration by parts) in a series proceeding by successive differential coefficients

of some factor of the general term; or
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As our results are no longer exact it becomes a matter of
the greatest importance to determine how far they differ from
the exact results, or, in other words, the degree of approxima-
tion attained. But this is usually a difficult task, and in
order to lessen the difficulty of the subject to the student, we
shall separate such investigations from those which first give
us the expansions. The order in which we shall treat the

subject will therefore be as follows :

I. We shall obtain symbolical expansions for 2, S2

,
....

(Chapters V. and vi.)

II. We shall examine the general question of Convergency
and Divergency of Series, to ascertain if we may assume the
arithmetical equivalence of the results of performing on u

v
the operations that we have just found to be symbolically
equivalent. (Ch. vii.)

III. Finding that many of our results do not stand the test

we shall proceed to find the exact theorems corresponding to

them, ie. to find expressions for the remainder after n terms,
and thus we shall reestablish the approxiraateness of these
results. (Ch. VIII.)

(3) To
developoy

<p (x) dx in a series proceeding by successive differences

<\f <f>x by aid of Laplace's formula for Mechanical Quadrature [(27) page 54],
which may be written thus :

~-<
(2).

\Ve should therefore expect to find in the Sum-Calculus the corresponding
methods, viz. :

(1) To expand ux in a series proceeding by factorials, and to sum eacli
term separately ;

(2) To develope *2ux in a series proceeding by successive differences of
some factor of the general term ;

(3) To develope 2wz in a series proceeding by successive differential co-
efficients of ux.

Of these (3) and (2) are those mentioned in the text
; (1) is not of much

use since the cases in which it can be applied are very few, and no theorems
of great generality have been found to enable us to obtain the expansion
necessary. Besides the resulting series will usually be highly divergent
unless the factorials are inverse ones, i. e. have negative indices, so that the
results will not be suitable for giving the approximate values we seek. We
nhall, however, give some account later on of the results that have been
obtained by this method.
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We shall now commence the first of these divisions.

2. PROP. I. To develops %ux in a series proceeding by
the differential coefficients of u^

d

Since ^ux
=

(e
d*

l)"
1

^, we must expand (e^ l)~
l

in

ascending powers of -j- ,
and the form of the expansion will

be determined by that of the function (e' I)'
1

. For sim-

plicity we will first deduce a few terms of the expansion and

examine somewhat its general form, leaving fuller investiga-
tions to the next Chapter.

The function (e* I)"
1
is not at once suitable for expansion

by Maclaurin's Theorem, since it contains a negative power

of t
;
we shall therefore expand t

either by Maclaurin's

Theorem or by actual division and divide the result by t,

t t

f /
8

/*

4. _:____
2
+

12 720

The term - may be shewn to be the only term in the
JU

expansion involving an odd power of t. For

t t t e'+l

which does not change when t is changed into t, and
therefore can contain, on expansion, even powers of t alone.

From these results we may conclude that the development
of (e* I)"

1
will assume the form
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It is however customary to express this development in the

somewhat more arbitrary form

The quantities Bl9
B

3t
.. are called Bernoulli's numbers,

and will form the subject of the major part of the next

Chapter.

Hence we find

ux Bt d*ux ,a .

*-^ ^-+ ... (6).

Or, actually calculating a few of the coefficients,

* 1 ^X-
720 ^

i dx ,
7x*

^30240 <fo
5 ^ } '

The following table contains the values of the first ten of

Bernoulli's numbers,

/?=- 7?= R JL P _L 7? A
1 6

' 3 30
' 5

""
42

J 7
"
30

' 9 66
'

* Attention has been directed (Differential Equdtions, p. 376) to the in-

terrogative character of inverse forms such as

The object of a theorem of transformation like the above is, strictly speak-

ing, to determine a function of x such that if we perform upon it the cor-
d

responding direct operation (in the above case this is e** - 1) the result will

be ux . To the inquiry what that function is, a legitimate transformation
will necessarily give a correct but not necessarily the most general answer.
Thus C in the second member of (6) is, from the mode of its introduction,

the constant of ordinary integration ; but for the most general expression
of 2wx C ought to be a periodical quantity, subject only to the condition

of resuming the same value for values of x differing by unity. In the

applications to which we shall proceed the values of x involved will be

integral, so that it will suffice to regard C as a simple constant. Still it

is important that the true relation of the two members of the equation (0)

should be understood.
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R - 691
7? Jl H

11
~
2730* 13 ~6' 15

_43867 ,, _ 1222277
17
"

798
' 19

~~

2310 ( '*

It will be noted that they are ultimately divergent. It

will seldom however be necessary to carry the series for 2ux

further than is done in (7), and it will be shewn that the

employment of its convergent portion is Sufficient.

Applications.

3. The general expression for %ux in (7), Art. 2, gives us

at once the integral of any rational and entire function of x.

Ex. 1. Thus making ux
= #4

,
we have

More generally, making ux = xn we get

which at once enables us to connect Bernoulli's numbers
with the coefficients of the powers of x in the expression for

l
n
-f 2

M

But the theorem is of chief importance when finite sum-
mation is impossible.

Ex. 2. Thus making ux = a , we have
27
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The value of C must be determined by the particular con-
ditions of the problem. Thus suppose it required to determine
an approximate value of the series

1+1+1+ i

l
f^2*^3** "(*-!)

Now by what precedes,

7T
2

Let x = oo
, then the first member is equal to

ft

- by a known

theorem, while the second member reduces to C. Hence

_--____ __
i

*"^(a?-l)
1 6 2x2

GaP
+

aOaf
'"

and if x be large a few terms of the series in the second
member will suffice.

4. When the sum of the series ad inf. is unknown, or is

known to be infinite, we may approximately determine C by
giving to x some value which will enable us to compare the

expression for ^ux> in which the constant is involved, with the
actual value of %u,9 obtained from the given series by addition
of its terms.

Ex. 3. Let the given series be 1 + ^ + - ... + -
.40 X

Representing this series by u
x ,
we have

X
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To determine (7, assume x = 10, then

2 3'" 16
' ^~12M 12000

Hence, writing for log, 10 its value 2*302585, we have

approximately C= '577215. Therefore

Ex. 4. Required an approximate value for 1 . 2 . 3 ... x.

If ux
= 1 . 2 . 3 ... x, we have

log ux
=

log 1 + log 2 + log 3 . . . + log x

=
log x + S log x.

But 2j loga;
= (7+ I logxdx ~ log a;

172734

... (9).

To determine (7, suppose x very large and tending to

become infinite, then

log (1 . 2 . 3 ... as)
= C+ (x + ^ log a -or,
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whence
1. 2. 3. ..*= "-* xa"1

(10),

1 . 2 . 3 . . . 2a?= e~* X (2*)
1"*'

(11).

But multiplying (10) by 2*,

2.4.6...2a; = 2''e
c-*x#t+1

(12).

Therefore, dividing (11) by (12),

, 2.4.6...2a e'x*
whence

3.5V7".7(2*-1)
=

2i--

But by Wallis's theorem, x being infinite,

whence by division

And now, substituting this value in (9) and determining
ux , we find

x o x 6

~

(13).

_1 1_
If we develope the factor eiz* 3eo# '"in descending powers

of x
y
we find

(14).
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Hence for very large values of x we may assume

(15),

the ratio of the two members tending to unity as x tends to

infinity. And speaking generally it is with the ratios, not

the actual values of functions of large numbers, that we are

concerned.

Ex. 5. To find an approximate value of F (x+ 1) when
x is large.

It will be seen that this reduces to the preceding example
when x is integral ;

it has been chosen to illustrate our mode
of determining C.

Exactly as in the preceding case we obtain

^ ^ , J?s__
1.2# S.^^S.Ga;5 '"

(16),

but we can draw no conclusion as to the value of G from
the value it bore in (0), nor would any number of special
determinations of its value enable us to draw any conclusions

as to its general value. But it can be proved (Todhunter's
Int. Cal. 3rd Ed. p. 254) that

11 1 , ,
:

?"

= when x is infinite.

But from (16) we obtain, when x is infinite,

-=- : = -_- -
, which is therefore zero when

dx* dx*
'

x is infinite.

Now C is a periodic quantity going through its course of

values as x increases by unity hence T-I is equally pe-
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riodic.

for finite as well as infinite values of x
;

But C remains unchanged when x is increased by unity ;

therefore A = 0, and (7 is therefore an absolute constant, and
therefore has the value found for it in Ex. 4 when x was an

integer, i. e. C = log V2-7T.

Ex. G. To sum the series

l +
2^

+
3Tn
+

4^----t-;^-

Representing the scries by u, we have

-C-
(2n

-
1)

2n(2n +

For each particular value of n the constant C might be
determined approximately as in Ex. 3, but its general ex-

pression will be found in Art. 3, Ch. VI.

5. PROP. II. To develope %nux in a series proceeding by
the differential coefficients ofux .

Since 2 - (e"
-

1)'
1

; .'. Sn =
(e*

- l)-f

and the ])roblom reduces to that of expanding (e' l)"
n
in

ascending powers of t\ or, in other words, to expanding
t*

t
:j

-

n in positive integral powers of t.
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Lct

dv _ ne* _ n (e* 1) n
'*

~ ~~

Multiply both sides by \n 1 and let wn
=

[n lvn> and the

equation becomes

= &c.

Ultimately we obtain (writing n 1 for n)

.-!,-. (IT).

By means of this formula we can obtain developed expres-
sions for 22

, S
3

,
... with great readiness in terms of the co-

efficients in the expansion of 2, i.e. in terms of Bernoulli's

numbers.

Ex. To devclope 2
s
in terms of I).

From (17),

s?
+ 8 ! + 2

) {i-i
+ ^' +^ +

T>

where ^
2r
= for all values of r and -42rM 2 ( l)

r p-
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+Sr + 2) (r+ 1) AM + 3 (r + 1) A rtl+M r] f.

Hence

6. PROP. III. To develope 2<
nux in a series, proceeding by

successive differential coefficients of u^*.

= E~* cosec - D y x

#~" cosec" D v^l x D J^\\ (18).

Suppose
a" cosec

n
a; = 1 - Cj? + C.a;

4 -
. . .,

then

It must be mentioned that the Summation-formula of

Art. 2 (which is due to Maclaurin-f-) is quite as applicable
in the form

to the evaluation of integrals by reducing it to a summation,
as it is, in its original form, to the summation of series

by reducing it to an integration. It is thus a substitute for

(27), page 54.

* This remarkably symmetrical expression for 2" is due to Spitzer

(Grunert, Archiv. xxiv. 97).

f Tract on Fluxions, 672. Euler gives it also (Trans. St Petersburg, 1769),
and it is often ascribed to him.
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7. PROP. IV. To expand %ux and 2n% in a series pro-
ceeding by successive differences of some factor ofux .

It will be seen that the formula of (11) page 74 and Ex.
11 page 85, accomplish this object. We shall only treat

here of the very important case when ux = ax
<j> (x) and more

especially regard the form which the result takes when
a = 1, i.e. when the series is

$(0)- 0(1) +0(2)-....

We have in general,

"Za
x
4>(x)

= (E-\r<f$(*) = a(aE - l)-ty(*) (note, page 73)

which may be now expanded. If a = 1, we obtain

This enables us to transform many infinite series into

others of a more convergent character ;
for

0(0) -<(!)+... ad inf.

which is very rapidly convergent if the other is but slowly so.

To
"~
T^
+ TIEx. Transform the series To

"~
T^
+ TI~ ^nto a

more convergent form.

Here 0(0) s (0+ 12),

.'.we have by (21)

2
,

12
""

13
+ "'

""2 (12 ^2. 12. 13 4.12.13.14.

_2^3_ 1

+
8.12.13.14.15

+
")

'

which converges rapidly.
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8. It is very often advisable to find the sum of the first few

terms of a series by ordinary addition and subtraction, and

then to apply our formulae to the remaining teims, as in this

way the convergence of the resulting series is usually greater.

Thus, if we had applied the formula just obtained to the

series

we should have obtained

î

2 (2. 1.24. 1.2. 38. 1.2. 3.

a much more slowly converging series.

This remark is of great importance with reference to all

the formulae of this Chapter. We shall see that the Mac-
laurin Sum-formula of Art. (2) usually gives rise to series

that first converge and then diverge, but that by keeping
only the convergent part we obtain an approximate value
of the function on the left-hand siile of the identity ;

and
also that the closeness of the approximation depends on
the smallness of the first of the terms in the rejected portion.
From this it follows that by applying the formula in the

manner just indicated we can greatly increase the closeness

of the approximation. An example will make it clearer.

Ex. Let ux = -5 ,
then the formula becomes

x

1 l 1

Taking this between limits oo and 1, we obtain

Now, remembering that we must only keep the convergent
part of the series, we find that we must stop at JB

8 ,
sinco
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after that the numbers begin to increase. This gives us

1.65714, the true value being
~ or 1.64493.

Now let us find the sum thus

205 11 S
l

J8

5
+
2.52+ 5

3
5
5 + ""

On examination it will be found that we may in this case

keep the terms at least as far as -B
I9*, while the convergence

is so rapid at first that by only retaioing as far as B
l
we obtain

1.64494. The general advantage of using the formula may
be gathered from this example. To obtain an equally close

approximation by actual summation, some hundred thousand
terms would have to be taken.

9. We can also expand 2a*<(#) in a series proceeding

by successive differential coefficients of $(#). For

Za'tW = (E- l)-
l

a*<t>(x) =a*(aE- irty(*) (23).

But by Herschel's Theorem ^(e*)
= ^(E) e

Q ' 1

,

.-. ^(E) = yfr (e) = ty (E) e"'
D
as operating factors,

where E' affects only,

ir
jl
+ 0.

dj>(x) A,

a-l
In the case of a = 1 an expression for An in terms of

Bernoulli's numbers can be obtained.

For S(-l)**(a;)=(-l)
r
(-e

n-irl

^(*), putting
= -!

in (23),
= (-ir(e" + l)-'K*).

T>

* In reality wo may keep all terms up to -
^ff

,
a quantity whose first

significant figure is in the fourteenth decimal place.
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Now

1

D'

... (25),
*

l C
which determines the coefficients*,

10. Expansion in inverse factorials. The most general
method of obtaining such expansions is by expressing the

given function <(#) in the form I e~
xt

f(t) dt. If we then

write

e~* = 1 z, we get < (x)
= I (1 z)*~

l

f -^log
f H dz.

f yS ( i ) f
mus^ now be expanded in some way in powers

of 3, and each term must be integrated separately by means
of the formula

771

By performing 2 on this we can expand in a similar way
[
*

e~* e~*
the more complicated form I ^ ~

f(t) dt. The most in-
J Q 61

teresting cases are those in which ^(#)
=
log# or =~

to

(see page 115).

The method is obviously very limited in its application.
A paper on it by Schlomilch will be found in Zeitschrift fur

*
Compare (7), page 108. Ex. 12, page 85, is closely connected with

the problem oi this article.
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Math, und Physik, IV. 390, and a review of this in Tortolini

(Annali, 1859, 3G7) has sufficiently copious references to

enable any one who desires it to follow out the subject.

Stirling's formula the earliest of the kind is given in

Ex. 11, page 30.

The very close connection that Factorials in general have -with the Finite
Calculus renders it worth while to give special attention to them, and to in-

vestigate in detail the laws of their transformations. For this purpose the
student may consult a paper by Weierstrass (Crelle, LI. 1). Oettinger has
also written on the subject (Crelle, xxxm. and xxxvm.), and Schlafli (Grelle,
XLIII. and LXVEI.). Ohm has an investigation into the connection between
them and the Gamma-function (Crelle, xxxvi.), with a continuation on Fac-
torials in general (Crelle, xxxix.).

The papers on the subject of the Eulcr-Maclaurin Sum-formula are very
numerous. Characteristic examples have been selected from them where it

was possible, and placed, with references, in the accompanying Exorcises.

By far the most important application of the principle of approximation
is to the evaluation of IX or rather of log Tx and its differential coefficients

when x is very large, liaabe has two papers on this (Crelle, xxv. 146 and
xxvin. 10). See also Bauer (Crelle, LVII. 256) and Guderman (Crelle, xxix. 209).
Beference will be made to these papers when we consider Exact Theorems.
See also a paper by Jeffery (Quarterly Journal, vi. 82) on the Derivatives of

the Gamma-function. The constant C of Ex. 3 is of great importance in

this theory. For its value, which has been calculated to a groat number of

decimal places, see Crelle, LX. 375.

Closely connected with the subject of differential coefficients of log Tx is

-.
-

/ _ i \/>if
that of the summation of harmonic series f 2 -.

-
/

papers by Knar (Grunert, XLI. and XLIII.).

EXERCISES.

1. Find an expression for

91
""' to n terms >

and obtain an approximate value for the sum ad infinitwn.

2. Find an approximate expression for S -, and also the

value of

to 10 places of decimals.
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3. Find an approximate value of

2.4. ... 2a?
'

supposing x large but not infinite.

4. Find approximately 2 -^
--

, and obtain an exact for-
*C "~ d

mula when a is an integral multiple of ^ .

5. Transform the series

x+2) (* + l)(aj + 2)(0 + 3)
T "'

into series of a more convergent character, and find an

approximate value of the sum of each when x = 5, that is,

correct to G places of decimals.

6. If u -f UjX + uj? + . . . =f(x) t
shew that

.

and apply this theorem to transform the series

to one proceeding by factorials only.

7. Shew that

+__ I- 2_ ,
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8. Find the sum to n terms of the series

and shew that its sum ad inf. isJ x +

9. Shew by the method given in the note to page 72,

that

dr
( x )

where B
r__ l
=

-, r _,}- numerically.a# (1 6 Ja^o

[Schlomilch, Grunert X. 342.]

10. Shew that the sum of all the negative powers of all

whole numbers (unity being in both cases excluded) is unity ;

g
if odd powers are excluded it is

^

11. Expand 2
-,

-
rr^ in terms of successive differencesr

(ax + b)
n

of log (ax + b) and deduce

2cota? = (7+ \ logsinx -^ log sin a? + --
log sin # ... V.

[Tortolini, V. 281.]

12 *. If Sn
= U

Q+ un + w
2n + &c., ad inf., shew that

13. Find 2 2 in factorials, and determine to 3 places

of decimals the value of the constant when the first term is

1

If the Maclaurin Sum-formula had been used, to what

degree of accuracy could we have obtained C ?

* DC Morgan (Diff. Cal. 554). Compare (27), page 54.
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14. Shew that

and apply this to the summation of Lambert's* series, viz.

n x is - nearly.
^

[Zeitschrift, vi. 407.]

3*
.

x
. t.

-1
1- h ^ o + . . ., when x is - nearly.

1 a? 1 a?
8 e

15. Shew that

where A: = /^T,

and deduce similar formulae for the sums of the series

Find an analogous expression for the sum of the last

mentioned to n terms.

16. Shew that

sin x sin 2x
,
sin 3x 7 . --

* + ^ H----s- + . . . , aa tn/.,a+1 a + 2 a + 3
' y

if x lie between TT and TT.

[Schlomilch, Crelle XLII. 130.]

* On the application of the Maclaurin Sum-formula to this important
series see also Curtze (Annali Math. x. 285).
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CHAPTER VI.

BERNOULLI'S NUMBERS, AND FACTORIAL COEFFICIENTS.

1. Tup celebrated series of numbers which we are about to

notice were first discovered by James Bernoulli. They first

presented themselves as connected with the coefficients of

powers of x in the expression for the sum of the ?i
th
powers of

the natural numbers, which we know is

- - (1),

or rather as the coefficient of # in the successive expressions
when n was an even integer, and De Moivre pointed out that

by taking this between limits 1 and we obtain the formula

from which the numbers can be easily calculated in succes-

sion by taking n = 2, 4, .........

After the discovery of the Euler-Maclaurin formula

[(6), page 90] the coefficients were shewn to be those of

-jj
r from the application of it to 2e

to
,
which gives

6 "
JL

... (3),
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which gives

2. Many other important expansions can be obtained by
consideration of this identity.

Thus, for h write 20J 1
; then, since

tfl-
2'

we at once obtain

cot0 =
i-j|2'0-^2<0-...

(5).

Q
Again cosec 6 = cot ^ cot 0,

...
(G).

Similarly from cot 2 cot 20 = tan we obtain

(7).

3. An expression for the values of the numbers of Bernoull i

can be obtained from (5). For cot =
-^ (log sin 6} and

_1 2^f 1 1 )

~^~7ri

t
1 "

1

"2'
+

3'
+
-j
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(8).

Equating the coefficients of the same powers of in (o)
and (8), we obtain

From this we sec that the values of -B
an-1

increase with

very great rapidity, but those of ,*?~- ultimately approach to
2iTt

equality with those of a geometrical series whose common

ratio is .

4-7T

* A variation of (9), due I believe to Raabe (Diff. und Int. Rechnung, i. -412),

depends on the following ingenious transformation :

and all the terms of the form - -
Oji

are removed. Proceeding as before

'J'hus \vc ultimately get

r _

\\1icre 2, 3, 5,... are the prime numbers taken in order. This formula would
l)o of ftrcat use if wo wished to obtain approximate values of Bn correspond-

ing to largo values of n, as it is well adapted for logarithmic computation.
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4. If m be a positive integer and p be positive

fVvvfe = 2
fVa^tf* = ...

>. JP^O

Hence we can write (9) thus

;
971'1

{e'
2^

-J- e~**+ ..

5. Euler was the first to call attention to a set of numbers

closely analogous to those of Bernoulli. They appear in the

coefficients of the powers of x when sec x is expanded. Thus

(11).

The identity sec x = -.- log tan
( j 5) will give, when

CLJG \ T.' tL /

treated as before,

p -2A. - 2 -

while a consideration of the identity

coKxd.dd 1

will give

2
e

formula analogous to (9) and (10), from which (12) may be
deduced.

* Due to Plana (Mem. de VAcad. de Turin, 1820).
t ScblomUcli (Grunert, z. 361).
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6. Owing to the importance of Bernoulli's and Euler's

numbers a great many different formulae have been investigated
to facilitate their calculation. Most of these require them
to be calculated successively from B

v
and E^, onwards, and

of these the most common for Bernoulli's numbers is (2).

Others of a like kind may easily be obtained from the
various expansions which involve them. Thus from (5),

multiplying both sides by sin 0,

and equating coefficients of Zn we obtain

(2** 22M~2
(__l

n
S**-i~

[8 1

2n - 2
B

**~* + ' ' '
~~

\to+

The simplest formulae of this nature both for Bernoulli's

and Euler's numbers are obtained at once from the original

assumptions

by this method.

7. But direct expressions for the values of the numbers

may be found. Thus

t log lo.#., Herschd's theorem)
e'-l e'-l E-l

A

Hence, equating coefficients, we find
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and in like manner we obtain

(17).

8. These formula? are capable of almost endless trans-

AnO*
formation. Thus, since A*"1 (T1 = -- - A"(Tl

(Ex. 8,

page 28), we can write (16) thus

- ... (18),-^ +

jsince the other term is

log(l+A)0
2n =D02tt =0.

0. A more general transformation by aid of the formula

is as follows :

{log (1 + ,A)} 0- =^ 0- =^ 0- (19).

Also

(log (1 + yE)} 0/(0) = y/(l)
-

. 2/(2) + ...

^^/() (20)'

= 0.

In (19) write E for ae and operate with each side on/(0 ).
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Then

- -
{log (1 + A')} O"1

0'A'/(0')

by (20), since
B
-'A'/(0')

=

where /'(O') = 0'A'/(0').

Repeating this n 1 times we get

{log (1 + A")}
M
/(0') - (- 1)-

1

{log (1 + A')l 0/"'(0')

= E'f"-\V) = [(* + 1) A (x + 1) A.../(* + 1)],= .

This transformation has been given because it leads to

a remarkable expression due to Bauer (Crelle, LVIII. 21)2) for

Bernoulli's numbers.

Denote by A' the operating factor (cc-fl)A, and write

- forf(x) and 2n+ 1 for nt and we obtain from (18)

rv2w+l r 1 \"1

(21.)

Factorial Coefficients.

10. A series of numbers of great importance are tliose

which form the coefficients of the powers of x when x (n} is

expanded in powers of x. These usually go by the name
offactorial coefficients.

It is evident by Maclaurin's Theorem that the coefficient

D*QW
of a* in the expansion of x(n) is . *. Although it is not

*
Comparing (22) page 25, and (25) page 26, we see that r is the

coefficient of Aw in the expansion of {log(l + A)}*. That this is the case ia
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easy to obtain an expanded expression for this, it is very easy
to calculate its successive values in a manner analogous to

that used in Ch. n. Art. 13.

Let C = numerical value of the coefficient of of in the

expansion of #(n)
. Then since x(n*l) = (x n} x

(n)

, we obtain

C^-C^+ntf/ (22),

and we can thus calculate the values of G n+1 from those of

Cn
;
and we know that the values of Cl

are 1, 0, 0, ...

11. Let us denote by C~
n
the numerical value of the coeffi-

cient of - in the expansion of x(rn) in negative powers of x,x
so that

a?" a?"

Then a = tliT- A""' - = (
,

)

^yt~ 1 x n 1

(where A now refers to p alone)

(- 1)"-' f A"-'Q A--'0' _ I

1^1 I ~? * '"V

(23).

also evident from the following consideration :

"~

\n ~~~\n~
~

\n y*da"^8*l f putting a;= log z
L L L

I J-i

1 (dn )
55

T~ "! fT"^^ (" + *)l i

= coel^c^en* ^ *" ^n *^G
\

n
(
<Z

Jr-O

expansion of log (l + z)
K
by Maclaurin'a theorem. Thus this expansion

may be written

+V+1
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A formula analogous to (22) can also be obtained by means
of Art. 13, Ch. II. This gives for numerical values

and thus from the values of C*^ those of CK can be obtained.
The values of C^ are of course 1, 0, 0,...

12. Analogous series are those of the coefficients when
xn and of" are expanded in factorials.

By (5) page 11, we have

JL .

following the notation of Art. 11.

Again in (25), page 26, put ux = - and
<j> (D)

= JD""
1

,
and

we get after division by (- I)"""
1 In 1,

D-'o<*> hfrt)jyV n
l -_ /*^^ *! I

'"
x

[n-jL

=
C^lJ

M -
CJ^^-^ + ... (27),

in the notation of Art. 10*.

* It will be seen that, as in the analogous case we could expand
{log (1 + a)}* in terms of C*t we can expand (e-1)" in terms of

-Oc+1)
Cn . In fact

where we have given Cn its numerical value, disregarding its sign.
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13. There is another class of properties of Bernoulli's numbers that

has received some attention; these relate to their connection with the

Theory of Numbers. Staudt's theorem will serve to illustrate the nature of

these properties. It is that

where m is a divisor of n such that 2m + 1 is a prime number. Thus, taking
u =8, we have (since the divisors of 8 are 1, 2, 4, 8)

B15=integer+Q +
1
+
^
+^ = integer+ 1/fr.

It will be found on reference to page 91 to be 7^- Staudt's paper will be

found in Crelle (xxi. 374), but a simpler demonstration of the above property
has been given by Schlafli (Quarterly Journal, vi. 75). On this subject see

papers by Rummer (Crelle, XL. XLI. LVI.). Staudt's theorem has also been

given by Clausen.

14. To Kaabe is due the invention of what he names the Bernoulli-

Function
,
i.e. a function F(x) given by

\\hen x is an integer, and which is given generally by &F(x)=x
n

. He has
also given the name Euler-Fiuiction to the analogous one that gives the

sum of

when x is integral. See Brioschi (Tortolini, Series II. i. 260), in which there

is a review of Kaabe's paper (Crelle, XLII. 348) with copious references, and
Kinkclin (Crelle, LVII. 122). See also a note by Cayley (Quarterly Journal,
H. 198).

15. The most important papers on the subject of this Chapter are a series

by Blit-sard (Quarterly Journal, Vols. iv. ix.) under various titles. The de-

monstrations shew very strikingly the great power obtainable by the use of

symbolical methods, which are here developed and applied to a much greater
extent than in other papers on the subject. They include a most complete
investigation into all the classes of numbers of which we have spoken in this

Chapter ; the results are too copious for any attempt to give them here, but
Ex. 15 and 16 have been borrowed from them. The notation in the original
differs from that here adopted. K.2n there denotes what is usually denoted

by 2n-r See also two papers on AnOm and its congeners by Homer
(Quarterly Journal, iv.).

16. Attempts have been made to connect more closely Bernoulli's and
Kuler's Numbers, which we know already to have markedly similar properties.

Scherk (Crelle, iv. 299) points out that, since tan (j + ~
j
= sec x + tan x, the

expansion of this function in powers of x will have its coefficients depending
alternately on each set of numbers jsee (7) and (11), of this Chapter). This
idea has been taken up by others. Schlomilch (Crelle, xxxn. 360) has written

a paper upon it. It enables us to represent both series by one expression, but
there is no great advantage in doing so, as the expression referred to is very
complicated. Another method is by finding the coefficient of xn in the ex-
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pansion of ,. -= , from which both series of numbers can be deduced by
aex 1

taking a=l (Genocchi, Tortolini, Series I. Vol. m. 395).

17. Schlomilch has connected Bernoulli's numbers and factorial coeffi-

cients with the coefficients in the expansions of such quantities as T)nf (log x),

Dn
(

*
.\ &G. (Grunert, vin. ix. XVT. xvm.). Most of his analysis could be

rendered simpler by the use of symbolical methods. This is usually the case
in papers on this part of the subject, and the plan mentioned in the last

Chapter has therefore been adhered to, of giving characteristic examples out
of the various papers with references, instead of referring to them in the text.

We must mention, in conclusion, that the numbers of Bernoulli as far as

J?31 have been calculated by llothe, and will be found in Crelle (xx. 11).

EXERCISES.

1. Prove that

l\n+l

^n-l-l- 1 )

2. Prove that if n be an odd integer

n(n-l)(n-2)(n-8)(n-4.) p

|5

5 '

..., to n 1 terms.

3. Obtain the formula of page 107, for determining suc-

cessively Bernoulli's numbers, by differentiating the identity

t = u + ue* where u = -
t

r .

(j JL

4. Shew that

[Catalan, Tortolini 1859, 239.]
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5. Shew that

_ 2*
(-D'o*-,

6. Apply Herschel's Theorem to find an expression for a

Bernoulli's number.

7. Demonstrate the following relation between the even
Bernoulli's numbers :

[Knar, Grunert, xxvil. 455.]

8. Assuming the truth of the formula

deduce a value of jB^^.

9. Prove that the coefficient of ff** in the expansion of

/ V- n 22n
(2w-l) 73- ^

10. Express log sin a? and log tan a? in a series proceeding

by powers of % by means of Bernoulli's numbers.

[Catalan, Comptes Rendus, LIV.]

11. Shew that the coefficient of

z
n

f* B
-r in I log (1 e~*) dt z log z is ^ numerically.

\

n J Q
n 1

12. Shew by Bernoulli's numbers or otherwise that

I
2

2' 3* , . . 2TT
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13. Prove that

14. Express the sums of the powers of numbers less than
n and prime to it in series involving Bernoulli's numbers.

[Thacker, Nouvelles Annales, x. 324.]

15. If = 1 +P1
*+P/+ ... , shew that

X

16. Shew, in the notation of the last question, that

-jr'* ...)"
17. Shew that

sin re sin 2# sin3a?_
~T2H-f

~~
~2*+i

' ozrti

t 7?

2|2r + l [2.
where jBn

=
1--^ + ^- ...

and hence find the sum of such a series in terms of Ber-

noulli's numbers.

[Dienger, Crelle, xxxiv. 91.]

18. Shew that*

*
Many similar summations will be found in a paper by Tchebechef

[Liouville, XYI. 337].
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19. If 8m
nslu + 2" +...+", shew that

r=l

[Eisenlohe, Crelle, xxvm. 193.]

20. In the notation of Art. 14, page 116, shew that F (x]

is a rational and integral function of x -
,
and cannot con-

tain both odd and even powers of the same.

[Bertrand, Diff. Cal 350.]

21. Shew how the method contained in the note on page
109 could be made to give us the actual values of the

numbers of Bernoulli by application of Staudt's Theorem.

22. Apply the formula,

to demonstrate (12), page 110.

[Stern, Crelle, xxvi. 88.]

23. If F() =~^ |~1

-
jl
+^~

AJ"

1

]
On, where

shew that

E
2n
= F(2n), and ^ 5^ = ^(2/1-1) numerically.

[Schlomilch, Crelle, xxxn. 360.]

24. Shew that

\m
fHargreave, Quarterly Journal, Vin. 26.1
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25. *Shewthat /(J>)
=

|n
= 0.

Ar

*Prove that p {0 + (n r)}
8+r

expresses the sum of all the

homogeneous products of s dimensions which can be formed
of the r 4- 1 consecutive numbers n, n 1, ... n r.

26. Express x(m} x x(n) in factorials.

[Elphinstone, Quarterly Journal^ n. 254.]

27. If log (1 + x)
= Ap +Aj +A^ + . . . ,

shew that A^= --
-llog v + T? log 5 \ .

