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PREFACE TO THE FIRST EDITION.

IN the following exposition of the Calculus of Finite Dif-
ferences, particular attention has been paid to the connexion
of its methods with those of the Differential Calculus—a
connexion which in some instances involves far more than
a merely formal analogy.

Indecd the work is in some measure designed as a sequel
to my Treatise on Differential Equations. And it has been
composed on the same plan.

Mr Stirling, of Trinity College, Cambridge, has rendered
me much valuable assistance in the revision of the proof-
sheets. In offering him my best thanks for his kind aid, I
am led to express a hope that the work will be found to be

free from important crrors.
GEORGE BOOLE.

QueEex's CoLLEGE, CORR,
April 18, 1860,



PREFACE TO THE SECOND EDITION.

WHEN I commenced to prepare for the press a Second
Edition of the late Dr Boole’s Treatise on Finite Differ-
ences, my intention was to leave the work unchanged save
by the insertion of sundry additions in the shape of para-
graphs marked off from the rest of the text. But I soon
found that adherence to such a principle would greatly
lessen the value of the book as a Text-book, since it would
be impossible to avoid confused arrangement and even much
repetition. I have therefore allowed myself considerable
freedom as regards the form and arrangement of thosc
parts where the additious arc considerable, but I have strictly
adhered to the principle of inserting all that was contained
in the First Edition.

As such Treatiscs as the present are in close connexion
with the course of Mathcmatical Study at the University
of Cambridge, there is considerable difficulty in deciding
the question how far they should aim at being exhaustive.
I have held it best not to insert investigations that involve
complicated analysis unless they possess great suggestiveness
or are the bases of important developments of the subject.
Under the present system the premium on wide superficial
reading is so grcat that such investigations, if inserted,
would seldom be read. But though this is at present the case,
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there is every reason to hope that it will not continue to be
so; and in view of a time when students will aim at an
cxhaustive study of a few subjects in preference to a super-
ficial acquaintance with the whole range of Mathematical
research, I have added brief notes referring to most of the
papers on the subjects of this Treatise that have appeared
in the Mathematical Serials, and to other original sources.
In virtue of such refercnces, and the brief indication of the
subject of the paper that accompanies each, it is hoped that
this work may serve as a handbook to students who wish
to read the subject more thoroughly than they could do
by confining themselves to an Educational Text-book.

The latter part of the book has becn left untouched.
Much of it I hold to be unsuited to a work like the present,
partly for reasons similar to those given above, and partly
because it treats in a brief and nccessarily imperfect manner
subjects that had better be left to separate trcatises. It
is impossible within the limits of the present work to treat
adequately the Calculus of Operations and the Caleulus of
Functions, and I should have preferred leaving them wholly
to such treatises as those of Lagrange, Babbage, Carmichacl,
De Morgan, &c. I have therefore abstained from making
any additions to these portions of the book, and have made
it my chief aim to render more evident the remarkable
analogy between the Calculus of Finite Differences and the
Differential Calculus. With this view I have suffercd myself
to digress into the subject of the Singular Solutions of Differ-
cntial Equations, to a much greater extent than Dr Boole
had done. But I trust that the advantage of rendering the
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investigation a complete one will be held to justify the
irrelevance of much of it to that which is nominally the
subject of the book. It is partly from similar considerations
that I have adopted a nomenclature slightly differing from
that commonly used (e.g. Partial Difference-Equations for
Equations of Partial Differences).

I am greatly indebted to Mr R. T. Wright of Christ’s
College for his kind assistance. He has revised the proofs
for me, and throughout the work has given me valuable
suggestions of which I have made free use.

JOHN F. MOULTON.

CurisT’sS COLLEGF,
Oct. 1872,
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FINITE DIFFERENCES.

CHAPTER 1.

NATURE OF THE CALCULUS OF FINITE DIFFERENCES.

1. THE Calculus of Finite Differences may be strictly
defined as the science which is occupied about the ratios of
tl e simultancous increments of quantities mutually depen-
dént. The Differential Calculus is occupied about the fmats
to which such ratios approach as the increments are indefi-
nitely diminished.

In the latter branch of analysis if we represent the inde-
pendent variable by «, any dependent variable considered as
a function of z is represented primarily indeed by ¢ (z), but,
when the rules of differentiation founded on its functional
character are established, by a single letter, as w. In the
notation of the Calculus of Finite Differences these modes of
expression seem to be in some measure blended. The de-
pendent function of z is represented by u,, the suffix taking
the place of the symbol which in the former mode of notation
is enclosed in brackets. Thus, if %, = ¢ (x), then

U= (z+h),
Uz = (5i0 ),
and so on. But this mode of expression rests only on a con-

vention, and as it was adopted for convenience, so when con-
venience demands it is laid aside.
The step of transition from a function of # to its increment,

and still further to the ratio which that increment bears to
the increment of z, may be contemplated apart from its sub-
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ject, and it is often important that it should be so contem-
plated, as an operation governed by laws. Let then A, pre-
fixed to the cxpression of any function of z, denote the
operation of taking the increment of that function correspond-
ing to a given constant increment Az of the variable .
Then, representing as above the proposed function of = by w,,
we have
Auz = Uppr = Uy

Au, U a,—u,

and Az An "

Here then we might say that as ‘% is the fundamental ope-

ration of the Differential Calculus, so -AA; is the fundamental

operation of the Calculus of Finite Differences,

But there is a difference between the two cases which
ought to be noted. In the Differential Calculus g—'—; is not a
true fraction, nor have du and dz any distinct meaning as
symbols of quantity. The fractional form is adopted to
express the limit to which a true fraction approaches. Hence

d , and not d, there represents a real operation. But in the

dz

Calculus of Finite Differences ﬁ—:‘ is a true fraction. Itsnu-
rerator Au, stands for an actual magnitude. Hence A might
itself be taken as the fundamental operation of this Calculus,
always supposing the actual value of Az to be given; and the
Calculus of Finite Differences might, in its symbolical charac-
ter, be defined either as the science of the laws of the operation
A, the value of Az being supposed given, or as the science of
the laws of the operation Az In consequence of the funda-
mental difference above noted between the Differential Calcu-
lus and the Calculus of Finite Differences, the term Finite
ceases to be necessary as a mark of distinction, The former
is a calculus of limats, not of differences.
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2. Though Az admits of any constant value, the value
usually given to it is unity. There are two reasons for this.

First. The Calculus of Finite Differences has for its chief
subject of application the terms of series. Now the law of a
series, however expressed, has for its ultimate object the deter-
mination of the values of the successive terms as dependent
upon their numerical order and position, Explicitly or im-
plicitly, each term is a function of the integer which ex-
presses its position in the series. And thus, to revert to
language familiar in the Differential Calculus, the inde-
pendent variable admits only of integral values whose com-
mon difference is unity. For instance, in the series of terms

1%, 2% 3% 4%, ...
the general or #™ term is #* It is an explicit function of =,

but the values of = are the series of natural numbers, and
Az=1.

Secondly. When the general term of a series is a function
of an independent variable £ whose successive differences are
constant but not equal to unity, it is always possible to
replace that independent variable by another, &, whose com-
mon difference shall be unity. Let ¢ (¢) be the general term
of the series, and let At=~h; then assuming ¢ =Az wec have
At = hAz, whence Az=1.

Thus it suffices to establish the rules of the Calculus on the
assumption that the finite differencc of the indcpendent
variable is unity. At the same time it will be noted that this

assumption reduces to equivalence the symbols ;f; and A.

We shall therefore in the following chapters develope the
theory of the operation denoted by A and defined by the
equation

Au, = U, — U,
But we shall, where convenience suggests, consider the more
general operation
Au, U, \—U,
Az~ b
where Az = h.



(4)

CHAPTER II.
DIRECT THEOREMS OF FINITE DIFFERENCES.

1. THE operation denoted by A is capable of repetition.
For the difference of a function of z, being itself a function of
z, is subject to operations of the same kind.

In accordance with the algebraic notation of indices, the
difference of the difference of a function of #, usually called
the second difference, is expressed by attaching the index 2 to
the symbol A. Thus

AAu, = Ay,
In like manner
AN, = A%,
and generally
AA™ Yy, = Ay, @),

the last member being termed the n*2 difference of the function
u,. If we suppose u,=a’, the successive values of u, with
their successive differences of the first, second, and third orders
will be represented in the following scheme :

Values of = 1 2 3 4 5 6..

U, 1 8 27 64 125 216 ...
Au, 7 19 37 61 91...

A, 12 18 24 30...

A, 6 6 6...

It may be observed that each set of differences may either
be formed from the preceding set by successive subtractions
in accordance with the definition of the symbol A, or calcu-
lated from the general expressions for Au, A%, ... by assign-



ART. 2.] DIRECT THEOREMS OF FINITE DIFFERENCES. 5

ing to « the successive values 1, 2, 3, .... Since u,=2° we

shall have
Au,=(z+1)—2*=32"+3z+1,
A'w,=A (32" + 3z + 1) =62+ 6,
APu,= 6.
It may also be noted that the third differences are here
constant. And generally if u, be a rational and integral

Sunction of x of the n' degree, its n'* differences will be
constant. For let

u, = ax" + bz + ...,
then
Au,=a(z+1)"+b(x+1)"" + ...
—ar® —bz" — ...
=anz" + ba"* + b2 + ...,

b, b,, .-- being constant coefficients. Hence Au, is a
rational and integral function of z of the degree n—1.
Repeating the process, we have

Au,=an (n-1)2"" +ca"° +cx™ " + ...,
a rational and integral function of the degree n — 2; and so on.

Finally we shall have
Aw,=an(n-1)(n—2)...1,
a constant quantity.

Hence also we have
A2"=1.2...n. (2).

2. While the operation or series of operations denoted
by A, A%, ...,A" are always possible when the subject-function
u, is given, there are certain clementary cases in which the
forms of the results are deserving of particular attention, and
these we shall next consider.
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Differences of Elementary Functions.

1st. Let v,=a(@x—1)(x—2)... (@—m+1).
Then by definition,
Au,=(z+1)z(z—1)...(z—m+2)—z(z—1)(z—2)...(z—m+1)
=mz(z—1)(z—2)...(2—m+ 2).
When the factors of a continued product increase or de-
crease by a constant difference, or when they are similar
functions of a variable which, in passing from one to the

other, increases or decreases by a constant difference, as in
the expression

sin  sin (2 + A) sin (z + 2h) ... sin {z+ (m — 1) A},
the factors are usually called factorials, and the term in which
they are involved is called a factorial term. For the particular
kind of factorials illustrated in the above example it is com-
mon to employ the notation

z(@—1)...(z—m+1)=2™ (1),
doing which, we have
Ax™ = ma™" 2.
Hence, ™™ being also a factorial term,
A2™ =m (m —1) 2™,
and generally
Ad"=m@m—1)...(m—n+1) "™ (3).
1
z(@+1)...x+m—1)"
Then by definition,
- 1 _ 1
Ua = @+ (x+2)...(x+m) =z@@+1)...(z+m-—1)

2ndly.' Let u, =

A

(1 _1_) 1
—(a:+'m z/(x+1) (®+2)...(@+m—1)

Tz (= + 1')"”” (x+m) (4)-
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Hence, adopting the notation

zz+1)...(x+m—1) ’

we have
Az™ = — mg" (5).

Hence by successive repetitions of the operation A,
A'g™M=—m(—m—-1)...(—m—n+1) ™™
=(-1)"m@m+1)...(m+n—-1)z™™  (6),
and this may be regarded as an extension of (3).

3rdly. Employing the most general form of factorials,
we find

pa— Py’
Auzux.l oo Up 1 = (ux+1 u:-mﬂ) XUy g oee Ug_ppyg (‘ ) ’
1 Uy — Uy,
A = - (8),
'll/,;'ulzv‘_1 .o 'u,+,,,__l U, u,*l . u=+m

and in particular if », = az + b,

Auwu

g+ U mgy = OMUUp oo Uy g 9),

1 _—am (10).

Uglgyy ooo Uppmy  Ugllpyy ooo Ugpy

In like manner we have
2+1

Alog u, =log u,,, —log u, —log

To this result we may give the form

A log u, =log ( Au, ) (11).
So also
A10g (Ufhy v o) = 10G 21 (12).

4thly. To find the successive differences of a”.
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We have
Aa*=a™ —a®
=(@e-1a" "’ (13).

Hence
A2 % (a_ l)zaa,

and generally,

A'e®=(a—1)"a” (14).
Hence also, since a™ = (a™)*, we have
Ata™ = (g™ —1)"a™ (15).

5thly. To deduce the successive differences of sin (az + b)
and cos (ax + b).

A sin (az +b) =sin (az + b + a) — sin (az + b)

=2singcos (ax+b+g)

. a . a+=n
—2s1n§ sm(a.v+b+—2—>.

By inspection of the form of this result we see that
2
A"sin (az +8) = (2 sin g) sin(az+b+a+m) (16).

And generally,

A%sin (az +b) = (2 sin g)"sin {aa: b+ m;_'”)} an.’

In the same way it will be found that

A" cos (az +b) = (2 sin g)ncos {az +b+2 (a2+ ")} (18).

These results might also be deduced by substituting for the
sines and cosines their exponential values and applying (15).

3. The above are the most important forms, The follow-
ing are added merely for the sake of exercise.
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To find the differences of tan %, and of tan™"u,.
A tan 4, = tan u,,, — tan u,

_sinu, siny,
" cosu,, ~ cos u,

_sin (um u,)

" CO8 Uy, COS U,

sin Aw, )
— N —————— 1 .
COS U, COS %,
Next,
A tan™u, = tan™"%,,, — tan™"u,

uz+1 Uy

1+ u,,, u,

Au,
1+ u,, u,

= tan™
=tan™

@).

From the above, or independently, it is easily shewn that

sin @
AtanM'.'_cosa:c:cos a(z+1) ®),
a
4).
A tan™ gz = tan™ PP g (4)

Additional examples will be found in the exercises at the
end of this chapter.

4. When the increment of  is indeterminate, the opera-
tion denoted by —A-A; merges, on supposing Az to become
infinitesimal but the subject-function to remain unchanged,
into the operation denoted by ‘% The following are illus-

trations of the mode in which some of the general theorems
of the Calculus of Finite Differences thus merge into theorems
of the Differential Calculus.
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Ex. We have

Asinz _sin (x+ Az) —sinz

Az Az
2sin § Az sin (a: + A.z2+ Tr)
= Az
And, repeating the operation n times,
. . Az + 'n')
Asinz (2 sin § Az)" sin (:c +n—g 0
(Az)" — (Az)" '
It is easy to see that the limiting form of this equation is
d*sinz . nw
— g —Sin (:v + —2-) (2),

a known theorem of the Differential Calculus.

Again, we have

N 1) o
. ( Ax )
And hence, generally,
Anaz aAE_ 1 n -
mar = (a) @)
Supposing Az to become infinitesimal, this gives by the
ordinary rule for vanishing fractions
IT  (log a)"* (4).
But it is not from examples like these to be inferred that
the Differential Calculus is merely a particular case of the
Calculus of Finite Differences. The true nature of their con-
nexion will be developed in a future chapter.
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Ezpansion by factorials.

5. Attention has been directed to the formal analogy
between the differences of factorials and the differential
coefficients of powers. This analogy is further developed in
the following proposition.

To develope ¢ (z), a given rational and integral function
of z of the m®™ degree, in a series of factorials.

Assume
¢ () =a+ bz + cz® + da® ... + ha™ (1)

The legitimacy of this assumption is evident, for the new
form represents a rational and integral function of « of the m™
degree, containing a number of arbitrary coefficients equal to
the number of coefficients in ¢ (z). And the actual values
of the former might be determined by expressing both mem-
bers of the equation in ascending powers of @, equating coeffi-
cients, and solving the linear equations which result. Instead
of doing this, let us take the successive differences of (1).
We find by (2), Art. 2,

A¢ (z) =b+ 2cx 4 3da™ ... + mha™ ™ (2),
A’ (x)=2¢+3.2dz... + m(m —1) ha™?® (3),
Am¢. (w) = m( m— 1) lh ............ .

And now making 2 =0 in the series of equations (1)...(4),
and representing by A¢ (0), A% (0), ... what A¢ (), A’ (),
.. . become when « =0, we have

$0)=a, Ap(0)=b, A'%(0)=2,

---------------------------------

A" (0)=1.2... mh.

Whence determining a, b, ¢, ... h, we have

s@=30) +4¢ )z +28 0 20O pn, )

If with greater generality we assume

¢ @)=a+bx+cz(x—h)+ dz(z—h) (z—2k) + ...,
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we shall find by proceeding as before, (except in the employ-
. A
ing of v for A, where Az=h,)

@ =@+ {5 Do+ {12 SR

Az (Az)r) 1.2
A’ ()] z (z— h) (= — 2k)
+{‘(MT} Teg *t- O

where the brackets {} denote that in the enclosed function,
after reduction, « is to be made equal to 0.

Maclaurin’s theorem is the limiting form to which the
above theorem approaches when the increment Az is inde-
finitely diminished,

General theorems expressing relations between the successive
values, successive differences, and successive differential coef-
JSicients of functions.

6. In the equation of definition

Au,=u,, —u,
we have the fundamental relation connecting the first differ-

ence of a function with two successive values of that function.
Taylor’s theorem gives us, if & be put equal to unity,

du, 1d'u, 1 d’u,

Yen m U=t dr T 3 dR T
which is the fundamental relation connecting the first differ-
ence of a function with its successive differential coefficients.
From these fundamental relations spring many general theo-
rems expressing derived relations between the differences of
the higher orders, the successive values, and the differential
coefficients of functions.

As concerns the history of such theorems it may be ob-
served that they appear to have been first suggested by par-
ticular instances, and then established, either by that kind of
proof which consists in shewing that if a theorem is true for
any particular intcger value of an index n, it is true for the
next greater value, and therefore for all succeeding values;
or else by a peculiar method, hereafter to be explained,
called the method of Generating Functions. But having
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been once established, the very forms of the theorems led to
a deeper conception of their real nature, and it came to be
understood that they were consequences of the formal laws
of combination of those operations by which from a given
function its succeeding values, its differences, and its differ-
ential coefficients are derived.

7. These progressive methods will be illustrated in the
following example.

Ex. Required to express u,,, in terms of %, and its suc-
cessive differences.

We have
Upyy = Uy + AU ;
o Uy =Up + AU, + A (u, + Au,)
=u, + 2Au, + A%,.
Hence proceeding as before we find
Upgyy = Uy + BAU, + 3A%, + A%,

These special results suggest, by the agreement of their
coefficients with those of the successive powers of a binomial,
the general theorem

uﬂ-ﬂ:u: + nAu, + In_(ln——zi)Azuz
n(n—1)(n—2) .,
+ 1.2f3~——Au,,+... (1).

Suppose then this theorem true for a particular value of n,
then for the next greater value we have

n(n—1)

Uppngy = U + nlu, + N Ay,
n(”‘lz(""z) 3
+= gty At
+Au,+nA’u,+__n(n'_",1_) A% +
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_ n+1n,, n+)nn-1) .,
=y, +(n+1) Au, + B .2—Au,+——~1-‘-2j-3——~ Ay, +...

the form of which shews that the theorem remains true for
the next greater value of n, therefore for the value of n still
succeeding, and so on ad infinitum. But it is true for n=1,
and therefore for all positive integer values of » whatever.

8. We proceed to demonstrate the same theorem by the
method of generating functions.

Definttion. If ¢ (f) is capable of being developed in a
series of powers of ¢, the general term of the expansion being
represented by u.t%, then ¢ () is said to be the generating
function of »,. And this relation is expressed in the form

¢ () = Gu,.
Thus we have
1
¢
¢=6 1.2..z°

i 21 — is the coefficient of ¢* in the development of ¢".

In like manner

since

1

et
=91 et

since is the coefficient of ¢* in the development

1
1.2...(z+1)
of the first member.

And generally, if Gu,=¢ (¢), then
t t
G’um==¢—t(—)...... Gu =<%(~) (2.

Hence therefore
1
Guy,, — Gu, = (Z - 1) é (@),
But the first member is obviously equal to GAu,, therefore
1
GAu,= (Z - 1) é (2) 3).



ART. 8] DIRECT THEOREMS OF FINITE DIFFERENCES. 15

And generally
GA™, = @ ~1) ¢ ).

To apply these theorems to the problem under considera-
tion we have, supposing still Gu,= ¢ (¢),

Gu,.=(3) ¢ O

-+ G-y e0
—6 () +n(% —1)¢(t)+7%—2(% -1)'¢(t)+

= Gu_+nGAu, + "—(n—;—l) QA + ...

= G{u,+nAu,+7M2_—l)A’u=+ }

Hence
u,m=u‘+nAu‘+n—(—n—2Ll—)A’u=+
which agrees with (1).

Although on account of the extensive use which has been
made of the method of generating functions, especially by
the older analysts, we have thought it right to illustrate its
general principles, it is proper to notice that there cxists an
objection in point of scientific order to the employment of
the method for the demonstration of the direct theorems of
the Calculus of Finite Differences; viz. that & is, from its very
nature, a symbol of inversion (Diff. Equations, p. 375, 1st Ed.).
In applying it, we do not perform a direct and definite ope-
ration, but seek the answer to a question, viz. What is that
function which, on performing the direct operation of deve-
lopment, produces terms possessing coefficients of a certain
form? and this is a question which admits of an infinite
variety of answers according to the extent of the development
and the kind of indices supposed admissible. Hence the
distributive property of the symbol G, as virtually employed
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in the above example, supposes limitations which are not
implied in the mere definition of the symbol. It must be
supposed to have reference to the same system of indices in
the one member as in the other; and though, such conven-
tions being supplied, it becomes a strict method of proof, its
indirect character still remains*,

9. We proceed to the last of the methods referred to in
Art. 6, viz. that which is founded upon the study of the ulti-
mate laws of the operations involved. In addition to the
symbol A, we shall introduce a symbol Z to denote the ope-
ration of giving to z in a proposed subject function the incre-
ment unity;—its definition being

Eu’z = Uy (1)'

Laws and Relations of the symbols E, A and (ZE .
1st. The symbol A is distributive in its operation. Thus

A, +v,+. )=A08u,+Ay +... (2).
For
Ao+ ) = Ut 0y — (0, +0,0.)
=U = U, +V,, V...
= Au, + Av,...
In like manner we have
Aw,—v,+ ... )=Au,—Avy + ... (3).

2ndly. The symbol A is commutative with respect to any
constant coefficients in the terms of the subject to which it is

applied. Thus a being constant,
Aau,=au,,, — au,
=alAu, (4).
And from this law in combination with the preceding one,
we have, g, b,... being constants,
A(au,+bv,+ ... )=alu, +bAv + ... (5).

* The student can find instances of the use of Generating Functions in
Lacroix, Diff. and Int. Cal. 1. 322. Examples of a fourth method. at once
elegant and powerful, due originally to Abel, are given in Grunert's drchiw.

xvil. 381.
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3rdly. The symbol A obeys the index law expressed by
the equation
A"AM, =A™, (6),
m and n being positive indices. For, by the implied definition
of the index m,
A"A",_ = (AA...m times) (AA...n times) u_
={AA... (m + n) times} u_
— Ami-nu:r.
These are the primary laws of combination of the symbol
A. Tt will be seen from these that A combines with A and
with constant quantities, as symbols of quantity combine with

each other.  Thus, (A + a)w denoting Aw + au, we should
have, in virtue of the first two of the above laws,

A+a)(A+d)u={A"+(a+b)A+ablu
=A™+ (a + ) Au + abu ),

the developed result of the combination (A + @) (A + b) being
in form the same as if A were a symbol of quantity.

The index law (6) is virtually an expression of the formal
consequences of the truth that A denotes an operation which,
performed upon any function of z, converts 1t into another
function of # upon which the same operation muy be repeated.
Perhaps it might with propriety be termed the law of repe-
titionj—as such it is common to all symbols of operation,
except such, if such there be, as so alter the nature of the
subject to which they arc applied, as to be incapable of
repetition*. It was however necessary that it should be dis-
tinctly noticed, because it constitutes a part of the formal
ground of the gencral theorems of the calculus.

The laws which have been established for the symbol A
are even more obviously true for the symbol Z. The two
symbols are connected by the equation

L=1+A,

* For instance, if ¢ denote an operation which, when performed on two
quantities z, 7, gives a single function X, it is an operation 1ncapable of repe-
tition in the sense of the text, since ¢? (x, y) = ¢ (X) is unmeaning. But if it
be taken to represent an operation which when performed on z, y, gives the
two functions X, Y, it is capable of repetition since ¢? (x, ¥) = ¢ (X, Y), which
has a definite meaning. In this case it obeys the index law.
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since

Bu,=u,+Au,=(1+A)u, (8).
and they are connected with (Z—D by the relation
a
E=¢ (©),

founded on the symbolical form of Taylor’s theorem. For

Fu—u. = du, ld’u_l_ 1 d’u,
U= Uy =Yt gy T o T2 3

d 1d 1 &
(1+dm+2dw’+2 3dz T )

4,

]

=e"u,

It thus appears that E, A, and é—% , are connected by the

two equations .
E=1+A=¢& (10),

and from the fact that & and A are thus both expressible by
means of o%, we might have inferred that the symbols E, A,

and d combine each with itself, with constant quantities,

dz

and with each other, as if they were individually symbols of
quantity. (Differential Equations, Chapter XVI.)

10. In the following section these principles will be
applied to the demonstration of what may be termed the
direct general theorems of the Calculus of Differences. The
conditions of their inversion, i. e. of their extension to cases in
which symbols of operation occur under negative indices, will

* In place of £ we shall often use the symbol D. The equations will

then be E=1+ A=¢?, a form which has the advantage of not assuming that
the independent variable has been denoted by x.
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be considered, so far as may be nccessary, in subsequent
chapters.

Ex. 1. To develope u,,, in a scries consisting of u, and
its successive differences (Ex. of Art. 7, resumed).

By definition
u=+l = Euﬂ uz+g = E’u’g, esee
Therefore
u,+,.=E"u,= (1 +A)"u= (1),,
=u, +nAu, + "———(nz‘ ) A’u,+”~———(” = g” 2 Mt ... (2).

Ex. 2. To express A™, in terms of w, and its successive
values.
Since Au,=u,, —u, = Eu,—u,, we have
= (£-1)u,,

and as, the operations being performed, each side remains a
function of z,

A, =(E —-1)"u,
_ n—-1 n(n—l) -3 __
._{E"—nE +—r 2 E }u,

Hence, interpreting the successive terms,
n(n—1) "y
1) Ugpn g eoe +( 1) (3)

——— 3 - -~ -

”, = —
Atu, = u,,, n'u,ﬂ,,_1+

Of particular a,pphca,tlons of thls theorem those are the
most important which result from supposing u, = 2™

We have

Az"=(z+n)"~n (z+n-1)"+ n(n 1)

(@+n—2)"— ... (4).




20  DIRECT THEOREMS OF FINITE DIFFERENCES. [CH. IL

Now let the notation A"0™ be adopted to express what the
first member of the above equation becomes when z=0; then

A" =7n"—n(n—1)"
B

1.2.3

The systems of numbers expressed by A"0™ are of frequent
occurrence in the theory of series*.

From (2) Art. 1, we have
A"0"=1.2... n,

and, cquating this with the corresponding value given by (5),
we have

1.2...n=n"—n(n—1)"+n<;";l) w=2—... (6%

Ex. 3. To obtain developed cxpressions for the n* differ-
ence of the product of two functions u, and v,.

Since
AU, = Uy Vpyy — %s¥s
=FEu, . E'v,—uy,
where E applies to u, alone, and E’ to v, alone, we have
Aup, = (EE" — 1) u,,

and generally
A", = (EE' —1)" u,, ).

It now only remains to transform, if needful, and to de-
velope the operative function in the second member according
to the nature of the expansion required.

Thus if it be required to express A™u,v, in ascending differ-

* A very simple method of calculating their values will be given in Ex. 8

of this chapter.
+ This formula is of use in demonstrating Wilson’s Theorem, that

1+|n~1is divisible by n when n is & prime number.
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ences of v, we must change E’ into A’ + 1, regarding A’ as
operating only on v,. We then have

Arup, = {E(1+A")—1}"up,
= (A + EA')"u,v,

- {A" +nAEA + ”_(;‘:2_1) AVIEAR 4 } 0,

Remembering then that A and £ operate only on %, and A’
only on v,, and that the accent on the latter symbol may be
dropped when that symbol only precedes v,, we have

A"up, = A", . v, + nA"u,,, . Ay,

. $ 20D pey At @),

———

the expansion required. ™ - .

As a particular illustration, suppose u,=a®. Then, since

An—rum = Au-falrh' — rAn-—raz
=a™"" (a—1)"", by (14), Art. 2,
we have
Ata®y, =a” {(@ — 1)"v,+ n (a —1)*"alv,
4ol (@—1)"a"A%, + ...} (9).

2

Again, if the expansion is to be ordered according to suc-
cessive values of v, it is necessary to expand the untrans-
formed operative function in the second member of (7) in
ascending powers of £’ and develope the result. We find

n(n—1
A"y, = (—1)" {uv, — nu,, V., + (—2——) Upleg— --- }  (10).

Lastly, if the expansion is to involve only the differences
of u, and v,, then, changing £ into 1 + A, and £" into 1 + A/,
we have

Ay, = (A + A"+ AA ) up, (11),

and the symbolic trinomial in the second member is now to
be developed and the result interpreted.
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Ex. 4. To express A", in terms of the differential co-
cfficients of u,.

d
By (10), Art. 9, A=¢*—1. Hence

de

A"u, = (&% —1)"u, (12).
Now ¢ being a symbol of quantity, we have
. . tﬂ t? n

1=t g+ 5% ) (13).

=0+ AT AL+ L,
on expansion, 4,, A,, being numerical coefficients. Hence

ﬁ n_ d n (l nt1 d nt2
(" =1) _(ilx) +A‘((l.i'> +4, (d) Feeey

and thercfore
d n d ntl (l n+2
A= ((L > R ( w) v+ 4, (dw) Ut (14).

The cocfficients 4,, A4, may be determined in
various ways, the Q]Hlpl(bt fn prmmple being perhaps to de-
velope the right-hand member of (13) by the polynomial
theorem, and then seck the ageregate cocflicients of the sue-
cessive powers of £, But the expansion may also be effected
with complete determination of the constants by a remarkable
sccondary form of Maclaurin’s theorem, which we shall pro-
ceed to demonstrate.

Secondary form of Maclaurin’s Theorem.

Pror.  The development of ¢ (t) in positive and infegral
powers of t,when such development is possible, may be erpressed

in the form
2

8O =30+ (3)0-1+8(35) 0 15
+4’(c;%> Os'i.-tzsfs“L

where ¢ ( d )0"‘ denotes what ¢ ( ) z™ becomes when z = 0.
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First, we shall shew that if ¢ (z) and - (z) are any two
functions of = admitting of development in the form

a+bx+cx*+...,

then ¢ ((i—i) V(@)= (3%) ¢ (=) (15),

provided that z be made equal to 0, after the implied opera-
tions are performed.

For, developing all the functions, each member of the
above equation is resolved into a series of terms of the form

d

4 (d_w) ", while in corresponding terms of the two members

the order of the indices m and n will be reversed.

Now (a%)"‘z,, is equal to 0 if m is greater than =, to

1.2...n if m is equal to », and again to 0 if m is less than n
and at the same time z equal to 0 ; for in this case 2"™ is a

factor. Hence if =0,

AN LAY
(&) == &)=
and therefore under the same condition the equation (15) is
true, or, adopting the notation above explained,

s(Hlvo-v(Hso o
Now by Maclaurin’s theorem in its known form
¢(t)=¢(O)+d£0¢(0).t+g(;,¢(0).l—t.,§+.,. @ar).
Hence, applying the above theorem of reciprocity,
$()=6(0)+¢ (3%)o.t+¢(§6) 0. i‘_—’2+ . (18),
the secondary form in question. The two forms of Mac-

laurin’s theorem (17), (18) may with propriety be termed
conjugate.
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A simpler proof of the above theorem (which may be more
shortly written ¢ (£) = ¢ (D) €**¥) is obtained by regarding it
as a particular case of Herschel’s theorem, viz.

$O=¢M)+E)0.t+¢ @0 T ot (9)

or, symbolically written, ¢ (¢) =¢ (£) €-.* The truth of the
last theorem is at once rendered evident by assuming 4,e" to
be any term in the cxpansion of ¢ (¢) in powers of €. Then
since A,e"=A E"* the identity of the two series is
cvident.

But ¢ ()= ¢ (loge')=¢ (log E) *
(by Herschel’s theorem)
= ¢ ( D) €°",
which is the secondary form of Maclaurin’s theorem.

As a particular illustration suppose ¢ (¢) = (¢'~1)", then
by means of either of the above theorems we easily deduce
&
‘1.2.3
But A"0™ is equal to 0 if m is less than nand to1.2.3...n
if m is equal to n, (Art. 1). Hence
AT AT
1.2...(n+1)" 1.2...(n+2)"
d
Hence therefore since A™w = (¢** — 1)"u we have
. dnu Anonﬂ. dnﬂu Anonﬂ dnﬂu
A=t 2. D) & T 12t T

2
(¢ =1 = A%0. 4 A0 1+ A0 +o

(-1)"=t"+ e+ .. (20).

dz" (21),

the theorem sought.

The reasoning employed in the above investigation pro-
ceeds upon the assumption that » is a positive integer. The

* Since both A and D performed on a constant produce as result zero, it
is obvious that ¢ (D)C=¢(0)C=¢(A)C, and ¢(E)C=¢(1)C. It is of
course assumed throughout that the coefficients in ¢ are constants.
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very important case in which n = —1 will be considered in
another chapter of this work.

Ex. 5. To express - d'u in terms of the successive differences

dzn
of u. P
a
Since e*=1+ A, we have

d
= log(1+A),

dz

and the right-hand member must now be developed in as-
cending powers of A,

therefore (i>“ = {log a+ A)}" (22),

In the particular case of » =1, we have

du Afu | A'w A
du =Au -t 7t - (23).

11. Tt would be casy, but it is needless, to multiply these
general theorems, some of those above given being valuable
rather as an illustration of principles than for their intrinsic
importance. We shall, however, subjoin two general theo-
rems, of which (21) and (23) are particular cases, as they
serve to shew how striking is the analogy between the
parts played by factorials in the Calculus of Differences and
powers in the Differential Calculus.

By Differential Calculus we have
du, 8 dw,
Ve =Yt G T T g
Perform ¢(A) on both sides (A having reference to ¢
alone), and subsequently put t=0. This gives
A)0* d’u,
BB 1= 0)+(2)0. T  SAVT D 5y,

of which (21) is a particular case.
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By (2) we have
t(ﬂ

um=u,+t.Au,+i—2-A’u,+....

Perform ¢ (g—t) on each side, and subsequently put £=0;

d d
o+ () we=re O+ 8 (35) 0. A
d A?
ro(Byom Ty o3,
of which (23) is a particular case.

12. We have seen in Art. 9 that the symbols A, Z and
g O D have, with certain restrictions, the same laws of com-

bination as constants. It is easy to see that, in general,
these laws will hold good when they combine with other
symbols of operation provided that these latter also obey
the above-mentioned laws. By these means the Calculus of
Finite Differences may be made to render considerable assist-
ance to the Infinitesimal Calculus, especially in the evaluation
of Definite Integrals. We subjoin two examples of this;
further applications of this method may be seen 1n a Mémoire
by Cauchy (Journal Polytechnique, Vol. XVIL).

Ex. 6. To shew that B(m+1,n)=(— 1)"‘A"'% , where m
is a positive integer.
We have 1_ ] €"dx;
n o
coan o[ emdn = [ Arends
n [}

]
- f (= 1) de
[
1
= f 2" (2 — 1) dz (assuming z =¢™)
0

=(-1)"B(m+1, a).
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1

0 a+t
Ex. 7. Evaluate u=f A™ ,—z——idz, m being a positive
o 2 +n

integer greater than a; A relating to = alone.

Let 2« be the even integer next greater than a + 1, then
21 C aaen (2 — n*
R e I
Now the first member of the right-hand side of (26) is a
rational integral function of n of an order lower than m. It
therefore vanishes when the operation A™ is performed on it.
We have therefore
2%

@ 2 ]
u= f . A™ 2,1_:_ por 22z = A" fo z’j— po 2z (27)

m_a wy§—~ M 2__ .92
A nfo vl dy (assuming z* = n’y)

m

DO = DO} =

A™n?
sin(%—lc+ l) aT
(Tod. Int. Cal. Art. 255, 3rd Ed.)
1, e
= — —2-(—1) S-ln—(ZTA n.

2
This example illustrates strikingly the nature and limits

of the commutability of order of the operations f and A.

Had we changed the order (as in (27)) without previously
preparing the quantity under the sign of integration, we
should have had
me [©_Y
A™n®. fo T+1 dy,
which is infinite if @ be positive.
The explanation of this singularity is as follows :—

If we write for A™ its equivalent (£ —1)" and expand

the latter, we see that | A™¢ (#,n) da expresses the integral
[]



28 EXERCISES. [cH. 1.

of a quantity of m + 1 terms of the form 4, ¢ (z, n + p), while
A™| ¢ (z,n)dz expresses the sum of m+1 separate inte-

o
grals, each having under the integral sign one of the terms of
the above quantity. Where each term separately integrated
gives a finite result, it is of course indifferent which form is
used, but where, as in the case before us, two or more would
give infinity as result the second form cannot be used.

13. Ex. 8. To shew that

$ (B) 0" = B¢’ (E) 0™, (29).
Let A E"0" and ErA E™ 0" be corresponding terms
of the two expansions in (28). Then, since each of them
equals 4,7", the identity of the two series is manifest.

Since Z=1+ A the theorem may also be written
¢ (8) 0" = E¢’ (4) 07,

and under this form it affords the simplest mode of calcu-
lating the successive values of A™0". Putting ¢ (A) =A™,
we have

Amon — E . mAm—lon—l =m (Am—lon-l + Amon—l),

and the differences of 0" can be at once calculated from those
of 0",

Other theorems about the properties of the remarkable
set of numbers of the form A™0" will be found in the accom-
panying exercises. Those desirous of further information on
the subject may consult the papers of Mr J. Blissard and
M. Worontzof in the Quarterly Journal of Mathematics,
Vols. viiL. and I1X.

EXERCISES.
1. Find the first differences of the following functions :

a a
g g

2%sin cot (2% a).



EX. 2.] EXERCISES. 29
2. Shew that

A Y VB — U Ay,
% U,
3. Prove the following theorems:

AYIO’H’I = n (n2+ 1) A’IO”

A?
A0 —Z 0% + &0.=0 (z>1)

mon mAnt n(n—l) - kb _Am+lon+l
A™0" +nA™0" + i3 A™0 +...+,n_m— iy
$ (") 0" =" (E) 0. /
P
4. Shew that, if m be less than »,
{1+logE} 0" =r(r—1)...... (r—m+1).

5. Express the differential coefficient of a factorial in

factorials. Ex. 2™,

6. Shew that
A0, A0™......

form a recurring series, and find its scale of relation.

7. IfP= -A“TOZ shew that

[»

Pr=P.  +nP,_,.

8. Shew that

A’
uo+u,w+q{"‘.a’;+&c.=e' {uo+wAuo+%+ }

What class of series would the above theorem enable us
to convert from a slow to a rapid convergence %
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9, Shew that
t ]
€ =c {1 + (e20) £+ (e20%) 1———t 5t } ,

and hence calculate the first four terms of the expression.

1 1 1
10. If P"_i—.;l + m+ +m, shew that
(PA*—~P A+ ...)0"=0if m> 2.
Prove that

{log E}" 0™ =0,
unless m =n when it is equal to |n.

11. Prove that

1 = D) — ] — -— —4
el +(1-n)z?+A—-n)2~n)z™+ ....

12. If z=¢°, prove that
d\"_A0" d A0 ,d A d°
@) ~Tm T @ T mt
13 If Aw, = Uy, yor — e & and if A", , be expanded
c

in a series of differential coefficients of u, , shew that the
general term will be

AR gy
AFQ? x A0 dzPdy?

14. Express A"z™ in a series of terms proceeding by
powers of by means of the differences of the powers of 0.

By means of the same differences, find a finite expression
for the infinite series

3 5
™ 2-3.% 45 % 4 ..

BB
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where m is a positive integer, and reduce the result when
m = 4,
15. Prove that
F(E) a*px=a"F (ak) Pz,
(@A), = (z +n —1)™Au,,
£ @B) (5EY"u, = (zE)" f (s + m) u,

and find the analogous theorems in the Infinitesimal
Calculus.

16. Find u, from the equations
1-V1—4#
1) Gu,= B T 5
@) Gu =f()

17. Find a symbolical expression for the n* differcnce
of the product of any number of functions in terms of the
differences of the separatc functions, and deduce Leibnitz’s
theorem therefrom.

18. If P, be the number of ways in which a polygon
of n sides can be divided into triangles by its diagonals, and
t'¢ (t) = GP,, shew that

é () = \/ @Zﬁj.
*19. Shew that
[ " e (2 _ 1)1 de = Ta A,
n and a being ;)ositive quantities.

*90. Shew that

f ® sin 2nz sin™z das = aA™ (2n — m)®
0 wﬂ#l - b1 a +m
2" T (a + 1) cos o T

if 2n > m> a all being positive.

* In Questions 19 and 20 A acts on n alone.
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Hence, shew that / sin 2nz. 22 % da; is constant for

all values of n between %2 and .

21. Shew that if p be a positive integer

= . 1.2.8......2p
~KZ 2p =
[o €. sin¥s. dz k(K +4)...... (& +4pY)°
(Bertrand, Cal. Int. p. 185.)

22. Shew that

Arige AT+ AT
n+1
23. Demonstrate the formula

A1 =(n+1) A” 17+ nA™ 17,

and apply it to construct a table of the differences of the
powers of unity up to the fifth power.
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CHAPTER IIL
ON INTERPOLATION, AND MECHANICAL QUADRATURE.

1. THE word interpolate has been adopted in analysis to
denote primarily the interposing of missing terms in a series
of quantities supposcd subjeet to a determinate law of mag-
nitude, but secondarily and more gencrally to denote the
calculating, under some hypothesis of law or continuity, of
any term of a series from the values of any other terms sup-
posed given.

As no series of particular values can determine a law, the
problem of interpolation is an indeterminate one. To find
an analytical expression of a function from a limited number
of its numerical values corresponding to given values of its
independent variable z is, in Analysis, what in Geometry it
would be to draw a continuous curve through a number of
given points. And as in the latter case the number of pos-
sible curves, so in the former the number of analytical ex-
pressions satisfying the given conditions, is infinite. Thus
the form of the function—the species of the curve—must be
assumed a priori. It may be that the evident character of
succession in the values observed indicates what kind of
assumption is best. If for instance these values are of a
periodical character, circular functions ought to be employed.
But where no such indications exist it is customary to assume
for the general expression of the values under consideration
a rational and integral function of x, and to determine the
coefficients by the given conditions.

This assumption rests upon the supposition (a supposition
however actually verified in the case of all tabulated func-
tions) that the successive orders of differences rapidly dimi-
nish. In the case of a rational and integral function of z of
the n'® degree it has been seen that differences of the n 41"
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and of all succeeding orders vanish. Hence if in any other
tfunction such differences become very small, that function
may, quite irrespectively of its form, be approximately repre-
sented by a function which is rational and integral. Of
course it is supposed that the value of a for which that of
the function is required is not very remote from those, or
from some of those, values for which the values of the func-
tion are given. The same assumption as to the form of the
unknown function and the same condition of limitation as to
the use of that form flow in an equally obvious manner from
the expansion in Taylor’s theorem.

2. The problem of interpolation assumes different forms,
according as the values given are equidistant, i.e. corre-
spondent to equidifferent values of the independent variable,
or not. But the solution of all its cases rests upon the same
principle. The most obvious mode in which that principle
can be applied is the following. If for n values a, b, ... of
an independent variable z the corresponding value u,, u,, ... of
an unknown function of z represented by u,, are given, then,
assuming as the approximate general expression of u,,

u,=A+ Bx+ Ca? ... + Ea"? (1),

a form which is rational and integral and involves n arbitrary
coefficients, the data in succession give

w,=A+4 Ba+Cd*... + Ea™™,

u,=A +Bb+CL* ...+ Kb,
a system of n linear equations which determine 4, B...E.
To avoid the solving of these equations other but equivalent
modes of procedure are employed, all such being in effect
reducible to the two following, viz. either to an application
of that property of the rational and integral function in the
sccond member of (1) which is expressed by the equation
A", =0, or to the substitution of a different but equivalent
form for the rational and integral function. These methods

will be respectively illustrated in Prop. 1 and its deductions,
and in Prop. 2, of the following sections.

Prop. 1. Given n consecutive equidistant values %, u,, ...

u,_, of a function u,, to find its approximate gencral expres-
sion.
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By Chap. 11, Art. 10,

m(m—1) .,
4 Alu,+ ...

Hence, substituting 0 for #, and z for m, we have

Uy = Uy + MAU, +

u, =u°+wAu°+ailﬁ-2'—l)A’uo+

But on the assumption that the proposed expression is
rational and integral and of the degree n — 1, we have A"y, =0,
and therefore A"w,=0. Hence

z(x—1)

,=uo+wAu°+—1~—2— A, ...
z(@—1)...(z—n+2) , .y -
t T e A % 2,

the expression required. It will be observed that the second
member is really a rational and integral function of z of the
degree n— 1, while the coefficients are made determinate by
the data.

In applying this theorem the value of & may be con-
ceived to express the distance of the term sought from the
first term in the series, the common distance of the terms
given being taken as unity.

Ex. Given log 314 =-4969296, log 315 =-4983106, log
3-16 = 4996871, log 317 ='5010593 ; required an approxi-
mate value of log 3-14159.

Here, omitting the decimal point, we have the following
table of numbers and differences :

2, u, 0, 1,
4969296 4983106 4996871 5010593

A 13810 13765 13722

At ~45 —43

A° 2

The first column gives the values of u, and its differences
up to A*s, Now the common difference of 314, 315, ....



36 ON INTERPOLATION, [cH. 1L

being taken as unity, the value of 2z which corresponds to
3:14159 will be ‘159. Hence we have

.= 4969296 + 159 x 13810 + 1221392 (45

(159) (159 —1) (159 — 2)
+ 1.2.3 2.

Effecting the calculations we find u, = *4971495, which is
true to the last place of decimals. Had the first difference
only been employed, which is equivalent to the ordinary rule
of proportional parts, therc would have been an error of 3 in
the last decimal.

3. When the values given aund that sought constitute a
series of equidistant terms, whatever may be the position of
the value sought in that series, it is better to proceed as
follows.

Let u,, w,, 4,, ... u, be the series. Then since, according to
the principie of the method, A"y, =0, we have by Chap. 1L
Art. 10, | R

u»—nun—l'*'fL(Tn—;;Duu—e_"‘+(—1)”uo=0 3),

an cquation from which any one of the quantities
Uy Uy oen U,

may be found in terms of the others.

Thus, to interpolate a term midway between two others
we have

Uy — 2u, +u,=0; .. u‘=?%1‘2 (4).

Here the middle term is only the arithmetical mean.
To supply the middle term in a series of five, we have
u, — 4w, + 6u, — du, + u, = 0;
w = 4 (u, + us)ﬁ— (u, +u,) ).

'
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Ex. Representing as is usual f €?6"'df by I' (n), it is
required to complete the followingotable by finding approxi-
mately log I" (%) :

n log T (n), n log T’ (n),
2 qasse, £ 18432
15"2 55938, -1% 13165,
& ez, D 0ssss,
i5§ 32788, i% 05261,

Let the series of values of logT'(n) be represented by
Uy, Uy, ... Uy, the value sought being that of u,. Then pro-
ceeding as before, we find

u, —8u,+§~:;u, -—%—;"—g—u‘+ w. =0,
or,
w, +u, — 8 (v, + %) + 28 (u, +u,) — 56 (v, +u,) + 704, =0;
whence

u,= 56 (u, +u,) — 28 (u,+ 1;,())+ 8 (u, +u,) — (u, + u,) (©).

Substituting for u,, u,, ..., their values from the table,
we find

log T (5) = ‘24853,
the true value being *24858.

To shew the gradual closing of the approximation as the
number of the values given is increased, the following results
are added :
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Data. Calculated value of u,.
U, Uy  eeeeennns eeer. 25610,
Uy, U, Uy Uy, eenrnvneencans 24820,
Uyy Ugy Uy, Ugy Ugy Uy wovenvenennnnns *24865,
Uy Uy, Uy, Wy Ugy Uyy Ugy Ugenvenennnnnnnns -24853.

4. By an extension of the same method, we may treat
any case in which the terms given and sought are terms, but
not consecutive terms, of a series. Thus, if », u,, w, were
given and w, sought, the equations A, =0, A’, =0 would
give

u, — u, + 3u, —u, =0,
u, — 3w, + 3u, —u, =0,
from which, eliminating %,, we have
3u, — 8u,+6u,—u, =0. 7,

and hence #, can be found. But it is better to apply at once
the general method of the following Proposition.

Pror. 2. Given n values of a function which are not
consecutive and equidistant, to find any other value whose
place is given.

Let u,, u,, %,, ... u, be the given values, corresponding to
a, b, ¢,...k respectively as values of z, and let it be required
to determine an approximate general expression for u,

We shall assume this expression rational and integral,
Art. 1.

Now there being » conditions to be satisfied, viz. that for
x=a, x=>b...z=k, it shall assume the respective values
Uy, Us, --« U, the expression must contain » constahts, whose
values those conditions determine.

‘We might therefore assume
u,=A + Bz + Ca*... + Ex™™ 8),

and determine A4, B, C by the linear system of equations
formed by making z=a, b ... %, in succession.

The substitution of another but equivalent form for (8)
enables us to dispense with the solution of the linear system.
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Let u=A(@=b) (x—c) ... (x—k) "y
+B(x—a)(z—c)...(z—k) *"
+C(@z—a) (z=0)... -k
+ .. 9) '
to n terms, each of the n terms in the right-hand member
wanting one of the factors z—a, ~0,...2—k, and each
being affected with an arbitrary constant. The assumption
is legitimate, for the expression thus formed is, like that
in (8), rational and integral, and it contains n undetermined
coefficients.
Making « = a, we have
u,=A(@—>b)(a—c) ... (a—k);
therefore
A= Y
(a=b)(a—c) ... (a—k)’

In like manner making #=>5, we have

- _ Uy
B= == =%
and so on. Hence, finally,

(z=0) (z=c) ... (x—Fk) (z—a)(@—c)...(z—k)

Y=t =B (@) - (a=B)  G=a) (b —c)... 6= k) '
(x—a) (x—=0) (z—c) ...
o FUGTOET) F=0) ... 10, -
the expression required. This is Lagrange’s* theorem for
interpolation. = o :

If we assume that the values are consecutive and equi-
distant, i.e. that w,, u, ... , , arc given, the formula be-

comes "~
v —u w(a:—l)...(w-—n+2)_u z(z—-1)...(z—n+1)
*=Y1T1.9.3...(n—1) " 1.1.2...(n—2)
+ .

