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PREFACE

Containing the compulsory course of geometry, this textbook
is a manual for students of universities and teachers’ training col-
leges. It is particular for the impact on elementary geometry and,
therefore, highly professional training of the school or university
teacher-to-be.

The geometry course is organically related to the school treatment
of the subject. Starting with the study of coordinates and vectors,
which is just a pleasant revision for the well-trained first-year stu-
dent, the first part of the book, analytic geometry, is easy to assimi-
late, and actually reduced to acquiring skills in applying the coordi-
nate and vector algebra methods to the solution of elementary
geometric problems.

The second part, differential geometry, contains the basic facts
from the theory of curves and surfaces.

The third part of the book, foundations of geometry, is original.
In contrast to the traditional courses where the principal topics
related to the axiomatic construction of geometry are solved on the
basis of D. Hilbert’s (or H. Weyl’s) axiomatics, the treatment of the
material is supported by the axiom system given at school. Thus,
the problems of consistency, completeness and independence of axi-
oms are solved with relation to the well-known axiomatics whose
investigation is of undoubtedly professional interest. This part
ends in the account of the basics of projective geometry in its ana-
lytic interpretation.

The fourth part of the book is devoted to certain topics of ele-
mentary geometry including those treated at school incompletely
such as geometrical constructions, the measurement of lengths, areas
or volumes.

Considering the book as a whole, it can be said to begin with the
school treatment, and to return to it at a higher level, providing
extensive and profound knowledge of the school subject. We believe
that this will necessarily interest the reader in the school or univer-
sity teacher’s profession.

I take the chance to express profound gratitude to my co-workers
Yu.A. Aminov, A.I. Medyanik, A.D. Milk and Yu.S. Slobodyan for
useful criticisms and valuable assistance.



Part One

ANALYTIC GEOMETRY

Chapter I

RECTANGULAR CARTESIAN COORDINATES
IN THE PLANE

1. Introducing Coordinates in the Plane

Let us draw in the plane two mutually perpendicular lines Oz
and Oy termed the coordinate axes (Fig. 1) which intersect at point O
called the origin of coordinates or simply the origin. The origin
divides each of the axes into two semi-axes: a positive semi-axis
shown by an arrow in the drawing, and a negative semi-axis.

Any point A4 in a plane is specified by an ordered pair of real num-
bers—called the coordinates of the point—the z-coordinate (abscissa)
and y-coordinate (ordinate) according to the following rule.

Through the point 4 we draw a straight line parallel to the axis
of ordinates (Oy) to intersect the axis of abscissas (Ox) at some point 4,

AY \Y lr y
I I
Ay.( A (_, +) ( + ,+)
ol >
O:; >x 1 1v
o Ax X ( ] _) (+) —)

Fig. 1 Fig. 2 Fig. 3

(Fig. 2). By the abscissa of the point 4 we should understand a num-
ber 2 whose absolute value is equal to the distance from O to A,
being positive if A, lies to the right of the origin and negative if 4,
lies to the left of the origin. If the point A4, coincides with the origin,
then we put the z-coordinate equal to zero.

The y-ordinate of the point A is determined in a similar way.
4 The coordinates of the point A are always enclosed in parentheses,

(x, y).

The ycoordinate axes divide the plane into four right angles—
quadrants I, 11, I1I and IV (Fig. 3). Within one quadrant the signs of
both coordinates are as shown in the figure.
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Points lying on the z-axis (i.e. on the axis of abscissas) have y-coor-
dinates equal to zero and points lying on the y-axis (i.e. on the axis
of ordinates) have z-coordinates equal to zero. The origin of the
z-axis and the y-axis has zero coordinates.

The plane on which the z- and y-coordinates
are introduced by the above method is called
the zy-plane. An arbitrary point in this plane
with the coordinates x and y will sometimes be
denoted simply as (z, y).

For an arbitrary pair of real numbers z and
Yy there exists a unique point A in the xy-plane
for which x will be its abscissa and y its ordinate.

Indeed, suppose for definiteness >0 and
y < 0. Let us take a point 4, at the distance
z to the right the origin O on the z-axis and a
point A, at the distance y from the origin
below the z-axis. We then draw through the
points A, and A4, straight lines parallel to the y- and z-axes respec-
tively (Fig. 4). Theselines will intersect at a point 4 whose abscissa
is obviously z, and ordinate is y. In other cases << 0, y >0,
2>0, y>0 and 2<<0, y < 0. The proof is analogous.

Fig. 4

2. Distance Between Two Points

Let there be given two points on the zy-plane: 4, has the coordi-
nates x,, y; and A, has the coordinates x,, y,. It is required to express
the distance between the points A, and A, in terms of their coordinates.

AY AY
A, —oA
| Al Aa 4
. o
Fig. 5 Fig. 6

Suppose z; 5= z, and y; 5= y,. Through points 4, and 4, we draw
straight lines parallel to the coordinate axes (Fig. 5). The distance
between the points A4 and 4, is equal to | y; — ¥, |, and the distance
between the points A and A, is equal to |z, — z, |. Applying the
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Pythagoras’ theorem to the right-angled triangle 4,44,, we get
(@ — 23)* + (Y — ¥2)* = &, (+)

where d is the distance between the points 4; and A4,.

Though the formula (*) for determining the distance between
points has been derived by us proceeding from the assumption that
Z, 5= %3, Y1 7= Ys, it is true for other cases as well. Indeed, for
2, = Zg, Y = Yo d is equal to |y, — y, | (Fig. 6). The formula (*)
yields the same result. For z, 5= z,, y, = y, we get a similar result.
If 2, = x,, y, = Yy, the points 4, and A4, coincide and the formu-
la (%) yields d = 0.

As an exercise, let us find the coordinates of the centre of acircle
circumscribed about a triangle with the vertices (2, —2), (—2, 2)
and (1, 5).

Let (z, y) be the centre of the circumcircle. It is equidistant from the
vertices of the triangle. Equating the squares of the distances we
derive the following equations for the coordinates z and y. Thus,

we have
—22+@+22=@=+27+@y—23
=22+ @ +2°2=(@—1?2+ @ — 5>

After obvious transformations, we obtain
—z+y=0, —x+7y—9=0.
And hence, we obtain

xr =

o) e

and y=—g-.

3. Dividing a Line Segment
in a Given Ratio

Let there be given two different points on the zy-plane: A4, (z,, y,)
and A, (x4, ys). Find the coordinates z and y of the point A which di-
vides the line segment AA, in the ratio A, : A,.

Suppose the segment 4,4, is not parallel to the z-axis. Projecting
the points 4,, 4, 4, on the y-axis, we have (Fig. 7)

M4 A4 M
A4, - A4, M-

Since the points 4;, 44, A have the same ordinates as the points

4,, A,, A, respectively, we get

A A=y —yl, Ad;=|y—y,l.
Consequently,

lyi—yl M
ly—ysl  M°
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Since A lies between 4, and Ay, y, — y and Yy — Yy, have the same
sign. Therefore

lyi—yl _ p1i—y_ M

ly—yal y—yz—T'
Whence we find
. Aays My
y - A'1+A'2 . (*)
If the line segment 4,4, is parallel to the z-axis, then
Yy = Ys = Y.

The same result is obtained from the formula (%) which is thus
true for any locations of the points 4, and A4,.

The abscissa of the point A is found analogously. For the abscissa
we get the formula

— Aoy Mz,
M+ -

As an exercise, let us prove Ceva’s theorem from elementary
geometry. It states: If the sides of a triangle are divided by the concur-

AY

Ay

A

OI x e b

Fig. 7 Fig. 8

rent cevians (cevian of a triangle is a line segment that joins the vertex of
the triangle to a point on the opposite side), then these cevians are con-
current in the ratioa : b,c : a, b : c.

Let A (z,, y,), B (x3, y2), and C (x4, ys) be the vertices of the
triangle and 4, B, C the points of di_vision of the opposite sides
(Fig. 8). The coordinates of the point A are:

r= bzy+-czg __ byat-cys

b+c [ y_ b+0
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Let us divide the line segment A4 in the ratio (b -+ ¢) : a. Then the
coordinates of the point of division will be

z= azy+bzy+-czg
~ atbdc !
_ _ay1+bys+-cys
y= atb+tc

If the segment BB is divided in the ratio (z + ¢) : b, then we get
the same coordinates of the point of division. The same coordinates

4 A

Fig. 9

are obtained when dividing the seg_mént CC in the ratio (@ + b) : c.
Hence, the segments A4, BB, and CC have a point in common, which
was required to be proved.