28. If K
r

m = number of combinations of m things r to-

gether with repetitions,

Cr

m = number of combinations of m things r together with-

out repetitions,

^m()m+r
then Kr

m =* ~.----
,
and Cr

m
is obtained by writing (m+ 1)

for m in the expanded expression for A"r
m

.

[Wasmund, Grunert, XXXIV. 440.]

29. Shew that in the notation of Art. 10

C?-Cf+C*- ... = 0,

and Btf-BtC:+ ... = fet"l .

-""-J-
.193

2 w+1
\Grunert, ix. 333.]

30. Shew that

cos -

and find from this an expression for the coefficients of the

powers of x in the expanded factorial oc
(m} in the form of a

definite integral.

[Grunert, XI. 447.]

*
Jeffery (Quarterly Journal, iv. 364).
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31. Deduce (26) page 115, from (21) page 24.

32. Shew that C
t

~* = 3, and C' = 85.

33. Shew that if AC < n the coefficient of

x \". (- !)"<-

in the notation of Art. 10.

[Schlomilch, Grunert, xvni. 315.]

34. Shew that (with the notation of (21), page 113)

and find the general formula for r = K.

Shew that

35. If x -j-
= D

lt
shew that

36. Find expressions for Bernoulli's numbers and Fac-
torial-coefficients in the form of determinants.

[Tortolini, Series II. vn. 19.]
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CHAPTER VII.

CONVERGENCY AND DIVERGENCY OF SERIES.

1. A SERIES is said to be convergent or divergent accord-

ing as the sum of its first n terms approaches or does not

approach to a finite limit when n is indefinitely increased.

This definition leads us to distinguish between the con-

vergency of a series and the convergency of the terms of a

series. The successive terms of the series

converge to the limit 0, but it will be shewn that the sum
of n of those terms tends to become infinite with n.

On the other hand, the geometrical series

1 +
2
+

4
+

8
+

16
+ -

is convergent both as respects its terms and as respects the

sum of its terms.

2. Three cases present themselves. 1st. That in which
the terms of a series are all of the same or are ultimately all

of the same sign. 2ndly. That in which they are, or ulti-

mately become, alternately positive and negative. Srdly.
That in which they are of variable sign (though not alter-

nately positive and negative) owing to the presence of a

periodic quantity as a factor in the general term. The first

case we propose, on account of the greater difficulty of its

theory, to consider last.
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3. PROP. 1. A series whose terms diminish in absolute

value, and are, or end with becoming, alternately positive and
negative, is convergent.

Let u
t

w
?
+ U

B
w4 + . . . be the proposed series or its

terminal portion, the part which it follows -being in the latter

case supposed finite. Then, writing it in the successive forms

and observing that u
1

u
2 ,u^ u

s ,
... are by hypothesis

positive, we see that the sum of the series is greater than
ui~ u*

an(l IGSS than v The series is therefore convergent.

Ex. Thus tho series

1 1,1 l_i_l ,7 *
9~*~<*""i5~"

' " a ^
tends to a limit which is less than 1 and greater than -=*.

4. PROP. II. A series whose wth term is of the form
un sinn0 (where is not zero or an integral multiple O/STT)
will converge if, for large values of n, un retains the same sign,

continually diminishes as n increases, and ultimately vanishes.

Suppose un to retain its sign and to diminish continually as

n increases after the term ua . Let

*
Although the above demonstration is quite rigorous, still such series pre-

sent many analogies with divergent series and require careful treatment. For

instance, in a convergent series where all the terms have the same sign, the

order in which the terms are written does not affect the sum of the series.

But in the given case, if we write the series thus,

in which form it is equally convergent, we find that its value lies between
^

and - while that of the original series lies between 1 - 5 and 1 - + * *
O m O

, . 1,5
between

^
and

g.
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a '-

2)
0-

jc
cos a + 0-cos

("-O<*(+)*+
Now UM ^a , i^ u

a+l , ... are all negative, hence

/i\
2 sin

^
flf- wa cos

(a
-

jj
* <(-.) + (.-O + -

numerically,

or < w^ wa ; /. < wa , since w^ = 0.

Hence the series is convergent unless sin ^ be zero, i.e. un-
JL

less 6 be zero or an integral multiple of 2?r*.

An exactly similar demonstration will prove the propo-
sition for the case in which the ?i

th term is un sin (nO
-

?).

Ex. The series

sin 20 sin 30

is convergent unless ^ be zero or a multiple of 2?r. This is

the case although, as we shall see, the series

1 +
g
+
3
+ is divergent.

5. The theory of the convergency and divergency of series

whose terms are ultimately of one sign and at the same time

converge to the limit 0, will occupy the remainder of this

chapter and will be developed in the following order. 1st. A

MalmstiSn (Grunert, vi. 38). A more general proposition is given by
Cnarlier (Lioui'ille, xvm. 21).
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fundamental proposition, due to Cauchy, which makes the test

of convergency to consist in a process of integration, will be
established. 2ndly. Certain direct consequences of that pro-

position relating to particular classes of series, including the

geometrical, will be deduced. Srdly. Upon those conse-

quences, and upon a certain extension of the algebraical

theory of degree which has been developed in the writings of

Professor De Morgan and of M. Bertrand, a system of criteria

general in application will be founded. It may be added
that the first and most important of the criteria in question,
to which indeed the others are properly supplemental, being
founded upon the known properties of geometrical series,

might be proved without the aid of Cauchy's proposition ;

but for the sake of unity it has been thought proper to

exhibit the different parts of the system in their natural

relation.

Fundamental Proposition.

6. PROP. III. If the function <f> (#) be positive in sign
but diminishing in value as x varies continuouslyfrom atovo,
then the series

...adinf. (4)

/ <f>(x)dx is
a

finite or infinite.

For, since <>(#) diminishes from x = a to a: = a-fl, and

again from # = a-i-ltoo;=sa-F2, ..., we have

/a+2

I <(a
J *+i

and so on, ad inf. Adding these inequations together, we
have

I ...adinf. (5).
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Again, by the same reasoning,

r%(*)
J*

/a+2

J o+l

and so on. Again adding, we have

f"
J a

f*Thus the integral I
<f> (a?) cZa?, being intermediate in value

J a

between the two series

(a) +# (a + 1) + ^ (a + 2) 4- ...

which differ by <f> (a), will differ from the former series by a

quantity less than
<f> (a), therefore by a finite quantity. Thus

the series and the integral are finite or infinite together.

COR. If in the inequation (6) we change a into a 1, and

compare the result with (5), it will appear that the series

<f> (a) + <f> (a + 1) 4- < (a -f 2) -f ... ad inf.

hasfor its inferior and superior limits

/ /

I
(f> (x) dx, and I < (*) dx. (7).

J a J -i

7. The application of the above proposition will be suffi-

ciently explained in the two following examples relating to

geometrical series and to the other classes of series involved

in the demonstration of the final system of criteria referred

to in Art. 5.

Ex. 1. The geometrical series

... ad inf.

is convergent if h < 1, divergent i
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The general term is h*, the value of x in the first term

being 0, so that the test of convergency is simply whether

h*dx is infinite or not. Now

log h
'

If h > 1 this expression becomes infinite with x and the

series is divergent. If h < 1 the expression assumes the finite

value
j J-

. The series is therefore convergent.

If h = 1 the expression becomes indeterminate, but, pro-

ceeding in the usual way, assumes the limiting form xJi

which becomes infinite with x. Here then the series is

divergent.

Ex. 2. The successive series

aloga(logloga)
1

a being positive, are convergent if m>l, and divergent

ifm^l.

The determining integrals are

dx

* The convergency of these Beries can he investigated without the use of

the Integral Calculus. See Todhunter'a Algebra (Miscellaneous Theorems),
or Malmstdn (Grunert, vm. 410).
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and their values, except when m is equal to 1, are

^'jT^r (logg)
1"m
-0g")

1"m

1 m ' Im ' 1m
in which x= oo . All these expressions are infinite if m be
less than 1, and finite if m be greater than 1. If m 1 the

integrals assume the forms

log # log a, log log a; log log a, log log log a; log log log a ...

and still become infinite with x. Thus the series are con-

vergent if m > 1 and divergent if m ^l.

Perhaps there is no other mode so satisfactory for esta-

blishing the convergency or divergency of a series as the
direct application of Cauchy's proposition, when the inte-

gration which it involves is possible. But, as this is not

always the case, the construction of a system of derived rules

not involving a process of integration becomes important.
To this object we now proceed.

First derived Criterion.

8. PROP. IV. The series U
Q -f ul

+ u^ + . . . ad
inf., all whose

terms are supposed positive, is convergent or divergent accord-

ing as the ratio ~^~ tends, when x is indefinitely increased, to
MX

a limiting value less or greater than unity.

Let h be that limiting value
;
and first let h be less than 1,

and lot k be some positive quantity so small that h + k shall

also be less than 1. Then as -^ tends to the limit A, it is

possible to give to x some value n so large, yet finite, that for

that value and for all superior values of x the ratio *"
shall

Ux

lie within the limits h + k and h k. Hence if, beginning
with the particular value of x in question, we construct the
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three series

un + (h + k) un + (h + &)" un + ...

each term after the first in the second series will be inter-

mediate in value between the corresponding terms in the

first and third series, and therefore the second series will be
intermediate in value between

u u
-,-r and r,

n
--T ,

which are the finite values of the first and third series. And
therefore the given series is convergent.

On the other hand, if h be greater than unity, then, giving
to k some small positive value such that hk shall also

exceed unity, it will be possible to give to x some value n so

large, yet finite, that for that and all superior values of a?,

^^ shall lie between h -f k and h k. Here then still each
ux

term after the first in the second series will be intermediate

between the corresponding terms of the first and third series.

But h + k and h k being both greater than unity, both the

latter series are divergent (Ex. 1). Hence the second or

given series is divergent also.

Ex. 3. The series 1 + 1 + ^ -h T 5 o + . . .
,
derived

1 . A L . < . o

from the expansion of e', is convergent for all values of t.

For if

__
~1.2...a' M 1.2. ..

then *

and this tends to as a? tends to infinity.
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Ex. 4. The series

g

is convergent or divergent according as t is less or greater
than unity.

Here u - *(* + l)(* + 2) ( + *-!) -nere ",~
6 (6 + 1} (6 + 2) ... (6 + *- l)

n

Therefore ^-i =

and this tends, x being indefinitely increased, to the limit t.

Accordingly therefore as t is less or greater than unity, the
series is convergent or divergent.

If t = 1 the rule fails. Nor would it be easy to apply
directly Cauchy's test to this case, because of the indefinite

number of factors involved in the expression of the general
term of the series. We proceed, therefore, to establish the

supplemental criteria referred to in Art. 5.

Supplemental Criteria.

9. Let the series under consideration be

-f ua^ + . . . ad inf. (10),

the general term ux being supposed positive and diminishing
in value from x = a to x = infinity. The above form is

adopted as before to represent the terminal, and by hypothesis

positive, portion of series whose terms do not necessarily begin
with being positive ;

since it is upon the character of the

terminal portion that the convergency or divergency of the

series depends.

It is evident that the series (10) will be convergent if its

terms become ultimately less than the corresponding terms
of a known convergent series, and that it will be divergent
if its terms become ultimately greater than the corresponding
terms of a known divergent series.

92
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Compare then the above series whose general term is ux with

the first series in (8), Ex. 2, whose general term is -^ . Then

a condition of convergency is

in being greater than unity, and x being indefinitely increased.

Hence we find

.\ m log x< log ;

log
m<

logo?
'

and since m is greater than unity

, 1

On the other hand, there is divergency if

I
lt* >

x'
n '

x being indefinitely increased, and w? being equal to or less

than 1. But this gives

l s-

logo?

and therefore

log.T

log*



ART. 9.] CONVERGENCY AND DIVERGENCY OF SERIES. 133

It appears therefore that the series ia convergent or divergent

l ff u
according as, x being indefinitely increased, the function ,

*

Log x

approaches a limit greater or less than unity.

But the limit being unity, and the above test failing, let

the comparison be made with the second of the series in (8).

For convergency, we then have as the limiting equation,

m being greater than unity. Hence we find, by proceeding
as before,

log

And deducingjn like manner the condition of divergency, we
conclude that the series is convergent or divergent according as,

log xu
x being indefinitely increased, the function ,

'*

tends to

a limit greater or less than unity.

Should the limit be unity, we must have recourse to the

third series of (8), the resulting test being that the proposed
series is convergent or divergent according as, x being indefinitely

increased, the function 5 r 2 tends to a limit greaterJ
log log log x

or less than unity.

The forms of the functions involved in the succeeding tests,

ad inf.,
are now obvious. Practically, we are directed to

construct the successive functions,

xu r

mix
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and the first of these which tends, as & is indefinitely increased

to a limit greater or less than unity, determines the series to

be convergent or divergent.

The criteria may be presented in another form. For

representing by <f> (x), and applying to each of the functions
**as

in (A), the rule for indeterminate functions of the form ,

we have

. ^'

Ix
<f> (x)

'

x $ (as)

'

,<*>(*)

_JL =jM-lU_L_
llx l#(a:) *J a; log a;

and so on. Thus the system of functions (A) is replaced by
the system

It was virtually under this form that the system of functions

was originally presented by Prof. De Morgan, (Differential

Calculus, pp. 325 7). The law of formation is as follows.

If Pn represent the n* function, then

10. There exists yet another and equivalent system of de-

termining functions which in particular cases possesses great

advantages over the two above noted. It is obtained by sub-

stituting in Prof. De Morgan's forms *
1 for . , \ . The

. .

u*+* *(*)
lawfulness of this substitution may be established as follows.



ART. 10.] CONVERGENT AND DIVERGENCY OF SERIES. 135

Since =
. . . . we have

*(*)

*(*)

(5 being some quantity between and 1)

Now L-T- r- has unity for its limiting value; for, <6 (x)
<f) (X)

tends to become infinite as x is indefinitely increased, and

therefore . / x assumes the form ?
;
therefore

And thus the second member has for its limits ^T~ and
*(*)

^+11
i. e . i and^ + 1). Or in other words tends to

*(*) *(*)
the limit 1. Thus (12) becomes

Substituting therefore in (B), we obtain the system of

functions

the law of formation being still P^, = l*x (Pn
-

!)
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11. The extension of the theory of degree referred to in

Art. 5 is involved in the demonstration of the above criteria.

When two functions of x are, in the ordinary sense of the

term, of the same degree, i.e. when they respectively in-

volve the same highest powers of x, they tend, x being
indefinitely increased, to a ratio which is finite yet not equal
to 0; viz. to the ratio of the respective coefficients of that

highest power. Now let the converse of this proposition be

assumed as the definition of equality of degree, i.e. let any
two functions of x be said to be of the same degree when
the ratio between them tends, x being indefinitely increased,
to a finite limit which is not equal to 0. Then are the

several functions

with which - or ^ (a?)
is successively compared in the de-

monstrations of the successive criteria, so many interposi-
tions of degree between x and x a

>
however small a may

be. For x being indefinitely increased, we have

vhm
X

r x(lx)
m

= oo
,

lim -

lT
~ = 0,

,. xlx(llx)
m

r xlx(llx}
m

Ahm--
,

= oo , lim
7-j \i4~

= 0,
xlx

l+a

so that, according to the definition, x (lx)
m

is intermediate in

degree between x and xl+a
, xlx(llx)

m between xlx and
x (lx)

l+a
,

. And thus each failing case, arising from the sup-

position of 77i = 1, is met by the introduction of a new function.

It may be noted in conclusion that the first criterion of the

system (A) was originally demonstrated by Cauchy, and the

first of the system (C) by Raabe (Crelle, Vol. ix.). Bertrand*,
to whom the comparison of the three systems is due, has de-

monstrated that if one of the criteria should fail from the

absence of a definite limit, the succeeding criteria will also

fail in the same way. The possibility of their continued

failure through the continued reproduction of the definite

limit 1, is a question which has indeed been noticed but has

scarcely been discussed.

* Liouville's Journal, Tom. YII. p. 35.
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12. The results of the above inquiry may be collected
into the following rule.

EULE. Determine first the limiting value of the function

'-

, According as this is less or greater than unity the series

is convergent or divergent.

But if that limiting value be unity, seek the limiting values

of whichsoever is most convenient of tfte three systems offunc-
tions (A), (B), (C). According as, in the system chosen, the

first function whose limiting value is not unity, assumes a

limiting value greater or less than unity, the series is conver-

gent or divergent.

Ex. 5, Let the given series be

1+-. + 4 +4+ - (13).
2* 3* 4?

Here ux
= -^ , therefore,

x

^1^
ux -~

(*+!)

and x being indefinitely increased the limiting value is unity.

Now applying the first criterion of the system (A), we
have

and the limiting value is again unity. Applying the second
criterion in (A), we have

xux Ix* Ix
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the limiting value of which found in the usual way is 0.

Hence the series is divergent.

Ex. 6. Resuming the hypergeometrical series of Ex. 4, viz.

we have in the case of failure when t = 1,

_a(a + l)...(q + a?-l)U*~
b (6 + 1) ...(b + -!)'

Therefore 3s* =.
+
*.ux b + x'

and applying the first criterion of (C),

ux - _

x - - 1=# -- 1

which tends to the limit 6 a. The series is therefore con-

vergent or divergent according as b a is greater or less than

unity.

If 6 a is equal to unity, we have, by the second criterion

of(C),

since ft a = 1. The limiting value is 0, so that the series is

still divergent.

It appears, therefore, 1st, that the series (14) is convergent
or divergent according as t is less or greater than 1 ; 2ndly,
that if t =: 1 the series is convergent if b a > 1, divergent

if&-a<l.
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It is by no means necessary to resort to the criteria of

system (C) in this case. From (13) page 94 we learn that

Tx bears a finite ratio to J&[-} , and by writing the nto term

in the form ^ *,
~

P, it will be found to be com-
Lai (o + ft)

t*

parable with -^ , whence follows the result found above.

13. We will now examine the series given us by the

methods of Chap. V.

By (22) page 100 we have

1 _ ~ 1 1 25. 2.3.4 J9aZ ~ ~""~ 4"~~~~"~'

-<7-_- .,.~
x 2a2 ~ff8 *5 """"

Here numerically -*** = - L- = *J

ultimately {see (9) page 109},

and thus the series ultimately diverges faster than any diverg-

ing geometrical series however large x may be.

As it stands then our results are utterly worthless since

we have obtained divergent series as arithmetical equivalents
of finite quantities and in order to enable us to approximate
to the numerical values of the latter. We shall therefore

recommence the investigations of Chap. V, finding expres-
sions for the remainder after any term of the expansion
obtained, so that there will always be arithmetical equality
between the two sides of the identity, and we shall be able

to learn the degree of approximation obtained by examining
the magnitude of the remainder or complementary term.

14. The solution of the problem of the convergency or divergency of series

that has been given is so complete that it is scarcely possible to imagine how
a case of failure could arise. But we have not only obtained a test for con-
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vergence, we have also classified it. Let us consider for a moment any in-

finite series. Its wth term un must vanish, if the series is convergent, but it

must not become a zero of too low an order ; otherwise the series will be

divergent in spite of un becoming ultimately zero. Thus the zero - is of

too low an order, since un ^ -
gives a divergent series ; :. is of a sufficiently

71 74

high order, since nn
~

3 represents a convergent series. Now the series on

page 128 give us a classified list offorms of zero. The zeros of any one form
are separated by the value m= I into those that are of too low an order for

convergency and those that are not. But between any zero value that gives

convergency and that corresponding to ?/i=l (which gives divergency) come
all the subsequent forms of zero. Series comparable with the series produced
by giving m any value >1 in the rth class converge infinitely more slowly
than those with a greater value of ?/j, but infinitely faster than any similarly
related to the (r + l)

th or subsequent classes, whatever value be given to m
in the second case. Thus we may refer the convergency of any series to a
definite standard by naming the class and the value of m of a series with
which it is ultimately comparable.

15. Tchebechef in a remarkable paper (Liouvillc, xvn. 366) has shewn
that if we take the prime numbers 2, 8, 5... only, the series

will be convergent if the series

F(3)

log 2 Iog3 log*"*"'"

is convergent. Compare Ex. 10 at the end of the Chapter.

A method of testing convergence is given by Kummcr (Crelle, zin.), in-

ferior, of course, to those of Bertrand, &c., but worthy of notice, as it is

closely analogous to his method of approximating to the value of very slowly

converging series (Bertrand, Dijf. Cal. 261). It is by finding a function vn
v u

such that vnun Q ultimately, but
n -- vn^ >0 when n is oo . His further

Un+l
paper is in Crelle, xvi. 208.

We shall not touch the question of the meaning of divergent series ;

De Morgan has considered it in his Differential Calculus^ or an article by
Prehn (Crelle',

XLI. 1) may be referred to.

EXERCISES.

1. Find by an application of the fundamental proposition
two limits of the value of the series
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In particular shew that if a = 1 the numerical value of

the series will lie between the limits ^ and
-^

.

2. The sum of the series

1 1

(where 8 is positive) lies between

1

3. Examine the convergency of the following series

.1 .1
sin = x sin x x

sin a; 2 3
" "*" 1 ^" '

1" 2"

2

4. Are the following series convergent ?

057 2?i 4- 1 . i i

_/P^._/u
8
-j----aj

3
-j a? + . . . H i Y a/ + wnere x is real,

1 + x cos ct 4- #
a
cos 2cc -H , , . where x is real or imaginary.
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5. The hypergeometrical series

ab a(

is convergent if x < 1 , divergent if x> 1.

If x = 1 it is convergent only when c + d a b>l.

6. For what values of x is the following series convergent ?

7. In what cases is

x x* + .

i-7+lV + i'-
fimte?

8. Shew that

1 + 1 + 1+ ...

w w, w
a

is convergent if un^ 2wn+1 + un be constant or increase with n.

9. If

?-*,-+*+...,
^n w na

shew that the series converges only when a < 1, or when
a = l, and >1.

10. A series of numbers plf p2
. . . are formed by the formula

shew that the series F(pJ + F(p^ + ...
,
will be convergent

2^(2) jF(3)
if r-^-' + r i + ... is convergent,

log 2 log 3 &

[Bonnet, Liouville, vm. 73.]
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11. Shew that the series

and -1 + r I

--
;

- + ......... converge and divergea ao + a
i

o + ! + !
& 6

together.

Hence shew that there can be no test-function
<f> (ri)

such
that a series converges or diverges according as

<f> (n) -5- un does
not or does vanish when n is infinite.

[Abel, Crelle, in. 79.]

12. Shew that if/(#) be such that

CM-i
/to

'

when cc= 0,the series w
t
+ u

t 4- ... and/^) +/(^2) +
converge and diverge together.

13. Prove from the fundamental proposition Art. G that

the two series

A (1) + d> (2) + * (3) + .............
)

,

. /-. x i / T t j / i\ r m being positive are con-
</> (1) + m<f> (m) + m9

<j> (m
8

) + ......
J

^

vergent or divergent together.

14. Deduce Bertrand's criteria for convergence from the

theorem in the last example.

[Paucker, Crelle, XLIII. 138.]

15. If a + a^x + a
f
cc
2 + ... be a series in which a

0<l
a

lf ...,

do not contain as and it is convergent for x = 8 shew that it

is convergent for x<S even when all the coefficients are

taken with the positive sign.

16.* The differential coefficient of a convergent series

remains finite within the limits of its convergency. Examine

the case of un = <f> (ri)
cos n0. Ex. ^ (ri)

= -
,
when the sum

of the original series is ^ log (2 2 cos x).
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17. Find the condition that the product Wj u
2 1^ . ...

should be finite.

Ex. 2*. 3*. 4*

18. If the series u
a + u

l
+ u

s + ... has all its terms of

the same sign and converges, shew that the product

(1 + M
) (1 + tij)

. . . . is finite.

Shew that this is also the case when the terms have not

all the same sign provided the series and that formed by
squaring each term both converge.

[Arndt, Grunert, XXL 78.]



( 1*5 )

CHAPTER VIII.

EXACT THEOREMS.

1. IN the preceding chapters and more especially in

Chapter II. we have obtained theorems by expanding func-

tions of A, E and D by well-known methods such as the Bi-

nomial and. Exponential Theorem, the validity of which in

the case of algebraical quantities has been demonstrated else-

where. But this proceeding is open to two objections. In
the first place the scries is only equivalent to the unexpanded
function when it is taken in its entirety, and that is only pos-
sible when the series is convergent ;

so that there can in this

case alone be any arithmetical equality between the two sides

of the identity given by the theorem. It is true that the

laws of convergency for such series when containing algebra-
ical quantities have been investigated, but it is manifestly

impossible to assume that the results will hold when the sym-
bols contained therein represent operations, as in the present
case. And secondly, we shall very often need to use the

method of Finite Differences for the purpose of shortening
numerical calculation, and here the mere knowledge that the

series obtained are convergent will not suffice
;
we must also

know the degree of approximation.
To render our results trustworthy and useful we must find

the limits of the error produced by taking a given number of

the terms of the expansion instead of calculating the exact value

of the function that gave rise thereto. This we shall do pre-

cisely as it is done in Differential Calculus. We shall find the

remainder after n terms have been taken, and then seek for

limits between which that remainder must lie. We shall con-

sider two cases only that of the series on page 13 (usually
called the Generalizedform of Taylors Theorem) and that on

page 90. The first will serve for a type of most of the theo-

rems of Chapter II. and deserves notice on account of the
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relation in which it stands to the fundamental theorem of the

Differential Calculus; the close analogy between them will

be rendered still more striking by the result of the investiga-
tion into the value of the remainder. But it is in the second

of the two theorems chosen that we see best the importance
cf such investigations as these. Constantly used to obtain

numerical approximations, and generally leading to divergent
series, its results would be wholly valueless were it not for the

information that the known form of the remainder gives us

of the size of the error caused by taking a portion of the series

for the whole.

Remainder in the Generalizedform of Taylor s Theorem.

2. Let vx be a function defined by the identity

(x-a)vx
= ux -ua (1).

By repeated use of the formula

&wwvx = w^ Atf, -f vx&ws (2)

we obtain

(x
- a + 1) Avx + vx = Awx ,

(x
- a + 2) A\ + 2Av, =AX>

(x
- a + n]AX + nkn~l

vx = AX.
Substituting successively for vxt Av,, A2

^...we obtain
after slight re-arrangement

+ -B. (3),

whcre (-Kg--
\n

vx representing *, as is seen from (1).a x
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3. This remainder can be put into many different forms

closely analogous, as has been said, to those in the ordinary
form of Taylor's Theorem. For instance, if ux =f(x) we have

s
I

Jo

f
Jo

f (
x + (a - *0 z

\

An
/' {a? + (a

-
a?)

where 5 is some proper fraction.

If we write x + A for a, this last may be written Aw
/' (x + JiO)

where A# is now supposed to be 1 instead of unity, and
jRn appears under the form

from which we can at once deduce Cauchy's form of the re-

mainder in Taylor's Theorem, i.e.

ifi+i

*_
(1 -*)/ (*+0A),

after the easy generalization exemplified at the bottom of

page 11.

4. Another method of obtaining the remainder is so strik-

ingly analogous to one well known in the Infinitesimal Cal-

culus that we shall give it here. (Compare Todhunter's Diff.

Gal. 5th Ed. p. 83.)

Let

be called F(x) ;
where

(a
-

#)
(r) =

(a
-

a?) (z
- a - !)...(*

- x - r + 1).

102
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Then, since from (2)

we obtain

(6).

Now if z x be an integer

^W-^(*) = AF(*) + AF( + l)+...+ AF(5-l) (7),

arid hence is equal to the product of (z x) and some quantity
intermediate between the greatest and least of these quantities,
and as AjF (x) is supposed to change continuously through the

space under consideration, it will at some point between x

and z (we might say between x and z 1), take the value

in question, arid we may thus write (7),

F(z]
- F (*)

= -
*) A*> + (*-*)].

But Jf
7

(*)
= 0, /. (G) becomes

F(x) = -(z-x)&F{z+0 (a?- *)}

or, if z = A,

+i)

te) (8).

5. A more useful form of the result would be derived at

once by summing both sides of (6), remembering that F(z) is

zero. Since (z x 1
)
(n) is positive for all values of x less

than z, we see that F (x\ lies between the products of the sum
(z
- x l)

(r)

of the coefficients of the form --
:

-
by the greatest and

least values of A"*1

<(#). But the sum in question is

(z x}**
l}

.---
^
so that the form thus obtained is very convenient.

,71 "T" JL
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This last investigation only applies when z x is an integer,
or in other words when the scries would terminate. It is

evident that if it were not so we could not draw conclusions

as to the magnitude of F (z) F (x) from the successive differ-

ences as we do above. The form of the periodical constant

would affect F (z} F (x) without affecting the other side of

the equation.

Remainder in the Maclaurin Sum-formula.

6. In finding the remainder in the Maclaurin sum-formula
we shall take it in the slightly modified form obtained by

writing ux for \uxdx and performing A on both sides. It

then becomes

du A 1 A du9 B. A d*ux /AN

sf-^-i^+rs**-"-- ^'

but for convenience we shall write it in the more symmetrical
form (using accents to denote differentiation)

v.'
= Au, + A^uS+A^u," + . . .+ A^buf-

1 + R^. . . (10),

where

By Taylor s Theorem we have (Todhunter's Int. Cal. Ch. IV.)

At*.
1-1 - v*+f*Pdt,

J

d?
n*1

where P = t, =
TFI w,+1^.
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Substitute in (10) and the coefficient of ur
x is

This must vanish through the identity expressed in (10).

Our symbolical work is the demonstration of this.

The coefficient of Pdx under the integral sign is

suppose.

We shall now shew that < (2n, z) does not change sign be-

tween the limits of the integral, remains positive or negative
as m is even or odd, and has but one maximum (or minimum)
value in each case. We see from (11) that <]>(r,z) vanishes

when 2 = 1, as it also does when z 0.

7. Assume the above to hold good for some value of n
t say

an even one, so that
<f> (2w, z) is positive between and 1,

has but one maximum and vanishes at the limits. Add
thereto A

9n (which is negative) and integrate and we obtain

<J>(2?i + 1,). Now this vanishes at both limits, and there-

fore its differential coefficient < (2n, z) + ASn must vanish at

some point between them. Now this last is negative at each
limit and has but one maximum, thus it must vanish twice,

in passing from negative to positive and from positive to

negative, so that <f>(2n + l,z) has only one minimum fol-

lowed by a maximum between and 1, and thus can vanish

but once. Adding -4
2n+1 (which is zero) to it, for the sake

of symmetry, and integrating again we obtain
<f> (2n -4- 2, z) .

This vanishes also at both limits, and its differential coeffi-

cient is, as we have seen, at first negative and then positive,

changing sign but once. Thus
<f> (2n + 2, z) has but one

maximum and remains positive, which was what we sought
to prove. Continuing thus, the theorem is proved for all

subsequent values of n, if it be true for any particular one
;

z* z
and as it is true for $ (2, z) or 5 , it is generally true.
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8. Since < (2n, z) retains its sign between the limits

, o<

ju, ^ in virtue of (11).'" jCTtr N '

Now perform 2 on both sides of (9) and write
\uxdx

for ua

Lot M be the greatest value irrespective of sign that -
,

2
*-

dx
has between the limits of summation, x and x 4- MI suppose.

Then 2w . must lie between the limits mM.

X-r9

9. Other conclusions may be drawn relative to the size of

the error when other facts are known about the behaviour of ug
and its differential coefficients between the limits. For in-

stance, if u^ keeps its sign throughout, we may take in-

stead of mM as one of the limits. The sign of the error

will therefore be that of ( l)
n
M, and, should u*n+* keep the

same sign as u*n between the limits, the error made by taking
one term more of the series will have the same sign as

( l)
n+1

j|f, i.e. the true value will lie between them. This

is obviously the case in the series at the top of page 101,

hence that series (without any remainder-term) is alternately

greater and less than the true value of the function.

10. If w/*
1*1

retain its sign between the limits in (10) we
have

*

n, ff) Aw,
2n

, 6 < 1.
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Now it can be shewn that <f>(2n, 6) is never greater nu-

merically than 2^4
2n ;

hence the correction is never so

much as twice the next term of the series were it continued

instead of being closed by the remainder-term. Thus, wher-
ever we stop, the error is less than the last term, provided
that the differential coefficient that appears therein either

crnstantly increases or constantly decreases between the

limits taken. This condition is satisfied in all the important

scries of the form 2 -=? . The series to which they lead on
x J

application of the Maclaurin sum-formula all converge for a

time and then diverge very rapidly. In spite of this diverg-
ence we see that they are admirably adapted to give us

approximate values of the sums in question, for we have but
to keep the convergent portion and then know that our error

is less than the last term we have kept; and by artifices

such as that exemplified on page 100, this can be made as

small as we like.