* Journal de U Ecole Polytechnique, 11.277. Thereal credit of the discovery
must, however, be assigned to Euler; who, in & tract entitled De eximio usu
methodi interpolationum in serierum doctrina, had, long before this, obtained a
closely analogous expression.
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_zz-1)..(r=—n+1)( u,, U,
n [n—1 {ac n+1 C":z:-—n+2+"' (1),
| l_'n 1
where C.= ="
[rln=1—7

This formula may be considered as conjugate to (2), and
possesses the advantage of being at once written down from
the observed values of u, without our having to compute the
successive differences. But this is more than compensated for
in practice, especially when the number of available obser-
vationsis large, by the fact that in forming the coefficients in (2)
we are constantly made aware of the degree of closeness of
the approximation by the smallness of the value of A,
and can thus judge when we may with safety stop.

As the problem of interpolation, under the assumption that
the function to be determined is rational and integral and of
a degree not higher than the (n —1)" is a determinate one,
the different methods of solution above exemplified lead to
consistent results. All these methods are implicitly contained
in that of Lagrange.

The following are particular applications of Lagrange’s
theorem.

3. Given any number of values of a magnitude as ob-
served at given times; to determine approximately the values
of the successive differential coefficients of that magnitude at
another given time.

Let @, ), ... k be the times of observation, u,, w,, ... 4, the
observed values, # the time for which the value is required,
and %, that value. Then the value of %, is given by (10),
and the differential coefficients can thence be deduced in the
usual way. But it is most conveniecnt to assume the time
represented above by z as the epoch, and to regard a, b, ... &
as measured from that epoch being negative if measured

:, s - will then be the
coefficients of , 2° ... in the development of the second
member of (10) multlphed by1,1.2,1.2.3, ... successively.
Their general expressions may thus at once be found. Thus

‘

backwards. The values of



ART. 6.] AND MECHANICAL QUADRATURE. 41

in particular we shall have

w_, bc...k(%+%...+716)

dz -+ (a—b) (a—c)...(a—k) Ya

.. (12),

1 1 1
(@?—;1 \ bc"'k(6é+bc—i+c_d+ )u _ )
de = 77" (a—b)(@—c) ... (@ —k) at oo =

Laplace’s computation of the orbit of a comet is founded
upon this proposition (Mecanique Celeste).

6. The values of a quantity, e.g. the altitude of a star at
given times, arc found by observation. Required at what
intermediate time the quantity had another given value.

Though it is usual to consider the time as the independent
variable, in the above problem it is most convenient to con-
sider the observed magnitude as such, and the time as a
function of that magnitude. Let then g, b, ¢, ... be the values
given by observation, u,, u,, %,, ... the corresponding times,
z the valuc for which the time is sought, and u, that time.
Then the value of u, is given at once by Lagrange’s theorem

(10).

The problem may however be solved by regarding the time
as the independent variable. Representing then, as in the
last example, the given times by a, b, ... k, the time sought
by 2, and the corresponding values of the obscrved magnitude
by u,, %,, ... u,, and u_, we must by the solution of the same
equation (10) determine .

The above forms of solution being derived from different
hypotheses, will of course differ. We say derived from dif-
ferent hypotheses, because whichsoever element is regarded
as dependent is treated not simply as a function, but as a
rational and integral function of the other element ; and thus
the choice affects the nature of the connexion. Except for
the avoidance of difficulties of solution, the hypothesis which
assumes the time as the independent variable is to be pre-
ferred.
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Ex. Three observations of a quantity near its time of
maximum or minimum being taken, to find its time of maxi-
mum or minimum,

Let a, b, ¢, represent the times of observation, and u, the
magnitude of the quantity at any time x. Then u,, u, and
u, are given, and, by Lagrange’s formula,

(x=b) (z—¢c), (z—c)(z—a) (z—a) (x-b)
“ha-b@—0 T Pt ®-a “l—a) (c=b)’
and this function of z is to be a maximum or minimum.

Hence equating to 0 its differential coefficient with respect
to #, we find

U, + u,

+ u

(8= &) u,+ (' — o) w, + (@ = H) ,
2{b—c)u,+ (c—a)u,+ (@ —b)u,}
This formula enables us to approximate to the meridian

altitude of the sun or of a star when a true meridian observa-
tion cannot be taken ¥*.

@= (14).

7. As wag stated in Art. 4, Lagrange’s formula is usually
the most convenient for calculatmcr an approximate value of
u, from given observed values of “the same when these are
not equidistant. But in cases where we have reason to
believe that the function is periodic, we may with advantage
substitute for it some expression, involving the right number
of undetermined coefficients, in which x appears only in the
arguments of periodic terms. Thus, if we have 2n +1 obser-
vations, we may assume

u,=A,+ A4, cosxz+A,cos2z+ ...+ A, cosnx
+ B, sinz+ B;sin 2z + ...+ B,sinnz (15),

and determine the coefficients by solving the resulting linear
equations.

Gaussf has proved that the formula
sin 5 (z —b)sin 5 (m —¢)...sin % (z—F)

u, = 1 U+ ... (16),
sin 3 (a-—b) sin—2-(a—c) ...sin—(a-—k)

* A special investlgatmn of this problem will be found in Grunert, xxv. 237,
t Werke, Vol ur, p. 231,
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is equivalent to (15), u,, %,, ... u, being assumed to be the
2n+1 given values of u,. It is evident that we obtain
%, = u, when for  we substitute @ in it, and also that when
expanded it will only contain sines and cosines of integral
multiples of # not greater than nz; and as the coefficients
of (15) are fully determinable from the data, it follows that
the two expressions are identically equal.

8. Cauchy* has shewn that if m 4 » values of a function
are known, we may find a fraction whose numerator is of
the n™, and denominator of the (m —1)* degree, which will
have the same m +n values for the same values of the
variable, He gives the gencral formula for the above frac-
tion, which is somewhat complicated, though obviously satis-
fying the conditions. 'We subjoin it for the case when

m=2, n=1,
(-0 (@0 + . g
Y= u,(b—c)(x—a)+ ... (17).
When m =1 it reduces of course to Lagrange’s formula.

Application to Statistics.

9. When the results of statistical observations are pre-
sented in a tabular form it is sometimes required to narrow
the intervals to which they correspond, or to fill up some
particular hiatus by the interpolation of intermediate values.
In applying to this purpose the methods of the foregoing
sections, it 1s not to be forgotten that the assumptions which
they involve render our conclusions the less trustworthy in
proportion as the matter of inquiry is less under the dominion
of any known laws, and that this is still more the case in
proportion as the field of observation is too narrow to exhibit
fairly the operation of the unknown laws which do exist.
The anomalies, for instance, which we meet with in the at-
tempt to estimate the law of human mortality secm rather to

* Analyse Algébraique, p. 528, but it is better to read a paper by Brassine
(Liouville, x1. 177), in which it is considered more fully and as a case of a more
general theorem. This must not be confounded with Cauchy’s Method of
Interpolation, which is of & wholly different charaoter and does not need notice
here. He gives it in Liouville, 11. 193, and a consideration of the advantages
it possesses will be found in a paper by Bienaymé, Comptes Rendus, XxxviL. or
Liouville, xviir, 299,
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be due to the imperfection of our data than to want of conti-
nuity in the law itself. The following is an example of the
anomalies in question.

Ex. The expectation of life at a particular age being
defined as the average duration of life after that age, it is
required from the following data, derived from the Carlisle
tables of mortality, to estimate the probable expectation of
life at 50 years, and in particular to shew how that estimate
is affected by the number of the data taken into account.

Age. Enpectation. Age. Expectation.

10 4882 =1y, 60 14:34 =y,
20 4146 = u, 70 918=u,
30 3434 =u, 80 551 =u,
40 2761 =u, 90 328 = v,

The expectation of life at 50 would, according to the above
scheme, be represented by u, Now if we take as our only
data the expectation of life at 40 and 60, we find by the
method of Art. 3,

wy= "1 9097 (@).

If we add to our data the expectation at 30 and 70, we
find

o=y + ) = (2 14) = 2071 ®).
If we add the further data for 20 and 80, we find
3 3 1 N

Us=72 (0 + g) — 10 (s +w) + 20 (4, + u) =2075  (0).

And if we add in the extreme data for the ages of 10 and
90, we have
8 4
%=15 (uy + ug) — 75 (U + %)

8 1
+ 5 (o + 1) — 75 (e, + ) = 20776 (d).

We notice that the second of the above results is consider-
ably lower than the first, but that the second, third, and
fourth exhibit a gradual approximation toward some value
not very remote from 20°8.
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Nevertheless the actual expectation at 50 as given in the
Carlisle tables is 21-11, which is greater than even the first
result or the average between the expectations at 40 and 60.
We may almost certainly conclude from this that the Carlisle
table errs in excess for the age of 50.

And a comparison with some recent tables shews that this
is so. From the tables of the Registrar-Gencral, Mr Neison*
deduced the following results.

Age. Expectation. Age. Expectation.

10 477564 60 14-5854
20 406910 70 92176
30 34°0990 80 52160
40 274760 90 2:8930
50 208463

Here the calculated values of the expectation at 50, corre-
sponding to those given in (a), (b), (¢), (d), will be found
to be

21-0307, 208215, 20:8464, 208454.

‘We see here that the actual expectation at 50 is less than
the mean between those at 40 and 60. We see also that the
second result gives a close, and the third a very close, approxi-
mation to its value. The deviation in the fourth result, which
takes account of the extreme ages of 10 and 90, secems due to
the attempt to comprehend under the same law the mortality
of childhood and of extreme old age.

When in an extended table of numerical results the differ-
ences tend first to diminish and afterwards to increase, and
some such disposition has been observed in tables of mor-
tality, it may be concluded that the extreme portions of the
tables are subject to different laws. And even should those
Taws admit, as perhaps they always do, of comprehension
under some law higher and more general, it may be inferrcd
that that law is incapable of approximate expression in the
particular form (Art. 2) which our methods of interpolation
Ppresuppose.

* Contributions to Tital Statistics, p. 8.
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Areas of Curves.

10. Formul® of interpolation may be applied to the ap-
proximate evaluation of integrals between given limits, and
therefore to the determination of the areas of curves, the con-
tents of solids, .... The application is convenient, as it does
not require the form of the function under the sign of in-
tegration to be known. The process is usually known by the
name of Mechanical Quadrature.

Prop. The area of a curve being divided into n portions
bounded by n+1 equidistant ordinates w,, u,,...u,, whose
values, together with their common distance, are given, an
approximate expression for the area is required.

The general expression for an ordinate being u,, we have,
if the common distance of the ordinates be assumed as the

n
unit of measure, to seek an approximate value of / udz.
[

Now, by (2),

z-1),,  s@=-1)(=2) ,,
1.9 Auo+~——1~T§—'-3———~—Auo+....

T

- = Uy + TAY, +

Hence
" " A’u n
fu,d:c=uof‘da:+Auof ade+—L2| 2 (z+1)d=
[ [ 0 1‘2 [

Ay, [™
*t1.2.3),
and effecting the integrations

mn 'y 3 2 2 ‘ .

z@x~1)(z—-2)dz+ ...,

0 2 3 2/1.2 .2.3
LG )i
+ (%' - 20+ %’é n'— %9 n’+ 12n’) .1..-2%%75
(0 B T B
+ .. (18).
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It will be observed that the data permit us to calculate
the successive differences of u, up to A"w,, Hence, on the
assumption that all succeeding differences may be neglected,
the above theorem gives an approximate value of the integral
sought. The following are particular deductions.

1st. Let n=2. Then, rejecting all terms after the onc
involving A%, we have

2
f udz = 2u, + 2Au, + 1A%,
o
But Aw,=u —w, A’w,=u,—2u +u,; whence, substi-

tuting and reducing,

2

f u,dx=u°+4u‘ +u,'
0 3

If the common distance of the ordinates be represented by
I, the theorem obviously becomes

%
f udz =E°_"_'_4%L'*_'_u}1- A 19),

0

and is the foundation of a well-known rule in treatises on
Mensuration.

2ndly. If there are four ordinates whose common distance
is unity, we find in like manner

fsu,du'v _ 3 (4, + 3y, ;— 3u, + u,)
0

3rdly. If five equidistant ordinates are given, we have in
like manner

fduzdx = 14‘ <u0 + u‘) + 6:5('“1 + u‘) + 241&’
o

4thly. The supposition that the area is divided into six
portions bounded by 7 equidistant ordinates leads to a re-
markable result, first given by the late Mr Weddle (Math.
{ournal, Vol. 1x. p. 79), and deserves to be considered in
detail.

(20).

21).

Supposing the common distance of the ordinates to be
unity, we find, on making n=6 in (18) and calculating the
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coefficients,
° . . 123
udo = 6u, + 18Au, + 27A%, + 24A°%, + 10 Ay,
[
33 ., 41 .,

NS ) S 42 3
Now the last coefficient 140 differs from 130 %' 10 by the

small fraction and as from the nature of the approxima-

1
140’
tion we must suppose sixth differences small, since all suc-
ceeding differences are to be neglected, we shall commit but

a slight error if we change the last term into -1% A’w,. Doing

this, and then replacing Aw, by u, — u, and so on, we find, on
reduction,

¢ 3
fou,dm= 70 {uo + wy + u, + ug+ 5 (u, + u,) + 6u,},
which, supposing the common distance of the ordinates to be
h, gives

6h
f wdo = %g (g + Ugy + U + 14, + 5 (u, +uy,) + 6uy}  (23),

0
the formula required.

It is remarkable that, were the series in the second member
of (22) continued, the coefficient of A%, would he found to
vanish. Thus while the above formula gives the exact area
when fifth differences are constant, it errs in excess by only

l—ﬁlﬁ) Ay, when seventh differences are constant.

The practical rule hence derived, and which ought to find
a place in elementary treatises on mensuration, is the fol-
lowing:

The proposed area being divided into six portions by seven
equidistant ordinates, add into one sum the even ordinates
5 times the odd ordinates and the middle ordinate, and mul-
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tiply the result by 13(—) of the common distance of the ordi-
nates.

Ex. 1. The two radii which form a diameter of a circle are
bisected, and perpendicular ordinates are raised at the points
of bisection. Required the area of that portion of the circle
which is included between the two ordinates, the diameter,
and the curve, the radius being supposed equal to unity.

The values of the seven equidistant ordinates are

VB T | B Je o
2’ 3’ 6’ 6’ 3’ 2°
and the common distance of the ordinates is é The area
hence computed to five places of decimals is ‘95661, which, on

ul 3 will be found to

comparison with the known value 6t 4

be correct to the last figure.

The rule for cquidistant ordinates commonly employed
would give ‘95658.

In all these applications it is desirable to avoid extreme
differences among the ordinates. Applied to the quadrant
of a circle Mr Weddle’s rule, though much more accurate
than the ordinary one, leads to a result which is correct only
to two places of decimals.

Should the function to be integrated become infinite at or
within the limits, an appropriate transformation will be
nceded.

Ex. 2. Required an approximate value of f log sin 6d6.

The function log sin @ becomes infinite at the lower limit.
We have, on integrating by parts,

f log sin 646 = 6 log sin 6 — f 8 cot 646,
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bence, the integrated term vanishing at both limits,

[*tog in 60 = - [F6cotsae.

The values of the function 8 cot 8 being now calculated for
. ™ 2w _mw
the successive values =0, 0= 12’ 6= 1o 0= 2 and

the theorem being applied, we find

_ f” 9 cot 6df = — 108873,
0

The true value of the definite integral is known to be

2 2

11. Lagrange’s formula enables us to avoid the interme-
diate employment of differences, and to calculate directly the

T log (1) , or — 1-08882.

cocfficient of u, in the general expression for f udz. 1f we

represent the equidistant ordinates, 2z +1 in number, by

U, %, ...U,, and change the origin of the integrations by

assuming — n =y, we find ultimately

2n
f wdr=Au,+A4, (,, +u, )+ A4, (w,  +u,,). .+ 4,(u,,+u),

v:here generally
A= - (—'1)'
T 1.2...n+11.2...(n—1)
xf" 0'—9) (1*—9" ... (n’—y’)dy (24).

P y:
A similar formula may be established when the number of
equidistant ordinates is even.

12. The above method of finding an approximate value
for the area of a curve between given limits is due to Newton
and Cotes. It consists in expressing this area in terms of
observed values of equidistant ordinates in the form

Area=Adu,+Au + ...,
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where 4,, 4,, ... are coefficients depending solely on the
number of ordinates observed, and thus calculable beforehand
and the same for all forms of u,. It is however by no
means necessary that the ordinates should be equidistant;
Lagrange’s formula enables us to express the area in terms of
any n ordinates, and gives

fpu,dw =Au,+Adu,+ ... (25),
e

~[f&=b) (z-0)...
* Jela=0b) (@a—c)...
Now it is evident that the closeness of the approximation
depends, first, on the number of ordinates observed, and
secondly, on the nature of the function w,. If, for instance,
u, be a rational integral function of z of a degree not higher
than the (n—1)*, the function is fully determined when »
ordinates are given, whether these be equidistant or not, and
the above formula gives the area exactly.

If this be not the case, it is evident that different sets of
observed ordinates will give different values for the area, the
difference between such values measuring the degree of the
approximation. Some of these will be nearer to the actual
value than others, but it would seem probable that a know-
ledge of the form of u, would be required to enable us to
choose the best system. But Gauss* has demonstrated that
we can, without any such knowledge, render our approxi-
mation accurate when %, is of a degrec not higher than the
(2n—1)™ if we choose rightly the position of the n observed
ordinates.

This amounts to doubling the degree of the approximation,
so that we can find accurately the area of the curve y=1u,
between the ordinates to # = p, = g, by observing » properly
chosen ordinates, although u, be of the (2n — 1)'* degree.

The following proof of this most remarkable proposition
is substantially the same as that given by Jacobi (Crelle,
Vol. 1. 301).

where y: | dz (26).

* Werke, Vol. 1. p. 203.
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Let f ’ u,dz be the integral whose value is required, where

u, is a rational and integral function of the (2n — 1)™ degree.
Let u, u,... be the n observed ordinates, and f(x) the ex-
pression which they give for w, by substitution in Lagrange’s
formula. Let

A(x—a) (z=0) ... =M,

where A4 is a constant.

Since u,—f(z) vanishes when z=ga, b,... it must be
equal to MN where N is rational, integral, and of the
(n—1)" degree, and the error in the approximation is

pMNda:, which we shall now shew can be made to vanish

bgr properly choosing M, i.e. by properly choosing the ordi-
nates measured.

Now

fMNdx:M,N—fMN’ de

~MN-MN + f MN"de = &.

= MN - MN’ + &e. — (= 1)* M,N¢™,

denoting by M, the result of integrating M « times, and by
N the result of differentiating IV « times; and remembering
that N™™ is a constant.

Taking the above integrals betwecn the given limits, we
see that the problem reduces to making M, vanish at each
limit for all values of r from r =1 to r=mn.

This is at once accomplished by taking

=t le=p) =gl
dz"

for it is thus a rational and integral function of @ of the
n degree, such that all its first n integrals can be taken
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to vanish at the given limits. That this is the case is
seen at once when we consider that the parts independent
of the arbitrary constants will contain some power of
(z—p) (z—q) as a factor, and will thus vanish at both limits,

The coefficients 4,, 4,...in f S (2) dzz will of course be

functions of p and g of the form given in (26). In order
to save the trouble of calculating them for all values of the
limits, it is usual to transform the integral, previously to
applying the above theorem, so as to make the limits 1 and
—1. We then have

d"(x’_l)u_|2lp, . m(n—1) -
T dz ‘=,LT{’” “om@n—1)"

7' (n—1)* (n—2) (n—3) o }
1.2.2n(2n—1) (2n—2) (2n—3) cee s

and a, b, ¢ ... are the roots of M =0, which are known to be
real, since those of (z'—1)"=0 are all real.

M=

+

13. We shall now proceed to demonstrate a most im-
ortant formula for the mechanical quadrature of curves.
t was first given by Laplace®, and will be seen to be closely

allied to (18).

Since A A
1 +A=€D, '..AEDD.:D{M}
d A
A= s {mgzﬁ‘&)'} s

S8 AL 1ae

Integrate between limits 1 and 0, remembering that

[’WJH'H =Aw,,

s=r
* Mécanique Céleste, 1v. 207.
4+ The coefficients of the powers of ¢ in l_ortu-t) may be calculated either
directly, or by the method in Ex. 18 at the end of this Chapter.
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and we easily get, writing u, for Aw,,

: A

fnu,dz={l+§-—...}uo
Mty 1oae, 1 e,
=g T1gf Tt tgg At

Writing down similar expressions for f u,dx, ... and
1

adding, we obtain

” %
wde=2+u +u,+...+5
j: 2 1 2

1
bt E (Au. - Auo)

1
+ ﬂ(A’u, — A%)

= (27),
since
Aug+ A + ... =A7 (Auy+Au + ...) = A (u, — u).

This formula has the disadvantage of containing the dif-
ferences of u_, which cannot be calculated from the values
U,y Uy ... %,. We may remedy this in the following way:

-A
A -F 1+A - —AET
log (1+A4) log (1 - _.%Z) log(1—-AE™)’

. A 1., 1, )
<1+§_EA +24!A—-... w,

i laga_ 1 a1 psps
_E{1 LAES - L NE - AE -...}w.
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Removing the first two terms from each side since they
are obviously equal, and writing u, for Aw,, we get

1 1, 1 1.,
—i~2-Au,,+§4Au"—..._.—-1—2Au,,_,—-—2-;i'Aun_,—...

and the formula becomes

L]
fu,dx=%+ul+u,+...+l—%‘

]

1
13 (Au,_,— Au,)

— g (B'u,_+A%,)
- . (28).

In the above investigation we have in reality twice per-

formed the operation 1 on both sides of an equation. We

A
shall see that Aw,=Aw, only enables us to say uw,=v,+C
and not u,=v,; hence we should have added an arbitrary
constant. But the slightest consideration is sufficient to
shew that this constant will in each case be zero.

14. The problems of Interpolation and Mechanical Quadrature are of the
greatest practical importance, the formule deduced therefrom being used
in all extended calculations in order to shorten the labour without affecting
greatly the accuracy of the result. This they are well capable of doing;
indeed Olivier maintains (Crelle, 11, 252) that calculations proceeding by
Differences will probably give a closer approximation to the exact result
than corresponding ones that proceed by Differential Coefficients. In con-
sequence of this practical value many Interpolation-formule have been
arrived at by mathematicians who have had to do with actual calculations,
each being particularly suited to some particular calculation. All the most
celebrated of these formuls will be found in the accompanying examples.
Examples of calculations based upon them can usually be found through
the references; the papers by Grunert (drchiv, xiv. 225 and xx. 361), which
contain & full inquiry into the subject, may also be consulted for this pur-
pose. Numerical examples of the application of several Interpolation-for-
mule may also be found in a paper by Hansen (Relationenzwischen Summenund
Differenzen, Abhandlungen der Kin. Sdchs. Gesellschaft, 1865), in which also
he gives a very detailed inquiry into the various methods in use, with numerical
calculation of coefficients, .... We must warn the reader against the notation,
which is unscientific and wholly in defiance of convention, e.g. Ay.,; and
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A%y, are used to represent the Ay, and Ay, , of the ordinary notation.
A good paper on the subject by Encke (Berlin. Astron. Jahrbuch, 1830), from
which Ex. 7 is taken, labours under the same disadvantage; and Stirling’s
formula (Ex. 9) is seldom found stated in the correct notation.

In speaking of the developments which the theory has received we must
mention an important Mémoire by Jacobi (Crelle, xxx, 127) on the Cauchy
Interpolation-formula of Art. 8, In it the author points out the advantages
that 1t possesses over others, and subjects it to a very full investigation,
representing the numerator and denominator in various forms as determi-
nants, and considering especially the case when two or more of the values
of the independent variable approach equality. A paper by Rosenhain
which follows immediately after it treats also of the above formula in repre-
senting the condition that two equations ¢ (x)=0 and f(#)=0 should have

a common root, in terms of the values of the expression ¢ (2) for different

values of z. &)

But the most important researches in the theory of Interpolation have had
reference to the Gauss-formula of Art. 12. Minding (Crelle, v1. 91) extends
it to the approximate evaluation of double integrals between constant limits.
Christoffel (Crelle, Lv. 61) investigates the more general problem of deter-
mining the ordinates we should choose for observation when certain ordinates
are already given, so that the approximation may be as close as possible.
Mehler (Crelle, Lxu1. 152) shews that a closely analogous method enables
us to calculate integrals of the form

1
] (L -2 (L +2)nf (&) do
-1

with great accuracy, the position of the ordinates chosen being in this case
determined by the roots of the equation of the n' degree

A-2"A(l+z)m %‘a 2(1 —z) A (L4 z)tul =0,
A and u being each > —-1.

Jacobi had previously examined the case in which A=u= —%; in other
words, he had shewn that in

! _f_(f)_dz orj:f(cos 9)do,

- -z
the positions of the co-ordinates to be chosen after the analogy of the Gauss-
formula are given by the roots of

N %u_.—.-)-—t:o,
2m+1

which is equivalent to cos (ncos—1z)=0. Hence z=cos T
In this case the coefficients 4., 4,,... (see (26), page 51) are all equal,

each beingz , and the formula becomes

/;”f(°059)40=;:-.if(cosii>+f<cos%)+...+f cos?';;-3 )g
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In most of the above papers the magnitude of the error caused by using
the approximate formula instead of the exact value of thoe function is
investigated.

The special importance of the method becomes evident when we con-
sider the close relation between it and the celebrated Laplace’s functions.
This is seen by comparing the expression for the n* Laplace’s coefficient
of one variable,

1 dr(z*-1)

P da

with the value of M in Art. 12; and the similarity of the corresponding
expressions for two variables is equally great. In fact the Gauss-method may
be represented as follows :—

Let u, be a ratipnal integral function of the (2n — 1)® degree, and Y,, be the

n't Laplace’s coefficient. Divide u, by Y,, and let N be the quotient and

f (=) the remainder which is of the (n—1)* degree. Thus u,=f(z)+Y,.N.

Integrate bletween the hmits 1 and -1, and since N is of a lower degree
1

than Y, Y,Ndz=0, and we are left with / f(z) dz which is accurately
found by iho Lagrange-formula from the n obse—rlved values of u,.

In consequence of this close connexion the method is of great import-
ance in the investigation of Laplace’s Functions and of the kindred subject
of Hypergeometrical Serics. Heine’s Handbuch der Kugelfunctionen will
supply the reader with materials for discovering the exact relation in which
they stand to one another, or he may compare a paper by Bauer on Laplace’s
functions (Crelle, Lvi. 101) with that by Christoffel given above. For in-
stances of numerical calculation he may consult Bertrand (Int. Cal. 339),
where, however, the limits 1 and 0 are taken.

EXERCISES.

1. Required, an approximate value of log 212 from the
following data:

log 210 =2-3222193, log 213 = 23283796,
log 211 = 2-3242825, log 214 = 2-3304138.

2. Find a rational and integral function of 2 of as low a
degrec as possible that shall assume the values 3, 12, 15,
and — 21, when « is equal to 3, 2, 1, and — 1 respectively.

3. Express v, and v, approximately, in terms of v,, v, v,
and v,, both by Lagrange’s formula and the method of (7),
Art. 4.
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4. The logarithms in Tables of n decimal places differ
from the true values by +

i 0"“ at most. Hence shew that

the errors of logarithms of n places obtained from the Tables
by interpolating to first and second differences cannot exceed
tiate and + 1:)" x ) + ¢’ respectively, e 'and ¢’ being the
errors due exclusively to interpolation. (Smith’s Prize.)

5. The values of a function of the time are a,, a,, a,, a,,
at epochs separated by the common interval h; the first dif-
ferences are d,, d',, d",, the second differences are d,, d',, and
the third difference d,. Hence obtain the followmg "formula
of interpolation to third differences:

,od, dht . d £ d, £
.ﬂ0—0+0i w~—~)h+2 et R

d, d\t d, ¢ d, ¢

or f(t) a +(d + - 6’)h+ 2 hg+ h‘g,

¢ being reckoned in the first case from the epoch of a,, and in
the second from that of a,.

6. If P, Q R, S, ... be the values of X, an unknown
function of z, corresponding to z=p, q, 7, s, ..., shew that
(under the same hypothesis as in the case of Lagrange’s
formula),

X=P+@=-p){pg+@-p) -9 {pgr}+ ..\
where generally
_ PP
o= g g e=n. T a=pasnt

7. Shew that, in the notation of the last question, if
g-p=r—g=s—r=..=1,
3

A
SR .
pend=1rg3
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and apply the theorem to demonstrate that

() u,,=u,+zAu, +a;(]a.r: 21) u,_,
sle-Dtl)y, L o@-D @y,
gy A%t — 7o 34 A%t
@) upe=u, +zbu_ +ZEF D An,

1.2
€(@=1) (6+1) _<_;1>_<_+_>A .o
n-2

+ 2.3 Ut —7.9.3.4

8. Shew that the function
—a) (t—?)
1 +a b+(a, B (a=c)

becomes unity when t=a, and zero when ¢=39, ¢, ..., and
deduce Ex. 6 therefrom.

+ .

9. Demonstrate Stirling’s Interpolation-formula

=u+ LA a4+ 22D p +u,)
w=Ut g Ak tu )t -1+2T—2* (w.
e@-1) 4
+i g g gt

(Smith’s Prize, 1860.)

10. Deduce Newton’s formula for Interpolation from
Lagrange’s when the values are equidistant.

11. If p radii vectores (u being an odd integer) be drawn
from the pole dividing the four right angles into equal
parts, shew that an approx1ma,te value of a radius vector (up)
which makes an angle 8 with the initial line is

. B
sins (0 — a)
S—2 .,

U = 1
sin 2(0 —a)

1
i

where a, b, ... are the angles that the x radii vectores make
with the initial line.
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12. Assuming the formula for resolving
S (=)
(z—a)(z—=0b)...(x — k)

into Partial Fractions, deduce Lagrange’s Interpolation-
formula.

13. If ¢ (2)=0 be a rational algebraical equation in z
of any order, and 2, z,...2, be taken to represent ¢ (1),
¢ (2), ... ¢ (k), find under what conditions

r=k r
r=1 zr (zl - zr)' . '(zk - zr)
may be taken as an approximate root of the equation.

2,2,...2,%

14. Decmonstrate Simpson’s rule for finding an ap-
proximate value for the area of a curve, when an odd number
of equidistant ordinates are known, viz.: To four times the
sum of the even ordinates add twice the sum of the odd
ones; subtract the sum of the extreme ordinates and multiply
the result by one-third the common distance.

15%. Shew that Simpson’s rule is tantamount to consider-
ing the curve between two consecutive odd ordinates as pa-
rabolic. Also, if we assume that the curve between each
ordinate is parabolic, and that it also passes through the
extremity of the next ordinate (the axes of the parabole
being in all cases parallel to the axis of y), the area will be
given by

Area =5 [Eg - %;{15 W +y)— 4, +y, )+ Y%+, }] .

16+. Given w, and u_,,, and their even distances, shew
that
_1(, 1,,.1.8 ., 1.8.5
“ﬂ*'é{l‘sA tg5 164 ~5.16.%4

A+ ...}u,+u,ﬂ.

* On the comparative merits of these and similar methods see Dupain

(Nouvelles Annales, xvi1, 288).
+ The notation in this formula (due to Gauss) is that referred to on the

top of page 56.
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17. Shew that

Upyr = Uy, + :L‘Auﬂ_r + ?—(z __'|1_'_227' - 1) A'un_”
g(@+8r—1) (z+3r-2) ,
gy 7 At
A =A" At n (n + 1) i
o A A A T Ty AT e

In what cases would the above formulz be especially
useful ?

18. Shew that the coefficient of A", in (27) is equal to
: 1 3:('“)
J iz

and hence shew the cxact relationship in which (27) and
(18) stand to each other.

19*. If from the values u, %,... of a function corre-

sponding to values a, b, ¢ ... of the variable, we obtain an
Interpolation-formula,

u,=u,+B@—-a)+C(z—a)(z—b)+D(@-a)(z-b)(x—c)
+ .0
shew that

Au, o= AB AC

b—a’ c—a’ D=d—a’
where A (a,b,..)=d(bc,...)—¢(ad,...).
Deduce (2), page 35, from the above formula.

B=

* Newton's Principia, Lemma v. Lib, 11, This is the first attempt at
finding a general Interpolation-formula, and gives a complete solution of the
problem. The result is of course identically that obtained by Lagrange’s
formula, though in a very different form.
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CHAPTER 1IV.

FINITE INTEGRATION, AND THE SUMMATION OF SERIES.

1. THE term integration is here used to denote the process
by which, from a given proposed function of z, we determine
some other function of which the given function cxpresses the
difference.

Thus to integrate u, is to find a function v, such that
Av,=u,

The operation of integration is therefore by definition the
inverse of the operation denoted by the symbol A. As such,
it may with perfect propriety be denoted by the inverse form
A™, Tt is usual however to employ for this purpose a distinct
symbol, 3, the origin of which, as well as of the term inte-
gration by which its office is denoted, it will be proper to
explain.

One of the most important applications of the Calculus
of Finite Differences is to the finitc summation of serics.

Now let u,, », u,, ... represent successive terms of a series
whose general term is u,, and let
V= Uy + Uyyy + Uppgee et Up ).

Then, a being constant so that , remains the initial term,
we have
Vpp = U + Ugyy + eee + Uy + Uy (2).
Hence, subtracting (1) from (2),
Ay, =u,, . v,=A"u,.
It appears from the last equation that A™ applied to u,
expresses the sum of that portion of a series whose general

term is »,, which begins with a fired term u, and ends with
u On this account A™ has been usually replaced by the

z-1*
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symbol =, considered as indicating a summation or integra-
ton. At the same time the properties of the symbol 3,
and the mode of performing the operation which it denotes,
or, to speak with greater strictness, of answering that question
of which it is virtually an expression, are best deduced, and
are usually deduced, from its definition as the inverse of the
symbol A.

Now if we consider Zu, as defined by the equation
Su,=u, + U, + ., 3,

it denotes a direct and always possible operation, but if we
consider it as defined by the equation

Su,=Au, (4),

and as having for its object the discovery of some finite ex-
pression v,, which satisfies the equation Av, =u,, it is inter-
rogative rather than directive (Dif. Equat. p. 376, 1st ed.),
it sets before us an object of enquiry but does not prescribe
any mode of arriving at that object; nor does it give us the
assurance that there is but one answer to the question it
virtually propounds. A moment'’s consideration, indeed, will
assure us that the number of expressions that can claim to
be denoted by A™y, is infinite, since it includes the quantity

USE U PR

whatever value @ may be supposed to have, provided only
that it is one of the series of integral values which # is sup-
posed to take. We cannot therefore consider the definitions
of Su, contained in (3) and (4) as identical, and shall there-
fore proceed to investigate the relation between them and
the restrictions as to the use of each.

It is obvious that the Su_ of (3) is one of the functions
represented by the A™u, in (4), since it satisfies the equation
Av,=u_. But this is of no value to us unless we can recog-
nize to which of the functions represented by A™u, in (4) it
is equal, or obtain an expression for it in terms of any one
of them.  This last we shall now vroceed to do.
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Let ¢ (z) be a function such that A¢ (z) = u,.

p et —$ @ =u,
¢(a+2)_¢ (a+ 1)=ua+x’

esecscscvccsccracs esescssssscans .

@) —¢@E-1)=u,,
o ¢ (w) —¢(a,)=u¢+um......+u,_l= Zu, in (3)

Hence retaining for Su, the definition of (4) we should
write (3) thus:

*Su, — Su, = Uyt Uyyennenn + Uy (®)-

Again suppose 3u, to be defined by (8) and be equal to
¢ (), and let the Su, of (4) be given genecrally by ¢ (2) +w,,

then u,= A {¢ (z) +w,} =Ad (z) + Aw, = u, + Aw,;

.. Aw,=0, or w, docs not change when x is increased by
unity ; hence it remains constant while z takes all the series
of values which it is permitted to take in any problem in
Finite Differences. Since then w, will remain unchanged,
so far as we shall have to do with it, we shall denote it by
C and regard it as a constant, and examine its true nature
later on. (Art. 4, Ch. 11.)

Hence regarding Su, as defined by (8) we should write
(4) thus:

Ay =3u + C (6).

* Were it not that in so fundamental a theorem it is advisable to use only
such methods as are beyond all suspicion as to their rigour, we might have
arrived more easily at the same result symbolically, thus:

U+ttt =1+ E+ E} .. + E—}u,
E~—-1
=51 U= (E*— - 1) A'y,= (E*—* - 1) Zu,, from (4)...(7),
=2u,—2u. (8)1

which agrees with (5). But the method in the text is preferable, since the
steps in (7) and (8) presuppose a rigorous examination into the nature of the
symbols A~ and = before we can state the arithmetical equivalence of the
quantities with which we are dealing, i.e. some such investigation as that in
the text.
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We shall not dwell farther on this point, since the differ-
ence between the Zu, of (3) and that of (4) is precisely
)

analogous to that between the definite integral / ¢(z) dz,
a

and the indefinite integral f ¢ (z) dz, and the precautions

necessary to be taken in using them are identical with those
to which we are accustomed in the Integral Calculus. In
fact we adopt a notation for definite Finite Integrals stri-
kingly similar to that for Definite Integrals in the Infi-

nitesimal Calculus, writing the Zu, of (3) in the form
r=x-1

Zu,.

r=a

Integrable Forms.

2. As in Integral Calculus, we shall be able to obtain
finite expressions for the integrals of but few forms, and must
be content to express the integrals of others in the form of
infinite series. Of such integrable forms the following are
the most important, as being of frequent recurrence and re-
ducible under general laws.

1st Form. Factorial expressions of the form
z(@—1)...(x—m+1) or z'™
in the notation of Ch. 11. Art. 2.

We have
Az = (m + 1) 2™ ;
(n) zmw?“ N4
_2 _zu..-i—1+0’
_Em (@=1)...(z —m)
or 2z(z—-1)...c—m+1)= ) +C @).

Taking this between limits z=n and x=m, (n>m),
we get
1.2..m+2.3...m+1)+...+ (n—m)...n—2) (n—1)
_r@=1)..(a=m)

m+1
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Or we may retain C and determine it subsequently, thus
1.2..m+2.8..(m+1)+... +(n—m)...(n—2) (n—1)

_n(n=1)...(n—m)
- m+1 +C.

Put n=m + 1 and the series on the left-hand side reduces
to its first term, and we obtain
_(m+1)m...1
N m+1

1.2..m +C; ... C=0.

Thus also if «, = ax + b, we have

U, ..

U
SUM e Uy gy = zm 4 C (2).

a(m+1)
Ex. 1. Sum the series

3.5.74+5.7.94 ... ton terms.

Here a=2, b=5, m=3, and sincc we have to find the
sum of n terms we must change n into n+41 in the last
formula, and we obtain

% (2n+7)(2n+5) (2n +3)

=(2n+7) (2n + 5) (2n + 3) (2n+l)+ c
4x2

But n=1 gives us

9x7x5x%x8 105

3.5.7= 23 +0C; . C=——"F;

.. 83.5.7+5.7.94 ... to n terms

_(2n+7)(2n+5)(2n+3)(2n+1) 105
8 8’

2nd Form. Factorial expressions of the form

1
z(z+1)...(x+m—1)

or '™,
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We have by Ch. 11. Art. 2,
Az ™™ = (—m + 1) 2™

(—m+1)

. m . T
/Ef . —Am_+1

_ - g
So also if v, = ax + b, we have

+C 3).

1 —am
B o Uy iy )3
zx41 ** Vzem—y 'z x+1""l3+m
1 1
"3 =0- ;
Uy, oee Uy QMU woe Uy
or, writing m — 1 for m,
1 1

3 =C- (5).

Ulyyy oo Ugym a(m—1)wu,, ...u,,. ,

It will be observed that there must be at least two factors
in the denominator of the expression to be integrated. No

1
+6°

finite expression exists for =

Ex. 2. Find the sum of n terms of the series

1 1
T4 7 470t
We have here a=3, 6=—2, m=3.
.*. Sum of (n — 1) terms
s 1 _g 1

Ul Uy 3X2xXu,.u,,
1

T6@n-2)@n+1)’
Put n=2 and we obtain
1 1 . 1

T 7=-C¢ap o

=C




68 FINITE INTEGRATION, [cH. 1v.

Hence (writing n for n — 1 and therefore n+ 1 for n)

1
Sum of n terms = 2* ST R

As all that is known of the integration of rational functions
is virtually contained in the two primary theorems of (2) and
(3), it is desirable to express these in the simplest form*.
Supposing then u, = az + b, let

Uplhyy oor Uy, = (az + D)™,

1

Uyt ety = @O
L TR m—y
then _
S (az 4+ B)™ = ("”z;: 11) +C (©),

whether m be positive or negative. The analogy of this result
with the theorem

[(az +b)d (am +b)m*

T+ C

is obvious.

We shall now shew how to reduce other forms to one of
the preceding.

3rd Form. Rational and integral functions.

* As most of the summations of series whose nt* term is a rational
function of n will have to be effected by these methods, and as such sum-
mations are of very frequent occurrence, it is still more important to have a
readily applicable rule for effecting them. The following is perhaps the most
convenient form for finding the sum of n terms of such series :—

“ Wri:ii (cllown fthe nth te];'m w;th its factors in ascending order of mag-

one factor at the en -
nitade, 3take away one factor at the begmmngz divide by the number of
factors now remaining, and by the coefficient of z (in each factor), and
add to ”
subtract from{ ® constant.

1t is scarcely necessary to add that the upper line in the brackets must be

taken when the terms are of the form ug u,_,... Uz_py, 8nd the lower when

of the form SN S .
Uz Uzyy oo Ugim-1
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By Ch. 11. Art. 5

$@ =90 +ap@)a+ 20wy . (d.

Let ¢ (z) = S, and put C for ¢(0),
(2

. Z,=C+z.v, +7 5 Ay 4 . ),

and the number of terms will be finite if v, be rational and
integral.

The series in (6') comes from the equivalence of the opera-
tions denoted by the symbols E®and (1+A)". In like
manner we may obtain a cognate expressmn from the
equivalence of £ and (1 +A)™ This gives us, when we
perform them on ¢ (),

$(0) =¢(2) — 2. Ad(2) + A’¢(z) —

Putting as before ¢(z)=Zv, and C for ¢(0), and trans-
posing, we get

Ev,=0+a:v,—z(;):;1) Ay, + ... (8)*.

m(a:+ 1)

In applying the above to the summation of series we may
avoid the use of an undetermined constant and render the
demonstration more direct by proceeding as follows:

Vot U+ etV =1+ E+E+.. . E" 0,
_E-1 _(+Ay-1

=E=1%~ A %
={a:+‘”(f.—21)A+ ...}v, ©).

*.That the constants in (7) and (8) are the same appears evident when we
consider that (8) may be obtained from (7) by mere algebraical transforma-
tion. The series-portions are in fact the results of performing the equivalent
(1+A)' andl (1+4)~*

z
a E* on v,.

direct operations




70 FINITE INTEGRATION, [cH. 1v.

Here all the operations performed on v, are direct, and the
result is given in differences of the first term.

Ex. 3. To find the sum of z terms of the series 1°+ 2°+...
Applying* (7) we have (since Ay,=1, A%,=2)

I4+24...+(@—1)=32*=C+72 (a:2—- D, 2@ '1'12) .(g =2) o,

Putting 2 =2 we see that C is zero, and adding «* to both
sides we obtain

14204 42t =2 4

z(@x—1) x(x—-1)(z—2)
e tT 3 —

_z(@+1) (2x+1)
6 .

Ex. 4. Find the sum of n terms of the series whose n* term
is 4+ Tn.

We shall here apply formula (9).

The first terms are 8 22 48 92 ......
» »  differences ,, 14 26 44 ...
,, second ” ’ 12 18 ..l
,, third » ” L
.*. sum of n terms=8n + 142 (ln _21)
nn—-1)(n=2)  ,n(n—=1)(n—2) (n—3)
+12——55— +6 1.2.3.4 '

4th Form. Any rational fraction of the form
$ (=)

’
Uy ooe Uy,

* In practice it will be found better to resolve the nt term into factorials
and apply the rule given in the note to page 68.
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u, being of the form az + b, and ¢ (x) a rational and integral
function of  of a degree lower by at least two unities than
the degree of the denominator.

Expressing ¢ () in the form
b(@)=A+Bu,+ Cuu, + ...+ Ev ., ... U o

4, B... being constants to be determined by equating coeffi-
cients, or by an obvious extension of the theorem of Chap. 11.
Art. 5, we find

5@ _ _4s 1 + B3, !
u,’u,ﬂ e u,“,, u,uﬁluzn coe Uy m u,ﬂ'u,nu,“ ceeUpim
1
+o+Es— 1
zymay Wz pm

and cach term can now be integrated by (5).

Again, supposing the numerator of a rational fraction to be
of a degree less by at least two unities than the denominator,
but intermediate factors alone to be wanting in the latter to
give to it the factorial character above described, then, these
tactors being supplied to both numerator and denominator,
the fraction may be integrated as in the last case.

Ex. 5. Thus u, still representing ax + b, we should have

s z _ TUyyy
uzuzﬂu‘ +3 u’u=+lu=+ﬂut+3

with the second member of which we must proceed as before.

Ex. 6. Find the sum of n terms of the series
2 3
1.3.473,a. 51
Here the n'* term

_ n+1 _ n+2n+1
“Tn(n+2)(n+3) n(n+l)(n+2) (n+3)
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_ _nm+D)+n+1 1
Tan+l)(n+2)(n+3) (n+2) (n+3)
1 1
tar ) o) @+ Tn@tl) @+ (T 3)
The sum of n terms therefore, by the rule on page 68,
_o_ 1 _ 1 _ 1
n+3 2(m+2)(n+3) 3(n+1)(n+2)(n+3)
_ 6n’ 4+ 21n+17
6(n+1)(n+2)(n+3)’
17

and C can easily be shewn to equal 36°

We thus can find the sum of n terms of any series whose
2 term is ¢ (n), provided that ¢ (n) be either (1) a rational
integral function of », or (2) a fraction whose denominator
is the product of terms of an arithmetical series that re-
main a constant distance from the n® term, and whose
numerator is of a degree lower by at least two than its
denominator*,

5th Form. Functions of the form a® or a"$(z) where
¢ () is rational and integral.

* Since ¢ (n) **=¢ (D) e** we may write
P@+p@t+l)+..p(a+n-1)=[p(D){e= + oty eetn-1ej)

=[sm} bt 1R

nnd the series may therefore be summed by the methods of Differential Cal-
cuus or Differential Equations according as ¢ (n) is an integral function of
or not. That the result thus obtained is identical with that in the text
follows from the identity demonstrated in (16) page 23, viz.

#(D) ¥ (0)=y (D) ¢ (0).

For this gives

(a+n)0 _ o0 a4mD _ gep Eets _ Re
¢(D)§E O—1 = en_; ¢(0)= E-1 ¢(0)

=Z {¢(a+n) - ¢(a)} =Z¢(a + n) - Z¢(a),
which agrees with the previous expression.
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From (13) page 8, we obtain at once Ea"=—(-z-g.—l. For

the integration of a®g(z) we shall have recourse to sym-
bolical methods.

Sa*¢ (z) = A0 (2)
=(’—1)" "¢ (2)
= erlue (e Vime 1) (2)*
=a" (e’ ~ 1)"$(x) =a" {a (1 + &) — 1}"'¢ (=)

3, () o

=S pe- 2 ae0

+ (,TE’T) A% (z) — } (10),

to which of course an arbitrary constant must be added.

It will be found that the direct application of this theorem+
is the simplest method of summing such series as have their
z* term of the form a”. ¢ ().

* By means of the well-known formula f(D)e™ ¢(x) =e™f (D +m) ¢ (z).

The proof of this formula is given in Boole’s Diff. Eq. (First Ed., p. 385),
and in many other books.

+ The demonstration of (10) can be still farther simplified by quoting the

theorem,
S (E) a® ¢ (z) =af (aE) ¢ (2).

This may be deduced from the formula above quoted, but is more readily
demonstrated independently, since if 4, E™ be one term of the expansion
of f(E) in powers of E we have

A, E" a®¢(x) = 4,0 ¢ (x +n)=a* . 4,a" E* p(2)=a". 4, (aE)" ¢(z),
summing all such terms we get
J(E) a*¢ (x) =a%f (aE) ¢ (),
and the demonstration of (10) runs thus,
A7 a%¢ (2)=(E - 1) a%¢ (2) =a*(aE - 1) ¢ (x)
=a"{a(l+4)-1} ¢(x)= ....
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Ex. 7. Find the sum of the series
120+ 20,274+ 8. 2°+ ...
Sum to n terms
=n?. 2° 4 3n%, 2*
" 4

=n’.2"+22_ 1 {7}’—2—_2_—1 An’+ (2—“—-1)1A’ln‘} + C

=2"{2n* — 4n + 6} + C.

The method just given may be generalized to apply to all
functions of the form u,.¢(z), where ¢(x) is rational and
integral, and u, is a function such that we know the value
of A™u, for all integral values of ». In this case we have
(comp. Ex. 3, p. 20)

Su,$(x) = (EE' ~ 1) u,¢ (2) = (AE’ + A u_¢(z)

(E" and A’ being supposed to operate on ¢ and £ and A on
u, alone)

_ 1 A A p
-3 (1= 2p + 3~ 1
=A"u, . p(x—-1)— A%, . Ad(x—2)
+A%%, A% (z—3)— ... (11),
dropping the accents as no longer necessary.
Ex. 8. A good example of the use of the above formula is

got by taking u,=sin (ax+0b). From (17), page 8, we get
easily

sin {aa:+ b— 7_1_(224—_71)}

(2 sin %).

Let us take then the series whose n'®* term is

(n—"7)sin (an +3);

A™sin (az + b) =
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the sum of n terms will be

(n—"T)sin (an+ b) +3, (n—7) sin (an + b)

sin (a,n+b—a-;7r)

=(n—"7)sin (an+b) + (n —8).