We should note that theorems from the course of elementary geo-
metry on intersection of medians, bisectors, and altitudes in the
triangle are the particular cases of Ceva’s theorem. We now proceed
to clarify this. o o

For  medians (Fig. 9a) AC:CB=1:1, BA:AC=1:1,
Cli: BiA =1:1. For_ bigectors (Fig. 9b) AC:CB = AC:BC,
BA:AC=AB:AC, CB:BA=BC:AB. For altitudes (Fig. 9)

. Fp_ CC cC 1 1 iV I
AC:CB= tana * tanfp = tano ° tanp °’ BA:AC= tanp ° tany °’
CB:BA = We see that in all cases the conditions

tan y : tana °
of Ceva’s theorem are satisfied.

4. Equation of a Curve. Equation of a Circle

Let there be given a curve on the zy-plane (Fig. 10). The equation
9 (z, y) = 0 is called the equation of a curve in implicit form if the
coordinates z, y of any point of this curve satisfy the equation and
any pair of real numbers z, y, satisfying the equation ¢ (z, y) = 0
Tepresents the coordinates of the point on the curve. A curve is
obviously defined by its particular equation, therefore we may speak
of assigning a curve by its equation.
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In analytic geometry two problems are often considered: (1) given
the geometric properties of a curve, form its equation; (2) given
the equation of a curve, define its geometric properties. Let us con-
sider these problems as applied to the circle which is a simple
curve.

Suppose 4, (24, Yo) is an arbitrary point in the zy-plane, and R
is any positive number. Let us form the equation of a circle with
centre 4, and radius R (Fig. 11).

Let A (z, y) be an arbitrary point of the circle. Its distance from
the centre 4, is R. The square of the distance of the point A from 4,

AY

4

_OT 3 o[ >

Fig, 10 Fig. 11

is equal to (zx — z,)® 4+ (y — y,)®. Thus, the coordinates x, y of
any point A of the circle satisfy the equation

(x — 20>+ (y —yo)* — R* = 0. (%)

Conversely, any point 4 whose coordinates satisfy the equation
(+) belongs to the circle, since its distance from A4, is equal to R.

In conformity with the above definition, the equation () is the
equation of a circle with centre A, and radius R.

We now consider another problem for the curve given by the
equation

22+ y? 4+ 2ax +2by +¢c=0 (a® + b2 —c>0).
This equation can be rewritten in the following equivalent form:
(z+0)*+ (7 82— (V @+ —¢)*=0.

From this equation we can see that any point (z, y) of the curve is
at the distance of }a® + b® — ¢ from the point (—a, —b), and,
hence, the curve is a circle with centre (—a, —b) and radius
Va+ b —c.

Let us consider the following problem as an example illustrating
the application of the method of analytic geometry: Find the locus
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of points in a plane the ratio of whose distances from two given points
A and B is constant and is equal to k 5= 1. (The locus is a set of all
points which possess the given geometric property. Inthe case under
consideration we speak of such points in the plane for which the
ratio of distances from the two given points A and B is constant.)
Suppose that 2a is the distance between the points A and B.

We introduce a rectangular Cartesian coordinate system in the plane
taking the straight line AB as the z-axis and the midpoint of the
segment AB for the origin. Let, for definiteness, the point 4
lie on the positive z-axis. The coordinates of the point A will
then be: + = a, y = 0, and the coordinates of the point B will be:
z = —a, y = 0. Let (z, y) be an arbitrary point of the locus. The
squares of its distances from the points A and B are respectively
equal to (zx — a)? + y® and (z + a)® 4 y®. The equation of the
locus is

(z‘—a)z"'y’ = k2

(z+a)3+y?
or

224 y2 4 o 2(k +1) ax+a%=0,

Thus the locus is a circle (Apollonlus circle).

5. Parametric Equations of a Curve

Assume that a point A moves along a curve, and by the time ¢
its coordinates are: x = ¢ (¢) and y = v (¢). Simultaneous equations

z=9(@), y=1v(@¢,

which specify the coordinates of an arbitrary point on the curve as

functions of the parameter ¢ are called Ay
parametric equations.

The parameter ¢ need not be time,

it may be any other quantity which

describes the position of a point on a A
curve.

Let us now form a parametric equa- - >
tion for a circle. o x

Suppose we have a circle with centre
at the origin, and of radius R. The po-
sition of a point A on the circle can be
described by the angle a formed by the
radius OA and by the z-axis (Fig. 12). Fig. 12
The coordinates of the point A are

R cosa, R sina, and, consequently, the equation of the circle
has a form:

z=Rcosa, y=Rsina.
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From a parametric equation of a curve

r=9 (t)) y=v% (t)v (%)
we can obtain its equation in implicit form:
f (:L', y) = 0.

To do this it is sufficient to eliminate the parameter ¢ from the equa-
tions (x), by having found it from one equation and substituting it
into the other, or using any other method.

For instance, to get the equation of a circle specified by the para-
metric equations (i.e. implicitly) it is sufficient to square both equali-
tizes an(21 add them termwise. We then obtain the equation 2 -
y® = R2.

The elimination of the parameter from the parametric equation
of a curve not always yields an equation in implicit form in the sense
of the above definition. The points not belonging to the curve may
satisfy this equation. Now let us consider two examples.

Assume that a curve y is given by the parametric equations

r=acost, y==obsint, 0<t<2n.

Dividing these equations by a and b, respectively, squaring and
adding them termwise, we get the equation

z2 2
Frw=1
This equation is obviously satisfied by all the points belonging to the
curve y. Conversely, if the point (z, y) satisfies this equation, then
there can be found an angle ¢ for which z/a = cos ¢, y/b = sin ¢,
and, consequently, any point in the plane which satisfies this equa-
tion, belongs to the curve y.
Let now a curve y be represented by the following equations
z=acosht, y=>=bsinht, —oco<<t<+ oo,
where
cosh t = — (e'+e€7Y), and sinht= 2 et—e
- 2 ? =73 .

Dividing these equations by a and b, respectively, and then squaring
them and subtracting termwise, we get the equation

z2 y?

=1
The points of the curve y satisfy this equation. But not any point
which satisfies the equation belongs to y, for instance, the point
(—a, 0). It satisfies the equation, but does not belong to the curve,

since on the curve y a cosh £ = — a.
Sometimes the equation of-a curve represented in implicit form is
understood in a wider sense, viz., all the points satisfying the

equation need not belong to the curve.
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6. Points of Intersection of Curves

Let there be given two curves in the xy-plane: the curve v, defined
by the equation

h (‘771 y) =0,
and the curve y, specified by the equation
fz (.13, y) = O'

We now find the points of intersection of the curves y, and y,,
i.e. the coordinates of these points.

Let A (z, y) be the point of intersection of the curves y, and y,.
As the point 4 lies on the curve y,, its coordinates satisfy the equa-
tion f, (z, y) = 0. Also, as the point 4 lies on the curve y,, its coor-
dinates satisfy the equation f, (x, y) = 0. Thus, the coordinates of
any point of intersection of the curves y, and vy, satisfy simultaneous
equations

fl (.13, y) = 01 fz (I, y) = 0.

Conversely, any real solution to this system of equations yields the
coordinates of one of the points of intersection of the curves.
If the curve 7y, is given by the equation

fl (x? y) = 01

and the curve y, is given by the parametric equations
r=9 (@), y=1vC(@),

then the coordinates xz, y of the points of intersection satisfy a sys-
tem of three simultaneous equations

fl (x’ y) = 01 z = P (t)v y= IP (t)
If both curves are parametric
Viix=q (), y=1 )
Ve:Z =@y (1), ¥y =1 (1),

then the coordinates z, y of the points of intersection satisfy the
following system of four simultaneous equations:

z=q (), y=1 (),
z=.95 (V), Y =P, (7).
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Example. Find the points of intersection of the circles

2t + y? = 2az, 2%+ y? = 2by.