11. Several solutions have been given of the problem of finding the re-

mnirulc r after any number of terms of the Maclaurin sum-formula. The one
in tlic text is by Malmsten, and the proof given was suggested by that in

H paper I>y him in Crelle (xxxv. 55). It has been chosen because the limits

of the error thus obtained are perfectly general and depend on no property of

?*
j, or the differential coefficients thereof, save that such as appear must vary

continuously between the limits. The idea of the method used in this very
valuable paper was taken from Jacobi, who used it in a paper on the same

subject (Crelle, xn. 263), entitled De usu legitimo formula summatoria
Maclauriana. Malmsten's paper contains many other noteworthy results,
and in various cases gives narrower limits to the error than those obtained

by other processes, -while at the same time they are not too complicated. But
the whole paper is full of misprints, so that it is better to read an article of
Schlomilch (Zeitachrift, i. 192), in which he embodies the important part of

Malmsteri's article, greatly adding to its value by shewing the connection
between the remainder and Bernoulli's Function of which we have spoken
in Art. 14, page 116. The paper is written with even more than his usual

ability, and is to be highly recommended to those who wish further informa-
tion on the subject.

12. The chief credit of putting the Maclaurin sum-formula on a proper
fooling, and saving the results it gives from the suspicion under which they
must lie as being derived from diverging series, is due to Poisson. In a

paper on the numerical calculation of Definite Integrals (M6moires de
VAcademic, 1823, page 571) he starts from an expansion by Fourier's

Theorem, and obtains for the remainder an expression of the form
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and he then investigates the limits between which this will lie. The investi-

gation is continued by Eaabe (Crelle, xvm. 75), and the practical use of the
results in the calculation of Definite Integrals examined and estimated, and
modifications suitable for the purpose obtained.

A method of obtaining the supplementary term which possesses many
advantages is based on the foimula

where K = v/~f. On this see a paper by Genocchi (Tortolini, Ann. Series, i.

Vol. in.), which also contains plentiful references to earlier papers on the

subject. Tortolini in the next volume of the same Journal extends it to Sw
.

See also Schlomilch (Grunert Archiv, xn. 130).

13. The investigation which appeared in the first edition of this book
is subjoined here (Art. 16). The editor thinks that the fundamental assump-
tion, viz. that the remainder may be considered as being equal to

cannot be held to be legitimate, since the series which the latter represents may
be and often is divergent. For the conditions under which the series itself

would be convergent, see a paper by Genocchi (Tortolini, Ann. Series, i. Vol.

vi.) containing references to some results from Cauchy on the same subject.
There is a very ingenious proof of the formula itself by integration by parts,
in the Cambridge Mathematical Journal, by J. "VV. L. Glaisher, wherein the

remainder ia found as well as the series, and Schlomilch (Zeitechrift^ IT. 289)
has obtained them by a method of great generality, of which he takes this and
the Generalized Taylor's Theorem as examples.

14. By far the most important case of summation is that which occurs in

the calculation of log Fw and its differential coefficients. For special examina-
tions of the approximations in this case we may refer to papers by Lipschitz

(Crelle, i.vi. 11), Bauer (Crelle, LVII. 256), Raabe (Crelle, xxv. 140, and xxviu.

10). It must be remembered that there is nothing to prevent thero being
two semi-convergent expansions of the same function of totally different

forms, so that the discrepancy noticed by Guderman (Crelle, xxix. 209) in two

expansions for log Fw, one of which contains a term in , and the other does

not, does not justify the conclusion that one must be false.

15. The investigation into the complete form of the Generalized Taylor's
Theorem is derived from a paper by Crelle in the twenty-second volume of

his Journal. Other papers may be found in Liouville, 1845, page 379, (or
Grunert Archiv, viu. 166), Grunert, xiv. 337, and Zeitechrijt, n. 269. The
convergence and supplementary term of the expansion in inverse factorials

(Stirling's Theorem) have also been investigated by Dietrich (Crelle, LIX.

163).

The degree of approximation given by transformations of slowly converg-

ing series has been arrived at by very elementary work by Poncelet (Crelle,
xin. 1), but the results scarcely belong to this chapter.
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Limits of the Remainder of the Series for 2ux. (BOOLE.)

16. Representing, for simplicity, ux by u, we have

The second line of this expression we shall represent by .R, and endeavour
to determine the limits of its value.

Now by (9), page 109,

Therefore substituting,

vr _ 2 (- I)-
1 d-lu

** . 7rt VO_ 8. j_3r 1

Assume

And then, making ~--=ee
, we are led by the general theorem for the

ZTWTT

summation of series (Dip. Equations , p. 431) to the differential equation

the complete integral of which is (biff. Equations, p. 383)

cos2fW7ra;
f .

I si

or, since we have to do only with integer values of x for which sin (2nnrx) =0,
cos

= _
(2m7r)*

rFi

Hence

Ma
J2= 2S

1\*--1 /* /Z2l*+1M
(Tniri Isin2wnra , .-v-. (

7r)
lH+1

J
dac2n+l

t {

i+ -
$
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d8"*1
!*

the lower limit of integration being such a value of x as makes
JT^+I

to vanish, the upper limit x. Hence if within the limits of integration
/Nn+lff

Xfc+f retam a constant sign, the value of R will be numerically less than

that of the function

therefore, than that of the function

(1 1
)
cP^M

therefore, by (9), page 109, than that of the function

When n is large this expression tends to a strict interpolation of form,
between the last term of the series given and the first term of its remainder,

viz., omitting signs, between

1.2.. .

it being remembered that by (9), page 109, the coefficient of
-r-^

in (1) is, in

<P*- lu d^+^u
the limit, a mean proportional between the coefficients of -% n^f and ,n t

dOu clxr

in (2). And this interpolation of form is usually accompanied by interpo-
lation of value, though without specifying the form of the function u we
can never affirm that such will be the case.

The practical conclusion is that the summation of the convergent terms
of the series for 2u affords a sufficient approximation, except when the

first differential coefficient in the remainder changes sign within the limits

of integration.
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DIFFERENCE- AND FUNCTIONAL

EQUATIONS.

CHAPTER IX.

DIFFERENCE-EQUATIONS OF THE FIRST ORDER.

1. AN ordinary difference-equation is an expressed rela-

tion between an independent variable sc, a dependent variable

ux ,
and any successive differences of 1/X ,

as Aw,, A2
^... A"?^.

The order of the equation is determined by the order of its

highest difference
;

its degree by the index of the power in

which that highest difference is involved, supposing the equa-
tion rational and integral in form. Difference-equations may
also be presented in a form involving successive values, in-

stead of successive differences, of the dependent variable
;

for AnuK can be expressed in terms of uxy ux+l
. . .ux+n .

Difference-equations are said to be linear when they are

of the first degree with respect to uxJ Auxy &?ux1 ... ; or, sup-

posing successive values of the independent variable to be

employed instead of successive differences, when they are of

the first degree with respect to uf , ux+l ,
u
y+2> .... The equi-

valence of the two statements is obvious.
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Genesis of Difference-Equations.

2. The genesis of difference-equations is analogous to that

of differential equations. From a complete primitive

F(x,ux) c)
= Q. (1),

connecting a dependent variable uz with an independent
variable x and an arbitrary constant c, and from the derived

equation

A*>,^,c) = (2),

we obtain, by eliminating c, an equation of the form

(*, ux , AtO=0 (3).

Or, if successive values are employed in the place of dif-

ferences, an equation of the form

*(*,*,. W)- W-
Either of these may be considered as a type of difference-

equations of the first order.

In like manner if, from a complete primitive

F(xt ux , c1,c2,...crt)
=

(5),

and from n successive equations derived from it by successive

performances of the operation denoted by A or E we elimi-

nate cp c
2,...ctt,

we obtain an equation which will assume
the form

<f> (x, ux ,
Awz , . . .AjO (6),

or the form

^ fa ux , UM, . . . <O =
(7),

according as successive differences or successive values are

employed. Either of these forms is typical of difference-

equations of the nth
order.
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Ex. 1. Assuming as complete primitive ux = cx + c*> we
have, on performing A,

A^ = c,

by which, eliminating c, there results

the corresponding difference-equation of the first order.

(8).

Thus too any complete primitive of the form ux
= ex -f/(c)

will lead to a difference-equation of the form

Ex. 2. Assuming as complete primitive

ux =sca*+c'b*,

we have

Hence

u*+i
~" aux

= c' (6 a) &*,

u***
- <MM = c'(b- a) b*

+1
.

Therefore

u
*+*

- ^Wi - 1> K+i - aMJ = >

or

^-( + &)w + K-0 (9).

Here two arbitrary constants being contained in the com-

plete primitive, the difference-equation is of the second

order.

3. The arbitrary constants in the complete primitive of a

difference-equation need not be absolute constants but only

periodical functions of x of the kind whose nature has been

explained, and whose analytical expression has been deter-

mined in Chap. IV. Art. 4. They are constant with reference

only to the operation A, and as such, are subject only to the

condition of resuming the same value for values of x differing

by unity ;
a condition which however reduces them to abso-

lute constants when x admits only of such systems of values,

as for instance in cases when it must be integral.
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Existence of a Complete Primitive.

4. We shall now prove the converse of the theorem in

Art. 2, viz. that a difference-equation of the n* order implies
the existence of a relation between the dependent and inde-

pendent variables involving n arbitrary constants. We shall

do so by obtaining it in the form of a series.

Let us take (C) as the more convenient form of the equa-
tion, and suppose that on solving for A*X we obtain

AX =/(*, uni Au, ... A-'u.) (10).

Performing A we get

A""
1
"
1^ = some function of x, ux^ &ux ... Au*,

and on substituting for An
w* from (10) this will reduce to an

equation of the form

Att+X =/; (*, ux , Au. ... A-X) (11).

Continuing this process we shall obtain

AW+X =/r (*, *, Au, . . . A"-V) (12).

But

i \ f ~* * ~ ^,\ /I O\+ ' ' +/r ( n
> U-n) Cl>

' ' ' C
-i) (I'U

where c
l9

c
2,... cn_t

are the values of Aw_n ... &n~l

u_n , and with
the value of u_n form n arbitrary constants in terms of which
and r the general value of ur is expressed. Thus (13) con-

stitutes the general primitive sought. It is evident that it

satisfies the equation for &pux for all values of p, since it is

derived from those equations.

5. Though this is theoretically the solution of (6) it is

practically of but little use. On comparing it with the cor-

responding theorem in Differential Equations, we see that
both labour under the disadvantage of giving the solution
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in the form of a series the coefficients of which have to be
calculated successively, no law being in general discovered

which will give them all. And in one point the series in

Differences has the advantage, for it consists of a finite

number of terms only, while the other is in general an infinite

series. On the other hand, the latter is usually convergent

(at all events for small values of r
}
since the (HI + l)

tu term
T
m

contains . as a factor), so that the first portion of the series

suffices. But in our case the last part of the series is as

important as the preceding part, since there is no rea.s >u

to think that the differences will get very small and tlu

factor ---
,

is never less than unity.
\m

J

Having shewn that we may always expect a complete

primitive with n arbitrary constants as the solution of a

difference-equation of the nth

order*, we shall take the case of

equations of the first order, beginning with those that a e

also of the first degree.

{ Linear Equations of the First Order. J

6. The typical form of this class of equations is

u^-Aj*, = Bt . (14),

where A x and Bx are given functions of cr. We shall iir.?t

consider the case in which the second member is 0.

To integrate the equation

we have

whence, the equation being true for all values of A,

* An important qualification of this statement will be given in the next

chapter.
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Hence, by successive substitutions,

A-2 A
rU>r< (16),

r being an assumed initial value of x.

Let C be the arbitrary value of ux corresponding to x = r

(arbitrary because, it being fixed, the succeeding values of ux,

corresponding to x = r -f 1, no r -f- 2, ...
, are determined in

succession by (15), while ur is itself left undetermined), then

(16) gives

whence

u,= CA^A^...A f , (17),

and this is the general integral sought*.

7. While, for any particular system of values of x differ-

ing by successive unities, C is an arbitrary constant, for the

aggregate of all possible systems it is a periodical function

of x, whose cycle of change is completed, while x varies con-

tinuously through unity. Thus, suppose the initial value of

x to be 0, then, whatever arbitrary value we assign to U
Q , the

values of u
l9
uv uy ... are rigorously determined by the

equation (15). Here then (7, which represents the value of

M
O,

is an arbitrary constant, and we have

Suppose however the initial value of x to be
,
and let E

be the corresponding value of ux. Then, whatever arbitrary

* There is another mode of deducing this result, which it may be well
to notice.

Let ut
= e*. Then w^.x= c

t+At
, and (15) becomes

whence A*= log A e ,

a-j- ... +C
=log II (A^) + C, following the notation of (18).

Therefore

as before.
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value we assign to E
y
the system of values of u., u~

y ... will

be rigorously determined by (15), and the solution becomes

The given difference-equation establishes however no con-

nexion between G and E. The aggregate ofpossible solutions

is therefore comprised in (17), supposing C therein to be an

arbitrary periodical function of x completing its changes while
x changes through unity, and therefore becoming a simple

arbitrary constant for any system of values of x differing by
successive unities.

We may for convenience express (17) in the form

uf
= CU(A^) (18).

where II is a symbol of operation denoting the indefinite con-

tinued product of the successive values which the function of

x
t which it precedes, assumes, while x successively decreases

by unity.

8. Resuming the general equation (14) let us give to ux the

form above determined, only replacing C by a variable para-
meter Cx ,

and then, in analogy with the known method
of solution for linear differential equations, seek to deter-

mine Gx .

We have u.-CfU(A^ 9

ux
= CMU(Ax\

whence (14) becomes

But

whence (CM - CJ H (A,) = Bx>

or,

whence ACK = 7-- < .

112
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/.ti.-n^jSjjIk
+

C'}
(20),

the general integral sought*.

Ex. 1. Given u
x+l
-

(x + 1) M,
= 1 . 2 ... (#+ 1).

From the form of the second member it is apparent that x
admits of integral values only.

Here A x
= x + l, II (A^ = x (x- 1) ... 1,

.-. Ma = o? (a?- !)...! x (x

>\ here (7 is an arbitrary constant.

* The simplest method of solving the equation

U^-AtU^Jt,
is derived from its analogy with the equation

In this latter we sought for a factor u which should make the first side a

pei feet differential, and found that it was given by solution of the equation

In the present cnse suppose CT

, to be the factor which makes the left-hand

le a perfect difference, i.e. of the form vx+l ux+l
- vxitx .

Then v +1
= Cx and vx=A XCX .

Thus

_vx I

as above, putting the arbitrary constant equal to unity, since we only waut
one integrating factor, not the general expression for buch.

Multiplying by v,^ we get
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Ex. 2. Given u
x+1

aux = 6, where a and b are constant.

Here Ax
= a, and II (AK)

= a*, therefore

where C
l
is an arbitrary constant.

We may observe, before dismissing the above exampic, that

when Ax *=a the complete value of II (Ax) is ax multiplied by
an indeterminate constant. For

= a.a. a...(# r-f- 1) times,

= a
a^+l = a-

r+l xafl!

.

But were this value employed, the indeterminate constant

a"
1*1 would in one term of the general solution (20) disappear

by division, and in the other merge into the arbitrary con-

stant C. Actually we made use of the particular value corre-

sponding to r = l, and this is what in most cases it will be
convenient to do.

9. We must here make a remark about the solution of

linear equations of the first degree, which will be easily appre-
hended by those who are acquainted with the analogous pro-

perty of linear differential equations.

The solution of

u^-A xux
= Bx . (21)

consists of two parts, one of which contains the arbitrary con-

stant and is the solution of

1^-4^ =
(22),

and the other is a particular solution of the given equation

(21). It is evident that these parts maybe found separately;
the general solution of (22) being taken, any quantity that

satisfies (21) may be added for the second part and the result
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\vill be the general solution of (21). It will be often found

advisable to use this method in solving such equations, and
to guess a particular integral instead of formally solving the

equation in its more general form (21).

Ex. 3. Given A^ + 2ux = - x - 1.

Replacing Aw, by w
x+l

u9 ,
we have

Here Ax
= - 1, Bx

=
(x -f 1), whence

Ex. 4. u^ aux
=

7
-

:

We find

When, as in the above example, the summation denoted by
2 cannot be effected in finite terms, it is convenient to employ
as above an indeterminate series. In so doing we have sup-
posed the solution to have reference to positive and integral
values of x. The more general form would be

r being the initial value of x.

Difference-Equations of the first order, but not of the first

degree.

10. The theory of difference-equations of the first order
but of a degree higher than the first differs much from that of

the corresponding class of differential equations, but it throws

upon the latter so remarkable a light, that for this end alone
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it would be deserving of attentive study. Before however

proceeding to the general theory, we shall notice one or two

great classes of such equations that admit of solution by
other ways. The analogy between these and well-known
forms of differential equations is too evident to need special
notice.

A. Clairaulfs Form. <

ux
=

A solution of this is evidently

which gives AM, = c.

Ex. 5. u =

gives u = ex + c
2
.

B. One variable absent.

Writing u
x+l

um for &ux and solving we obtain

denoting by ^/r

a

(x) the result of performing ^ on
yfr (x).

Continuing we shall have

**f =^M> r if ^r
=

<*> ^r+n
=^ ()

This may fairly be called a solution of the equation, but

its interpretation and expansion may offer greater difficulties

than the original equation presented. This subject will be

considered under the head of Functional Equations.

Ex. 6. UM = 2u,
a

;
/. UM = 2 (2*O

a = 2V,
and continuing we obtain
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C. Equations homogeneous in u.

The type of such equations is

Solve for -*** and we obtain an equation of the form

-^tl= A x >
which leads to a linear equation in ux.

Ex. 7. usj - SuMuf + 2u,
2 =

(23) .

Solving u
t+l
= 2ux or w^,

hence um
= 2 af

(7 or (7.

We shall examine further on whether these are the only
solutions of (23).

Many other difference-equations may be solved by means
of relations which connect the successive values of well-known

functions, especially of the circular functions.

Ex. 8. umum- ax (ux+l
- tO + 1 = 0.

Here we have

Now the form of the second member suggests the trans-

formation uz
= tan vx, which gives

1 _ tan v,+J tan vx

a,~~ 1 + tan vx+1tau vx

= tan At^,

whence

~-il
a,
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ux
= tan

(<7-f 2 tan"
1

-) .

\ ax'

Ex.9. Given umun + </[(!
-tO (1

-Ol = **

Let tix
= cos v., and we have

ax= cos v
x+1

cos flx 4- sin vx+J sin va

= cos (vx+l vx) = cos Av*,

whence finally

w, = cos (0+ 2 cos"
1

a,).

But such cases are not numerous enough to warrant special

notice, and their solution must be left to the ingenuity of the

student. We subjoin examples requiring these and similar

devices for their solution.

EXERCISES.

1. Find the difference-equations to which the following

complete primitives belong.

. 1st. u= cx* 4- c\ 2nd. u = c (- 1)*- -
.

3rd. u = ex -f c'a*. 4th. u = ca
x
4- c

2
.

Solve the equations

2. u^ pa**ux =

>/3. i^ aux = cos ?i.r.

v4. ux+l
ux + (a?+ 2) ^

5. Wa+i
_

Waj cos ax = cos a cos Za ... cos (a? 2) a.

A tt^tt^ 4- at/r + 6 = 0.

7. t*
fl;^1

az*r 4- b = 0.
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&y\+1
sin xQ ux sin (a?-fl)

= cos
(a? 1) 0- cos(3o?+ 1)0.

SLO. UM -
aw. = (2a? + 1) a*.

ill. ^-2+1 = 0.

13.

as. A

1 6. ux

18. If PK be the number of permutations of n letters

taken K together, repetition being allowed, but no three con-

secutive letters being the same, shew that

where a, /9 are the roots of the equation

a? = (n _ i) (x 4. i). [Smith's Prize.]
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CHAPTER X.

GENERAL THEORY OF THE SOLUTIONS OF DIFFERENCE- AND
DIFFERENTIAL EQUATIONS OF THE FIRST ORDER.

1. WE shall in this Chapter examine into the nature and
relations of the various solutions of a Difference-equation of

the first order, but not necessarily of the first degree, and
then proceed to the solutions of the analogous Differential

Equations in the hope of obtaining by this means a clearer

insight into the nature and relations of the latter.

Expressing a difference-equation of the first order and wth

degree in the form

A")" . . . + P. - (1),

X2 ... Pn being functions of the variables x and u, and then

by algebraic solution reducing it to the form

(Aw -jpj (Aw -ft) . . . (Aw - j,J = (2),

it is evident that the complete primitive of any one of the

component equations,

Aw-^ = 0, Aw-pa
= 0... AM-_pn

=
(3),

will be a complete primitive of the given equation (1) i. e. a
solution involving an arbitrary constant. And th.us far there

is complete analogy with differential equations (Diff. Equa-
tions, Chap. vii. Art. 1). But here a first point of difference

arises. The complete primitives of a differential equation of

the first order, obtained by resolution of the equation with
di/

respect to -?- and solution of the component equations, may

without loss of generality be replaced by a single complete

primitive. (Ib. Art. 3.) Referring to the demonstration of
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this, the reader will see that it depends mainly upon the fact

that the differential coefficient with respect to x of any func-

tion of Vv V,,. . . Vnt variables supposed dependent on a?, will be
linear with respect to the differential coefficients of these de-

pendent variables [76. (16), (17)]. But this property does not

remain if the operation A is substituted for that of -,
; and

therefore the different complete primitives of a difference-

equation cannot be replaced by a single complete primitive *.

On the contrary, it may be shewn that out of the complete
primitives corresponding to the component equations into

which the given difference-equation is supposed to be re-

solvable, an infinite number of other complete primitives

may be evolved corresponding, not to particular component
equations, but to a system of such components succeeding each

other according to a determinate law of alternation as the

independent variable x passes through its successive values.

Ex. Thus suppose the given equation to be

(At*.)
2 -

(a + x) Aux + ax = (4),

which is resolvable into the two equations

Att,-a = 0, Awz -o: = (5),

and suppose it required to obtain a complete primitive which
shall satisfy the given equation (4) by satisfying the first of

the component equations (5) when x is an even integer, and
the second when x is an odd integer.

* This statement must be taken with some qualification. The reason

why the primitives in question F
1 -Cl -=0, F3 -Ct=0, ... ,

can be replaced
by the single primitive (

V
l
- C) (

Fa - C) . . . = is merely that the last equation
exactly express?* tJw facts stated by all the others (viz. that some one of the

quantities F,,
F
2 ,... is constant) and expresses no more than that . In a precisely

similar way the primitives of a difference-equation of the same kind, being
represented by /j (x t uf , Cj)=0, fa (*, un C8)=0, ...

, may be equally well re-

presented by /! (x, uft C) x/f (as, u* C) x .. =0. But we shall see that the
latter equation must be resolved into its component equations before any
conclusion is drawn as to the values of Au,. It is not loss of generality that
is to be feared when we combine the separate primitives into a single one,
but gain. The new equation is the primitive of an equation of a far higher
degree (though still of the first order), and though including the original
difference-equation is by no means equivalent to it. We shall return to
this point (page 184).
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The condition that Aw, shall be equal to a when x is even,
and to x when x is odd, is satisfied if we assume

l-(-l)'

~
2

the solution of which is

ax x(x-\)w
-=if

+
5

and it will be found that this value of uz satisfies the given
equation in the manner prescribed. Moreover, it is a com-

plete primitive*.

2. It will be observed that the same values of Ait, may
recur in any order. Further illustration than is afforded by
Ex. 1 is not needed. Indeed, what is of chief importance to

be noted is not the method of solution, which might bo varied,

but the nature of the connexion of the derived complete pri-
mitives with the complete primitives of the component equa-

* To extend this method of solution to any proposed equation and to

any proposed case, it is only necessary to express AM, as a linear function

of the particular values which it is intended that it should receive, each
such value being multiplied by a coefficient which has the property of

becoming equal to unity for the values of x for which that term becomes
the equivalent of Aw,, and to for all other values. The forms of the coeffi-

cients may be determined by the following well-known proposition in the

Theory of Equations.

PROP. If a, /3, 7,... be the several nth roots of unity, then, x being an

integer, the function - - ^-^ is equal to unity if x be equal to n or a

multiple of n, and is equal to if x be not a multiple of n.

Hence, if it be required to form such an expression for A?i as shall

assume the particular values plt _pa,....pn in succession for the values x 1,

x 2, . . .as= n, and again, for the values x n + 1, x= n + 2, . . .x =. 2n, and so on,

ad inf., it suffices to assume

At/,= P,_lPl+ P._2i?4 . . . + P,-*pn (6),

.
* * *

where P. =

a,, 7,...being as above the different nth roots of unity. The equation (6)

mu ,t then be integrated.
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tions into which the given difference-equation is resolvable.

It is seen that any one of those derived primitives would

geometrically form a sort of connecting envelope of the loci

of what may be termed its component primitives, i.e. the

complete primitives of the component equations of the given
difference-equation.

If x be the abscissa, ux the corresponding ordinate of a point
on a plane referred to rectangular axes, then any particular

primitive of a difference-equation represents a system of

such points, with abscissae chosen from a definite system dif-

fering by units, and a complete primitive represents an infi-

nite number of such systems, the system of abscissae being the

same for all. Now let two consecutive points in any system
be said to constitute an element of that system, then it is

seen that the successive elements of a derived primitive

(according to the definitions implied above) will be taken
in a determinate cyclical order from the elements of sys-
tems corresponding to what we have termed its component
primitives.

3. It is possible also to deduce new complete primitives
from a single complete primitive, provided that in the latter

the expression for ux be of a higher degree than the first with

respect to the arbitrary constant. The method, which con-

sists in treating the constant as a variable parameter, and
which leads to results of great interest from their connexion
with the theory of Differential Equations, will be exemplified
in the following section.

Solutions derivedfrom the Variation of a Constant

A given complete primitive of a difference-equation of the
first order being expressed in the form

-/(*,) (7),

let c vary, but under the condition that Aw shall admit of the
same expression in terms of x and c as if c were a constant.

It is evident that if the value of c determined by this condition

as a function of x be substituted in the given primitive (7)
we shall obtain a new solution of the given equation of dif-

ferences. The process is analogous to that by which from
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the complete primitive of a differential equation we deduce
the singular solution, but it differs as to the character of the

result. The solutions at which we arrive are not singular
solutions, but new complete primitives, the condition to which
c is made subject leading us not, as in the case of differential

equations, to an algebraic equation for its discovery, but to a

difference-equation, the solution of which introduces a new

arbitrary constant.

The new complete primitive is usually termed an indirect

integral*.

Ex. The equation u = x&u + (Au)* has for a complete
primitive

u = cx + c* (8),

an indirect integral is required.

Taking the difference on the hypothesis that c is constant,
we have

Aw = c;

and taking the difference of (8) on the hypothesis that c is an
unknown function of x

t
we have

Aw = c + (x + 1) Ac + 2cAc -h (Ac)
2
.

Whence, equating these values of Aw, we have

Ac (x + 1 + 2c 4- Ac) = (9).

Of the two component equations here implied, viz.

Ac = 0, Ac +

the first determines c as an arbitrary constant, and leads back

to the given primitive (8) ;
the second gives, on integra-

tion,

* We shall see reason to doubt the propriety of giving to it any special
name that would seem to imply that it stood in a special relation to the

original difference-equation.
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C being an arbitrary constant, and this value of c substituted

in the complete primitive (8) gives on reduction

Now this is an indirect integral. We see that the prin-

ciple on which its determination rests is that upon which
rests the deduction of the singular solutions of differential

equations from their complete primitives. But in form the

result is itself a complete primitive; and the reader will

easily verify that it satisfies the given equation of differences

without any particular determination of the constant C.

Again, as by the method of Art. 1 we can deduce from

(9) an infinite number of complete primitives determining c,

we can, by the substitution of their values in (8), deduce an
infinite number of indirect integrals of the equation of diifur-

4. The process by which from a given complete primi-
tive we deduce an indirect integral admits of geometrical in-

terpretation.

For each value of c the complete primitive u =f(x, c) may
be understood to represent a system of points situated in a

plane and referred to rectangular coordinates
;
the changing

of c into c -r Ac then represents a transition from one such

system to another. If such change leave unchanged the

values of u and of ku corresponding to a particular value of

x, it indicates that there are two consecutive points, i.e. an
element (Art. 2) of the system represented by u=f(x, c), the

position of which the transition does not affect. And the

successive change of c, as a function of x ever satisfying this

condition, indicates that each system of points formed in suc-

cession has one element common with the system by which
it was preceded, and the next element common with the sys-
tem by which it is followed. The system of points formed
of these consecutive common elements is the so-called indi-

rect integral, which is thus seen to be a connecting envelope
of the different systems of points represented by the given

complete primitive.
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5. It is proper to observe that indirect integrals may be
deduced from the difference-equation (provided that we
can effect the requisite integrations) without the prior know-

ledge of a complete primitive.

Ex. Thus, assuming the difference-equation,

u = Ai. + (AtO
a

(12),

and taking the difference of both sides, we have

. \ AX (AX + 2AM, -f x -f 1)
= 0,

which is resolvable into

AX=0 (13),

AX -f 2AWa? + # + 1 = (14).

The former gives, on integrating once,

Att,= c,

and leads, on substitution in the given equation, to the com-

plete primitive (8).

The second equation (14) gives, after one integration,

A.= C (-!)- 1 -i, (15),

and substituting this in (12) we have on reduction

(-l)-i}'-j',
(16),

which agrees with (11).

6. A most important remark must here be made. The
method of the preceding article is in no respect analogous
to the derivation of the singular solution from the differential

equation. It is precisely analogous to Lagrange's method of

solving differential equations by differentiation (Boole, Diff.

Eq. Ch. VII. Art. 9), where we form by differentiation a dif-

ferential equation of the second order, (of which the given

equation is one of the first integrals,) obtain by integration the



178 NATURE OF SOLUTIONS OF EQUATIONS [CH. X.

fjnj

other first integral, and eliminate -~ between them. Thus if
CiSC

we have

we obtain

an integral of which is

j = c>dx

and hence the solution of the given equation is

As a natural consequence of this analogy all the results of

this method are solutions of the original difference-equation.
It will be remembered on the contrary that the results of the

process of finding singular solutions from the differential

equation may not be solutions at all. The analogies of this

last process will be referred to later in Art. (21).

7. The second equation (14) might have been integrated
in another way, i.e. by simply performing 2 upon it. We
should then have obtained

c (17).

Substituting this in (12) we obtain
' '

(18).

This appears to be a third complete integral, but it is only
another form of (11), which may be written thus
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since
( I)

2*
is constant as far as the operation A is con-

cerned.

Substituting in (11) we obtain a result equivalent to (18)*.

General Theory of Difference-Equations of the first order
and their solutions.

8. We shall now examine the meaning and relationship of

difference-equations, their complete primitives and indirect

integrals ;
and to render our ideas clearer shall notice first

the analogous cases in differential equations.

If we have a differential equation of the first order and

first degree 3 has but one value at each point, and the
CUC

solution consists of a series of curves one of which passes

through every point and no two cut; for if two members of

the family of curves coincided in one point they would co-

incide during the remainder of their course. But if - be
CIJS

given by an equation of a higher (suppose the nth

) degree
this is not the case. Writing the equation in the form

we see that at every point ,
- may have any one of the

values pv p2
. . . pn ,

but must have one of them.

9. This and only this is told us by (19); the statement
at the end of the last paragraph is identically the same as the

statement contained in (19). Hence anything further that we
can extract from (19) must come from laws independent of

* It may be shewn independently, that if one integral of (14) gives a

complete primitive, the other must give the same. For if (17) hold, the
solution must come under the complete primitive of (14), involving two

arbitrary constants. But for all such solutions, (15) must also hold.

Hence all solutions derived from (17) and (12) must come among those

derived from (15) and (12), and as the converge proposition is also true, the

results of the two methods must be uUiiticnl. This can only be asserted

when (14) is of the first degree in A*t<z ;
in all other cases we shall see that

there is no single complete primitive.

122
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this special equation, which impose conditions on the systems

of values that -=- can take. The law that effects this is the
dx

law of continuity, which requires that ,- should vary continu-

ously, or that there should not be a finite change in 4-

oorresponding to indefinitely small changes in x and y. Thus
if we would trace out a continuous curve that shall be a

solution of the equation, and commence moving in the direc-

tion given by - =piy
we shall be compelled to continue

Ci!K

moving in the direction given by ~ =pl
at each point, and

cix

shall not be able to change to the direction
-y-

=
p^ at any

point* even though motion in that direction is equally contem-

plated in equation (19). Thus the law of continuity renders

equation (19) the same as the system of equations

|-ft ,0, |-?,-0,...,|-,,.0 (20),

and permits us to solve them separately and take the com-
bined results as forming the solution of (19).

10. Now take the case of difference-equations. As before,
if A?fr or Ay be given uniquely by the given equation, there

exist definite point-systems beginning with any point arbi-

trarily chosen, but entirely fixed by the choice of it. But
when the equation is of the form

(Ay
-
Pl) (Ay-A) ... (Ay -A) =0 (21),

A;/ may have any of the n values pl9 pt , ...,p at each point.

And, as before, this and this only is told us by (21), and any
further information must be gained by consideration of the

pfonoral laws that govern Ay and not from the special case

before us.