. G
Zsmé

_sin{an+b— (‘i + )} +0C
(2 sin E')
2

6th. Miscellaneous Forms. When a function proposed for
integration cannot be referred to any of the preceding forms,
it will be proper to divine if possible the form of its integral
from general knowledge of the effect of the operation A, and
to determine the constants by comparing the difference of the
conjectured integral with the function proposed.

Thus since
Ad*P(x) = a™r(x),

where V¥ (z) =a¢ (z + 1) — ¢ (2), it is evident that if () be
a rational fraction yr(x) will also be such. Hence if we had
to integrate a function of the form a®J(z), Y-(z) being a ra-
tional fraction, it would be proper to try first the hypothesis
that the integral was of the form a’¢(x), ¢(«) being a ra-
tional fraction the constitution of which would be suggested
by that of ¥r(z).

Thus also, since Asin™'¢(z), A tan™'¢(z), &c., are of the
respective forms sin™lyr (x), tan™Yr(z), &c., ¥r(z) being an
algebraic function when ¢(z) is such, and, in the case of
tan™'¢ (z), rational if ¢(z) be so, it is usually not difficult to
conjecture what must be the forms, if finite forms exist, of

2 sinY(z), = tanW(z), ...,
V() being still supposed algebraic.

The above observations may be generalized. The opera-
tion denoted by A does not change or annul the functional
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characteristics of the subject to which it is applied. It does
not convert transcendental into a.lgebralc functions, or one
species of transcendental functions into another. And thus,
in the inverse procedure of integration, the limits of conjec-
ture are narrowed. In the above respect the operation A is
unlike that of differentiation, which involves essentially a
procedure to the limit, and in the limit new forms arise.

Instances of the above will be given in the Examples at
the end of the chapter, but we subjain the following by way
of illustration.

Ex. 9. To sum, when possible, the series

12 20.2° 8.2°

9.3t gat g gt o tonterms
2 ”
th . n.x
The n*t term, represented by u,, being -—————————(n T m+e)’
we have
2. n
Bt = o 4 T

i+l (n+2) “ T+ (n+2)

Now remembering that the summation has reference to n,
assume
5wt _antb .
(r+1)(n+2) =+1
Then, taking the difference, we have
z*n? — g a(n+1)+b_an+b}
(n+1)(n+2) n+2 n+1
a(x 1)n*+(2a+b) (x—1) n+(a+b) x—2b
(n+1)(n+2)
That these expressions may agree we must have
a(z—=1)=1, 2a+b)(x—1)=0, (a+bx—2b=0.
Whence we find

U

emt, a=l, bo-
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The proposed series is therefore integrable if # =4*, and
we have

s 4".n' n—2
(n+1)(n+2) n+1
Substituting, determining the constant, and reducing, there
results
1.4 284 n*4" 4" n—-1 2
23t3 4T ai)wry "3 ne2 T3

4"+ C.

=1
=3

3. 3 is of course, like A, £, and D, an operation capable
of repetition and therefore obeying the index-law; 3%, being
defined as 3 (2%,). Our symbolical methods will render it an
easy matter to obtain expressions for Z* (or A™) analogous
to those already obtained for 2, but we shall have to add, as
in Integral Calculus, a function of the form

C,+Cz+...+C, _a*

(where C,, O, ... are arbitrary or undetermined constants) in-
stead of the single arbitrary constant which we added in the
previous instance. We shall merely give the formula for 3"
analogous to (10) and leave the others as an exercise for the
ingenuity of the student. It is

h(e) = gy {90 —n 77 AP
(n+1 e
+’i—1—§—2(a—f—l) A¢(z)—...}
+C+Cx+..+C _a"" (12).

* The explanation of this peculiarity is very easy:

nix» { 4 1

EaF) @2~ Azt w1

and the summation of the above series would require a finite expression for

1
2%“ if z had not such a value that the term gﬁ which occurs in the

(r+1)* term exactly cancelled the term ;% that occurs in the rt term,

i.e. unless z=4.
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It will be found that the 1%, 8" and 5% forms can have
their n* Finite Integrals expressed in finite terms, but that
the 2" and 4" only permit of this if n be not too great.

Conditions of extension of direct to tnverse forms. Nature
of the arbitrary constants.

4. From the symbolical expression of 3 in the forms
("—17"), and more generally of 3" in the form (¢”—1)™,
flow certain theorems which may be regarded as extensions
of some of the results of Chap. 1. To comprechend the true
nature of these extensions the peculiar interrogative character

of the cxpression (¢*—1)™u, must be borne in mind. Any
legitimate transformation of this expression by the develop-
ment of the symbolical factor must be considered, in so far
as it consists of direct forms, to be an answer to the question
which that expression proposcs; in so far as it consists of
inverse forms to be a replacing of that question by others.
But the answers will not be of necessity sufficiently general,
and the substituted questions if answered in a perfectly un-
restricted manner may lead to results which are too general.
In the onec case we must introduce arbitrary constants, in the
other case we must determine the connecting relations among
arbitrary constants ; in both cases falling back upon cur prior
knowledge of what the character of the true solution must be.
Two examples will suffice for illustration.

Ex. 1. Let us endeavour to deduce symbolically the ex-
pression for 2u,, given in (3), Art. 1.

Now Su, = (E—1)"u,
—(F 4 B 4 &),
= Uy Uyt Upgennt e

Now this is only a particular form of 2w, corresponding
to a=— o in (3). To deduce the general form we must
add an arbitrary constant, and if to that constant we assign
the value

— Uy F Upgeee F 20),

we obtain the result in question.
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Ex. 2. Let it be required to develope 2., in a series

proceeding according to Sv,, 3%, ...

We have by (11), page 74,
Sup, =u, v, — Au, B, + A%, Sy, — ...

In applying this theorem, we are not permitted to introduce
unconnected arbitrary constants into its successive terms. If
we perform on both sides the operation A, we shall find that
the equation will be identically satisfied provided AS"u, in
any term is equal to 2" u, in the preceding term, and this
imposes the condition that the constants in %" 'u, be retained
without change in 2"u,. And as, if this be done, the equa-
tion will -be satisfied, it follows that however many those
constants may be, they will effectively be reduced to one.
Hence then we may infer that if we express the theorem in
the form

Sup,=C+u,  Sv, —Au, S, + A%, , 5%, (1),

we shall be permitted to neglect the constants of integration,
provided that we always deduce 3", by direct integration
from the value of %"y, in the preceding term.

If u, be rational and integral, the series will be finite, and
the constant C' will be the one which is due to the last inte-
gration effected.

We have seen that C is a constant as far as A is con-
cerned, i.e. that AC=0. It is therefore a periodical con-
stant going through all its values during the time that «
takes to increase by unity. The necessity of a periodical
constant C' to complete the value of Zu, may also be esta-
blished, and its analytical expression determined, by trans-
forming the problem of summation into that of the solution
of a differential cquation.

Let Su, =y, then y is solely conditioned by the equation
4

Ay=u,, or, putting e*—1 for A, by the linear differential
equation

(ﬁ—l)y"“z-
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Now, by the theory of linear differential equations, the
complete value of y will be obtained by adding to any par-
ticular value v, the complete value of what y would be, were
%, equal to 0. Hence

Sy =v,+ Ce™? 4 C g™ + ..., (2),

C,, C,, ... being arbitrary constants, and m, m,, ... the
different roots of the equation

e—1=0.
Now all these roots are included in the form
m=+ 2Ur V-1,

1 being 0 or a positive integer. When 2= 0 we have m=0,
and the corresponding term in (2) reduces to a constant. But
when < is a positive Integer, we have in the second member
of (2) a pair of terms of the form

Ce2i1r‘\/Tl- + C' € 2(.lr\/:—l'

which, on making C+ C'=4,, (C(-C’) y/-1=B, is re-
ducible to A, cos 2vmr + B;sin 2iw. Hence, giving to ¢ all
possible integral values,

Su,=v,+ C+ A cos2mz+ A, cosdmx + A, cos bmrz + ...
+ B, sin 27z + B, sin 47wz + B, sin 67z 4 ... (3).

The portion of the right-hand member of this equation
which follows v, is the general analytical expression of a
periodical constant as above defined, viz. as ever resuming
the same value for values of #, whether integral or fractional,
which differ by unity. It must be observed that when we
have to do, as indeed usually happens, with only a particular
set of values of & progressing by unity, and not with all
possible sets, the periodical constant merges into an ordinary,
1.e. into an absolute constant. Thus, if # be exclusively
integral, (3) becomes

Su,=v,+ 0+ A, + A, + 4, + ...
=‘U,+C,

¢ being an absolute constant.
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It is usual to express periodical constants of equations of
differences in the form ¢ (cos 2wz, sin 27z). But this nota-
tion is not only inaccurate, but very likely to mislead. It
seems better either to employ C, leaving the interpretation
to the general knowledge of the student, or to adopt the
correct form

C +3,(A,cos 2imrz + B, sin 2i7x) (4).
We shall usually do the former.

5. The student will doubtless already have perceived how much the branch
of mathematics that forms the subject of our present consideration suffers
from 1ts not possessing a clear and independent set of technical terms, It 1s
true that by its borrowing terms from the Infinitesimal Calculus to supply
this want, we-are continually reminded of the strong analogies that exist
between the two, but in scientific language accuracy is of more value than
suggestiveness, and the closeness of the affinity of the analogous processes
is by no means such that it is profitable to denote them by the same terms.
The shortcomings of the nomenclature of the subject will be felt at once if
one thinks of the phrases which deseribe the operations analogous to the
three chief operations in the Infinitesimal Calculus, i.e. Differentiation,
Integration, and Integration between limits. There is no reason why the
present state of confusion should be permanent, so that we shall in future
(in the notes at least) denote these by the unambiguous phrases, performing A,
taking the Difference-Integral (or performing X), and summing, and shall
name the two divisions of the calculus, the Difference- and the Sum-Calculus
respectively, and consider them as together forming the Finite Caleulus.
The preceding chapters have been occupied with the Difference-Calculus
exclusively—the present is the first in which we have approached problems
analogous to those of the Integral Calculus; for it must be borne in mind
that such problems as those on Quadratures are merely instances of use
being made of the results of the Difference-Calculus, and have nothing to do
with the Sum-Calculus, except perhaps in the case of the formula on page 5.
Enough has been said about the analogy of the various parts of our earlier
chapters with corresponding portions of the Differential Caleulus, and we
shall here speak only of the exact nature and relations of the Sum-Calculus,

If the nth term of a series be known, and its sum be required, it is tanta-
mount to seeking the difference-integral, and our power of finding the
ditference-integral is coextensive with our power of finding the sum of any
number of terms, Hence the summation of all series, whose sum to r terms
can be obtained, is the work of the Sum-Calculus. It is true that there are
many series, that can be summed by an artifice, of which we have taken no
notice, but that is not because they do not belong to our subject, but becaunse
they are too isolated to be important. But it must be remembered that the
difference-integral is only obtainable when we can find the sum of any
number of consecutive terms we may wish.

But there are many cascs in which we seek the sum of n terms of a
series which is such that each term of the series involves n, e.g. we might
desire the sum of the series 1.n+2.(n—-1)+3.(n-2)+... to n terms.
Now in a certain sense tlus is not a case of summation; we do not seek the
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sum of any number of terms, but of a particular number of terms depending
on the first term of the series itself. And, as might be expected, this opera-
tion has not the close connexion that we previously found with that of
tinding the difference-integral of any term; for though the knowledge of the
latter would enable us to sum the series, yet the knowledge of the sum of the
series will not enable us to find the difference-integral of any term. These
must be called definite difference-integrals, and hold exactly the same posi-
tion that Definite Intcgrals occupy in the Infinitesimal Calculus. No one
would think of excluding from the domain of Integral Caleulus the treatment

of such functions as the definite integral /‘; °e (a—x)™dz, because the know-
ledge of its value does not give us any cluc to that of the indefinite integral
fz‘ (a—z)™dz, and is obtained indirectly without its being made to depend
on our first arriving at the knowledge of the latter.

By similar considerations we shall arrive at a right view of the relation
of infinite series to the Sum-Calculus. It is often supposed that it has
nothing to do with such series—that the summation of finite series is its
business, and that this is wholly distinct from the summation of infinite
series. This is by no means correct. The true statement is that such scries
are definite difference-integrals, whose upper limit is @, and so far they as

much belong to our subject as f we —3dzx does to the Infinitesimal Calculus.
[

How is it then that the whole subject of scries is not referrcd to this
Calculus, but is separated into innumerable portions, and treated of in all
imaginable connexions? It is that in the expression of such series as those
we are speaking of, reference being only made to finite quantities, there is
nothing to distinguish them from ordinary algebraical expressions, except that
the symmetry is so great that only a few terms nced be written down. Hence
when it is summed by an artifice, and not by dircet use of the laws of the
Sum-Calculus, there 1s nothing to distinguish the process from an ordinary
algebraical transformation or demonstration of the identity of two different
expressions. Now m Dcfinite Integrals that are similarly evaluated by an
artifice, there is perhaps just as little claim for the evaluation to be classed
as a process belonging to the Infinitesimal Caleulus, but the expression of the
subject of that process involving the notation and fundamental ideas of the
Calculus, it is naturally classed along with processes that really belong to
the Caleulus, Thus the Infinitesimal Calculus has a wide field to which no
recognized branch of the Finite Calculus corresponds, not because it does
not exist, but because it is not reserved for treatment here. No doubt this
has its disadvantages. Serics would be more systematically treated, and the
processes of summation more fully generalized, if they were dealt with collec-
tively ; yet on the other hand it is a great advantage in the Finite Calculus
to have to do only with such processes as really depend on its laws, and not
with processes that are really foreign to it, and are only connected therewith
by the fact that their subject-matter in these particular instances is expressed
in the form of a series, i.e. in the notation of the Calculus.

It is not usual to speak of such identities as Definite Difference-Integrals,
but a certain class of them are considered in this light in a paper by Libzi
(Crelle, x11. 240).

Before leaving the subject of Definite Difference-Integrals we must men-
tion a paper by Leslie Ellis (Liouville, 1x. 422), in which he demonstrates a
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theorem analogous to the well-known one on the value of

ffff~-~f(¢=+y+ L)dzdydz.,.,

where 2+ y+2+...S 1. The method is a very beautiful one, but we must
not be supposed to endorse it as rigorous, since one part involves the

s k]
evaluation of > 2 cos az.
[

The fundamental operations of the Finite Caleulus are taken as A with its
correlative =. In this view of the subject the sign of each term is supposed
to be +, not that its algebraical value is supposed to be positive, but that its
sign must be accounted for by its form. Thus if we take the series
2y — Uy + U — ..., we must call the general term (- 1)*u,. To avoid this com-
plication in the treatment of series whose tcrms are alternately positive
and negative, some have wished to have a second Calculus whose fundamental
operation is ¢ =14 E, the correlative of which, {1, would of course denote
the operation of swnming such a serics. A series of papers by Oettinger, the
inventor of it, will be found in Crelle, Vols. x1.—xv1. In these he developes
the new Calculus in a manner strictly analogous to that in which he subse-
quently treats the Difference-Calculus, connects them similarly with the
Infinitesimal Calculus, demonstrates analogous formul®, and applies them at
first to simple cases and then to more complex ones, especially to those
series whosc terms are products of the more simple functions and those most
suitable to such treatment. The work is unsymbolical, and therefore clumsy
and tedious compared with more recent work, and we should not have
referred to the papers here (for we consider it highly unadvisable to invent a
new Calculus for a comparatively unimportant class of questions that can
very easily be dcalt with by our present methods) were it not that his results
are very copious and detailed. ~The student who desires practice in the
symbolical methods cannot do better than take one of these papers and
employ himself in demonstrating by such methods the results there given.
Should he desire however a statement of the nature and advantages of this
more elaborate treatment of series, he will find it in a review by Oettinger.
(Grunert, Archiv. xi1. 306.)

This is not the only attempt to introduce a new Finite-Calculus. A
certain class of series is treated in a paper by Werner (Grunert, Archiv.
xx11. 264), by means of a calculus whose fundamental operation, A= E —v,, is
almost the most general form of linear fundamental operation that can be
imagined.

EXERCISES.

1. Sum to 2 terms the following series:
1.8.5.7+8.5.7.9+...

1 1
1,357 35797
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1.3.5.10+3.5.7.12+5.7.9.14+...

. 12 14
1.3.5"85.7°5.7.9" "

1.8.5.c080+3.5.7.¢c0820+5.7.9.¢c0s360+...
14 2a cos 0 + 3a® cos 20 + 4a®cos 30 + ...

2. The successive orders of figurate numbers are defined
by this ;—that the 2" term of any order is equal to the
sum of the first # terms of the order next preceding, while
the terms of the first order are each equal to unity. Shew
that the #™ term of the n™ order is

z@E+1) ... @+n=-2)
[n—1 ‘
3. If 3 u, denote the sum of the first # terms of the
series %y, U, u,, &c. shew that

' 1 1 A A
Su = {E—§+Z—‘g+ ..-} (u,,,—uo),

)
and apply this to find the sum of the series
1.3.545.7.94+9.11.13 + ...
4. Expand Z¢(x)cosmz in a series of differences of

(@)

5. Find in what cases, when u, is one of the five forms
given as integrable in the present Chapter, we can find the
sum of n terms of the scries

Uy — Uy + Uy — U, + ...,
and construct the suitable formulz in each case.
6. Sum the following series to n terms :
1 1 1
sin @ + sin 26 + sin 40
1 1
cos @, cos 20 + cos 26 . cus 30 toe

+...
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7. Shew that cot™ (p+ gn+rn’) is integrable in finite
terms whenever
¢ —r=4(pr-1).

Obtain
a T log tan 2°6 2*(n—1)
3, tan TFrm—Da’ and 2———“———2,, and 32— wEl)
8. It is always possible to assign such values to s, real or
imaginary, that the function

(a+Bx+qz*+ ... +v2")s"
Uy voe Uy

shall be integrable in finite terms; a, B,... » being any con-
stants and », = az + &.
(Herschel’'s Eramples of Finite Differences, p. 47.)

9. Shew that

O
u°+ulcos28+u,cos40+...—-2 5D

2

Ay, Ay, A‘u.
+ 50 nB .sin @ + =——2-, cos 20 — 9 sin 0sm30—

16s n0

A
10. If Au,=w,,,—u, and A= E,Tai_f’ shew that

u,+ My, + NA%, + ... +N"A%,
a” {(a*—1) Za’u, +7\."2 A )
Find the sum of n terms of the series whose n™ terms are
(ea+n-1)"2"" and (e +n—1)™z"",

11. Prove the theorem

SMug, = u, 2, — nAu, 2", + - (; ; LY A Sy, — ...

12. If ¢(z)=v,+v2x+v2" + ..., shew that
u,, + Uz + uwx’ + &c. = u b (z) + 2¢'(z) . Ay,

—a%#’(m) At
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and if ¢(2) = v, + v,x +v,2® + ..., then
u, + u v +upx® + ... =up (@) +rAp(z). Ay,
2@
+ réAaqb(z) . A"Mo-l-
(Guderman, Crelle, vi1. 306.)

13. Sum to infinity the series

z(z—1)
z(z—1)

z(z—1) (z—2)
z@-1)(@—2)

r ri r T
0+1.w+2. +3.

14, If ¢(2) =v,+ vz +v2"+ ..., shew that
a,.'u,ﬂ;' + a’r+ﬂuf+nwr+ﬂ + ar“" uﬁ-mwrm + coe
1 n—r - ’
== Z[a""p(az)] ¥, + 2 [a" " ¢ (ax) ] Ay, . 2 + ... ),
where a is an 2™ root of unity.

15. If1*+2"+...+m"*= S, and m(m 4 1) = p, shew that
S, =pf (p) or (2m + 1) pf (p), according as n is odd or even.
(Nouvelles Annales, X. 199.)
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CHAPTER V.

THE APPROXIMATE SUMMATION OF SERIES.

1. It has been seen that the finite summation of series
depends upon our ability to express in finite algebraical terms
the result of the operation 3, performed upon the general term
of the series. When such finite expression is beyond our
powers, theorems of approximation must be employed. And
the constitution of the symbol 3, as expressed by the equation

S=("-1)"...(1)
renders the deduction and the application of such theorems
casy.

Speaking generally these theorems are dependent upon the
development of the symbol 3 in ascending powers of D.

But another method, also of great use, is one in which we
expand in terms of the successive differences of some tm-
portant factor of the general term, i.e. in ascending powers of
A, where A is considered as operating on one factor alone of
the general term, and is no longer the inverse of the 3 we are
trying to perform*,

* Let us compare these methods of procedure with those adopted in the
Integral Calculus. If f ¢ (x) dz canuot be obtained in finite terms it is usual

either

(1) To expand ¢ (z) in a series proceeding by powers of z and to integrate
each term separately ;

(2) To develope f ¢ (x) dz by Bernoulli’s Theorem (i.e. by repeated inte-

gration by parts) in a series proceeding by successive differential coefficients
of some factor of the general term ; or
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As our results are no longer exact it becomes a matter of
the greatest importance to determine how far they differ from
the cxact results, or, in other words, the degree of approxima-
tion attained. But this is usually a difficult task, and in
order to lessen the difficulty of the subject to the student, we
shall separate such investigations from those which first give
us the expansions. The order in which we shall treat the
subject will therefore be as follows :

I. We shall obtain symbolical expansions for 3, 32 ....

(Chapters v. and VL)

II. Weshall examine the general question of Convergency
and Divergency of Series, to ascertain if we may assume the
arithmetical equivalence of the results of performing on u,
the operations that we have just found to be symbolically

equivalent. (Ch. vir.)

III. Finding that many of our results do not stand the test
we shall proceed to find the exact theorems corresponding to
them, i.e. to find expressions for the remainder after n terms,
and thus we shall reestablish the approximateness of these

results. (Ch. vIir)

(3) To develope f ¢ () dr in a series proceeding by successive differences

of ¢x by aid of Laplace’s formula for Mechanical Quadrature [(27) page 54],
which may be written thus:

Jo@d=C+20(0)- 500+ oy M@~ . ()

We should therefore expect to find in the Sum-Calculus the corresponding
methods, viz.

(1) To expand u, in a series proceeding by factorials, and to sum each
term separately ;

(2) To develope Zu, in a series proceeding by successive differcnces of
some factor of the general term ;

(3) To develope Zu, in a series proceeding by successive differential co-
efficients of u,.

Of these (3) and (2) are those mentioned in the text ; (1) is not of much
nse since the cases in which it can be applied are very few, and no theorems
of great generality have been found to enable us to obtain the expansion
necessary, Besides the resulting series will usually be highly divergent
unless the factorials are inverse ones, i. e. have negative indices, so that the
results will not be suitable for giving the approximate values we seek, We
shall, however, give some account later on of the results that have been
obluined by this method.
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We shall now commence the first of these divisions.

2. Pror. I. To develope Su, in a series proceeding by
the differential coefficients of u,.

a a
Since Su,=(¢*—1)"u,, we must expand (¢*—1)" in
ascending powers of %_ , and the form of the expansion will

be determined by that of the function (¢f— 1)". For sim-
plicity we will first deduce a few terms of the expansion and
examine somewhat its general form, leaving fuller investiga-
tions to the next Chaptoer.

The function (¢ —1)™" is not at once suitable for expansion
by Maclaurin’s Theorem, since it contains a negative power

cither by Maclaurin’s

of t; we shall thercfore expand poo

Theorem or by actual division and divide the result by ¢,

t 11

e—1 . ¢ T
tristiast

t ¢ t .
—1—-2'+T§~m+... (3).

The term — = may be shewn to be the only term in the

2
expansion involving an odd power of £. For

¢

e€—1

ot

€

+

= . )

t
€ —

DO o
DOl o~
[

which does not change when ¢ is changed into —¢, and
therefore can contain, on expansion, even powers of ¢ alone.

From these results we may conclude that the development
of (¢ — 1) will assume the form

(¢=1)"'= -A?f‘ +A4,+At+ AL +AL+ ... (4).
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It is however customary to express this development in the
somewhat more arbitrary form

1 1 B B B
I | P N R T I B 7545 5
(€-1) ; 2+,__2_t |fta+l6t (3).
The quantities B,, B,, .. are called Bernoulli's numbers,

and will form the subject of the major part of the next
Chapter.

Hence we find

1 . B du, B,d%u,
zllz= 0+ u,cla:—é ‘Lla;,:-i'-l-—z1 Ea?—l_é %3-+ e (6).

Or, actually calculating a few of the coefficients,
Ldu, 1 d,
12de 720 ds°
1 du,
30240 do
The following table contains the values of the first ten of
Bernoulli’s numbers,

1 1 1 _ 1 _
B=p B=g Bmig B=gp- Bo=g

Eu;=0+fuzdx—%u‘+

+ (7).*

(=]

* Attention has been directed (Differential Equdtions, p. 376) to the in-
terrogative character of inverse forms such as

a
(e —1)"uy,
The object of a theorem of transformation like the above is, strictly speak-
ing, to determine a function of x such that if we perform upon it the cor-
d

responding direct operation (in the above case this is % — 1) the result will
be u,. To the inquiry what that funotion is, a legitimate transformation
will necessarily give a correct but not necessarily the most general answer.
Thus C in the second member of (6) is, from the mode of its introduction,
the constant of ordinary integration ; but for the most general expression
of Zu, C ought to be a periodical quantity, subject only to the condition
of resuming the same value for values of z differing by unity. In the
applications to which we shall proceed the values of x involved will be
integral, so that it will suffice to regard C as a simple constant. 8till it
is important that the true relation of the two members of the equation (6)
should be understood.
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691 7 3617
w=gz730" Bu=5 Bs=10
43867 1222277
Ba="po5 » Bo="g310- @

It will be noted that they are ultimately divergent. It
will seldom however be necessary to carry the serics for Su,
further than is dene in (7), and it will be shewn that the
employment of its convergent portion is sufficient.

Applications.

3. The general expression for 3u, in (7), Art. 2, gives us
at once the integral of any rational and entire function of z.

Ex. 1. Thus making u, = «*, we have

1, 1d@) 1 @@

4 __ - o\ 7

2w "0+fw‘d‘” 2% * 19 " ds T 790 dab
© z P =z

=C+3-3+t3 55

More generally, making u, = 2" we get

. wn.ﬂ 1 " /n,Bl -1 n(n_l) (n_2) BB n-3

which at once enables us to connect Bernoulli's numbers
with the coefficients of the powers of z in the expression for

But the thcorem is of chief importance when finite sum-
mation is impossible.

Ex. 2. Thus making «_= i, , we have
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1 1 1 1 /-2 1 2.3.4
=0 st () a ()

1 1 1 1
=0 ————— +:30{?— cees

The value of C' must be determined by the particular con-
ditions of the problem. Thus suppose it required to determine
an approximate value of the series

111 1
ptetete g

Now by what precedes,

1 1 1 1 1 1 1 1
rtetet =02 95 "er taor

2
Let 2 = 0o, then the first member is equal to 7:; by a known
theorem, while the second member reduces to C. Hence

1,11 w11 11
1 2""+(a—:_——~1)’_6—w 22 62° ' 30z 7

and if @ be large a few terms of the series in the second
member will suffice,

4. When the sum of the scries ad inf. is unknown, or is
known to be infinite, we may approximately determine C by
giving to  some value which will enable us to compare the
cxpression for Zu,, in which the constant is involved, with the
actual value of Su, obtained from the given series by addition
of its terms.

. . 1.1 1
Ex. 8. Let the given scries be 1 + gtget -

Representing this series by w_, we have

1
u,=»—-+21
z =
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1 11 1
= TOtloge—gn— ot oo
11 1
=C+loga+ o — o5+ 1905~

To determine C, assume = 10, then

11 1 1
L4545 +5=C+log 1°+2o 1200 + 1200000

Hence, writing for log, 10 its value 2:302585, we have
approximately C='577215. Therefore

T km 1 1 1
u, = 577215 +10gw+ﬂ—m+m—
Ex. 4. Required an approximate value for 1.2.3... 2.
Ifu =1.2.3...2 we have
logu,=log1l+log2+1log3...+logx
=logz + 2 log x.

But Elogx=0+flogwdm—élogz

B, dlogz .B,, d’log z
1% dn 12.3% d T
1 B B B
=C+ (omg)logaat {5 g it 5 e
. logu,=C D1 !
. logu, = +(m+-2—) 0L =T+ o= .. 9.

To determine C, suppose z very large and tending to
become infinite, then

log(1.2.3...2)= C’+(:c+ >loga: z,
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whence
1.2.8...2=¢""x 2™

1.2.3... 2z=¢"% x (2z)*"*
But multiplying (10) by 27,
2.4.6...20=2"€¢" x 2™
Therefore, dividing (11) by (12),
3.5.7...(2z—1)=2"¢"4",

h 2.4, 6 G.Di
whence 3.5.7.. (2.»0 1)

But by Wallis’s theorem, « being infinite,

2. g .6 (2x(2w2 N_1/)(293)_ (g)

whence by division

J(2e)="¢ *’ z;

. C=log V(27r).

[cH. V.

(10),
(11).

(12).

And now, substituting this value in (9) and determining

u_, we find

S 1 _ 1
v, = /(27) x a7 x ™% i2s "G00zt -+

1 1
= (2na) .27, e i T

(13).

11
If we develope the factor eizz"50z "~ in descending powers

of z, we find
1 1 139

12z T 2882 51840w+"')

1.2.3..2=+(2ra2). " ¢~ (1+ +-

(14).
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Hence for very large values of # we may assume

1.2.8..z= ﬁé@({-)z (15),

the ratio of the two members tending to unity as z tends to
infinity. And speaking generally it is with the ratios, not
the actual values of functions of large numbers, that we are
concerned,

Ex. 5. To find an approximate value of I' (z+ 1) when
x is large.

It will be scen that this reduces to the preceding example
when z is integral ; it has been chosen to illustrate our mode
of determining C.

Exactly as in the preceding case we obtain

_ 1y, B, B B
logu,—C+(w+2)loax—w+1.2‘”—-?:-4‘1;, 5_.65;;“_"

(16),

but we can draw no conclusion as to the valuc of C from
the value it bore in (9), nor would any number of special
determinations of its value enable us to draw any conclusions

as to its general value. But it can be proved (Todhunter’s
Int. Cal. 3rd Ed. p. 254) that

dloglz _1 , 1 1 .
—_da:'——?+(x+1)'+(x+2)’+ ... ad. inf.

=0 when z is infinite,
But from (16) we obtain, when # is infinite,

d'logT' (@+1) _d'C
A T

which is thercfore zero when
z is 1nfinite.
Now C is a periodic quantity going through its course of
2

values as z increascs by unity—hence ;= is equally pe-

da*
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riodic,
20,
- . dx’ - b}
for finite as well as infinite values of z;
.. C=Az+B.

But C remains unchanged when z is increased by unity ;
therefore A = 0, and Cis therefore an absolute constant, and
therefore has the value found for it in Ex. 4 when # was an

integer, i.e. C =log V2.

Ex. 6. To sum the series

1 1 1 1
1+—2~§;.+@+F,...+?;.

Representing the series by u, we have

1 1
U= ut b =

o1 1 o
(2n—1)2*" " 22 122"
2n (2n+1) 27+ 2)
720‘”2"1,3'—'—-""‘ e

For each particular value of n the constant C might be
determined approximately as in Ex. 3, but its gencral ex-
pression will be found in Art. 3, Ch. VL

5. Prop. II.  To develope S"u, in a series proceeding by
the differential coefficients of u,.

Since S=(L=1)"; o 3r=( 1),

and the problem reduces to that of expanding (¢f—1)™ in
ascending powcrs of ¢; or, in other words, to expanding
n

=T in positive integral powers of ¢.
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-1
Let 1}":-(6737.,

v, —né —n(f-1)—n
Cdt _(et_l)nﬂ.— (et_l)uﬂ.

=—NU,— NV,

s == (% +n)
. n+l dt+n v,

Multiply both sides by |z ~1 and let w,={n—1v,, and the
equation becomes

w,,“=—<:ft+n) (d+n) (jt+n l)
= &c.

Ultimately we obtain (writing n — 1 for n)

=1 {e—1)" = (- 1)"-1( - 1) (Zt+n 2)

(gt + 1) €-1* .

By means of this formula we can obtain developed expres-
sions for %, 3°, ... with great readiness in terms of the co-
efficients in the expansion of X, i.e. in terms of Bernoulli’s
numbers,

Ex. To develope 3° in terms of D.
From (17),

2{e=1)"= ((‘ft+ 2) (3» £1) -1y

= (%ﬁ 3 ad?+ 2) {-}—-12—+A,t+11,t'+ } suppose,
B

2r+1

where 4, =0 for all values of z and 4,,, = (-1)" TR
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2 3 2
=P p +7+(2A2+ 34,-1)

7=

2+ (r+1) 4, +3¢+1) 4, +24]¢

Hence

s, _ _§f 3 19 du,
Zu,_fffu,dx 2fu,dw+ u,de s%toi0de

6. Prop. IIL.  To develope 3"u_1in a series, proceeding by
successwve differential coefficients of U .

1 . e? — 1
2=e”—1=Eie” =L}éﬁ'——:ﬂ’

.. D3 = E ¥ cosec (; Dm) X (; DF——I)

. D"S*=E¥ cosec” (% D J:T) x G D J:‘l) (18).

Suppose
" cosec’z=1—- Ca’+Ca'— ...,
then

'y, =D {1+c', (§)2+ ¢, (é))‘+ } u_e (O

It must be mentioned that the Summation-formula of
Art. 2 (which is due to Maclaurint) is quite as applicable
in the form

1 B, du, B, d%,
fu,dx=2u,+ éu,—-@‘ %-’-E a?— .. =C (20),

to the evaluation of integrals by reducing it to a summation,
as it 1s, in its original form, to the summation of series
by reducing it to an integration. It is thus a substitute for

(27), page 54.

* This remarkably symmetrical expression for =* is due to BSpitzer

(Grunert, drchiv. xx1v. 97).
+ Tracton Fluzions, 672, Euler gives it also (T'rans. St Petersburg, 1769),

and it is often ascribed to him,
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7. Prop.IV. To expand Zu, and 2 u, in a series pro-
ceeding by successive differences of some factor of u,.

It will be seen that the formula of (11) page 74 and Ex.
11 page 85, accomplish this object. We shall only treat
here of the very important casc when u, = a”¢p () and more
especially regard the form which the result takes when
a=—1, 1.e. when the scries is

d0)— (1) +H(2)— ...
We have in general,
30* () = (B—1)"a"$(a) = a"(aF — 1)$(z) (note, page 73)

which may be now expanded. If @ =—1, we obtain

2-ve@=g -2+ 5 - s

This enables us to transform many infinite series into
others of a more convergent character; for

$(0)—¢p(1)+ ... ad inf.
=1iE¢@=lﬁ_%+§—m}M® (21),

2
which is very rapidly convergent if the other is but slowly so.

. 1 1 1 .
Ex. Transform the scrics 1_2—ﬁ+171._ ... into a

more convergent form.

Here $(0) = (0+ 12),

.. we have by (21)
1 1 1(1 1 2
2”3t T {1‘2+2.12.13' * 4 12.13.14

2.3 N
8§12 s 1415

which converges rapidly.
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8. It is very often advisable to find the sum of the first few
terms of a series by ordinary addition and subtraction, and
then to apply our formule to the remaining terms, as in this
way the convergence of the resulting scries is usually greater.

Thus, if we had applied the formula just obtained to the
series

we should have obtained

1 1 2 2.3
§{1+2“.'1’E+4.1.2.3+8.1.2.3.4+"'}’

a much more slowly converging series.

This remark is of great importance with reference to all
the formule of this Chapter. We shall see that the Mac-
laurin Sum-formula of Art. (2) usually gives rise to series
that first converge and then diverge, but that by keeping
only the convergent part we obtain an approximate value
of the function on the left-hand side of the identity; and
also that the closeness of the approximation depends on
the smallness of the first of the terms in the rejected portion.
From this it follows that by applying the formula in the
manner just indicated we can greatly increase the closeness
of the approximation. An example will make it clcarer.

Ex. Let u,= %; , then the formula becomes

1
wz

B, B

. 1 1 1 3 (

Taking this between limits o and 1, we obtain
1.1

1
I+ i+5+..=1+5+B-B,+ B, ..

Now, remembering that we must only keep the convergent
purt of the scries, we find that we must stop at B,, since
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after that the numbers begin to increase. This gives us

’ﬂ"

1.65714, the true value being 5o 1.64493.

Now let us find the sum thus
1.1 1,1, 1 =1

x
L+z+5+ - adznf.=l+z+§+~1—6+z§swg

205 1 1 B B
= — -_— — —1___3
mTstepter gt
On examination it will be found that we may in this case
keep the terms at least as far as B *, while the convergence
is so rapid at first that by only retaining as far as B, we obtain
1.64494. The general advantage of using the formula may
be gathered from this example. To obtain an equally close
approximation by actual summation, some hundred thousand
terms would have to be taken.

9. We can also expand 3a°$(x) in a series proceeding
by successive differential coefficients of ¢(x). For

Sa'p(z) = (E— 1) 'a"(x) =" @E—1)"¢(z)  (23)
But by Herschel’s Theorem () = ¢ (E) €™,
oA (E)=+r(e”) = (') " as operating factors,
where E’ affects 0 only, .
. Sa(2) = a*(aF — 1) {1 +0.04+ 504 } $(2)

@’ {1 +Alilﬂﬁ)+fi- Tol) | } 24),

Ta-—1 de " 1.2° do
aE-17" ad ™,
whereA,,:{-a_—l} 0 —{1-{-“_1} o".
In the case of a=—1 an expression for 4, in terms of

Bernoulli’'s numbers can be obtained.
For = (—1)¢p(z) =(—1)*(—e”—1)"¢(x), putting a=-1
in (23),
=(=1)"" (" + 1) ().

* In reality we may keep all terms up to-—%—’l’, a quantity whose first

significant figure is in the fourteenth decimal place.
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Now »_1,_1 ) 11—99—02__1
_2{2711)_%+%2D—...}
=% ]é(zﬂ 1)p+i(*—1)1}3-... 25

which determines the coefficients*,
10. Ezxpansion in inverse factorials. The most general
method of obtaining such expanqons is by expressing the

given function ¢(x) in the form f e”f(t)dt. If we then
[

write

e*=1—2z we get ¢(a) =f: 1=-27'f {log (1-};» dz.

f {log (l—i—_—z) must now be cxpanded in some way in powers

of 2z, and each term must be integrated separately by means
of the formula

f (=2 ds =

]m
z(x+ 1)...(x+m)

By performing 3 on this we can expand in a similar way

® =t __ At
the more complicated form f e_e;‘_el_ Jf(t)dt. The most in-
. -

teresting cases are those in which ¢(z) = logz or Ei—,
(see page 115).

The method is obviously very limited in its application.
A paper on it by Schlomilch will be found in Zedtschrift fiir

* Compare (7), page 108. Ex. 12, page 85, is closely connected with
the problem of this article.
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Math. und Physik, 1v. 390, and a review of this in Tortolini
(Annalz, 1859, 367) has sufficiently copious references to
enable any one who desires it to follow out the subject.
Stirling’s formula—the carliest of the kind—is given in
Ex. 11, page 30.

The very close connection that Factorials in general have with the Finite
Calculus renders it worth while to give special attention to them, and to in-
vestigate in detail the laws of their transformations. For this purpose the
student may consult a paper by Weierstrass (Crelle, L1. 1). Oettinger has
also written on tho subject (Crelle, xxxu1. and xxxviit.), and Schlifli (Crelle,
xur and Lxvir.). Ohm has an investigation into the conncction between
them and the Gamma-function (Crelle, xxxv1.), with a continuation on Fac-
torials in general (Crelle, xxx1x.).

The papers on the subject of the Euler-Maclaurin Sum-formula are very
numerous. Characteristic examples have been sclected from them where it
was possible, and placed, with references, in the accompanying Exercises.

By far the most important application of the principle of approximation
is to the evaluation of I'z, or rather of log I'z and its differential coefficients
when z is very large. Raabe has two papers on this (Crelle, xxv. 146 and
xxvir 10). See also Bauer (Crelle, Lvir. 256) and Guderman (Crelle, xxix. 209).
Reference will be made to these papers when we consider Exact Theorems.
See also a paper by Jeflery (Quarterly Journal, vi. 82) on the Derivatives of
the Gamma-function. The constant C of Ex. 3 is of great importance in
this theory. For its value, which has been calculated to a great number of
decimal places, see Crelle, Lx. 375.

Closely connceted with the subject of differential coefficients of log I'z is

1 ,) « On this see

that of the summation of harmonic series (2 m

papers by Knar (Grunert, xv1. and xu1r.).

EXERCISES.

1. Find an expression for
1 1
}, +3~,+?+ «eey to m terms,

and obtain an approximate value for the sum ad infinitum.

2. Find an approximate expression for % ‘—i; and also the
value of
1

1 .
1+ §+—3f;+ ey ad mf.,

to 10 places of decimals.
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3. Find an approximate value of
8.5.... (2w+1)
T2 .4. .2z
supposing x large but not infinite

4. Find approximately 3 'xTi_a’ and obtain an exact for-
mula when a is an integral multiple of 1

5. Transform the series

1 1 + 1
2+1 P+4 L2+9 7

1 _ 1 +
z(x+1)(z+2) (@+1)(z+2)(z+3) "

into series of a more convergent character, and find an
approximate value of the sum of each when z =5, that is,
correct to G places of decimals.

6. Ifu,+uz+ug’+ ... =f(x), shew that

wp b ug = f )+ (1) Ar, 4+ LD o

and apply this theorem to transform the series

(=m)
2™ 19 (z+1)

(.z' +2)™
2 2!
to one proceeding by factorials only.
7. Shew that
1 1 1
2Tt ot
_1 - 1 1.2

.z(z+1) " 3. z(z+1)(z+2)
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8. Find the sum to n terms of the series

w(l) m(!)
1+ 5+t e,
. a2+ 1
and shew that its sum ad inf. is prympearis &
9. Shew by the method given in the note to page 72,
that
nt1 1 L 'l-!
"+ 2+ .. tat= T
+2 o tat= g4 ”+[g[n 2B,n it
_d x
where B,_ = { _,}ho numerically.

[Schlomilch, Grunert X. 342.]

10. Shew that the sum of all the negative powers of all
whole numbers (unity being in both cases excluded) is unity ;

if odd powers arc excluded it is 72 .

11. Expand % ——1——; in terms of successive differences
az+b)

of log (az +b) and deduce
b3 cota:=0’+{log sinx—élorrsinz+éjloo‘sinx-— } .
2 (=] 3 (=
[Tortolina, v. 281.]
12* If S, =u,+u, +u,, + &c., ad inf, shew that

rs n—1 n'—1 -1,,
S_ﬁ{roH- 5 %~ g, - Ay +24 Ay, }

13. Find 2,’%‘ in factorials, and determine to 3 places
of decimals the valuc of the constant when the first term is

1
(34"

If the Maclaurin Sum-formula had been used, to what
degree of accuracy could we have obtained C'?

* De Morgan (Diff. Cal. 554). Compare (27), page 54.
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14. Shew that
1 1

Fogta—t ad inf,
C-logz 1 (B) (B)
= ta— 2L2a:— Lz’—
and apply this to the summation of Lambert’s* series, viz.
x z* .1
T—-:z:-l"l——?-'- oo whenwlsEnearly.

[Zedtschraft, v, 407.]
15. Shew that
SJO+fD)+... adinf
=370 +f e TASLD RS PN

emt — e -

where x = /=1,

and deduce similar formul® for the sums of the series
SO -fO+f@)— ...,
JO)+fB)+f(5)+ ....

Find an analogous expression for the sum of the last
mentioned to n terms.

16. Shew that
sin # sin 2z  sin 3z
ariT a5z T ars ™
(rr :)t_e (m-2)t atdt
—f T et—e ™ a4+t

..., ad inf,

if z lie between 7 and — .
[Schlomileh, Crelle xL11. 130.]

* On the application of the Maclaurin Sum-formula to this important
series see also Curtze (4nnali Math. 1. 285).
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CHAPTER VL

BERNOULLI'S NUMBERS, AND FACTORIAL COEFFICIENTS.

1. THE celcbrated series of numbers which we are about to
notice were first discovered by James Bernoulli. They first
presented themselves as connected with the coefficients of
powers of  in the expression for the sum of the n'* powers of
the natural numbers, which we know is

1"+ 2"... + 2" =2+ Sa"
mn-ﬂ —.1_2

-1 BS n=-3
=G+n+1+2+l2 AT
— ),

or rather as the coefficient of z in the successive expressions
when n was an even integer, and De Moivre pointed out that
by taking this between limits 1 and 0 we obtain the formula

. 1 1 n(n—1) (n—2)

1"= +1+Z+LB—-——~-«—E‘ By+... (2),
from which the numbers can be easily calculated in succes-
sion by taking n=2, 4, .........

After the discovery of the Euler-Maclaurin formula
[(6), page 90] the cocfficicnts were shewn to be those of

— from the application of it to S¢*, which gives

Bieo .. (3

i =3 = fe”‘dw—%eh‘*' L2

-1
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which gives
1 1 1 B B, ;s
c—1 L % Izh Lh'l‘u. (4).

2. Many other important expansions can be obtained by
consideration of this identity.

Thus, for % write 20/ — 1 ; then, since

1 _1(eV-141 1 ' 0
Vi1 2 {e”‘/— 1~ e d=1 cotv=3
we at once obtain
cot e=%_§x2m-%2w- (3).

Again cosec 8 = cot g— cot 6,

cosecﬂ——+2(2 1)|2 0+2(2’—1)‘ 260+ . (6).
Similarly from cot 8 — 2 cot 20 = tan 8 we obtain

2 2 4
tan 6= 2 (212 1)13'0+2 (2|4 1)130’+ (7).

3. An expression for the values of the numbers of Bernoulli

can be obtained from (5). For cot 0— it (log sin #) and

log sin 6=log {0(1 - ;‘i':) (- 2‘9—;,)}

&
-10g0+log(1—;i)+ v

20 o\ 20 6\
cot8= —-—i(l—"—r) —2—,—;(1—2—,7—':') -—

™

A
1 26 1 1
oyt )
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26° 1,1
— ;;{1'!--2.4'314- }

- (8).

Equating the cocfficients of the same powers of 6 in (3)
and (8), we obtain

2 1 1 B
- — = — -1 om
7T,,,(1+2,,,+3,,,+...) lgﬁ2 A

9,
. B, =20 {1+§1,»,+ L +} )"

-1 '(—2—7‘1_ );,. g

From this we sce that the values of B, increase with

very great rapidity, but those of ]!3—;‘7;‘ ultimately approach to

cquality with those of a geometrical serics whose common

ratio is —,.
4r?

* Avariation of (9), due I believe to Raabe (Diff. und Int. Rechnung, 1. 412),
depends on the following ingenious transformation :
- 1 1 1
S;1+§E-+ gt gt i

1 1 1
ot i’n' S=2—’;‘+ZEI+ ey

1 1 1
% <1_2)n> S=1+52;‘+5!;.+ e 3

and all the terms of the form (—2132“ arc rcmoved.  Proceeding as before

1 1 1 1
(1— ~21’~') (1 -3-5-”) S=‘-1+5,—n + 7’;4'....

Thus we ultimately get

S= 1

(1_51_") (1.-51;) (1-5%;)

where 2, 3, 3,... aro the prime numbers taken in order. This formula would
ho of great use if we wished to obtain approximate values of B, correspond-
ing to large values of n, as it is well adapted for logarithmic computation.
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4. If m be a positive integer and p be positive

kel -]
/ ez "dr = ;—-7; f ePx" dr= ... = l_ﬂ—i .
0

7t
o

p

Hence we can write (9) thus

_BM__1 = 471,] p v {e-zn ety |, } dzr
° 4 w0 x‘zu-]. .
0

5. Euler was the first to call attention to a sct of numbers
closely analogous to those of Bernoulli. They appear in the
coefficients of the powers of # when sce # is expanded. Thus

secx=1+—b’w’+§—‘x'+---- (11).

27t
The identity sec z= 4 log tan (7 - ‘f) will give, when
y ds 4732 give,
treated as before,

2 1 1
E&n =2 _I"'/'} {1 - gmrl-_l + 5'2111-1 T e } ' (12)1

" 2n+1
3

while a consideration of the identity

“ cos z0 . df 1
BT 13
fo ’—;6 -zé' €z+ez ( )1-
e +e
will give
o 2n
Ezn=2f _"Q den_ (14),
iy -0
o¢’ 4¢°

formule analogous to (9) and (10), from which (12) may be
deduced.

= * Due to Plana (Mém. de UAcad. de Turin, 1820).
+ Schblomilch (Grunert, 1. 361).
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6. Owing to the importance of Bernoulli's and Euler’s
numbers a great many different formula have been investigated
to facilitate their calculation. Most of these require them
to be calculated successively from B, and X, onwards, and
of these the most common for Bernoulli’s numbers is (2).
Others of a like kind may casily be obtained from the
various expansions which involve them. Thus from (5),
multiplying both sides by sin 6,

cosa=(0—23+..)<1 ‘2’0—-’2‘6” )
ERRDAR - '
and cquating coefficicnts of 6** we obtain

( — l)n _ 2lu 2211—2 ( _l)n .
12n T T li2n et (820 — 2BM+ T 2n+1 (13).
2n j2n |8[2n — 2 2n +1

The simplest formule of this nature both for Bernoulli’s
and Euler’s numbers arc obtained at once from the original
assumptions

t n n2-i 2n 1 = n g2n
‘?__..1_1__ S(-1) 2 " and cos 1+2|2nt
by this method.

7. But direct expressions for the values of the numbers
may be found, Thus

t _loge logl/ ot

-1 e¢—1 k-1

_logA+A)

= A ,

Hence, equating coefficients, we find

B log (1+4, A) 0"'

( — 1)n+l ﬁl A

7+ A A‘l A "

(by Herschel's theorem)
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and in like manner we obtain

o={1-%+%’- } 0™ (n > 0) .

8. These formul®e are capable of almost endless trans-
formation. Thus, since A™* 0""’=én~0——A"0""l (Ex. 8,
page 28), we can write (16) thus

B, ,=(-1)™ {(A —%: + g_,_ ) o=

-(A—éf+$-’-...)o“}

2 3
2 3
=(—1)™ (A-—%; +—§7 - ) o+ 18),

since the other term is
log (1 4+ A) 0™ = D0*™ = 0.
9. A more general transformation by aid of the formula
f(4) 0"= Ef’ (4) 0~
is as follows:
flog (1 +28)} 00 = “E_gmio ®=1 gui )
g 1+2A "~ 1+zA '
Also
2

flog (1-+yE)} 0f (0) =yf () = % /(@) + ...