Subtracting the equations termwise, we find az = by. Substi-.
tuting y = ax/b in the first equation, we get

(1 +§—:) 22— 20z — 0.

Whence
0 2ab’
Ty =U, Ty = a’+b’ ’

the corresponding ordinates being

2ba?
y1=0, y,= b D

The required points of intersection are (0, 0) and ( ;%% , 3—:%,) y

7. Relative Position of Two Circles

Consider two circles of radii a and b, respectively, the centre-to-
centre distance being ¢. What is their mutual position?

Let O and O, be the centres of the circles. We take O to be the
origin of coordinates and the half-line Q0 the z-axis to the right of
the origin. The equations of the circles are

2?4 yt=ad (z—c)} 4y =b% (*)

1f the circles intersect, the coordinates x, y of the point of inter-
section obey both equations (»). Conversely, if the system of equa-
tions (x) has a solution, i.e. thereexistz and y such that they meet both
equations, then they are the coordinates of the point of intersection
of the circles. The number of points of intersection (if any) equals
the number of the solutions of the system.

Let us now solve the system (x). To this end, we first subtract the
equations term by term. We get 2cz — 2 =a® — b‘f. Hence z =
(a® + ¢ — b?)/2c. Substituting this value of =z into the first
equation gives

(£5222) e

Hence

y= )/ o (TR
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We transform the expression under the radical as the difference
of squares

(e+-22) (a—ttp=m)

= 4—1‘_,— (2ac+ a2+ c2—b?) (2ac— a2 —c2 4 b?)
= 5 [(a+ 02— 8% (B2 — (a—0)?]

= -4—:;7 (@a+b+e)(@a+c—b) (b+a—c) b—a+o).
Thus

Y=+ oV @to+9 @te—5 @+b—a Gtc—a).

It follows that if a +¢>b, a + b>c and b + ¢ > a, then the
radicand is positive, and hence the system () has solutions, of which
there are two: one of them has the root with a plus sign, and the
other with a minus sign. And so the circles intersect at two points.

If at least one of the factorsa +~c¢c—b,a + b —c¢,b+c—ais
zero, then the system () has one solution, i.e. the circles touch
each other.

If one of the factors in the radicand is negative, then the system (x)
has no solutions and the circles do not intersect. Two factors in the
radicand cannot be negative, since then their sum would be negative.
But it is known to be positive. For example, if a + ¢ — b << 0 and
a+b—c<O0,then (@ +c—b) + (@ + b — ¢) = 2a < 0, which
is impossible. The situation will be the same in other cases.

Consequently, if one of the numbers a, b, c is larger than the sum of
the two others, then the circles do not intersect; if one of them equals the
sum of the two others, then the circles touch; if one of them is less than
the sum of the two others, then the circles intersect at two points.

This examination enables us to solve the issue of the existence
of a triangle with given sides. So for the given line segments of lengths
a, b and c to be the sides of some triangle it is sufficient for the
largest of a, b, or ¢ to be less than the sum of the two others. Really,
let us take asegment AB of length ¢ and draw circles with centres A
and B, of radii ¢ and b, respectively. As proved above, these circles
intersect at a certain point C. The triangle A BC has the sides AB =
¢, AC = a, and BC = b.

EXERCISES TO CHAPTER I

1. Given two points on a straight line parallel to the z-axis. The
ordinate of one of them is y = 2. Find the ordinate of the other
point.
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2. From a point A (2, 3) a perpendicular is dropped on the z-axis.
Find the coordinates of the foot of the perpendicular.

3. Through a point 4 (2, 3) a straight line parallel to the z-axis is
drawn. Find the coordinates of the point where it cuts the y-axis.

4. Find the locus of points in the xy-plane with the abscissa z = 3.

5. Given points 4 (=3, 2), B (4, 1), show that the line segment
AB cuts the y-axis, but not the z-axis.

6. What part of the y-axes (above or below the z-axis) is cut by
the segment AB in the previous problem?

7. Find the distance from the point (—3, 4) to the z-axis (y-axis).

8. Consider a point with ordinate y = 2 lying on the bisector of
the first quadrant. Find the abscissa of the point.

9. Solve the previous problem, given that the point lies on the
bisector of the second quadrant.

10. Find the locus of points in the zy-plane, with =z = y.

11. Find the locus in the zy-plane with z = —y.

12. What is the position of the points of the zy-plane for which
@lz]=a, @) [z]|=|y]?

13. What is the position of the points of the xzy-plane for which
@ lz|<a, (b) |z|<a, |yl<B?

14. Find the coordinates of a point symmetric to the point A (z, y)
about the z-axis (y-axis, the origin).

15. Find the coordinates of a point symmetric to the point 4 (z, y)
about the bisector of the first (second) quadrant.

16. How will the coordinates of the point A (x, y) change if the
y-axis is taken as the z-axis, and vice versa?

17. Given points 4 (4, —2), B (1, 2), C (—2, 6), find the dis-
tances between these points, taken in pairs.

18. Show that points 4, B, C in the previous problem lie on the
same straight line. Which of the points lies in between?

19. Find on the z-axis a point equidistant from points (1, 2)
and (2, 3).

20. Find a point equidistant from the coordinate axes and from
the point (3, 6).

21. Given the coordinates of two vertices 4 and B of an equilateral
triangle ABC, find the coordinates of the third vertex. Consider the
case 4 (0, 1), B (2, 0).

22. Given the coordinates of two adjacent vertices 4 and B of
a square ABCD, find the coordinates of the remaining vertices.
Consider the case 4 (1, 0), B (0, 1).

23. What condition must the coordinates of the vertices of a trian-
gle ABC satisfy for a triangle to have a right angle at the vertex C?

24. What condition must the coordinates of the vertices of a tri-
angle ABC satisfy for the angle 4 to be larger than the angle B?

25. A quadrilateral ABCD is specified by the coordinates of its
vertices. Determine whether or not it is inscribed in a circle.
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26. Prove that for any real a, a,, a,, b, b;, b, there exists the
following inequality

V (@—a)® + 0, — )%+ V (a,—a)® + (b,— b)?
=V (a3 —az)2+ (b —by)*

To what geometric fact does it correspond?

27. Given the three vertices of a parallelogram ABCD: A (1, 0),
B (2, 3), C (3, 2), find the coordinates of the fourth vertex and of the
point of intersection of the diagonals O.

28. Show that points 4 (—1, —2), B (2, —5), C (1, —2), D (—2,
1) are the vertices of a parallelogram. Find the point of intersection
of its diagonals.

29. Given one end of a line segment (1, 1) and its midpoint (2, 2),
find the second end.

30. Show that points (3, 0), (1, 0), (1, —2), (3, —2) are the ver-
tices of a square.

31. Given the coordinates of the vertices of a triangle: (z,, ¥,),
(x4, Ys), and (zg, ¥3), find the coordinates of the point of intersection
of the medians.

32. Given the coordinates of midpoints of the sides of a triangle
@1, Y1), (2, ya), and (x5, y¥;), find the coordinates of its vertices.

Given a triangle with the vertices (z,, ¥,), (%2, ¥2), and (x5, ¥3),
find the coordinates of vertices of a similar triangle and of a simi-
larly located triangle with the ratio of similitude A and the centre
of similitude at point (z,, y,)-

34. The point A is said to divide the line segment 4,4, externally
in the ratio A, : A, if this point lies on a straight line joining the
points A; and A4, outside the segment 4;4, and the ratio of its
distances from the points 4, and 4, is A, : A,. Show that the coordi-
nates of the point A are expressed in terms of the coordinates (z;, ¥,),
(3, y,) of the points A; and 4, by the formulas

Ay —hyzy — Aay1 —Mys

A—h A—A

35. Two line segments are specified by the coordinates of their
end-points. How can we find out, without using a drawing, whether
the segments intersect or not?