* This is purposely overstated. A ca^c of exception will be noticed

later. Ait. 20.
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11. But here no law of continuity comes to our aid. The

changes in x and y are finite and so will therefore that in

Ay generally be. Thus there is no reason why Ay should
continue to be equal to p l

because it is so at the particular

point which may be under consideration. In fact, if you will

trace out a series of points forming a solution, starting from
an arbitrarily chosen point, you have at each point the choice

of n different values of Ay, that is, of n different directions

in which to go to the next point, and your past choice in no

way binds your present*. At most it can be demanded that

Ay should be analytically expressible, and that the values

should not be arbitrarily chosen at each point, but, as we saw
in Art. 1, this merely implies that the succession of values

of Ay should obey some law, and places no restriction on
what that law shall be. The number of point-systems satis-

fying the equation is therefore infinite, and must defy all

attempts at expression, and the equation (21) reduces to the

system of equations

Ay-ft-0, Ay-p2
= 0,...Ay-2>H

=
(22),

but we are not permitted to solve these separately and take
the combined results as the full solution of (21).

12. But in spite of all this, if we integrate separately the

various equations contained in (22), the resulting series of

n families of point-systems (any one point in the plane form-

ing a part of one member of each system and of only one)
has great claims to be called a complete solution of (21).
Let it be denoted by

/, (*, y, OJ = 0, /, (x, y, 2)
= 0,. . ./. (x, y, C.) = (23).

In the first place, they together impose exactly the same

* The consideration that the equation

means simply that Ay is at every point equal to one of the quantities

Pu Pay --Put gives us the important limitations under which the proof on

pao 100 of the existence of a complete primitive must be taken. Unless the

equation is of the first degree there will at every fresh stop he n choice of

values for &un+r , which will of course affect A*+r
t*, and thus the number of

distinct expansions will be infinite. When however we ha\e adopted a law

as to the recurrence of the values of Ay, tho expansion at once becomes
definite.
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restraints on the values of Ay that (21) does, since the first

member of the series permits it to equal pl9
the second per-

mits it to equal pt2J
and so on, and thus if taken as alternative

equations they lead to the original equation for Ay. And in

the second place, if you stand at any point, the n permissible

changes of y will be those of such members of these n point-

systems as actually pass through this point. Hence all per-
missible elements are elements of members of (23), and thus all

possible solutions of the equation arc made up of elements of

the point-systems included in (23).

13. That the statements in the last paragraph may be true

of any series similar to (23), it is necessary and sufficient that

it should at every point give all the admissible values of

Ay and no more. But this is attainable in many ways
other than by taking the integrals of (22). For instance, if

equation (21) be

(Ay - a) (Ay- b)
=

(21),

it is equivalent to the alternative equations

(25),

where ris some fixed value of x. If then these be integrated,

they have exactly the same claim to be considered as con-

stituting a complete solution of (24) as have the solutions of

Ay-a = 0, Ay-J = (26).

Thus, following the nomenclature of Art. 2, we see that

we shall have sets of n associated derived primitives* forming
as complete a solution of the equation as the set of n com-

ponent primitives. And in no respect do these solutions yield

*
It must not be supposed that the presence of a constant r renders

these more or less general than (2(5). Any expression in finite differences

implies that some system of values of x (differing by units) has been chosen,
fixing the ordinates on which all our points lie, so that r may be said

to define the xpncc about which we are talking, and is wholly distinct from a
constant that determines yt i.e. the position of the point oil some one of

those ordinates which form our working-ground.
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to the others in closeness of connection with the original

equation. Had (24) been given in the form

as it might equally well have been, the above solutions would
have changed places, and the last found would have played
the part of component primitives to those obtained from the

solution of the factors of (24).

14. But in differential equations the solutions of the dif-

ferential equations

dy.- v =o ^-=o dy-- v =o
dx Pl ' dx p* '" dx p"

being supposed to be

r.-c^-o. r
a
-a

s =o,...,F-n -c7B=o (27),

where C
lt

(7
2 ,...(7n are arbitrary constants, the single solution

(Vl -C)(Vt -C)...(Vn -C) = (28)

can be substituted for them, since the latter signifies that

the solution consists of all the curves obtained by giving G
all possible values in it. This is obviously tantamount to

giving Cl ,
(7

2
. . . <7n all possible values in the alternative equa-

tions (27) from which (28) is formed, and taking all the curves

so given. And this being the case, the differential equation
obtained from (28) must be the original differential equation,
since (28) comprehends exactly all solutions of it and no
more.

15. And the reasoning which permits us to write (28) in-

stead of the system of alternative equations (27), holds when

they are solutions of a difference- instead of a differential

equation. But it no longer follows that we may use (28) to

derive our difference-equation from. This may be seen ana-

lytically from the following consideration. Suppose, for sim-

plicity's sake, that Fj, F8 , ... Vn are all linear. The equation
obtained by performing A on (28) will generally be of the

(n
-

l)
th

degree in C and of the nih
in Ay. On eliminating C

between it and (28), we shall in general obtain an equation of
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the n* degree in Ay instead of the equation of the nth

degree
from which we obtained (28). But it may also be seen

geometrically thus. Suppose we stand at a point and choose

C so that (28) contains the point in virtue of V
l

G=^0

containing it. Then if we put x -f 1 for x in (28) we shall

obtain for y -f Ay all the values of y corresponding to x + I

on the curves

7;- (7 = 0, F2 -<7=0,... Fn
- (7=0,

?io one of which except the first contains the point at which

we start. Take now the value of which causes V~
2

(7=
to contain the point, we have a similar set of values of Ay,
and so on for the rest. All these values will of course be

given by the equation for Ay derived from (28) in the ordi-

nary way. Thus we see that in general such an equation
as (28) will lead to a difference-equation of a much higher
order than the one of which it is a solution, and which per-
mits values of Ay wholly incompatible with that difference-

equation. And hence we must in general be content with

a system of alternative solutions like (23), or if we com-
bine them as in (28) we must understand that the equation
in C must be solved before we can deduce the equation in

question. It is by no means necessarily the case that a

single equation exists that will lead to the given difference-

equation, and even if such a solution exists it does not follow

that it is the full solution of the difference-equation.

16. But though it is not necessarily so, it may be so. For
instance, the equation y = ex + c

a
leads to a difference-equa-

tion of the second order, i.e. there are two permissible
values of Ay. But substituting in the original equation the

co-ordinates of any point, c is found to have two values, so

that there are two possible values of Ay corresponding to

these two values of c. Hence here the single equation can
be taken as a complete substitute for the system of alterna-

tive equations with which we are usually obliged to content

ourselves. This may fairly be called a complete primitive,
but it is by no means the case, as we have seen, that every

difference-equation has a complete primitive in this sense

of the word. Suppose now two such primitives can be dis-

covered primitives that it leads to and that lead to it
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then the second one will be what has been named an indirect

integral. The name is very unfortunate, for regarded as an

integral it stands exactly on the same footing as the other

complete primitive*.

17. It is obvious that if such integrals exist they must be
discoverable by the process of rendering G variable, but assum-

ing that the variation of C will not affect Ay. It must be
noticed that any integral of the resulting equation will lead

to a new and complete integral of the original equation. We
need not wait to get a complete primitive (in the stricter sense

of the word) of this equation, a component or derived integral
will serve. Nor does the method of deriving them from the

difference-equation demand special notice here. We shall

see better its meaning and scope by working out fully an

example.

18. We have seen that the equation
ttr
= ca?-fc

2

(29)

leads to the difference-equation

ux = xkux + (kuxy (30).

Eepresenting, as before, by um the ordinate of a point whose
abscissa is xt

we see that (30) represents a family of point-

systems such that at any point there are two values of Awa ,

or, in other words, two points with abscissa x -f 1 that form
with the chosen point an element of the point-systems (see
Art. 2). Now (29) represents also a family of point-sys-
tems such that two contain each point, these two having for

their distinguishing constants the roots of the equation in c

formed from (29), by substituting therein the co-ordinates of

the chosen point. Thus (29) and (30) are co-extensive, the

elements that satisfy (30) are elements of the point-systems
included in (29).

* In the first edition of this work an analytical proof was given that, if

indirect integrals existed, any one might be taken as the complete primitive,

and the others as well as the former complete primitive would appear as

indirect integrals. This seems to be unnecessary. Any indirect integral
conducts to the difference-equation, i.e. it gives precisely the same liberty
of choice for Ay that the complete primitive did. Considering it as the

complete primitive, any solutions that satisfy these conditions for Ay are

therefore, in relation to it, derived or indirect integrals, according as they do
not or do leave to Ay the full liberty that the equation does. From this the

proposition is evident.
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On solving (30) we obtain

where \/ ux + 7- is taken to represent the numerical value*

* As students are so constantly told that the square root of a quantity
has necessarily a double sign, and that it is impossible algebraically to

distinguish between them or to exclude one without excluding the other, it

is necessary to caution them here that, whatever be the truth of the state-

ment as far as analysis is concerned, it is certainly not true when the
functions are represented geometrically, or perhaps we should rather say
graphically. Nothing is easier than to distinguish between curves satisfying

the equations y= + fjc
t~^xt andy= - Jc 1 - re

2
. It is true that they will not

be what we are accustomed to call complete curves, but they will be

perfectly definite. And with this understanding it will be evident that the

equation Aux = + *V ux+ ~r~"n giyes a unique value of Aux at every point

just as much as if the right-hand side were rational, and it is just as im-

possible for two members of the family it represents to include the same
point without wholly coinciding. But not only docs a stipulation such as

/ x*
the one we have made about the sign to be taken with A/ u+ -j- remove all

indefiniteness geometrically, it also (as must necessarily be the case) removes
it arithmetically. As an instance take the theorem in italics.

The next value of

=its former value.

If at any step the wrong sign had been taken to the square root we should
have failed to bring the right result, but by adhering to the stipulation, not

only do we obtain the right result, but it forms a rigidly accurate proof of the

theorem. It is the neglect of the above principle of the uniqueness of such

/ ic* x
expressions as + A/ u -f -7-

- ~ that causes much of the obscurity that sur-

rounds singular solutions in differential equations.



ART. 18.] OF THE FIRST ORDER. 187

/Vl-

of the square root of u + . Equation (29) gives us the

same values for c. And the result of performing A on (29)
tells us that A% = c, in other words The point-system ob-

tained by taking at each step

will keep the latter function wholly unaltered, and thus the

solution of this equation is

In a similar way the solution of

is

We have divided then our point-systems into two totally
distinct families, and elements of members of these families

are alone permitted by (SO). Now suppose we first choose
to take the element given by the first equation of (31), and
then we change and take that given by the second. We shall

then have

x+l
2"

J-+il
4 2 I

or = -(o:-f 1)-A^,
since our first element belonged to the family

x

(32)
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or its equivalent

'

^+4-2"
Let us for the next element return to the element belong-

ing to the first family. As before,

-.I. / T^tlT *_2
.r+2 +

>Y
U
x+2 T ^ ^

~

(33),

since the last element was taken from the system

(32) and (33) give the same equation, viz.

Att^ (* + !)- Au., (34),

which is identical with (14), page 177.

This on being integrated leads to the equation

The undetermined constant enables us to make it give the

right value c for Az^ at the point chosen, and then Az^ as

given by (35) will continue at each point to have a value

permitted by (30), but belonging alternately to each of the

two systems of values into which we have divided it. Thus

(30) and (35) are both true along the whole of our new
solution, and we ought to represent this new solution by
them as a system of simultaneous equations. But we know
from Algebra that we can take as an equivalent system
either of them together with the equation produced, by eli-

minating &ux between them. This last does not involve Aw,
at all and is a complete primitive.
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19. It is so obvious that all solutions of a difference-

equation must be included in those of the equation obtained

by performing A on it, that it is natural that we should

try to obtain new solutions of

(AU.-A) (At*,-A) ... (Aii.-A)
=

(36),

by this method. The important thing to bear in mind is that

which has been illustrated in the foregoing investigation, viz.

that all that the method leads to is that A% must either

always continue equal to a particular one of the roots p19 p2 ,

... jpn , or it must change so that it jumps from the value of

one at one point to the value of another at the next, i.e.

AX? = &pr or
( pr)x+l (pk)x . And it is the alternatives of the

latter class that make the sole difference between this method
and the method of Lagrange of solving differential equations.

In the latter if -^=pr at a point d.-j can in general only
doc cLoc

equal c?pr since -^ cannot jump from being equal to pr
to

doc

being equal to pk
.

20. We say that it can in general only equal dpr . It is

only prevented from taking the specified jump by that jump
being finite, and hence when we get to a point where pk pr

the change is possible. If at the next point pk
is still equal to

di/

pr , j can change back again to pk9
and so on. This will hap-

pen if it should chance that at the point where pk
is equal to

pr
the curve -y^ = pk

is going in the direction of the curve

Pk Pr- ^n this case then there will be a solution analogous
to our indirect solutions to difference-equations its equation
will be p^p,, and it will only exist when the curves given by

-V =pr
touch the curve pb =pr

at the point where they

meet it, or, in other words, if the value of ,- derived from

Pk ~Pr *s Pk- Such a solution is termed a singular solution*.

* Few people seem aware of what might be called the rarity of singular
solutions. The chances are infinity to one that a differential equation of

the first order, but not of the first degree, has no singular solution. As far
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21. The question at once suggests itself are there such

singular solutions to difference-equations ? But the answer is

obvious. If there be any such they are included in the indi-

rect integrals. It is true that they will have a peculiarity.

If pk =zpr gave Ay = ft, it is evident that the point-system

pk
= pf might be called a solution of the equation

(Ay-ft) (Ay
-A) ...(Ay-A)

=
(37),

in virtue of it satisfying Ay pr
= at every point, or of

satisfying Ay ft = at every point, or of satisfying them

alternately in any cycle. Hence it might with propriety be

called a multiple solution, since it would appear many times

over in the list of solutions. But it can never fail to be in-

cluded in the complete primitive or its indirect integrals or

associated integrals. Poissoii (Journal de VEcole Poll/technique,

Tom. vi. p. GO) has written a paper on such solutions. An
instance of them is given by the equation

of which a complete primitive is

and for which he obtains the singular solution

-*
(- if

If two of the values of Ay given by (38) be equal we must
have

(4)" (Ay)' 1.U
3 3'

as analysis is concerned it is a mere accident that in certain cases pk=pr

gives pr as the value of =- . In any equation given for examination, or even

in one met with in actual investigations, the chance of the existence of a
singular solution is much greater, for it has probably not been written down
at random, but has been derived from a complete primitive which represents
a family of curves having an envelppe.
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On substitution in (38) we obtain
* to

according as we take the upper or lower sign within the

bracket.

8 / l\ 8a?

Thus y = Q ( 9) gives us a singular solution or, as it

might better be called, a multiple solution*.

22. Leaving these and returning to the solutions of differ-

ential equations, we must remark that not only may the

change from -^ ^ = to -,- ft^O be made at a point

where p l =p2
without obtaining a discontinuous curve, but

as a rule it actually is made in every complete curve that

satisfies the equation, provided that a singular solution exists.

Take, for instance, the equation y = ex + c
2

,
this leads to the

alternative differential equations

/

V

,

and

and the singular solution is of course

x* a?
- aa or y=- 4-

This represents a parabola touching the axis of x at the

origin and having its axis in the negative direction of y.

The two equations in (41) denote the tangents to it through
the chosen point, the first representing the one that makes

the algebraically greater angle with the axis of x, since - is

greater along it. Now take a tangent and beginning from

x = oo move along it. At every point it is the solution of

* As in differential equations the results of this method need not be

solutions, but if they are solutions, they are singular solutions. Compare
Art, G.
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the second of equations (41), since the other tangent through

the point has its -M- algebraically greater, as will be seen at
ctoc

once from a figure. But as soon as it has touched the en-

velope it takes at once the role of being the solution, at every

point of its length, of the first of equations (41). So that if

we take the complete curve, i.e. the whole of the tangent
line, as a solution of the equation, we shall have changed
from satisfying the second of the alternative equations to

satisfying the first
; the change taking place at the point of

contact with the envelope.

23. This enables us to see very clearly that the envelope
is in reality an indirect integral. For let us start from a point
on a tangent just before it meets the envelope and proceed

along it of course in the positive direction of # to a point on
it just after it meets the envelope. Our path at first satisfied

the second and now satisfies the first of equations (41). Let
us now change and take the path through the point at which
we now are that satisfies the second of those equations. It

will be the tangent through the point which is just going to

touch the envelope. On continuing this process we see that

we have a circumscribing polygon, the limit of which when
the sides are indefinitely diminished is the curve. And this

was generated by pursuing exactly the same method that we
observe in obtaining derived or indirect integrals from com-

ponent integrals or complete primitives, viz. by alternating
between different solutions*.

24?. It will not be necessary to dwell upon the derivation of

* The Singular Solution (or rather Multiple Integral) of Art. 21 partakes,
as we have seen, of the nature of the singular solution of a Differential

Equation, since it is derived from the difference equation in the same way,
viz. by taking the condition that two of the alternative solutions should
coincide. And hence it is not to be wondered at that the singular solution of

a differential equation should have somewhat in it of a multiple integral.
In point of fact, portions of it form part of all solutions of the original

equation. For instance, in the case we are considering the solution of,

^|=
- */ y + x "~

|
is obtained by always choosing the one of the two

permissible paths that lie most to the right, supposing that we start from a

point in the third quadrant. This takes you in a straight line as far as the

curve and then takes you round during the rest of your motion, since any
departure must be along a tangent, i. e. more to the left than along the curve.
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indirect integrals or singular solutions from the complete
primitive. What has been said will be guide sufficient. But
before leaving this part of the subject \ve will examine how
far these views enable us to explain the anomalies connected
with Singular Solutions in Differential Equations. Boole

(Diff. Eq. Ch. VIII.) gives the following four Properties of

Singular Solutions :

I. An exact differential equation does not admit of a

singular solution.

II. The singular solution of a differential equation of the

first order and degree renders its integrating factors

infinite.

III. A differential equation may be prepared (even with-

out the knowledge of its integrating factors) so as no

longer to admit of a given singular solution of the

envelope species.

IV. A singular solution will generally make the value

of -, $ as deduced from the differential equation as-

sume the ambiguous form = .

The first of these seems self-contradictory. An envelope

has the same value of -y
- as the enveloped curve at the point

of contact. Hence it must satisfy the differential equation

of the latter, i.e. the equation that gives
-~

. Now the dif-

ferential equation to any family of curves whatever, say
F(x, y, c)

=
0, can be given in tho form of an exact equation.

All that is necessary is to solve for c and to differentiate the

resulting equation c =A|T (#, y). Thus (I.) seems tantamount
to saying that no family of curves can have an envelope.

(II.) stands or falls with (I.), but is at least remarkable that

an integrating factor should have any essential connection

with that which is represented by the equation. The inte-

grating factor is simply the reciprocal of the factor by which
the equation, when in its exact form, was multiplied to bring
it into its present form. It is therefore a purely arbitrary
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thing, and has nought whatever to do with the nature of the

equation or with that which it represents. And (III.) is not
less puzzling. For since the geometrical envelope has two
consecutive points in common with each member of the

family, it would seem probable that it would continue to have
that property after any transformation of x and y. But were
this the case it would continue to touch them all, and thus
to be a singular solution according to our previous remark.

25. It cannot be doubted that these anomalies demand

explanation, and if our theory of the nature of a singular solu-

tion be the right one it must render them intelligible. And
from our theory we see no reason why exact differential

equations should be more or less likely to have singular solu-

tions than others. It is true that they are of the first degree,
and of course no differential equation that gives a single value

of -,'
- at every point can have a singular solution (Art. 8).

But there is no reason to expect that an exact equation will

give one value and one only of -~ at every point; it will

usually give the value in terms of quantities such as roots of

algebraical functions of the co-ordinates, which will have
more than one value, and no attempt is made in such equa-
tions to limit the interpretation of these to one of their many
values. Yet, although our theory declines to take special
notice of exact equations, it still gives us a clue to the inter-

pretation of their peculiarity by pointing out a class of equa-
tions which possess the property in question, viz. those that give

but one value to - at each point, and which may be for

shortness* sake termed unique equations. It must be that

by our treatment of exact equations we make them to all

intents and purposes unique equations.

26. Let us take the instance given by Boole,

dx

On dividing by Vs* + y
2

a* to render it an exact equation,
we obtain
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Now it is not fair yet to say that this is not satisfied by
the singular solution aj

2 + 2/

2 = a2

,
for that causes the first

term to assume the indeterminate form
;
but as soon as we

write it in the form -y- */a? 4- y
2 a2

7
- = 0, we see that the

dx * dx

singular solution has ceased to satisfy it, and hence it must-

be in this step that we have converted the equation into a

unique equation. Writing r for Vas
2 + if a2

,
it becomes

-j
- '' = 0, the integral of which is y r = c, representing a

series of parabolas touching the circle r = 0. As y is made to

increase from its greatest negative value (c being taken posi-

tive) rt which at first would generally be negative, gets
smaller numerically, vanishes, and then becomes positive.
This confirms our remark that the complete curves which are

solutions of the equation require V#2 + tf a* to be taken

partly with a plus and partly with a minus sign, and thus are

partly solutions of + dr dy = 0, and partly of dr dy 0,

the change occurring at the point of contact with the enve-

lope*. Of course this is allowable in consideration that the

sign of r is arbitrary at each point, but it will be seen that this

stipulation renders the equation a unique equation just as

much as the stipulation that r shall always be taken positive.

27. But a difficulty arises here. Since the stipulation,

which, as we see, renders the equation unique, enables us to

trace out the whole of each curve, it will enable us to trace out

all the solutions of the equation, and thus is it not a complete
form of the equation ? It is true that at any point when two of

the curves intersect we shall pass along one or the other accord-

ing as we reckon that) we have or have not passed the point
of contact with the envelope, and thus when we make the

* Should this contact not be real, then, so far as real space is concerned,
there will be no change in the equation satisfied at every point, and ac-

cordingly there will be at 110 point nn alternative path, and therefore no real

portion of the singular solution corresponding thereto.

132



196 NATURE OF SOLUTIONS OF EQUATIONS [CH. X.

double supposition we shall, by the aid of the stipulation
mentioned in the last paragraph, describe the curves without

destroying the uniqueness of the equation. But this is

equivalent to taking r of double sign at each point, and it is

not to be expected that phenomena of intersection (such as

singular solutions essentially are) will be discoverable by
analysis which calls a point indifferently r, y, and r, y.

Whatever stipulation we make as to the sign of r to render

dr dy = 0, a unique equation renders it impossible that two
such curves should intersect, i.e. should be satisfied by the

same values of r and y, but if we consider it an intersection

when the one is satisfied by r, y, and the other by r, y, it is

not to be expected that our analysis will be equally lax.

28. Assuming then that the true form of the exact differen-

tial equation is dy dr = 0, we still have to explain how it is

that r = fails to satisfy the equation. The equation is no

longer unique, but the alternative solutions do not seem to

assist us, the change from the one to the other implies a sud-

den change from -T- = 1 to -T- = 1. This difficulty, which

is merely a particular case of the one arising from (III.), is of

a wholly different nature to the last one. We have now at

every point precisely the same liberty of path that we had in

the original equation the same number of alternative direc-

tions. But we seem unable to change from one set to the
other and thus to have no singular solution. Now the sole

restrictions on change arise, as we see, from the law of conti-

nuity, so that it is in connection with this that the solution of

this difficulty must be found. We shall shew how it is that

we have no longer the opportunity of choosing, at the points
on the singular solution, along which of two paths we shall go.

29. For simplicity's sake, suppose that the appearance of

uniqueness in the exact equation is produced, as in the

instance that we have taken, by the presence of a quantity of

the form *fut where u is a rational integral function of x and

y, so that u = is the singular solution, since it renders equal

the two values of -$-
. This is a very common case, and the

treatment will apply to other more complicated cases. Let
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x, y be the point of contact of a particular primitive with the

singular solution, and x + dx, y 4- dy, a neighbouring point on
the same primitive. Then since there is tangency witli u =
at x, y, the value of u at x + dx, y + dy must be of the

second order (arid hence \/u, is of the first order) in dx and dy.

Now take *Ju and x as new variables, 77, x, expressing y in

terms of them, and draw the curves represented by the primi-
tives when x and 77 are considered as Cartesian co-ordinates.

The axis of 77
is now the singular solution, and as we proceed

along any primitive we find that in its neighbourhood ^ is

finite, since 17 was of the first order along a primitive in the

neighbourhood of 77
= 0. Thus the primitives seem to cut

?7
= at an angle. In fact near u = 0, du was of the order
~

excepting for small displacements in the direction of
ffj

M = at the point. Thus -,- is generally infinite for
77
=

0,

or the distortion produced by the new representation is so

great that all curves cutting 77
= in the original will cut it

at right angles now. Only those touching it will cut it at a

smaller angle, and those that had a yet closer contact will

appear to touch it. And, returning to the original, when we
dr . 1

remember that -
7
- is of the order -

.: for all directions of dis-

placement but one coinciding with r = 0, we shall see that

a solution of the equation

^--^ =
dx dx

must have the direction given by r = 0. So considered, the

apparent absurdity of saying that
--j

~- = is satisfied by

r = 0,
-- = 0, passes away. And the preparation which Pois-
CiJC

son gives for getting rid of envelopes can be explained on

exactly similar principles ;
it differs chiefly in this, that he

has made a rather more general supposition as to the origin of

dii
the alternative values of / .
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J9

30. Wo might have expected (IV.). The equation for -~$ ,

obtained by differentiating the differential equation after

solving for
-^- , must give the value of -^ alike for the par-

ticular primitive at the point and for the singular solution.

And we should not expect these two values to he obtained by
ch/

giving alternative values to the functions in -% - whose values

are not unique, since such functions will naturally have

unique values on the singular solution. Thus we should

d*y
expect that the equation for -^ would give an indeterminate

result.

We may remark in conclusion that we ought to expect no
such anomalies in the solution of difference-equations, as they
all arise from change of independent variable, a thing which
cannot occur in Finite Differences excepting in the simple
form of change of origin.

The Principle of Continuity.

31. We have seen that the great distinction between the

subject-matter of Difference- and Differential Equations is,

that the law of Continuity rules in the latter and not in the

former case. Hence we cannot expect that the results of the

former will always be represented in the latter, and we have

already dwelt upon cases in which they are not. It will not do
to look on the Deferential Calculus as a case of the Difference-

Calculus, subject merely to the stipulation that the differences

are infinites!mally small while the latter deals with the

ratios of simultaneous increments of the dependent and inde-

pendent variables, the latter deals with the limits which
these ratios approach when the increments are indefinitely
small and unless they approach definite limits the case can

never be in the province of the Infinitesimal Calculus, how-
ever small the differences be taken. We shall now examine
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the conditions under which a point-system will merge into

a curve, and apply our results to the case of solutions of a

difference-equation.

32. It is a familiar but a partial illustration which presents
a curve as the limit to which a polygon tends as its sides are

indefinitely increased in number and diminished in length.
Let us suppose the differences of the value of the abscissa x
for the successive points of the polygon to be constant, the
law connecting the ordinates of these points to be expressed

by a difference-equation, and the corresponding law of the

ordinates of the limiting curve to be expressed by a differ-

ential equation.

Now there is a more complete and there is a less com-

plete sense in which a curve may be said to be the limit of

a polygon.

In the more complete sense not only does every angular

point in the perimeter of the polygon approach in the trans-

ition to the limit indefinitely near to the curve, but every
side of the polygon tends also indefinitely to coincidence with

the curve. In virtue of this latter condition the value of

in the polygon tends as AJC is diminished to that o
t\sc

f- in the curve. It is evident that this condition will be
dx
realized if the angles of the polygon in its state of transition

are all salient, and tend to TT as their limit.

But suppose the angles to be alternately salient and re-

entrant, and, while the sides of the polygon are indefinitely

diminished, to continue to be such without tending to any
limit in which that character of alternation would cease.

Here it is evident that while every point in the circumference

of the polygon approaches indefinitely to the curve, its linear

elements do not tend to coincidence of direction with the

curve. Here then the limit to which ^ approaches in the
LA&

polygon is not the same as the value of
j-

in the curve.
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33. If then the solutions of a difference-equation of the
first order be represented by geometrical loci, and if, as AOJ

approaches to 0, these loci tend, some after the first, some
after the second, of the above modes to continuous curves ;

then such of those curves as have resulted from the former

process and are limits of their generating polygons in re-

spect of the ultimate direction of the linear elements as well

as position of their extreme points, will alone represent the
solutions of the differential equations into which the differ-

ence-equation will have merged. This is the geometrical
expression of the principle of continuity.

34. The principle admits also of analytical expression.

Assuming h as the indeterminate increment of x, let y* y yx+h>
yMh be the ordinates of three consecutive points of the

polygon, let be the angle which the straight line joining
the first and second of these points makes with the axis

of x, t/r the corresponding angle for the second and third of

the points, and let ^r ^ or 0, be called the angle of con-

tingence of these sides.

Now,

. n
tan =

Now, since h = Aar, we have



ART. 36.] OF THE FIRST ORDER. 201

Therefore replacing yx by y,

0= 7* ^ (A).

\A#/ As; Arc

Now the principle of continuity demands that in order
that the solution of a difference-equation of the first order

may merge into a solution of the limiting differential equa-
tion, the value which it gives to the above expression for

tan 6 should, as Aa? approaches to 0, tend to become infini-

tesimal
; since in any continuous curve or continuous portion

of a curve tan 6 is infinitesimal. Again, that the above ex-

pression for tan# should become infinitesimal, it is clearly

necessary and sufficient that -r-^ should become so.
A&

35. The application of this principle is obvious. Sup-
posing that we are in possession of any of the complete

primitives of a difference-equation in which Aa? is indeter-

minate, then if, in one of those primitives, the value of A#
Aa

v
being indefinitely diminished, that of -~ tends, independ-

ently of the value of the arbitrary constant ct
to become infini-

tesimal also, the complete primitive merges into a complete
A^v

primitive of the limiting differential equation; but if
~^~-
LAvD

tend to become infinitesimal with Aa? only for a particular
value of c, then only the particular integral corresponding to

that value merges into a solution of the differential equation.

36. We have seen that when a difference-equation of the

first order has two complete primitives standing in mutual re-

lation of direct and indirect integrals, each of them represents
in geometry a system of envelopes to the loci represented

by the other. Now suppose that one of these primitives

should, according to the above process, merge into a com-

plete primitive of the limiting differential equation, while

the other furnishes only a particular solution; then the

latter, not being included in the complete primitive of the

differential equation, will be a singular solution, and retain-
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ing in the limit its geometrical character, will be a singular
solution of the envelope species. Hence, the remarkable con-

clusion that those singular solutions of differential equations
which are of the envelope species, originate from particular

primitives of difference-equations ;
their isolation being due

to the circumstance that the particular primitives of the

difference-equation, obtained from the same complete primi-
tive or indirect integral by taking other values of the arbi-

trary constant, not possessing that character which is required

by the principle of continuity, are unrepresented in the solu-

tions of the differential equation*.

37. Ex. The differential equation y = x - + - has

for its complete primitive

y = ex 4- c* (42),

and for its singular solution, which is of the envelope species,

It is required to trace these back to their origin in the

solutions of a difference-equation. 1st, Taking the difference

of the complete primitive, A# being indeterminate and c a
mere constant, we have

Ay = cA#.

Hence c -~
,
and substituting in the complete primitive,

*
It must be remembered that in all this we take no notice whatever

of the peculiarities arising from the periodicity of the arbitrary constant.

The extent of the periodic variations of this constant are wholly indepen-
dent of the magnitude of Aar, BO that they remain the same however small it

be, and thus would prove absolutely fatal to the continuity of the resulting
curve were C not taken as an absolute constant. But this is in reality no
limitation. For we do not pretend that point-systems can ever become
continuous curves, but they may form the angular points of a polygon of
which the curve is the limiting form. Change cannot be continuous in the
difference-calculus so that C might be considered an absolute constant since
it is constant with reference to the fundamental operation A. It is solely
because we wish to embrace also the operation D (implying continuous

change) in our investigations that we adopt the fiction of C varying con-

tinuously subject to the condition of being a periodic constant.
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we have

This is the difference-equation sought.

Taking the difference of (41), As being still indeterminate
but c a variable parameter, we have as in Ex. Art. 3,

Ac + 2c = (x -f Aff),

a difference-equation for determining c, and by precisely the

same method as in Ex. Art. 3, we arrive at the solution

hl* **

3} -4

Ac (-

It results then that (44) has for complete primitives (42)
and (45), h being equal to A#.

2ndly. To determine tan for the primitive (42), we have

whence, substituting in (A), we find tan 6 = 0. Thus the

complete primitive (42) merges without limitation into a com-

plete primitive of the differential equation.

But employing the complete primitive (45), we have

* Zxh + A2

Hence
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Now this value docs not tend to as h tends to 0, unless

c = 0. Making therefore c = 0, h = 0, in (45), we have as

the limiting value of y

and this agrees with (43).

Thus, while the complete primitive of the differential

equation comes without any limitation of the arbitrary con-

stant from the first complete primitive of the difference-

equation, the singular solution of the differential equation
is only the limiting form of a particular primitive included

under the second of the complete primitives (45) of the

difference-equation. Geometrically, that complete primitive

represents a system of waving or zigzag lines, each of which

perpetually crosses and recrosses some one of the system of

parabolas represented by the equation

As h tends to 0, those lines deviate to less and less distances

on either side from the curves
;
but only one of these tends

to ultimate coincidence with its limiting parabola.