=y () —gF @+ ...

yE 1
- 0= 1= g} o
= 45/ © (20),

if £(0)=0.
In (19) write E’ for # and operate with each side on £(0).
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Then
4 n 7 AI n—1 ’
llog (1 + A} 0°£(0) = 13 07 (©)

=—{log (1+AE")} 0" 0'A’' /0)
by (20), since 0"*A’ £(0") =0
=—{log (1 + AE)} 0" f7(0),
where J(0)=0A"f(0).
Repeating this n — 1 times we get
{log (1+AZ")} 0"f(0) = (= 1)"" {log (1 + AE)} 0f*7(0')
=Ef"0)=[(z+1)A(z+1)A...f(x+1)]=0.

This transformation has been given because it leads to
a remarkable expression due to Bauer (Crelle, LviiL 292) for
Bernoulli’s numbers.

Denote by A’ the operating factor (x4 1) A, and write
}: for f (x) and 2n + 1 for », and we obtain from (18)

B, =(-1{log (1 +AE)} 9;": - [A”" (i Jlr 1)],.-.0 1)

Factorial Coefficients.

10. A series of numbers of great importance are those
which form the cocflicients of the powers of  when = is
expanded in powers of z. These usually go by the name
of factorial coefficients.

1t is evident by Maclaurin’s Theorem that the cocfficient

) .
of 2* in the expansion of = is 23 *  Although it is not

Drom
* Comparing (22) page 25, and (25) page 26, we see that —m—— is the

coefficient of A®in the expansion of {log(1-+A)}*., That this is the case is
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easy to obtain an expanded expression for this, it is very easy
to calculate its successive values in a manner analogous to
that used in Ch. 1r. Art. 13.

Let C: = numerical value of the coefficient of #* in the
expansion of ™. Then since ™" = (z —n) z™, we obtain
CM=C" +nC" (22),
and we can thus calculate the values of 0" from those of
C"; and we know that the values of C' are 1, 0, 0, ...

11. Let us denote by C," the numerical value of the coeffi-

. 1. . . .
cient of — in the expansion of ™ in negative powers of z,
wK

so that
” n
gl G o
n wnﬂ wn-ﬂ soee

e (D p e L _ (=D 1
Then = —————In_lA = |n—1 A" w+p oo

(where A now refers to p alone)

Gt

(_ l)n—l An‘lo An—lol
- —x A0
n K
. = ( 1) l 1
also evident from the following consideration :
D0™  D@W0oc 1 (  d l__lx}
T T T S in ¥ g loge utting z=1log z
et

1jan i f z* in th
=T_’—‘ d—z:l"g(l‘”)[ Fo=coeﬁiclento z" in the

(23).

expansion of log (1+2)* by Maclaurin’s theorem. Thus this expansion
may be written
x+1 el x-t-ﬂ 12

L{l°g(1+‘)}""L'- Cx 0E+ Cx “‘_"’Tg—
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A formula analogous to (22) can also be obtained by means
of Art. 13, Ch. 11. This gives for numerical values

. An—lorl _ An—z_l_ An*l

C=TasT = o UURGT -1 G (29)

and thus from the values of C,_, those of C, can be obtained.
The values of C, are of course 1, 0, 0,...

12,  Analogous series are those of the coefficients when
z" and «™ are expanded in factorials,

By (5) page 11, we have
2Nn"
w"=0"+A0".x+iA—%-w‘” + ..

= {ete-oha ] @)
following the notation of Art. 11,

Again in (25), page 26, put u, = }vand ¢ (D)= D", and
we get after division by (- 1)""|» -1,

l - Dn-lo(n—l) — Dn—lo(n) z(—-n—l) + .
an [n=1 [»=1
-1, (-n -
=0 e =0 2™+ ., (27),

in the notation of Art. 10*,

* It will be seen that, as in the analogous case we could expand
{log (1 +2)}* in terms of C], we can expand (e -1)* in terms of
—(x+1)

Cy « Infact
=+ 2Tl —et1) ot

(e-_.1)1t=.¢lt_|_(;,H-2 w71t Crs (n_+1—)(7f+7)+ (26)

- (e+1) . PR .
where we have given C, its numerical value, disregarding its sign.
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13. There is another class of properties of Bernoulli’s numbers that
has received some attention; these relate to their connection with the
Theory of Numbers. Staudt’s theorem will serve to illustrate the nature of
these properties. It is that

. 1 1
By, =integer+ (- 1)* (5 +2 W _*;-1)

where m is a divisor of n such that 2m +1 is & prime number. Thus, taking
1 =8, we have (since the divisors of 8 are 1, 2, 4, 8)

. 1.1, 1 1\ . .
B,;=integer + (2 tztzt =integer + 14

It will be found on reference to page 91 to be 7;%%. Staudt’s paper will be
found in Crelle s)xxl. 374), but a simpler demonstration of the above property
has been given by Schlifli (Quarterly Journal, vi. 75). On this subject see
papers by Kummer (Crelle, xu. xu1. Lvi.). Staudt’s theorem has also been
given by Clausen.

14. To Raabe is due the invention of what he names the Bernoulli-
Function, i.e. a function ¥(x) given by

F)=1"+27+ ... +(x-1)»

when z is an integer, and which is given generally by AF(x)=2" He has
also given the name Euler-Function to the analogous one that gives the
sum of
In—2n 4 3n - &e. + (2x~1)»

when z is integral. See Brioschi (Tortolini, Series II. 1. 260), in which there
is a review of Raabe’s paper (Crelle, xL11. 348) with copious references, and
Kinkelin (Crelle, Lvi1. 122). See also a note by Cayley (Quarterly Journal,
1L 198).

15. The most important papers on the subject of this Chapter are a series
by Blissard (Quarterly Journal, Vols. v.—1x.) under various titles. The de-
monstrations shew very strikingly the great power obtainable by the use of
symbolical methods, which are here developed and applied to & much greater
extent than in other papers on the subject. They include a most complete
investigation into all the classes of numbers of which we have spoken in this
Chapter; the results are too copious for any attempt to give them here, but
Ex. 15 and 16 have been borrowed from them. The notation in the original
differs from that here adopted. B,, there denotes what is usually denoted
by Bsy-,. Sece also two papers on A™0™ and its congeners by Horner
(Quarterly Journal, 1v.).

16. Attempts have been made to connect more closely Bernoulli’s and
Euler's Numbers, which we know already to have markedly similar properties.

Schierk (Crelle, 1v. 299) points out that, since tan (11" + ;) =secz+tan z, the

expansion of this function in powers of z will bave its coefficients depending
alternately on each set of numbers {see (7) and (11), of this Chapter{. This
idea has been taken up by others. Schlomilch (Crelle, xxx11. 360) has written
a paper upon it. It enables us to represent both series by one expression, but
there is no great advantage in doing 80, as the expression referred to is very
complicated. Another method is by finding the coefficient of z* in the ex-
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pansion of ae’l 0 from which both series of numbers can be deduced by
taking a==1 (Genocchi, Tortolini, Series I. Vol. . 395).

17. Schlomilch has connected Bernoulli’s numbers and factorial coeffi-
cients with the coefficients in the expansions of such quantities as D*f (log z),

o 2 , &c. (Grunert, viIn. 1x. xvI. xviir.). Most of his analysis could be

rendere& simpler by the use of symbolical methods. This is usually the case
in papers on this part of the subject, and the plan mentioned in the last
Chapter has therefore been adhered to, of giving characteristic examples out
of the various papers with references, instead of referring to them in the text.
‘We must mention, in conclusion, that the numbers of Bernoulli as far as
By, have been calculated by Rothe, and will be found in Crelle (xx. 11).

EXERCISES.
1. Prove that
Aoln‘ﬂ. A!O?wﬂ. A!n'H 02n+!
nt1 — -
B =(=1) { gt +(2n+1)'}

2. Prove that if » be an odd integér

1 _n(n—1)(n— 2)
n(n—-l)(n 2) (n—3) (n— 4)B

|o
— ..., ton—1 terms.

3. Obtain the formula of page 107, for determining suc-
cessively Bernoulli’s numbers, by differentiating the identity

t=-—u+ue‘whereu=,t .
¢—-1

4, Shew that
1 A A? ,.
B.=(§—‘§+—4——...)1.

[Catalan, Tortolint 1859, 239.]
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5. Shew that

2z -1)* =1
By, = TE_T 2+A0

6. Apply Herschel's Theorem to find an expression for a
Bernoulli’s number.

7. Demonstrate the following relation between the even
Bernoulli’s numbers :
Qm-1 B‘“_l o3 p (-1)"n

T T s

[Knar, Grunert, XXvIL 455.]

8. Assuming the truth of the formula
€e+1 2 j’ ® ginaxt

cr-o_ = et -
o € 1

-1z dt,

deduce a value of B,, ..

9. Prove that the coefficient of 6™ in the expansion of
0 2n—1
(m) is equal to (l_n’_" )B

m—1°
10. Express logsinz and log tan « in a series proceeding
by powers of z by means of Bernoulli’s numbers.

[Catalan, Comptes Rendus, L1v.]
11. Shew that the coefficient of

P e . B,, .
—E in f . log (1 )dt—zlog z is T numerically.

12, Shew by Bernoulli’s numbers or otherwise that

1’ 2! 3 . 27
SIS i R A



EX. 13.] EXERCISES. 119

13. Prove that

B, B, . _
l—r'z'n”'i'm—.s‘.—;'lr - ees —0.

14. Express the sums of the powers of numbers less than
n and prime to it in series involving Bernoulli’s numbers.
[Thacker, Nouvelles Annales, X. 324.]
15. I ;2 =14Pt+ P+ ... show that
{1+ Ey—-E}P,=0,

1 nt+l
(E+ —2—) P,=0,

log (1 + =)
z L

(1+2)"P,=

16. Shew, in the notation of the last question, that

B (E-1)(E-2) «(A_ A7 -
St P, =(~1) (Z“s‘*'")o :

17. Shew that

sinz sin2z  sin3z
121’"’1 271’1 32?*1

(1 2t 28
=(-1) {§ Bl BEorthE s o}
_ 1 1
where .Bu‘:. 1—'2—,;.'1'37,'— oes

and hence find the sum of such a series in terms of Ber-

noulli’s numbers.
[Dienger, Crelle, xxx1v. 91.]

18. Shew that*

1 1 ot
l—g+5— =3

1 1 5n®
l=g+5~ 153"

* Many similar summations will be found in a paper by Tchebechef
[Liouville, xv1. 837].
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19. IfS"=1"+2"+... +2" shew that

S, =8> —E‘, _S""

r=1
[Eisenlohe, Crelle, xxvIi1. 193.]
20. In the notation of Art. 14, page 116, shew that F (z)
is a rational and integral function of z#— 5 and cannot con-
tain both odd and cven powers of the same.
[Bertrand, Diff. Cal. 350.]

21. Shew how the method contained in the note on page
109 could be made to give us the actual values of the
numbers of Bernoulli by application of Staudt’s Theorem.

22. Apply the formula,
T, . T_ 1 1
cosz+sm§—(1+w) (l—gw) (l+3w).

to demonstrate (12), page 110.
[Stern, Crelle, xxv1. 88.]

_ -1
93, If F(n)= {2 [1 - {1 $1zr A} ] 0%, where
k=N-1,
shew that
2n n
E, =F(2n), and 2 (2 "=1) B,, ,=«F (2n—1) numerically.

[Schlomllch, Crelle, XXXI11. 360.]
24. Shew that
Am0m+
[m =3[(m+1)Z{(m+2)...... 3, (m +p)}].
o [Hargreave, Quarterly Journal, viIL 26.]




EX. 25.] EXERCISES. 121

" SD),_a*f(D
25. *Shew that £(D)0" = L) 0= dKFT) 0.

A
*Prove that ;— {0 + (n — r)}""" expresses the sum of all the

r
[r
homogeneous products of s dimensions which can be formed
of the » + 1 consecutive numbers n, n — 1, ... n— 1.

26. Express '™ x ™ in factorials.
[Elphinstone, Quarterly Journal, 11. 254.]
27. Iflog(l+a)=Az+A4z2"+A42"+ ...,
3

shew that 4,= 1 {log-- + %log 5} .

28. If K,"=number of combinations of m things r to-
gether with repetitions,

C," = number of combinations of m things r together with-
out repetitions,
mym+r

then K™= A —Om——~ , and C,™ is obtained by writing — (m + 1)

for m in the expanded expression for K™
[Wasmund, Grunert, XXXIV. 440.]

29. Shew that in the notation of Art. 10

01"—0;’*' Csn— =0,
n n n—l n—l
and BO~B,CP+ ... =L,_2_,.____77+,1.,

[Grunert, 1X. 333.]
30. Shew that

2|m = z\* @z
z—1). ... (x—m+1 =—-—-=f 2(cos-—) cos — cos mzdz ;
2(@=1). ... ) =22 ["2 (cos ) oo 5

and find from this an expression for the coefficients of the
powers of « in the expanded factorial ™ in the form of a

definite integral.
[ Grunert, X1. 447.]

* Jeffery (Quarterly Journal, 1v. 364).
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31. Deduce (26) page 115, from (21) page 24.
32. Shew that C*=3, and C/=85.
33. Shew that if x <n the coefficient of

. 2z \". (—1)"0:-::
x* in (e,,_ 1) 18 m—1)(n-2)...(n— k)’

in the notation of Art, 10.
[Schlémilch, Grunert, xviIr. 315.]

34. Shew that (with the notation of (21), page 113)

[ @]m5 [l () a5t O]

and find the general formula for »= «.
Shew that

2 [A”” G)Lz - (- 1)"‘1 B,

35. If j—w-:- D,, shew that
n n
D f (@)= af @)+ 20 f" @) + Ts BF" @)+ ...

36. Find expressions for Bernoulli’s numbers and Fac-
torial-coefficients in the form of determinants.

[ZLortolina, Series II. vir. 19.]
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CHAPTER VIL
CONVERGENCY AND DIVERGENCY OF SERIES.

1. A SERIES is said to be convergent or divergent accord-
ing as the sum of its first » terms approaches or does not
approach to a finite limit when n is indefinitely increased.

This definition leads us to distinguish between the con-
vergency of a series and the convergency of the ferms of a
scries, The successive terms of the series

1 1 1 1
1+2'+§+;+-5+

converge to the limit 0, but it will be shewn that the sum
of n of those terms tends to become infinite with =.

On the other hand, the geometrical series

1.1 1 1
1+§+E+§+Ié+
is convergent both as respects its terms and as respects the
sum of its terms.

2. Three cases present themselves. 1st. That in which
the terms of a series are all of the same or are ultimately all
of the same sign. 2ndly. That in which they are, or ulti-
mately become, alternately positive and negative. 3rdly.
That in which they are of variable sign (though not alter-
nately positive and negative) owing to the presence of a
periodic quantity as a factor in the general term. The first
case we propose, on account of the greater difficulty of its
theory, to consider last.
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3. Pror. 1. A series whose terms diminish in absolute
value, and are, or end with becoming, alternately positive and
negative, 18 convergent.

Let u, —u,+u,—u+ ... be the proposed series or its
terminal portlon, the part which it follows -being in the latter
case supposed finite. Then, writing it in the successive forms

u, — Uy + (U, — ) + (4 —u) + .- D,
2y = (2, — Ug) = (=) — .. (2),

and observing that w, —u,, u,—u,, are by hypothesis
positive, we see that ‘the sum of the series is greater than
u, —u, and less than »,. The series is therefore convergent.

Ex. Thus the series

1.1 11 .
1_§+.§_;+3—...adznf.

tends to a limit which is less than 1 and greater than %*.

4. Prop. II. A series whose n* term is of the form
u, sinnf (where 6 is not zero or an integral multiple of 2m)
will converge if, for large values of m, u, retains the same sign,
continually diminishes as n increases, and ultimately vanishes.

Suppose u, to retain its sign and to diminish continually as
n increases after the term u,. Let

S=u,sinab+u,, sin(a+1)0+... 3);

* Although the above demonstration is quite rigorous, still such series pre-
sent many analogies with divergent series and require careful treatment. For
instance, in a convergent series where all the terms have the same sign, the
order in which the terms are written does not affect the sum of the series.
But in the given case, if we write the series thus,

1 1 1 1 1
(“5) ‘§+(3+7)—z+

in which form it is equally convergent, we find that its value lies between g

and g while that of the original series lies between 1- 3 and 1-— + 3—11 y 6,

1 5
between 3 and '
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2sing S=u,{cos (a-—- ;) 0 — cos (a+ %) 0}

+u,,, {cos (a+ %) 0 — cos (a+ g) 0}+

=14, COS (a - %) 0 + (u,,, —u,) cos (a + -21-) (]

3
+ (4,5 — U,,,) COS (a + E) 0+ ...
Now u,,, —u,, %,,,—u,,,, ... are all negative, hence

2 sing S—u, cos (a - -;-) 0 < (g = %) + Uy — Uyy) + -

numerically,

or <wu,—u,; .'.<—1u,, since u_=0.

. . 0 .
Hence the series is convergent unless sin 3 be zero, i.e. un-
less @ be zero or an integral multiple of 27*.

An exactly similar demonstration will prove the propo-
sition for the case in which the »™ term is w, sin (nf — 3).

Ex. The scries
. sin260  sin 36
sin 6 + — gt g+
is convergent unless @ be zero or a multiple of 2. This is
the case although, as we shall see, the series

1.1 .
1+ gtgt .. is divergent.

5. The theory of the convergency and divergency of series
whose terms are ultimately of one sign and at the same time

converge to the limit 0, will occupy the remainder of this
chapter and will be developed in the following order. 1st. A

* Malmstén (Grunert, vi. 38). A more general proposition is given by
Chartier (Liouville, xvur. 21).
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fundamental proposition, due to Cauchy, which makes the test
of convergency to consist in a process of integration, will be
established. 2ndly. Certain dircct consequences of that pro-
position relating to particular classes of series, including the
geometrical, will be deduced. 3rdly. Upon those conse-
quences, and upon a certain extension of the algebraical
theory of degree which has been developed in the writings of
Professor De Morgan and of M. Bertrand, a system of criteria
general in application will be founded. It may be added
that the first and most important of the criteria in question,
to which indeed the others are properly supplemental, being
founded upon the known properties of geometrical series,
might be proved without the aid of Cauchy’s proposition ;
but for the sake of unity it has been thought proper to
exhibit the different parts of the system in their natural

relation.

Fundamental Proposition.

6. Prop. III. If the function ¢ (z) be positive in sign
but diminishing in value as x varies continuously from a to o,
then the series

p@+p@+D+d@+D)+ . adinf  (4)
will be convergent or divergent according as f ¢ (z) dz s
Jfinite or infinite. ‘

For, since ¢ (z) diminishes from z#=a to z=a+1, and
again from z=a+1tox=a 42, ..., we have

[$@d<pia,

a+2

[Ce@ar<s@+n,

ﬂnd so on, ad inf. Adding these inequations together, we
ave

f:¢(a:)da:<4>(a)+¢(a+1)+ .adinf (5.
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Again, by the same reasoning,

[(4@de>s @+,
[Cs@de>p @+,
and so on. Again adding, we have
fj¢(w)dz>¢(a+l)+¢(a+2)+ (©).

Thus the integral f ¢ (z) d, being intermediate in value

between the two series
d@+pl@+)+d@+2)+...
dla+l)+d(@a+2)+...

which differ by ¢ (a), will differ from the former series by a
quantity less than ¢ (a), thercfore by a finite quantity. Thus
the scries and the integral are finite or infinite together.

CoRr. If in the inequation (8) we change a tnto a — 1, and
compare the result with (5), 1t will uppear that the series

d@+da+l)+d(@+2)+ ... ad tnf.
has for its tnferior and superior limits

f "6 (z) d, and f " ¢ (@) dz. 7).

7. The application of the above proposition will be suffi-
ciently explained in the two following examples relating to
geometrical series and to the other classes of series involved
in the demonstration of the final system of criteria referred
to in Art. 5.

Ex. 1. The geometrical series
1+k+A+R+ ... adwnf

is convergent if & <1, divergent if 4 Z.1.
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The general term is 27 the value of z in the first term
being 0, so that the test of convergency is simply whether

f h*dz is infinite or not. Now

o
b -1
logh*

If > 1 this expression becomes infinite with 2 and the
series is divergent. If A <1 the expression assumes the finite

fiva-

valuejz?lk. The series is therefore convergent,

If h =1 the expression becomes indeterminate, but, pro-
ceeding in the usual way, assumes the limiting form zA®
which becomes infinite with #. Here then the series is
divergent.

Ex. 2. The successive series

1,01 1 w
am (a + 1)lu (a+ 2)m b
1 1
o+ =+ ..
a(loga)” " (a+1) {log (a + 1)} L (8)*,
1 1
aloga (logloga)™ + (a+1)log(a+1){loglog («+1)}"

+ ...

................................... tescsevesssncccae
7

a being positive, arc convergent if m>1, and divergent

ifm=1.

The determining integrals are

Tz f‘”,jz f” dz _
2 J, x(logx)™’ J, alogx (loglogz)™” """

* The convergency of these series can be investigated without the use of
the Integral Calculus. See Todhunter's Algebra (Miscellaneous Theorems),
or Malmstén (G runert, vir. 419).
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and their values, except when m is equal to 1, are

' —a'™  (logz)'™— (lncru)"'” (loglog)*™—(logloga)™
1-m ’ 1- ’ T 1-m "

in which z=o0. All these expressions arc infinite if m be

less than 1, and finite if m be greater than 1. If m =1 the
integrals assume the forms

log z— log a, log log z—log log &, log log log z—logloglog a ..
and still become infinite with #. Thus the scries are con-

vergent if m> 1 and divergent if m =1.

Perhaps there is no other mode so satisfactory for esta-
blishing the convergeney or divergency of a series as the
direct application of Cauchy’s proposition, when the inte-
gration which it involves is possible. But, as this is not
always the case, the construction of a system of derived rules
not involving a process of integration becomes important.
To this obJe,ct we now proceed.

First derived Criterion.

8. Pror. IV. The series w,+ u, + %, + ... ad inf., all whose
terms are supposed postitive, is conver gent o divery ‘gent accord-
tng as the ratio ~1i2‘.! tends, when x s indefinitely increased, to

z
a Limating value less or greater than unity.

Let 2 be that limiting value ; and first let 4 be less than 1,
and let & be some positive quantity so small that 4 + £ shall

also be less than 1. Then as “2 tends to the limit /, it is
possible to give to # some value n 50 large, yet finite, that for
that value and for all superior values of z the ratio u;“ shall

lie within the limits A +% and h—%. Hence if, berrmmna
with the particular value of # in question, we construct the
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three series

u,+Gh+)u, + R+ u, + ...
un +u’n+1 + uﬂﬂ + ... (9)’
u +h—k)u,+ =k w4+ ...

cach term after the first in the second series will be inter-
mediate in value between the corresponding terms in the
first and third series, and therefore the second series will be
intermediate in value between

u, and u,
T—(h+h) P T=(h=k)’

which are the finite values of the first and third series. sAnd
therefore the given series is convergent.

On the other hand, if & be greater than unity, then, giving
to k& some small positive value such that A —Fk shall also
exceed unity, it will be possible to give to « some valuc n so
large, yet finite, that for that and all superior values of ,

%cﬂ shall lie between A+k and 2 —%. Here then still each

term after the first in the second series will be intermediate
between the corresponding terms of the first and third series.
But A+ k and k& — k being both greater than unity, both the
latter series are divergent (Ex. 1). Hence the second or
given series is divergent also.

. t & .
Ex. 3. The series 14¢+4 1% + 1973 + ..., derived

from the expansion of ¢, is convergent for all values of ¢.

For if

& "
“E12..2 “mT1.8.. (@+])’
Ugyy _ b
then v a1’

and this tends to 0 as z tends to infinity.
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Ex. 4. The series
a, al@+l) ., al@+l)(a+2),
Tt gt gD Topr D) o

is convergent or divergent according as ¢ is less or greater
than unity.

_a(@+)(@+2)...(a+x—1)

Here  w=50 i G+9) .. G6ra=D’
©,,_at+z
Therefore —u:‘ =¥ t,

and this tends, « being indefinitely increased, to the limit ¢.
Accordingly therefore as ¢ is less or greater than unity, the
series is convergent or divergent.

If t=1 the rule fails. Nor would it be easy to apply
directly Cauchy’s test to this case, because of the indefinite
number of factors involved in the expression of the general
term of the series. We proceed, therefore, to establish the
supplemental criteria referred to in Art. 5.

Supplemental Criteria.
9. Let the series under consideration be

U+ Uy F Upyg + Uy + ... ad nf. (10),

the gencral term u,_ being supposed positive and diminishing
in value from z=a to x=infinity. The above form is
adopted as before to represent the terminal, and by hypothesis
positive, portion of serics whose terms do not necessarily begin
with being positive ; since it is upon the character of the
terminal portion that the convergency or divergency of the
series depends.

It is evident that the series (10) will be convergent if its
terms become ultimately less than the corresponding terms
of a known convergent series, and that it will be divergent
if its terms become ultimately greater than the corresponding
terms of a known divergent series.

9—2
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2

Compare then the above series whose general term is %, with
the first series in (8), Ex. 2, whose general term iswl—,,,. Then
a condition of convergency is

Us <

m being greater than unity, and z being indefinitely increased.
Hence we find
"< —;
U,

'z

1
com loga:<log17;

log 1

<
m T—-—ng N
and since m is greater than unity

log —

Uz
Togz "

(=]
On the other hand, there is diveigency if
1
Uy > =as
z
x being indefinitely increased, and m being equal to or less
than 1. But this gives
1
].Og QT

z
log

m > s

and therefore

3
[ 5]
gl)—a

<1.

(=3
(4=}
;_L
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It appears therefore that the series is convergent or divergent

log —
according as, x being indefinitely increased, the function lo_q::

approaches a limit greater or less than unity.

But the limit being unity, and the above test failing, let
the comparison be made with the second of the series in (8).
For convergency, we then have as the limiting equation,

Y=z (log )™’
m being greater than unity. Hence we find, by proceeding
as before,

log -

g zu,

—>

log log «
And deducing in like manner the condition of divergency, we
conclude that the series s convergent or divergent according as,

L . . . T,
z being indefinitely increased, the function Tog wgwtends to

a limit greater or less than unity.

Should the limit be unity, we must have recourse to the
third series of (8), the resulting test being that the proposed
series is convergent or divergent according as, z being indefinitely

9 210 iy,

Tog Tog log = tends to a limit greater

increased, the function

or less than unity.

The forms of the functions involved in the succeeding tests,
ad inf, are now obvious. Practically, we are directed to
construct the successive functions,

R . L
u, TU zlew,  xlzllzu,

= T Tk s (4),
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and the first of these which tends,aszis mdeﬁmtely mcreased
to a limit greater or less than unity, determines the series to
be convergent or divergent.

The criteria may be presented in another form. For
representing% by ¢ (), and applying to each of the functions
in (4), the rule for indeterminate functions of the form % »

we have

.—-.___—._._.__

3 ¢ (@) $ (=)’

1 2@
z {i(_a:) 1} 1
Uiz o) x) xzlogz
a5 31

and so on. Thus the system of functions (4) is replaced by
the system

xd’ (z) zd’ (z)
e =l 1)

llz[lz{ 4;5””))-1} 1] . (B

It was virtually under this form that the system of functions
was originally presented by Prof. De Morgan, (Differential
Calculus, pp. 325—-7) The law of formation is as follows.
If P, represent the n™ function, then

Pnu =lz (Pu -1) (11)'

10. There exists yet another and equivalent system of de-
termining functions which in particular cases possesses great
advantages over the two above noted. It is obtained by sub-

¢ @ pe

stituting in Prof. De Morgan’s forms u_— -1 for =
lawfulness of this substitution may be “established as follows,
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Since U, = 7@’ we have

¢ ( (
My _ S+
Upsy $ @
_$le+1)—¢ ()
$@
_ ¢ (z+6)
¢ (@)
(@ being some quantity between 0 and 1)
4’ (=) ¢ (z+6) (12)
T @) ¢ @ '
Now & (@+0)

rare has unity for its limiting value; for, ¢ (x)

tends to become infinite as @ is indefinitely increased, and

therefore ¢ ‘(;(:)0) assumes the form g ; therefore
$@+0)_¢ (@+6)
¢ (2) ¢ @ -

And thus the second member has for its 11m1tszg ; and
ﬂxtl—), ie.1an d¢(w{_—1—), or in other words tends to
the limit 1. Thus (12) becomes

uy_ 4@
Usyy ¢ (=)

Substituting therefore in (B), we obtain the system of
functions

w(uT“—l) lx{x(il—l)—l},
uz[zx{x(u‘:—l)—l}—l] ©),

the law of formation being still P,,, = I"z (P, —1).
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11. The extension of the theory of degree referred to in
Art. 5 is involved in the demonstration of the above criteria.
When two functions of « are, in the ordinary sense of the
term, of the same degree, i.e. when they respectively in-
volve the same hmhest powers of z, they tend, # being
indefinitely increased, to a ratio which is finite yet not equal
to 0; viz. to the ratio of the respective coeflicients of that
highest power. Now let the converse of this proposition be
assumed as the definition of equality of degree, i.c. let any
two functions of z be said to be of the same degree when
the ratio between them tends, @ being indefinitely increased,
to a finite limit which is not equal to 0. Then are the
several functions

z (lz)", alx (Uzx)", ...,
with wlnch - or ¢ () is successively compared in the de-

monstratlons “of the successive criteria, so many interposi-
tions of degree between z and z'**, however small a may
be. For z being indefinitely mcremsed we have

z (lz)™ z ()" _

lim———=w, lim—3-=0,
x &
. ale (llz)” . zlz (Uz)"
lim —*—;Lz"—" =, lim (l )l+a =y

so that, according to the definition, « (lz)™ is intermediate in
degree between 2 and 2'**, xlz (llr)” between zlz and
x (lm)”" .... And thus each failing case, arising from the sup-
position of m =1, is met by the introduction of a new function.

It may be noted in conclusion that the first criterion of the
system (A) was originally demonstrated by Cauchy, and the
first of the system (C) by Raabe (Crelle, Vol. 1X.). Bertrand*,
to whom the comparison of the three systems is due, has de-
monstrated that if one of the criteria should fail from the
absence of a definite limit, the succeeding criteria will also
fail in the same way. The possibility of their continued
failure through the continued reproduction of the definito
limit 1, is a question which has indeed been noticed but has
scarcely been discussed.

* Liouville’s Journal, Tom. vir. p. 35.
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12. The results of the above inquiry may be collected
into the following rule.

RULE.  Determine first the limiting value of the function
?fuﬂ‘—. According as this is less or greater than unity the series
] ZOnvergent or divergent.

But if that limiting value be unity, scek the limiting values
of whichsoever is most convenient of the three systems of func-
tions (A), (B), (C). According as, in the system chosen, the
Jirst function whose limiting value is mot umity, assumes a
limating value greater or less than unity, the series is conver-
gent or divergent.

Ex. 5. Let the given scries be

1,1 1
145 Stat (13).

Here U, = }_H , therefore,

x

?Iﬂ x+i
Uyryy - x _ X
z+2

[AZ L
Uy (z+ 1):+l (w+1)l+z+l

and z being indefinitely increased the limiting value is unity.

: Now applying the first criterion of the system (A), we
1ave
1 z+1
: u, @ b _x+1
T
and the limiting value is again unity. Applying the second
criterion in (A), we have .
L 1
s, _IF_ I
Uz Uz alla’
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the limiting value of which found in the usual way is 0.
Hence the series is divergent.
Ex. 6. Resuming the hypergeometrical series of Ex. 4, viz.

a(@+1) ,, ala+1)(a+2)
o(b+1) "b(b+1)(d+2

we have in the case of failure when t =1,

_a(a+l)..(a+z-1)
YB=F0+D)...0+ta-1)"

1+§t+ B4 B4... (14),

Yoy _ O+ 2
Therefore w btz

and applying the first criterion of (C),

o (i =1)==(e3z 1)
=®—@w

at+z ’

which tends to the limit b—a. The series is therefore con-
vergent or divergent according as & —a is greater or less than
unity.

If b—a is equal to unity, we have, by the second criterion

of (C),
lz{w(;:’ —1) —1}=l:c {@&:_g%f—l}
_ =l
a+z’

since b —a=1. The limiting value is 0, so that the series is
still divergent.

It appears, therefore, 1st, that the series (14) is convergent
or divergent according as ¢ is less or greater than 1; 2ndly,
that if £=1 the series is convergent if b — a > 1, divergent

ifb—a 1.
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It is Ig no means necessary to resort to the criteria of
system (C) in this case. From (13) page 94 we learn that

_ z
Tz bears a finite ratio to \/z :f) , and by writing the n® term

T5T (a +n)
Fal'(b+n)
parable with 7%, , whence follows the result found above.

in the form t*, it will be found to be com-

13. We will now examine the series given us by the
methods of Chap. V.

By (22) page 100 we have

1 1 1 2 B  2.3.4B,
el m At s
1 1 B B
=l Bt e
2
Here numerically Doty o o T

uitimately {see (9) page 109},

and thus the series ultimately diverges faster than any diverg-
wng geometrical series however large = may be.

As it stands then our results are utterly worthless since
we have obtained divergent series as arithmetical equivalents
of finite quantitics and in order to cnable us to approximate
to the numerical valucs of the latter. We shall therefore
recommence the investigations of Chap. V, finding expres-
sions for the remainder after any term of the expansion
obtained, so that there will always be arithmetical equality
between the two sides of the identity, and we shall be able
to learn the degree of approximation obtained by examining
the magnitude of the remainder or complementary term.

14. The solution of the problem of the convergency or divergency of series
that has been given is so complete that it is scarcely possible to imagine how
a case of failure could arise. But we have not only obtained a test for con-
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vergence, we have also classified it. Let us consider for a moment any in-
finite series. Its nth term w, must vanish, if the series is convergent, but it
must not become a zero of too low an order; otherwise the series will be

divergent in spite of u, becoming ultimately zero, Thus the zero 1}‘ is of

. 1 . . . 1, .
too low an order, since u,, =, gives & divergent series ; 18 of a sufficiently

. . 1 s .
high order, since u, et represents a convergent series. Now the series on

page 128 give us a classified list of forms of zero. The zeros of any one form
are scparated by the value m=1 into those that are of too low an order for
convergency and those that are not. But between any zero value that gives
convergency and that corresponding to m=1 (which gives divergency) come
all the subsequent forms of zero. Series comparable with the serics produced
by giving m any value >1 in the 7t class converge infinitely more slowly
than those with a grecater valuc of m, but infinitely faster than any similarly
related to the (r+1)th or subsequent classes, whatever value be given to m
in the second case. Thus we may refer the convergency of any serics fo a
definite standard by naming the class and the value of m of a series with
which it is ultimately comparable.

15. Tchebechef in a remarkable paper (Liouville, xvir. 366) has shewn
that if we take the prime numbers 2, 3, 5... only, the secries

F(2)+F(3)+F(5)+...
will be convergent if the series
F@) F@ F4),
log2 " log3 "log¢ "

is convergent. Compare Ex. 10 at the end of the Chapter,

A method of testing convergence is given by Kummer (Crelle, x111.), in-
ferior, of course, to those of Bertrand, &c., but worthy of notice, as it is
closely analogous to his method of approximating to the value of very slowly
converging series (Bertrand, Dif. Cal. 261), It is by finding a function v,

guch that v,u,=0 ultimately, but Z"i" —Vp4; >0 when nis . His further
+1
paper is in Crelle, xv1. 208.

We shall not touch the question of the mecaning of divergent series;
De Morgan has considered it in his Differential Calculus, or an article by
Prehn (Crelle, xu1. 1) may be referred to.

EXERCISES.

1. Find by an application of the fundamental proposition
two limits of the value of the series
1 1 1
critarataret
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In particular shew that if a =1 the numerical value of

the series will lie between the limits gand ;—r

2. The sum of the series

1 1
iT,_5+'2—1¢;,+ .

(where & is positive) lies between

1
S
Py ow
I el B

3. Examine the convergency of the following series
14et 4ot +e-(l+i+§)
1+6 +3 e““*’ +30 P

Uz

0
e +e "+ ...,

.1 .1
sSingz Slngz

sin @ 2 3

1: + 2: + 33 + seey
1+28483%4 .,
14284344 .,

lﬂ 2"

1t gt gmt o

log 2\*  (log 3)“
(42 +(4

4. Are the following series convergent ?
3 5 7 9 n+1

z" + ... where 2 is real,
2w+ x+10m +17a:+ A et WEE ] g |

1+zcosa+a*cos2a+... where is real or imaginary.
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5. The hypergeometrical series

ab a(a+1)b(d+1)
d®tecrDd@+n®

is convergent if x <1, divergent if z> 1.

1+

If =1 it is convergent only when ¢c+d—a—54>1.

6. For what values of z is the following series convergent ?

x* z*
z 21.2 31.2.3+""

7. In what cases is
2tz 2+ 2 t+a
Z+12'+1'2°+1" "
8. Shew that

finite ?

_“!'_+.1‘_+_1_+_“
U, U, U,

is convergent if w,,, — 2u,,, + u, be constant or increase with n.
9. If

Yo _ g B
u, (/3 n+ﬁ;+...,

shew that the series converges only when a <1, or when
e=1, and B8>1.

10. A series of numbers p,, p, ... are formed by the formula

= Pa__
" logp,+ B’
shew that the series F(p,) + F(p,) + ..., will be convergent
if @) + F3) + ... is convergent
log2 "log8 " """ ’

[Bonnet, Liouwlle, vii1. 73.]
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11. Shew that the series
ata t+a,+ ...,

Q. Q, a
4%y % L M i
an a + ata, + wtaia + converge and diverge
together.

Hence shew that there can be no test-function ¢ (n) such
that a series converges or diverges according as ¢ (n) + u, does
not or does vanish when = is infinite.

[Abel, Crelle, 111. 79.]
12, Shew that if £ (z) be such that
o @),
fl@ 7
when =0, the series », + %, + ... and f(u)+f (%) + ...
converge and diverge together.

13. Prove from the fundamental proposition Art. 6 that
the two series

D)+ (2)+d(3)+...... —enes
¢ (1) + mep (m) + m'¢ (m°) +......

vergent or divergent together.

}m being positive are con-

14. Deduce Bertrand’s criteria for convergence from the
theorem in the last example.

[Paucker, Crelle, xLi11. 138.]

15. If a,+az+aa'+ ... be a series in which a,a,...,
do not contain z and it is convergent for £ =28 shew that it
is convergent for <& even when all the coefficients are
taken with the positive sign.

16. The differential coefficient of a convergent series
remains finite within the limits of its convergency. Examine

the case of u,=¢ (n) cosnf. Ex. ¢ (n)= 11—1, when the sum

of the original series is — % log (2 — 2 cos z).
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17. Find the condition that the product %, u, u, . ...
should be finite.

Ex 2t.st.4t. .
18. If the series w,+u,+u,+ ... has all its terms of
the same sign and converges, shew that the product
(14u)(1+w). ... isfinite

Shew that this is also the case when the terms have not
all the same sign provided the series and that formed by
squaring each term both converge.

[Arndt, Grunert, Xx1. 78.]
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CHAPTER VIIL
EXACT THEOREMS.

1. IN the preceding chapters and more especially in
Chapter 1. we have obtained theorems by expanding func-
tions of A, £ and D by well-known methods such as the Bi-
nomial and Exponential Theorem, the validity of which in
the case of algebraical quantities has been demonstrated else-
where. But this procceding is open to two objections. In
the first place the series is only equivalent to the unexpanded
function when it is taken in its entirety, and that is only pos-
sible when the series is convergent; so that there can in this
case alone be any arithmetical equality between the two sides
of the identity given by the theorem. It is true that the
laws of convergency for such series when containing algebra-
ical quantities have been investigated, but it is wanifestly
impossible to assume that the results will hold when the sym-
bols contained thercin represent operations, as in the present
case. And sccondly, we shall very often need to use the
method of Finite Differences for the purpose of shortening
numerical calculation, and here the mere knowledge that the
series obtained are convergent will not suffice ; we must also
know the degree of approximation.

To render our results trustworthy and useful we must find
the limits of the crror produced by taking a given number of
the terms of the expansion instead of calculating the exact value
of the function that gave rise thereto. This we shall do pre-
cisely as it is done in Differential Calculus. We shall find the
remainder after n» terms have been taken, and then seck for
limits between which that remainder must lie. We shall con-
sider two cases only—that of the series on page 13 (usually
called the Generalvzed form of Tuylor's Theorem) and that on
page 90. The first will serve for a type of most of the theo-
rems of Chapter I and deserves notice on account of the
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relation in which it stands to the fundamental theorem of the
Differential Calculus; the close analogy between them will
be rendered still more striking by the result of the investiga-
tion into the value of the remainder. But it is in the second
of the two thecorems chosen that we see best the importance
of such investigations as these. Constantly used to obtain
numerical approx1mat10ns and generally leading to divergent
serics, its results would be wholly valueless were it not for the
information that the known form of the remainder gives us
of the size of the error caused by taking a portion of the series
for the whole.

Remainder in the Generalized form of Tuylor's Theorem.

2. Let v, be a function defined by the identity

z—a)v,=u,—u, (1).
By repeated use of the formula
Awp,=w,,, Av, +v,Aw, (2)
we obtain
(x—a+1) Av, +v, = Au,,

(z—a+2) A%, +24v, =A%,
(# —a+n)A™, + nA™ "y, = A"u,.

Substituting successively for v,, Av,, A%,... we obtain
after slight re- a.rranﬂement

(¢a—2) (a—x— l)A2

.= U, + (@ — ) Au, + 19 u, + &e.
+ (¢ —2)... (c]zn—a:— n+1) Ay,
+R, ) (3),
where R = _(@=d(@=z-1)..(@a-a-n) A", (4),

|n

i .U
v, representing ”

—u .
x-’ as is seen from (1).
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3. This remainder can be put into many different forms
closely analogous, as has been said, to those in the ordinary
form of Taylor's Theorem. For instance, if v, = f(z) we have

~[rer@-9sa;

s A", =fA"f’ {+(a—z)z}dz

=A"f (o4 (a—2) 6},
where 0 is some proper fraction.

If we write  + 4 for a, this last may be written A" f' (z 4 46)
where Az is now supposed to be 1 — @ instead of unity, and
R_ appears under the form

h"‘j( A™f (z+ h6)
K (Az)”
from which we can at once deduce Cauchy’s form of the re-
mainder in Taylor’s Theorem, i.c.

nt+l
,!,7{ @ -6y (z+ 6h),
after the easy generalization exemplified at the bottom of
page 11.

1- 0)" (5)1

4. Another method of obtaining the remainder is so strik-
ingly analogous to one wcll known in the Infinitesimal Cal-
culus that we shall give it here. (Compare Todhunter’s Dif.
Cal. 5th Ed. p. 83.)

Let
(2 — =)@

=4 @~ (-0 Ap @)~ - N o) -

_(e=a)® A" (2)

In
be called F'(z); where

(z=2)"=(z=2) (z—2—=1)...(2~2~7+1).
10—2
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Then, since from (2)

(=) . |
A[ s 9(e)] = A= N )

we obtain

(z—2z—-1)"™
n

AF (@)=~ A™¢ () (6).

Now if z —z be an integer

F()—F(x)=AF () + AF(z+1) +...+ AF (z—-1) ),
and hence is equal to the product of (z — ) and some quantity
intermediate between the greatest and least of thesc quantities,

and as AF (z) is supposed to change continuously through the
space under consideration, it will at some point between z

and 2z (we might say between z and z— 1), take the value
in question, and we may thus write (7),

F@)—F(z)=(2—2z)AF {2+ 0 (z-2)}.
But F(z) =0, .. (6) becomes
F(&)=—(:—a) AF s + 0 (a2}
(=2 {0 —a) -1

|»

A (e 48(z o))

or,ifz—xz=A,

N ®).

5. A more useful form of the result would be derived at
once by summing both sides of (6), remembering that #'(z) is
zero. Since (z — z —1)™ is positive for all values of z less
than z, we sce that F (z) lies bet\\ een the products of the sum
(¢—=2-1)7

of the cocfficients of the form by the greatest and

least values of A"™'¢ (). But the sum in question is
— ()
fi% ':_' i 80 that the form thus obtained is very convenient.
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This last investigation only applies when z —  isan integer,
or in other words when the scries would terminate. It is
evident that if it were not so we could not draw conclusions
as to the magnitude of ¥ (2) — F («) from the successive differ-
ences as we do above. The form of the periodical constant
would affect F (z) — F (x) without affecting the other side of
the equation.

Remawnder n the Maclaurin Sum-formula.
6. Infinding the remainder in the Maclaurin sum-formula
we shall take it in the slightly modified form obtaincd by
writing u, for f u dz and performing A on both sides. It

then becomes

du, 1, du, Bl du,

EE_A 2Ad Adx"_“' ),
but for convenience we shall write it in the more symmetrical
form (using accents to denote differentiation)

v, = Au,+ A Au/+ A0u +.. + A, Au," + R,....(10),

where

A, =-3 y Ag=A,= ...=0,and 4, = (—1)™"" l;”".
By Taylor's Theorem we have (Todhunter's Int. Cal. Ch.1v.)
1 ” "n ! 2,‘
Au,=u, +1 5 U + ... +f — Pdz,
271—1
r ” zn
Au, = u, + . \2n +f 12" - Pdz,
1
Ay u,"+ | zPde,

n+1

— g 2n¢l
where P =Rl — (‘i"wznﬂ Uz pya
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Substitute in (10) and the coefficient of u” is

LA I N (11).

A

This must vanish through the identity expressed in (10).
Our symbolical work is the demonstration of this.

The coefficient of Pdz under the integral sign is

z%ﬂ 2n—1

z
et i

We shall now shew that ¢ (2n,2) does not change sign be-
tween the limits of the integral, remains positive or negative
as m is even or odd, and has but one maximum (or minimum)
value in each case. We see from (11) that ¢ (r, 2) vanishes
when z=1, as it also does when 2= 0.

+ o+ 4,, 2= ¢ (2n, 2) suppose.

7. Assume the above to hold good for some value of n, say
an cven one, so that ¢ (2n, 2) is positive between 0 and 1,
has but one maximum and vanishes at the limits. Add
thereto A, (which is negative) and integrate and we obtain
¢ (2rn+1,2). Now this vanishes at both limits, and there-
fore its differential coefficient ¢ (2n, z) + 4, must vunish at
some point between them. Now this last is negative at each
limit and has but one maximum, thus it must vanish twice,
—in passing from negative to positive and from positive to
negative,—so that ¢ (2n+1,2) has only one minimum fol-
lowed by a maximum between 0 and 1, and thus can vanish
but once. Adding A4, (which is zero) to it, for the sake
of symmetry, and integrating again we obtain ¢ (2n+2,z).
This vanishes also at both limits, and its differential coeffi-
cient is, as we have seen, at first negative and then positive,
changing sign but once. Thus ¢ (2n+2,2) has but one
maximum and remains positive, which was what we sought
to prove. Continuing thus, the theorem is proved for all
subsequent values of n, if it be true for any particular one;
z

2 —
and as it is true for ¢ (2, 2) or il

5 it is gencrally true.
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8. Since ¢ (2n, ) retains its sign between the limits
f ¢ (2n,2 :’:_tl‘dz= :’::f ¢(2n,2)dz, 0< <1

=A,u™"" in virtue of (11).

T z+0

Now perform 3 on both sides of (9) and write f udx

for u,,
= —_ B du (_ 1) n-3 Zfﬁ'l z
2“‘“C+f“‘d” 2%t 1.9ds "t Em-2 &
. + ( 1)““an—1 2 2n

+0°

Let M be the greatest value irrespective of sign that -

d™u,
d 2n”
has between the limits of summation, £ and  + m suppose.

Then Eui'l , must lie between the limits + mA.

9. Other conclusions may be drawn relative to the size of
the error when other facts are known about the behaviour of u,
and its differential coefficients between the limits, For in-
stance, if »,™ keeps its sign throughout, we may take 0 in-
stead of — mM as one of the limits. The sign of the error
will therefore be that of (—1)* A7, and, should «,”*** keep the
same sign as ™ between the lllllltS the error made by taking
one term morc of the series will have the same sign as
(=1)""M, i.e. the true value will lie between them. This
is obv1ously the case in the series at the top of page 101,
hence that series (without any remainder-term) is alt(,rmtely
greater and less than the true value of the function.

10. If w™* retain its sign between the limits in (10) we
have

R, =~ f : ¢ (2n, 2) u,™dz =— ¢ (2, 6) A", 6 <1.
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Now it can be shewn that ¢(2n, 6) is never greater nu-
merically than — 24, ; hence the correction is never so
much as twice the next term of the series were it continued
instead of being closed by the remainder-term. Thus, wher-
cver we stop, the error is less than the last term, provided
that the ditferential coefficient that appears therein either
censtantly increases or constantly decreases between the
limits taken. This condition is satisfied in all the important

scries of the form 3 % The series to which they lead on

application of the Maclaurin sum-formula all converge for a
time and then diverge very rapidly. In spite of this diverg-
ence we see that they are admirably adapted to give us
approximate values of the sums in question, for we have but
to keep the convergent portion and then know that our error
is less than the last term we have kept; and by artifices
such as that exemplified on page 100, this can be made as
gmall as we like.

11. Several solutions have been given of the problem of finding the re-
maindcr after any number of terms of the Maclaurin sum-formula. The one
in the text is by Malmstén, and the proof given was suggested by that in
a paper by him in Crelleeéxxxv. 55). It has been chosen because the limits
of the crror thus obtained are perfectly general and depend on no property of
u, or the differential coefficients thereof, save that such as appear must vary
continuously between the limits. The idea of the method used in this very
valuable paper was taken from Jacobi, who used it in a paper on the same
subject (Crelle, xu. 263), entitled De usu tegitimo formule summatorie
Maclauriane. Malmsién’s paper contains many other noteworthy results,
and 1n various cased gives narrower limits to the error than those obtained
by other processes, while at the same time they are not too complicated. But
the whole paper is full of misprints, so that it is better to read an article of
Schlomileh (Zeitschrift, 1. 192), in which he embodies the important part of
Malmstén’s article, greatly adding to its value by shewing the connection
between the remainder and Bernoulli’s Function of which we have spoken
in Art. 14, page 116. The paper is written with even more than his usual
ability, and is to be highly recommended to those who wish further informa-
tion on the subject.

12. The chief credit of putting the Maclaurin sum-formula on a proper
footling, and saving the results it gives from the suspicion under which they
must lie as being derived from diverging series, is due to Poisson. In a
paper on the numerical calculation of Definite Integrals (Mémoires de
Udcadémie, 1823, page 571) he starts from an expansion by Fourier's
Theorem, and obtains for the remainder an expression of the form

~I\* [= = 1
- - = L 23 - 5
R, = 2(41,) /o u, ‘.‘?l‘l,_cos 2inadz
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and he then investigates the limits between which this will lie. The investi-
gation is continued by Raabe (Crelle, xviiL 75), and the practical use of the
results in tho calculation of Definite Integrals examined and estimated, and
modifications suitable for the purpose obtained.