36. The centre of gravity of two masses p, and p, located at points
A, (x,, y,) and A, (x4, y,) is defined as a point 4 which divides the
segment A4;A4, in the ratio p, : p,. Thus, its coordinates are:

P11+ paZs — ayi+Hays

X = ———mmee.
pitps y ({1 o

The centre of gravity of n masses p; situated at points A4, is deter-
mined by induction. Indeed, if A7 is the centre of gravity of the
first n — 1 masses, then the centre of gravity of all » masess is deter-

xr=
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mined as the centre of gravity of two masses: pu, located at point 4,
and p; + pg + .. . + Bn-1, situated at point 4;. Derive the for-
mulas for the coordinates of the centre of gravity of the masses p;
situated at points A; (z;, y;):

PaZ1+ ... PnZn _ Byt ... +Bakn

Pt Fpn 0 Y m+...+pa °

37. Find the centre of a circle lying on the z-axis, given that the
circle passes through a point (1, 4) and its radius is 5.

38. What are specific features in the position of the circle

24+ Y2+ 2ax+2by+c=0 (a®+ b2 —c>0)

with respect to the coordinate system if (a)a = 0; (b) b = 0; (¢) c =
0 d a=0,=0;)a=0,¢c=0;, ) b=0, ¢c=0?

39. Show that if we substitute the coordinates of any point lying
outside the circle in the left-hand side of the equation of a circle
then we shall obtain the square of the length of a tangent drawn
from this point to the circle.

40. The power of a point A with reference to a circle is defined as
the product of the segments of a secant drawn through the point A
taken with the plus sign for points external to the circle and with
the minus sign for points internal to the circle. Show that the left-
hand member of the equation of a circle z* + y® + 2ax + 2by +
¢ =0 gives the power of this point with reference to a circle
when the coordinates of an arbitrary point are substituted in it.

41. Form the equation for the locus of points of the xy-plane the
sum of whose distances from the two given points F; (¢, 0) and
F, (—c, 0) is constant and equal to 2a (an ellipse). Show that the

2
equation is reduced to the form % -4 % = 1, where b? = a® — c%.

42, Form the equation for the locus of points of the zy-plane the
difference of whose distances from the two given points F; (c, 0)
and F, (—c, 0) is constant and is equal to 2a (ix hyperbola). Show

2
that the equation is reduced to the form % — yb—z = 1, where b =

xr=

c® — a?.
43. Write the equation for the locus of points of the zy-plane which
are equidistant from the point F (0, p) and the z-axis (a parabola).
44. Show that the following parametric equations

z2=Rcost+a, y=Rsint+b

represent a circle of radius R with centre at the point (a, b).

45. Form the equation for a curve described by the point on the
line segment of length a when the end-points of the segment move
along the coordinate axes. (The segment is divided by this point in
the ratio A : p.) Take as the parameter the angle made by the segment
with the z-axis. What is the shape of the curve if A : p = 1?
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46. A triangle slides along the coordinate axes with two of its
vertices. Write the equation for the curve described by the third
vertex (Fig. 13).

47. Form the equation for a curve described by a point 4 on a circle
of radius R which rolls along the z-axis (Fig. 14). Take as the para-

Fig. 13 Fig. 14

meter the path s covered by the centre of the circle. Assume that at
the initial moment (s = 0) the point 4 coincides with the origin.
48. A curve is given by the equation

ax® + by + cy* + dr 4 ey =0,

Show that, by introducing the parameter ¢ = y/x, we can obtain

the following equations for the parametric curve:
d-}-et . dt-}-et?

—aFbitar ' YT T aFmitere

49. Form the equation of the circle with centre at a point (1, 2),.
given that it touches the z-axis.

50. Form the equation of the circle, centre (—3, 4), given that
it passes through the origin of coordinates.

51. Show that the circle 22 4 y%2 4+ 2ax + 1 = 0 does not meet
the y-axis.

52. Show that the circle 22 + y? 4 2ax = 0 touches the y-axis.

53. What condition must the coefficients of the equation of

a circle
22+ y?+2ax +2by +c=0
satisfy for the circle (a) not to intersect the z-axis; (b) to intersect
the z-axis at two points, (c) to touch the z-axis?
54. What condition must the coefficients of the following equa-
tions of circles
22+ ¥+ 2a 0 + 2by + ¢, =0,
z? + ¥ + 2a,x + 2bgy + ¢ = 0,
satisfy for the circles (a) to intersect; (b) to touch?

xr=
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55. Find the points of intersection of the two circles:
224+ y*=1and x =cost +1, y =sint.
56. Find the points of intersection of the two parametric curves

z=s+1, z =,
and

y=s  y=t+1
57. Show that the points of intersection of the curves
ar®* + by® = ¢, Ax® 4+ ByS = C

are symmetric about the coordinate axes.

Chapter 11

VECTORS IN THE PLANE

1. Translation

We introduce Cartesian coordinates z, y on the plane. A transfor-
mation of a figure F, under which its points (z, y) are carried into
{z + a, y + b), where a and b are two constants, is called a translation

o (Fig. 15). A translation is given by

F the formulas

(x+a,p+bd) g =z+a yY=y+>b (¥

i ) expressing the coordinates z’, y’ of
1 [=y the point into which (z, y) is carried.
) A translation is a motion. In fact,
{ two arbitrary points A4 (z,, ¥,) and
! B (z4, y,) are transformed into A" (z,4
Fig. 15 a,y; +b),B (&3 +a,y, +b) and

AB? = (z; — 2,)*+(y2—y,)?, A'B’=
(z, — 2,)® + (ys — y1)®. Hence, AB = A’'B’. Thus, the transfor-
mation is distance-preserving and, therefore, a motion.

The name “translation” is justified by the shift of points along
parallel or coincident straight lines through the same distance. Indeed,
let two points A (z;, y,) and B (x5, y,) be sent into A’ (z, - a,
y, + b), B’ (z, + a, ys + b) (Fig. 16). The midpoint of the line
segment AB’ as well as that of A’B have coordinates]

b
= z1+;,+a , — y1+gz+ .

x Yy
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Hence, the dlagonals of the quadrilateral AA’B’B meet and bisect
each other. It is therefore a parallelogram whose opposite sides A4’
and BB’ are parallel and equal.

Note that the other two sides AB and A'B’ are also parallel.
Consequently, under a translation, a straight line is transformed into

a parallel line (or into itself).

For any two points A and A’, there is one, and only one, translation
under which A is carried into A

Proof. We start with uniqueness. Let X be an arbitrary point of
the figure, and sent by the translation into X’ (Fig. 17). As we know,

14
A:% 7,‘4 ‘X X’
X
B B’ 4 A

Fig. 16 Fig. 17

the line segments XA’ and AX' possess a common midpoint O.
The specification of X determines O uniquely, whereas A and O
uniquely determine X', since O is the midpoint of AX’'. The unique-
?ess in the determination of X’ is just what implies that of the trans-
ation.

To prove the existence of a translation sending A into A’, we
introduce Cartesian coordinates on the plane. Let a,, a, be the coor-
dinates of A, and a;, a; those of A’. The translation given by

2 =z+4+a—a, Yy =y+a —a,

sends 4 into A In fact, wher z = a,, and y = a,, we obtain
2 =a, y = a Q.E.D.
It follows from the uniqueness of a translation sending a given
point A into a given point 4’, which isestablished without involv-
ing a coordinate system, that a translation is given by formulas of
the form
' =xz+a, yY=y+5>b

in any Cartesian system of coordznates The constants ¢ and b, certain-
ly, depend on the choice of a coordinate system.

As an exercise, we solve the followmg

Under a translation, the point (1, 1) is sent into (—1, 0). What
point will the origin be transformed into?

Solutlon. Any translation is given by the formulas 2’ = z + a,

=y + b. Since (1, 1) is carried into (—1, 0), we have —1 =

+ a,0 =1+ b. Hence, a = —2, b = —1. Thus, our trans-
lation is given by ' =2 —2, y =y — 1. Substituting into the
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formulas the coordinates of the origin, x = 0, y = 0, we obtain
2’ = —2, y' = —1. Thus, the origin is transformed into the
point (—2, —1).
A transformatiorn inverse to a {translation is a translation. Two
translations performed one after another again yield a translation.
Proof. Any translation is given by formulas of the form

¥ =z+a, y =y-+0>.

The inverse transformation is determined by formulas of the
same form

r=2z —a, y=y —0b,

and is, therefore, a translation, thus proving the first statement.
Now, consider two translations specified by

¥=z+a, y =y+b,
' =za"+¢, y' =y +d
A transformation obtained on performing these two consecu-
tively is
=zxz+4+a+c, yY=y+b+d
which is a translation, and the theorem is proved completely.