38. As the nomenclature of this chapter is not very simple it may be
useful to recapitulate the various kinds of solution that a difference-

equation of the first order and nth degree may have :

solutions involving an arbitrary constant from

which the equation can be derived, and which can be derived from it. The
two classes of solution are the same in their relation to the equation ; any
one may be chosen as complete primitive, and the next become indirect

integrals. Arts 15, 16.

II. Complete primitive (in the less strict sense of the word)]
Component primitive > solutions

Derived primitive )

which do not give to Aux all the freedom it may have, but which still allow it

such values only as the difference-equation also permits. All these classes

of solutions have the same relation to the equation, they are derived or

component in relation to one another. Sets of n such equations granting to

AM, all the alternative values permitted by the equation form the only
complete solution that most equations have, and if the members of any
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such set be called component primitives, all other solutions can be considered
as derived primitives. Arts. 11 13.

in. Singular Solution ) A . 01

Multiple Integral J

See Art> 21 '

EXERCISES.

1. Find a complete primitive of the equation

(A*,- a) (At*.- ft) =0

which shall satisfy the equation &ux a = only when x is a

multiple of 3.

2. The equation

is satisfied by the complete primitive y = ca?+ c*. Shew that

another complete primitive

may thence be deduced.

3. Shew that a li

tegral coefficients

4. The equation

3. Shew that a linear difference-equation with rational and

integral coefficients admits of only one complete primitive.

has y = ca
x + c* for a complete primitive. Deduce another

complete primitive.

5. If u ux .. r- , shew that
x + 1

2.4 (#-1) n 1.3 (fc-1)= -

s
--^ imG7

or s .
^ =.-* 1.3.5 a? 2.4 ajC

according as x is odd or even.
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G. Obtain from tho difference-equation # = #Ay + ^-
the indirect integral

2.4 ...... (0-1) 1.3 ......x , .

when a; is odd,

evel"

-,
---- - 5% ------

7
--

i-ry,1.3 ......^7-2 2.4 ...... (0 1) (7

and trace the derivation of the singular solution of the dif-

ferential equation y = x -:r- + -r therefrom*.

7. From the difference-equation u = #Aw 4- (Aw)
2

has

been derived the indirect integral

shew that, assuming this as complete primitive, the equation
u = ex H- c

a
results as indirect integral.

* Here we need not change A#, but may keep it unity, and suppose
that x

y y, m, are all infinite and of the same order, since the equation is

homogeneous in x, y> and a constant other than that of integration. Bub-
/Vl\ **

Btituting in the usual way *Jtorn (
-

j
for In we shall obtain

._ mO

and, as the work will have shewn that G must be of the same order as

- - - so that the terms of this expression are finite, the condition of conti-

V
nuity becomes

mC

whence ya=2 *J1mx, i.e. the point-system becomes the curve y
2
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8. The equation u
xjfl
=

(1 + u*)* is satisfied by

deduce thence a cycle of three complete primitives.

9. Form the difference-equation whose solution is the

system of alternate equations

y ex + a? = 0]

cy
- x + x* = j

'

and also form a difference-equation of the first order whose

complete solution is one of the derived integrals of this

equation.

10. Shew that if instead of putting equal arbitrary
constants in (Ft cj (F2

c
a)

..... =0 we put them alter-

nately positive and negative, but of equal numerical value,

the resulting differential will be the same, but the resulting

difference-equation will be different.

11. Shew that the solution y = of the equation

8y
8

(Boole, D( JSfc., Ch. vm.)

is analogous to the singular solutions of difference-equations

spoken of in Art. 21.
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CHAPTER XL

LINEAR DIFFERENCE-EQUATIONS WITH CONSTANT

COEFFICIENTS.

1. THE type of the equations of which we shall speak in
the present chapter is

tt^ + A^4n-l + . - + 4.". =X (1),

where A
lf

-4
2 ,

......An are constants and X is a function of
the independent variable only. This form will manifestly
include the form

.-X (2),

and may be symbolically written

(3),

where f(E) is a rational and integral function of E of the
ri* degree, with unity as the coefficient of the highest term,
and with all its coefficients constant.

2. Now we know from (10) page 18 that E=eD
, so that

we might write (3) in the form

/(O. =*
(4),

and consider it a linear differential equation of an infinite

degree and solve it by the well-known rules for such equa-
tions. The complementary function would then have an
infinity of terms of the form (V* where m would be deter-
mined by the equation f(e

m
)
=

;
and to this we should have

to add a particular integral obtained either by guess or
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by special rules depending on the form of X. But we shall

not adopt this mode of procedure, and that for two reasons.

In the first place we have to face the difficulty of an equation
of an infinite degree, or rather of an equation that combines
the difficulties of transcendental and algebraical equations ;

and though we know from experience of Ex. 2, page 70, that
these difficulties are more apparent than real, and that the
infinitude of roots merely signify that the constants obtained
are periodic and not absolute constants, the method still is

open to the objection of being unnecessarily complex and
intricate. But there is a more important reason for not

adopting this method. The problems of Finite Differences

are really phenomena of discontinuous change, the variables

do not vary continuously but by jumps. And a method is

open to grave objection that treats the change as a con-

tinuous one the results of which are inspected only at certain

intervals. At all events such a method should not be
resorted to when the direct consideration of the operations

properly belonging to the Difference-Calculus suffices to solve

our problems.

3. We have seen in Chapter IT. that E and A like D
will combine with constant quantities and with one another

as though they were symbols of quantity. And thus/(.Z?)
when performed on the sum of two quantities gives the

same result as if it were performed on each and the results

added. Hence if we take any two solutions of the linear

difference-equation

,
= (3)

the sum of these solutions will also be a solution.

Also any multiple of a solution is obviously a solution.

So that if we can obtain n particular solutions Vv V^...Vn ,

connected together by no linear identical relation, then will

u,= a
i
F

1
H-<72 F,+ ... + CnVn (6)

be a solution, and in virtue of containing n arbitrary constants
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it will be the most general solution*. We shall now proceed
to find these particular integrals and shall then have solved

equation (5), which is the form which (1) assumes when
X=0.

4. Let f(E) = have as roots m
l9
m

z , ..., mn \
E being

treated as a symbol of quantity. Then we know that

f(E) = (E-mJ (E- mj . . . (E- mn) (7),

whether E be a symbol of quantity or of operation, so that

we may write (5) thus,

(#-m1)(#- 2)...(#-7O^ = (8),

whereEmn . . . denote successive operations the order ofwhich
is indifferent. But if we solve the equation (E mn) ux =
we obtain a particular solution of (8), since the operation

(EmJ (E m
2)...(E mn_l) performed on a constant of

value zero must of course produce zero. Putting in turn

each of the other operational factors last, we obtain other

particular integrals, and thus when the roots are all different

we shall obtain the n particular integrals K,, Vv...Vn (which

give us by (6) the general solution) by solving n separate

equations of the form

(E-m)us
= Q (0).

5. But if one of the roots is repeated say r times this

method fails
;
for r of the solutions would be in point of fact

identical or merely multiples of one another. But if the

said root be mK and we take tlicfull solution of the equation

(#-mK)X = (10),

(involving, as it will, r arbitrary constants), instead of taking
the solution of the corresponding case of (9), we shall have
as before the right number of arbitrary constants and there-

fore the most general solution.

*
It must be noticed that in linear equations with constant or rational

coefficients, there are no difficulties arising from alternative values of the
increments of the dependent variables as in the cases which formed the

subject of the last chapter. The value given for all successive differences is

strictly unique, so that but one complete primitive exists. See note on

page 181.
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C. We have thus reduced the problem of solving (5) in

all cases to that of solving a number of separate equations
of the form

t#-m)X; = (11).

But (see note page 73)

f(E)a*ut= a*f(aE)u, (12);

hence

(E- m)
Tux=mx

(mE- mfmT'u,= mf*r
&T(m~*u^ = by (11) ;

/. A" (m'X) = 0, /. m-Iux = <7 + C,x + C
t
x" + ... C^aT

1

since the r* difference of such a function vanishes ;
and thus

u, = (Ca+C1a:+... + Cr_]
arl

)m* (13).

Thus the general solution of (5) is

Ux = 2 (<7 + Ojc + . . . C^O m* (14),

where r is the number of times the root m is repeated in the

equationf(E) = 0.

7. We will illustrate the foregoing by an example. Let
the equation be

w*+3-3wx+l
-2ux =0, (15),

or (#
8

-3#-2)wz
= 0.

This is the same as

(#+!)*(#- 2) Ws = 0,

and thus the solution of (15) is

ir + C* (16).

8. A slight difficulty presents itself here not in the

theory of the solution, but in the interpretation of the result.

It would seem as if we must content ourselves with results

impossible in form whenever the roots of the equation for E
142
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are impossible. This may be avoided thus. Impossible

roots occur in pairs so that with any term Cxr
(a 4- 13 *J 1)* in

the solution, corresponding to a root (a 4- ftj 1) repeated at

least (r + 1) times, there will be a term C'a? (a /8 v l)
a

.

Assuming

a 4- \/ 1 ==
/o (cos + ^ 1 sin 0),

which gives

the terms become

tfp* {
C (cos x0+ ,/^l sin #0) + <7 (cos as9 - /--~i sin x0)},

or aj
r

p* {Ifcos acd +N sin rc^} ,

where J/and ^are still arbitrary constants. Thus the part
of the solution of f(E) ux = that corresponds to the pair of

impossible roots a $^ 1 repeated r times mf(E) = is

(M +Mp +...+ M^aT
1

) p* cos x0

+ (NQ + A> + ... + N^oT
1

) p* sin 00,

which has, as we see, the right number of constants.

Ex. 1. Let the equation be

t^ + 2fi^ + t^0 (17),

or CE
8 + l)X a=0.

The roots of f(E) =0 are 1, and l^ZZ?, each repeated
&

twice, the solution is therefore

(Jf -f J/^) cos + (JT +^) sin (18)f

since p = 1 and tan

9. We have thus obtained a solution of the most general
form possible of the equation f(E)u.**Q. We shall now
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proceed to the more general form of equation which we
chose as the subject of this chapter, viz.

f(E)u =X (19).

But our past work stands us here in good stead. For if to

any solution of this equation we add a solution off(E) ^=0,
the result of performing f(E} upon their sum will be X +
or X (see Art. 3). If then to a particular solution of (19)
we add the general solution of (5), we shall get a solution

of (19) involving n arbitrary constants, and which must
therefore be the most general solution of (19) possible.

Our task has therefore reduced itself to finding a particular

integral of (19). And our first thought is to try if we cannot

obtain it by a device similar to that which gave us the solu-

tion of (5) in other words, deduce it from the solutions of

simpler equations. At first sight the method seems wholly
to fail. For if we solve (E mn) ux =*X and obtain the solu-

tion Xm ,
it is no longer a solution to the full equation. On

performing/^) upon it, we obtain

(tf
-

m,) (E- 7/i
2)...(-mn_l)

X (20),

which involves X and its next n 1 consecutive values.

Similarly if we find Xr the solution of (Emr) ux ~X, we
should obtain, on performingf(E) upon it,

(E-^...(E-m^ (E-mrJ...(E-mn) X (21).

10. But a modification of our former method will still

give us an integral. Instead of taking merely the solution

of one of the simpler equations, take those of all and com-
bine them by multiplying each by a constant and adding the

results. If we perform f(E) on f^lXl +fjLtX2 -f ... +pnXn

the roots of f(E) = being for the present supposed all dif-

ferent we shall obtain the quantity

X (22).

And if by choosing pv /xa,
... fin aright we are able to make

the coefficients of all the powers of E in (22) vanish and the
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term independent of E become unity, we shall have a solu-

tion of (19) in

ux = pl
X

l +^X,+ ...p.Xn (23).

To do this we must have

+ ... =1 (24),

when E is treated as a symbol of quantity. This proviso
enables us to divide with confidence by f(E) t and we see

that

(25),

or in other words /*t , /*t>
... are the numerators of the partial

fractions into which >> wr can be resolved.
f(E)

11. Nor will this method fail when a root is repeated.
Let a root mK be repeated r times, then if we use for

XKt JT
Jt|>lJ

...JT
Cfru.1 , the solutions of the equations

we shall have for the corresponding values of /* the nume-

rators of the partial fractions forming f7W\ > w^ose deno-

minators are

Thus*we have reduced the solution of (19) to that of the

equation

(E-m)J=X (26),

which we can write by (12)

X,
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or ux =mx2r
m-*-'X,

and (19) is fully solved.

And a little further consideration shews that this last

investigation renders unnecessary that in Arts. 2 5, which

suggested it. For in each of the quantities Xv X^,...Xn
there is a term involving an arbitrary constant, and of the
form Cm*, Cm*t

.... If we include these in the values of

X9 ... which we substitute in (23) we get the general solution

at once*.

12. Let us examine the results at which we have arrived.

From the equation f(E) u =X we have deduced

K (27),

where X
lt

-3T
a

. . . are the solutions of (E mj ux = X and
kindred equations, and

/*,, /t2
...are the coefficients of the

partial fractions into which -JY~ is resolved when E is con-

.

sidered a symbol of quantity. But it is natural to ask,

Could we not have obtained this at once by symbolical
methods, thus :

- -z- ... *- (
28

)-

f(E) (E-ml
E-mn)

^ '

But, since X^ is a solution of (E mj ux =X9

.-.,-fft + fj[.+ ...... /..Jr. (30),

agreeing with (27).

*
It might seem that we shall get more than sufficient constants by this

method when roots are repeated. For (E-m}rux=x will give r constants,

and (E-mY-*um = x will give r-1 additional ones, while there should

only be r in all. But since all the solutions of the equation (E - i)
r- 1ti.=0

are solutions of the equation (J-wt)
r
ttr=0, and all the terms which we are

considering come from these last equations, we neither gain nor lose in

generality whatever solution of (E - m)
r-1i*.=0 we take, provided we take the

full solution of (E -m)
ru,=0 which gives r arbitrary constants.
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13. At first sight this method seems justified by the

properties of E proved in Ait. 9,' Ch. II. And there is no
doubt that, as far as suggestiveness is concerned, such an

application of symbolical methods is all that could be

desired. But as it stands it is not rigorous. So long as

our operations are direct we may place absolute reliance on

symbolical methods, for the results of the operations are

unique, and hence equality in any sense must mean alge-
braical equality. But so soon as any of the operations are

indirect, further investigation is needed. The results of the

indirect operations are not, in an algebraical point of view,

definite, and we must carefully examine each case in order to

discover the conditions of interpretation of the results that

there may be algebraical equality. For instance,

(E-a) (E-b) ux= (E- b) (E- a) ux (31),

but (E a) rr ux does not equal ,,^ (E a) ux (32),

since the left-hand side is definite and the right-hand side

has an arbitrary constant. And, while the first may be taken
as an equivalent of ux) the latter is only so when we stipu-
late that the constant in the term Cax

, resulting from the

performance of 7, , shall be taken zero. One difficulty
jfe a

of this kind we met with at the beginning of Chapter IV., and
we shall content ourselves with investigating the present one,

leaving all future cases to the student's own examination.

14. Take then (28). Since ux is not considered a definite

quantity, but as a representative of all the quantities that

satisfy (19), there is no absurdity in representing it as equal
to the quantity on the right-hand side of (28) which has n
undetermined constants. All we have to ask is, whether on

performing/ (7?) on the right-hand side of (28) we shall obtain

X
; and, this last being a perfectly definite quantity, while

the right-hand side of (28) is indefinite, we might expect that

some conditions of interpretation would be necessary in (28)
to render the equivalence algebraical. But it is not so. For

on performing f(E) On the first term, viz. 1^3 > the opera-
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tion (E a), which is one of those composing f(E}* t is

absorbed in rendering this indefinite term strictly definite,

so that the whole result of performing f(E) on it is strictly
definite. Thus the result of performing f (E) on the right-
hand side of (28) is a strictly definite quantity, and as under
some circumstances it must equal X (which we know from
the laws of the symbol E), it must be actually equal to it-f-.

Ex.2. ",- 611^ + 61*,
=

5*;

or(#-3)(#-2K=5*;
5* f 1___11

'^~(#-3)(#-2)~ |#-3 J0-2J

3 o

15. The above is a general solution of linear difference-

equations with constant coefficients. But, as we have seen

that the part involving arbitrary constants is readily written

down after the algebraical solution of the equation/ (E) = 0,

and that any particular integral will serve to complete the

*
It must be remembered that these operations being direct it is wholly

unimportant in what order we perform them.

f While it is true that/(E) \ .r^ + ...
|
X=X whateverXmay, it is by

(A-nh i

no means true that \
-~ + I f(E) X = X. The importance of care in

(
& ml )

this respect if we would avoid loose reasoning may be exemplified by an

example. In Linear Differential Equations such a quantity as
* - is

often evaluated thus :

cos mx _ (D - a) cos wiac_ -wisinmas-a cos mx _ -m sin mx-a cos mx" '

I>a -a1
~

i) ^a
-

^~m*~a*
'

The first step with tho interpretation afforded by the second is wholly
inadmissible :

It should be thus :

-msmmx-acoamx
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solution, it is usually better to guess a particular integral, or

at all events to obtain it by some special method.

The forms of X for which this can readily be done are

three, viz.

(I.) When X is of the form a*. Sincef(E)a*=f(a) . a*

we obviously have 7^-^ a* = VT-T a*.

f(E) f(a)

(II.) When X is a rational and integral function of x.

Here we have only to expand f(E) in a series of ascending

powers of A, and perform it in this shape on X. The result*

will of course terminate, since X is rational and integral.
Should f(E) when expressed in terms of A assume the form

jyAr

(A + -BA + . . .
),
we must evaluate -r^ or 2,

rX before apply-

ing this method, or may omit the factor A"1

", apply the

method, and then perform 2
r on the result.

(III.) When X is of the form ax
<f) (#), where (j>(x) is a

rational and integral function of a. Here the formula

/ (E) a*<l> (x)
= a*f(aE) <f> (x) gives us

which comes under our second rule.

Sin mx and cos mx are really instances of (I.), though the

results will be given in an impossible form.

16. Special cases of failure of these rules will occur, as in

the analogous cases in differential equations. We shall con-

clude the Chapter with two examples of this.

Ex.3. (E-a)(E-l)ux = a*.

Here /=0;

Its determinatenesa will serve as our warrant for its truth.
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But we may in this case proceed thus :

a> 1

-a) (aE-b)
by (HL)

which comes under (II.).

Ex. 4. (E- 2)
8

(E - 1) u* = ^2*.

This will be done in a precisely similar way :

.--2a:"~s
2

3 -
X

23AS

(2.0-1)
*

1 + 2A

(x*
- te + 6)

= 2*-* -

17. In a short note in TortolinVs Annali (Series i. vol. v.) Maonardi
gives a solution of the linear difference-equation with constant coefficients

that does not require the preliminary solution of the algebraical equation for

E, but the results do not seem of much value.

EXERCISES.

Solve the equations :

1 . uX4Q 3ux+l 4iux =mx
.

2. ux^ + 4^, + 4 = x.

3. ux^+ 2u
x+l -f ux = x (x

-
1) (x

-
2) + x(- 1)*

4. w^^ Zmu^ + (m*
"*" n*)

w ^ m*

5. Aw^ + AV,= a? + sin x.

6. u^- 6w^8+ 8ux+l
- 3% = a? + (- 3)*.

7. AX - 5At/* + 4^ = 2Z (1 -f cos a?).

8. AVi~ 2AX = 3 + 3*.
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9
tt*+a

n8^ = cos mx.

10.

11. A person finds his professional income, which for the

first year was a, increase in A.P., the common difference

being b. He saves every year of his income from all

sources, laying it out at the end of each year at r per cent.

per annum. What will be his income when he has been x

years in practice ?

12. A seed is planted when one year old it produces
ten-fold, and when two years old and upwards eighteen-fold.

Every seed is planted as soon as produced. Find the number
of grains at the end of the x* year.



CHAPTER XII.

MISCELLANEOUS PROPOSITIONS AND EQUATIONS. SIMUL-

TANEOUS EQUATIONS.

1. SINCE no class of equations of an order higher than
the first have been solved with the completeness which
marks the solution of linear difference-equations with con-
stant coefficients, it becomes very important to find what
forms of equations can be reduced to this class. The most

general case of this reduction is with regard to equations
of the form

*) (*
-

1) *Vn-2

.-- =X (1),

where A
l
A

2
... An are constant, and

<f>
(x) a known function.

These may be reduced to equations with constant coefficients

by assuming

(2).

For this substitution gives

+
= <M*) <H* - 1) 4> (*

-
2) . . .

w, =
<*>(*- 1) $ (*

- 2> -4> (i)

and so on ; whence substituting and dividing by the common
factor

tj> (x) <j> (x 1) ...
<f> (1), we get,

(3),

an equation with constant coefficients.
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In effecting the above transformation we have supposed x
to admit of a system of positive integral values. The general
transformation would obviously be

Ti 1) ...< (r),

r being any particular value of x assumed as initial.

Equations of the form

are virtually included in the above class. For, assuming
<f> (x)

= a*, they may be presented in the form

(4).

Hence, to integrate them it is only necessary to assume

(s-n) (g-CT+1)

= a 8
v, (5).

2. By means of the proposition in the last article we
can solve all linear binomial equations. Let the equation be

(6).

Assume

(7).

Take logarithms of both sides and let log vx_,^
= wx ,

then
we have

(8),

a linear difference-equation with constant coefficients. Solving
this we obtain wx and thence vxy which enables us to put (6)
into the form

UX4n+Ux =X (9)

by Art. 1, and thus the equation is solved.

Such equations are however substantially equations of the
first degree, and should be treated as such. They state a
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connection between consecutive members of the series urt

ur+n>
u
r+in >

an^ leave these last wholly unconnected with
intermediate values of u. We should therefore assume sc=ny
and the equation would become a linear difference-equation
of the first order, the independent variable now proceeding
by unit increments.

3. Equations of the form

M*+I ux + axux^ + bxux = cx (1 0)

can be reduced to linear equations of the second order, and,
under certain conditions, to linear equations with constant

coefficients*.

Assume

Then for the first two terms of the proposed equation, we have

Whence substituting and reducing, we find

*. + (ft.
-Ovt

- (aA + c.) va = (11),

a linear equation whose coefficients will be constant if the

functions bx a
x+1

and axbx + cx are constant, and which again

by the previous section may be reduced to an equation with

constant coefficients if those functions are of the respective
forms

4. Although linear difference-equations with variable

coefficients cannot generally be solved, yet, in virtue of their

* Should cx be zero the equation is at once reduced to a linear equation of

the first order by dividing by ux ux+l , and taking as our new dependent

variable.
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linearity, they possess many remarkable properties akin to

those possessed by linear differential equations, and which
under certain circumstances greatly facilitate their solution.

One of these properties is stated in the following Theorem.

THEOREM. We can depress ly unity the order of a linear

difference-equation

=X (12),

if we know a particular value ofux which would satisfy it were
the second member 0.

Let v9 be such a value, so that

tW. + ^.tWt + *.tW* + ... =

and let uw
=

vjtg ;
then (1) becomes

Or O?% + A*vx^E-\ +By^E-\ . . .
= X.

Replacing E by 1 + A, and developing E*> En~l

, ... in

ascending powers of A, arrange the result according to as-

cending differences of tx. There will ensue

P, Q,...Z being, like the coefficient of *, functions of vx> vx^
&c. and of the original coefficients A x , 139J ....

Now the coefficient of tx vanishes by (13), whence, making
A&e = wmt we have

n~X = X,

a difference-equation of the n 1
th

order for determining w,*.
This being found we have

* That the supposition w4B=rtr would lead to a difference-equation of the

(n IJ^ order for Atx is obvious from a priori considerations. For the

complementary function of (12) contains a term Cvxt hence the full value of

tx contains a term C, and thus the full value of Afx contains only n - 1

arbitrary constants, and it must therefore he given by an equation of the

( l)
th order. That this equation will be linear, follows from the fact that

the full value of tx is linear in the constant* of integration.



ART. 5.] SIMULTANEOUS EQUATIONS. 225

5. We shall demonstrate the Theorem of the last Article

by another method, which shews more clearly how the pro-

perty in question depends on the linearity of the equation ;

and this second method will teach us how to extend the

Theorem to the case in which more than one solution is

known.

It was shewn in the last Chapter that linear difference-

equations of the ?i
to order had solutions of this form :

where O
J9
Cv ...are arbitrary constants, X^ -3f

2
are functions

of a, and / is a particular integral ; also, the part involving
the arbitrary constants is the solution of the equation formed

by putting for X in (12).

Change x into #-fl and eliminate C7
t
between the equa-

tions, obtaining

,= ctv; + ... +r (i

suppose.

Call /p*
= MI where M^ is of course a function of x.

Proceeding as before we shall at length obtain

= a quantity depending on 1 alone, and therefore

= -Y (16),

for the left-hand side must be identical with the first

member of (12), since, when equated to zero, they have

exactly the same solution.

Thus every operation denoted by an operating factor of

the form

can be split up into n consecutive operations, denoted by
factors of the formEMr \

aud this can be done in many
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ways, for if we change the order of elimination we shall find

that we get wholly different operational factors.

Now suppose we know the first r of the quantities Uxt Vx ,

then we know the last r operational factors. Assume

(E-Mr) (E- M^...(E-MJ u,=vx (17) ;

then vx is determined by the equation of the (n r)
th

order,

(E-Ma)(E-MaJ...(E-MrJ = X (18).

This last equation we shall now show can be obtained from
our knowledge of Ux) Vx , ____

Let (17) when expanded be

(^ +P1
^- 1

+... +PrK = v. (19);

or, what is the same thing, let the equation whose solution is

C,UK + C2
Vx + ...CrZx (20)

be

And let (18) when expanded be

(E~ + QJ?~+ + ... + QnJ v, = X (21),

Qv Qv being the coefficients that we are seeking.

Substitute for vx from (10), we must obtain (13) thereby,
and by equating the coefficients of ux ,

i<
x+l

... of the result-

ing equation with their coefficients in (13) we shall obtain n

equations for the n r unknown quantities, Qlt Qt
. . . . We

shall thus obtain by algebraical solution of these equations
the coefficients Q19 <?,,... ,Q*-r Thus vx is made to depend
on a linear difference-equation of the (n r)^ order. When
v* is known, ux can always be found, for the equation con-

necting it with vx is in its resolved form, and can thus be
solved by successive steps, each consisting of the solution of

a linear equation of the first order. If n 1 independent
solutions be known the equation is reduced to one of the first

order, and can therefore be fully solved. Thus we obtain the

more general Theorem.
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THEOREM*. We can depress by r the order of a linear

difference-equation

. . . - 2T (22),

if we know r independent solutions which would satisfy it were
the second member 0; and if we know n 1 independent solu-

tions we can solve the equation fully*

Ex. If a solution of

ux+2 +Axu^ + 8xuM = Q (23)

be Ux, it is required to solve fully the equation

u^ + A,ux+l + Bxux =X (24).

By the last Article equation (23) must be of the form

= (25);

and on comparing the two forms we obtain Px . -^p
= Bxy

and therefore (24) may be written

-z (20)-

The first step in the solution gives us

Dividing by 7^, summing, and multiplying by Cra, we
obtain

* Tardi gives a proof of thii theorem (Tortolini, Series I. vol. i.) f and

especially considers the latter case.

152
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6. Certain forms of linear equations can be solved by
performing A upon them one or more times.

Take, for example, the equation

(a 4- bx) AX + (c 4- dx) Aw, + eux = (29)

and perform An
upon it. By the formula at the top of

page 21,

we have

{a + b (x + ri)}
An+X

+ [c + d (x + n)} A'+'tf,

X = (30);

and if we take n = -;, supposing that to be an integer,
CL

we have a linear equation of the first order for Aw+1
t6x.

Ex. a;A
2wr + (^-2)Aw,-i^ = (31).

Performing A on it we have

which gives

AX= (32);

/.A^S^ + c' (33).

Substituting from (32) aocl (33) in (31) we obtain

'=f^ +(*- 2) {^ + C

'}

A more general form of this solution would be

The method is due to Bronwiu (C<nnb. Math. Jour. Vol. III.

and Camb. and Dub. Math* Jour. Vol. n.).
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7. The solution of two very remarkable non-linear equa-
tions has been deduced by Prof. Sylvester from that of linear

equations with constant coefficients.

Let u,+n +ltfWi + - +P*U*
=

(36)

be any such equation. Then writing it down for the next
n values of x

= 0,

= 0,

(37),

Eliminating the quantities jplf j?2, ... we obtain

=

an equation which must be satisfied by every solution of (36).

Now the solution of (36) is

u, = AOL* + Bj3* + ... to n terms (38),

where A, B
t ... are arbitrary and a, /3, ... depend on

PvPv an(l these last do not appear in equation (37) which
we are now considering. Hence (38) will be the solution of

(37), a, /?, ... being also considered arbitrary, thus making
the full number of 2n arbitrary constants.

By a slight variation in tho method of elimination we can

obtain the bolution of a yet more general equation. Taking
the last term of each of the equations to the other side and

eliminating p1,^2,...^)fl-1 , A\O obtain

u
*+i

W-ir

t**+2n-2'
'

tt.

"*+n-l

(39),
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or calling the last determinant Px

^ = (-l)"A^.-

the solution of which may be written

Thus the solution of the equation (writing n + 1 for n)

",

.n-,,
Ux+n

is um
= Ao.* 4- B&* + ... to n + 1 terms (43),

where A, B, ... and a, /&, ... are arbitrary constants limited

by the two equations of condition

ra = a/3y. . .

and (7= the determinant P for some value of x.

If we take this last-named value to be zero, it is evident

that

1, 1, 1,

x

1,1,1,

= ABC . . . product of squares of differences of a, y9, 7. . .

taken with the proper sign.

Ex. The equation
w -M 2=Cr

(44)*+ * \^V
may be supposed to be derived from the equation

which gives also
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Whence eliminating p we have

u*+?"- u*u*n=i u>
1,*--ux_l

u
x+l and /. = constant,

since it is equal to its consecutive value.

Hence ux
= ACL* + B{?, where aft= 1,

and (Aa
l + Bff*)(ABt + Bff)-(A + B)

9 =
C',

.'. AEaf + AJ?/3
f - 247fc/3 = <?&

or C=AB(a-j3)*.

Simultaneous Equations.

8. Instead of a single equation involving one function we
may find that we have a system of n equations involving
n unknown functions of the independent variable. The
method by which we reduce this to the former case is so

obvious that we shall not dwell upon it. We must by the

performance of A or E obtain a system of derived equations
sufficient to enable us by elimination to deduce a final equa-
tion involving only one of the variables with its differences

and successive values. The integrations of this will give the

general value of that variable, and the equations employed
in the process of elimination will enable us to express each

other dependent variable by means of it. If the coefficients

are constant we may simply separate the symbols and effect

the eliminations as if those symbols were algebraic.

Ex.1. u^-

From the first we have

Hence eliminating VM by the second

the solution of which is

u = |a?-l {Ca* + CT
(
-

a)
x
},
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and by the first equation

Ex. 2. UM_

This may be written

.:
{ (E- 1)'+ 4>E} u,= - 2Ea' ;

or

This gives

and from the first equation
9/7*4

'1

A.- [20+ C- <2 + !))(- 1)'+

the subject of linear equations with variable coefficients the student
a remarkable paper by Christoffei (Crcllc, LV. 281), in which he

9. On
should see

dwells on the anomalies produced by the passage through a value which
causes the coefficient of the first or last term to vanish. On the con-
dition that an expression in differences should be capable of immediate
summation, i.e. should be analogous to an exact differential, see Minich,

(Tortolini, Series i. vol. i. 321).

EXERCISES.

Integrate the equations

1. u^ xux+i
+ (x l)un

= sin a?, one portion of the com-

plementary function being a constant.

2.

3.

4.
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5. i^-2(-
6- uuul = a.

8. Integrate the simultaneous equations

v*f i

"" u*
= ~~ 2m r

10 ~- 1 // <W^ T

^^4.i ^x
=1 (^ n) &

12. When the solution of a non-linear equation of the
first order is made to depend upon that of a linear equation
of the second order whose second member is by assuming

u - V'" au ---- a
vx

(Art. 3), shew that the two constants which appear in the

value of vx effectively produce only one in that of ux .

13. The equation

may be resolved into two equations of differences of the first

order.

14. Given that a particular solution of the equation
ae(x-l)

Wa+j- a (a
*+ 1)tt*+i + a9

*lw* = is ^ = ca *
,

deduce the general solution, and also shew that the above

equation may be solved without the previous knowledge of a

particular integral.
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15. The equation

%tW*+a
= aK + u

*+i +O
may be integrated by assuming ux = ^5 tan vx .

16. Shew also that the general integral of the above equa-
tion is included in that of the equation UM M*= 0, and hence
deduce the former.

17. Shew how to integrate the equation

tWfi+ "

18. Solve the equations

^1 = (-*
v^ t

= (2m + I)vx

and shew that if m be the integral part of Jn> converges

as x increases to the decimal part of *Jn.