A method of obtaining the supplementary term which possesses many
advantoges is based on the foimula

IF(x)= ['(x)dz——l‘(z)-l-/ F(x+x2) - F(z- Kzl iz,
e

where k=,/—1. On this see a paper by Genocchi (Tortolini, Ann. Series, 1.
Vol. u1.), which also contains plentiful refercnces to earlier papers on the
subject. Tortolini in the next volume of the same Journal extends it to =".

See also Schlomilch (Grunert Archiv, xm. 130).

13. The investigation which appeared in the first edition of this book
is subjoined here (Art. 16). The editor thinks that the fundamental assump-
tion, viz. that the remainder may be considered as being equal to

B,, 1 dav- l’ll.
_ 1)+l
vz‘:-l-l( R l:_ s

cannot he held to be legitimate, since the series which the latter represents may
be and often is divergent. For the conditions under which the series itself
would be convergent, see a paper by Genocchi (Tortolini, Ann. Series, 1. Vol.
vI.) contammg references to some results from Cauchy on the same suhjcct
There is a very ingenious proof of the formula itself by integration by parts,
in the Cambridge Mathematical Journal, by J. W. L. (xla,xsher wherein the
remainder is found as well as the series, and Schlémilch (Zei&qchri_ ft, 1. 289
has obtained them by a method of great generality, of which he takes this an
the Generalized Taylor's Theorem as examples.

14. By far the most important case of summation is that which occurs in
the calculation of log I'z and its differential coefficients. Tor special examina-
tions of the approximations in this case we may refer to papers by Lipschitz
(Crelle, rvr. 11), Bauer (Crelle, Lvir. 250), Raabe (Crelle, xxv. 146, and XXVIIL,
10). It must be remembered that there is nothing to prevent there being
two semi-convergent expansions of the same function of fotally different
forms, so that the discrepancy noticed by Guderman (Crelle, xx1x. 209) in two

expansions for log I'n, one of which contains a term in —,1; , and the other does
not, does not justify the conclusion that one must be false.

15. The investigation into the complete form of the Generalized Taylor’s
Theorem is derived from a paper by Crelle in the twenty-second volume of
his Journal. Other papers may be found in Liouville, 1845, page 379, (or
Grunert Archiv, viir, 166), Grunert, x1v. 387, and /cztschr:/t. 1. 269. T e
convergence and supplementary term of the expansion in inversc factarials
(%tlrlmgs Theorem) have also been investigated by Dietrich (Crelle, Lix.

The degree of approximation given by transformations of slowly converg-
ing series has been arrived at by very elementary work by Poncelet (Crelle,
xmr. 1), but the results scarcely belong to this chapter.
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Limits of the Remainder of the Series for Zu,. (BooLE.)
16. Representing, for simplicity, u, by 4, we have

2n—1
2u=0+fudz-1u+ By du A (=1 By 7w

1.2dz " 1.2..2n dx®-1
By, d¥ W
N | Lo it Sul SR
LS v e = o

The second line of this expression we shull represent by R, and endeavour
to determine the limits of its value.

Now by (9), page 109,
B"_t _ 2 zn--_l-
1.2.2r (2x)* "1 m¥°
Therefore substituting,
e 2 (= 1) d¥-tu
B= zrn:n-ﬂ EI|=I. (27)" m¥ dz*-!
o _yme (= 1)1 d"“u,
_22...1 2 Cmry> P
Assume
= (=1t dF e
r=n+1 (2m1r)” dair-? -

And then, making ;- ——e‘ wo are led by the general theorem for the
summation of series (1):1}‘ Equatiom, - 431) to the differential equation
t+ -—-e- 0= (- 1)" e("'""”v

dat (=1 iy
oF iz ©@mr)™ da?+i’
the complete integral of which is (Diff. Equations, p. 383)

( L ism2mn—zjcos2m1rxd' Iudx

+(2mw)3t =

(2"‘, Su+l dx!vﬂvl
- cos 2m-m:fsin 2m1rz%;: dzz ,
or, since we have to do only with integer values of z for which sin (2m=z) =0,

cos (2mwz)=1,
(=1 f sin 2mwzx

dntly
(2m)‘ﬂ G 95
Hence
o (- 1)+ . dintly
1 (;7;;;-’—"3 f sin 2mwrz dz’;ﬁ dz

sin 2mx  sin 47z atly
=2(_1)u+x/3(2')h“+ Wl-{- 2 mdx (1),

R= 2
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the lower limit of integration being such a value of = as makes dz"'z

to va.msh. the upper limit z. Hence if within the limits of integration
Tai retam a constant sign, the value of R will be numerically less than
that of the function

2 f 3(21;"‘“ + (4,.;-&-“ g g:‘:f

therefore, than that of the function

1 1 , au
2 iiz—w)m+(7;)m ... ad inf. 2 ]
therefore, by (9), page 109, than that of the funetion
.l Bﬂu—l dhu'
2r1.2.  2ade™"
‘When 7 is large this expression tends to a striet interpolation of form

between the last term of the series given and the first term of its remainder,
viz., omitting signs, between
By d™lu Byu4a dintly

2. ond T3 onrgasn (2,

it being remembered that by (9), page 109, the coefficient of

dz"' *in (1) is, in

—lu dh-Hu
Fun-i 20
in (2). And this interpolation of form is usually accompanied by interpo-
lation of value, though without specifying the form of the function u we
can never affirm that such will be the case.

The practical conclusion is that the summation of the convergent terms
of the series for Zu affords a sufficient approximation, except when the
first differential coefficient in the remainder changes sign within the limits
of integration.

the limit, a mean proportional between the coefficients of &
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DIFFERENCE- AND FUNCTIONAL
EQUATIONS.

CHAPTER IX.
DIFFERENCE-EQUATIONS OF THE FIRST ORDER.

1. AN ordinary difference-cquation is an expressed rela-
tion between an independent variable x, a dependent variable
u,, and any successive differences of u,, as Awu,, A%, ...A™,.
The order of the equation is determined by the order of its
highest difference ; its degree by the index of the power in
which that highest difference is involved, supposing the equa-
tion rational and integral in form. Difference-equations may
also be presented in a form involving successive values, in-
stead of successive differences, of the dependent variable;

for A™u, can be expressed in terms of u,, u,,,...%,,,.

Difference-equations are said to be linear when they are
of the first degree with respect to u,, Awu,, A%, ...; or, sup-
posing successive values of the independent variable to be
employed instead of successive differences, when they are of
the first degree with respect to w,. u,,,, %, .... The equi-

X+

valence of the two statements is obvious,
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Genesis of Difference-Equations.

2. The genesis of difference-equationsis analogous to that
of differential equations. From a complete primitive

F(z, u,, c)=0. 1),

connecting a dependent variable u, with an independent
variable # and an arbitrary constant ¢, and from the derived
equation

AF (z, u,, c)=0 (2),
we obtain, by eliminating ¢, an equation of the form
¢ (@, u,, Bu,)=0 3).

Or, if successive values are employed in the place of dif-
ferences, an equation of the form

¥ (2, u,, u,,)=0 (4).
Either of these may be considered as a type of difference-
equations of the first order.

In like manner if, from a complete primitive
F(z, u, c,Cyeec,)=0 (5),

and from n successive equations derived from it by successive
performances of the operation denoted by A or £ we elimi-
nate ¢, ¢,...c,, we obtain an equation which will assume
the form

¢ (z, u,, Au,,...Au,)=0 (6),
or the form
V(@) Uy Uy ooe Upy) =0 ),

according as successive differences or successive values are
employed. Either of these forms is typical of differerce-
equations of the n' order.



ART. 3.] DIFFERENCE-EQUATIONS OF THE FIRST ORDER. 159
Ex. 1. Assuming as complete primitive u,=cz+¢’, we
have, on performing A,
Au, =c,
by which, eliminating ¢, there results
u, = zlu, + (Au,)?,
the corresponding difference-equation of the first order.

_Thus too any complete primitive of the form u,=cz+ £ (c)
will lead to a difference-equation of the form

u’s = wAuz +f (Au’z) (8) *

Ex. 2. Assuming as complete primitive
u, = ca* + ¢'b%,

we have
uz+l = Caz"'l + c’bz‘ﬂ,
U, =ca” + D™
Hence
Uy—au,=c (b—a)b’,
Uy (g —alU,,, =C (b—a) b*™.
Therefore
Uppg = QU — b (1, —au,) =0,
or
U, —(@+b)w,, +abu,=0 9).

Here two arbitrary constants being contained in the com-
plete primitive, the differencc-equation is of the second
order.

3. The arbitrary constants in the complete primitive of a
difference-equation need not be absolute constants but only
periodical functions of z of the kind whose nature has been
explained, and whose analytical expression has been deter-
mined in Chap. 1v. Art. 4. They are constant with reference
only to the operation A, and as such, are subject only to the
condition of resuming the same value for values of # differing
by unity; a condition which however reduces them to abso-
lute constants when « admits only of such systems of values,
as for instance in cases when it must be integral.
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Exzistence of a Complete Primitive.

4. We shall now prove the converse of the theorem in
Art. 2, viz. that a difference-cquation of the ™ order implies
the existence of a relation between the dependent and inde-
pendent variables involving n arbitrary constants. We shall
do so by obtaining it in the form of a series.

Let us take (6) as the more convenient form of the equa-
tion, and suppose that on solving for A"u, we obtain
Aru, = f(z, u,, Au, ... A"'u,) (10).
Performing A we get
A"y, =some function of x, u,, Au, ... Au®,

and on substituting for A™u. from (10) this will reduce to an
equation of the form

Ay, =f, (=, u,, Au, ... A"'u,) 11).
Continuing this process we shall obtain
A, =f, (z, u,, Au, ... A") (12).
But
u,=E"u_=1+A)""u_,
_ (n+7)® (n+r)=
=u_+(n+r)e+ *Bh Cot e +- F—;—r Cos
n+ 7)™ T
+ g—{;l—f( —n, %_,Cye.. C,y)
+... ~+f,(—— N, U_y Gy, oee €y ) (13),

where ¢, ¢,... c,_, are the values of Au_,... A" u_, and with
the value of u_, form n arbitrary constants in terms of which
and r the general value of u, is expressed. Thus (18) con-
stitutes the general primitive sought. It is evident that it
satisfies the equation for APy, for all values of p, since it is
derived from these equations.

5. Though this is theoretically the solution of (6) it is
practically of but little use. On comparing it with the cor-
responding theorem in Differential Equations, we see that
both labour under the disagdvantage of giving the solution
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in the form of a series the coefficients of which have to be
calculated successively, no law being in gencral discovered
which will give them all. And in one point the serics in
Differences has the advantage, for it consists of a finite
number of terms only, while the other is in general an infinite
series. On the other hand, the latter is usually convergent
(at all events for small values of », since the (m+1)* term

m

contains i%{ as a factor), so that the first portion of the serics

suffices. But in our case the last part of the series is as
important as the preceding part, since there is no reasm
to think that the differences will get very small and the

(m)
factor r+ Q— is never less than unity.

[

Having shewn tbat we may always expect a complete
primitive with n arbitrary constants as the solution of a
difference-cquation of the n* order*, we shall take the case of
equations of the first order, beginning with those that a-e
also of the first degree.

\ \Linear Lguations of the First Order.

6. The typical form of this class of equations is
w,,, —Adu,=B, (14),
where 4, and B, are given functions of . We shall first
consider the case in which the second member is 0.
To integrate the equation
Uy — A, =0 (15),
we have
Uy, =4,

whence, the equation being true for all values of «,
u,=A, u

z x-1 '%-1)

* An important qualification of this statement will be given in the next
chapter.
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Hence, by successive substitutions,
v,,=AA A, .. A
r being an assumed initial value of .

,.'M,.- (16)’

Let C be the arbitrary value of w, corresponding to z =1
(arbitrary because, it being fixed, the succeeding values of u,,
corresponding to & =r+1,2=r+2, ..., arc determined in
succession by (15), while u, is itself left undetermined), then
(16) gives

v,,=04,4, ..4,,
whence

u,=C4, 4,,...4, @17,
and this is the general integral sought*.

[od

7. While, for any particular system of values of z differ-
inz by successive unities, C is an arbitrary constant, for the
aggregate of all possible systems it is a periodical function
of z, whose cycle of change is completed, while = varies con-
tinuously through unity. Thus, suppose the initial value of
« to be 0, then, whatever arbitrary value we assign to u,, the
values of u, %, %, ... arc rigorously determined by the
equation (15). Here then C, which represents the value of
u,, is an arbitrary constant, and we have

u, =CAA,, .. A,

Suppose however the initial value of « to be ¢, and let £
be the corresponding value of #,. Then, whatever arbitrary
* There is another mode of deducing this result, which it may be well
to notice.
Let u,=el. Then u, ., =¢!*4% and (15) becomes
dtat_4.d=0;
coeto4,=0,
whence At=log 4.,
t=3log4,+C
=log A, ;+logd. g+ .oe +C
=logII (4,-,) + C, following the notation of (18).
Therefore
Uy = 18T (4,))+C o CyI1(4,-y)
as before.
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value we assign to K, the system of values of Ups Uy, wee will
be rigorously determined by (15), and the solution becomes

Upy =EA=A2_1 oo Ai’

The given difference-equation establishes however no con-
nexion between Cand E. The aggregate of possible solutions
1is therefure comprised in (17), supposing C therein to be an
arbitrary periodical function of @ completing its changes while
z changes through wunity, and therefure becoming a simple
arbitrary constant for any system of values of = differing by
successive unities.

We may for convenience express (17) in the form
u,=CII(4,,) (18),

where IT is a symbol of operation denoting the indefinite con-
tinued product of the successive values which the function of
«, which it precedes, assumes, while 2 successively decreases
by unity.

8. Resuming the general cquation (14) let us give to w, the
form above determined, only replacing C by a variable para-
meter C,, and then, in analogy with the known method
of solution for linear differential equations, seck to deter-
mine C,.

‘We have u,=C 11 (4._),
uz+] = C:-H.H (‘Az)’

whence (14) becomes
C,I4,)—A,CII(4,)=B..

But ATl (A, )=TI(4,),
whence C,,—C)II(4,)=B,
or, (AC)I(4,)= B,
whence AC, = ﬁ%z i
=35 ,c (19);
s T4y ’

11—2
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u,=TI(4,.) { n fA o 0} (20),

the general integral sought¥,

Ex.1. Givenu,, —(r+1)u,=1.2... (z+1).

From the form of the second member it is apparent that =
admits of integral values ouly.

Here A,=z+1, T4, )=2(@-1)...1,
B . < B _
my T Sy T
Su=z(@—1)..1x @+0C),
where C is an arbitrary constant.

* The simplest method of solving the equation
Uy, — A, U, =1,
is derived from its analogy with the equation
dy
az‘ + P Y= Q.
In this latter we sought for a factor u which should make the first side a
perfect dierential, and found that it was given by solution of the equation
du
de

In the present case suppose C, to be the factor which makes the left-hand
sile a perfect difference, i.e. of the form v, u,y,) — v,

Then Ve =C, and v,=4,C.,.
Thus

=uP.

v v, 1
241 = H ( A,) ’
as above, putting the arbitrary constant equal to unity, since we only want
one integrating factor, not the general expression for such.
Multiplying by v,4, we get
Bz
A (v,u,,)_II (4, ) ,
SOV U= Il ( A )+ c,

. u,=II(A;-1)2 Ty (4 )+ C;
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Ex. 2. Given u,, —au, =b, where a and b are constant.
Here A,=a, and II (4,) = a7, therefore

1 1
b 1-o |
,=a"’{2—,+0}=a"‘ b +O’i
a 1_}
a@ J
b .
=1—_—a+01(l,,

where C, is an arbitrary constant.

‘We may observe, before dismissing the above example, that
when 4, =a the complete value of II (4,) is &® multiplied by
an indeterminate constant. For

mAa,)=4.4....4,
=a.a.a...(z—r+ 1) times,
— a”—ﬁl — a-r+l Y4 az'

But were this value employed, the indeterminate constant
a™"' would in onc term of the general solution (20) disappear
by division, and in the other merge into the arbitrary con-
stant C. Actually we made use of the particular value corre-
sponding to =1, and this is what in most cases it will be
convenient to do.

9. We must here make a remark about the solution of
linear equations of the first degree, which will be easily appre-
hended by those who are acquainted with the analogous pro-
perty of linear differential cquations.

The solution of
Wy, —Au, =B, (21)
consists of two parts, one of which contains the arbitrary con-
stant and is the solution of
Uy, —Au, =0 (22),
and the other is a particular solution of the given equation
(21). It is evident that these parts maybe found separately;

the general solution of (22) being taken, any quantity that
satisfies (21) may be added for the second part and the result
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will be the general solution of (21). It will be often found
advisable to use this method in solving such equations, and
to guess a particular integral instead of formally solving the
equation in its more general form (21).

Ex. 3. Given Ay, +2u,=-—z-1.

Replacing Au, by u,,, —u,, we have
Uy + 1,= — (04 1)

Here 4,=—1, B,=— (z+ 1), whence

._a_1
U, = 0(—1 —;2—4.
Ex. 4. »,,, —au, G+

P § 1 }
U, =a {2——(w+1)’+0
1 1 1
=ar‘{i§+2“i...+a:,+0}.

When, as in the above example, the summation denoted by
3, cannot be cffected in finite terms, it is convenient to employ
as above an indeterminate series. In so doing we have sup-
posed the solution to have reference to positive and integral
values of z. The more gencral form would be

1
&

=g ! 1 1
U, =a {a§+(;—_~~l-)-—,...+1,+0

r being the initial value of 2.

Difjerence-Equations of the first order, but not of the first
degree.

10. The theory of difference-equations of the first order
but of a degree higher than the first differs much from that of
the corresponding class of differential equations, but it throws
upon the latter so remarkable a light, that for this end alone
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it would be deserving of attentive study. Before however
proceeding to the general theory, we shall notice one or two
great classes of such equations that admit of solution by
other ways. The analogy between these and well-known
forms of differential equations is too evident to need special
notice.

A. Clairault’'s Form, .
= oAy, + £ (Au).
A solution of this is evidently

u,=cz+f(c),
which gives Ay =c.
Ex. 5. u=zAu_+{Au)
gives u=cz+c".

B. One variable absent.
f(Au,, u,)=0.
Writing «,,, — u, for Au, and solving we obtain
%, =V (u,) suppose ;
S Uy =Y (uzu) = (x,),
denoting by ¥ (x) the result of performing Y- on y- ().

Continuing we shall have

Uy, = V" (u,), or if w, =a, u,,, =" (a).

This may fairly be called a solution of the cquation, but
its interpretation and expansion may offer greater difficulties
than the original equation presented. This subject will be
considered under the head of Functional Equations.

Ex. 6. u, =2u'; . u,,=202u") =2%}

and continuing we obtain

u’ﬂ»n = é (2 u’:)‘”'.



168 DIFFERENCE-EQUATIONS OF THE FIRST ORDER. [CH.IX.

C. Equations homogeneous tn u.
The type of such equations is

f (um’ x) 0.

U

Solve for “*# and we obtain an equation of the form

= A_, which leads to a linear equation in ..
u = =

Ex. 7. w,,t —3u,, u,+2u’=0 (23).
Solving U,,, = 2u, or u,
hence u, = 2°C or C.

We shall cxamine further on whether these are the only
solutions of (23).

Many other difference-equations may be solved by means
of relations which connect the successive values of well-known
functions, especially of the circular functions.

Ex. 8. w, u,—a, (u,, —u,)+1=0.
Here we have

1_ %=

a, 1+u, ,u,

Now the form of the second member suggests the trans-
formation u, = tan v,, which gives

1 _ tanv,, —tany,

. 1< tany, tan v,
= tan ( 41 vz)
=tan Av,,

whence

v,=0+3 tan"(ll— R
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u, =tan (C + 3 tan™ 5—) .

z

Ex. 9. Given Uy, Uy + J{(]_ — uﬂlﬂ) (1 - u:)} =a,
Let u_=cos v,, and we have
a,=cos v,

= cos (v,,, — v,) = cos Av,,

cos v, + sin v,,, sin v,

whence finally
u, = cos (C + = cos™ a,).

But such cases are not numerous enough to warrant special
notice, and their solution must be left to the ingenuity of the
student. We subjoin examples requiring these and similar
devices for their solution.

EXERCISES.

1. Find the difference-equations to which the following
complete primitives belong.

2 4
+ Ist. w=ca® + % 2nd. u={c (=1)*— ;} —2—.
8rd. u=cz+ca® 4th.u=ca®+c"

1—-a a**"
T = p2 %
Sth.u=¢ +c(1 a)( a) ita

Solve the equations
2
2. U, —patu,=qa*.
¥ U, — AU, = COS NT.

A u .+ (24 2) u,,, fau,=—2— 20— 2"

5. U, —u,C08ar=cosa cos 2a ... cos (z— 2) a.
B uu,, +au,+b=0.
UM, — AUty + b =0,
]
u‘z.u — eﬁ:—lu’ =e* .
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9/, sin 26 — u, sin (z+1) 6 = cos (& — 1) §—cos(3z-+1)6.
. 1w, —au,=(22z+1)d"
(11w, —2u’+1=0.
o127 (z + 1) (ty,, —au,) = a® (2* + 22).
13 () = 4 () {(w)+ 1.
d4.  w,, =m (u,)"
A5 A%, = ()" — (u,)"
16. u,Au,= xAzu,, +1.
17. w,,, ’—3d’2’u,,u, "+ 22’2, =0.
18. If P, be the number of permutations of n letters

taken « together, repetition being allowed, but no three con-
secutive letters being the same, shew that

T SRR st B:
AP,= (n'—n) prgy- I
where a, B are the roots of the equation
#'=(n-1)(z+1). [Smith’s Prize.]
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CHAPTER X.

GENERAL THEORY OF THE SOLUTIONS OF DIFFERENCE- AND
DIFFERENTIAL EQUATIONS OF THE FIRST ORDER,

1. WE shall in this Chapter examine into the nature and
relations of the various solutions of a Difference-equation of
the first order, but not necessarily of the first degree, and
then proceed to the solutions of the analogous Differential
Equations in the hope of obtaining by this means a clearer
insight into the nature and relations of the latter.

Expressing a difference-equation of the first order and =™
degree in the form

(Aw)" + P, (Au)** + P, (Aw)™™...+ P, =0 (1),

PP, ... P, being functions of the variables # and %, and then
by algebraic solution reducing it to the form

(Au—p,) (Au—p)...(Au-p)=0 (2,

it is evident that the complete primitive of any one of the
component equations,

Au—p =0, Au—p,=0...Au—p =0 (3),

will be a complete primitive of the given equation (1) i.e. a
solution involving an arbitrary constunt. And thus far there
is complete analogy with differential equations (Diff. Equa-
tions, Chap. vir. Art. 1). But here a first point of difference
arises. The complete primitives of a differential equation of
the first order, obtained by resolution of the equation with

dy

respect to 7 and solution of the component equations, may

without loss of generality be replaced by a single complete
primitive. (Ib. Art. 3.) Referring to the demonstration of
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this, the reader will see that it depends mainly upon the fact
that the differential coefficient with respect to z of any func-
tion of V, V,,...V,, variables supposed dependent on «, will be
linear with respect to the differential coefficients of these de-
pendent variables [Ib. (16), (17)]. But this property does not

remain if the operation A is substituted for that of -, ; and

therefore the different complete primitives of a difference-
equation cannot be replaced by a single complete primitive *.
On the contrary, it may be shewn that out of the complete
primitives corresponding to the component equations into
which the given difference-equation 1s supposed to be re-
solvable, an infinite number of other complete primitives
may be evolved corresponding, not to particular component
equations, but to a system of such components succeeding each
other according to a determinate law of alternation as the
independent variable # passes through its successive values.

Ex. Thus suppose the given equation to be

(Aw,)*— (@ + ) Au,+ax=0 (4),
which is resolvable into the two equations
Au,—a=0, Au,—2=0 (5),

and suppose it required to obtain a complete primitive which
shall satisfy the given equation (4) by satisfying the first of
the cornponent equations (5) when z is an even integer, and
the sccond when z is an odd integer.

* This statoment must be taken with some qualification. The reason
why the primitives in question V,-C,=0, V, - C;=0, ..., can be replaced
by the single primitive ( ¥} — C) (V,~ C)...=0 18 merely that the last equation
exactly expresses the facts stated by all the others (viz. that some one of the
quantities V), V,,... is constant) and expresses no more than that. In a precisely
similar way the primitives of a difference-equation of the same kind, being
represented by f, (z, 4., C))=0, f; (2, u,, C;)=0, ..., may be equally well re-
presented by f, (z, u,, C) X fo (2, 4., C) x .. =0. But we shall see that the
latter equation must be resolved into its component equations before any
conclusion is drawn as to the values of Au,. It is not loss of generality that
is to be feared when we combine the separate primitives into a single one,
but gain. The new equation is the primitive of an equation of a far higher
degree (though still of the first order), and though including the original
difference-equation is by no means equivalent to it. We shall return to
this point (page 184).
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The condition that Awu, shall be equal to @ when z is even,
and to  when x is odd, is satisfied if we assume

L 14(=17 1—(-1)F
Au,=a 3 +x 3
atx L A—z
=7 tCUT
the solution of which is

_ax  x(z-1) fr—-a 1
w= G T e (50 -g) e
and it will be found that this value of u, satisfics the given

equation in the manner prescribed. Moreover, it is a com-
plete primitive*.

2. It will be observed that the same valucs of Au, may
recur in any order. Further illustration than is atforded by
Ex. 1 is not needed. Indeed, what is of chief importance to
be noted is not the method of solution, which might be varied,
but the nature of the connexion of the derived complete pri-
mitives with the complete primitives of the component equa-

* To extend this method of solution to any proposed equation and to
any proposed case, it is only necessary to express Aw, as a lincar function
of the particular values which it is intended that it should receive, each
such value being multiplied by a coefficient which has the property of
becoming equal to unity for the values of x for which that termn becomes
the equivalent of Au,, and to O for all other values. The forms of the coeffi-
cients may be determined by the following well-known proposition in the
Theory of Equations.

Pror. If a, B, v,... be the several nth roots of unity, then, z being an
a*+ 7+ 9" .

integer, the function is equal to unity if = be equal to » or a

multiple of n, and is equal to 0 if z be not a multiple of n.

Hence, if it be required to form such an expression for Au, as shall
assume the particular values p;, p,,...p, in succession for the values x=1,
r=2,...x=n, and again, for the valuesx=n+1, xz=n+2,...2=2n, and so on,
ad inf., it suffices to assume

Au,=P, D1+ Py gDq...+ Py _nPa (6),

P B - e 30

where
n

a, B, v,...being as above the different n*t roois of unity. The equation (6)
mu.t then be integrated.



174 NATURE OF SOLUTIONS OF EQUATIONS  [CH. X.

tions into which the given difference-equation is resolvable.
It is seen that any one of those derived primitives would
geometrically form a sort of connecting envelope of the loci
of what may be termed its component primitives, i.e. the
complete primitives of the component equations of the given
difference-equation.

If # be the abscissa, u, the corresponding ordinate of a point
on a plane referred to rectangular axes, then any particular
primitive of a difference-equation represents a system of
such points, with absciss® chosen from a definite system dif-
fering by units, and a complete primitive represents an infi-
nite number of such systems, the system of abscissee being the
same for all. Now let two consecutive points in any system
be said to constitute an element of that system, then it is
seen that the successive elements of a derived primitive
(according to the definitions implied above) will be taken
in a determinate cyclical order from the elements of sys-
tems corresponding to what we have termed its component
primitives.

3. It is possible also to deduce new complete primitives
from a single complete primitive, provided that in the latter
. the expression for u, be of a higher degree than the first with
respect to the arbitrary constant. The method, which con-
sists in treating the constant as a variable parameter, and
which leads to results of great interest from their connexion
with the theory of Differential Equations, will be exemplified
in the following section.

Solutions derived from the Variation of a Constant.

A given complete primitive of a difference-equation of the
first order being expressed in the form

u=f(=,¢) ™,
let ¢ vary, but under the condition that Au shall admit of the
same expression in terms of  and ¢ as if ¢ were a constant.
It is evident that if the value of ¢ determined by this condition
as a function of # be substituted in the given primitive (7)
we shall obtain a new solution of the given equation of dif-
ferences. The process is analogous to that by which from



ART. 3.] OF THE FIRST ORDER. 175

the complete primitive of a differential equation we deduce
the singular solution, but it differs as to the character of the
result. The solutions at which we arrive are not singular
solutions, but new complete primitives, the condition to which
¢ is made subject leading us not, as in the case of differential
equations, to an algcbraic equation for its discovery, but to a
difference-equation, the solution of which introduces a new
arbitrary constant.

The new complete primitive is usually termed an indirect
integral ®,

Ex. The equation uw=xAu+ (Au)* has for a complete
primitive
u=cx+c’ (8),
an indirect integral is required.

Taking the difference on the hypothesis that ¢ is constant,
we have

Au=c;

and taking the difference of (8) on the hypothesis that ¢ is an
unknown function of 2, we have

Au=c+ (z+1) Ac + 2cAc + (Ac)*
Whence, equating these values of Au, we have
Ac(z+1+2+Ac)=0 9).
Of the two component equations here implied, viz.
Ac=0, Ac+2+z+1=0,

the first determines ¢ as an arbitrary constant, and leads back
to the given primitive (8); the second gives, on integra-
tion,

0=C(-1y-5-3 (10),

* We shall see reason to doubt the propriety of giving to it any special
name that would seem to imply that it stood in a special relation to the
original difference-equation.
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C being an arbitrary constant, and this value of ¢ substituted
in the complete primitive (8) gives on reduction

w!

u={C’(— 1)'-}!}’—2 (11).

Now this is an indirect integral. We see that the prin-
ciple on which its determination rests is that upon which
rests the deduction of the singular solutions of differential
equations from their complete primitives. But in form the
result is itsclf a complete primitive; and the reader will
easily verify that it satisfies the given equation of differences
without any particular determination of the constant C.

Again, as by the method of Art. 1 we can deduce from
(9) an infinite number of complete primitives determining c,
we can, by the substitution of their values in (8), deduce an
infinite number of indirect integrals of the equation of differ-
ences given.

4. The process by which from a given complete primi-
tive we deduce an indirect integral admits of geometrical in-
terpretation.

For each value of ¢ the complete primitive uw=f(z, ¢) may
be understood to represeut a system of points situated in a
planc and referred to rectangular co-ordinates ; the changing
of ¢ into ¢+ Ac then represents a transition from one such
system to another. If such change lcave unchanged the
values of u and of Au corresponding to a particular value of
z, it indicates that there are two cousecutive points, i.e. an
element (Art. 2) of the systemn represented by w=f(, ¢), the
position of which the transition does not affect. And the
successive change of ¢, as a function of x ever satisfying this
condition, indicates that each system of points formed in suc-
cession has one element common with the system by which
it was preceded, and the next element common with the sys-
tem by which it is followed. The system of points formed
of these consecutive common clements is the so-called ndi-
rect integral, which is thus scen to be a connecting envelope
of the different systems of points represented by the given
complete primitive.
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5. It is proper to observe that indircct integrals may be
deduced from the difference-equation (provided that we
can cffect the requisite integrations) without the prior know-
ledge of a complete primitive.

Ex. Thus, assuming the difference-cquation,

u=zAu_+ (Au,)’ (12),
and taking the difference of both sides, we have
Au, = Au, + A%, + A%v, + 28u,A%, + (A%,)";
o A% (A%, + 28u, + 2+ 1) =0,
which is resolvable into
Alu,=0 (13),
Au, + 28u,+2+1=0 (14).
The former gives, on integrating once,
Au,=c,
and leads, on substitution in the given equation, to the com-
plete primitive (8).
The second equation (14) gives, after one integration,
. @ 1 -
Au,=0 (=1 ~3—7 (13),
and substituting this in (12) we have on reduction
1)* 2 16
w={oc1r-gf -5 (16),
which agrces with (11).

6. A most important remark must here be made. The
method of the preceding article is in no respect analogous
to the derivation of the singular solution from the differential
equation. It is precisely analogous to Lagrange’s method of
solving differential equations by differentiation (Boole, Diff.
Fq. Ch. viL Art. 9), where we torm by diffcrentiation a.'dxf-
ferential equation of the second order, (of which the given
equation is one of the first integrals,) obtain by integration the
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other first integral, and eliminate :il—ac between them. Thus if

we have
d
2z 31/ —-y=0,
we obtain
dy 2t 2z 5‘1{

an integral of which is

dy|?

and hence the solution of the given equation is
y* = 4er.

As a natural consequence of this analogy all the results of
this method are solutions of the original differcnce-equation.
It will be remembered on the contrar y that the results of the
process of finding singular solutions from the differcutial
equation may not “be solutions at all. The analogies of this
last process will be referred to later in Art. (21).

7. The sccond equation (14) might have becn integrated
in another way, i.e. by simply performmg upon it. We
should then have obtained

Au, + 2u, + :EE;—I—) =c 7).
Substituting this in (12) we obtain
w’ 2 mﬂ
u, = Au, (z+ Au,) = (c —2u, — 5) - (18).

This appears to be a third complete integral, but it is only
another form of (11), which may be written thus

“+£—0'( =3 O (= 1)+ 16,
-'-C'(—l)'—-};=2{—u—"§—-1-3+0*(-1)"}

x
-——2u—§-+c,
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since C'(—1)* 78 constant as far as the operation A 1s con-
cerned.

Substituting in (11) we obtain a result equivalent to (18)*.

General Theory of Difference-Equations of the first order
and their solutions.

8. We shall now examine the meaning and relationship of
difference-equations, their complete primitives and indirect
integrals; and to render our ideas clearer shall notice first
the analogous cases in differential equations.

If we have a differential equation of the first order and
first degree g‘z has but one value at each point, and the

solution consists of a secries of curves one of which passes
through cvery point and no two cut; for if two members of
the family of curves coincided in one point they would co-

incide during the remainder of their course. But if % be

given by an equation of a higher (suppose the n™) degree
this is not the casc. Writing the equation in the form

d, d d
(dZ —px) (ﬁ—p,) (3§~p,.) =0 (19),
we see that at every point Z,Z may have any one of the

values p,, p, ... p,, but must have one of them.

9. This and only this is told us by (19); the statcment
at the end of the last paragraph is identically the same as the
statement contained in (19). Hence anything further that we
can extract from (19) must come from laws independent of

* It may be shewn independently, that if one integral of (14) gives a
complete primitive, the other must give the same. For if (17) hold, the
solution must come under the complete primitive of (14), involving two
arbitrary constants. But for all such solutions, (15) must also hold.
Hence all solutions derived from (17) and (12) must come among those
derived from (15) and (12), and as the converse proposition is also true, the
results of the two methods must be 1dcntical. This can only be asserted
when (14) is of the first degree in A%, ; in all other cases we shall see that
there is no single complete primitive.

12—2



180 NATURE OF SOLUTIONS OF EQUATIONS [cH. X.

this special cquation, which impose conditions on the systems
of values that & can take. The law that effects this is the

dz
law of continuity, which requires that Zg should vary continu-

. . d
ously, or that there should not be a finite change in [ig
corresponding to indefinitely small changes in z and y. Thus
if we would trace out a continuous curve that shall be a
solution of the equation, and commence moving in the direc-

tion given by Z—Z: 2,» we shall be compelled to continue

moving in the direction given by Z——Z =p, at each point, and

shall not be able to change to the direction (—(Z = p, at any

point* even though motion in that direction is equally contem-
plated in equation (19). Thus the law of continuity renders
equation (19) the same as the system of equations

d d

and permits us to solve them separately and take the com-
bined results as forming the solution of (19).

10. Now take the case of difference-equations. As before,
if Au, or Ay be given uniquely by the given equation, there
exist definite point-systems beginning with any point arbi-
trarily chosen, but entirely fixed by the choice of it. But
when the cquation is of the form

Ay —p) By —p,) ... Ay —p,)=0 1),

Ay may have any of the n values p,, p,, ...,p, at cach point.
And, as before, this and this only 1s told us by (21), and any
further information must be gained by consideration of the
general laws that govern Ay and not from the special case

before us.

* This is purposely overstated. A case of cxception will be noticed
later. Aat. 20.
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11. But here no law of continuity comes to our aid. The
changes in z and y are finite and so will therefore that in
Ay generally be. Thus there is no reason why Ay should
continue to be equal to p, because it is so at the particular
point which may be under consideration. In fact, if you will
trace out a series of points forming a solution, starting from
an arbitrarily chosen point, you have at each point the choice
of n different values of Ay, that is, of n different directions
in which to go to the next point, and your past choice in no
way binds your present*. At most it can be demanded that
Ay should be analytically expressible, and that the values
should not be arbitrarily chosen at each point, but, as we saw
in Art. 1, this merely implies that the succession of values
of Ay should obey some law, and places no restriction on
what that law shall be. The number of point-systems satis-
fying the equation is therefore infinite, and must defy all
attempts at expression, and the equation (21) reduces to the
system of equations

Ay—p,=0, Ay—p,=0,... Ay —p, =0 (22),

but we are not permitted to solve these separately and take
the combined results as the full solution of (21).

12, But in spite of all this, if we integrate separately the
various equations contained in (22), the resulting scries of
n families of point-systems (any one point in the plane form-
ing a part of one member of ehch system and of only one)
has great claims to be called a complete solution of (21).
Let it be denoted by

Ly, C)=0, (2,5, C)=0,...1f. (3 C)=0 (23)
In the first place, they together impose exactly the same

* The consideration that the equation
(Ay - p,) (Ay —py)...(8Y — pp) =0

means simply that Ay is at every point equal to one of the quantities
P1» Pa» --Da, Bives us the important limitations under which the proof on
page 160 of the existence of a complete primmtive must be taken. Unless the
equation is of tho first degrec there will at every fresh step be a choice of
values for Au,,,, which will of course affect A"y, and thus the number of
distinct cxpansions will be infinite. When however we have adopted a law
as to the recurrence of the values of Ay, the cxpansion at ouce becomes
definite,
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restraints on the values of Ay that (21) does, since the first
member of the series permits it to equal p,, the second per-
mits it to equal p,, and so on, and thus if taken as alternative
equations they lead to the original equation for Ay. And in
the second place, if you stand at any point, the » permissible
changes of y will be those of such members of these n point-
systems as actually pass through this point. Hence all per-
missible elements are elements of members of (23), and thus all
possible solutions of the equation arc made up of elements of
the point-systems included in (23).

13. That the statements in the last paragraph may be true
of any series similar to (28), it is necessary and sufficient that
it should at every point give all the admissible values of
Ay and no more. But this is attainable in many ways
other than by taking the integrals of (22). For instance, if
equation (21) be

(Ay—a) (Ay—b)=0 (24),

it is equivalent to the alternative equations

Ay=§j2'b+a;b(_l)z-f

* (25),
A a+d a-=-0> =
o

where ris some fixed value of z. If then these be integrated,
they have exactly the same claim to be considered as con-
stituting a complete solution of (24) as have the solutions of

Ay—a=0, Ay—-5=0 (26).

Thus, following the nomenclature of Art. 2, we see that
we shall have scts of n associated derived primitives, forming
as complete a solution of the equation as the set of n com-
porent primitives. Aud in no respect do these solutions yield

* It must not be supposed that the presence of a constant r renders
these more or less general than (26). Any expression in finite diffcrences
mplies that some system of values of x (differing by units) has been chosen,
fixing the ordinates on which all our points lie, so that r may be said
to define the spuce about which we are talking, and is wholly distinet from a
constant that determines y, i.e. the position of the point on some one of
those ordinates which form our working-ground.
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to the others in closeness of connection with the original
equation. Had (24) been given in the form

- z- b _ b 2.
O (A LT Y
as it might equally well have been, the above solutions would
have changed places, and the last found would have played
the part of component primitives to those obtained from the
solution of the factors of (24).

14. But in differential equations the solutions of the dif-
ferential equations

d d d
dZ_PFO’ (T;Z_Ps:'o)"' di—pv-:()

being supposed to be
n-0,=0, V,-(,=0,...,/,—-C,=0 (27),
where C,, C,,...C, are arbitrary constants, the single solution
V=) (V,- C)...(V,-C)=0 (28)

can be substituted for them, since the latter signifies that
the solution consists of all the curves obtained by giving C
all possible values in it. This is obviously tantamount to
giving C,, C, ... C, all possible values in the alternative equa-
tions (27) from which (28) is formed, and taking all the curves
so given. And this being the case, the differential equation
obtained from (28) must be the original differential equation,
since (28) comprchends cxactly all solutions of it and no
more.

15. And the recasoning which permits us to writc (28) in-
stead of the system of alternative equations (27), holds when
they are solutions of a difference- instead of a differential
cquation. But it no longer follows that we may use (28) to
derive our difference-equation from. This may be seen ana-
lytieally from the following consideration. Suppose, for sim-
plicity’s sake, that V,, ¥, ... ¥V, arc all linear. The equation
obtained by performing A on (28) will gencrally be of the
(n —1)" degree in C and of the 2" in Ay. On eliminating C
between it and (28), we shall in general obtain an equation of
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the n* degree in Ay instead of the equation of the n™ degree
from which we obtained (28). But it may also be seen
geometrically thus. Suppose we stand at a point and choose
C so that (28) contains the point in virtue of V,—C=0
containing it. Then if we put 2+ 1 for z in (28) we shall
obtain for y + Ay all the va{)ues of y corresponding to z+ 1
on the curves

V,—C=0, V,- C=0,...V,— C=0,

no one of whick except the first contains the point at which
we start. Take now the value of C which causes V,— C=0
to contain the point, we have a similar set of values of Ay,
and so on for the rest. All these values will of course be
given by the equation for Ay derived from (28) in the ordi-
nary way. Thus we sce that in general such an equation
as (28) will lead to a difference-equation of a much higher
order than the one of which it is a solution, and which per-
mits values of Ay wholly incompatible with that difference-
equation. And hence we must in general be content with
a system of alternative solutions like (23), or if we com-
bine them as in (28) we must understand that the equation
in C must be solved before we can deduce the equation in
question. It is by no means necessarily the case that a
single equation exists that will lead to the given difference-
equation, and even if such a solution exists it does not follow
that it is the full solution of the difference-equation.

16. But though it is not nccessarily so, it may be so. For
instance, the equation y=cz+¢* leads to a difference-equa-
tion of the second order, i.e. there are two permissible
values of Ay. But substituting in the original equation the
co-ordinates of any point, ¢ is found to have two values, so
that there are two possible values of Ay corresponding to
these two values of c¢. Hence here the single equation can
be taken as a complete substitute for the system of alterna-
tive equations with which we are usually obliged to content
ourselves. This may fairly be called a complete primitive,
but it is by no means the case, as we have seen, that every
difference-equation has a complete primitive in this sense
of the word. Suppose now two such primitives can be dis-
covered—primitives that it leads to and that lead to it—
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then the second one will be what has been named an indirect
integral. The name is very unfortunate, for regarded as an
integral it stands exactly on the same footing as the other
complete primitive*.

17. It is obvious that if such integrals exist they must be
discoverable by the process of rendering C' variable, but assum-
ing that the variation of C will not affect Ay. It must be
noticed that any integral of the resulting equation will lead
to a new and complete integral of the original equation. We
need not wait to get a complete primitive (in the stricter sense
of the word) of this equation, a component or derived integral
will serve. Nor does the method of deriving them from the
difference-equation demand special notice here. We shall
see better its meaning and scope by working out fully an
example.

18, We have seen that the equation

u, =cx+c’ (29)
leads to the difference-equation
u, = zAu, + (Au,)’ (30).

Representing, as before, by u, the ordinate of a point whose
abscissa is @, we see that (30) represents a family of point-
systems such that at any point there are two values of A,
or, in other words, two points with abscissa #+ 1 that form
with the chosen point an element of the point-systems (see
Art. 2). Now (29) rcpresents also a family of point-sys-
tems such that two contain each point, these two having for
their distinguishing constants the roots of the equation in ¢
formed from (29), by substituting therein the co-ordinates of
the chosen point. Thus (29) and (30) are co-extensive, the
elements that satisfy (30) are elements of the point-systems
included in (29).

* In the first edition of this work an analytical proof was given that, if
indirect integrals existed, any one might be taken as the complete primitive,
and the others as well as the former complete primitive would appear as
indirect integrals. This seems to be unnecessary. Any indireet integral
conducts to the difference-equation, i.e. it gives precisely the same liberty
of choice for Ay that the complete primitive did. Considering it as the
complete primitive, any solutions that satisfy these conditions for Ay are
therefore, in relation to it, derived or indirect integrals, according as th-cy do
not or do leave to Ay the full liberty that the equation docs. From this the
proposition is evident,
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On solving (30) we obtain

za @ x? @
Au’=,\/uz+z—§,0r=— u+‘4:-’2‘ (31),

B—
where ,\/ u, + zi is taken to represent the numerical value*

* As students are so constantly told that the square root of a quantity
has necessarily a double sign, and that it is impossible algcbraically to
distinguish between them or to exclude one without excluding the other, it
is necessary to caution them here that, whatever be the truth of the state-
ment as far as analysis is concerned, it is certainly not true when the
functions are represented geometrically, or perhaps we should rather say
graphically. Nothing is casier than to distinguish between curves satisfying
the equations y= +,/cf—at andy= — \/c* 2. It is true that they will not
be what we are accustomed to call complete curves, but they will be
perfectly definite, And with this understanding it will be evident that the

3
equation Au,=+ u,,+"'—;- —g gives a unique value of Au, at every point
just as much as if the right-hand side were rational, and it is just as im-
possible for two members of the family it represents to include the same
point without wholly coinciding. But not only does a stipulation such as

the one we have made about the sign to be taken with ,\/ u+-7:i3 remove all

indefiniteness geometrieally, it also (as must necessarily be the case) removes
it arithmetically. As an instance take the theorem in italics.

The next value of

3 . 1)2 1
+\/uz+fz_; s + ,/,,2+A,,=+(L;_)__£i;_
_ 22z (2+1)? z+1
‘*\/"z“’ \/“=+Z’§+ i "7

=1its former value,

If at any step the wrong sign had been taken to the square root we should
have failed to bring the right result, but by adhering to the stipulation, not
only do we obtain the right result, but it forms a rigidly accurate proof of the
theorem. It is the neglect of the above principle of the uniqueness of such

3
expressions as + \/ u+ % —; that causes much of the obscurity that sur-

rounds singular solutions in differential equations,
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2
of the square root of u+1—;. Equation (29) gives us the

same values for ¢. And the result of performing A on (29)
tells us that Au,=c, in other words The point-system ob-
tained by taking at each step

2 =z
Au,=+\/u,+ I—'E,

will keep the latter function wholly unaltered, and thus the
solution of this equation s

- «/ .
c=A/ Utz ~35"
In a similar way the solution of

=z
2

w8

Av,=—p /[ u,+

1 / = +£n—?3
is ¢==p u.+7 —3.

We have divided then our point-systems into two totally
distinct families, and clements of members of these families
are alone permitted by (30). Now suppose we first choose
to take the clement given by the first equation of (31), and
then we change and take that given by the second. We shall
then have

=—(z+1)—¢,
or =—(z+1) - Au,, (32)

since our first element belonged to the family

x &x
Auz=+:\/ u,+ 99
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or its equivalent

x =z

c=+ u.,+—4:—§.

Let us for the next element return to the element belong-
ing to the first family. As before,

)\2
Autn=+ A / Ugyy + _(_-'L'_‘E2_) - E_';‘_?

=—(w+2)—{—«/mi2?_y2ﬁ}

=—(z+2)—Au,,, (33),

since the last element was taken from the system

2 x
Au,—-—«/u,+z-§.

(32) and (33) give the same equation, viz.
Au,,, =—(z+1)—Au,. (34),
which is identical with (14), page 177.

This on being integrated leads to the equation

z 1 -
Au, =C (— 1): - '2 - 1 \Jt)).

The undetermined constant enables us to make it give the
right value ¢ for Au_ at the point chosen, and then Aw,_ as
given by (35) will continue at each point to have a value
permitted by (30), but belonging alternately to each of the
two systems of values into which we have divided it. Thus
(30) and (35) are both truc along the whole of our new
solution, and we ought to represent this new solution by
them as a system of simultaneous equations. But wo know
from Algebra that we can take as an equivalent system
either of them together with the equation produced, by cli-
minating Aw, between them. This last does not involve Aw,
at all and is a complete primitive.
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19. It is so obvious that all solutions of a difference-
equation must be included in those of the equation obtained
by performing A on it, that it is natural that we should
try to obtain new solutions of

(Au, — p,) (Au, —p,) ... (Au,—p,) =0 (36),
by this method. The important thing to bear in mind is that
which has been illustrated in the foregoing investigation, viz.
that all that the method leads to is that Au, must either
always continue equal to a particular one of the roots p,, p,,
... P,, or it must change so that it jumps from the value of
one at onc point to the value of another at the next, i.e.
A'u,=Ap, or (p).,,— (p).. Anditisthe alternatives of the
latter class that make the sole difference between this method
and the method of Lagrange of solving differential equations.

o d, . .
In the latter if d-:.: =p, at a point d. (7.‘12!: can in general only

equal dp, since g—% cannot jump from being equal to p, to
being equal to p,.

20. We say that it can in general only equal dp,. It is
only prevented from taking the specified jump by that jump
being finite, and hence when we get to a point where p,=p,
the change is possible. If at the next point p, is still equal to

Per ZZ can change back again to p,, and so on. This will hap-
pen if it should chance that at the point where p, is equal to
p, the curve %: P, is going in the direction of the curve
P, =p,. In this case then there will be a solution analogous

to our indirect solutions to difference-equations—its equation
will be p,=p,, and it will only exist when the curves given by

d .
EIZ= p, touch the curve p,=p, at thc point where they

. . . d .
meet it, or, in other words, if the value of dg derived from
P,=p,is p,. Such a solution is termed a singular solution*.
* Few people secem aware of what might be called the rarity of singular

solutions. 'T'he chances are infinity to one that a differential equation of
the first order, but not of the first degree, has no singular solution. As far
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21. The question at once suggests itself—are there such
singular solutions to difference-equations? But the answer is
obvious. If there be any such they are included in the indi-
rect integrals. It is true that they will have a peculiarity.
If p,=p, gave Ay =p,, it is evident that the point-system
p.=p, might be called a solution of the equation

(Ay—p) (By=p,) - (Ay=p,) =0 (37),
in virtue of it satisfying Ay —p =0 at every point, or of
satisfying Ay —p,=0 at every point, or of satistying them
alternately in any cycle. Hence it might with propriety be
called a multiple solution, since it would appear many times
over in the list of solutions. But it can never fail to be in-
cluded in the complete primitive or its indirect integrals or
associated integrals. Poisson (Journal del'Ecole Polytechnique,
Tom. VI p. 60) has written a paper on such solutions. An
instance of them is given by the equation

L O
of which a complete primitive is
1 -2z 3 s
v=af3) -~ (39)
and for which he obtains the singular solution
8 1 8z
y=tg (— E) (40).