2. Modulus and the Direction of a Vector

We will call a directed line segment a vector (Fig. 18), and denote

it by a small letter a, b, ¢, . . . in bold type. Sometimes, a vector

is given by specifying the ends of a line seg-

B ment representing it. For instance, the vector
-—

in Fig. 18 can be denoted by AB. With this

method of denoting a vector a, the point 4 is

A called its origin, and B its end-point. 1f we

denote a vector by means of the ends of a line

Fig. 18 segment representing it, then we always E_I_ace

the origin first. Sometimes, the notation a or

i

a is used (to be read “a vector a”).

Two half-lines are said to be co-directional if they can be made to
coincide under a translation, i.e., if there exists a translation which
would transform one of them into the other.

If two half-lines a and b are co-directional, and two half-lines b and ¢
are also co-directional, then a and c are co-directional. Indeed, since a
and b are co-directional, there exists a translation which transforms a
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into b. Since b and ¢ are co-directional, there exists a translation
which transforms b into ¢. Carried out one after the other, these
two yield a translation to transform a into ¢. Hence, @ and ¢ are
co-directional.

Two half-lines are said to be opposite if each of them is co-direc-
tional with one half-line complementary to the other.

Two vectors AB and CD are said to be co-directional if the half-
lines AB and CD are co-directional. The modulus (or magnitude)
of a vector is the length of a line segment representing it. The modu-

lus of a vector a is denoted by | a |, and that of ZB by AB.

Two vectors are said to be equal if they can be made to coincide
under a translation, which means that there exists a translation
transforming the origin and end-point of one
into those of the other, respectively. Hence, 4 B
equal vectors are co-directional and equal in
modulus. Conversely, if vectors are co-directional
and equal in modulus, then they are equal. In fact,

—
let AB and CD be two co-directional vectors D c
equal in modulus. The translation transforming Fig. 19
C into 4 makes the half-line CD coincident
with the half-line AB, since they are co-
directional. And because the line segments AB and CD are equal,
the point D is then made coincident with the point B, i.e., the

— —
translation sends the vector CD into the vector AB. Therefore,
— —

AB and CD are equal.

Given a parallelogram ABCD, prove that the vectors AB and DC
are equal.

—

Solution. Let AB be subjected to a translation sending the point 4
into D (Fig. 19). A is then shifted along the straight line 4D, and
therefore, B along the parallel straight line BC. The straight line AB
is transformed into a parallel line, and, consequently, into the straight
line DC. Therefore, B is sent into the point C. Thus, our trans-

. —> —
lation transforms 4B into DC; hence, they are equal.

—
Denoting a vector by its end-points (4B), it is natural, and, as
we see below, expedient, to consider the vector whose end-points

coincide (A—;l). Call it the zero vector, and denote it by 0. Its
direction is not spoken of, and the modulus is assumed to be zero.
All zero vectors are equal by definition.

It follows from the translation properties that one, and only one,
vector equal to a given vector can be marked off from any point. For
proof, it suffices to carry out a translation under which the origin
of the vector will be transformed into the given point.
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3. Components of a Vector

Let a vector a have a point A4, (z,, y,) as the origin, and a point
A, (x5, y,) as the end-point. Its components are the values a4 =
Ty — Xy, @3 = Yy — Y;- We write a (a;, a,), or simply (a,a,)-
The zero vector components are zeros.

It follows from the formula expressing the distance between two
points in terms of their coordinates that the modulus of a vector
with components a,, a, is equal to }a? + a.

Equal vectors have equal respective components. Consequently, if the
respective components of two vectors are equal, then the vectors are
also equal.

Proof. Let A, (z;, y,) and A, (z;, y,) be the origin and end-point
of a vector a. Since an equal vector a’ is obtained from a by a transla-
tion, then its origin and end-point are A, (z, + ¢, y, + d) and
A; (g + ¢, ys + d), respectively. Hence, both a and a’ have the
same components £, — Z;, Y — Y.

To prove the converse statement, we suppose that the correspond-

ing components of the vectors Al_;lz and A?:l; are equal, and show
that the vectors themselves are equal. Let x; and y; be the coordi-~
nates of the point A;, and z,, y, those of the point 4;. Given that
Ty — &y =T, — LY — Y1 = Y, — Yy, We havez; = xy + 2, — 7y,
Y, = Y + y; — Y1, and the translation specified by the formulas;
¥ =x+x —2x,y =Yy +y;, — Yy, sends 4, to A;, and 4, to A4,
— —

i.e., A;4, and A4, are equal. Q.E.D.

Given three points A (1, 1), B (—1, 0), C (0, 1), find a point D (x, y)

— —
so that the vectors AB and CD are equal.
—_—
Solution. The components of AB are (—2, —1), whereas those of

Eb @ —0,y—1). SinceA_§=C_ﬁ, z2—0= =2, y~—1=-—1.
Hence, the coordinates of the point D are # = —2, y = 0.

4. Addition of Vectors

The sum of two vectors a and b with components a,, a, and b,, by
is a vector ¢ with components a, + by, a, + by, i.e.,

a (a,, a3) + b (by, by) = ¢ (a; + by, @ + by).
For any vectors a (a,, ay), b (by, by), ¢ (1, ¢3),
a+b=b+4+a, at+(b+ec)=1(a-+Db)te.

To prove, it suffices to compare the corresponding components of
the vectors on the right- and left-hand sides. We see that they are
equal, and vectors with corresponding equal components are equal.
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For any three points A, B, C, the vector equation
AB + BC = AC
holds.
Proof. Let A (z,, y,), B (%3, y5), C (xg, y5) be the three given
—
points. The components of the vector AB are (r, — &y, Y3 — Yy),
whereas those of BC (x3 — %3, Y3 — Y,). Therefore, the components
of the vector AB —l— BC are (zg — %1 Ys — Y1), just those of the

vector AC. Thus, AB + BC and AC are equal. Q.E.D.
Hence, the followmg method for the construction of the sum of
two arbitrary vectors a and b. Viz., we have to mark off a vector b*

a+b A D
Fig. 20 Fig. 21

equal to b from the end-point of a. Then the vector whose origim
coincides with that of a, and end-point with that of b’, is the sum
a + b (Fig. 20).

Given a parallelogram ABCD, prove the vector equation A—é +
—_—
AD = AC (“parallelogram law” of vector addition).
— — —
Solution. We have: AB + BC = AC (Fig. 21). But the vectors:

— — — — —
BC and AD are equal. Therefore, AB + AD = AC.

A vector ¢ (¢;, ¢;) whose sum with a vector b yields a vector a is-
called the difference of the vectors a (a,, a,) and b (b, by), viz.,
b 4+ ¢ = a. Hence, we find the components of the vectore¢ = a — b,
ie., ¢, = a, — by, ¢; = a; — b,.

Given two vectors AB and AC with a common origin, prove that
— —> -
AC — AB = BC. - S

—- — —

Solutlon We have AB 4+ BC = AC, which means that AC —
—_—
AB = BC.

5. Multiplication of a Vector by a Number

The product of a vector (;1-,_;;) and a number A is the vector
—_—
(Aay, May), viz.,

—_— —_—
(au az) A=A (ay, ag) = 0"“1’ 7‘“2)'
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It follows from the definition of the multiplication of a vector
by a number that, for any vector a and two numbers A, p,

( + p) a = Aa + pa.
For any two vectors a and b and a number A,
A (@ 4 b) = Aa 4 Ab.
The modulus of the vector Aa equals |\ || a |. The direction of Aa
coincides with that of a if A > 0, and is opposite if A << 0.

Proof. Construct two vectors OA and OB equal to a and Aa, re-
spectively, O being the common origin. Let ¢, and a4 be the compo-
nents of a. Then the coordinates of the point A are the values a, and
a,, whereas those of the point B are Aa,, Aa,.

In the case 0 << A < 1, B is on the line segment OA, and divides

it in the ratio A : (1 — L), since its coordinates admit the represen-
tation

0-(1—A)4-Aay 0-(1—A)+Aag
A—=M+2r (1—=A)+A
In the case A > 1, 4 is on the line segment OB, and divides it in
the ratio 1 : (A\ — 1). Thus, in both cases, i.e., for A >0, OB has
—

the same direction as OA.
In the case A << 0, the point O is on the line segment AB, and

divides it in the ratio 1 : | A |. Hence, if A << 0, then OB has the
—
direction opposite to that of 04, and we obtain

Aa] =V (Aay)2+ (Aay)2= |A| Val+ai= A |a].