19. If
t
be a fourth proportional to a, &, c, b

l
a fourth

proportional to bt c, a, aixd c, to c, a, 6, and aa , 6
a , c2 depend

in the same manner on a
l9

o
19

c
19

find the linear equation of

differences on which an depends and solve it.

20. Solve the equation

21. Solve the equation

considering specially the case when C is zero.

22. If v , v ,
v , ... be a series of quantities the succes-

sive terms of wnicn are connected by the general relation

and if v
Qt
v
A
be any given quantities, find the value of vn . [S.P.]

23. If .n integers are taken at random and multiplied

together in the denary scale, find the chance that the figure
in the unit's place will be 2.
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24. Shew that a solution of the equation

= a(ux+n + u,^ + ... u)

is included in that of

and is consequently

ux = Cj
where a is one of the imaginary (n -f l)

th
roots of unity, the

n -f 1 constants being subject to an equation of condition.

25. Solve the equation

P^P.+P^PS+P..
and shew that it is equivalent to

[Catalan, Liouville, in. 508.]

26. Shew that

u =-*
Jf+1 x 'v-l

can be satisfied by u
2x
= t/

2Jr+1
or iitx_ lt

and that thus its solu-

tion is

8.5.7...(2g-l) r, 2.4.6...2g
s*~

2.4.6...(2a;-2)"
t
"

'1 .3.5 ... (2*-l)
'

_ n 8.5.7... (2-l) , ^ 2.4.6...(2-2)
Wz-l

~
-2T476..:(2a!-2)

+ '

1 . 8.5 ... (2* -8)'
and deduce therefrom the solution of

(a;

9

-*),_,.

[Sylvester, PAt'Z.
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CHAPTER XIII.

LINEAR EQUATIONS WITH VARIABLE COEFFICIENTS.

SYMBOLICAL AND GENERAL METHODS.

1. THE symbolical methods for the solution of differential

equations whether in finite terms or in series (Diff. Equations,

Chap, xvii.) are equally applicable to the solution of differ-

ence-equations. Both classes of equations admit of the same

symbolical form, the elementary symbols combining according
to the same ultimate laws. And thus the only remaining
difference is one of interpretation, and of processes founded

upon interpretation. It is that kind of difference which

exists between the symbols (~r-J
and S.

It has been shewn that if in a linear differential equation
we assume x = e

a
, the equation may be reduced to the form

a).

U being a function of 6. Moreover, the symbols
- and
Cti7

obey the laws,

And hence it has been shewn to be possible, 1st, to express
the solution of (1) in series, 2ndly, to effect by general
theorems the most important transformations upon which
finite integration depends.
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Now -TS and e* are the equivalents of x -j- and #, and it is
ad ax

proposed to develope in this chapter the corresponding theory

of difference-equations founded upon the analogous employ-

ment of the symbols x r and xE, siqywsing A# arbitrary, and
LOC

therefore

(ad)
= <(# + Aa;)

-
< (x),

(a;)
= <(#+ Aa;)-

PROP. 1. Ifthe symbols TT and p be defined by the equations

they will obey the laws

the subject of operation in the second theorem being unity.

1st. Let Ao; =r, and first let us consider the interpretation
of p

mux .

Now pux = xEux
= xux+r ;

/. p*ux
= pxu^= x(x + r) uMr ,

whence generally

p
mu

x
= x (x + r) ... {x + (m- l)r} w,+mf ,

an equation to which we may also give the form

p
mu

x
= x (x + r) ... [x + (m - 1) r] Emu9 (5).

If UK = 1, then, since ux+mr = 1, we have

p
m
l =o?(? + r) ... {* + (m~l)rj,

to which we shall give the form

p
m = a? ( + r) ... {x + (m

-
l)r},

the subject 1 being understood.
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2ndly. Consider now the series of expressions

Trp'X, n*p
mua ,...7r

n
p
mu

ae
.

Now

7rp
mux = x-x (x + r) ... {x + (m- 1) r]u^

m -

Hence

and generally

Therefore supposing /(TT) a function expressible in ascend-

ing powers of TT, we have

f(7r)p
mu = Py(7r + m)u (6),

which is the first of the theorems in question.

Again, supposing u 1, we have
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But Trl = a -r- 1 = 0, TrM = 0, .... Therefore
l\x

/(*)/>-! />-/<m)l.

Or, omitting but leaving understood the subject unity,

f(*)p
m
=f()pm (7).

PROP. 2. Adopting the previous definitions of TT and p,

every linear difference-equation admits of symbolical expres-
sion in theform

i' (8).

The above proposition is true irrespectively of the parti-
cular value of Aar, but the only cases which it is of any im-

portance to consider are those in which A# = 1 arid 1.

First suppose the given difference-equation to be

^W+^W, - + -XX = <f> (x) (9).

Here it is most convenient to assume Aa? = 1 in the expres^
sions of TT and p. Now multiplying each side of (9) by

and observing that by (5)

**+i
= /* x

we shall have a result of the form

.. + ^.(a?)pX = *l (*) (10).

But since A# = 1,

IT = #A, p = xE
= xA + x.

Hence
x = - TT -f p,

and therefore

These must be expressed in ascending powers of
/o, regard

being paid to the law expressed by the first equation of (4).
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The general theorem for this purpose, though its applica-
tion can seldom be needed, is

where F
t (TT), F^ (TT),

. . . , are formed by the law

^.W-^W-^t (-!).

(Diff. Equations, p. 439.)

The equation (10) then assumes after reduction the form (8).

Secondly, suppose the given difference-equation presented
in the form

.\X + J$rArl ... + XBu^ = X (12).

Here it is most convenient to assume A# = 1 in the ex-

pression of TT and p.

Now multiplying (12) by x(x 1) ... (x 7& + 1), and ob-

serving that by (5)

>*-i
=

pu*> afc-l)*-.^* 1*..

the equation becomes

but in this case as is easily seen we have

X = 7T + f),

whence, developing the coefficients, if necessary, by the theo-

rem

F (7r + p)
= F (7r)+J'1 (W) />+J

T

11 (7r) I^+... (13),

where as before

^.(T)-^t(*)-^(-l),
we have again on reduction an equation of the form (8).
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2. It is not always necessary in applying the above
methods of reduction to multiply the given equation by a
factor of the form

x (x + 1) . . . (tc + n 1), or x (x 1) . . . (x n + 1),

to prepare it for the introduction of p. It may be that the

constitution of the original coefficients X
Q , X^ ... Xn is such as

to render this multiplication unnecessary; or the requisite
factors may be introduced in another way. Thus resuming
the general equation

2TA + -XX-i . +**_ = 0. (14),

assume

* 1.2...*'

Wo find

... + Xjs (*- 1) ... (x
- n + 1) t>._

=
(15).

Honco assuming
A

"" = a!
Aa:' P =xL >

where Aa? = 1, we have

Xjo. + Xjn. ... +A>X = (16),

and it only remains to substitute TT + p for x and develope the

coefficients by (13).

3. A preliminary transformation which is often useful

consists in assuming ux
=

ffv,. This converts the equation

Xj*, + Xft^... + XnV^ = (17)
into

M".Y v, + if*Xf^ . . . :*>,_ - (18),

putting us in possession of a disposable constant
JJL.

4. When the given difference-equation is expressed di-

rectly in the form

X^u +X^u . . . +Xnu = (19),

it may be convenient to apply the following theorem.
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-r- ,Theorem. If TT = x -r- , p = #*, then

=
(* + A*)...

i)"
(20)>

To prove this we observe that since

F (TT) p
nu = p

nF (IT -f n) u,

therefore F (TT + n) u = p~
nF (TT) p

n
uy

whence F (TT ri) u = p
nF (TT) p~

n
u.

Now reversing the order of the factors IT, TT I,...TT n + 1

in the first member of (20), and applying the above theorem

to each factor separately, we have

(TT n + 1) (TT n + 2) . . . TTU

= n~1

7rp~
n+1

p
w~t

7rp~*
4*

. . . TTU

But

But p
ww = x (x -f- r) ... {x 4- (^ 1)^} -fc'X whence

A

which, since r = A#, agrees with (20).

When Ase = 1, the above gives

w(w- !)...(- n + 1)
= *(*+!)... (x + w-l)A

tt

(21).

Hence, resuming (19), multiplying both sides by
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and transforming, we have a result of the form

</> (x) TT (IT
-

1) ... (TT
- n + 1) u

+ ^1 (aj)7r(7r~l)... (7r-n+2) u+ ... = 0.

It only remains then to substitute x = TT + p, develope the

coefficients, and effect the proper reductions.

Solution of Linear Difference-Equations in seines.

5. Supposing the second member 0, let the given equation
be reduced to the form

/ (") u +/i (") pu +/,HA - +/ (T) />"
=

(22),

and assume u = Samp
m

. Then substituting, we have

2 {/o (^) <^p
m
+fiW a^"

+1
+/. (T) mp

n+
"}
- 0,

whence, by the second equation of (4),

2 {/ (m) ttmp- +/, (m + 1) a.y" . . . +/. (m + n) a^*} = 0,

in which the aggregate coefficient of p
m
equated to gives

This, then, is the relation connecting the successive values

of am . The lowest value of m, corresponding to which am is

arbitrary, will be determined by the equation

and there will thus be as many values of u expressed in series

as the equation has roots.

If in the expression of TT and p we assume A#= 1, then

since

-l) (24),

162
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the series ^a^p will be expressed in ascending factorials of

the above form. But if in expressing TT and p we assume
A# = 1, then since

p
m = ff(;r-l) ... (x-m + 1) (25),

the series will be expressed in factorials of the latter form.

Ex. 1. Given

required the value of ux in descending factorials.

Multiplying by #, and assuming TT = x , p = xE, where
jk*K

Aa; = 1, we have

x (x a) ux (2# a 1) /)&, + (1 5') /oV,
=

0,

whence, substituting TT + /)
for x, developing by (13), and

reducing,
TT (TT a) ur ^V1^ = 0. (

a)

Hence w, = 2am/3

m
,

the initial values of am corresponding to m = and m = a

being arbitrary, and the succeeding ones determined by the

law
m (m -a) am -ffa^^ 0.

Thus we have for the complete solution

/>V*> /*V4) )

4- 3 4-_?~___\- I

^2 (2-o) 2. 4. (2 -a) .(4-a)^"'"J

It may be observed that the above difference-equation

might be so prepared that the complete solution should admit
of expression in finite series. For assuming ux = p?vx ,

and
then transforming as before, we find
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P?TT (TT
-

a) vx + (^ - //>) (27r
- a - 1 ) p^

+ K/*-l)'-2
2}A =

(c),

which becomes binomial if p = 1 q, thus giving

TT (TT a) v, + - (2?r a 1) /w.
= 0.

Hence we have for either value of /*,

= ^Sawa? (*
-

1) . . . (*
-m + 1) (d),

the initial value of m being or a, and all succeeding values

determined by the law

m (m - a) am -f
~ - - (2m - a - 1) affl.l

=
(e).

It follows from this that the series in which the initial value

ofm is terminates when a is a positive odd number, and the

series in which the initial value of m is a terminates when a

is a negative odd number. Inasmuch however as there are

two values of
//-,

either series, by giving to
//,

both values in

succession, puts us in possession of the complete integral.

Thus in the particular case in which a is a positive odd
number we find

if 1 . 2 (1 a) (2 a)

" *

J

a) x

The above results may be compared with those of p. 454 of

Differential Equations.
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Finite solution of Difference-Equations.

6. The simplest case which presents itself is when the

symbolical equation (8) is monomial, i.e. of the form

M*-)u =X (26).

We have thus

Kesolving then {/ (Tr)}"
1 as if it were a rational algebraic

fraction, the complete value of u will be presented in a series

of terms of the form

But by (4) we have

(TT
-

a)"*X =
p* (TT)"* p'

aX (28).

It will suffice to examine in detail the case in which A# = 1

in the expression of TT and p.

To interpret the second member of (28) we have then

...(* + a)'

T> (x)
= (*A)-> (*)

the complex operation S -
, denoting division of the subject

sc

by x and subsequent integration, being repeated i times.

Should X however be rational and integral it suffices to

express it in factorials of the forms

x, x(x + V), x(x+l) (x + 2), ...
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to replace these by p, p*, />*, ... and then interpret (27) at

once by the theorem

l) (29).

As to the complementary function it is apparent from (28)
that we have

Hence in particular if i = 1, we find

(TT
-

a)"
1 =pV1

1) (30).

This method enables us to solve any equation of the form

x(x+ !)...( + n-I)A
nu + A la(x + 1) ...

-lu...+A nu = X. ..... (31).

For symbolically expressed any such equation leads to the

monomial form

{7r(7r- 1) ... (TT-n-fl) + -4,77- (TT
-

1) ...

= X (32).

Ex. 2. Given

x(x + l) A
aw- 2xku + 2u =x (x + 1) (x + 2).

The symbolical form of this equation is

TT (TT
-

1) u - 2?ru + 2w = x (x + 1) (a? + 2) (a),

or (?r

a - STT -f 2) w = p
8
.

Hence t/ = (IT*
- Sir + 2)"

1

p
3
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since the factors of TT* STT + 2 are TT 2 and IT 1. Thus
vie have

Binomial Equations.

7. Let us next suppose the given equation binomial and
therefore susceptible of reduction to the form

u + 4>(ir)p
mu=U (33),

in which U is a known, u the unknown and soiight function

of x. The possibility of finite solution will depend upon the

form of the function < (TT), and its theory will consist of two

parts, the first relating to the conditions under which the

equation is directly resolvable into equations of the first

order, the second to the laws of the transformations by which

equations not obeying those conditions may when possible be

reduced to equations obeying those conditions.

As to the first point it may be observed that if the equa-
tion be

it will, on reduction to the ordinary form, be integrable as

an equation of the first order.

Again, if in (33) we have

(TT)
=

ifr (IT) ^ (TT- 1) ... ^ (ir-n + 1),

in which ty (TT)
=-.

, the equation will be resolvable into
O/Tf ~j~

a system of equations of the first order. This depends upon
the general theorem that the equation

a
s<j> (TT) $ (tr 1) p*u ...

w< (TT) <f> (TT
-

1) ...
</> (TT

- n -h 1) /o

ww= U
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may be resolved into a system of equations, of the form

U-q<f> (TT) pu = U9

q being a root of the equation

f + ojf* +a^ ... + an= 0.

(Differential Equations, p. 405.)

Upon the same principle of formal analogy the propositions

upon which the transformation of differential equations de-

pends (76. pp. 408-9) might be adopted here with the mere
substitution of TT and p for E and e

. But we prefer to in-

vestigate what may perhaps be considered as the most general
forms of the theorems upon which these propositions rest.

From the binomial equation (33), expressed in the form

we have

and this is a particular case of the more general form,

p*} U (35).

Thus the unknown function u is to be determined from the

known function Uby the performance of a particular operation
of which the general type is

Now suppose the given equations transformed by some

process into a new but integrable binomial form,

V being here the given and v the sought function of x. We
have

which is a particular case of Fty (TT) p
n

} V, supposing F(t) to

denote a function developable Dy Maclaurin's theorem. It is
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apparent therefore that the theory of this transformation must

depend upon the theory of the connexion of the forms,

Let then the following inquiry be proposed. Given the

forms of
<f) (TT) and ^ (TT), is it possible to determine an

operation % (TT) such that we shall have generally

F{4>(Tr)p\ X (*)X = x(>*)FW (Tr)p*}X (36),

irrespectively of the form ofX ?

Supposing F(f) =t, we have to satisfy

$ (*) p
n
x (*)X = x

Hence by the first equation of (4),

<t> (*) X (*
- n

) P*X =^ (

to satisfy which, independently of the form of X, we must
have

) % (IT)
= < (TT) % (-TT -n) ;

Therefore solving the above difference-equation,

Substituting in (37), there results,

or, replacing Un

and therefore Z by f"n.
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If for brevity we represent IIn ! ?4^"v ! by P, and drop the

suffix from X
t
since the function is arbitrary, we have

< (TT) p
nX = P^ (a) p

nP~lX.

Hence therefore

(IT) p
n
}*X = P^ (IT) p'P+P+ (TT) p

nP~lX

and continuing the process,

(TT) p
n
}

mX:= P {* (TT

Supposing therefore F (t) to denote any function develop-
able by Maclaurin's theorem, we have

F [$ (TT) p
n
}
X= PF ty (TT) p

n
}
P~1X.

We thus arrive at the following theorem.

THEOREM. The symbols TT and p combining in subjection
to the law

the members of the following equation are symbolically equi-

valent, viz.

pr}n.4lM (38).

A. From this theorem it follows, in particular, that we
can always convert the equation

u + <
(TT) p

n
i(, = U

into any other binomial form,

, . ^ fA (TT)
by assuming u = H
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For we have

whence since

it follows that we must have

7=

In applying the above theorem, it is of course necessary
that the functions <

(TT) and ^ (TT) be so related that the
fi /

N"J

continued product denoted by Hn^ /\( should be finite.

The conditions relating to the introduction of arbitrary con-

stants have been stated with sufficient fulness elsewhere

(Differential Equations, Chap. xvn. Art. 4).

B. The reader will easily demonstrate also the following

theorem, viz. :

F ft (TT) p"} X = P
mF

{</> (TT + m) p] p^X,

and deduce hence the consequence that the equation
f / \ n_ . __ TTU ~r" Q/ I TT I O w " \J

may be converted into

v +
<f> (TT + m) p

n
v = p"

171 U9

by assuming u = p
m
t\

8, These theorems are in the following sections applied to

the solution, or rather to the discovery of the conditions of

finite solution, of certain classes of equations of considerable

generality. In the first example the second member of the

given equation is supposed to be any function of x. In the

two others it is supposed to be 0. But the conditions of

finite solution, if by this be meant the reduction of the dis-

covery of the unknown quantity to the performance of a finite
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number of operations of the kind denoted by 2, will be the
same in the one case as in the other. It is however to be
observed, that when the second member is 0, a finite integral

may be frequently obtained by the process for solutions in

series developed in Art. 5, while if the second member be X,
it is almost always necessary to have recourse to the trans-

formations of Art. 7.

Discussion of tJie equation

(ax + b)ux+ (ex + e) u^ + (fa + g) UM =X (a).

Consider first the equation

(ax -h J) ux + (ex + e) u^ +f(x 1) u^ = X (b).

Let MS = fjfvxt then, substituting, we have

Multiply by x and assume TT = x , p = xE, in which

a? = -l, then

p? (aaj
2 + bx) VX + /JL (ex + e) pvx +fp*vx

= xpT^X,

whence, substituting TT + p for a? and developing the coeffi-

cients, we find

*

(an* + &TT) vx + p, {(2a/A + c) IT + (b
-

a) p, -f e} pvx

\ = ap-***X (c),

and we shall now seek to determine p, so as to reduce this

equation to a binomial form.

1st. Let
/it
be determined by the condition

ap? + cp +/== 0,

then making
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we have

(TT
+ -

J
fl* + 4

(TT
+ -

J
/>v,

==x^lXt

or

B
A If/,.

ov, = -I irlir+-

'a)

^

or, supposing V to be any particular value of the second
member obtained by Art. 6, for it is not necessary at this

stage to introduce an arbitrary constant,

B

This equation can be integrated when either of the func-

tions,

A' A~a>

is an integer. In the former case we should assume

TT-f-
a

whence we should have by (A),

In the latter case we should assume as the transformed

equation
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and should find

The value of W9 obtained from (/) or (h) is to be sub-

stituted in (e) or (g), wx then found by integration, and v*
determined by (/) or (/&). One arbitrary constant will be
introduced in the integration for wxt and the other will be
due either to the previous process for determining Wx , or to

the subsequent one for determining vx .

n
Thus in the particular case in which -7 is a positive inte-

A.

ger, we should have

a particular value of which, derived from the interpretation

of f7r-f ^ )
an(l involving an arbitrary constant, will be

found to be . Substituting in
(e) and reducing the

1 + x
equation to the ordinary unsymbolical form, we have

jj, (ax + 6) wx + (A fia) xw^ =

and wx being hence found, we have

for the complete integral.

Sndly. Let p be determined so as if possible to cause the

second term of (c) to vanish. This requires that we have

2a/j. + c = 0,

and therefore imposes the condition

Zae + (b
-

a) c = 0.
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Supposing this satisfied, we obtain, on making /*
=

,

or, representing any particular value of the second member

by V,

\ a/

where

an equation which is integrable if - be an odd number whe-

ther positive or negative. We must in such case assume

and determine first Wx and lastly vx by h.

To found upon these results the conditions of solution of

the general equation (a), viz.

(ax + V) ux +(cx+ e) u^+tfx +g) ux^ = X,
assume

Then

comparing which with (I) we see that it is only necessary in

the expression of the conditions already deduced to change

, . . , a(l + a) . .

b into b --v

f
yj

, e into e -- .

V J
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Solution of the above equation when X= by definite

integrals*.

9. If representing u9 by u we express (a) in the form

A A
(ax + 6) u + (ex + e) e dx u + (fa +g) e~ <** w = 0,

or
d cl d (2

x (a 4- ce **"
+/e "*<**) u 4- (6 -f ee <** + ge~*

d
*) u = 0,

its solution in definite integrals may be obtained by Laplace's
method for differential equations of the form

each particular integral of which is of the form

the limits of the final integration being any roots of the

equation

See Differential Equations, Chap. xvm.

The above solution is obtained by assuming u = je
xe

f(t) dt,

and then by substitution in the given equation and reduction

obtaining a differential equation for determining the form of

/(), and an algebraic equation for determining the limits.

Laplace actually makes the assumption

which differs from the above only in that log takes the

place of t and of course leads to equivalent results (Theorie

Analytiqm des Probability, pp. 121, 135). And ho employs
this method with a view not so much to the solution of

difficult equations as to the expression of solutions in forms

convenient for calculation when functions of large numbers

are involved.

* See also a paper by Thomas (Zeitschrift, xiv. 349).
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Thus taking his first example, viz.

and assuming u
ae =fH

e

F(t) dt, we have

/r1

F(t) dt-(x + i)jt*F(t) <ft=

But

(x+I)ft?F(t) dt = fF(t) (x+l) fdt

So that (i) becomes on substitution

/r1

{F (t) + F* (oi dt - F(t) ri = o,

and furnishes the two equations

F'(t)+F(t)=0,

the first of which gives

F(t)=Ce-',

and thus reducing the second to the form

gives for the limits t = and t = oo
, on the assumption that

x+ 1 is positive. Thus we have finally

the well-known expression for F (a;-f 1). A peculiar method
of integration is then applied to convert the above definite

integral into a rapidly convergent series.

Discussion of the equation

c) ux + (ex +f) ux^ + yu^ = (a).

10. Let ux = l

f

^* sc
;
then

fjf (as? -f bx + c) vx + ^ (ex +/) tftt^ +ff%(x 1)
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Whence, assuming *JT = x ^ , v = xE> where A#= 1, we

have

/u,

8

(ax* + bx + c) VX + JJL (ex +f) pvx+ gp*vx =Q.

Therefore substituting TT + p for a:, and developing by (13),

V? (air* -f JTT -f c) + /x {(2a/^ 4- e) TT -f (6 a) /t +/} pv^

+ (^a +^ + g) p*vx
=

(6).

First, let p be determined so as to satisfy the equation

then

p (a7r
f + ITT +c)vx + {(Zap -f ) Tr-f (6

-
a) /x +/} /?!;,,= 0.

Whence, by Art. 5,

v, = Sa^ (# 1) ... (a? m + 1),

the successive values of am being determined by the equation

/u,

2
(am

8
-f bm 4- c) a^-f {(2a/t

2
4- eft) m + (J a) yu,

2 +
<//A} a^j = 0,

(2ap + e) m +(6- a)
r ---

Represent this equation in the form

* = -/(^)a-i.

and let the roots of the equation

am* + bm -f- c =

be a and $, then

2)

-...
} (c),

where generally
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One of these series will terminate whenever the value of m
given by the equation

exceeds by an integer either root of the equation

am* -I- bm + c = 0.

The solution may then be completed as in the last example.

Secondly, let p be determined if possible so as to cause the

second term of (b) to vanish. This gives

e = 0,

whence, eliminating /*, we have the condition

~
o~ > (6) becomes

This being satisfied, and /* being assumed equal to

comes

(a** + STT+ c)..-M ^.^ 0.

Or putting

and is integrable in finite terms if the roots of the equation

m* + - m+- =
a a

differ by an odd number.

Discussion of the equation

(ox
a + Ix + c)AX + (ea; +/) Av. + 5rwx

= 0.

11. By resolution of its coefficients this equation is reduci-

ble to the form

a (a?-a) (#-/3) b?um + e (x 7) Aw^ +^sO (a).
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Now let a? a= x + 1 and u9 = v^f then we have

+ e 0' + a -7 4- 1) AV +#ev = 0,

or, dropping the accent,

v,
=

(6).

If from the solution of this equation vx be obtained, the
value of ux will thence be deduced by merely changing x
into x a 1.

Now multiply (6) by a?, and assume

A
7T = 0? -T P = 0?J&,

Aa? r '

where Ax = 1. Then, since by (20),

3c (x + 1) AV, = TT (TT 1) V9 ,

we have

But x = TT + p t
therefore substituting, and developing the

coefficients we have on reduction

w, = (c).

And this is a binomial equation whose solutions in series

are of the form

vx = ^amx (x + 1) . . . (x + ra l) f

the lowest value of m being a root of the equation

m {a (m-a + /3-l)(m-l)-f e(m-a + 7-- 1) + #}
=

(d) t

corresponding to which value am is an arbitrary constant,
while all succeeding values of am are determined by the law

_ __m "m [a (m'^a + 'fT-I) (m- l)~-f fi (m - a -f 7 - 1) +9}
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Hence the series terminates when a root of the equation

a(m-l) (m -2) +6 (ra- !)+# = () (e)

is equal to, or exceeds by an integer, a root of the equation (d).

As a particular root of the latter equation is 0, a particular
finite solution may therefore always be obtained when (e) is

satisfied either by a vanishing or by a positive integral value

of in.

12. The general theorem expressed by (38) admits of the

following generalization, viz.

The ground of this extension is that the symbol TT, which
is hero newly introduced under F, combines with the same

symbol TT inthecomposition ofthe forms !! (yy (
)

,
Hn f Ty r

)

external to F, as if TT were algebraic.

And this enables us to transform some classes of equations
which are not binomial. Thus the solution of the equation

will be made to depend upon that of the equation

/.(*)+/ fW
by the assumption

13. While those transformations and reductions which

depend upon the fundamental laws connecting TT and p, and are

expressed by (4), arc common in their application to differen-

tial equations and to difference-equations, a marked difference

exists between the two classes of equations as respects the

conditions of finite solution. In differential equations where

TT= -^ , p = e*, there appear to be three primary integrable

forms for binomial equations, viz.

,

a-rr + b n rru H---- p
nu = c/,r '
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a(7r-n}* + b n _
/ n\

pU ~ '

A'-s)

primary in the sense implied by the fact that every binomial

equation, whatsoever its order, which admits offinite solution,
is reducible to some one of the above forms by the trans-

formations of Art. 7, founded upon the formal laws connecting
TT and p. In difference-equations but one primary integrable
form for binomial equations is at present known, viz.

u -{ 7 pu = CT,
air + b^ '

and this is but a particular case of the first of the above
forms for differential equations. General considerations like

these may serve to indicate the path of future inquiry.

14. Many attempts have been made to accomplish the general solution

of linear difference-equations with variable coefficients, but the results are
in all cases so complicated as to be practically useless. It will be sufficient if

we mention Spitzer (Grunert, xxxii. and xxxm.) on the class specially consi-

dered in this chapter, viz. when the coefficients are rational integral functions

of the independent variable, Libri (Crellc 9
xn. 234), Binet (Mt moires de

VAcademic des Sciences, xix.). There is also a brief solution by Zehfuss

(Zcitochrift, m. 177).

EXERCISES.

1. Of what theorem in the Differential Calculus does (20),

Art. 4, constitute a generalization ?

2. Solve the equation

x (x + 1) A
2w + #Aw rfu = 0.

3. Solve by the methods of Art. 7 the difference-equation
of Ex. 1, Art. 5, supposing a to be a positive odd number.

4. Solve by the same methods the same equation, sup-

posing a to be a negative odd number.
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CHAPTER XIV.

MIXED AND PARTIAL DIFFERENCE-EQUATIONS.

1. IF uxtl,
be any function of x and y, then

A - -

Ay
**

Ay
These are, properly speaking, the coefficients of partial dif-

ferences of the first order of uxy . But on the assumption
that A# and At/ are each equal to unity, an assumption which
we can always legitimate, Chap. I. Art. 2, the above are the

partial differences of the first order of ux v
.

On the same assumption the general form of a partial dif-

ference of w-
,
is

When the form of uxtV is given, this expression is to be inter-

preted by performing the successive operations indicated, each

elementary operation being of the kind indicated in (1).

Thus we shall find

It is evident that the operations -r~ and -r- in combination

are commutative.
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Again, the symbolical expression of -^ in terms of -r-

being

A*" A*

in which Ax is an absolute constant, it follows that

^\
n 1.2

I
**~

and therefore

/ A\n
f

IAo? J
u*tV =

j
w*+nA*' y

"

(A
Y* / A \

w

J f^ J t*^ f it would be necessary

to substitute for -, their symbolical expressions, to

effect their symbolical expansions by the binomial theorem,
and then to perform the final operations on the subject func-

tion ux y.

Though in what follows each increment of an independent
variable will be supposed equal to unity, it will still be

necessary to retain the notation -
, -r- for the sake of dis-

tinction, or to substitute some notation equivalent by defi-

nition, e.g. A,, Ay
.

These things premised, we may define a partial difference-

equation as an equation expressing an algebraic relation

between any partial differences of a function
,. ,.,..,

the func-

tion itself, and the independent variables x, y, z ... Or in-

stead of the partial differences of the dependent function, its

successive values corresponding to successive states of incre-

ment of the independent variables may be involved.
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A A

and xus^ y
+ yuXtV+l

-
(as +y) u

XiV
= 0,

are, on the hypothesis of A# and Ay being each equal to

unity, different but equivalent forms of the same partial

difference-equation.

Mixed difference-equations are those in which the subject
function is presented as modified both by operations of the

form
, -, and by operations of the form -j- , ^

-
, singly

or in succession. Thus

j- <*

dy
>v

is a mixed difference-equation. Upon the obvious subordi-

nate distinction of ordinary mixed difference-equations and

partial mixed difference-equations it is unnecessary to enter.

Partial Difference-equations.

2. When there are two independent variables x and y,
while the coefficients are constant and the second member is

0, the proposed equation may be presented, according to con-

venience, in any of the forms

Now the symbol of operation relating to x, viz. A^ or Exi

combines with that relating to y, viz. A
y
or E

y9
as a constant

with a constant. Hence a symbolical solution will be ob-

tained by replacing one of the symbols by a constant quan-
tity a, integrating the ordinary difference-equation which

results, replacing a by the symbol in whose place it stands,
and the arbitrary constant by an arbitrary function of the

independent variable to which that symbol has reference.

This arbitrary function must follow the expression which
contains the symbol corresponding to a.
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The condition last mentioned is founded upon the inter-

pretation of (E aY^X, upon which the solution of ordi-

nary difference-equations with constant coefficients is ulti-

mately dependent. For (Chap. xi. Art. 11)

whence

_

the constants following the factor involving a.

The difficulty of the solution is thus reduced to the diffi-

culty of interpreting the symbolical result.

Ex. 1. Thus the solution of the equation uw aux = 0, of

which the symbolical form is

Exux - au* = 0,

being
^ = GV,

the solution of the equation ii^liy
- u

x>y+l
= 0, of which the

symbolic form is

^.,-JSO,
will be

To interpret this we observe that since Ey
= e

dy we have

Ex. 2. Given ux+l , y+l
- u

Xim - u
x>v
= 0.

This equation, on putting u for u
x>y > may be presented in

the form
- u = 0, (1).

Now replacing Eu by a, the solution of the equation

s
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therefore the solution of (1) is

(2),

where ^ (y) is an arbitrary function of y. Now, developing
the binomial, and applying the theorem

we find

2)+... (3),

which is finite when x is an integer

Or, expressing (2) in the form

developing the binomial in ascending powers of E
y ,
and in-

terpreting, we have

u =
<f> (y x) -f x<f) (y x + 1)

--
Or, treating the given equation as an ordinary difference-

equation in which y is the independent variable, we find as

the solution

Any of these three forms may be used according to the

requirements of the problem.

Thus if it were required that when x = 0, u should assume
the form e

mv
, it would be best to employ (3) or to revert to

(2) which gives <f> (y)
= my

,
whence

=
(I +-)*? (C).

3. There is another method of integrating this class of

equations with constant coefficients which deserves attention.

We shall illustrate it by tfye last example.
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Assume u
Xitf
= S(7a*6y ,

then substituting in the given equa-
tion we find as the sole condition

na--
5-,

Hence

and substituting,

As the summation denoted by 2 has reference to all pos-
sible values of 6, and O may vary in a perfectly arbitrary
manner for different values of &, we shall best express the

character of the solution by making O an arbitrary function

of 6 and changing the summation into an integration ex-

tended from oo to oo . Thus we have

As < (b) may be discontinuous, we may practically make
the limits of integration what we please by supposing <f> (b)

to vanish when these limits are exceeded.