If two of the values of Ay given by (38) be equal we must

have
o W7y 1,
3 3’

CoAy=+ (i%)a’.

as analysis is concerneddit is & mere accident that in certain cases p,=p,
Y

. dz ’

in one met with in actual investigations, the chance of the existence of a

singular solution is much greater, for it has probably not been written down

at random, but has been derived from a complete primitive which represcnts

& family of curves having an envelppe.

gives p, as the value of In any equation given for examination, or even



ART. 22.] OF THE FIRST ORDER. 191

On substitution in (38) we obtain

4‘%(’-’2 -3(+ 5( )

oy

according as we take the upper or lower sign within the
bracket.

Thus y=+ g(— 5 - gives us a singular solution or, as it
might better be called, a multiple solution*,

22. Leaving these and returning to the solutions of differ-
ential equatlons we must remark that not only may the
change from d—'— —-p,=0 to fl— —p,=0 be made at a point

where p,=p, \Vlthout obtaining a discontinuous curve, but
as a rule it actually 1¢ made 1n cvery complete curve that
satisfies the equation, provided that a singular solution exists.
Take, for instance, the equation y=cz + ¢?, this leads to the
alternative diﬁ'erential cquations

x
z
2

and aﬂg=—\/g/+4

and the singular solution is of course

2
\/y+—~-—0 ory=-— g

This represents a parabola touching thc axis of z at the
origin and having its axis in the nerva,twe direction of y.
The two equatwns in (41) denote the t‘m«ents to it through
the chosen point, the first representing the one that makes

(41),

the algebraically greater angle with the axis of z, since &y is

dz
greater along it. Now take a tangent and beginning from
x =— o move along it. At every point it is the solution of

* As in differential equations the results of this method need not be
solutions, but if they are :olutions, they are singular solutions. Compare
Art, 6.
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the second of equations (41), since the other tangent through

the point has its %’3 algebraically greater, as will be scen at

once from a figure. But as soon as it has touched the en-
velope it takes at once the rdle of being the solution, at every
point of its length, of the first of equations (41). So that if
we take the complete curve, i.e. t(ine whole of the tangent
line, as a solution of the equation, we shall have changed
from satisfying the second of the alternative equations to
satisfying the first; the change taking place at the point of
contact with the envelope.

23. This enables us to see very clearly that the envelope
is in reality an indirect integral. For let us start from a point
on a tangent just before it meets the envelope and proceed
along it—of course in the positive direction of z—to a point on
it just after it meets the envelope. Our path at first satisfied
the second and now satisfies the first of equations (41). Let
us now change and take the path through the point at which
we now are that satisfies the second of those equations. It
will be the tangent through the point which is just going to
touch the envelope. On continuing this process we see that
we have a circumscribing polygon, the limit of which when
the sides are indefinitely diminished is the curve. And this
was generated by pursuing exactly the same method that we
observe in obtaining derived or indirect integrals from com-
ponent integrals or complete primitives, viz. by alternating
between different solutions®.

24. It will not be necessary to dwell upon the derivation of

* The Singular Solution (or rather Multiple Integral) of Art. 21 partakes,
8s we have seen, of the nature of the singular solution of a Differential
Equation, since it is derived from the difference equation in the same way,
viz. by taking the condition that two of the alternative solutions should
coincide. And hence it is not to be wondered at that the singular solution of
a differential equation should have somewhat in it of a multiple integral.
In point of fact, portions of it form part of all solutions of the original
equation. For instance, in the case we are considering the solution of,

2
g%= - ,\/ y+ % ——; is obtained by always choosing the one of the two
permissible paths that lie most to the right, supposing that we start from a
point in the third quadrant, This takes you in a straight line as far as the
curve and then takes you round during the rest of your motion, since any
departure must be along a tangent, i, e. more to the left than along the curve.
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indirect integrals or singular solutions from the complete
primitive. What has been said will be guide sufficient. But
before leaving this part of the subject we will examine how
far these views cnable us to explain the anomalies connected
with Singular Solutions in Differential Equations. Boole
(Diff. Eq. Ch. viL) gives the following four Properties of
Singular Solutions:

I. An cxact differential equation does not admit of a
singular solution.

II. The singular solution of a differential equation of the
first order and degree renders its integrating factors
infinite,

III. A differential cquation may be prepared (even with-
out the knowledge of its integrating factors) so as no
longer to admit of a given singular solution of the
envelope species.

IV. A singular solution will generally make the value

of %} as deduced from the differential equation as-

sume the ambiguous form 0
The first of these scems self-contradictory. An cnvelope

has the same value of gi as the enveloped curve at the point

of contact. Hence it must satisfy the differential cquation
of the latter, i.e. the equation that gives % . Now the dif-

ferential equation to any family of curves whatever, say
F(z, y, ¢)=0, can be given in the form of an exuct equation.
All that is necessary is to solve for ¢ and to differentiate the
resulting equation ¢ =+ (#, y). Thus (I.) seems tantamount
to saying that no family of curves can have an envelope.
(IL.) stands or falls with (L), but is at least remarkable that
an iniegrating factor should have any cssential connection
with that which is represented by the equation. The inte-
grating factor is simply the reciprocal of the factor by which
the equation, when in its exact form, was multiplied to bring
it into its present form. It is therefore a purely arbivrary
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thing, and has nought whatever to do with the nature of the
equation or with that which it represents. And (I1L.) is not
less puzzling. For since the geometrical envelope has two
consecutive points in common with each member of the
family, it would scem probable that it would continue to have
that property after any transformation of z and y. But were
this the case it would continue to touch them all, and thus
to be a singular solution according to our previous remark.

25. It cannot be doubted that these anomalies demand
explanation, and if our theory of the nature of a singular solu-
tion be the right one it must render them intelligible. And
from our theory we see no reason why exact differential
equations should be more or less likely to have singular solu-
tions than others. It is true that they are of the first degrec,
and of course no differential equation that gives a single value
of z;/ at every point can have a singular solution (Art. 8).
But there is no reason to expect that an exact equation will

give one value and one only of fi% at every point; it will
usually give the value in terms of quantities such as roots of
algebraical functions of the co-ordinates, which will have
more than one value, and no attempt is made in such equa-
tions to limit the interpretation of these to one of their many
values. Yet, although our theory declines to take special
notice of exact equations, it still gives us a clue to the inter-
pretation of their peculiarity by pointing out a class of equa-
tions which possess the property in question, viz. those that give
but one value to E‘Z at each point, and which may be for
shortness’ sake termed unique equations. It must be that
by our treatment of exact equations we make them to all
intents and purposes unique equations.

26. Let us take the instance given by Boole,
w+y%=%«/z’+ y'—a.

On dividing by ¥z* + y* — a® to render it an exact equation,
we obtain .
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Now it is not fair yet to say that this is not satisfied by
the singular solution a®+y®=d? for that causes the first

. . 0
term to assume the indeterminate form 0’ but as soon as we

write it in the form d% Vot + 7y —a* — Z‘% =0, we see that the

singular solution has ceased to satisfy it, and hence it must
be 1n this step that we have converted the cquation into a
unique equation. Writing r for ¥z' + 3 —a® it becomes
dr dy
dz dz
series of parabolas touching the circle »=0. As y is made to
increasc from its greatest negative value (¢ being taken posi-
tive) », which at first would generally be negative, gets
smaller numerically, vanishes, and then becomes positive.
This confirms our remark that the complete curves which are
solutions of the equation require ¥z*+ y* —a* to be taken
partly with a plus and partly with a minus sign, and thus are
partly solutions of + dr — dy =0, and partly of —dr —dy =0,
the change occurring at the point of contact with the enve-
lope*. Of course this is allowable in consideration that the
sign of » is arbitrary at each point, but it will be seen that this
stipulation renders the equation a unique equation just as
much as the stipulation that r shall always be taken positive.

=0, the integral of which is y — =, representing a

27. But a difficulty arises here. Since the stipulation,
which, as we see, renders the equation unique, enables us to
tracc out the whole of each curve, it will enable us to trace out
all the solutions of the equation, and thus is it not a complete
form of the equation? Itistrue thatat any point when two of
the curves intersect we shall pass along one or the other accord-
ing as we reckon that we have or have not passed the point
of contact with the envelope, and thus when we make the

* Should this contact not be real, then, so far as real space is concerned,
there will be no change in the egquation satisfied at every point, and ac-

cordingly there will be at no point an alternative path, and therefore no real
portion of the singular solution corresponding thereto,

13—2
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double supposition we shall, by the aid of the stipulation
mentioned in the last paragraph, describe the curves without
destroying the uniqueness of the equation. But this is
equivalent to taking r of double sign at each point, and it is
not to be expected that phenomena of intersection (such as
singular solutions essentially are) will be discoverable by
analysis which calls a point indifferently 7, y, and —7, y.
Whatever stipulation we make as to the sign of r to render
dr — dy =0, a unique equation renders it impossible that two
such curves should intersect, i.e. should be satistied by the
same values of » and y, but if we consider it an intersection
when the one is satisfied by 7, y, and the other by —r, », it is
not to be expected that our analysis will be equally lax.

28. Assuming then that the true form of the exact differen-
tial equation is dy + dr =0, we still have to explain how it is
that r=0 fails to satisfy the equation. The equation is no
longer unique, but the alternative solutions do not seem to
assist us, the change from the one to the other implies a sud-
den change from Z—-;= 1 to Z—;: —1. This difficulty, which
is merely a particular case of the one arising from (IIL.), is of
a wholly different nature to the last one. We have now at
every point precisely the same liberty of path that we had in
the original equation—the same number of alternative direc-
tions. But we seem unable to change from one set to the
other and thus to have no singular solution. Now the sole
restrictions on change arise, as we see, from the law of conti-
nuity, so that it is in connection with this that the solution of
this difficulty must be found. We shall shew how it is that
we have no longer the opportunity of choosing, at the points
on the singular solution, along which of two paths we shall go.

29. For simplicity’s sake, suppose that the appearance of
uniqueness in the exact equation is produced, as in the
instance that we have taken, by the presence of a quantity of

the form u, where v is a rational integral function of # and
¥, so that w= 0 is the singular solution, since it renders equal

the two values of % This is a very common case, and the

treatment will apply to other more complicated cases. Let
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z, y be the point of contact of a particular primitive with the
singular solution, and z +dz, ¥ + dy, a neighbouring point on
the same primitive. Then since there is tangency with u =0
at z, y, the value of u at x+dz, y+dy must be of the
second order (and hence ¥« is of the first order) in dz and dy.
Now take ¥u and z as new variables, 7, 2, expressing ¥ in
terms of them, and draw the curves represented by the primi-
tives when 2 and 5 are considered as Cartesian co-ordinates.
The axis of 9 is now the singular solution, and as we proceed
along any primitive we find that in its ncighbourhood ZZ is
Jinite, since n was of the first order along a primitive in the
neighbourhood of #=0. Thus the primitives seem to cut
7=0 at an angle. In fact near »=0, du was of the order
Vdz excepting for small displacements in the direction of
u=0 at the point. Thus ZZ is generally infinite for =0,
or the distortion produced by the new representation is so
great that all curves cutting #=0 in the original will cut it
at right angles now. Only those touching it will cut it at a
smaller angle, and those that had a yet closer contact will
appear to touch it. And, returning to the original, when we

remember that dr is of the order l for all directions of dis-

dz Vdz
placement but one coinciding with 7=0, we shall see that
a solution of the cquation

dr _ dy
dz dz
must have the direction given by »=0. So considered, the

=0

apparent absurdity of saying that 3; - g“:; =0 is satisfied by

r=0, %
son gives for getting rid of envelopes can be explained on
exactly similar principles; it differs chiefly in this, that he

has made a rather more general supposition as to the origin of

= (, passes away. And the preparation which Pois-

the alternative values of Zz
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30. We might have expected (IV.). The equation for%,
obtained by differentiating the differential equation after

solving for %, must give the value of (ﬁg alike for the par-

ticular primitive at the point and for the singular solution.
And we should not expect these two values to be obtained by

giving alternative values to the functions in gz whose values
are not unique, since such functions will naturally have
unique values on the singulz:r solution. Thus we should
dy

7 would give an indeterminate

expect that the equation for
result.

We may remark in conclusion that we ought to expect no
such anomalies in the solution of difference-equations, as they
all arise from change of independent variable, a thing which
cannot occur in Finite Differences excepting in the simple
form of change of origin.

The Principle of Continauty.

31. We have seen that the great distinction between the
subject-matter of Difference- and Differential Equations is,
that the law of Continuity rules in the latter and not in the
former case. Hence we cannot expect that the results of the
former will always be represented in the latter, and we have
already dwelt upon cases in which they are not. It will not do
to look on the Ditferential Calculus as a case of the Difference-
Calculus, subject merely to the stipulation that the differences
are infinitesimally small—while the latter deals with the
ratios of simultancous increments of the dependent and inde-
pendent variables, the latter deals with the limits which
these ratios approach when the increments are indefinitely
small—and unless they approach definite limits the case can
never be in the province of the Infinitesimal Calculus, how-
ever small the differences be taken. We shall now examine
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the conditions under which a point-system will merge into
a curve, and apply our results to the case of solutions of a
difference-equation.

32. Itisa familiar but a partial illustration which presents
a curve as the limit to which a polygon tends as its sides are
indefinitely increased in number and diminished in leagth.
Let us suppose the differences of the value of the abscissa z
for the successive points of the polygon to be constant, the
law connecting the ordinates of these points to be expressed
by a diffecrencc-equation, and the corresponding law of the
ordinates of the limiting curve to be expressed by a differ-
ential equation.

Now there is a more complete and there is a less com-
plete sense in which a curve may be said to be the limit of

a polygon.

In the more complete sense not only does every angular
point in the perimeter of the polygon approach in the trans-
ition to the limit indefinitely near to the curve, but every
side of the polygon tends also indefinitely to coincidence with
the curve. In virtue of this latter condition the value of

2';/:- in the polygon tends as Az is diminished to that of
ZZ in the curve. It is evident that this condition will be

realized if the angles of the polygon in its state of transition
are all salient, and tend to o as their limit.

But suppose the angles to be alternately salient and re-
entrant, and, while the sides of the polygon are indefinitely
diminished, to continue to be such without tending to any
limit in which that character of alternation would ceasc.
Here it is evident that while every point in the circumference
of the polygon approaches indefinitely to the curve, its lincar
elements do not tend to coincidence of direction with the

curve. Here then the limit to which 2—‘1 approaches in the

polygon is not the same as the valuc of :il!:;l: in the curve.
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33. If then the solutions of a difference-equation of the
first order be represented by geometrical loci, and if, as Az
approaches to 0, these loci tend, some after the first, some
after the second, of the above modes to continuous curves;
then such of those curves as have resulted from the former
process and are limits of their generating polygons in re-
spect of the ultimate direction of the linear elements as well
as position of their extreme points, will alone represent the
solutions of the differential equations into which the differ-
ence-equation will have merged. This is the geometrical
expression of the principle of continuity.

34. The principle admits also of analytical expression.
Assuming h as the indeterminate increment of z, let v,, ...,
Y. be the ordinates of three consecutive points of the
polygon, let ¢ be the angle which the straight line joining
the first and second of these points makes with the axis
of x, yr the corresponding angle for the second and third of
the points, and let 4 —¢, or 6, be called the angle of con-
tingence of these sides.

Now,
tan ¢=w, tan«[f= Yeron "'ym’
h h
Yz = Yemr _ Yrn " Yo
fan 6 = yh Y. ¥ hy

Jxsh — Jg Tasor T Jran

S

y’m - 2yz+h +_3/_=

h

B Yerr = Yn Yeson = Yusn
1+ A 3

Now, since h = Az, we have
Yoo — Y= = BY,,
Yesn— 2 + ¥, = A%,
Yerr = Yurn = BY. + A%,
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Therefore replacing y, by v,

Ay

Az
Ay\' | By A%
14 (52) +52 a2
Now the principle of continuity demands that in order
that the solution of a difference-equation of the first order
may merge into a solution of the limiting differential equa-
tion, the value which it gives to the above expression for
tan 6 should, as Az approaches to 0, tend to become infini-
tesimal ; since in any continuous curve or continuous portion
of a curve tan @ is infinitesimal. Again, that the above ex-
pression for tan 6 should become infinitesimal, it is clearly

tan 6 = (A).

2
necessary and sufficient that %—% should become so.

35. The application of this principle is obvious. Sup-
posing that we arc in possession of any of the complete
primitives of a difference-equation in which Az is indeter-
minate, then if, in one of those primitives, the value of Az

2
being indefinitely diminished, that of Ay tends, independ-
°© Az
ently of the value of the arbitrary constant ¢, to become infini-
tesimal also, the complete primitive merges into a complete
2,
primitive of the limiting differential equation; but if %%
tend to become infinitesimal with Az only for a particular
value of ¢, then only the particular integral corresponding to
that value merges into a solution of the differential equation.

36. We have seen that when a difference-equation of the
first order has two complete primitives standing in mutual re-
lation of dircct and indirect integrals, each of them represents
in geometry a system of cnvelopes to the loci represented
by the other. Now suppose that one of these primitives
should, according to the above process, merge into a com-
plete primitive of the limiting differential equation, while
the other furnishes only a particular solution; then the
latter, not being included in the complete primitive of the
differcntial equation, will be a singular solution, and retain-
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ing in the limit its geometrical character, will be a singular
solution of the envelope species. Hence, the remarkable con-
clusion that those singular solutions of differential equations
which are of the envelope species, originate from particular
primitives of ditference-equations; their isolation being due
to the circumstance that the particular primitives of the
difference-cquation, obtained from the same complete primi-
tive or indirect integral by taking other values of the arbi-
trary constant, not possessing that character which is required
by the principle of continuity, are unrepresented in the solu-
tions of the differential equation*.

- N o dy (dy)"
37. Ex. The differential equation y= o+ (ZE) has

for its complete primitive

y=cx+c (42),
and for its singular solution, which is of the envelope species,
==k (43).

It is required to trace these back to their origin in the
solutions of a difference-equation. 1st, Taking the difference
of the complete primitive, Az being indeterminate and ¢ a
mere constant, we have

Ay =cAxz.

Hence ¢ = %, and substituting in the complete primitive,

* It must be remembered that in all this we take no notice whatever
of the peculiarities arising from the periodicity of the arbitrary constant.
The extent of the periodic variations of this constant are wholly indepen-
dent of the magnitude of Az, so that they remain the same however small it
be, and thus would prove absolutely fatal to the continuity of the resulting
curve were C not taken as an absolute constant. But this is in reality no
limitation. For we do not pretend that point-systems can ever become
continuous curves, but they may form the angular points of a polygon of
which the curve is the limiting form. Change cannot be continuous in the
difference-calculus so that ¢ might be considered an absolute constant since
it is constant with reference to the fundamental operation A. It is solely
because we wish to embrgce also the operation D (implying continuous
change) in our investigations that we adopt the fiction of C varying con-
tinuously subject to the condition of being & periodic constant.
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we have
A
y=a% y ( AZ) (44).

This is the diﬁ'erence-equatlon sought.

Taking the difference of (41), Az being still indeterminate
but ¢ a variable parameter, we have as in Ex. Art. 3,

Ac+2¢=— (z + Ax),

a difference-equation for determining ¢, and by precisely the
same mecthod as in Ex. Art. 3, we arrive at the solution

5- h z*
bty

. ho(—=1) z* .
=c'— ————6(2 )+16 i (45).

It results then that (44) has for complete primitives (42)
and (43), h being equal to Az.
2ndly. To determine tan @ for the primitive (42), we have
Ay =cAz, A'y=0,

whence, substituting in (A), we find tan§=0. Thus the
complete primitive (42) merges without limitation into a com-
plete primitive of the differential equation.

But employing the complete primitive (45), we have

x 2
Ay =ho (=1 — 2x714+ A ’

Aty =—2he (— 1)t —%.
Hence

AY_ (-1t
Aw—_2c( 1) 5-
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Now this value does not tend to 0 as & tends to 0, unless
¢=0. Making therefore ¢=0, 2=0, in (45), we have as
the limiting value of ¥

z
y=- —47 ’

and this agrees with (43).

Thus, while the complete primitive of the differential
equation comes without any limitation of the arbitrary con-
stant from the first complete primitive of the difference-
equation, the singular solution of the differential cquation
is only the limiting form of a particular primitive included
under the sccond of the complete primitives (45) of the
difference-equation. Gceometrically, that complete primitive
represents a system of waving or zigzag lines, each of which
perpetually crosses and recrosses some one of the system of

parabolas represented by the equation
., A 2
y=c + 6 %

As h tends to 0, those lines deviate to less and less distances
on either side from the curves; but only one of these tends
to ultimate coincidence with its limiting parabola.

38. As the nomenclature of this chapter is not very simple it may be
useful to recapitulate the various kinds of solation that a difference-
equation of the first order and nth degree may have:

L (Izggi‘f;s:‘;lﬁ’:::;?ve solutions involving an arbitrary constant from
which the equation can be derived, and which can be derived from it. The
two classes of solution are the same in their relation to the cquation ; any
one may be chosen as complete primitive, and the next become indirect
integrals, Arts 15, 16.

II. Complete primitive (in the less strict sense of the word)
Component primitive solutions
Derived primitive

which do not give to Au, all the freedom it may have, but which still allow it
such values only as the difference-equation also permits. All these classes
of solutions have the same relation to the equation, they are derived or
component in relation to one another. Sets of n such equations granting to
Au, all the alternative values permitted by the equation form the only
complete solution that most equations have, and if the members of any
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such set be called component primitives, all other solutions can be considered
a8 derived primitives. Arts, 11—13.

III. Singular Solution
Multiple Integral f See Art. 21.

EXERCISES.

1. Find a complete primitive of the equation
(Au,—a) (Au,—8) =0

which shall satisfy the equation Au, —a = 0 only when z is a
multiple of 3.

2. The equation

B )
y= 2z+'1'(“" tort1
is satisfied by the complete primitive y =ca*+¢* Shew that
another complete primitive

y=focr-g-2

may thence be deduced.

3. Shew that alinear difference-equation with rational and
integral coefficients admits of only one complete primitive.

4. The equation
Ay )’ w Ay 2, _
(a—-l ta a—1_¢ y=0

has y =ca®+¢" for a complete primitive. Deduce another
complete primitive.

5. Ifuu,, = w—%’ shew that

according as z is odd or even.
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6. Obtain from the difference-equation y=wAy+-Z—;

the indirect integral

=240 (r]) 1.3.....x

Y=178.00 w—2ma+2 b= I)thenmlsodd
_1.3.....(z=1)  2.4...2 .
A R . 2)0+1 5 (z_l)m(lwhenxlseven,

and trace the derivation of the singular solution of the dif-
. . dy m .
ferential equation y == de T % therefrom*.
dz

7. From the difference-equation u=2zAu + (Au)’ has
been derived the indirect integral
3

= {a(—1)=—%}'—§-;

shew that, assuming this as complete primitive, the equation
% = cx + ¢’ results ag indirect integral.

* Here we need not change Az, but may keep it unity, and suppose
that z, y, m, are all infinite and of the same order, since the equation is
lLiomogeneous in z, ¥, and a constant other than that of integration. Sub-

o n
stituting in the usual way A/27n (2) for E we shall obtain

mC' T 1

A? Yoz = E C m )
nnd as the work will have shewn that C must be of the same order as

»\/ s0 that the terms of this expression are finite, the condition of conti-
E

nuity becomes
"‘29 Tl oorc= ,\/1,
z C,Jrz mr

whence y,, =2 A/2maz, i.e. the point-system becomes the curve y?=4mz.
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8. The equation u,,, = (1 +u,) is satisfied by
%, =@+ o),

deduce thence a cycle of three complete primitives.

9. Form the difference-equation whose solution is the
system of alternate equations

y—cz+a'=0
cy—x+2'=0)’

and also form a difference-equation of the first order whose
complete solution is one of the derived integrals of this
equation.

10. Shew that if instead of putting equal arbitrary
constants in (V,—c¢) (V,—¢c,) ..... =0 we put them alter-
nately positive and negative, but of equal numerical value,
the resulting differential will be the same, but the resulting
difference-equation will be different.

11. Shew that the solution y = 0 of the equation

dzx o

is analogous to the singular solutions of difference-equations
spoken of in Art. 21.

3
(‘Z—-’/) — day 33-/ +8y*=0 (Boole, Diff. Eq, Ch. Vi)
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CHAPTER XI.

LINEAR DIFFERENCE-EQUATIONS WITH CONSTANT
COEFFICIENTS,

1. THE type of the equations of which we shall speak in
the present chapter is
u,

T4n +A1u’l’+u~l+ s +Aﬁus =X (1)’

where 4, 4,,...... A, are constants and X is a function of
the independent variable only. This form will manifestly
include the form

Au,+ A A u, + ..., +Au,=X (2),
and may be symbolically written
S(E)u,=X 3)

where f(E) is a rational and integral function of E of the
n" degree, with unity as the coefficient of the highest term,
and with all its coefficients constant.

2. Now we know from (10) page 18 that £ = ¢, so that
we might write (3) in the form

f@)u=X (4),

and consider it a linear differential equation of an infinite
degree and solve it by the well-known rules for such equa-
tions. The complementary function would then have an
infinity of terms of the form Ce™ where m would be deter-
mined by the equation f(e") = 0; and to this we should have
to add a particular wntegral obtained either by guess or
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by special rules depending on the form of X. But we shall
not adopt this mode of procedure, and that for two reasons.
In the first place we have to face the difficulty of an equation
of an infinite degree, or rather of an equation that combines
the difficulties of transcendental and algebraical equations;
and though we know from experience of Ex. 2, page 79, that
these difficulties are more apparcnt than real, and that the
infinitude of roots merely signify that the constants obtained
are periodic and not absolute constants, the method still is
open to the objection of being unnecessarily complex and
intricate, But therec is a more important reason for not
adopting this method. The problems of Finite Differences
are really phenomena of discontinuous change, the variables
do not vary continuously but by jumps. And a method is
open to grave objection that treats the change as a con-
tinuous one the results of which are inspected only at certain
intervals. At all cvents such a method should not be
resorted to when the direct consideration of the operations
properly belonging to the Difference-Caleulus suffices to solve
our problems.

3. We have seen in Chapter II. that £ and A like D
will combine with constant quantities and with one another
as though they were symbols of quantity. And thus f(E)
when performed on the sum of two quantities gives the
same result as if it were performed on each and the results
added. Hence if we take any two solutions of the linear
difference-equation

f(B)u,=0 (3)

the sum of these solutions will also be a solution.

Also any multiple of a solution is obviously a solution.
So that if we can obtain n particular solutions V, V...V,
connected together by no linear identical relation, then will

U, = 01V1+ 0;[’,-[— ---+C"T/; (6)

be a solution, and in virtuc of containing n arbitrary constants
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it will be the most general solution*. We shall now proceed
to find these particular integrals and shall then have solved
equation (5), which is the form which (1) assumes when

4. Let f(E)=0 bave as roots m,, m,, ..., m,; E being
treated as a symbol of quantity. Then we know that

FE) = (E-m)(E~m) ...(E~m,) ),

whether Z be a symbol of quantity or of operation, so that
we may write (5) thus,

(E—m)(E—m,)...(E—-m)u,=0 (8),

where E—m,, ... denote successive operations the order of which
1s indifferent. But if we solve the equation (E—m,)u, =0
we obtain a particular solution of (8), since the operation
(E—m) (£—m,)...(£—m,,) performed on a constant of
value zero must of course produce zero. Putting in turn
each of the other operational factors last, we obtain other
particular integrals, and thus when the roots are all different
we shall obtain the n particular integrals V,, V...V, (which
give us by (6) the gencral solution) by solving n separate
cquations of the form

(E—m)u,=0 )

5. But if one of the roots is repeated—say r times—this
method fails; for » of the solutions would be in point of fact
identical or merely multiples of one another. But if the
said root be m, and we take the full solution of the equation

(E—m)u,=0 (10),

(involving, as it will, 7 arbitrary constants), instead of taking
the solution of the corresponding case of (9), we shall have
as before the right number of arbitrary constants and there-
fore the most general solution.

* It must be noticed that in linear equations with constant or rational
coefficients, there are no difficulties arising from alternative values of the
increments of the dependent variables as in the cases which formed the
subject of the last chapter. The value given for all successive differences is
strictly unique, so that but one complete primitive exists. See note on

page 181. .
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6. We have thus reduced the problem of solving (5) in
all cases to that of solving a number of separate equations
of the form

(B —m)u,=0 (11).
But (sec note page 73)
f(E) v, =a"f(aE)u, (12);
hence
(E — m)"u,=m* (mE —m)"m™u, =m""A"(m™u,) =0 by (11);
SAT(mu)=0, omTu,= C+ Cz+ Cx* +... C,_a™"

since the 7t difference of such a function vanishes ; and thus

u,=(C,+ Cz+... + C_z")m” (13).
Thus the general solution of (5) is
u,=2% (C,+ Cz+... C,_a " )m” (14),

where 7 is the number of times the root m is repeated in the
equation f (E) = 0.

7. We will illustrate the foregoing by an example. Let
the equation be
Ugyg— By, — 2u, = 0, (15),
or (£°—3E ~2)u,=0.
This is the same as
(E+1)* (E-2)u,=0,
and thus the solution of (15) is
u,=(C,+ Cz) (—1)*+ 02" (16).

8. A slight difficulty presents itself here—not in the
theory of the solution, but in the interpretation of the result.
It would seem as if we must content ourselves with results
impossible in form whenever the roots of the equation for &

14—2
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are impossible. This may be avoided thus. Impossible
roots occur in pairs so that with any term Cz” (a + 8/ —1)*in
the solution, corresponding to a root (2 + B/ — 1) repeated at
least (r+1) times, there will be a term C'z" (a — B/ —1)%
Assuming

a+,3~/—1=p(cos€+./ —1siné),

which gives

p=na+ 5, tan0=’§,

a
the terms become

@'p® | C(cos #0 + / —1 sin z6) + C" (coszf — \/ — 1 sin z6)},
or a'p” {M cos 20 + N sin z€},

where 2 and IV are still arbitrary constants. Thus the part
of the solution of f (&) u,=0 that corresponds to the pair of

impossible roots a + 84/ — 1 repeated 7 times in f (E) =0 is

M +Ma+...+ M, _z") p*cos zf
+(N,+ Nz +...+ N, 2™ p®sin 26,

which has, as we see, the right number of constants.
Ex. 1. Let the equation Le
Upyq + 2thy,y + 1, =0 (17),
or (B*+ 1) u, =0.
The roots of f(E)=0 are 1, and 1_"—':28” , each repeated

twice, the solution is therefore

Cot o+ (M, + Mg) cos " + (N, + N,z) sin 5 (8,

since p =1 and tan 6 =./3.

9. We have thus obtained a solution of the most general
form possible of the equation f(E)u,=0. We shall now
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proceed to the more general form of equation which we
chose as the subject of this chapter, viz.

f(E)u=X (19).

But our past work stands us here in good stead. For if to
any solution of this equation we add a solution of £ (&) u, =0,
the result of performing f () upon their sum will be X +0
or X (see Art. 3). If then to a particular solution of (19)
we add the general solution of (5), we shall get a solution
of (19) involving n arbitrary constants, and which must
therefore be the most general solution of (19) possible.

Our task has therefore reduced itself to finding a particular
integral of (19). And our first thought is to try if we cannot
obtain it by a device similar to that which gave us the solu-
tion of (5)—in other words, deduce it from the solutions of
simpler equations. At first sight the method seems wholly
to fail. For if we solve (£ —m,)u,=X and obtain the solu-
tion X, it is no longer a solution to the full equation. On
performing £ (£) upon it, we obtain

(B—-m)(E-m)... . E—m, )X (20),
which involves X and its next n — 1 consecutive values.

Similarly if we find X, the solution of (£—m,)u,=X, we
should obtain, on performing f(E) upon it,

(E—m)..B=m,) (B=m)..(E—~m) X (21).

10. But a modification of our former method will still
give us an integral. Instead of taking merely the solution
of one of the simpler equations, take those of all and com-
bine them by multiplying each by a constant and adding the
results. If we perform f(E) on p X, +p,X, +...+p, X, —
the roots of £ (£) =0 being for the present supposed all dif-
ferent—we shall obtain the quantity

{u,(E =my)...(E—m)+ p,(E—m)(E—m)..(E—m,) +...
tp(Bom)B-m N X @2)

And if by choosing u,, g, ... s, aright we are able to make
the coefficients of all the ’powers of E in (22) vanish and the
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term independent of E become unity, we shall have a solu-
tion of (19) in
v, =p X, +p X, + ... pX, (23).
To do this we must have
(B m).. (E—m) +py (E—m) (B=m)...(E~m,)
+ .. =1 (24),
when E is treated as o symbol of quantity. This proviso

enables us to divide with confidence by f(E), and we see
that

EemtEemt Y P
or in other words p,, p,,... are the numerators of the partial
Jractions into which ]'(IES can be resolved.

11. Nor will this method fail when a root is repeated.

Let a root m, be repeated r times, then if we use for
X, Xo1yee-Xepry, the solutions of the equations

(E"mt)’uz':Xn
(E—mYyu =X

we shall have for the corresponding values of g the nume-
rators of the partial fractions forming 7 (IE) , whose deno-
minators are

(B -m,), (E-m))>, ...,(E—m,).

Thus we have reduced the solution of (19) to that of the
equation

(E-m)u=X (26),
which we can write by (12)
mA" (mu,) =X ;
Somtu,=3m™ X,
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or u,=m" 3 m*" X,
and (19) is fully solved.

And a little further consideration shews that this last
investigation renders unnecessary that in Arts. 2—5, which
suggested it. For in each of the quantities X, X,...X,
there is a term involving an arbitrary constant, and of the
form Cmj? Cmy, .... If we include these in the values of
X, ... which we substitute in (23) we get the general solution
at once®.

12. Let us examine the results at which we have arrived.
From the equation f(£)u=X we have deduced

uz = I'l’le + e + ’Lan (27)’

where X, X,... are the solutions of (£ —m)u,=X and
kindred equations, and pu,, m,...are the coefficients of the
partial fractions into which FE) is resolved when E 1s con-
stdered a symbol of quantity. But it is natural to ask,—
Could we not have obtained this at once by symbolical
methods, thus :—

=t x={ P
"‘"f(E)X"{E—ml’L"‘ +E—m.}X (28).
But, since X, is a solution of (£ —m,) u, =X,
— X o
Xx - E’_‘_—"L“l (-9),
couy=p X X w.X, (30),

agreeing with (27).

* It might seem that we shall get more than sufficient constants by this
method when roots are repeated. For (E —m)u,=z will give r constants,
and (E — m)—lu,=z will give r — 1 additional ones, while ‘there _should
only be 7 in all. But since all the solutions of the equation (E ~m) u, =0
are solutions of the equation (E —m)u,=0, and all the terms which we are
considering come from these last equations, we neither gain nor lose in
generality whatever solution of (K —m)u,=0 we take, provided we take the
full solution of (E - m)ru,=0 which gives r arbitrary constants.
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13. At first sight this method seems justified by the
properties of & proved in Ait. 9; Ch. 1. And there is no
doubt that, as far as suggestiveness is concerned, such an
application of symbolical methods is all that could be
desired. But as it stands it is not rigorous. So long as
our operations are direct we may place absolute reliance on
symbolical methods, for the results of the operations are
unique, and hence equality in any sense must mean alge-
braical equality. But so soon as any of the operations are
indirect, further investigation is needed. The results of the
indirect operations are not, in an algebraical point of view,
definite, and we must carefully examine each case in order to
discover the conditions of interpretation of the results that
there may be algebraical equality. For instance,

(E-a)(E-D)u,=(E-b)(E—~a)u, (31),

1 1
but (£ — a) ot does not equal F=a (E-a)u, (32),
since the left-hand side is definite and the right-hand side
has an arbitrary constant. And, while the first may be taken
as an equivalent of ., the latter is only so when we stipu-
late that the constant in the term Cu? resulting from the

performance of E}-:L’ shall be taken zero. One difficulty

of this kind we met with at the beginning of Chapter 1v., and
we shall content ourselves with investigating the present one,
leaving all future cases to the student’s own examination,

14. Take then (28). Since w, is not considered a definite
quantity, but as a representative of all the quantities that
satisfy (19), there is no absurdity in representing it as equal
to the quantity on the right-hand side of (28) which has n
undetermined constants. All we have to ask is, whether on
performing £ () on the right-hand side of (28) we shall obtain
X; and, this last being a perfectly definite quantity, while
the right-hand side of (28) is indefinite, we might expect that
some conditions of interpretation would be neccessary in (28)
to render the equivalence algebraical. But it is not so. For

on performing f(£) on the first term, viz. E—F,—{(—a,the opera-
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tion (E—a), which is one of those composing f(E)*, is
absorbed in rendering this indefinite term strictly definite,
so that the whole result of performing f (%) on it is strictly
definite. Thus the result of performing f(£) on the right-
hand side of (28) is a strictly definite quantity, and as under
some circumstances it must equal X (which we know from
the laws of the symbol £), it must be actually equal to it+.

Ex. 2. Uy g — Uy, + Ou, = 5%;
or (& —3) (F—2)u,=5%

SV S N N _1_}5=
"“"(E-—3)(E—2)“{E—3'E—2

1., e Loe wor_ 1y x| (Vor
‘25 +C3 —35 +C'2 '65 + C3* 4 C'2°.

15. The above is a general solution of linear difference-
equations with constant coefficients. But, as we have seen
that the part involving arbitrary constants is readily written
down after the algebraical solution of the equation f(E)=0,
and that any particular integral will serve to complete the

* It must be remembered that thesc operations being direct it is wholly
unimportant in what order we perform them.

+ While it is true that f (E) 35% +. ; X=X whatever Xmay, it is by
=M

no means true that § - f‘ml . %f(E)X:: X. The importance of care in
this respect if we would avoid loose reasoning may be exemplified by an
example. In Lincar Differential Equations such a quantity as czs;z: is
often evaluated thus:
cosmzr _(D~a)cosmz -msinmzr—acosme _ —msinmz—acos me
D+4a ~  Di-a® D3 —q? - ~m$ —a?

. The first step with the interpretation afforded by the second is wholly
inadmissible :

It should be thus:
cosme cos mz cosmz  —msinmz - a cos mr
D¥a (D"a)3D'-d'$=(p‘a)-m’—a‘= —mi-ad
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solution, it is usually better to guess a particular integral, or
at all events to obtain it by some special method.

The forms of X for which this can readily be done are
three, viz.

(I) When X is of the form a®. Since f(E)a”= f(a).a"
1 =
CH

we obviously have =~ o®
i)

(IL) When X is a rational and integral function of .
Here we have only to expand f(E) in a series of a,scendin%
powers of A, and perform it in this shape on X. The result
will of course terminate, since X is rational and integral.
Should f(£) when expressed in terms of A assume the form
A" (4 + BA + ...), we must evaluate ‘;i, or 37X before apply-
ing this method, or may omit the factor A™, apply the
method, and then perform 3" on the result.

(III.) When X is of the form a*¢ (), where ¢ (z) is a

rational and integral function of 2. Here the formula
 (B)a*$ (@) =a*f(aE) ¢ («) gives us
1 ., P |
"?(—E‘)a $(z)=a F (aE) ¢ (),
which comes under our second rule.

Sin maz and cos ma are really instances of (L), though the
results will be given in an impossible form.

16. Special cases of failure of these rules will occur, as in
the ‘analogous cases in differential equations. We shall con-
clude the Chapter with two examples of this.

Ex. 3. (E—-a)(E—b)u,=a"
Here f(@)=0; .'.7%=oo.

* Its determinateness will serve as our warrant for its truth.
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But we may in this case proceed thus:

_ a . 1
Y=TE—a)E—b) * (aE—a)(ak—b)

by (IIL)

_an: 1 _az—l z
TV aA(a—b+ald) = a—-b+ad’

which comes under (IL).

Ex. 4. (E-2)*(E-1) v =a2"
This will be done in a precisely similar way :
— 9% z —oress T
%=L e R~ 2 X112

60

17. In a short note in Tortolini’s Annali (Series 1. vol. v.) Maonardi
gives a solution of the linear difference-equation with eonstant coefficients
that does not require the preliminary solution of the algebraical equation for
E, but the results do not seem of much value.

=273} (2 — 4z + 6) = 27 {‘f—m - _a:g’ + a:"”} .

EXERCISES.

Solve the equations :

1. w,,—3u,, —4du,=m"

20 U, tdu,, t+d=2

8 Uppyt ey, + Uy = (2= 1) (0 —2) + 2 (~ 1),
4 u,,—2mu, + (m®+n")u,=m"

5. Au,+A%,=x +sin .

6. wu,, —6u,, +8u,, —3u,=2"+(—3)

7. A, —5Au,+ du, =27 (1 +cosz).

8. A%, —2A%,=x+3"
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9. wu,,+n'u,=cosmz.
10. u,,, + 2n'u,,, +n'u,=0.

11. A person finds his professional income, which for the
first year was £a, increase in A.P.,, the common difference

being £5. He saves every year % of his income from all

sources, laying it out at the end of each year at r per cent.
per annum. What will be his income whon he has been z
years in practice ?

12. A seed is planted—when one year old it produces
ten-fold, and when two years old and upwards eighteen-fold.
Every seed is planted as soon as produced. Find the number
of grains at the end of the o™ year.



CHAPTER XII

MISCELLANEOUS PROPOSITIONS AND EQUATIONS. SIMUL-
TANEOUS EQUATIONS.

1. SINCE no class of equations of an order higher than
the first have been solved with the completeness which
marks the solution of linear difference-equations with con-
stant coefficients, it becomes very important to find what
forms of equations can be reduced to this class. The most
general case of this reduction is with regard to cquations
of the form

L ‘A1¢ (‘”) Ugpny + A2§b (w) ¢ (‘” - 1) Usging
+Aa¢ (w)¢(w"1)¢(w'2) Ugips T oo =X (l)v
where 4, 4, ... 4 arc constant, and ¢ (z) a known function.

These may be reduced to equations with constant coefficients
by assuming

Uy =¢(@—1)¢ @—n—1). ()2, @.
For this substitution gives
U, =P (@) (=1 p(@—2) ... § (1) Uy
Uerny = (2 —1) P (2—2) ... § (1) Varpys
and soon; whence substituting and dividing by the common
factor ¢ (2) d (x—1) ... P (1), we get,

X
'U“‘ +A1'U,+,._1+Agv:+n-g + ... —4’ (-Z) ¢ (gc— 1) .es ¢ (1)

3

an equation with constant coefficients.
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In effecting the above transformation we have supposed z
to admit of a system of positive integral values, The general
transformation would obviously be

U=¢@—n)¢@-n=-1)...4 (),
r being any particular value of z assumed as initial.
Equations of the form
U, + A4, +A405%, +.. =X,

are virtually included in the above class. For, assuming
¢ (x) = «®, they may be presented in the form

u'z-m+Ax¢ (x) u¢+n-1+Ana’¢ (.’l:) ¢ (w— 1) u:un—i+ e = X
().
Hence, to integrate them it is only necessary to assume
U, = a{lrFrHEm} v,
(z=n) (z-n+1) 5

=a ' (5)-

2. By means of the proposition in the last article we
can solve all linear binomial cquations. Let the equation be

Up,+ A, = B,. (6).
Assume
A,=v0, , ...0 ., ™.

Take logarithms of both sides and let log v,_,,, = w,, then
we have

Wepgs F Wy gt oo +w,=log 4, (8),

a linear difference-equation with constant coefficients. Solving
this we obtain w, and thence v,, which enables us to put (6)
into the form

UVent Uo=X ©
by Art. 1, and thus the equation is solved.

Such equations are however substantially equations of the
first degree, and should be treated as such. They state a



ART. 4.] SIMULTANEOUS EQUATIONS. 223

connection between consecutive members of the series u,,

Upns Ypags -++, and leave these last wholly unconnected with

intermediate values of u. We should therefore assume z = ny
and the equation would become a linear difference-equation
of the first order, the independent variable now proceeding
by unit increments.

3. Equations of the form
Uy, Uy + AU, DU, =, (10)

can be reduced to linear equations of the second order, and,
under certain conditions, to linear equations with constant
coefficients*,

Assume

v,
u,=-"=t_gq

%
z

Then for the first two terms of the proposed equation, we have

v, v
= +2
Uy, (U + @)= (f_ - am) il
£2)

Whence substituting and reducing, we find
vz+2 + (bz - azu) /vz-n - (a’zbz + 0,,) v= = 0 (11)’
a linear equation whose coefficients will be constant if the

functions b, — a,,, and a,b, + ¢, arc constant, and which again

by the previous section may be reduced to an equation with
constant coefficients if those functions are of the respective

forms
A¢ (z), Bé (x) ¢ (z—1).

4. Although linear difference-equations with variable
coefficients cannot generally be solved, yet, in virtuc of their

* Should ¢, be zero the equation is at once reduced to a linear equation of
.1

the first order by dividing by u, 4,4, and taking & 88 our now dependent
t 7

variable,
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linearity, they possess many remarkable properties akin to
those possessed by lincar differential equations, and which
under certain circumstances greatly facilitate their solution.
One of these properties is stated in the following Theorem.

THEOREM. We can depress by unity the order of a linear
difference-equation

v, . +Au,  +Bu, + ...=X (12),
1f we know a particular value of u, which would satisfy it were
the second member 0.

Let v, be such a value, so that
Vot A0+ By + -0 =0 (13),
and let u, =v,,; then (1) becomes
Yorabern + Arinborns + Blrrpstisnat - =X
Or vt +4Ap,,, B+ By, B, .. =X
Replacing E by 1 + A, and developing E*, E™, ... in

ascending powers of A, arrange the result according to as-
cending differences of ¢,. There will ensue

(O KON X § A
+ PAt, + QA™, ... + ZA%, = X.

P, Q,...Z being, like the coefficient of ¢%, functions of v, v,,,,
&e. and of the original coefficients 4,, B, ....

Now the coefficient of ¢, vanishes by (13), whence, making
At, =w,, we have

Py, +QAw, ... + ZA"'w,= X,

a difference-equation of the # — 1" order for dctermining w,*.
This being found we have

t.=3w,; .. u =v3w,

* That the supposition u,=1v,t, would lead to a differcnce-equation of the
(n—l}“l order for At, is obvious from & priori eonsiderations. For the
complementary function of (12) contains a term Cuv,, hence the full value of
t, contains a term C, and thus the full value of At, contains only n—1
arbitrary constants, and it must therefore be given by an equation of the
(r—1)* order. That this equation will be linear, follows from the fact that
the full value of t, is linear in the constants of integration.
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5. We shall demonstratc the Theorem of the last Article
by another method, which shews more clearly how the pro-
perty in question depends on the lincarity of the equation;
and this sccond method will teach us how to extend the
Theorem to the case in which more than one solution is
known.

It was shewn in the last Chapter that lincar differcnce-
equations of the ™ order had solutions of this form:

u,=CU,+CV.+... +1 (14),

where C,, C,, ... are arbitrary constants, X,, X, are functions
of z, and I1s a particular integral; also, the part involving
the arbitrary constants is the solution of the equation formed
by putting 0 for X in (12).

Change z into z +1 and eliminate C, between the cjua-
tions, obtaining

{E— Z{j*} wy= OV 4 o + T (13),
suppose.

Call gl}i‘ = M, where 2/, is of course a function of .

Proceeding as before we shall at length obtain
(B—-M)(E-M,_)...(E—DM)u,
= a quantity depending on I alone, and therefore
=X (16),

for the left-hand side must be identical with the first
member of (12), since, when equated to zero, they have
exactly the same solution.

Thus every operation denoted by an operating factor of
the form

E*+AE+ ... + N,

can be split up into n consecutive operations, denoted by
factors of the form E— M,; aund this can be done in many



226 MISCELLANEOUS PROPOSITIONS AND EQUATIONS. [CH. XII.

ways, for if we change the order of elimination we shall find
that we get wholly different operational factors.

Now suppose we know the first » of the quantities U, V,
then we know the last r operational factors. Assume

E-M)E-M_)..(E—-D)u,=0v, (17);
then v, is dctermined by the equation of the (n — 7)™ order,
(E-M)(E-M,).(E-M,)=X  (18).

This last cquation we shall now show can be obtained from
our knowledge of U,, V, ....

Let (17) when expanded be

(B"+P E-'+ ... +P)u,=v, (19);
or, what is the same thing, let the cquation whose solution is

CU.+CV,+...CZ, (20)
be E+PE? + ... +P)u,=0.

And let (18) when expanded be
(E"7+QET 4+ . + Qo ), =X (21),
Q, @, ... being the coefficients that we are secking.

Substitute for v, from (19), we must obtain (13) thercby,
and by cquating the coefficients of s, u,,,... of the result-
ing equation with their coefficients in (13) we shall obtain n
equations for the n—# unknown quantities, Q,, Q,.... We
shall thus obtain by algebraical solution of these equations
the coefficients Q,, @,.sQ.,. Thus v, is made to depend
on a linear difference-equation of the (n—7)* order. When
v, is known, u, can always be found, for the equation con-
necting it with v, is @n s resolved form, and can thus be
solved by successive steps, each consisting of the solution of
a linear equation of the first order. If m—1 independent
solutions be known the cquation is reduced to one of the first
order, and can therefore be fully solved. Thus we obtain the
more general Theorem.
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THEOREM*. We can depress by r the order of a linear
difference-equation

Upn + A + B+ ...=X (22),

if we know r tndependent solutions which would satisfy it were
the second member 0; and if we know n—1 independent solu-
tions we can solve the equation fully.

Ex, If a solution of

gy + Ay, + Bu, =0 (23)

be U, it is required to solve fully the equation

o+ Au,, +Bu,=X (24).

By the last Article equation (23) must be of the form
(B-1) (B~ %) ua=0 25

Ed

and on comparing the two forms we obtain P,. ZE‘f‘:lﬁ’,,

and therefore (24) may be written

(2-3. UZL) (- %-ﬂ)u =X  (20).

w41
The first step in the solution gives us

(5= em ) s

Sy ]

x+1

U'_. U=+1X 2
- R 2y e
Dividing by U,,,, summing, and multiplying by U,, we
obtain

u,=US {UUU (B,) [z U—f’;}ﬂ(‘l’i) + 0]} +CU, (29

z+1

* Mardi gives a proof of this theorem (Tortolini, Series 1. vol. 1.), and
especially considers the latter case.