)\:ai = }vaz =

E.D.
Given two points A (z,, y,) and B (z,, y,), prove that the vectors AB
and BA are opposite.
Solution. The components of AB are z, — x, and yg — y,, whereas
those of BA are z, — Z, and Yy, — y4. We see that AB = (—1) BA.
Therefore, Aﬁ and B_Z are opposite.

6. Collinear Vectors )&

Two vectors are said to be collinear if they are on the same or
parallel straight lines.

The corresponding components of collinear vectors are proportional.
Conversely, if the corresponding components are proportional, then the
vectors are collinear.

Proof. Let a(a,, a;) and b (b,, b;) be the given vectors. Assume

that they are collinear. Consider the vector ¢ =+ %%:- b, where
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the plus is taken when a and b are co-directional, and the minus
when they are opposite. The vector ¢ equals a, since they are
co-directional, and equal in modulus. Equalizing their components,
we obtain

— 4 lal — lal
ai—-'-tlhl bh az—i |b| b
Hence, by :im by =4 —— bl , and b—l———ﬁ, i.e., the com-
a al’ a |al ay as

ponents of a and b are proportlonal

Now, let the coordinates of a and b be proportional. We prove
that the vectors are collinear. We have

b b

ay - ags :
Denoting the common value of these ratios by A, we obtain b, =
AM,, by = ha,. Hence, b = Aa, which means that the vectors are

collmear

Given that the vectors a (1, —1) and b (—2, m) are collinear, find m.

Solution. The components of collinear vectors are proportional.

Therefore, _—12 = %, implying that m = 2.

7. Resolution of a Vector into
Two Non-Collinear Vectors

If two vectors a and b are other than zero and non-collinear, then
any vector ¢ admits one, and only one, representation

¢ = Aa + pb.

Proof. If ¢ is the zero vector, then ¢ = 0-a 4 0.b. Let ¢ be non-
zero. Draw straight lines parallel to a and b through its end-points
(Fig. 22). Accordingly, we obtain its repre-
sentation as the sum of collinear vectors
a,;, b, and a, b, respectively. We have

a; = M, bl = P,b.

Therefore,

¢ = Aa + pb.

To prove the representation uniqueness,

we suppose that there are two
e =Ma+ pb, ¢ =>Aa + psb.
Subtracting one of the equalities termwise from the other, we

obtain
0= (A — Ap)a + (n; — po)b,

which is possible only if A, — A, =0, P — pg =0, since a and b
are non-collinear, and the uniqueness is thus proved
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A vector is said to be unit if its modulus is unity. Unit vectors
with the direction of positive coordinate half-axes are called base
vectors. We will denote them by e, (1, 0) on the z-axis and, by e, (0, 1)
on the y-axis.

Any vector a (a,, a,) admits a representation in the form

a = a,e, + age,.

—— —_ —_— —— —_—

In faCty (a’lv 0,2) = (a'lv O) + (07 ”'2) =0 (11 O) + a (07 1) =
a.e; + age,.

Given three vectors a (1, 0), b (1, 1), ¢ (—1, 0), decompose ¢ in
terms of a and b.

Solution. Equalizing the corresponding components of the vectors
¢ and Aa + pb, we obtain two equations —1 = A-1 4+ p-1 and
0=A-0 + pn-1, from which p =0, A = —1.

8. Scalar Product

The scalar product of two vectors a (a,, a;) and b (b, b,) is the
value a;b, + a,b,. We will employ the same notation for the scalar
product as for the product of two numbers. The scalar product aa is
denoted by a% It is obvious that a2 = | a [

It follows that, for any vectors a (a,, as), b (by, b,), € (¢1, ¢5),

(a + b)e = ae + be.

In fact, the left-hand side of the equality is (a, 4+ b,)e; + (ag+
by)c,, whereas the right-hand side is a,c; + aq.co + byey +
byc,. That they are equal is obvious.

—

The angle between two non-zero vectors AB and AC is the angle
BAC. The angle between any two vectors a and b is that between
any two vectors equal to them, but with the common origin. The
angle between two co-directional vectors is assumed to be zero.

The scalar product of two vectors equals the product of their moduli
times the cosine of the angle between them.

Proof. Let a and b be the two given vectors, and ¢ the angle be-
tween them. We have

(@ + b)? = (a + b)(a +b) = (a 4 b)a + (a + b)b
= aa + ba 4 ab -+ bb = a® - 2ab -} b?,

or
la+bPP=|a]®P+ |b -+ 2ab.

Hence, the scalar product ab is expressed in terms of the lengths
of the vectors a, b and a + b, and, therefore, does not depend on the
choice of a system of coordinates, i.e., is unaltered if the coordinate
system is selected in a special way. Take a coordinate system xy as
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in Fig. 23. Then, the components of a are | a | and 0, whereas those
of b are | b | cos ¢ and | b | sin @, and the scalar product is

ab=|a||b|cosg+0-|b|sing=[a]||b]cosq.

It follows that if two vectors are perpendicular, then their scalar
product is zero. Conversely, if the scalar product of two non-zero vectors
is zero, then the vectors are perpendicular.

Apply the scalar-product technique to the proof of the Stewart
theorem from elementary geometry, viz., let D be a point on the side

O

A D B
Fig. 23 Fig. 24
AB of a triangle ABC (Fig. 24). Then AC®*-BD + BC? AD —
CD?-AB = AB-AD-BD.
Proof. We have the vector equations
—_— — —_— D —
CA=CD+ DA, CB=CD-+DB.
Squaring them scalarly, we obtain

—_— =
AC2=CD?*+ DA%2+4-2CD-DA,

— " —
BC2=CD?+ DB242CD.DB.

Multiplying the first by BD, the second one by AD, and adding
termwise, we have

AC?®.BD + BC?*-AD
= (CD*-BD + CD*-AD) + (AD*-BD + BD?*-AD)
e — =
+ 2(CD-DA-BD + CD-DB-AD). ‘
Since AD + DB = AB, the first bracket on the right-hand side
equals CD2-AB, and the second one AB-AD.BD, whereas the third
— - —> -
2CD (DA-BD + DB-AD) = 0, because the vectors DA-BD and

l?fi’oAD are equal in modulus, but are of opposite directions.
Thus, we obtain the equality
AC* BD + BC®*-AD — CD*-AB = AB-AD-BD.
Q.E.D,
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EXERCISES TO CHAPTER II

1. A translation is given by the formulas 2’ = z + 1,y =y —1.
What points are (0, 0) (1, 0) and (0, 2) sent 1nto?

2. Find a and b in the translation formulas ' =z + a,y' =y +
b, given that (1, 2) is carried into (3, 4).

3. Is there a translation under which the point (1, 2) is sent into
(3, 4), whereas (0, 1) into (—1, 0)?

4, Given that AB and CD are two parallel straight lines, and the
points B and D are on the same side of a secant AC, prove that the
rays AB and CD are co-directional.

5. Prove that therays AB and CD in Ex. 4 are opposite if the points
B and D are on opposite sides of the secant AC.

6. Given three points A, B and C on a straight line, B lying in
between 4 and C, point out the co-directional and opposite vectors

B —
among 4B, AC, BA and BC.
7 Prove that IAC 1< IAB | + IBC | holds for three vectors

AB BC and AC.

8. Prove that the inequality |a + b |<{|a |+ | b | holds for
any two vectors a and b.

9. Given four pomts A (O 1), B (1,0), C (1, 2), D (2, 1), prove

that the vectors AB and CD are equal.
10. Given that the modulus of a vector a (5, m) is 13, find m.

11 Fll’ld the modulus of a vector a + b if a = (1,—34), b =

(—4 8
12, Show that the sum of n vectors with a common origin at the
centre of a regular n-gon, and end-points at its vertices, is zero.
13. Given three vectors with one origin O, and the end-points at

—
the vertices of a triangle ABC, show that 04 + 573’ + OC = 0 if
and only if O is the point where the three medians meet.