If we develope the binomial in ascending powers of b, we
have

u
x>y
-

f
J -oo

db+

Now

>/r (0) being arbitrary if
<f> (b) is

;
hence

which agrees with (4).
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Although it is usually much the more convenient course

to employ the symbolical method of Art. 2, yet cases may
arise in which the expression of the solution by means of a

definite integral will be attended with advantage ;
and the

connexion of the methods is at least interesting.

Ex. 3. Given A2
X11^ 9

= A2

,
u

XiJf^ .

Replacing u
XtV by u

y
we have

or (Ael0,-A,'J5y = 0.

But A. =E.- 1, A,
= E

y
- 1 ;

therefore (Ex*Ef +Et
- EfEx-Ex)u = 0,

or (EJB,
-

1) (E. -Es)u = 0.

This is resolvable into the two equations

The first gives
Exti-E

of which the solution is

u^w
=

<#> (y

The second gives, by Ex. 1,

u = ^(
Hence the complete integral is

4. Upon the result of this example an argument has
been founded for the discontinuity of the arbitrary func-

tions which occur in the solution of the partial differential

equation
cPu d*u
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and thence, by obvious transformation, in that of the equation

cPu
fi 6fu ~

-r-2 & -Hz = 0.
da?

2
dt*

It is perhaps needless for me, after what has been said in

Chap. X., to add that I regard the argument as unsound.

Analytically such questions depend upon the following, viz.

whether in the proper sense of the term limit, we can regard
sin x and cos x as tending to the limit 0, when x tends to

become infinite.

5. When together with A^ and A
y
one only of the inde-

pendent variables, e.g. x
y

is involved, or when the equation
contains both the independent variables, but only one of the

operative symbols A,., Ay ,
the same principle of solution is

applicable. A symbolic solution of the equation

will be found by substituting A
y

for a and converting the

arbitrary constant into an arbitrary function of y in the solu-

tion of the ordinary equation

And a solution of the equation

will be obtained by integrating as if y were a constant, and

replacing the arbitrary constant, as before, by an arbitrary
function of y. But if x, y, Ax and Ay

are involved together,
this principle is no longer applicable. For although y and
A

y
are constant relatively to x and A., they are not so with

respect to each other. In such cases we must endeavour by
a change of variables, or by some tentative hypothesis as to

the form of the solution, to reduce the problem to easier

conditions.

The extension of the method to the case in which the

second member is not equal to involves no difficulty.

Ex. 4. Given u
Xttl

#wx-i, y-i = 0.
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Writing u for u
x%M

the equation may be expressed in the

form

u-xEilE
y
-*u = Q (1).

Now replacing E~
l

by a, the solution of

u axEx

~l u = or ux axux^ =

is Or (*-!)... l.o".

Wherefore, changing a into
ŷ

"
!

,
the solution of (1) is

G. Laplace has shewn how to solve any linear equation in

the successive terms of which the progression of differences is

the same with respect to one independent variable as with

respect to the other.

The given equation being

A
XiV , Bxyy ... , being functions of x and y, let y =x &;

then substituting and representing %tl, by vx , the equation
assumes the form

X<P* + Xj)*-i + -3r^*-2 + . . .
=

-2T,

X ,
Ar

t
. . . -X" being functions of a?. This being integrated, k is

replaced by # y, and the arbitrary constants by arbitrary
functions of x y.

The ground of this method is that the progression of dif-

ferences in the given equation is such as to leave x y un-

affected, for when x and v change by equal differences x y
is unchanged. Hence if x y is represented by k and we
take x and k for the new variables, the differences now having
reference to x only, we can integrate as if k were constant.

Applying this method to the last example, we have
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t>s =ca?(a? 1) ...1,

u*., =* (*- i) i (*-y),

which agrees with the previous result.

The method may be generalized. Should any linear func-

tion of x and yy e.g. x -f #, be invariable, we may by assum-

ing it as one of the independent variables, so to speak reduce
the equation to an ordinary difference-equation; but arbitrary
functions of the element in question must take the place of

arbitrary constants.

Ex. 5. Given u^-pt^^- (1 -p) ^.lfm = 0.

Here x -f y is invariable. Now the integral of

.

Hence, that of the given equation is

7. Partial difference-equations are of frequent occurrence

in the theory of games of chance. The following is an ex-

ample of the kind of problems in which they present them-

selves.

Ex. 6. A and B engage in a game, each step of which

consists in one of them winning a counter from the other.

At the commencement, A has a? counters and B has y counters,

and in each successive step the probability of A'a winning a

counter from B is p, and therefore of B's winning a counter

from A, I p. The game is to terminate when either of the

two has n counters. What is the probability of A's win-

ning it ?

Let u
Xt9

be the probability that A will win it, any positive

values being assigned to x and y.
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Now A'a winning the game may be resolved into two
alternatives, viz. 1st, His winning the first step, and after-

wards winning the game. 2ndly, His losing the first step,
and afterwards winning the game.

The probability of the first alternative is pu^,,^, for after

A'u winning the first step, the probability of which is j>,

he will have x + 1 counters, Bt y\ counters, therefore the

probability that A will then win is ux+lv_r Hence the pro-
bability of the combination is pux

The probability of the second alternative is in like manner

(1
-

j>) u9_l>y^.

Hence, the probability of any event being the sum of the

probabilities of the alternatives of which it is composed, we
have as the equation of the problem

^,v=FW y-i + (1
-

JP) Wm (1).

the solution of which is, by the last example,

It remains to determine the arbitrary functions.

The number of counters x+y is invariable through the

game. Represent it by m, then

Now .A's success is certain if he should ever be in possession
of n counters. Hence, if x = n, ux v

= 1. Therefore

Again, A loses the game if ever he have only m n

counters, since then B will have n counters. Hence

^ (m).
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1 t>
The last two equations give, on putting P =-"

,

m~"
< H =

whence

which is the probability that ^L will win the game.

Symmetry therefore shews that the probability that B will

win the game is

(1
-

and the sum of these values will be found to be unity.

The problem of the ' duration of play
'

in which it is pro-

posed to find the probability that the game conditioned as

above will terminate at a particular step, suppose the rth

,

depends on the same partial difference-equation, but it in-

volves great difficulty. A very complete solution, rich in

its analytical consequences, will be found in a memoir by
the late Mr Leslie Ellis (Cambridge Mathematical Journal,

Vol. IV. p. 182).

Method of Generating Functions.

8. Laplace usually solves problems of the above class

by the method of generating functions, the most complete
statement of which is contained in the following theorem.

Let u be the generating function of umtn , so that

w = 2wm
,
n..a?

m
y
n
...,

then making x = e
e

, y = 6*, ... we have

. .u

2 [S<f> (m, n ..,) u*.* n -*..l ^e+nff'"
(I)-
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Here, while S denotes summation with respect to the

terms of the development of u, 8 denotes summation with

respect to the operations which would constitute the first

member a member of a linear differential equation, and the

bracketed portion of the second member a member of a dif-

ference-equation.

Hence it follows that if we have a linear difference-equa-
tion of the form

&(m,n...)wm-,,n- g...=0 (2),

the equation (1) would give for the general determination of

the generating function u, the linear differential equation

But if there be given certain initial values of u^ n which
the difference-equation does not determine, then, correspond-

ing to such initial values, terms will arise in the second
member of (1) so that the differential equation will assume
the form

-i'('.*.-) w-

If the difference-equation have constant coefficients the

differential equation merges into an algebraic one, and the

generating function will be a rational fraction. This is the

case in most, if not all, of Laplace's examples.

It must be borne in mind that the discovery of the gene-

rating function is but a step toward the solution of the dif-

ference-equation, and that the next step, viz. the discovery
of the general term of its development by some independent

process, is usually far more difficult than the direct solution

of the original difference-equation would be. As I think that

in the present state of analysis the interest which belongs to

this application of generating functions is chiefly historical,

I refrain from adding examples.
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Mixed Difference-equations.

9. When a mixed difference-equation admits of resolution

into a simple difference-equation and a differential equation,
the process of solution is obvious.

Ex. 7. Thus the equation

A du A , du , rtA -= aAu o -f- + abu =
ax ax

being presented in the form

the complete value of u will evidently be the sum of the

values given by the resolved equations

-, aw=0, Aw &w=0.
dx

Hence

where c
t
is an absolute, c

a
a periodical constant.

Ex. 8. Again, the equation

being resolvable into the two equations,

dz dz\*

we have, on integration,

z = ex + c\

^ (-!)
f > ^ Ny-i- 2

where c is an absolute, and C a periodical constant.
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Mixed difference-equations are reducible to differential

equations of an exponential form by substituting for Ex or

Ax their differential expressions e**, e** 1.

Ex. 9. Thus the equation Aw -j-
= becomes

and its solution will therefore be

the values of m being the different roots of the equation

10. Laplace's method for the solution of a class of partial
differential equations (Diff. Equations, p. 440) has been ex-

tended by Poisson to the solution of mixed difference-equa-
tions of the form

= V (1),

where L, Mt N, V are functions of x.

Writing u for ux,
and expressing the above equation in the

form

it is easily shewn that it is reducible to the form

where L' = -r- . Hence if we have
dec

N-LM-L' = Q. (2),
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the equation becomes

.- F.

which is resolvable by the last section into a mixed difference-

equation and a differential equation.

But if the above condition be not satisfied, then, assuming

(E+L)u = v (3),

we have

whence

v+V
tt J-LM'-U (4)>

which is expressible in the form

, dv

Substituting this value in (3) we have

which, on division by A^, is of the form

The original form of the equation is thus reproduced with

altered coefficients, and the equation is resolvable as before

into a mixed difference-equation and a differential equation,
if the condition

Jf.-X^-Z/.O (5)

is satisfied. If not, the operation is to be repeated.
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An inversion of the order in which the symbols -r- and

E are employed in the above process leads to another reduc-

tion similar in its general character.

Presenting the equation in the form

(X+ L) +M_u + (N-LMJ*= V

where Jf_t
= E~1

M, its direct resolution into a mixed differ-

ence-equation and a differential equation is seen to involve

the condition

^Q. (6).

If this equation be not satisfied, assume

and proceeding as before a new equation similar in form to

the original one will be obtained to which a similar test, or,

that test failing, a similar reduction may again be applied.

Ex. 10. Given a* - a + (x n) ux^ - axux = 0.

This is the most general of Poisson's examples. Taking
first the lower sign we have

i = a, M=x n, N=* ax.

Hence the condition (2) is not satisfied. But (3) and (4)

give

(E a) u = v,

dv
. , N

s+ (*-)--
whence
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or, on reducing,

Comparing this with the given equation, we see that n
reductions similar to the above will result in an equation of

the form

dwM dwx t
_*i_ a ^4- /cw axwx

=
0,

das dx **1 * '

which, being presented in the form

is resolvable into two equations of the unmixed character.

Poisson's second reduction applies when the upper sign is

taken in the equation given : and thus the equation is seen

to be integrable whenever n is an integer positive or nega-
tive.

Its actual solution deduced by another method will be

given in the following section.

11. Mixed difference-equations in whose coefficients x
is involved only in the first degree admit of a symbolical
solution founded upon the theorem

(Differential Equations, p. 445.)

The following is the simplest proof of the above theorem.

Since

'd\ . fd .
d'\

/?' A
if in the second member -T- operate on x only, and -?- on u,

we have, on developing and effecting the differentiations

which have reference to x
9
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+()*() +*''*V
Let ^(-T-tt = v, then

or if
-^r (~j~

j
be replaced by

^
,

Inverting the operations on both sides, which involves the

inverting of the order as well as of the character of successive

operations, we have

the theorem in question.

Let us resume Ex. 10, which we shall express in the

form

"^~
~ a

3x

n being either positive or negative. Now putting u for ux

d )

(**
-

a) + ne*4 u + sc (e
dx
-a) u = 0.

Let (c* a) u = ^
then we have

0.
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Or,

Hence,
d

.-f--*

and therefore by (1),

- a)V VdJt/ of*e Vdx/
(4*

-
a)"

n
(6).

It is desirable to transform a part of this expression.

By (1), we have

and by another known theorem,

The right-hand members of these equations being sym-
bolically equivalent, we may therefore give to (6) the form

Now u =(** a)"
1

z, therefore substituting, and replacing

by E,

Two cases here present themselves.
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First, let n be a positive integer ; then since

(E -<*)-"<)
= a* (c + c^x . . . + c^aT

1

),

(#-a)
n-l = (A + l-arl

,

we have

u = (A + 1 - a)"-
1
6-7 [G + Je? a* (c + c

t
. . . +c^O <**}

(d),

as the solution required.

This solution involves superfluous constants. For inte-

grating by parts, we have

$ a'gfdx = e^ aV1 + log a Je
* aV1^ + (r

-
l)/e^ a'aT'dar,

and in particular when r = 1,

!* ? !?

/e
2 ax^cfo = * ax 4- log a/e"* axc?^.

These theorems enable us, r being a positive integer, to

reduce the above general integral to a linear function of
?!

the elementary integrals Je
2
a*dx, and of certain algebraic

??

terms of the form *ax
x;
m

,
where m is an integer less

than r.

Now if we thus reduce the integrals involved in (d), it

will be found that the algebraic terms vanish.

For

(A + 1 - a)"-
1
e'T (el a'aT) = (A + 1 - a)-*a'

= 0,

since m is less than r, and the greatest value of r is n 1 .

It results therefore that (d) assumes the simpler form,
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and here (7 introduced by ordinary integration is an absolute

constant, while G
l
introduced by the performance of the

operation 2 is a periodical constant.

A superfluity among the arbitrary constants, but a super-

fluity which does not aSect their arbitrariness, is always to

be presumed when the inverse operations by which they are

introduced are at a subsequent stage of the process of solu-

tion followed by the corresponding direct operations. The

particular observations of Chap. xvil. Art. 4 (Differential

Equations) on this subject admit of a wider application.

Secondly, let n be or a negative integer.

It is here desirable to change the sign of n so as to express
the given equation in the form

du. du
t

, . ni _ a 4. (x n) u. axu = 0,
dx dx ^ ' l

while its symbolical solution (A) becomes

u = (E- a)-"-
1
e

(J\
*J (E- a)

n
0.

And in both n is or a positive integer.

Now since (E a)
n =

0, and
(

,-
]

= C
t
we have

But here, while the absolute constant G
l
is arbitrary, the

n + 1 periodical constants c ,
c
lf^cA are connected by n rela-

tions which must be determined by substitution of the above

unreduced value of u in the given equation.
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The general expression of these relations is somewhat com-

plex; but in any particular case they may be determined
without difficulty.

Thus if a = 1, n = 1, it will be found that

If a = 1, n = 2, we shall have

and so on.

The two general solutions may be verified, though not

easily, by substitution in the original equation.

12. The same principles of solution are applicable to

mixed partial difference-equations as to partial difference-

equations. If A^ and -. are the symbols of pure operation

involved, and if, replacing one of these by a constant m, the

equation becomes either a pure differential equation or a

pure difference-equation with respect to the other, then it is

only necessary to replace in the solution of that equation m
by the symbol for which it stands, to effect the corresponding

change in the arbitrary constant, and then to interpret the

result.

flii

Ex.11. A.w-0^0.
dy

Keplacing -r- by m, and integrating, we have
y

u = c(I + am)".

Hence the symbolic solution of the given equation i&
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(y) being an arbitrary function of y.

Ex. 12. Given UM v
-
^

- u
x> y
= V

XtV
.

Treating ,- as a constant, the symbolic solution is

S having reference to oc. No constants need to be introduced

in performing the integrations implied by f -%
-J

.

Ex. 13. Given u^ - 3a?^ + 2^ (/B
-

1)
= 0.

Let ux
= 1 . 2 ... (x- 2) v,, then

Q*Vl . 0^-0
iVj-o

"" " ~J "" ^ J 7 ~" ^*+2 2

whence by resolution and integration

Ex. 14. M - 3 -*'* + 2^ = F, where F is a function
**

rfy ay
of a; and y.
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Here we have

- v.
dyl dy\dyl \dyj

The complementary part of the value of u introduced by
the performance of 2 will evidently be

But in particular cases the difficulties attending the reduc-

tion of the general solution may be avoided.

Thus, representing V by Vx , we have, as a particular solu-

tion,

which terminates if Vx is rational and integral with respect
to y. The complement must then be added.

Thus the complete solution of the given equation when

is
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EXERCISES.

Solve the equations :

A - d -

2 u -au b u =

3.

6 -

7- *. -
aw^,.,

-

9.
aa; a^;

10. Determine u
Xtt

from the equation

8

where A affects x only ; and, assuming as initial conditions

, ^.0= a
'

r*>

shew that

where -4, X and
/.t

are constants (Cambridge Problems).
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11. Given

*, + (a - * - *y
- 2) * + <* + y) u*.*=

with the conditions

*.-!
= 0, w

,

= 0, and 1^.^ = 0,

find u
XtV

.

[Cayley, Tortolini, Series 11. Vol. n. p. 219.]

12. w^ = tt^ l
+ t,+ +W,-

[De Morgan, (7am6. Jlfa&. e/bwr. Vol. IV. p. 87.]
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CHAPTER XV.

OF THE CALCULUS OF FUNCTIONS.

1. THE calculus of functions in its purest form is dis-

tinguished by this, viz. that it recognizes no other operations
than those termed functional. In the state to which it has

been brought more especially by the labours of Mr Babbage,
it is much too extensive a branch of analysis to permit of

our attempting here to give more than a general view of

its objects and its methods. But it is proper that it should

be noticed, 1st, because the Calculus of Finite Differences

is but a particular form of the Calculus of Functions
; 2ndly,

because the methods of the more general Calculus are in

part an application, in part an extension of those of the

particular one.

In the notation of the Calculus of Functions, < {-^ (x)} is

usually expressed in the form
<f>Tfrx,

brackets being omitted

except when their use is indispensable. The expressions

<a?, <(/></># are, by the adoption of indices, abbreviated into

<f>*sc,
<

8
a:, .... As a consequence of this notation we have

<J>x
= x independently of the form of

<j>.
The inverse form

<f>~

1

is, it must be remembered, defined by the equation

<^-
1
tf = #, (1).

Hence
<f>~

1

may have different forms corresponding to the

same form of
<f>.

Thus if

tfrx
= x9

-4- asc
t

we have, putting <f>x
=

t, ______

-

t *^+
4
*>.

and <~l has two forms.
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The problems of the Calculus of Functions are of two

kinds, viz.

1st. Those in which it is required to determine a func-

tional form equivalent to some known combination of known
forms

;
e. g. from the form of tyx to determine that of ty*x.

This is exemplified in B, page 167.

2ndly. Those which involve the solution of functional

equations, i.e. the determination of an unknown function

from the conditions to which it is subject, not as in the pre-
vious case from the known mode of its composition.

We may properly distinguish theso problems as direct and
inverse. Problems will of course present themselves in which
the two characters meet.

Direct Problems.

2. Given the form of tyx, required that of y*x.

There are cases in which this problem can be solved by
successive substitution.

Ex. 1. Thus, if
i|ra?

=a?
a
,
we have

^x =W = xa\

and generally

ty
nx = xa

".

Again, if on determining >p#, ty*x as far as convenient it

should appear that some one of these assumes the particular
form x, all succeeding forms will be determined.

Ex. 2. Thus if tyx
= 1 re, we have

^x = 1 - (1
-

x)
= x.

Hence ty
nx = 1 x or x according as n is odd or even.

Ex. 3. If ^x = ^ ,
we find

j. x

<ty?x
= ^-

, -fy*x
= x.

X
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Hence ^n# = a?, ^
- or according as on dividing

JL OC 3D

n by 3 the remainder is 0, 1 or 2.

Functions of the above class are called periodic, and are

distinguished in order according to the number of distinct

forms to which ^nx gives rise for integer values of n. The
function in Ex. 2 is of the second, that in Ex. 3 of the third,

order.

Theoretically the solution of the general problem may be

made to depend upon that of a difference-equation of the

first order by the converse of the process on page 167. For
assume

t"* = *n , tn+I* =
<,,+l (2).

Then, since ^r
<*+1

a; = ^r^r
n
a;, we have

.
=f(O (3).

The arbitrary constant in the solution of this equation may
be determined by the condition tf

t
=

tyx, or by the still prior
condition

t9
= tyx = x (4).

It will be more in analogy with the notation of the other

chapters of this work if we present the problem in the fonn :

Given
i/r$, required i/r% thus making x the independent vari-

able of the difference-equation.

Ex. 4. Given
ifrt
= a + bt, required ^*t.

Assuming ^r
x
t ug we have

the solution of which is

Now u =^t = t, therefore
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Hence determining c we find on substitution

the expression for ^t required.

Ex. 5. Given
ifrt

= r -
, required -yt.

Assuming -fy*t
= u* we have

or w

Assuming as in Ch. xn. Art 1,

we get tr^
-
fe^l

- ovx = 0,

the solution of which is

v, = c
l
<f + cJP,

a and being the roots of the equation

ma bm a = 0.

,Hence ux = ---.=-- 6 ;* *

or, putting O for and a -f ^8 for 6, and reducing,

Now ?t =
t/r

f = ^, therefore
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whence C =
;'

and, substituting in (6),

the expression for ty*t required.

Since in the above example -^t
= ,-7 ,

we have, by direct

substitution,

, 9 . a <*

and continuing the process and expressing the result in the

usual notation of continued fractions,

,- a a a a
T b + b + b + ... b + t'

the number of simple fractions being #. Of the value of this

continued fraction the right-hand member of (7) is therefore

the finite expression. And the method employed shews how
the calculus of finite differences may be applied to the finite

evaluation of various other functions involving definite repe-
titions of given functional operations.

Ex. 6*. Given ^t = -
, required ^t.

C ~|~ 6t

Assuming as before ^X
t = ux9 we obtain as the difference-

equation
euxuM + cux+l bux a = (8) ,

and applying to this the same method as before, we find

c .

a and /9 being the roots of

eV- (b + c) em + be- ae = (10) ;

* See also Hoppe, Zeitechrift, v. 136.
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and in order to satisfy the condition U
Q
=

t,

( }

When a and /3 are imaginary, the exponential forms must
be replaced by trigonometrical ones. We may, however, so

integrate the equation (8) as to arrive directly at the trigono-
metrical solution.

For let that equation be placed in the form

bc ae A- a

Then assuming ux = tx + -5 , we have

or ttn+M^-O + ^-O (12),

bc-ae, . v ,
in which P =

~~2
' "

Hence

or, assuming tx

the integral of which is

sm = tan f (7 a? tan"
1

-J
.

But tx
= vsx and ux = tx + pf, where

, 6-c
(14).

Hence u9 = v tan \Cx tan"1 -
J
4- p (15),

the general integral.
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Now the condition w = t gives

*=j/tan C+ pf.

Hence determining C we have, finally,

/ t u! v\^ = i/tan ftan"1 x tan"1 -
j
+ tf (16),

for the general expression of
yjr

x
t.

This expression is evidently reducible to the form

A + Bt

C+Et'
the coefficients A, B, C, E being functions of x.

Reverting to the exponential form of ^t given in (9), it

appears from (10) that it is real if the function

(b + c)
2

_ be ae

is positive. But this is the same as 4i/
a
. The trigono-

metrical solution therefore applies when the expression repre-
sented by v

9
is positive, the exponential one when it is

negative.

In the case of v = the difference-equation (12) becomes

J--l = -

the integral of which is

*~~M

Determining the constant as before we ultimately get

a result which may also be deduced from the trigonometrical

solution by the method proper to indeterminate functions.
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Periodical Functions.

3. It is thus seen, and it is indeed evident a priori, that
in the above cases the form of ty*t is similar to that of

ifrt,

but with altered constants. The only functions which are
known to possess this property are

and af.
c + et

On this account they are of great importance in connexion
with the general problem of the determination of the possible
forms of periodical functions, particular examples of which
will now be given.

Ex. 7. Under what conditions is a -f bt a periodical func-

tion of the at* order ?

By Ex. 4 we have

and this, for the particular value of x in question, must
reduce to t Hence

b* - 1~
, ,

equations which require that b should be any x* root of unity

except 1 when a is not equal to 0, and any #th
root of unity

when a is equal to 0.

Hence if we confine ourselves to real forms the only pe-
riodic forms of a -f bt are t and a ty

the former being of

every order, the latter of every even order.

Ex. 8. Required the conditions under which is a

periodical function of the Xth
order.

In the following investigation we exclude the supposition
of e = 0, which merely leqds to the case last considered.
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Making then in (16) ty
x
t = t, we have

/ t
' \

t = y! + v tan ( tan"
1-^ - x tan"

1 -
J (18),

\
"

f^'

t u! f t t uf . iA
or - = tan tan'1 - - x tan"

1 -
) ,

v \ if p/

an equation which, with the exception of a particular case to

be noted presently, is satisfied by the assumption

x tan'
1 - SB MT.

/"

i being an integer. Hence we have

=
tan^ (19),

fji X

or, substituting for v and p, their values from (13),

whence we find

6
2 -2iccos + c

2

e- -

(20).
A * l7r
4a cos

x

The case of exception above referred to is that in which
VSB 0, and in which therefore, as is seen from (19), t is a mul-

tiple of x. For the assumption v = makes the expression for

t given in (18) indeterminate, the last term assuming the form

x oo . If the true limiting value of that term be found in

the usual way, we shall find for t the same expression as was
obtained in (17) by direct integration. But that expression
would lead merely to x = as the condition of periodicity, a

condition which however is satisfied by all functions what-

ever, in virtue of the equation <f>t
= t.

The solution (9) expressed in exponential forms does not

lead to any condition of periodicity when a, 6, c, e are real

quantities.
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We conclude that the conditions under which--
, when

c + et

not of theform A+Bt,isa periodicalfunction of the a?
th

order,

are expressed by (20), i being any integer which is not a

multiple of x*.

4. From any given periodical function an infinite number
of others may be deduced by means of the following theorem.

THEOREM. Ifft be a periodical function, then $ftT*t is also

a periodical function of the same order

For let <kf<l>~

l
t = W>

then

And continuing the process of substitution

*"*=#>-*.

Now, ifft be periodic of the nth order,fn
t t, and

Hence ^r
n
t = $$** =* *

Therefore tyt is periodic of the 71
th

order.

Thus, it being given that 1 - 1 is a periodic function of t of

the second order, other such functions are required.

Represent 1 t by ft.

Then if Qt = f,

These are periodic functions of the second order
;
and the

number might be indefinitely multiplied.

The system of functions included in the general form
~

have been called the derivatives of the function ft.

* I am not aware that the limitation upon the integral values of i has
been noticed before. (1st Ed.)
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Functional Equations.

5. The most general definition of a functional equation
is that it expresses a relation arising from the forms of

functions
; a relation therefore which is independent of the

particular values of the subject variable. The object of the

solution of a functional equation is the discovery of an un-
known form from its relation thus expressed with forms which
are known.

The nature of functional equations is best seen from an

example of the mode of their genesis.

Let f(x, c) be a given function of x and c, which con-

sidered as a function of x, may be represented by <f>x, then

and changing x into any given function

Eliminating c between these two equations we have a result

of the form
=

(1).

This is a functional equation, the object of the solution of

which would be the discovery of the form
<f>,

those ofF and^
being given.

It is evident that neither the above process nor its result

would be affected if c instead of being a constant were a func-

tion of x which did not change its form when x was changed
into tyx. Thus if we assume as a primitive equation

0(a?)
= Cff + -

(a),
c

and change x into a?, we have

Eliminating c we have, on reduction,
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a functional equation of which (a) constitutes the complete
primitive. In that primitive we may however interpret c

as an arbitrary even function of x, the only condition to

which it is subject being that it shall not change on chang-
ing x into x. Thus we should have as particular solu-

tions

*(*)=*+,

these being obtained by assuming c = cos x and a? respectively.

Difference-equations are a particular species of functional

equations, the elementary functional change being that of x
into a? + 1. And the most general method of solving func-

tional equations of all species, consists in reducing them to

difference-equations. Laplace has given such a method,
which we shall exemplify upon the equation

the forms of ^r and ^ being known and that of
<f> sought. But

though we shall consider the above equation under its general

form, we may remark that it is reducible to the simpler form

(1). For, the form of ty being known, that of
^fr'

1

may be

presumed to be known also. Hence if we put tyx
= z and

~ = ^1 ,
we have

and this, since ^~
l and ^ are known, is reducible to the

general form (1).

Now resuming (2) let

yfrx
= u

t , xx = u
*+i]

(3)
<j>,frx

= V
tt <j>x*

= tvj

Hence v
t
and u

e being connected by the relation

the form of
<f>

will be determined if we can express v
t
as a

function of u
t
.
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Now the first two equations of the system give on elimi-

nating x a difference-equation of the form

the solution of which will determine u
tt therefore ^fx, there-

fore, by inversion, a? as a function of t. This result, together
with the last two equations of the system (3), will convert the

given equation (2) into a difference-equation of the first

order between t and vtt the solution of which will determine
v

t
as a function of t, therefore as a function of u

t
since the

form of u
t
has already been determined. But this deter-

mination of v
t
as a function of u

t
is equivalent, as has been

seen, to the determination of the form of
<f>.

Ex. 9. Let the given equation be (mx) a<f> (x)
= 0.

Then assuming

x = u
t , mx = t*

(̂ ''

we have from the first two

u^-mu^Q,
the solution of which is

u
t
= Cm1

(b).

Again, by the last two equations of (a) the given equation
becomes

Vi - av
<
=

>

whence
tf

t
= C'a' (c).

Eliminating t between (6) and (c), we have

log u<- log (7

Hence replacing u
t by x, v

t by <f>x,
and C'a~" logm by C19

we
have

log*

(rf).
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And here C
l
must be interpreted as any function of x which

does not change on changing x into mx.

If we attend strictly to the analytical origin of C^ in the

above solution we should obtain for it the expression

ft .

27Tr-
J
+ CLCOSTTY-S-- +

logmj
*

V logm/

a , a
l9

b
l9 being absolute constants. But it suffices to

adopt the simpler definition given above, and such a course

we shall follow in the remaining examples.

Ex. 10. Given <

j
- * (*)

= 0.

Assuming
1-f x

we have

or ,um - t*m + tt, + 1 = 0.

The solution of which is

Again we have

whence

Hence replacing ut by x, v
t by <f> (x), and eliminating t,

_
^||||

!-*

JL. /,M\ /*/ _
Of \OCt ~~* \J O
Tr V / ^^
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13
l being any function of x which does not change on clianw-

. . 1+a;
ing x into z- .

-L
~ X

G. Linear functional equations of the form

(*)
= ^ (6),

where ty (x) is a known function of x, may be reduced to the

preceding form.

For let TT be a symbol which operating on any function

(x) has the effect of converting it into
$>i|r (x). Then the

above equation becomes

or

(TT" +ay1
...+an) (*)=,* (7).

It is obvious that TT possesses the distributive property
expressed by the equation

7T (U + V)
= 7TU + TTV,

and that it is commutative with constants so that

irau = <nru.

Hence we are permitted to reduce (7) in the following

manner, viz.

* (x)
= (w'

= {^ (TT
-

m,)-
1 + JV; (TT

- mj* . .
.}
X (8),

4 ,
m

t
... being the roots of

... 4- an = (9),

and
JJTj, AT,... having the same values as in the analogous

resolution of rational fractions.

Now if (TT
-

wi)*
1X =

(f> (a?),
we have

(TT
- m) <j> (x)

=
-3T,
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or 0^ (x) m<f> (a)
=X

y

to which Laplace's method may be applied.

Ex. 11. Given < (rrtx) + a<f> (mx) -f b<j> (x)
= xn.

Representing by a and # the roots of x* 4- ax + 6 = 0, the

solution is

w loga loff

and G being functions of # unaffected by the change of x
into mx.

Here we may notice that jiist as in linear differential

equations and in linear difference-equations, and for the

same reason, viz. the distributive character of the symbol TT,

the complete value of
<f> (x) consists of two portions, viz. of

any particular value of
<f> (x) together with what would be its

complete value where X = 0. This is seen in the above

example.

7. There are some cases in which particular solutions of

functional equations, more especially if the known functions

involved in the equations are periodical, may be obtained

with great ease. The principle of their solution is as

follows.

Supposing the given equation to be

F(x,<f>x,Wx) = (10),

and let ^x be a periodical function of the second order.

Then changing x into tyx, and observing that ^x = xt we
have

-FW*,W*,**) = o (ii).

Eliminating <f>yfrx
the resulting equation will determine <o?

as a function of x and
*fyx,

and therefore since ^x is supposed
known, as a function of x.

If -fyx
is a periodical function of the third order, it would

be necessary to effect the substitution twice in succession, and
then to eliminate fytyx, and

<f>-fy*x\ and so on according to

the order of periodicity of
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Ex. 12. Given (<f>x)* $ = - = ofx.

1 so

The function is periodic of the second order. Change

1 x
then x into ^

-
, and we have

L + X

j. a/ \ . JL u;

14- J fa ^ rT~ '

Hence, eliminating $ , we find

as a particular solution. (Babbage, Examples of Functional

Equations, p. 7.)