15—2
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6. Certain forms of linear equations can be solved by
performing A upon them one or more times.

Take, for cxample, the equation

(@ + bz) A%u,+ (c +dz) Au, + cu, =0 (29)
and perform A™ upon it. By the formula at the top of
page 21,
Ay, = (EA + A)"w,p
we have
{a +b (z+n)} A™%u, + nbA™ u,
+{c+d(z+n)} A"y, + ndA™,
+eA™, =0 (30);

and if we take n——E, supposing that to be an integer,

we have a linear equation of the first order for A"y,

Ex. A%, + (z — 2) Au,—u,=0 (31).
Performing A on it we have
(x4 1) A%, + xA’u, =0,
which gives
c
Ay, = l_’;f (32);
s Ay =324 ¢ (33).
z
Substituting from (32) and (33) in (31) we obtain
= 4(2-2)13 % 4¢
2, ["” =5 +(z—-2) {.., |f + c} (34).

A more general form of this solution would be

4= s+ (o 2){ Fernt } (35).

The mecthod is due to Bronwin (Combd. Math. Jour. Vol. 111
and Camb. and Dub. Math. Jour. Vol. 11.).
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7. The solution of two very remarkable non-linear equa-
tions has been deduced by Prof. Sylvester from that of linear
equations with constant coefficients.

Let Uy + P,y + oo +pu, =0 (36)
be any such equation. Then writing it down for the next
n values of z

Upinss T Dilhasn + oo +Pathy =0,

ore

uﬂ-ﬂn +.plu=+tw-l +o pnuﬂ-’l =0.
Eliminating the quantities p,, p,, ... we obtain

Upins Ugyn_gsee Uy

Ugipyy veeonenes s | 0 (37)
bl

Ugygn veeverens Uy

an equation which must be satisfied by every solution of (36).
Now the solution of (36) is
u, = Aa*+ BB+ ... to n terms (38),
where 4, B, ... arc arbitrary and «, 8, ... depend on
Py P -+~ and these last do not appear in equation (37) which
we are now considering. Hence (38) will be the solution of

(37), a, B, ... being «lso considered arbitrary, thus making
the full number of 2n arbitrary constants.

By a slight variation in the method of elimination we can
obtain the solution of a yet more general equation. Taking
the last term of each of the cquations to the other side and
eliminating p,, p,,...p,,» We obtain

Ugype woreUsgyy Ugy Ugpn_gooerer Uy,
uz+n+1 """" =—p, Uy qyeoorerssasnsece
Uzson1esWepn Uppmagyesserenes Uz in
Uz pn-1 u‘ﬂ _eesese u,
Uy pooooeseoosnsscnns Uy, y
= (=0rpa | e I COZ
ux-wn-z . uz-m-x
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or calling the last determinant P,

P,,=(-1)p,P, (40),
the solution of which may be written
P, =C{(-1)p} (41).
Thus the solution of the equation (writing n + 1 for n)
Ugymevenenneraeenns u,
........................ e .
Uy +oovensnsensnens Cm (42)
’(‘ﬂ-zn’ uz+2"—|’ """ uz+n
is u,=Ao*+ BB+ ... ton+1 terms (43),

where A, B, ... and a, B, ... arc arbitrary constants limited
by the two equations of condition

m=afy...
and C =the determinant P for some value of «.
hIf we take this last-named value to be zero, it is evident
that

Aa..ccoennnnn. 1,1, 1, ......
o Y U o By oy eeennn
= | Aa, BB, Cy, ... | | coeereverenns
A4, B, C, .......
1,1, 1,..... 2
n(n-1)
=ABC... % B, 'y, x(-1) 3
[ A

= ABC ... product of squares of differencesof @, 3, v...
taken with the proper sign.

Ex. The equation
uu,,, —u'=C (44)
may be supposed to be derived from the equation
Uy + PU,=— 1, ,
which gives also
Uy + PU,, == U,
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Whence eliminating p we have

Uy — Uglhyy = U, — u_ ., and .. = constant,
since it is equal to its consecutive value.
Hence u, = Aq® + BF?, where aB=1,
and (da™ + BB™) (Aa+ BB)— (4 + B*=C;
. ABa* + ABB* — 24 Baf3 = Cap,
or C=4B(a—pB)"

Simultaneous Equations.

8. Instead of asingle equation involving one function we
may find that we have a system of n equations involving
n unknown functions of the independent variable. The
method by which we reduce this to the former casc is so
obvious that we shall not dwell upon it. We must by the
performance of A or ¥ obtain a system of derived equations
sufficient to enable us by elimination to deduce a final equa-
tion involving only one of the variables with its differences
and successive values. The integrations of this will give the
general value of that variable, and the equations employed
in the process of climination will enable us to express each
other dependent variable by means of it. If the coefficients
are constant we may simply separate the symbols and effect
the climinations as if those symbols were algebraic.

Ex. 1. U, —a'Ty, = 0}
v, — xu,=0)"

From the first we have
u,,—a (z+1)v,, =0.
Hence eliminating v,,, by the second
u,,,—az(z+1)u, =0,
the solution of which is
u=|z—1{Co"+C (-a)},
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and by the first equation
u,
v = Ea=(0a O (— )™}

Ex. 2. w,,, +2v,, —1u,=0 }

Vgpy — 2u, —v, =a°

This may be written
(E—=1u,+2Ey, =0,
—2u, +(E-1)v,=d";
“{(E-1)+4E}u,=—2Ea";
or (E+1)u,=—2a""

This gives
L’H

..4

w=(C+Ca) (~ 1)~ "

and from the first equation

20y, == Bu,= (20+0 (2w + 1) (~ D+ 220D,

a® (e—1)
(@+1)*

9. On the subject of linear equations with variable coefficients the student
should see a remarkable paper by Christoffel (Crelle, Lv. 281), in which he
dwells on the anomalies produced by the passage through a value which
causes the cocflicient of the first or last term to vanish, On the con-
dition that an expression in differences should be capable of immediate
summation, i.e. should be analogous to an exact diffcrential, sec Minich,
(Zortolini, Series 1. vol. 1. 321).

b= (0= G+ 0 (- 1+

EXERCISES.
Integrate the equations

1. w,,—au,,, + (zr—1)u,=sinz, one portion of the com-
plementary function being a constant,

2 Uy U F . +u,=0.
3. u,==(u,_, +u,,).

4. u,,=z(u +u,_).
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5. w,,=-2(z—1)u,+@-1)(z-2)u=2
6. wu,, el =a.
2 2
7. (x+3)'um—2(%f—flum+w—l)w(—’fi—2)u,=o.

8. Integrate the simultaneous equations
Uy — V= 2m (z +1) }

Uy =ty =~ 2m (@ +1)

9' uz+1+<—1)=vz=0}
vm+(—1)"u‘=0 '

10. Vyy—UuU,=(C—m)z
W, —v,=(m—n)z .

Uy, —w,=(n—Dzx

11. Ug,o+ 20, — 8y, =a”
Vppg — Ugyy — 20, =0 )

12. When the solution of a non-linear cquation of the
first order is made to depend upon that of a lincar equation
of the sccond order whose sccond member is 0 by assuming

w =" _

<=, %

(Art. 3), shew that the two constants which appear in the
value of v, effectively produce only one in that of «,.

13. The equation

Ussg ™ (a':ﬂ +a™) Ugyy + U= 0
may be resolved into two equations of differences of the first
order.

14. Given that a particular solution of the equation

z(z-1)

u,,—a @ +1)u, +a*u=0is y,=ca * ,

deduce the general solution, and also shew that the above
equation may be solved without the previous knowledge of a
particular integral, .
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15. The equation
u‘uz-l-lum =a (us + u=+1 + uzn)
may be integrated by assuming u, =/atanv,.

16. Shew also that the general integral of the above equa-
tion is included in that of the equation u,,, — 1, = 0, and hence
deduce the former.

17. Shew how to integrate the equation
u"ﬂ,u“’ + uﬂﬂux + uzu%l = m"
18. Solve the equations

Upy = (”'_' m’) v+ %, }
Voy = (2m +1) v+ u,,

and shew that if m be the integral part of W/n, %‘ converges

as & increases to the decimal part of J/x.

19. If a, be a fourth proportional to a, b, ¢, b, a fourth
proportional to b, ¢, @, and ¢, to ¢, @, b, and a,, b,, ¢, depend
i the same manuner on a,, ?),, ¢,, find the linear equation of
differences on which a, depends and solve it.

20. Solve the equation

z(z+1) A, + % (1 —2) Au, + ku, =0.
21. Solve the equation | u,,, %,,,, Uy,

Urigs Yzigy Urpg

Uzrgr Ugygr Unyy

considering specially the case when C is zero.

22. If v, v,7,, ... be a series of quantities the succes-
sive terms of which are connected by the general relation

=0,

vmﬂ = vl”m - vm—l ’

and if v, v, be any given quantities, find the value of v,. [S.P.]

23. If n integers are taken at random and multiplied
together in the denary scale, find the chance that the figure
in the unit’s place will be 2.
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24. Shew that a solution of the equation
UnynUpyn g oo Ug =0 (Ugpy + U, + ... )
is included in that of

Ursnsy = Uy = 0,

and is consequently
u, = Ca* + Cia® + ... + C, a"™™",

where a is one of the imaginary (n + 1)™ roots of unity, the
n+ 1 constants being subject to an equation of condition.

25. Solve the equation

Pn+l=Pu+Pn-l'Ps+Pn-2P4+ b +P8Pu—1+ Pn.’
and shew that it is equivalent to
4n—6
Pn+l = n Pn‘

[Catalan, Liouwtlle, 111. 508.]
26. Shew that
u,
Uay =, + %,

can be satisfied by u,, =,

xeg O %,,_, and that thus its solu-

tion 1s
3.5.7..(2=1)_ , 2.4.6..2z
Ue=C . @) T T 85 (2—T)’
 .3.5.7..(2—1), , 2.4.6...25—9)
Uer=Cog 35 o= T 13,5, (35=3)’

and deduce therefrom the solution of

Uy = Ug + (w’ — ) Uy .
[Sylvester, Phil. Mag.]
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CHAPTER XIIL

LINEAR EQUATIONS WITH VARIABLE COEFFICIENTS.
SYMBOLICAL AND GENERAL METHODS.

1. THE symbolical methods for the solution of differential
equations whether in finite terms or in series (Diff. Equations,
Chap. xvIL) are equally applicable to the solution of differ-
ence-equations. Both classes of equations admit of the same
symbolical form, the elementary symbols combining according
to the same ultimate laws. And thus the only remaining
difference is one of interpretation, and of processes founded
upon interpretation. It is that kind of difference which

-1
exists between the symbols (c—lc_l—.z) and =.

It has becn shewn that if in a linear differential equation
we assume z = €, the equation may be reduced to the form

d dy , d\ s LAY
f'o(ga) u+fl((—w) € u+f;('d—€>€ WU.uo +f;.((“l“€)€ U= U,
(1),
Ubeing a function of . Moreover, the symbols Eld—() and €
obey the laws,
d d
d
7 (g5) o= m) e
And hence it has been shewn to be possible, 1st, to express
the solution of (1) in series, 2ndly, to effect by general

theorems the most important transformations upon which
finite integration depends, °
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Now g@ and ¢ are the equivalents of « %} and z, and it is

proposed to develope in this chapter the corresponding theory
of difference-equations founded upon the analogous employ-

ment of the symbols x Az and zE, supposing Az arbitrary, and

therefore
A¢ (z) =¢ (z + Az) - ¢ (2),
E (2) = ¢ (a+ Aa).
Pror. 1. Ifthe symbols w and p be defined by the equations
A
w=wKé,p=wE (3),
they will obey the laws
S e m "
S (m) p"=f (m) p" ’
the subject of operation tn the second theorem being unity.
1st. Let Az =7, and first let usconsider the interpretation
of p™u,.
Now pu, = xlu, = xu,,,;
<Py = PRU =T (2 +7) Uy,
whence generally
pru, =z (x+7) ... {&+(m—=1)7}u,,,,
an equation to which we may also give the form
P, =z (x+7)... g+ (m—1)r} E™u, (3).

If u, =1, then, since u,,_,. =1, we have

Z+mr
prl=x (@+r)... {2+ (m—1)7},

to which we shall give the form
pr=z(@+r)..jx+(m-1)r},

the subject 1 being understood.
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2ndly. Consider now the series of expressions
Ty TP Uy, oo TP Uy
Now
7rp"'u==x—AA—xm(a:+r) v {2+ (m~=1) 1} u,,,,

—x (+7)..(2+m7) Uy oip— ... {&+ (m=1) 7},
r

(Z 477 Ug, g1y — Ty,
r

=z..{z4+(m-1)r}

=e... {a:+(m_1)¢}Emmub+r"(f'—m"')u=

m U, — (X —mr) U,
=p Pree T ) » by (5),

= P"' (w u’_"”"r_lt’ + mu’)

=p" (mZATzu,-}-mu,)
=p™ (7w +m) u,.
Hence
™, =mp™ (7 + m) u,
=p" (m +m)'u,,
and generally
", = p* (m + m)",
Therefore supposing f () a function expressible in ascend-
ing powers of u, we have

S () phu=p"f (m +m) u (6),
which is the first of the theorems in question.
Again, supposing » =1, we have
fm)ptl=p"f(r+m)1
= {fm +f )+ Pt 1
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A

But 71 =2 Az

1=0, 71 =0, ..., Therefore
f(m) p™l=p"f(m) 1.

Or, omitting but leaving understood the subject unity,
F(m)pn=f(m)p" (7).

Prop. 2. Adopting the previous definitions of m and p,
every linear difference-equation admits of symbolical ezpres-
sion wn the form

f; ('ﬂ') U, +j; (’IT) puz +f; (ﬂ') p,uz b +.fm (7r) pmuz = ‘X (8)‘

The above proposition is true irrespectively of the parti-
cular value of Az, but the only cases which it is of any im-
portance to consider are those in which Az =1 and —1,

First suppose the given difference-equation to be
X oYzin + vauz«bn-l et Xnuz = ¢ (z) (9) .
Here it is most convenient to assume Az =1 in the expres-~
sions of 7 and p. Now multiplying each side of (9) by
z(z+1)...(x+n-1),
and observing that by (5)
oy, = ptly, (@ +1) U, =p, ...,
we shall have a result of the form
G0 (@) U+ ¢, (@) Uy .. + b, (@) P = b, (@) (10).
But since Az =1,

w=z8, p=gk
=zA+ .
Hence
c=-m+p,

and therefore

¢o(‘”)=¢o(—7r+P)! é, (x)=¢x(—"r+f’)>

These must be expressed in ascending powers of p, regard
being paid to the law expressed by the first equation of (4).



240 LINEAR EQUATIONS [cH. X111,

The general theorem for this purpose, though its applica-
tion can seldom be needed, is

Fylm=p)=Fy(m) = F,(m) p+ F(m) {
~Fym) oot o 1),

where F, (m), F, (), ..., are formed by the law
Fm (’ﬂ') = Fm-l (‘IT) _Fm—x (W - 1)‘
(Diff. Equations, p. 439.)
The equation (10) then assumes after reduction the form (8).
Secondly, suppose the given difference-cquation presented
in the form
X +Xu, oo+ X =X (12).

Here it is most convenient to assume Az =—1 in the ex-
pression of 7 and p.

Now multiplying (12) by # (z—1) ... (x—n + 1), and ob-

serving that by (5)
zu,  =pu,, x(@—-1)u,_,=p%, ..,
the equation becomes
¢, (@) u,+ ¢, (z) pu, ... + ¢, (2) p™u, = X,
but in this case as is easily seen we have
z=m+p,

whence, developing the coefficients, if necessary, by the theo-
rem

F(mtp)=F,(m+F,(m)p+ F,(m) £+ - (13),

where as before
Fm (ﬂ’) = Fm-x (ﬂ.) - Fm—l (W - 1)’
we have again on reduction an equation of the form (8).
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2. Tt is not always necessary in applying the above
methods of reduction to multiply the given cquation by a
factor of the form

zxz+1)...(e+n-1),orz(x—1)...(x—n+1),

to prepare it for the introduction of p. It may be that the
constitution of the original coefficients X, X, ... X, is such as
to render this multiplication unnecessary; or the requisite
factors may be introduced in another way. Thus resuming
the general equation

Xou, + Xu, oo+ Xu, =0 (14),
assume
— ’v:
=12,
We find

Xv+Xav, ..+ Xz(@=-1)...(x=n+1)v,_,=0 (15).
Hence assuming

W=$Aé:b’ p=zk,

where Az = — 1, we have
X+ X pv, ... +X,p",=0 (16),

and it only remains to substitute = + p for z and develope the
coefficients by (13).

3. A preliminary transformation which is often useful
consists in assuming u, = x*,. This converts the equation

Xy, +Xu, ...+ Xu, =0 (17)
into
wXv+p " X, ... X v ,=0 (18),

putting us in possession of a disposable constant w.

4. When the given difference-equation is expressed di-
rectly in the form

XA+ XA ...+ X u=0 (19),
it may be convenient to apply the following theorem.
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Theorem. Ifmr =2 —é— , p=xk, then

Az
a(r=1)...(r—n+Du=z(x+Ax)...
{z+ (n—1) Az} (Zéi: )nu (20).

To prove this we observe that since
F (z) pu=p"F (m + n) u,
therefore F(r+n)u=p"F(r)p"y,
whence F(r—n)u=p"F (%) p "u

Now reversing the order of the factorsm, wr —1,...r —n+1
in the first member of (20), and applying the above theorem
to each factor separately, we have

(r—n+1)(r—n+2)..

__p 7rp—‘n+1pu—l7rp U
=p (p ) .
A A
— —Elxiy 2 1 2.
But plr = (zE)™ N E'x T o E7 s
. — — -1 = "
(r—n4l) (r—n+2)..m (E Az)

(%)

But p"u=2(x+7) ... {£+ (n—1)r} E™u, whence
(r=n+41) (7—n+2) ... mu=2 (z+7r)... [+ (n-1)r} (Z&éa})nu’
which, since r = Az, agrees with (20).

When Az =1, the above gives
rr—1..(r—n+)=z(@+1)...(z+n-1)A" (21)

Hence, resuming (19), multiplying both sides by

z(x+1)...(x+n-1),
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and transforming, we have a result of the form
¢ (@) (mr—1)...(m—n+1)u

+o@m(r—1)... (mr—n+2)u+ ... =0.

It only remains then to substitute = — 7 + p, develope the
coefficients, and effect the proper reductions.

Solution of Linear Difference-Equations in series.

5. Supposing the second member 0, let the given equation
be reduced to the form

Sy (@) uAF, () pu-tfy(m) o 4 S, () pPu =0 (22),
and assume u=Z3ga_p™ Then substituting, we have
5 (o () g™ +£, () Q™ .. 4., (m) 0™} =0,
whence, by the second equation of (4),
3 {f,(m) app™ +f,(m+1) a o™ ...+ £ (m+n)a,p™}=0,
in which the aggregate coefficient of p™ equated to 0 gives
So(m)a, +f (m)a, ... +f, (m)dp_,=0 (23)-

This, then, is the relation connecting the successive valuqs
of a,. The lowest value of m, corresponding to which a,, is
arbitrary, will be determined by the equation

fy (m)=0,

and there will thus be as many values of 4 expressed in series
as the equation has roots.

If in the expression of 7 and p we assume Az =1, then
since
pr=z(@z+1)...(z+m=1) (24),
16—2
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the series Za,,o™ will be expressed in ascending factorials of
the above form. But if in expressing = and p we assume
Az = — 1, then since

P"‘=x(z-—1)...(a:—m+1) (25)1

the series will be expressed in factorials of the latter form.

Ex. 1. Given
z—a)u,—(2x—a—1)u_ +(1-¢)(z-1)u,,=0;

required the value of u, in descending factorials.

Multiplying by #, and assuming 7=z %, p = zE, where

Az=—1, we have
z(@—a)u,— (2x—a—1) pu,+ (1 - ¢*) p'u, =0,

whence, substituting o+ p for #, devcloping by (13), and
reducing,
7 (m —a) 4, — q'p'u, =0, (a).
Hence Uy = 2pp™,

the initial values of @, corresponding to m=0 and m =a
being arbitrary, and the succeeding ones dctermined by the
law

m(m—a)p—q'ty =0,

Thus we have for the complete solution
B 7z 9'z®
U= 0{1 toe-at2 .2 0. @-at

N qsz(au) » q‘.z‘“"
+C {x( trerotzigraara ) @

It may be observed that the above difference-equation
might be so prepared that the complete solution should admit
of expression in finite series. For assuming %, = u®v,, and
then transforming as before, we find
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whr (m—a) v, + (u* — p) (27 —a —1) pv,
+{ -1 =g} pn=0 (©),
which becomes binomial if u =1 + ¢, thus giving

w(w—a)v.+“—;—1-(27r—a—1)pv,=0.

Hence we have for either value of u,
Uy = p*3a p" = pu S,z (r—1) ... (x —m+1) (),

the initial value of m being 0 or g, and all succeeding values
determined by the law

m(m—a)am+f‘-’;~1 @m—a—-1)a,,=0 (o).

It follows from this that the scries in which the initial valuc
of m is 0 terminates when a is a positive odd number, and the
series in which the initial value of m is @ terminates when a
is a negative odd nunber. Inasmuch however as there are
two values of g, either series, by giving to x4 both values in
succession, puts us in possession of the complete integral.

Thus in the particular case in which @ is a positive odd
number we find

f1__1 (1-a=z
“==0(1+9){ T+¢l.(1-a)

B R L L
(1+¢fl.21-a)@—a)

, . qg (l1-a=z
+C'(1-gq) {1+1+_¢]1—‘_.(1-—a)

¢ (1—a)@B—a)a® g
tiygrizi-a@-a } ().

The above results may be compared with those of p. 454 of
Differentiul Equations.
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Finite solution of Difference-Equations.

6. The simplest case which presents itself is when the
symbolical equation (8) is monomial, i.e. of the form

Sfo(mu=X (26).
u={f,(mM}" X (27).
Resolving then {f, (w)}™ as if it were a rational algebraic

fraction, the complete value of % will be presented in a series
of terms of the form

We have thus

A(r—a)*X.
But by (4) we have
(r—a)y*X=p"(m)"p*X (28).

Tt will suffice to examine in detail the case in which Az =1
in the expression of 7 and p.

To interpret the second member of (28) we have then
PP (@)=x(z+1)..(x+a—1)d(z+a),

e g é(z—a)
P 4’(%)-(“_;+ N@+2)..@z+a)’

7'¢ (z) = (s4)7¢ (2)
1,1

the complex operation Ei, denoting division of the subject

by z and subsequent integration, being repeated ¢ times.

Should X however be rational and integral it suffices to
express it in factorials of the forms

z, z(z+1), z(z+1) (z+2), ...
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to replace these by p, p*, p°, ... and then interpret (27) at
once by the theorem

U@ p™={f (m)}" o™
={f,(m}*z(@+1)...(z+m—-1) (29).

As to the complementary function it is apparent from (28)
that we have

(mr—a)*0=p"n"0.
Hence in particular if 2 =1, we find
(w—a)?0=p"7"0

=p"%27' 0

=0p°

=C0z(z+1)..(x+a-1) (30).
This method enables us to solve any equation of the form
z@x+1)...(e+n—-1) A"+ Az (z+1)...

@+ —2)A"u... + A u=X...... (31).

For symbolically cxpressed any such equation leads to the
monomial form

fr@@-1)...(r—n+1)+ A7 (wr—1)...
e (m=n+2)...+ 4} u=X (32).
Ex. 2. Given
z(z+1) A% —2zAu+2u=z(z+1) (¢+2).
The symbolical form of this equation is
m(r—N)u—2mu+2u=xz(z+1)(z+2) (a),
or (7* =37 +2)u=p"
Hence u=(""—-37r+2)"p°
=(8"-3x3+2)"p
+ Cp'+ Cpp,



248 LINEAR EQUATIONS [cE. x1I1.

since the factorsof #* — 37w +2arer—2and #—1. Thus
we have

u=2@r VD, @i +0a O

Binomial Equations.

7. Let us next suppose the given cquation binomial and
therefore susceptible of reduction to the form

ut () pu=T (33),

in which U is a known, « the unknown and sought function
of z.  The possibility of finite solution will depend upon the
form of the function ¢ (), and its theory will consist of two
parts, the first relating to the conditions under which the
equation is directly resolvable into equations of the first
order, the second to the laws of the transformations by which
equations not obeying those conditions may when possible be
reduced to equations obeying those conditions.

As to the first point it may be observed that if the equa-
tion be

1

it will, on reduction to the ordinary form, be integrable as
an equation of the first order.

Again, if in (33) we have
p(m)=Y @Yy @@-1)..y(r—n+1),
in which ¥ () = Ell“b'

a system of equations of the first order. This depends upon
the general theorem that the equation

u+ad(m)putap(m) ¢ (r—1)p%...
+ap(m)p(mr—1)...¢p(m—n+1)p"u=U

the equation will be resolvable into
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may be resolved into a system of equations, of the form
u—g¢ (m) pu="T,
q being a root of the equation
"+a9 " +aq9""...+a,=0.
(Differential Equations, p. 405.)

Upon the same principle of formal analogy the propositions
upon which the transformation of differential equations de-
pends (1. pp. 408—9) might be adopted here with the mere
substitution of 7 and p for & and €. But we prefer to in-
vestigate what may perhaps be considered as the most general
forms of the theorems upon which these propositions rest.

From the binomial equation (33), expressed in the form
{1+¢(m)ptu="0,
u={1+¢(m e} U,
and this is a particular case of the more general form,

w=Fig (m)p U (35).

we have

Thus the unknown function « is to be determined from the
known function U by the performance of a particular operation
of which the general type is

F{¢ (m)p"}.

Now suppose the given equations transformed by some
process into a new but integrable binomial form,

vy () pv=V,
V being here the given and v the sought function of 2. We
have
o= {L+4 (@ T,

which is a particular case of F {4 () f;} V, supposing F'(t) to
denote a function developable by Maclaurin’s theorem. It is
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apparent therefore that the theory of this transformation must
depend upon the theory of the connexion of the forms,

Fi$@@p"l, F{y(m)p'}

Let then the following inquiry be proposed. Given the
forms of ¢ (w) and (), is it possible to determine an
operation () such that we shall have generally

Flpmp)x(m) X=x(@F{y (m)p}X  (36),
irrespectively of the form of X %
Supposing F () =t, we have to satisfy
¢ (m) p"x (m) X = x (m) ¥ (m) p"X (37)-
Hence by the first equation of (4),
¢ (m) x (m —n) p"X = (m) x () pX,
to satisfy which, independently of the form of X, we must
have
¥ (m) x (m) =¢ (m) x (m —n);

: 7r=¢3-(~@ T™T—"n
cex(m 1!,(7,)96( )-

Therefore solving the above difference-equation,

o 313

Substituting in (37), there results,

s e (2O xen, £y ) o,

or, replacing IT, {%‘3} XbyX,,

and therefore X by [II“ {%g_))}]ﬂX, ,

$ %=1, L0y () [, (L] 5,

>
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If for brevity we represent IT, {?;—EZ;;} by P, and drop the
suffix from X since the function is arbitrary, we have

$ (m) "X = Py (m) p"P"X.
Hence therefore
(¢ (m) p"}X = Py (m) p"P" Py () p"P'X
= P{y (v) pI'P7X,
and continuing the process,
(¢ (m) "X = P (m) p"}"P'X.

Supposing thercfore # (f) to denote any function develop-
able by Maclaurin’s theorem, we have

F{¢ (m) p*} X=PF {y (m) p} P X.
We thus arrive at the following theorem.

THEOREM. The symbols w and p combining in subjection
to the law

@) p"X=pf (w+m) X,

the members of the following equation are symbolically equi-
valent, viz.

Fipmpt=TL {0 piyp oy {10 o9)
A. From this theorem it follows, in particular, that we
can always convert the equation
u+¢(m)ptu=U
into any other binomial form,

vty @=L {50l T,

by assuming »=1I, {i gﬁ} .
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For we have
u={l+$(mp" U
B A maqp (¥
~TL{gm v LT
whence since
v={1+4(m) p"}" V,
it follows that we must have

ron ) om0

In applying the above theorem, it is of course necessary
that the functions ¢ (w) and + (7) be so related that the

continted product denoted by II, {igg} should be finite.

The conditions relating to the introduction of arbitrary con-
stants have been stated with sufficient fulness clsewhere
(Differentiul Equations, Chap. XVIL Art. 4).

B. The reader will easily demonstrate also the following
theorem, viz. :

Fi$(m) o'} X=p"F ($ (m +m) g7} pX,
and deduce hence the consequence that the equation

ut@ (m)pu=U
may be converted into

v+ ¢ (r+m)pv=p"U,
by assuming » = p™n

8. These theorems are in the following sections applicd to
the solution, or rather to the discovery of the conditions of
finite solution, of certain classes of equations of considcrable
generality. In the first example the second member of the
given equation is supposed to be any function of 2. In the
two others it is supposed to be 0. But the conditions of
finite solution, if by this be meant the reduction of the dis-
covery of the unknown quantity to the performance of a finite
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number of operations of the kind denoted by 3, will be the
same in the one case as in the other. It is however to be
observed, that when the second member is 0, a finite integral
may be frequently obtained by the process for solutions in
series developed in Art. 5, while if the second member be X,
it is almost always necessary to have recourse to the trans-
formations of Art. 7.

Discussion of the equation
(az +b) u.+ (cx + &) usy + (fo+9 vy =X  (a).

Consider first the equation
(ax+8) u,+ (cz+e€) u,, +f(z—u =X ().
Let u, = p’v,, then, substituting, we have
i (a2 +b) v, + b (08 +€) v, +f (5~ 1) v,y = ™" X.

: A
Multiply by « and assume 7=z 2 P= zE, in which
Az=—1, then
w2 (ax® + bz) v, + p (cz + €) pv, + fp'v, = ap™ " X,

whence, substituting o + p for # and developing the coeffi-
cients, we find

p? (am® + bm) v+ p {(2ap +¢) m+ (3 —a) p + €] po,

+ (ap+cp+ f) pv, = ap™™"X (©),
and we shall now seck to determine u so as to reduce this
equation to a binomial form.

1st. Let w be determined by the condition

ap’ +cp +f=0,
then making
Qau+c=4, (b-a)u+e=5,
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we have
apm (7r + -g) v,+ A4 (71- + g) pY, =ap X,
or
B
T+ -
i S
(ol ™ (7r + a) ot

or, supposing V to be any particular value of the second
member obtained by Art. 6, for it is not necessary at this
stage to introduce an arbitrary constant,

7r+§

P ('rr + é)
a
This equation can be integrated when either of the func-
tions,

v, + pr.=V (d).

B B b

A’ 4 o’

is an integer. In the former case we should assume

w, + ;A— 1 PWy = Ws (e):
a ™ +é
a

whence we should have by (4),

,,
Ve = Hx I Wey W= Hx (_E>V (f)

In the latter case we should assume as the transformed
equation

A1l
w,+— = pw,= W, (9

Capw
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and should find
B b

'v,=I'I‘ —b->w,, I’V,=:H1 —7 vV (h).
m+ m+—
a A

The value of W, obtained from (f) or (2) is to be sub-
stituted in (e) or (g), w, then found by integration, and #,
determined by (f) or (k). One arbitrary constant will be
introduced in the integration for w,, and the other will be
due cither to the previous process for determining W,, or to
the subsequent one for determining v,.

Thus in the particular case in which ~ 1s & positive inte-

ger, we should have

W, = {(w+§) (7r+§— 1).. (w+1)}_lo,

a particular value of which, derived from the interpretation

-1
of <7r+§> 0 and involving an arbitrary constant, will be

found to be -1—_:"_—;;. Substituting in (¢) and reducing the

equation to the ordinary unsymbolical form, we have

%

142’

(0 + b) w, + (4 — pa) w, , =

and w,_ being hence found, we have

B B
v, = (‘n"l'z) ('ﬂ'+z'— 1) eee (7r+1)w,
for the complete integral.

2ndly. Let u be determined so as if possible to cause the
second term of (¢) to vanish. This requires that we have

2ap+c=0,
b-a)p+e=0,
and therefore imposes the condition
2ae + (b—a) c=0.
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Supposing this satisfied, we obtain, on making u= —?: ,
2
$[l—mX,

v, — ——-———) P, =

r(vr+g p.’w(vr-*-a)

or, representing any particular value of the second member
by V, "

p= %)

Vg — P'vz =V,

where

an equation which is integrable if g be an odd number whe-

ther positive or negative. We must in such case assume
2

—_—— 2 =
W, 7r(1r—-l)pw’ W:l
and determine first W, and lastly », by A.

To found upon these results the conditions of solution of
the general equation (a), viz.

(ax+0) u,+ (cx+e€) u,_ + (fr+g) %, =X,

assume
forg=fE~1)
U, = t,.
Then
' 14g
ar' +b—a ——) ty
( 7

+(cx'+e-—c~1—;— ty +f(E@ -1t =X

comparing which with (§) we see that it is only necessary in
the cxpression of the conditions already deduced to change

bintob—iglf—m, eintoe—‘-;-(l;—y—).
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Solution of the above equation when X =0 by definite
integrals®.

9. If representing u, by u we express (@) in the form

_a _o 4
(@ +b)u+(z+e)e Eut(fo+g)e Eu=0,

or
d

g a4 -8 22
@ (@+ce @4 fe tdm) u+ (b+ee %+ ge T47) y =0,

its solution in definite integrals may be obtained by Laplace’s
method for differential equations of the form

ot (Dory(Zom.

each particular integral of which is of the form

[(3)
ext+ 0 dt

¢ @

the limits of the final integration being any roots of the
equation

dt,

u=

1 40]
ext+ bY0) dt =0.

See Differential Equations, Chap. XVIIL

The above solution is obtained by assuming » = [¢” f (¢) dt,
and then by substitution in the given equation and reduction
obtaining a differential equation for determining the form of
f (@), and an algebraic equation for determining the limits.
Laplace actually makes the assumption

u=[t"F (t) dt,

which differs from the above only in that log# takes the
place of ¢ and of course leads to cquivalent results (Théorie
Analytique des Probabilités, pp. 121, 135). And he employs
this method with a view not so much to the solution of
difficult cquations as to the expression of solutions in forms
convenient for calculation when functions of large numbers
are involved.

* See also a paper by Thomm (Zeitschrift, x1v. 349).
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Thus taking his first example, viz.
Uy — (@ +1)u,=0,
and assuming u, = [t°I'(¢) dt, we have
[ F@)dt—(z+1) [t°F () dt=0 ().

But
(z+1)[EF ) dt=[F(t) (x+1) dt

=F () t™ - [t™F' (¢) dt.
So that (z) becomes on substitution
JEHF @)+ F' ()} dt = F(t) & =0,
and furnishes the two equations
F'(t)+F(t)=0,
F@) £ =0,

the first of which gives
I (t) = Ce™,

and thus reducing the second to the form
Cet 1 =0,

gives for the limits ¢ =0 and ¢ = o0, on the assumption that
z+1 is positive. Thus we have finally

u,=C f :e“ t*dt,

the well-known expression for I' (z+1). A peculiar method
of integration is then applied to convert the above definite
integral into a rapidly convergent series.

Discussion of the equation

(a0 + B2 +0) t,+ (e +f) ey + gy =0 (a).

- M
10. Letu,—l'zmw,then

W (a2” + bz + 0) v, + p (e +f) av,, + g2 (¢~ 1) v, , = 0.
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Whence, assuming 7=z &, v=gzF, where Az=~1, we

have
@ (az® + bz + ) v, + p (ex + f) pv, + gp'v, = 0.

Therefore substituting 7 + p for z, and develdping by (13),
p (am* + b +0) + p {(2ap + &) m+ (b—a) p + 1} pv,
+ (W'a + pe +9) p'v, =0 (®).
First, let u be determined so as to satisfy the equation
ou’ +ep+g=0,
then
p(em*+br +c)v,+ {(2ap+e) w+ b —a) p+f} pv,= 0.
Whence, by Art. 5,
v,=2az(@—1)..(x—m+1),
the successive values of a_ being detcrmined by the equation
p* (am® 4 bm + ©) ap + {(2ap” + ep) m + (b —a) 4’ + fu} @, =0,

__(2apt+eym+(b—a)u+f
- u(am® + bm + ¢) mt

or

Represent this equation in the form
U == [ (1) Cp,,
and let the roots of the equation
am’+bm+c=0
be a and B, then
v,= Czg9 —fla+1) 2=+ + f(a+1) f(a+2) z@+® — ... }
+ O (2 —f (B+1) 2V + f(B+1) f (B+2)z®+P ... } (o),
where generally
o =g(xz-1) ... (x—p+1)
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One of these series will terminate whenever the value of m
given by the equation
2ap+e)m+ (b—a)u+f=0
exceeds by an integer either root of the equation
am® +bm+c=0.
The solution may then be completed as in the last example.

Secondly, let 4 be determined if possible so as to cause the
second term of (5) to vanish. This gives

2ap +e=0,
G-a)p+f=0,

whence, eliminating u, we have the condition
2af+ (@ —b)e=0.
This being satisfied, and w being assumed equal to

e
~ 35 (b) becomes

(am® + b +¢) v,— -~

3 ____V(e’ — 4ag) ’

e

2-—
a (g._éiia;q.}. P,vz= 0.

Or putting
2
Vg =~ P Pa'vz =0,
7 + P T+ a
and is integrable in finite terms if the roots of the equation

m’+ém+£=0
a a

differ by an odd number.

Discussion of the equation
(a2 + bz + ¢) A’u, + (ex + f) Au, + gu, = 0.

11. By resolution of its coefficients this equation is reduci-
ble to the form

a(x—a)(—B) A%, +e(x—rv) Au,+gu,=0 (a).
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Now let z —a=2a"+ 1 and u,=v,, then we have
a@+1) (@ +a—-B+1) A%,
+e(@+a—y+1)Avy +gv,=0,
or, dropping the accent,
a(@+1)(z+a—B+1)A%,
+e(z+a—y+1)Av,+gv,=0 (b).

If from the solution of this equation v, be obtained, the
value of wu, will thence be deduced by merely changing =
intoz—a—1.

Now multiply (b) by #, and assume

A
vr=mﬂp=wE,

where Az =1. Then, since by (20),
z(x+1)A%,=m (r—1)v,,
we have
az+a—-B+1)w(r—1)o,
+e(z+a—g+1)my,+ gv, =0.
But £ =~ + p, therefore substituting, and developing the
coefficients we have on reduction
mla(m—a+B—-1)(mr—1)+e(mr—a+y—1)+g}v,
—fa(m=1)(r—2) +e(r—1)+g}pr.=0 (o).
And this is a binomial equation whose solutions in series
are of the form
v,=3az(x+1)...(z+m—1),
the lowest value of m being a root of the equation
mia(m—a+B—1)(m—1)+e(m—a+y—1)+g}=0 (d),
corresponding to which value a, is an arbitrary constant,
while all succeeding values of a,, are determined by the law
am=1)(m—-2)+e(m—-1)+g

I Zmlama+B—1)(m—1)+a(m—a+qy—1)+g} "
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Hence the series terminates when a root of the equation
a(m—1)(m—2)+e(m—1)+g=0 (e
is equal to, or exceeds by an integer, a root of the equation (d).

As a particular root of the latter equation is 0, a particular
finitc solution may therefore always be obtained when (e) is
satisfied either by a vanishing or by a positive integral value
of m.

12. The gencral theorem expressed by (38) admits of the
following generalization, viz.

Fir, ¢ (m ¢} =1, (50 ) Pim 4 (vr)p"}nu({’;—(‘g)’).

The ground of this extension is that the symbol 7, which
is here newly introduced under F, combines with the same

symbol 7 inthecomposition of the forms II (¢ (")) I (‘.”.@)

Y (m)/” " "\ (m)
external to F, as if 7 were algcbraic.
And this enables us to transform some classes of equations
which are not binomial. Thus the solution of the equation
Somutfi(m) ¢ (@) putfi(m¢(m)$(m—1)pPu=TU

will be made to depend upon that of the equation
Jo(m v+ fi(m) Y (m) pv + £, () Y () Y (w— 1) p*v =11, (I((:rr))) v
by the assumption

1lf()

13. While those transformations and reductions which
depend upon the fundamental laws connecting 7 and p, and are
expressed by (4), are common in their application to differen-
tial equations and to difference-equations, a marked difference
exists between the two classes of equations as respects the
conditions of finite solution. In differential equations where

= :Z%’ p=¢’ there appear to be three primary integrable
forms for binomial equations, viz.
L +b =

07r‘+e
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—_ 2
u_l_a(vr n) +bp"u=U,

" (v3)

('n'-—g) (m—n)

wt am+6 U7 U
primary in the sense implied by the fact that every binomial
equation, whatsoever its order, which admits of finite solution,
is reducible to some one of the above forms by the trans-
formations of Art. 7, founded upon the formal laws connecting
mand p. In difference- -cquations but one primary mtcnrra,ble
form for binomial equations is at present known, viz.

and this is but a particular case of the first of the above
forms for differential equations. General considerations like
these may serve to indicate the path of future inquiry.

14. Many attempts have been made to accomplish the general solution
of linear difference-equations with variable coefficients, but the results are
in all cases so complicated as to be practically useless. It will be sufficient if
we mention Spitzer (Grunert, xxx11. and xxxi11.) on the class specially consi-
dered in this chapter, viz. when the coeflicicnts are rational integral functions
of the independent variable, Libri (Crelle, xi11. 234), Binet (Mémoires de
VAcadémie des Scicnces, x1x.). There is also a brief solution by Zchfuss
(Zeitschrift, . 177).

EXERCISES.

1. Of what theorem in the Differential Calculus does (20),
Art. 4, constitute a generalization ?

2. Solve the equation
z (z+1) A%+ 2Au — n’u = 0.

3. Solve by the methods of Art. 7 the difference-equation
of Ex. 1, Art. 5, supposing a to be a positive odd number.

4. Solve by the same methods the same equation, sup-
posing a to be a negative odd number.
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CHAPTER XIV.

MIXED AND PARTIAL DIFFERENCE-EQUATIONS.

1. IF u,, be any function of # and y, then

Au o Ynrany = Usy 1

Dz =Y Az ’ )
_A_ u = Upyray = Yzy

Ay 'z Y Ay ’

These are, properly speaking, the coefficients of partial dif-
ferences of the first order of u,,. But on the assumption
that Az and Ay are each equal to unity, an assumption which
we can always legitimate, Chap. 1. Art. 2, the above are the
partial differences of the first order of w,,.

On the same assumption the general form of a partial dif-
ference of u,,, is

e (@) G- @

When the form of u,, is given, this expression is to be inter-
preted by performing the successive operations indicated, each
elementary operation being of the kind indicated in (1).

Thus we shall find
A?
A—.’L'— A—y uz,y = Uz gz, Ay 2“'+M.U+A! + Uz, yisay°

It is evident that the operations A and A in combination
Az Ay

are commutative.



ART. 1] MIXED AND PARTIAL DIFFERENCE-EQUATIONS. 265

. . . A . d
A A il
gain, the symbolical expression of Ay o terms of po
being
A a1
Az Az @),

in which Az is an absolute constant, it follows that

naz L m-naz , ? (n 1) (n-2)azL
n € as—ne dz+-———1.2 € —.ee
(Am) Az)"
(Az)

and therefore
A n
(““) Uz, y = {uwmm = MUy (r-p)Az,y

Az
+ @—(12—:2—1-) Ugypg)azy = +o° } = (Ax)" (4).

A" A\ .
So, also, to express (—A—z> (—&/—) %y, it would be necessary

to substitute for their symbolical cxpressions, to

a A
Az’ Ay
effect their symbolical expansions by the binomial theorem,
and then to perform the final operations on the subject func-

tion u, ,.

Though in what follows each increment of an independent
variable will be supposed equal to unity, it will still be

necessary to retain the notation An’ —L{Aﬁ for the sake of dis-

tinction, or to substitute some notation equivalent by defi-
nition, e.g. A,, A,.

These things premised, we may define a partial difference-
equation as an equation expressing an algebraic relation
between any partial differences of a function u, ,, , the func-
tion itself, and the independent variables z,y, z... Or in-
stead of the partial differences of the dependent function, its
successive values corresponding to successive states of incre-
ment of the independent variables may be involved.
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A A
Thus T n u,_,+y—A~_:y-uz'y=0,

and LUyyy, g+ Ylho yuy — (z+y) Uy, =0,

are, on the hypothesis of Az and Ay being each equal to
unity, different but equivalent forms of the same partial
difference-equation.

Mixed difference-equations arc those in which the subject

function is presented as modified both by operations of the
A A

form A; ’ K‘;},

. d d .
. and by operations of the form & dy’ singly
or in succession. Thus

Az

is a mixed difference-equation. Upon the obvious subordi-
nate distinction of ordinary mixed difference-equations and
partial mixed difference-equations it is unnecessary to enter.

A d
rz—u, +Yy 33—/ Uy, y = 0

Partial Difference-equations.

2. When there are two independent variables z and y,
while the coefficients arc constant and the sccond member 13
0, the proposed equation may be presented, according to con-
venience, in any of the forms

F(A,, A)u=0, F(E,, E)u=0,
F(A,, E)u=0, F(E,, A)u=0,

Now the symbol of operation relating to z, viz. A, or £,
combines with that relating to y, viz. A, or £, as a constant
with a constant. Hence a symbolical solution will be ob-
tained by replacing one of the symbols by a constant quan-
tity @, integrating the ordinary difference-equation which
results, replacing a by the symbol in whose place it stands,
and the arbitrary constant by an arbitrary function of the
independent variable to which that symbol has reference.
This arbitrary function must follow the expression which
contains the symbol corresponding to a.
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The condition last mentioned is founded upon the inter-
pretation of (£ —a)™X, upon which the solution of ordi-
nary difference-equations with constant coefficients is ulti-
mately dependent. For (Chap. x1. Art. 11)

(B —a)"X=0a""Su"X,
whence
(BE—a)0=a""2'0
=a""(c,+cz... +¢c, 27,

the constants following the factor involving a.

The difficulty of the solution is thus reduced to the diffi-
culty of interpreting the symbolical result.

Ex. 1. Thus the solution of the equation %,,, —au, =0, of
which the symbolical form is

Eu, —au,=0,
being
° u, = Cu®,
the solution of the equation t,,,,— %, 4, =0, of which the
symbolie form is
Eun,,—En, ,=0,
Usy= (L) ¢ (¥).
To interpret this we observe that since &, = ¢ we have
@
U, =€ VP (y)
=¢ (y+2).

Ex. 2. Given w,,, 0 — Us guy — Uy = 0.

will be

This equation, on putting u for %, ,, may be presented in

the form
EAu—u=0. ).
Now replacing E, by a, the solution of the equation
aldu—u=0

is u=(1+a")*C,
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therefore the solution of (1) is
u=1+E") ¢ @) @)

where ¢ (y) is an arbitrary function of y. Now, developing
the binomial, and applying the theorem

ET¢@) =¢@F—n)

u=g @) +ap -0 +2E Do+ .. @),

which is finite when « is an integer.

we find

Or, expressing (2) in the form
u=(E,+ 17 E* ¢ (y),

developing the binomial in ascending powers of £, and in-
terpreting, we have

w=¢ (y—2)+ap (y~z+1)
+ 2 gy —2+2) + ... (4).

Or, treating the given equation as an ordinary difference-
equation in which y is the independent variable, we find as
the solution

u=(A,)" ¢ (2) ()

Any of these three forms may be used according to the
requirements of the problem.

Thus if it were required that when z =0, » should assume
the form €™, it would be best to employ (3) or to revert to
(2) which gives ¢ (y) = €™, whence

w=1+E")e™
d
=(14+¢e ™) e™
=(1+e™*e™ (6).
8. There is another method of integrating this class of

equations with constant coefficients which deserves attention.
We shall illustrate it by the last example.
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Assume u, , = 3Ca"b", then substituting in the given equa-
tion we find as the sole condition

ab-b-1=0.

a_1+b
=

Hence

and substituting,
u,, =30 (1 + by,

As the summation denoted by 3 has reference to all pos-
sible values of b, and C may vary in a perfectly arbitrary
manner for different values of b, we shall best express the
character of the solution by making C an arbitrary function
of b and changing the summation into an integration ex-
tended from — o0 to . Thus we have

u,,,=f:°b'r= (L+ B ¢ (5) db.

As ¢ (b) may be discontinuous, we may practically make
the limits of integration what we please by supposing ¢ (b)
to vanish when these limits are exceeded.

If we develope the binomial in ascending powers of 3, we
have

U, = f g () db+x| B¢ (B)db

+2es 1) f °° PG @ dbt... (7).
Now

["#s0)a=v @)

4 (6) being arbitrary if ¢ (b) is; hence

w({v-—zl) v(y—ac+2)+...,

Uy, =Y(y—a)+azy(y—a+1)+

which agrees with (4).
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Although it is usually much the more convenient course
to employ the symbolical method of Art. 2, yet cases may
arise in which the expression of the solution by means of a
definite integral will be attended with advantage; and the
connexion of the methods is at least interesting.

Ex. 3. Given A%u, , , =A%, .
Replacing ., by u, we have
(AZE'—AE N u=0,

or (AJE, - DE,)u=0.

Bat A,=E, -1, A =E —~1;
therefore (E]E,+E,— E'E,— E,) u=0,
or (E.E,—1)(E,—E)u=0.

This is resolvable into the two equations
(E.E,—1)u=0, (E,—E)u=0.
The first gives
Eu—Eu=0,
of which the solution is
u=(E")¢(®)
=¢(y—2).
The second gives, by Ex. 1,
u=+Y(x+y).
Hence the complete integral is

u=¢ (y—=)+¥(y +a)

4. Upon the result of this example an argument has
been founded for the discontinuity of the arbitrary funec-
tions which occur in the solution of the partial differential
equation

du  d'u

da =
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and thence, by obvious transformation, in that of the equation

du_ du
dz* a'"aTts

It is perhaps needless for me, after what has been said in
Chap. x.,, to add that I regard the argument as unsound.
Analytically such questions depend upon the following, viz.
whether in the proper sense of the term limit, we can regard
sin z and cos # as tending to the limit 0, when z tends to
become infinite.

=0.