14. Given a vector r,, with the origin at a point (z,, y,) and
the end-point at (md, nd), where m and » are two integers not exceed-
ing in modulus M and N, respectively, find the sum of all rp,,,
expressing it in terms of the vector r with the origin at the point (0, 0)
and the end-point at (z,, ¥,)-

15. Given a finite figure F in the zy-plane with its centre of sym-
metry at the origin of coordinates, show that the sum of vectors
with a common origin and end-points in the integral points of F,
i.e., whose coordinates are integers, is zero if and only if the origin
of coordinates is the common origin for all the vectors.

16. Prove that the vectors a (1, 2) and b (0.5, 1) are co-direction-
al, whereas the vectors ¢ (—1, 2) and d (0.5, —1) are opposite.
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17. Given the vector a (3, 4), find a vector b co-directional with a,
but of double length.

18. Solve Ex. 17 for a vector b opposite to a.

19. Find the modulus of the vector —2a -+ for a (3, 2) and
b (0, —1).

20. Given that the modulus of a vector Aa is 5, find A if a has the
components (—6, 8).

21. Given the vectors a (2, —4), b (1, 2), ¢ (1, —2), d (—2, —4),
point out pairs of collinear ones among them.

22. Which vectors are co-directional in Ex. 21, and which are
opposite? Which of them are equal in modulus?

23. For what value of r are the vectors a (n, 1), b (4, n) collinear
and co-directional ?

24. Find unit vectors among a (—% , %) , b (% . %—),
c@O, —1),d (% , — %) and point out collinear ones among them,

25. Find a unit vector collinear and co-directional with the
vector a (6, 8).
26. Given two midpoints M and N of two line segments AB
-—
and CD, respectively, prove the vector equation MN =
—_— —
— (AC + BD).
27. Given the base vectors e, (1, 0) and e, (0, 1), what are the
components of the vector 2e, — 3e,?
28. What are the values of A and p in the representation a=
Me, + pe, of the vector a (—5, 4)?
29. Prove the inequality (a-b)2<C a’h?® for two vectors a and b,
1

30. Find the angle between the vectors a (1, 2), b (1, -5 -

31. Given two vectors a and b, find the modulus of the vector
a + b if their moduli are unity, and the angle between them is 60°.

32. Find the angle between a and (a 4 b) from the previous
exercise.

33. Given the vertices 4 (1, 1), B (4, 1) and C (4, 5) of a triangle,
find the cosines of its angles.

34. Find the angles of a triangle with the vertices 4 (0, V3)
B(2,V3).c(<, V3.

35. Prove that two vectors a (m, n) and b (—n, m) are either
perpendicular or zero.

36. Given two vectors a (3, 4) and b (m, 2), for what value of m
are they perpendicular?

37. Given the vectors a (1, 0) and b (1, 1), find A such that the
vector a + Ab is perpendicular to a.

38. For what value of A is a 4+ Ab in Ex. 37 perpendicular to b}
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39. Prove that if a and b are two unit non-collinear vectors, then
the vectors a + b and a — b are other than zero, and perpendicular.

40. Given that two unit vectors a and b form an angle of 60°,
prove that the vector 2b — a is perpendicular to a.

41. Given that two vectors a + b and a — b are perpendicular,
prove that |a | = |b |.

42. Given four points 4 (1, 1), B (2, 3), C (0, 4) and D (—1, 2),
prove that the quadrilateral ABCD is a rectangle.

43. Given four points 4 (0, 0), B (—1, 1), C (0, 2) and D (1, 1),
prove that the quadrilateral ABCD is a square.

44. Prove that if a and b are arbitrary non-zero and non-collinear
vectors, then

Aa® 4 2\p (ab) + p2b%2> 0,

equality holding only if A = p = 0.

Chapter III

STRAIGHT LINE IN THE PLANE

1. Equation of a Straight Line.
General Form

Let us prove that any straight line in the zy-plane is described by
an equation of the form

ax +by +c=0 (»)

where a, b, c are constants. Conversely, any equation of the form (+) is
the equation of a straight line.

Proof. Let g be an arbitrary straight line,
A, (zg, Yo) @ point on it and n (a,, a,) a vec-
tor perpendicular to g (Fig. 25). Let then
A (z, y) be an arbitrary point on the line.

Vectors AOA and n will then be perpendicu-
lar, and hence their scalar product will be
Fig. 25 zero. Thus, each point on g will obey

(x — zo)a, + (y — yolaz = 0. (+x)
Conversely, if 4 (z, y) satisfies this equation, then this means that
ZJ -n = 0, and hence A lies on g.
By definition, the equation (x#) is the equation of g. It can be
rewritten as

ax 4 agy + (—axy — agy,) = 0.
We see that it has the form (x). This proves the first statement.
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Suppose now we have the equation

ax 4+ by + ¢ = 0.

We will now see that it is the equation of a certain straight line.
Let z,, y, be some solution of that equation, i.e.

axy + by, +c = 0.
Using this relationship we can transform our equation as follows:
ar + by — axy — by, = 0,
or
a(@—=zo) + by —yo) =0.

But in this form, as we have seen, it is the equation of the straight
line passing through (z,, y,) at right angles to m (a, b). We have
thus proved the second statement as well.

Note that in the equation of the straight line

ar + by +c¢c=0

the coefficients a and b are the coordinates of the vector perpendicular
to the straight line.

By way of exercise, we now form the equation of a straight line
passing through two given points (z,, y,) and (z,, y,).

The vector e (x, — &, Y3 — ¥,) lies on the desired straight line.
The vector e’ (y; — ya, £, — ;) is perpendicular to e, since the sca-
lar product ee’ = 0. This means that e’ is perpendicular to the
straight line. And then, as we already know, the equation of the
straight line can be written as

@ —=z) @G —y2) + (y —yy) (@0 — z,) = 0.
This equation is more easily remembered when written as:

T—xy _ Y—iy1

Zo—2Zy Ys—y1 '

Ezxamine the locus of points such that the difference of squared dis-
tances from two given points is constant.

Solution. Let (z,, y,) and (z,, y,) be the given points and (x, y) an
arbitrary point of the locus. We have

(@ — ) + (y — yo)? — (@ — x,)2 — (y — yg)* = ¢ = const,
or
2z (xy — 2o) + 2y (Yg — Yo) -+ 2 + Y — 2,2 — Y2 —c = 0.

We see that our equation is linear, i.c., of the first degree inz and y,
and with constant coefficients. Consequently, our locus is a straight
line.
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2. Position of a Straight Line Relative
to a Coordinate System

We will now analyze the position of a straight line relative to
a coordinate system if the line is described by some special form
of the equation ax + by + ¢ = 0.

(1) a = 0. The equation becomes

c
y=—=.
All the points on the line have thus the same ordinate (—c/b), and
hence the straight line is parallel to the z-axis (Fig. 26a). Specifically,
if also ¢ = 0, the straight line coincides with the z-axis.

(2) b = 0. The case is similar to the first one. The straight line is
parallel to the y-axis (Fig. 26b) and coincides with it if ¢ = 0.

Ay y AY

=Y
Q
*
\

0 %
(a) (d) ()
Fig. 26

of

(3) ¢ = 0. The straight line passes through the origin of coordinates,
since (0, 0) satisfies the eqnation of a straight line (Fig. 26¢).

If in the equation ax + by + ¢ = O the coefficient at y is nonzero,
then this equation can be solved relative to y. We get

y=——Gz——

b b
Or, denoting —a/b =k, —c¢/b = g, we obtain -

y =kz+q.

We now clarify the geometric meaning of the coefficient % in that
equation. We take on the straight line two points 4 (x,, y,), B (z3,
Ys), &, < Z5. Their coordinates obey the equation of a straight line:

Yy = kx, +q, Yy =kxy + q.
Subtracting these equalities termwise, we will obtain y, — y, =
k (z, — z,). Hence
Yo=Y

Tg—x1 °
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In the case shown in Fig. 27a,%=tana. In the case in
27 %1

Fig. 27b,%—= —tana. Accordingly, the coefficient k& in the
%1

equation of a straight line is equal, up to a sign, to the tangent of
the acute angle formed by the straight line with the z-axis.