This method fails if the process, of substitution does not

yield a number of independent equations sufficient to enable

us to effect the elimination. Thus, supposing tyx a period-
ical function of the second order, it fails for equations of the

form

if symmetrical with respect to <f>x
and $tyx. In such cases

we must either, with Mr Babbage, treat the given equation
as a particular case of some more general equation which is

unsymmetrical, or we must endeavour to solve it by some
more general method like that of Laplace.

Ex. 13. Given

This is a particular case of the more general equation

m and n being constants which must be made equal to 1 and

respectively, and %x being an arbitrary function of x.
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Changing x into ^ a?, we have

Eliminating < (
-^

x
J
from the above equations we find

(1
-
m*) ft (*)}'

= 1 -m + n * -

Therefore

Now if w become 1 and n become 0, independently, the

fraction z---, becomes indeterminate, and may be replaced
1 Ttt

by an arbitrary constant c. Thus we have

whence, merging c in the arbitrary function,

*

02).

The above is in effect Mr Babbage's solution, excepting

that, making m and n dependent, he finds a particular value

for the fraction which in the above solution becomes an arbi-

trary constant.

Let us now solve the equation by Laplace's method. Let

{<f> (x)}
2 =

tjr#,
and we have

Hence assuming
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we have

The solutions of which are

Hence

Therefore

or

1 / _ 7T\

TW-g"1
"

\~4j
f

Therefore

in which (7 must be interpreted as a function of x which does

not change when x is changed into ^ a?. It is in fact ara
JL

77"

arbitrary symmetricalfunction ofx awl *zx.

The previous solution (12) is included in this.

For, equating the two values of $(a) with a view to

determine C, we find
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x (*)-*(-*)
C-.

7T 7T 7T

which is seen to be symmetrical with respect to x and
-^

oc.

8. There are certain equations, and those of no incon-

siderable importance, which involve at once two independent
variables in such functional connexion that by differentiation

and elimination of one or more of the functional terms, the

solution will be made ultimately to depend upon that of a

differential equation.

Ex. 14. Representing by P<f> (&) the unknown magnitude
of the resultant of two forces, each equal to P, acting in one

plane and inclined to each other at an angle 2a?, it is shewn

by Poisson (Mecanique, Tom. I. p. 47) that on certain assumed

principles, viz. the principle that the order in which forces

are combined into resultants is indifferent the principle of

(so-called) sufficient reason, ..., the following functional

equation will exist independently of the particular values of

x and y, viz.

CD [CC "*
*?/) == CD \Xt CD (t/).r \ i// r\ / i \y /

Now, differentiating twice with respect to a?, we have

</>" (* + </) + </>" (*-</) = 0" (*)*(y).

And differentiating the same equation twice with respect

f (+y) + *>-?)-*<*) 4>"(y).

Hence
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it / \

Thus the value of , , is quite independent of that of x.

We may therefore write

m being an arbitrary constant. The solution of this equa-
tion is

<f> (x) -Ae
mx + Be~mx

,
or

<f> (x)
= A coamx+ Bsmmx.

Substituting in the given equation to determine A and B,
we find

(x)
= e -f- c"*, or 2 cos mx.

Now assuming, on the afore-named principle of sufficient

reason, that three equal forces, each of which is inclined to

the two others at angles of 120, produce equilibrium, it fol-

lows that
<f>

C~\ = 1. This will be found to require that the

second form of
<f> (x) be taken, and that m be made equal to 1.

Thus
(f> (x)

= 2 cos x. And hence the known law of compo-
sition of forces follows.

Ex. 15. A ball is dropped upon a plane with the intention

that it shall fall upon a given point, through which two per-

pendicular axes x and y are drawn. Let < (x) dx be the

probability that the ball will fall at a distance between x and

x+dx from the axis y, and
(f> (y) dy the probability that it

will fall at a distance between y and y -f dy from the axis x.

Assuming that the tendencies to deviate from the respective
axes are independent, what must be the form of the function

<f> (x) in order that the probability of falling upon any par-
ticular point of the plane may be independent of the position
of the rectangular axes ? (HerscheVs Essays.)

The functional equation is easily found to be

$(*)< (2,)
=
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Differentiating with respect to x and with respect to y, we
have

Therefor,

Hence we may write

*'(*) o
o~y \

= 2n*>

a$ (05)

a differential equation which gives

The condition, that <f>(x) must diminish as the absolute

value of x increases shews that m must be negative. Thus
we have

EXERCISES.

2*
1. If ^ (x) ?-} , determine <f>" (*).

JL
~

SXi

2. If
<^> (x)

= 2^-1, determine <^
w

(rt).

3. If t (*)
-~~ ^d ^() = , shew, by means of

the necessary equation ^r^r* (Q
=

^r*^r (^), that

^^.g^g-jg
a e c 6

*
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4. Shew hence that ^* (f) may be expressed in the form

the equation for determining bx being

- W*- oe = 0,

and that results equivalent to those of Ex. 5, Art. 2, may
hence be deduced.

Solve the equations

6. /
7. /(*)-<*/(-*)=/.

8. /(l- flJ)+/(l + a;)
= l-a-1

.

9- /(*)-*/(*)+/{/>)}.

10. Find the value, to a; terms, of the continued fraction

2_
^? + ...

11. What particular solution of the equation

/+/
is deducible by the method of Art. 7 from the equation

12. Kequired the equation of that class of curves in which

the product of any two ordinates, equidistant from a certain

ordinate whose abscissa a is given, is equal to the square of

that abscissa.
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13. If irx be a periodical function of x of the nih

degree,
shew that there will exist a particular value of/(TT) x expres-
sible in the form

a -f ajrx+ ajr*x . . . -f an-l7r
n
"V,

and shew how to determine the constants a
, alt

a2,... fc^_r

14. Shew hence that a particular integral of the equation

/I

will be

... a3
/ ll+x 1

t
1 aj-

15. The complete solution of the above equation will be
obtained by adding to the particular value of x the comple-

4tan~1
ar

mentary function Ca "

16. Solve the simultaneous functional equations

l-<

(Smith's Prize Examination, 1860.)

17. Solve the equation

[Kinkelin, Grunert, XXII. 189.]

18. Solve the equation

[Abel, CreZte, n. 386.]
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Magnus (Crelle, V. 365) and Lottner (Crette, XLVI.) have
continued the investigations into this and kindred functional

equations.

19. Find the conditions that ^ (a?, y) + J 1 ^ (x, y) may
be of the form F(x+y J^I).

[Dienger, Grunert, x. 422.]

20. Shew that

satisfies the equation

u being any function of x.

If a regular polygon, which is inscribed in a fixed circle,

be moveable, and if x denote the variable arc between one
of its angles and a fixed point in the circumference, and zn
the ratio, multiplied by a certain constant, of the distances

from the centre of the feet of perpendiculars drawn from the

nth and (n I)"
1

angles, counting from A, on the diameter

through the fixed point, prove that zn is a function which
satisfies the equation.

21. If <f>(z)
=

<f> (x) <j> (y), where z is a function of x and y
determined by the equation /()=/(a?)/(y), find the form

of ^ (x).
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CHAPTER XVI.

GEOMETBICAL APPLICATIONS.

1. THE determination of a curve from some property con-

necting points separated by finite intervals usually involves

the solution of a difference-equation, pure or mixed, or more

generally of a functional equation.

The particular species of this equation will depend upon
the law of succession of the points under consideration, and

upon the nature of the elements involved in the expression
of the given connecting property.

Thus if the abscissae of the given points increase by a
constant difference, and if the connecting property consist

merely in some relation between the successive ordinates, the

determination of the curve will depend on the integration of

a pure difference-equation. But if, the abscissae still increas-

ing by a constant difference, the connecting property consist

in a relation involving such elements as the tangent, the

normal, the radius of curvature, ..., the determining equa-
tion will be one of mixed differences.

If, instead of the abscissa, some other element of the

curve is supposed to increase by a constant difference, it is

necessary to assume that element as the independent variable.

But when no obvious element of the curve increases by a
constant difference, it becomes necessary to assume as in-

dependent variable the index of that operation by which we

pass from point to point of the curve, i.e. some number
which is supposed to measure the frequency of the operation,
and which increases by unity as we pass from any point to

the succeeding point. Then we must endeavour to form two

difference-equations, pure or mixed, one from the law of

succession of the points, the other from their connecting pro-

perty ;
and from the integrals eliminate the new variable.
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There are problems in the expression of which we are led

to what may be termed functional differential equations, i.e.

equations in which the
operation

of differentiation and an
unknown functional operation seem inseparably involved. In
some such cases a procedure similar to that employed in the

solution of Clairaut s differential equation enables us to effect

the solution.

2. The subject can scarcely be said to be an important
one, and a single example in illustration of each of the dif-

ferent kinds of problems, as classified above, may suffice.

Ex. 1. To find a curve such that, if a system of n right

lines, originating in a fixed point and terminating in the

curve, revolve about that point making always equal angles
with each other, their sum shall be invariable. (Herschel's

Examples^ p. 115.)

The angles made by these lines with some fixed line may
be represented by

A flj.
0, e +

Hence, if r =
<f> (0) be the polar equation of the curve, the

given point being pole, we have

a being some given quantity.

2
Let 6 = , and let 6 (

2
)
= w, then we have

n \ n /

the complete integral of which is

Zirz 4vrz
, r

1
coB + C7.COB ... + C/^I
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Hence we find

r = a-t- (7^080 + 0,00820... + CHM cos (n
-

1) 0,

the analytical form of any coefficient C, being

l
cosn0 + 1?

2
cos 2n0 + ... ,

in n0 +^ sin 2?i0 + ... ,

A, Blt
E

iy ..., being absolute constants.

The particular solution r = a + b cos gives, on passing to

rectangular co-ordinates,

and the curve is seen to possess the property that "if a system
of any number of radii terminating in the curve and making
equal angles with each other be made to revclvc round the

origin of co-ordinates their sum will be invariable."

Ex. 2. Required the curve in which, the abscissae in-

creasing by a constant value unity, the subnormals increase

in a constant ratio 1 : a.

Representing by yx the ordinate corresponding to the ab-

scissa x, we shall have the mixed difference-equation

Let y.-i., then

M*-ax- = 0;

.-. u,= C<f,

whence

V.%-0* (2).

Hence integrating we find

(7
t being a periodical constant which does not vary when x

changes to x + 1, and c an absolute constant.
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Ex. 3. Required a curve such that a ray of light pro-

ceeding from a given point in its plane shall after two reflec-

tions by the curve return to the given point.

The above problem has been discussed by Biot, whose
solution as given by Lacroix (Diff. and Int. Calc. Tom. III.

p. 588) is substantially as follows :

Assume the given radiant point as origin ;
let x, y be the

co-ordinates of the first point of incidence on the curve, and

x'9 y those of the second. Also let
-J* =p, --, p.

It is easily shewn that twice the angle which the normal
at any point of the curve makes with the axis of x is equal
to the sum of the angles which the incident and the cor-

responding reflected ray at that point make with the same
axis.

Now the tangent of the angle which the incident ray at

the point x, y makes with the axis of x is -
. The tangentX

of the angle which the normal makes with the axis of x is

--
, and the tangent of twice that angle is

2

Hence the tangent of the angle which the ray reflected from

x, y makes with the axis of x is

Again, by the conditions of the problem a ray incident from-

the origin upon the point x, y would be reflected in the same
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straight line, only in an opposite direction. But the two

expressions for the tangent of inclination of the reflected ray

being equal,

while for the equation of that ray, we have

Now, regarding x and ?/ as functions of an independent
variable z which changes to z + 1 in passing from the first

point of incidence to the second, the above equations become

'

The first of these equations gives

2ap - y (1 -p') _
(l-y

whence by substitution

Ay
Therefore

Here (7 and (7
f

are primarily periodic functions of z which
do not change when z becomes z 4- 1. Biot observes that, if

G be such a function, <j) (0), in which the form of ^ is arbi-

trary, will also be such, and that we may therefore assume
whence

and, restoring to its value in terms of a?, y, and p given in

(4), we shall have
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This is the differential equation of the curve.

Although Lacroix does not point out any restriction on the
form of the function

</>,
it is clear that it cannot be quite

arbitrary. For if C =
ifr (*), we should have

and then, giving to $ some functional form to which ^ is

inverse, there would result

C'=zt

so that (f would change when z was changed into z + 1. From
the general form of periodic constants, Chap. IV., it is evident

that a rational function of such a constant possesses the same
character. Thus the differential equation (5) is applicable
when < indicates a rational function, and generally when it

denotes a functional operation which while periodical itself

docs not affect the periodical character of its subject.

If we make the arbitrary function 0, we have on reduction

(y' -*).? + ay (l-p')=0,

the integral of which is

denoting a circle.

*
It is only while writing this Chapter that a general interpretation of this

equation has occurred to me. Its complete primitive denotes a family of

curves defined by the following property, viz. that the caustic into which
each of these curves would reflect rays issuing from the origin would be

identical with the envelope of the system of straight lines defined by the

equation y= cx+ 0(c), c being a variable parameter. This interpretation,

which is quite irrespective of the form of the function 0, confirms the ob-

servation in the text as to the necessity of restricting the form of that

function in the problem there discussed. I regret that I have not leisure

to pursue the inquiry.

I have also ascertained that the differential equation always admits of the

following particular solution, viz.

(*-)'=<>.

A and It being given by the equation

(J -Ti)
=A - V^- V*** edition.)
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If we make the arbitrary function a constant and equal to

2a, we find on reduction

the complete primitive of which (Diff. Equations, p. 135) is

the equation of an ellipse about the focus.

3. The following once famous problem engaged in suc-

cession the attention of Euler, Biot, and Poisson. But the

subjoined solution, which alone is characterized by unity and

completeness, is due to the late Mr Ellis, Cambridge Journal,
Vol. in. p. 131. It will be seen that the problem leads to

a functional differential equation.

Ex. 4. Determine the class of curves in which the square
of any normal exceeds the square of the ordinate erected at

its foot by a constant quantity a.

If y
2 =

ty (x) be the equation of the curve, the subnormal

will be ^ , and the normal squared ^ (#) + J~^
-

\
. The

equation of the problem will therefore be

. (1,.

Differentiating, we have

which is resolvable into the two equations,

(3).
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The first of these gives on integration

^. (a?) + <*" = ; + (4).

Substituting the value of
-\Jr (#), hence deduced, in (1), we

find as an equation of condition

a = 0,

and, supposing this satisfied, (4) gives

the equation of a circle whose centre is on the axis of x.

It is evident that this is a solution of the problem, supposing

To solve the second equation (3), assume

and there results

(5).

To integrate this let x = u
tt x (#)

= ut-v an(i we have

*,-2i*m + tt
t
= 0,

whence

C and C' being functions which do not change on changing
t into t + 1. If we represent them by P (f) and P

x (), we
have

whence, since u
t
= x and u

t+1
= % () = a? + 4^' (a;),

we have

212
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Hence

$ (*) dx = P,() [F (t) + P,(<) + *P,' (<)} A,

Replacing therefore ^ (a?) by y
a
, the solution is expressed

by the two equations,

from which, when the forms of P(t) and P
t(Q are assigned,

t must be eliminated.

If we make P (t)
=

a, P^tf)
=

/3, thus making them constant,

we have

Therefore eliminating t and substituting e for c a&

2/

2 = /3a;-f *.

Substituting this in (1), we find

"4
'

Thus, in order that the solution should be real, a must be

negative. Let a = A2
,
then ft

= %h, and

3/*=2A;r + e (7),

the solution required. This indicates'two parabolas.

If a = 0, the solution represents two straight lines parallel
to the axis of x.
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EXERCISES.

1. Find the general equation of curves in which the
diameter through the origin is constant in value.

2. Find the general equation of the curve in which the

product of two segments of a straight lino drawn through
a fixed point in its plane to meet the curve shall be in-

variable.

3. If in Ex. 4 of the above Chapter the radiant point be

supposed infinitely distant, shew that the equation of the

reflecting curve will be of the form

</> being restricted as in the Example referred to.

4. If a curve be such that a straight line cutting it

perpendicularly at one point shall also cut it perpendicularly
at another, prove that the differential equation of the curve

will be

< being restricted as in Ex. 4 of this Chapter.

5. Shew that the integral of the above differential equa-

tion, when the form of < is unrestricted, may be interpreted by
the system of involutes to the curve which is the envelope of

the system of straight lines defined by the equation

y = mx +
<f> (ra),

ra being a variable parameter.
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ANSWERS TO THE EXAMPLES.

CHAPTER II.

6. Obtained from the identity A" (0-1) (0-2)
(0-n)0* = 0.

D.

14. (x 6x*) cos (7as* of} sin x.

16. (2) =-^npo'.

CHAPTER III.

1. 2-3263359, which is correct to the last figure.

2. a? -9a?+ 17x + 6.

13. It will be so if < (*) = have one root, and $(x) =
have no root between 1 and k.

CHAPTER IV.

. . (2re-l)(2ra + l)(2n + 3)(2n + 5)(2m+7) .
21

1- W 10 +y.

<
2
> 9T

3) 129
+ ~~-
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11
x ' 12 4 (27i + 1) (2n + 3)

'

(5) Apply the method of Ex. 8.

(6) Write 2 cos = a: + - and use (10) page 73.

Wl /rh v ^

2

cos (2^ +2) 8in

(^2 sin ~
) (2 sin ^ )

\ ^/ \ J

C. (1) cot^-cot2
n~l

ft

(2) ~

i/ -.N rr ^. log 2 sin 2*0
7. tan l

(n-l)a!+0, C? s-^ _,

8. Assume for the form of the integral

and then seek to determine the constants.

CHAPTER V.

. I ( 1 1
.

1

where C= 1*0787 approximately and is the sum acZ i/.
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The sum ad inf. differs from that of the first nine terms by
0000304167.

3. IT-*

4. See page 71.

5. (1) Apply Prop. IV. page 99. If a2 be written for

x9
in the first series it can be divided into two series similar

to the Example there given.

1 .1 3

(+!)(*+ 2) 2 x (x +!)(*+ 2) (x + 3)

A

13. See Ex. 7. Also page 115.

CHAPTER VII.

1. - tan""
1 a and .

a 2a

3. (1) Divergent. (2) Convergent,

(3) The successive tests corresponding to (C) arc

obtained by writing A^tt
for

* - 1 therein. The set
U
x+i

corresponding to (Z?) are obtained by writing

(4) Convergent if x be positive, divergent if it be

negative.

(5) Divergent. (6) Divergent.
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(7) Divergent unless a be greater than unity.

(8) Divergent unless a be greater than unity.

4. (1) Divergent unless x be less than unity.

(2) Convergent unless a or its modulus be numeri-

cally greater than unity.

6. Divergent unless x < e~
l
.

7. x must not be less than unity numerically.

17. See Ex. 18.

CHAPTER IX.

same.

1)-

-
a*-l}

A'"'

same.

2. u = CfoV(Jrt) +- 1
<r I -pa

5. u* = {(7-f cosec a tan (x
-

1) a} cos a cos 2a...cos (#

6. Assume ux =*va + in where w is a root of

ra
2 + am + b 0,

and there results a linear equation in .

8. ^
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2 sin xd sin (x ~
]

c/

Sm

10. ,=a
Jt

11. u, = cos 2* 6.

12. =

13. -a--
?-!?

14. ^=^^-1 ^^

15. By writing w, -f s = v, the equation may be reduced

to v
x+l
= t + G When (7 = - 2 this gives ^ = 2 cos 2* 0.

16. cw* = <?x -f 1.

17. ..*w s=aa5 or 2ao?. Hence two associated solutions
**.

(see Ch. x.) are

and w,= (7(-

CHAPTER X.

-

1. ^

8. The two others are given by

where ^ is a root of
/u,

2
4- /* +1 = 0.
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9.

1. u,= C(-l)*+C'4>'

CHAPTER XI.

m*

(m + 1) (m - 4)
*

2. u c (4)* + "*^

3. .
= ((7+Cr*)(-l) + |rP-6a? +Y-3l

L. J

4. w. = (m
a + n2

)

2
S C cos (x tan"1 -

x l\ w

m) n

COS II X *""~
~c\ \ / -

V_?/ ,_(-
2sm-

7. The particular integral is obtained by (II) and (III)

page 218. It is any value of 2(X~*)
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-f i? cos mx + cos (x 2) m ,
, , f

9. ux = =--4 -* a
----- - --- ~----h complementary func-*

7i* 2/i
a
cos 2m + 1

r J

tion, which is

f^r ^"^
4(7 cos

-^--

or Cfo*-f (7( n)*, according as the upper or lower sign is

taken.

10.

or

11.

CHAPTER XII.

2. wr = ^si

to
7l

-7 terms (supposing that n is odd) where X = ^
.

5. ,= ,- 3
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6.

7. For (# + 2)
a read (-f 2)

3
. The equation is then re-

duced into a very simple form by substituting
x
-

2 VK for ux.

(x + 1)

8. =><?, + (7, (-!) + mas

.-

9. ,.-

10. ^ + *--

and v, -f- . . .
,
wx + ... are obtained by writing x -f 2 and a? + 4

in the quantity on the right-hand side.

x+2 9-a; _ 9/y~x
"1

11. .=(^+aB)2-+(C+2te)(-a)-+
(^- 4>

r
a
-,

and VM (and therefore ^) is given at once by the first equa-
tion.

13. It may be written (E- a*) (E- ax) UK = 0.

*<*-_!) *(*-!)

14. tt,= a
2

"

,- f^ 2?ra;
, ^ . ZTTX]

lo. wx = va tan
j
C7

1
cos ^- + C7

2
sin - -

f

17. Compare with (15) after dividing by uxux

19. If log an = un we have

^3 + 3un+2 -4wn
= 0,

and the solution is
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20. See page 228. Perform A on the equation and a
linear equation in AXs results.

21. u*= Pa* + Q$* +Rf where a/fy
= 1

and C=P<2(*-/3)
2

(/8- 7)
8

(7-

If C= 0, the solution becomes

00 rr & 2 cos a cos ma v. sin (m 1) a
22. If v,

== 2 cos a, vm =-.
-^-'

.1 ' m C1risin a

CHAPTER XIV.

a and # are
v*y/

roots of ra
a am +6 = 0.

5.

6-

7.
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8. The complementary function is given by

where a, ft, 7 are the roots of

m3 -3a2

The other part is a particular integral of

in which x -f y is written for C after solution. It is of the

form Axy + Ex + B'y + C', but the values of the coefficients

are complicate.

e"*
9. ut

= (72* + C"e* + T-S sr-,
-TT where (7 is a periodic

(e A) (n
-

1;

and C' an absolute constant.

CHAPTER XV.

1. ^W

2. <n*)

5. f(x)=Cx.

8.
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11. ()-+*<*>-

12. y = ce^ (x^\ <f> (x) denoting an odd function of x.

13. Devclopcf (TT) in ascending powers of IT, and apply
the conditions of periodicity.

sm mx

sne
sin (mx + c)

"

22. *<*)

CHAPTER XVI.

1. r~a+f (j^\ -/(-s ) where/ (x) satisfies the equa-

tion A/() = 0.

2. Write log r for r in the answer to the previous ques-
tion.
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By E. LANDAU
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By E. LANDAU
Original German-language version of Foundations
of Analysis.
The student who wishes to learn mathematical

German will find this book ideally suited to his
needs. Less than fifty German words will enable
him to read the entire book with only an occasional
glance at the vocabulary! [A complete German-
English vocabulary has been added.]

Orig publ at $4 00. *2.95

DARSTELLUNG UNO BEGRUNDUNG
EINIGER NEUERER ERGEBNISSE DER
FUNKTIONENTHEORIE

By E. LANDAU
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ANALYTISCHE THEORIE DER
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By E. LANDAU
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MEMOIRES SUR LA THEORIE DES SYSTEMES
DES, EQUATIONS DIFFERENTIELLES
LINEAIRES, Vols. I, II, III

By J. A. LAPPO-DANILEVSKY
Some of the chapter titles are: General theory of
functions of matrices ; Analytic theory of matrices ;

Problem of Poincar; Systems of equations in

neighborhood of a pole; Analytic continuation; In-

tegral equations and their application to the theory
of linear differential equations; Riemann's prob-
lem; etc.

"The theory of [systems of linear differential

equations] is treated with elegance and generality
by the author, and his contributions constitute an
important addition to the field of differential equa-
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ELEMENTS OF ALGEBRA
By HOWARD LEVI

This text, used in a preliminary edition for several
years at Columbia University, School of General
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algebra is presupposed.
195* 160pp 5x8 $3.25

LE CALCUL DES RESIDUS
By E. LINDELOF

Important applications in a striking diversity of
mathematical fields : statistics, number theory, the
theory of Fourier series, the calculus of finite

differences, mathematical physics and advanced
calculus, as well as function theory itself.
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THE THEORY OF MATRICES

By C. C. MacDUFFEE

"No mathematical library can afford to be without
this book." Bulletin of the A. M. S.

(Ergb. dr Moth.) 2nd edition 116 pp. 6x9. Orig. pubI.

ot $5!50 $2.95

FORMULAS AND THEOREMS FOR THE
FUNCTIONS OF MATHEMATICAL PHYSICS

By W. MAGNUS and F. OBERHET7INGER

Gathered into a compact, handy and well-arranged
reference work are thousands of results on the

many important functions needed by the physicist,
engineer and applied mathematician.
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GEOMETRIE DER ZAHLEN
By H. M/NKOWSKf

viM -I- 256 pp. 5 1/2x8 </4 . $4.50

INVERSIVE GEOMETRY
By F. MORLBY and F. V. MORLEY

CHAPTER HEADINGS: I. Operations of Elementary
Geometry. II. Algebra. III. The Euclidean Group.
IV. Inversions. V. Quadratics. VI. The Inversive
Group of the Plane. VII. Finite Inversive Groups.
VIII. Parabolic, Hyperbolic, and Elliptic Geom-
etries. IX. Celestial Sphere. X. Flow. XI. Differ-
ential Geometry. XII. The Line and the Circle.
XIII. Regular Polygons. XIV. Motions. XV. The
Triangle. XVI. Invariants under Homologies.
XVII. Rational Curves. XVIII. Conies. XIX.
Cardioid and Deltoid. XX. Cremona Transforma-
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VORLESUNGEN UBER
DIFFERENZENRECHNUNG

By N. H. N&RLUND
The Calculus of Finite Differences from the func-
tion-theoretic point of view. A necessity for any-
one who wishes a thorough understanding of the
field.

ix+551pp. 5x8. Orig. pubI. at $11.50. $5.95

DIE LEHRE VON DEN KETTENBRUECHEN
By O. PERRON
Both the Arithmetic Theory and the Analytic
Theory are treated fully.

"The most exhaustive and modern of all exposi-
tions of the theory of continued fractions."

Bulletin of the A. M. S.

"An indispensable work . . . Perron remains the
best guide for the novice. The style is simple and
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Mathematical GatetU.
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IRRATIONALZAHLEN
By O. PERRON
Methods of introducing irrational numbers
(Cauchy, Bolzano, Weierstrass, Dedekind, Cantor,
Me'ray, Bachman, etc.) Systematic fractions, con-
tinued fraction*, Cantor** series and algorithm,
Luroth'* and tinge?* aeries, Cantor's product*.
Approximations, Kronecker theorem, Algebraic
and transcendental number* {including transcen-
dency proof* for e and it; LiouviUe number*, etc.)

2nd d. 1939 207 pp. SVfcxS. *i.2f

SUBHARMONIC FUNCTIONS
By T. RADO
"Will be welcomed by general reader* and will be
particularly valuable for specialists. . . . The ap-
plications treated in the book are numerous and
the topics wisely selected."

J. D. Tamarkin, Bulletin of the A. M. S.

CErgb. dr Moth.) 1937. iv+56 pp. SVfexSVfe. S2.OO

THE PROBLEM OF PLATEAU
By 7. RADO

- ni "'

EINFUHRUNG IN DIE KOMBINATORISCHE
TOPOLOGIE

By K. REIDEMEISTER

221 pp. 5ftx8i/4. St.50

KNOTENTHEORIE
By K. REIDEMEISTER

<Erb. d*r Moth.) 1932. 78 pp.

FOURIER SERIES

By W. ROGOSINSKI

Designed for beginners with no more background
than a year of calculus, this text covers, neverthe-
less, an amazing amount of ground. It is suitable
for self-study courses as well as classroom use.

"The field covered is extensive and the treatment
is thoroughly modern in outlook . . . An admirable
guide to the theory." Mathematical Gazette.

1950. 182 pp. 4>Ax6Vi. (English translation).

CONIC SECTIONS
By G. SALMON
"The classic book on the subject, covering the whole
ground and full of touches of genius."

Mathematical Association.

Sixth d. 414 pp. 5xS. Cloth bound SUS
Popor bound 91.94



CHELSEA SCIENTIFIC BOOKS

INTRODUCTION TO MODERN ALGEBRA
AND MATRIX THEORY

By O. SCHREIER and E. SPERNER
An English translation of the revolutionary work,
EinfUhrung in die Analytische Geometric und
Algebra. Chapter Headings: I. Afflne Space. Linear
Equations. (Vector Spaces). II. Euclidean Space.
Theory of Determinants. HI. The Theory of Fields.
Fundamental Theorem of Algebra. IV. Elements
of Group Theory. V. Matrices and Linear Trans-
formations. The treatment of matrices is especially
extensive.

"Outstanding . . . good introduction . . . well
suited for use as a text . . . Self-contained and each
topic is painstakingly developed."

Mathematics Teacher.

386 pp. 6x9. $4.99

PROJECTIVE GEOMETRY
By O. SCHREIER and E. SPERNER

Analytic Protective Geometry of n dimensions.

(Being volume two of Introduction to Mooorn AJoobre.)
In prop.

LEHRBUCH DER TOPOLOGIE
By H. SEIFERT and W. THRELFAIL
This famous book is the only modern work on com-
binatorial topology addressed to the student as well
as to the specialist. It is almost indispensable to
the mathematician who wishes to gain a knowledge
of this important field.

"The exposition proceeds by easy stages with
examples and illustrations at every turn."

Bulletin of the A. M. S.
1934 360 pp. 5 1/2x8 ft. Ong. publ. ot $8.00 14.95

VARIATIONSRECHNUNG IM GROSSEN
(Theorie von Marston Morse)

By H. SEIFERT and W. THRELFALL

The brilliant expository talents of Professors Sei-
fert and Threlfall familiar to the many readers
of their Lehrbuch der Topologie are here devoted
to an eminently readable account of the calculus
of variations in the large.

Topologically the book is sel^-contained.
1938. 120 pp. 6x9 S2.9S

SINGH, "Non-Differontioble Functions/' oo Hobson

DIOPHANTISCHE GLEICHUNGEN
By 7. SKOLEM
"This comprehensive presentation . . . should be
warmly welcomed. We recommend the book most
heartily." Acta Szeged.

(Ergeb dor Math I 1938. ix+130 pp. SVixSVi. Cloth.

Ong. publ ot $6.50. Si.SO

ALGEBRAISCHE THEORIE DER KOERPER
By E. STEINIJZ

"Epoch-making." A. Hoar, Acta Szeged.
"Will always be considered as one of the

classics." Bulletin of the A. M. S.
177 pp. includino two oppendiees. S'AxB'A- M-1I



CHELSEA SCIENTIFIC BOOKS

INTERPOLATION
By J. F. STEFFENSEN

"A landmark in the history of the subject.

"Starting: from scratch, the author deals with
formulae of interpolation, construction of tables,
inverse interpolation, summation of formulae,
the symbolic calculus, interpolation with several

variables, in a clear, elegant and rigorous manner
. . . The student . . . will be rewarded by a compre-
hensive view of the whole field. ... A classic ac-
count which no serious student can afford to

neglect." Mathematical Gazette.

1950. 2nd d. 256 pp. 5'/x8'/4 . Orig. publ. at $8.00. fl.9S

A HISTORY OF THE MATHEMATICAL
THEORY OF PROBABILITY

By I. JODHUNTE*

Introduces the reader to almost every process and
every species of problem which the literature of
the subject can furnish. Hundreds of problems are
solved in detail.

640 pages. 5'/4x8. Previously publ. at $8.00. $4.95

LECTURES ON THE GENERAL THEORY OF
INTEGRAL FUNCTIONS

By G. VALIRON
1923. XM+ 206 pp. 51/4x8. S1.50

GRUPPEN VON LINEAREN
TRANSFORMATIONEN

By 8. L VAN DER WAERDEN
(Ergeb. derMath ) 1935 94 pp SftxSVfe. $2.10

DIE IDEE DER RIEMANNSCHEN FLAECHE

By H. WEYL
2nd ad. 200 pp. 5 16*8 ft. fi.95

ALGEBRAIC SURFACES

By O. ZARISKI

<

2
Ergb d*r Math ) 1935. 204 pp. 5V4x8'/i. Ong.

pub^
at

THE THEORY OF GROUPS
By H. ZASSENHAUS

Prof. Zassenhaus has revised and added consider-
able new material in this second English edition
of his famous textbook.

2nd d. About 220 pp 6x9 Summer,

TRIGONOMETRIC; SERIES

By A. ZYGA4UND
"The book on Fourier Series/'

Bulletin of the A. M. S.
324 pp. 6x9. 2nd d. $4.00