5. When together with A, and A, one only of the inde-
pendent variables, e.g. #, is involved, or when the equation
contains both the independent variables, but only one of the
operative symbols A,, A,, the same principle of solution is
applicable. A symbolic solution of the equation

F(z, A, A)u=0

will be found by substituting A, for @ and converting the
arbitrary constant into an arbitrary function of y in the solu-
tion of the ordinary equation

F(z, A, a)u=0.
And a solution of the equation
F(z,y,A,)=0

will be obtained by integrating as if y were a constant, and
replacing the arbitrary constant, as before, by an arbitrary
function of y. Butif z, %, A, and A, are involved together,
this principle is no longer applicable. For although y and
A, are constant relatively to # and A,, they are not so with
respect to each other. In such cases we must endeavour by
a change of variables, or by some tentative hypothesis as to
the form of the solution, to reduce the problem to easier
conditions.

The extension of the method to the case in which the
second member is not equal to 0 involves no difficulty.

Ex. 4. Given w,,—au,,,,=0.
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Writing u for w,, the equation may be expressed in the
form
uw—aEEu=0 1).
Now replacing L, by a, the solution of
u—azku=0 or u,—azu, =0
is Cz(zx—-1)...1.a"
Wherefore, changing a into E,™, the solution of (1) is
=B e @=1)..1.4()
=z(z—1)...1.(&) ¢ (y)
=z(x—1)...1.¢ (y—x).
6. Laplace has shewn how to solve any linear equation in

the successive terms of which the progression of differences is
the same with respect to one independent variable as with

rospect to the other.

The given equation being

Az.y“:.y + Bx-ruz—l.v—x + Oz.yu’:—n.y-a +o= Vz,yx

A,, B., ..., being functions of z and g, let y =z — k;
then substituting and representing u,, by v,, the equation
assumes the form

X, +Xv,  +Xp, ,+... =X,

X,, X,... X being functions of . This being integrated, ¥ is

replaced by z—y, and the arbitrary constants by arbitrary
functions of z— y.

The ground of this method is that the progression of dif-
ferences in the given equation is such as to leave z — y un-
affected, for when  and y change by equal differences & —y
is unchanged. Hence ify x—y is represented by % and we
take z and & for the new variables, the differences now having
reference to z only, we can integrate as if £ were constant.

Applying this method to the last example, we have
Vg = XV = 0,
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v,=cx(z—1)...1,

u,,=zz-1)...1.¢(x—y),
which agrees with the previous result.

The method may be generalized. Should any linear func-
tion of # and 7, e.g. z+ ¥, be invariable, we may by assum-
ing it as one of the independent variables, so to speak reduce
the equation to an ordinary difference-equation; but arbitrary
functions of the element in question must take the place of
arbitrary constants.

Ex. 5. Givenw, ,—pu,, . —((1=p)u, . =0.
Here z +y is invariable. Now the integral of
Uz = PUsy — (1- p) v, =0

is y=c+c (1-~——~) .
p
Hence, that of the given equation is

up=¢@+y) + (SE) ¥t

7. Partial difference-equations are of frequent occurrence
in the theory of games of chance. The following is an ex-
ample of the kind of problems in which they present them-
selves.

Ex. 6. A and B engage in a game, each step of which
consists in one of them winning a counter from the other.
At the commencement, 4 has z counters and B has y counters,
and in each successive step the probability of A’s winning a
counter from B is p, and therefore of B's winning a counter
from 4, 1 —p. The game is to terminate when cither of the
two has n counters. What is the probability of A’s win-
ning it ?

Let u,, be the probability that A will win it, any positive
values being assigned to « and ¥.
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Now A’s winning the game may be resolved into two
alternatives, viz. 1st, His winning the first step, and after-
wards winning the game. 2ndly, His losing the first step,
and afterwards winning the game.

The probability of the first alternative is pu,,,, , for after

A’s winning the first step, the probability of which is p,
he will have z+1 counters, B, y — 1 counters, therefore the
probability that A will then winis »,, , . Hence the pro-
bability of the combination is pu,, , ..

The probability of the second alternative is in like manner
(1 "P) Uy_y, 410

Hence, the probability of any event being the sum of the
probabilities of the alternatives of which it is composed, we
have as the equation of the problem

Upy = Pllyysgy + (1= D) %oy 1),
the solution of which is, by the last example,

1 — z
u,=¢(@+y)+ (_pp) ¥ (z+3)
It remains to determine the arbitrary functions.

The number of counters # +y is invariable through the
game. Represent it by m, then

ey = () + (152) - (m)

Now A’s success is certain if he should ever be in possession

of n counters. Hence, if z=mn, w, ,=1. Therefore

1= (m)+(~52) ¥ (m)

Again, A loses the game if ever he have only m—n
counters, since then B will have » counters. Hence

0=¢(m+(2E)" ¥ m)
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The last two equations give, on putting p=l-r

b (m) = s ¥ (m) = s,

’

whence
Pr_1
I S |
_{p7=1-pp ),

pmi-'?-}':_ (1 _p)en-z—y
which is the probability that A will win the game.

Symmetry therefore shews that the probability that B will
win the game is

1 — a-3 __ 0% n-y
e o
and the sum of these values will be found to be unity.

The problem of the ¢ duration of play’ in which it is pro-
posed to find the probability that the game conditioned as
above will terminate at a particular step, suppose the 7,
depends on the same partial difference-equation, but it in-
volves great difficulty. A very complete solution, rich in
its analytical consequences, will be found in a memoir by
the late Mr Leslie Ellis (Cambridge Mathematical Journdl,
Vol. 1v. p. 182).

Method of Generating Functions.

8. Laplace usually solves problems of the above class
by the method of generating functions, the most complcte
statement of which 1s contained in the following theorem.

Let u be the generating function of u,,, , so that
U =SUp, T"Y"...,
then making z=¢°, y =¢¥, ... we have

S¢(§lg, %, ) Potar .y

=3, {Sp (m, 0 ...) Um_p, n-q..} €M (1).
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Here, while 3 denotes summation with respect to the
terms of the development of u, 8 denotes summation with
respect to the operations which would constitute the first
member a member of a linear differential equation, and the
bracketed portion of the second member a member of a dif-
ference-equation.

Hence it follows that if we have a linear difference-equa-
tion of the form

S¢(m,n...) um-p,n-q.. =0 (2),

the equation (1) would give for the general determination of
the generating function « the linear differential equation

d
3¢ (d—dé, (-1-(7...) P+ gy = () 3).

But if there be given certain initial values of %, , which
the difference-equation does not determine, then, correspond-
ing to such initial values, terms will arise in the second
member of (1) so that the differential equation will assume
the form

Sé (a‘ilg, %...) P+i0egy = F (m, n,..) (4).

If the difference-equation have constant coefficients the
differential equation merges into an algebraic one, and the
generating function will be a rational fraction. This is the
case in most, if not all, of Laplace’s examples.

It must be borne in mind that the discovery of the gene-
rating function is but a step toward the solution of the dif-
ference-equation, and that the next step, viz. the discovery
of the general term of its development by some tndependent
process, is usually far more difficult than the direct solution
of the original difference-equation would be. AsI think that
in the present state of analysis the interest which belongs to
this application of generating functions is chiefly historical,
I refrain from adding examples.
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Mized Difference-equations.

9. When a mixed difference-equation admits of resolution
into a simple difference-equation and a differential equation,
the process of solution is obvious.

Ex. 7. Thus the equation

du du
A (—E -— aAu b Zi; + abu 0
being presented in the form

(%-a) (A—=b)u=0,

the complete value of u will evidently be the sum of the
values given by the resolved equations

%—au 0, Au—bu=0.

Hence
u=c.e*+c, (1 +0)%
where ¢, i3 an absolute, ¢, a periodical constant.

Ex. 8. Again, the equation
d d,. \
being resolvable into the two equations,

dz (dz
By=s s=sZ +(z);
we have, on integration,
z=cx+c",

ca:(m =1)

y=3z=-"—- +cdz+C,

where ¢ is an absolute, and C a periodical constant.
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Mixed difference-equations are reducible to differential
equations of an exponential form by substituting for £, or
] a

A, their differential expressions €%, *— 1.

Ex. 9. Thus the equation Au — (:l_;: 0 becomes

(eﬁ—l—‘—%)u=0,

and its solution will therefore be
u = 3c,e™,
the values of m being the different roots of the equation
€ —1—m=0.
10. Laplace’s method for the solution of a class of partial
differential equations (Dif. Equations, p. 440) has been ex-

tended by Poisson to the solution of mixed difference-equa-
tions of the form

du_,, du,
ﬁqi.L _dE+Mu=+l+'Nul=V (1),
where L, M, N, V are functions of .

Writing u for u,, and expressing the above equation in the
form

4 PutLL ut Byt Nu=V,

it is easily shewn that it is reducible to the form

(d%+ M) B+ I)u+ (N ~LM~L)u=7,

where L' = % . Hence if we have

N—-LM~L =0. @),
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the equation becomes
d
(3—2+M) (E+L)u=7,

which is resolvable by the last section into a mixed difference-
equation and a differential equation.

But if the above condition be not satisfied, then, assuming

(E4+L)u=v (3),
we have
(i+M)v+(N-LM-L')u= 7,
dz ’
whence
—((%_-i—M) v+ V
u= 4)
N-LM-L" !

which is expressible in the form

dv
u-AzEZ;;+B,'v+C,'

Substituting this value in (3) we have

4,2 ms 14,218, B

+(LB,—1)v,=-C,,, — LC,,
which, on division by 4

241’

d
35E0+L,§—; +MEyv+Ny="V,

The original form of the equation is thus reproduced with
altered coefficients, and the equation is resolvable as before
into a mixed difference-equation and a differential equation,
if the condition

1s of the form

N -LM —-L'=0 (5)
is satisfied. If not, the operation is to be repeated.
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An inversion of the order in which the symbols % and

E are employed in the above process leads to another reduc-
tion similar in its general character.

Presenting the equation in the form
(E+1L) (%+M_, u+(N—LM )u=V

where M_ = E™M, its direct resolution into a mixed differ-
ence-equation and a differential equation is seen to involve
the condition

N—LM_ =0. ().

If this equation be not satisfied, assume

(dix_'- M_‘) U=,

and proceeding as before a new equation similar in form to
the original one will be obtained to which a similar test, or,
that test failing, a similar reduction may again be applied.

. du,,, du, _
Ex. 10. Given o % T (= £ n) u,,,—azu_=0.

This is the most general of Poisson’s examples. Taking
first the lower sign we have

L=—a M=2—n, N=—ax.

_Hence the condition (2) is not satisfied. But (3) and (4)
give

(E—a)u=nv,
Z—;+(z—n)v
u= an ’

whence

an

{% + (z—n) v}
(E"- a) =9,
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or, on reducing,

dv dv,
d:‘—a—d—w+ {ft~(n—1)}v,, —a2v,=0.

Comparing this with the given equation, we see that »
reductions similar to the above will result in an equation of
the form

dw, dw,
mﬂ—a dz +-17w=“ —aw'w,=0,

which, being presented in the form

((—i%+x) (E—a)w, =0,

is resolvable into two equations of the unmixed character.

Poisson’s second reduction applies when the upper sign is
taken in the equation given; and thus the equation is seen
to be integrable whenever # is an integer positive or mega-
tive.

Its actual solution deduced by another method will be
given in the following section.

11. Mixed difference-equations in whose coefficients =
is involved only in the first degree admit of a symbolical
solution founded upon the theorem

{a:+ [ (%)}—l X=¢ @ z™ e—¢(:‘) X (1).
(Differential Equations, p. 445.)

The following is the simplest proof of the above theorem.
Since
d d  d
\"(d;)’”““"(a;*a;)“'

4

if in the second member ;iz operate on z only, and (—% on u,

we have, on developing and effecting the differentiations
which have reference to z,
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\p(dii) oumap () ut ¥ (2.

Let ¢ (diw) u=1, then

V@ p @ - o S
V\dz/

or if ¢ (&,%) be replaced by ¢ @ ,

$Do Dy Lo (D)

Inverting the operations on both sides, which involves the
inverting of the order as well as of the character of successive
operations, we have

{z +g ( gx )} v= @ @,

the theorem in question.

Let us resume Ex. 10, which we shall express in the
form

du,,, du, _
T~ % dn + (z +n) U,,, — axu, =0 (a),
n being either positive or negative. Now putting u for w,

d 2 4 4
{%(e“—a)+ne“}u+m(e“‘—a)u=0.

a
Let (*—a)u=z,

then we have

d 4 &
{33: + ne* (e“-—a)"} z+xz=0.
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Or,

a
ne

d
(4 L4125 ) om0
€ —q
Hence,

ax -1

Z=($ +a% +“:,Z1f—) 0,

e —a
and therefore by (1),

&

2 4
= Gi(d%)' +nlog(¥—a) w_le—;(ﬁ)g—nlog(e"‘—a) 0
a dp Ly 4
= (B aye @ 1@ (E_ gy 0 ®).

It is desirable to transform a part of this expression.
By (1), we have

(o4 ) 8@ g @,

and by another known theorem,

(Eda, + a:)—l= e i (ad;)—l e,

The right-hand members of these equations being sym-
bolically equ1valent we may therefore give to (b) the form

r= (@ —a)y et ((Z;)-lez’z(eﬁ—a)'"(), ©).

.d_ .
Now u = (¢** —a)™2, therefore substituting, and replacing
1
¢* by E,

-1

w=(E—ayes ((Ti) T (E—a)™0 (4).

Two cases here present themselves.
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First, let n be a positive integer; then since
(B —a)y*0=a"(c,+ ¢ ... +¢,,2"),
E-a)'=A+1-0a)
we have

u=A+1-0a)"" T {C+ feza: @ (C,+C&. ..+ Cp @) da:}(d)

as the solution required.

This solution involves superfluous constants. For inte-
grating by parts we have

fe o= et "z + log aje’ 2 'z 4+ (r— l)fe @z dz,
and in particular when r =1,
E) = A
Je* azdz=€* a” +loga fe* a*dx
These theorems enable us, » being a positive integer, to
reduce the above general 1nte0'ml to a linear function of
the elementary mtegrals j'e a*dz, and of certain algebraic

terms of the form e'a”z™ where m is an integer less
than »,

Now if we thus reduce the integrals involved in (d), it
will be found that the algebraic terms vanish.

For
(A+ 1 _a)n-l e—f’-’(ez{ azxm)=(A + 1 — a)n~lazwm

- z+tn—1 Al-l wm
=0,
since m is less than 7, and the greatest value of »is n — 1.

It results therefore that (d) assumes the simpler form,

u=(A+1—a)*"e (0 +C, fe’ a’dz);
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and here C, introduced by ordinary integration is an absolute
constant, while C, introduced by the performance of the
operation 3 is a periodical constant.

A superfluity among the arbitrary constants, but a super-
fluity which does not affect their arbitrariness, is always to
be presumed when the inverse operations by which they are
introduced are at a subsequent stage of the process of solu-
tion followed by the corresponding direct operations. The
particular observations of Chap. XViL Art. 4 (Differential
Equations) on this subject admit of a wider application.

Secondly, let n be 0 or a negative integer.

It is here desirable to change the sign of = so as to express
the given equation in the form

du du
‘—l;‘-a%+(m—n)ul—awu=0,
while its symbolical solution (4) becomes

u=(E—ay™ e:::( .d—)"e'?’ (E—a)*O.

dax
And in both # is 0 or a positive integer.
-1
Now since (£ —a)* 0 =0, and (;;) 0 =C, we have

u=(E—-a)y™"" C'e:;—

=CE-a)""c¢® +(E—-a)™"0

i
= Car-n—l Zuﬂ. aZe ) + az—n—l 2n+1 0
_"

= C,a*3"a¥e® +a*(c,+cg... +0,2").

But here, while the absolute constant C, is arbitrary, the
n +1 periodical constants c,, ¢,,-.c, are connected by n rela-
tions which must be determined by substitution of the above
unreduced value of  in the given equation.
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The general expression of these relations is somewhat com-
plex; but in any particular case they may be determined
without difficulty.

Thus if =1, n =1, it will be found that

—a?

u=C3% e’ + C,(1 —2).
If a =1, n=2, we shall have
U= Clzaaﬂ‘e_a? + 02 (1 -2+ %') ,

and so on.

The two general solutions may be verified, though not
easily, by substitution in the original cquation.

12. The same principles of solution are applicable to
mixed partial difference-equations as to partial difference-

equations. If A, and 8‘—1'— are the symbols of pure operation

involved, and if, replacing one of these by a constant m, the
equation becomes either a pure differential equation or a
pure difference-equation with respect to the other, then it is
only necessary to replace in the solution of that equation m
by the symbol for which it stands, to effect the corresponding
change in the arbitrary constant, and then to interpret the
result.

Ex. 11. Au-— ad—u= 0.
dy
Replacing d_(j/ by m, and integrating, we have
u=c (1+ am)~.

Hence the symbolic solution of the given equation i3
d z
u= (1+ad§) ¢ ()
(4 , 1Y
=a(5+g) +©

=a%es (‘—%)’ :; @)
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LAY
=ae "(d—y) v @),
¥ (y) being an arbitrary function of y.

~u V.

’“”_(_l;lj zy— Vxy

Ex.12. Given u

Treating (Z} as a constant, the symbolic solution is

e () () v

3., having reference to 2. No constants nced to be introduced

in performing the integrations implied by (l—;j/)— .

. du,, d’u,
Ex. 13. Given u,,, — 3z T’/-l +2z(z—1) T

Letu,=1.2... (x—2)v,, then

Vrye — d(;:“ +2 d v = 0
d d\?
2 - - =
or {F — 3K, 5 dJ ( dy) } v, =0,
d
or (Ez— a‘;}) (Ex—2@) 'Uz-—O,

whence by resolution and integration

( >¢(J)+( ) ¥ (@)

u,=1.2...(.1:—-2)1(a'—) $@) +2° (@) \lr(y)}.

Ex. 14. u,,— 3£i_u,"+ 20—%‘, =V, where V'is a function

dy
of z and y.
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Here we have

{Ez' - 3Eza(% +2 (%)2} w,=V;

wu={(B-g) (B2}

O I

-4 %)H s(eq) T-5(@) 2@

The complementary part of the value of » introduced by
the performance of 3 will evidently be

2(5) 40+ (%) v 6>

But in particular cases the difficulties attending the reduc-
tion of the general solution may be avoided.

Thus, representing V by V., we have, as a particular solu-
tion,
d

= {E,,’ - 3E,,%+ 2 (d&)’}—l 7.

gy st mp-d
—(E, + 3B [+ TE, dy.+...)V.

_ av., -4V,
= V._,+3"El?a+ I'-.‘yg +...,

which terminates if ¥ is rational and integral with respect
to . The complement must then be added.

Thus the complete solution of the given equation when
V=F(2)+y,

is u=F(w—2)+y+3+2’(él:—y w¢(y)+(d—¢;)"1'(y)-
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EXERCISES.

Solve the equations :

1. Au,,—a—u,,=0.

a
dy
d &

2. um.,—a(—i—gu,+l_,+ bc-ly;,u“:O.

3 Uppyy—Up =+ Y.

4 Uy — Upy=a"".

5. Uy, —au,,.=0.

6. Uppyy— Bthayp iy F By g — U g = .
7. Urr,yar — Qlgyy,y — buz. wmt abu, = ™.
8. Uzisy — 3‘1’“:»1. st a’, v = XY

9. A%—%—Au,+u,=e“.

10. Determine u,, from the equation
2
é 2 Yerae = Ay, ,,

where A affects z only ; and, assuming as initial conditions

U, ,=ax +b, % Uy, = A",

shew that
d

(—i_t Uz,
where 4, A and u are constants (Cambridge Problems).

=AN (B +u™),
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11. Given
Uz T (a—z— 29 -2) Upyir + (x +?/) Uz y™= 0

with the conditions

4, , =0, u,,=0, and u,,,, =0,
find u,,.
[Cayley, Tortolini, Series 11. Vol. 11. p. 219.]
12 up, =g+ Uyt -0 Fu,,,.

[De Morgan, Camb. Math. Jour. Vol. 1v. p. 87.]
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CHAPTER XV.

OF THE CALCULUS OF FUNCTIONK,

1. THE calculus of functions in its purest form is dis-
tinguished by this, viz. that it recognizes no other operations
than those termed functional. In the state to which it has
been brought more especially by the labours of Mr Babbage,
it is much too extensive a branch of analysis to permit of
our attempting here to give morc than a general view of
its objects and its methods. But it is proper that it should
be noticed, 1st, because the Calculus of Finite Differences
is but a particular form of the Calculus of Functions; 2ndly,
because the methods of the more general Calculus are in
part an application, in part an extension of those of the
particular one.

In the notation of the Calculus of Functions, ¢ {yr (z)} is
usually expressed in the form ¢z, brackets being omitted
except when their use is indispensable. The expressions
oz, ppdx are, by the adoption of indices, abbreviated into
¢z, ¢'z, .... As a consequence of this notation we have
¢’z ==z independently of the form of ¢. The inverse form
¢! is, it must be remembered, defined by the equation

P z=2x (1).
Hence ¢ may have different forms corresponding to the
same form of ¢. Thus if

¢r=2"+ ax,
we have, putting ¢z =1¢,

.
RSV E- J(; +41).

and ¢ has two forms.
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The problems of the Calculus of Functions are of two
kinds, viz.

1st. Those in which it is required to determine a func-
tional form equivalent to some known combination of known
forms; e.g. from the form of Yrz to determine that of "z
This is exemplified in B, page 167.

2ndly. Those which involve the solution of functional
equations, i.e. the determination of an unkmown function
from the conditions to which it is subject, not as in the pre-
vious case from the known mode of its composition.

We may properly distinguish these problems as direct and
inverse. Problems will of course present themselves in which
the two characters meet.

Direct Problems.

2. Given the form of Yz, required that of 4"z.

There are cases in which this problem can be solved by
successive substitution.

Ex. 1. Thus, if & =2° we have
Y = (@) =27,

and geuerally
vz =z

Again, if on determining y’z, Y’z as far as convenient it
should appear that some one of these assumes the particular
form z, all succeeding forms will be determined.

Ex. 2. Thusif Yz =1 — 2z, we have
\lf’,ﬂ: 1 —-(1 —'ﬂ) = 2.
Hence Y"z =1 — z or 2 according as = is odd or even.

Ex.3. Ifyz= ii—z , we find

x

¥a=2"1, yoen,
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1 xz—1 . N
=2 o according as on dividing

n by 3 the remainder is 0, 1 or 2.

Hence Y"z ==,

Functions of the above class are called periodic, and are
distinguished in order according to the number of distinct
forms to which "z gives rise for integer values of n. The
function in Ex. 2 is of the second, that in Ex. 8 of the third,
order.

Theoretically the solution of the general problem may be
made to depend upon that of a difference-equation of the
first order by the converse of the process on page 167. For

assume
1’1"13 = tn 4 \l"‘ﬂw = tn«n (2)
Then, since ¥"*'z = Yy"z, we have
tn«n = ‘\,I‘ (tn) (3)‘

The arbitrary constant in the solution of this equation may
be determined by the condition ?, =+, or by the still prior
condition

t,e=Yz==z (4).

It will be more in analogy with the notation of the other
chapters of this work if we present the problem in the form :
Given 4, required ¥*¢, thus making « the independent vari-
able of the difference-equation.

Ex. 4. Given yrt=a + b¢, required "t
Assuming ¥t =u, we have
u,,, =a+ bu,

the solution of which is

a
1-56"

u, = cb® +

Now u, ="t =1, therefore

a
t=c+i—__—-5-
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Hence determining ¢ we find on substitution
-1

u,=a3—_——1+bt

the expression for y*¢ required.
Ex. 5. Given yt= Z-—T-_t , required *¢.

Assuming {*t =, we have

v =2
= b+tu,’
or wu,,, +bu,, =a.

Assuming as in Ch. XI11. Art. 1,

u,+b= "2,
L4

we get Vepo — 07, — G, =0,
the solution of which is
v,=ca"+ ¢S5,
a and B being the roots of the equation
m' —bm —a =0.
Hence u, = gl_c_a:%%:g:: -b;

or, putting € for %'3 and a + B for b, and reducing,

1
_ a1 + OB:—:
U= =B R

Now u, =yt =, therefore
'+ CB*

t=—4310¢

_,3+C'a
14+4C°’

[cH. xV.

(5)

(6).
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t+8.

whence C=_t+a’

and, substituting in (6),

L@@ =Bt
uz“—aﬁaﬂn_ﬂrﬁx+(az_'3=)t (7):

the expression for {*°t required.

Since in the above example yt= bi-:-_z » we have, by direct

substitution,
a

b+

o 2 _
1"t_b+1}rt a

b+t’

and continuing the process and expressing the result in the
usual notation of continued fractions,

the number of simple fractions being z. Of the value of this
continued fraction the right-hand member of (7) is therefore
the finite expression. And the method employed shews how
the calculus of finite differences may be applied to the finite
evaluation of various other functions involving definite repe-
titions of given functional operations.

a+bt
c+el

Assuming as before Y*t =w,, we obtain as the difference-
equation

Ex. 6*. Given Yt =

, Trequired .

euu,,, + U, —bu,—a=0 (8),
and applying to this the same method as before, we find
_ o 4 O3 c
el ®),
a and B being the roots of
em'— (b+c)em+bc—ae=0 (10);

* See also Hoppe, Zeitschrift, v. 136.
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and in order to satisfy the condition u,=¢,
e(t—a)+c
=—— 11).
c e(t—B)+c (1)

When a and 8 are imaginary, the exponential forms must
be replaced by trigonometrical ones. We may, however, so
integrate the equation (8) as to arrive directly at the trigono-
metrical solution.

For let that equation be placed in the form

(u,+%)< » b)_{_bce’ae 0.

Then assuming u, =¢, + b2_—ec , we have
b+c b+c\ , be—ae
(t * 2 ) (t‘*“ 2e )+ s =%
or Gt +u(ty,—t)+vV=0 (12),
. . _b+c ., bc—ae_(b+c)
in which p=—g V'=—3% 4 (13).
t,,—t 1
& T
Hence Arid. e
or, assuming £, =vs,,
Sepy =8 _ TV
1488, n’
the integral of which is
8, = tan (C’— xtan™ Z) .
1
But ¢,=vws, and u,=1¢,+ u’, where
,_b—c
=5 (14).
Hence u, =vtan (O’ —z tan™ E) +u (15),

the general integral.
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Now the condition w,= ¢t gives
t=vtan O+ 4.

Hence determining C we have, finally,
Y*t=vtan (tan" t»%’f —ztan™ i) + (186),

for the general expression of {*t.

This expression is evidently reducible to the form
A+ Bt
C+ EY’
the coefficients A, B, C, E being functions of .
Reverting to the exponential form of ¥ given in (9), it
appears from (10) that it is real if the function
(b+c)? be —ae
s t 2
is positive. But this is the same as —44%. The trigono-
metrical solution therefore applies when the expression repre-

sented by »' is positive, the exponential one when it is
negative.

In the case of » =0 the difference-equation (12) becomes
taloy + 1 (b — 1) =0,

1 1.1

oy lo T
the integral of which is

a=§+a

M
Determining the constant as before we ultimately get
o BT — (Bt p2)t 1
‘P t— [lr'm —_ IL —t ( 7)’

a result which may also be deduced from the trigonometrical
solution by the method proper to indeterminate functions.
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Periodical Functions.

3. It is thus seen, and it is indeed evident a prior, that
in the above cases the form of ¥ is similar to that of Y,
but with altered constants. The only functions which are
known to possess this property are

a+bt
c+et

On this account they are of great importance in connexion
with the general problem of the determination of the possible
forms of periodical functions, particular examples of which
will now be given.

and at’.

Ex. 7. Under what conditions is @ + b¢ a periodical func-
tion of the 2* order ?

By Ex. 4 we have

= b1
1]rt=aT:f+b"t,

and this, for the particular value of # in question, must
reduce to #. Hence

b*—1

*T-1

equations which require that 4 should be any 2™ root of unity

except 1 when a is not equal to 0, and any z* root of unity
when a is equal to 0,

=0, =1,

Hence if we confine ourselves to real forms the only pe-
riodic forms of a+ bt are ¢ and a—¢, the former being of
every order, the latter of every even order.

Y . + 0t .
Ex. 8. Required the conditions under which g;_—et— is a

periodical function of the z* order.

In the following investigation we exclude the supposition
of e= 0, which merely legds to the case last considered.
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Making then in (16) ¥*t =t, we have

t=p' +vtan | tan™ tE s tan? (18),
v p

or Ut tan (tan“ b=p _ 2 tan™ Z) ,
v v N

an equation which, with the exception of a particular case to
be noted presently, is satisfied by the assumption

. .
z tan ‘;=z7r,

© being an integer. Hence we have

v i

- =tan — (19),
P z
or, substituting for » and p their values from (13),
4(c—ae) . | iw
-(b+c)’ —1 = tan =’
whence we find
b* — 2bc cos 2w +c
e=— z . (20).

I
4q cos® —
x

The case of exception above referred to is that in which
v=0, and in which therefore, as is scen from (19), ¢ is a mul-
tiple of . For the assumption » = 0 makes the expression for
¢ given in (18) indeterminate, the last term assuming the form
0x . If the true limiting value of that term be found in
the usual way, we shall find for ¢ the same expression as was
obtained in (17) by direct integration. But that expression
would lead merely to =0 as the condition of periodicity, a
condition which however is satisfied by all functions what-
ever, in virtue of the equation ¢’ =t¢.

The solution (9) expressed in exponential forms does not
lead to any condition of periodicity when a, b, ¢, ¢ are real
quantities.
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We conclude that the conditions under which %—I——gg , when
not of the form A + Bt, 13 a periodical function of the z™ order,
are expressed by (20), © being any integer which 18 not a
multiple of *.

4. From any given periodical function an infinite number
of others may be deduced by means of the following theorem.

THEOREM. If ft be a periodical function, then ¢fp~'t is also
a periodical function of the same order

For let ofp7't = Yt,
then V= Gfeefe
e
And continuing the process of substitution
Yt = ¢f "¢t
Now, if ft be periodic of the 't order, f"¢t =¢, and
frpTt=¢7t.
Hence Vit =¢pt=t.

Therefore y¢ is periodic of the n™* order.

Thus, it being given that 1 —¢ is a periodic function of ¢ of
the second order, other such functions are required.

Represent 1~ ¢ by ft.
Then if ¢t =,
: ¢fp7t = (1 - )"
If ¢t = 2,
#f¢t = (1),
These are periodic functions of the second order ; and the
number might be indefinitely multiplied.

The system of functions included in the general form
¢f¢7't have been called the derivatives of the function ft.

* I am not aware that the limitation upon the integral values of i has
been noticed before. (1st Ed)
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Functional Equations.

5. The most general definition of a functional equation
is that it expresses a relation arising from the forms of
functions ; a relation therefore which is independent of the
particular values of the subject variable. The object of the
solution of a functional equation is the discovery of an un-
known form from its relation thus expressed with forms which
are known.

The nature of functional equations is best seen from an
example of the mode of their genesis.

Let f(=, c¢) be a given function of 2 and ¢, which con-
sidered as a function of #, may be represented by ¢z, then

¢z =f (=, c)’
and changing « into any given function vz,
oy = f (4, o).

Eliminating ¢ between these two equations we have a result

of the form
F (2, ¢z, pYz) =0 (1).

This is a functional equation, the object of the solution of
which would be the discovery of the form ¢, those of ¥ and
being given.

It is evident that neither the above process nor its result
would be affected if ¢ instead of being a constant were a func-
tion of z which did not change its form when # was changed
into Yrz. Thus if we assume as a primitive equation

b@=cots (@)

and change z into — , we have

¢(—w)=—cw+(1—;.

Eliminating ¢ we have, on reduction,

(¢ @1 —{¢(-a) =4
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a functional equation of which (a) constitutes the complete
primitive. In that primitive we may however interpret c¢
as an arbitrary even function of z, the only condition to
which it is subject being that it shall not change on chang-
ing z into —«. Thus we should have as particular soln-
tions

1
¢(x)_a:cosx+(;s7v,

¢(z)=a:“+;£,

these being obtained by assuming ¢ = cos z and a” respectively.

Difference-equations are a particular species of functional
equations, the elementary functional change being that of «
into z+1. And the most general method of solving func-
tional equations of all species, consists in reducing them to
difference-equations. Laplace has given such a method,
which we shall exemplify upon the equation

F (z, pyrz, pxz) =0 (2),
the forms of 4» and y being known and that of ¢ sought. But
though we shall consider the above equation under its general
form, we may remark that it is reducible to the simpler form
(1). For, the form of Y+ being known, that of ¥ may be
presumed to be known also. Hence if we put ¥z =2 and
x¥ 2=z, we have

F (73, ¢z, Pyr,2) =0,
and this, since 4 and 4, are known, is reducible to the
general form (1).
Now resuming (2) let
‘l’w = Uy, X% = um) (3),
$Ya =0, $x%=t
Hence v, and u, being connected by the relation
v, =¢u, (4),

the form of ¢ will be determined if we can express v, as a
function of u, \
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Now the first two equations of the system give on elimi-
nating z a difference-equation of the form

Upyy = Jb, (5),

the solution of which will determine u,, therefore yrz, there-
fore, by inversion, # a8 a function of ¢&. This result, together
with the last two equations of the system (3), will convert the
given equation (2) into a difference-equation of the first
order between ¢ and v,, the solution of which will determine
v, as a function of £, therefore as a function of u, since the
form of u, has already been determined. But this deter-
mination of v, as a function of u, is equivalent, as has been
seen, to the determination of the form of ¢.

Ex. 9. Let the given equation be ¢ (mxz) — a¢ (z) = 0.

Then assuming

x=u, me=1u
$@)=v, @ @ma)= vZI} @,
we have from the first two
u,,, —mu, =0,
the solution of which is
U, = Cm' (b)

Again, by the last two equations of (a) the given equation
becomes

Uy —av, =0,

whence

v,=Ca (o).

Eliminating ¢ between (b) and (c), we have
logus—log C
v,=C'a len
_legC
Hence replacing u, by «, v, by ¢z, and C'a 8™ by C,, we
have
log x

¢z = C,q logm ().
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And here C, must be interpreted as any function of  which
does not change on changing z into mz.

If we attend strictly to the analytical origin of C, in the
above solution we should obtain for it the expression

@, + a, cos (211'% §m>+a cos (41:-} g:)+

log = log
Togm )+b sin (47rlgm)+

@, a,, by, ... being absolute constants. But it suffices to
adopt 'the simpler definition given above, and such a course
we shall follow in the remaining exa.mples

+ b, sin (2-rr

Ex. 10. Given ¢( ) a () =0.

Assuming
142z
T =u, 1_:—7» = Uy
142
¢(a")=vu ¢(1 w) =Yy
we have

1+ u,
Uy = i 0’

or Uy — Uy +%,+1=0.

The solution of which is
a
u, = tan (0+Z t) .

Again we have
Uy, —av, =0,

v,=0'a".
Hence replacing u, by z, v, by ¢ (z), and eliminating ¢,

whence

~lr

¢ (@)= Ca"™
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0, being any function of # which does not change on chang-

142
ing « into 1=

6. Linear functional cquations of the form

Yz +agd ot a gy e ta P @) =X (6),

where 4 (z) is a known function of #, may be reduced to the
preceding form.

For let 7 be a symbol which operating on any function
¢ (x) has the effect of converting it into ¢yr (z). Then the
above equation becomes

¢ () +a 7P (x) ... + a, P (z) =
(™ +am"" .. +a)d(x)=X (D).

or

It is obvious that 7 possesses the distributive property
cxpressed by the equation

(v + v) = 7u + 7,
and that it 1s commutative with constants so that

mau = amu.

Hence we are permitted to reduce (7) in the following
manner, viz,

¢@)=T"+ax""...+a )X
={N,(m—m)*+ N, (m—m)*..} X  (8),
m,, m, ... being the roots of

m'+am*™...+¢e,=0 9),

and N, N, ... having the same values as in the analogous
resolution of rational fractions.

Now if (7 — m)™* X = ¢ (z), we have
(m=m) $ (@) =X,
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or ¢¥ (2) — mé () = X,
to which Laplace’s method may be applied.

Ex.11. Given ¢ (m'z)+ a¢p (mx) 4 b (z) = 2"

Representing by a and B the roots of 2* +ax +b=0, the
solution is
P }08“_ log 8
({ —_— og m v logm
b @) = m gt 02X+ O,

C and C' being functions of # unaffected by the change of z
into mx.

Here we may notice that just as in lincar differential
equations and in lincar difference-equations, and for the
same reason, viz. the distributive character of the symbol o,
the complete value of ¢ () consists of two portions, viz. of
any particular value of ¢ () together with what would be its
complete value where X=0. This is seen in the above
example.

7. Therc are some cases in which particular solutions of
functional equations, more cspecially if the known functions
involved in the equations are periodical, may be obtained
with great ease. The principle of their solution is as
follows.

Supposing the given equation to be
F(z, px, pyrz) =0 (10),

and let Y& be a periodical function of the second order.
Then changing  into 2, and observing that Y’z =z, we

have
F(yz, ¢y, $2) =0 (11).

Eliminating ¢z the resulting cquation will determine ¢z
as a function of # and Yz, and therefore since Y is supposed
known, as a function of z.

If Yz is a periodical function of the third order, it would
be necessary to effect the substitution twice in succession, and
then to eliminate ¢yrz, and ¢yz; and so on according to
the order of periodicity of Y.
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. 1—2
; L Sl Y |
Ex. 12. Given (¢2) ¢1 a2

The function 1-o, periodic of the second order, Change

14+2
then z into l-a and we have
1+’

1-2\*, L 1-z
(#133) $o=¢15%:
N 1—=z
Hence, climinating ¢ i1 Ve find

g =ata (112)
as a particular solution. (Babbage, Ezamples of Functional
Equations, p. 7.)

This method fails if the process. of substitution does not
yield a number of ‘ndependent cquations sufficient to enable
us to effect the climination. Thus, supposing Jrz a period-
ical function of the second order, it fails for equations of the

form
F (¢pz, pyrz) =0,

if symmetrical with respect to ¢z and ¢y In such cases
we must either, with Mr Babbage, treat the given equation
as a particular case of some more general equation which is
unsymmetrical, or we must endeavour to solve it by some
more general method like that of Laplace.

Ex. 13. Given
T 2
(¢2)" + {ﬂb (‘2‘ —w)} =1
This is a particular case of the more general equation
2
(Ppz)* +m {¢ (Z;_ - )} =14 nyz,

m and n being constants which must be made equal to 1 and 0
respectively, and yz being an arbitrary function of z.
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Changing z into = — &, we have
(=2 O 2 3

{tﬁ(g— )}’+m{¢(z)}’=l+nx (g—-a:).

Eliminating ¢ (% —-z) from the above equations we find

A-m){p@)}=1-m+n {xz—mx(%—z)} .

Therefore
1 n T
(% @ = T+ T o= (5 -2}
Now if m become 1 and n become 0, independently, the

fraction -— —; becomes indeterminate, and may be replaced
1—m

by an arbitrary constant ¢. Thus we have
1
($@F=g+x@—cx(3-a);

whence, merging ¢ in the arbitrary function,
1 %
t@=f+r@-x(3-2)} @

The above is in effect Mr Babbage’s solution, excepting
that, making m and n dependent, he finds a particular value
for the fraction which in the above solution becomes an arbi-
trary constant.

Let us now solve the equation by Laplace’s method. Let
{¢ (x)}* ==, and we have

¥ @ +4(F-2)=1.
Hence assuming
z=1Y, g—$=u,“,

mw

\lr(x)=‘v,, 1Ir(-2-—x)=vm,
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we have

™
““,+u,=—2,

v, +v,=1
The solutions of which are
u,=c, (—1)’+ %’,
2, 1
v, = 0, (—‘ 1) § .
Hence
oL
—2_%_¢
™ 1
U, — E
Therefore
1
'v,=§ -l-C'(u,—'g),
or
1 T
‘\P‘(ﬁ)=§+0(tl2—;>-
Therefore

¢ (2) = {% +C (x— g)}*.

in which € must be interpreted as a function of  which does

not change when z is changed into ;—r—a:. It is in fact an

arbitrary symmetiical function of x and 72-'.- x.
The previous solution (12) is included in this.

For, equating the two values of ¢(2) with a view to
determine C, we find
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G=x(w)—x(g-w)

™

m—

4
x(3-¢)

_X@®  Z\2
™ ™ ™w

T3 27°%7%

b

which is seen to be symmetrical with respect to z and —g —a.

8. There are certain equations, and those of no incon-
siderable importance, which involve at once two independent
variables in such functional connexion that by differentiation
and elimination of one or more of the functional terms, the
solution will be made ultimately to depend upon that of a
differential equation.

Ex. 14. Representing by P¢ (z) the unknown magnitude
of the resultant of two forces, cach equal to P, acting in one
plane and inclined to each other at an angle 2z, it is shewn
by Poisson (Mécanigque, Tom. 1. p. 47) that on certain assumed
principles, viz, the principle that the order in which forces
are combined into resultants is indifferent—the principle of
(so-called) sufficient reason, ..., the following functional
equation will exist independently of the particular values of

« and ¥, viz.
$(z+y)+¢(—y) =¢() ¢ -
Now, differentiating twice with respect to z, we have
¢ @+y)+¢" (-9)=¢" (2) ¢ (¥)-

And differentiating the same equation twice with respect

to v,
¢" (z+y) +¢" (@9 =¢(2) " (¥)-

¢ (@) _¢" ()
Hence p@) 60 "
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Thus the value of ?;b ((:)) is quite independent of that of .

We may therefore write
¢" ()
¢ (@)

m being an arbitrary constant. The solution of this equa-
tion is

= im')

¢ (2) = Ae™ + Be™, or ¢ (z) = A cos mz + Bsin mz.

Substituting in the given equation to determine 4 and B,
we find

¢ (@)=€e"+€™, or 2cos m.

Now assuming, on the afore-named principle of sufficient
reason, that three equal forces, each of which is inclined to
the two others at angles of 120° produce equilibrium, it fol-

lows that ¢ (g) =1. This will be found to require that the

second form of ¢ (x) be taken, and that m be made equal to 1.
Thus ¢ () =2cosz. And hence the known law of compo-
sition of forces follows.

Ex. 15. A ball is dropped upon a planc with the intention
that it shall fall upon a given point, through which two per-
pendicular axes # and y are drawn. Let ¢ (2)dz be the
probability that the ball will fall at a distance between 2 and
z+dz from the axis y, and ¢ (y) dy the probability that it
will fall at a distance between y and y + dy from the axis .
Assuming that the tendencies to deviate from the respective
axes are independent, what must be the form of the function
¢ (x) in order that the probability of falling upon any par-
ticular point of the plane may be independent of the position
of the rectangular axes? (Herschel's Essays.)

The functional equation is easily found to be

¢ (@) ¢ (9) = ¢ (V= +39} ¢ (0).
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Differentiating with respect to # and with respect to y, we

have Y
' =2 W +y)} ¢(0)
¢ (z) ¢ (y) - ‘V(m‘ + y!) ’
s oy = YO V(@ + 7)) 6 (0)
¢ (z) ¢ (y) h I‘/(x: + y!) .
@ _ ¢
Therefore 2$ @) 99 W
Hence we may write
¢ (@) _
26 () = 2™
a differential equation which gives
¢ (@)=

The condition that ¢ (2) must diminish as the absolute
value of z increases shews that m must be negative. Thus

we have
é (z) = 0™,

EXERCISES.

1. If¢(x)= — determine ¢" (z).

2. If ¢ (z) = 22" — 1, determine ¢" (x).

a+bt

3. Ify(t)= and () = —a——%, shew, by means of

the necessary equation Y’ () =¥y (£), that
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4. Shew hence that ¥~ () may be expressed in the form

a+b,t
by—b+c+et’

the equation for determining b, being
bb,,, +cb,,, —bb,—ae=0,

and that results equivalent to those of Ex. 5, Art. 2, may
hence be deduced.

Solve the equations

5. f@+f@y)=Sf(=+y).

6. f(x)+af(—x)=2a"

7. f(z)—af(—z)=¢"

8. fl-a)+f(1+2)=1-2"

0. F(@) =af @ +F1Ff @)

10. Find the value, to = terms, of the continued fraction
2

2
1+T+

11. What particular solution of the equation
1
F@+f(3)=a
is deducible by the method of Art. 7 from the equation

F@+mf(3)=a+nd (@)1

12. Required the equation of that class of curves in which
the product of any two ordinates, equidistant from a certain
ordinate whose abscissa a is given, is equal to the square of
that abscissa.
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13. Ifarx be a periodical function of « of the #™ degree,
shew that there will exist a particular value of f(7) z expres-
sible in the form

a,+amrz+ ez ...+ a, 7',

and shew how to determine the constants a,, a,, a,,

ﬂ-l
14. Shew hence that a particular integral of the equation
1+
$(122) - ap (@) ==
will be
$ @) =1

a 114z 1 la:—-l)

‘( al—z d'z z+1)°

15. The complete solution of the above equation will be
obtained by adding to the particular value of = the comple-

stan—lz
mentary function Ca ™

16. Solve the simultaneous functional equations

¢ @) ¥ @)
$EFN=@+ T304 )

- Y@+ ®©)
LA B P YO

(Smith’s Prize Examination, 1860.)

17. Solve the equation

nF (nx) f(w)+f(w+ )+f(:v+ 2) +f(m+ n;_l)
[Kinkelin, Grunert, xx11. 189.]

18. Solve the equation

¢ () + ¢ (y) =¥ {zf () +3f (2)}.
[Abel, Crelle, 11. 386.]
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Magnus (Crelle, v. 365) and Lottner (Crelle, XLV1.) have
continued the investigations into this and kindred functional
equations,

19. Find the conditions that ¢ (z, y) + /=1 ¥ (z, 7) may
be of the form F (z +y J— 1).
[Dienger, Grunert, x. 422.]

20. Shew that
g =u. 7w
» dxh ¢ dx’l-l
satisfies the equation |
dz

kL —
%' = Z“AZ",

u being any function of z.

If a regular polygon, which is inscribed in a fixed circle,
be moveable, and if z denote thec variable arc between one
of its angles and a fixed point in the circumference, and z,
the ratio, multiplied by a certain constant, of the distances
from the centre of the feet of perpendiculars drawn from the
™ and (n—1)® angles, counting from A, on the diameter
through the fixed point, prove that z, is a function which
satisfies the equation.

21. If ¢ (2) = ¢ (x) ¢ (y), where z is a function of = and y
determined by the equation f(2) =f(z)f (), find the form

of ¢ (x).



( 316 )

CHAPTER XVIL
GEOMETRICAL APPLICATIONS,

1. THE determination of a curve from some property con-
necting points separated by finite intervals usually involves
the solution of a difference-equation, pure or mixed, or more
generally of a functional equation.

The particular species of this equation will depend upon
the law of succession of the points under consideration, and
upon the nature of the elements involved in the expression
of the given connecting property.

Thus if the absciss® of the given points increase by a
constant difference, and if the connecting property consist
merely in some relation between the successive ordinates, the
determination of the curve will depend on the integration of
a pure difference-equation. But if, the abscisse still increas-
ing by a constant difference, the connecting property consist
in a relation involving such elements as the tangent, the
normal, the radius of curvature, ..., the determining equa-
tion will be one of mixed differences.

If, instead of the abscissa, some other element of the
curve is supposed to increase by a constant difference, it is
necessary to assume that element as the independent variable.
But when no obvious element of the curve increases by a
constant difference, it becomes necessary to assume as in-
dependent variable the index of that operation by which we
pass from point to pcint of the curve, i.e. some number
which is supposed to measure the frequency of the operation,
and which increases by unity as we pass from any point to
the succeeding point. Then we must endeavour to form two
difference-equations, pure or mixed, one from the law of
succession of the points, the other from their connecting pro-
perty ; and from the integrals eliminate the new variable.
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There are problems in the expression of which we are led
to what may be termed functional differential equations, i.e.
equations in which the operation of differentiation and an
unknown functional operation seem inseparably involved. In
some such cases a Procedure similar to that employed in the
solution of Clairaut’s differential equation enables us to effect
the solution.

2. The subject can scarcely be said to be an important
one, and a single example in illustration of each of the dif-
ferent kinds of problems, as classified above, may suffice.

Ex. 1. To find a curve such that, if a system of n right
lines, originafing in a fixed point and terminating in the
curve, revolve about that point making always equal angles
with each other, their sum shall be invariable. (Herschel’s
Ezamples, p. 115.)

The angles made by these lines with some fixed line may
be represented by

2n—-1) =

27 4ar
6, 0+-;—, 0+-—;,...,0+ ~

Hence, if = ¢ () be the polar equation of the curve, the
given point being pole, we have

2 2(n—1)m] _
$(0) +¢ (o +7{) ...+¢{9+—-n———}—na,
a being some given quantity.
27z 2z
Let 6= - and let ¢ (n—) =u,, then we have

Uy Uy oo Uy = NA
the complete integral of which is

dmrz

2z 2n—2)me
u.=a+ClCOS —‘IT + C’COS T vee +C'n_,cos -—‘—n——.
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Hence we find
r=a+C, cos0+C,co820 ... +C,_ cos(n—1)6,
the analytical form of any coefficient C, being
C.= A + B, cos nf + B, cos 2n0 + ...,
+ E sinnf + E, sin 2n6 + ...,
4, B, E,, ..., being absolute constants.

The particular solution »=a + b cos § gives, on passing to
rectangular co-ordinates,
(@ —bo+y) = (o +5),
and the curve is seen to possess the property that “if a system
of any number of radii terminating in the curve and making

equal angles with each other be made to revelve round the
origin of co-ordinates their sum will be invariable.”

Ex. 2. Required the curve in which, the abscisse in-
creasing by a constant value unity, the subnormals increase
In a constant ratio 1 : a.

Representing by ¥, the ordinate corresponding to the ab-
scissa x, we shall have the mixed difference-equation

dy, dy,_
Yo G Y =0 ).

dy.
Let y, ?13/5 =u,, then
U, —au, ,=0;
c U= Cu?,
whence 7
y. G = Ca* ®.

Hence integrating we find
Y.=N(Cia®+¢) (3),

C, being a periodical constant which does not vary when z
changes to z +1, and ¢ an absolute constant.
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Ex. 3. Required a curve such that a ray of light pro-
ceeding from a given point in its plane shall after two reflec-
tions by the curve return to the given point.

The above problem has been discussed by Biot, whose
solution as given by Lacroix (Diff. and Int. Calc. Tom. 111
p- 588) is substantially as follows:

Assume the given radiant point as origin ; let @, y be the
co-ordinates of the first point of incidence on the curve, and
@', 3y those of the second. Also let Z‘: =p, % =p'.

It is easily shewn that twice the angle which the normal
at any point of the curve makes with 