Fig. 27

It is generally said that the coefficient k in the equation of a straight
line is equal to the tangent of the angle that the line makes with the
z-axis. This angle is taken to be negative in Fig. 27b. In the equation
k is called the slope of the line.

3. Parallelism and Perpendicularity
Condition for Straight Lines

Consider the equations of two straight lines:

a,xz+ by +¢ =0,
ax + byy + ¢, = 0.

We now examine the conditions to be met by the coefficients of the
equations of straight lines for the lines to be parallel (perpendicular).

As we know now, the coefficients of z and y in the equation of
a straight line are the coordinates of the vector perpendicular to the
line. Therefore, for the linesto be parallel it is necessary and suffi-
cient that the vectors perpendicular to them be collinear. Hence the
parallelism condition for straight lines,

& b

az by *
For the straight lines to be perpendicular it is necessary and
sufficient for the vectors perpendicular to them to be perpendicular

to each other, and hence their scalar product is zero. Hence, the
perpendicularity condition for straight lines,

ala, + blb’ = 0.
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A straight line is specified by its equation ax + by + ¢ = 0 and
a point (x4, Y,o). Form the equation of the straight line passing through
(¢, Yo) parallel (perpendicular) to the given straight line.

Solution. To begin with, we form the equation of the parallel
straight line. Since the desired straight line is parallel to the given

one, the vector (;,_> b) perpendicular to the given straight line
will be perpendicular to the desired straight line. Knowing a point
and a vector perpendicular to the straight line, we obtain its equa-
tion

a(x—=zo)+ by —y,)=0.
We now find the equation of the straight line perpendicular to
the given one. The vector (Z,_Z) is perpendicular to the given straight
line. The vector (-—3,_;) is perpendicular to the vector (;z_,_l;), since

—_—

their scalar product is zero. Therefore, the vector (—b, a) is perpen-
dicular to the desired straight line. And now we can readily write
the equation

—b (x—20) +a(y—y, =0.
Consider two intersecting straight lines given by their equations
ax + by+e¢=0 and ax+ by + ¢ =0.
Find the angle between them.
Solution. The angle between straight lines, by definition, is the
least angle formed by the intersection of two lines. This angle equals
that between the vectors perpendicular to the straight lines, or sup-

plements it to 180°. Therefore, the cosine of the angle between the
straight lines equals, up to a sign, the cosine of the angle between

(a_,_b).) and (a?,—l:l). Using the scalar product of the vectors, we obtain
the equation for the angle @ between the straight lines

laa, + bby| =V a2+ b2 V a® + b2 cos .
Hence we find ¢ (0 << << 7/2).

4, Equation of a Pencil of Straight Lines

Consider two intersecting straight lines given by the equations

axz + by + ¢ =0,
az + by + ¢, = 0.

We will write the equation

Max +by +¢) +p(agrc+by +¢) =0 (*)
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where A and p are constants. This equation is linear, and so is the
equation of some straight line. The coordinates of the intersection
point of the given straight lines obey this equation, since for them
ax + by + ¢ = 0,a.xz + by + ¢, = 0. The equation (x) iscalled
the equation of a pencil of straight lines.

The equation of a pencil comes in handy when constructing the
equation of a straight line passing through the point of intersection
of the two given straight lines and meeting some additional con-
dition. By way of illustration we solve the following problem.

Consider the equations of two intersecting straight lines ax + by -+
¢c=0, a2+ by + ¢, =0. Find the equation of the straight line
passing through a given point (z,, y,) and the intersection point of the
given straight lines.

Solution. The straight line specified by the equation A (ax -+ by +
¢) + pn(ax + by + ¢;) =0 passes through the point of inter-
section of the given straight lines. We require that it should pass also
through (z4, y,). To this end, it is necessary that A (axz, + by, +
¢) + p (@25 + by + ¢;) = 0. For any A and p that are not zero
simultaneously and meet this equation, a straight line belonging to
the pencil will pass through (z,, y,). Specifically, we can take
A =axy+ byyo + ¢, p = — (axy + by, + ¢). Then the equation
of the desired straight line will be

(ax + by + ) (@, g + byyo + ¢) — (a2 4 by + ¢;) (axo + by,
+¢) =0.

5. Normal Form of the Equation
of a Straight Line

The equation of a straight line ax + by + ¢ = 0 is said to be in
normal form, if a® 4+ b® = 1. It is obvious that for general form of
the equation of a straight line to be reduced to normal form it is
sufficient to divide it by j:]/a2 + b2,

The equation of a straight line in normal form has a simple geo-
metrical meaning. Namely, if into its left-hand side we substitute
the coordinates of any point in the plane, then we will obtain a num-
ber that, except for sign, will equal the distance from the point to the
straight line. And for points in one half-plane defined by the straight
line this number is positive, and for the other negative. We will now
prove this. )

Let

ax +by+c¢=0

be the equation of a straight line in normal form, and A4, (z,, Yo)
be some point on the straight line. Then ax, + by, + ¢ = 0, and
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the equation of the straight line can be represented as
a@—xz)+ by —y,)=0.

If now A, (z,, y,) is an arbitrary point in the plane, then substitut-
ing its coordinates into the left-hand side of the equation of the
straight line gives

a (@, —xo) + bW, —yo) = D‘Zo_zn

—_—
where n (a, b) is the unit vector (a® + b> = 1). We have | n-4,4,| =
A,A,-cos 8 = A,B (Fig. 28). In fact, substitution of the coordi-
nates of A, into the left-hand side of the equation yields, up to a sign,
the distance A4,B of point A, from the
straight line.

Clearly, the sign of the expression n-A_(,Z:

depends on the directions of n and A:AZ,
whether they are directed into the same
half-plane or not. Therefore, for points in one
half-plane the expression is positive, and
for the other negative.
Fig. 28 Ezxaminethe locus of points equidistant from
two intersecting straight lines.

Solution. Consider az + by + ¢ =0 and ax + byy + ¢, = 0—
two equations of straight lines in normal form. If we substitute the
coordinates of an arbitrary point into the equations, we obtain, up
to a sign, the distances from that point to the straight lines. It
follows that the points of the desired locus obey the equation

laz + by +c|= |ax + by + ¢ |
This equation is equivalent to the two equations

ar + by + ¢ = a;x + by + ¢y,

az + by + ¢ = — (@, + by + ¢)).

Consequently, the desired locus consists of two straight lines. Clearly,
these are the lines including the bisectors of the angles obtained when
the two straight lines intersect.

6. Transformation of Coordinates

Consider zy- and z'y’-coordinate systems in a plane (Fig. 29).
We now establish the relation between the coordinates of an arbitrary
point relative to these coordinate systems.

Let

@z + by + ¢ =0,

as® + boy + ¢ =0
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be the equations of the y’- and z'-axes in normal form in the zy-
coordinate system.

The equation of a straight line in normal form is defined uniquely
up to a sign of all the coefficients of the equation. Therefore, we can
consider without loss of generality that for a certain point 4, (z,,Y,)
in the first quadrant of the z'y’-coordinate system we have

a,zy + byo + ¢, >0,
asxy + bayo + ¢ >0

(in the opposite case we can change the sign of the coefficients).
Statement. The coordinates of an arbitrary point z', y’ relative to
the z'y’-coordinate system are expressed through the

coordinates x, y of the same point in the xy-coor- 34
dinate system by y
' = ax+ by + ¢, ("') N 4
’ oo
Yy = ax + by + c,. o
We prove, for example, the first of these. The
right- and left-hand sides of the equation are / x
equal in absolute value, since this value is the o >

distance from the point to the y’-axis. In each of
the half-planes defined by the y'-axis, the right- Fig. 29
and left-hand sides of the formula retain the sign
and change it in passing from one half-plane to the other. And since
for 4, the signs coincide, they coincide for any point in the plane.
The second formula is proved in an analogous fashion.
Since

ax + by +¢ =0,
asz + boy + ¢y =10

are the equations of two intersecting straight lines in normal form,
then the coefficients a,, b, a,, b, in (x) are related by

a; + by =1, (++)
a3 + by =1,
a1a2 + b1b2 = 0.
If we take into consideration the first two of (), we can represent
a1 blv ag, b2 as
a, =cosa, b =sina,
Qg = COS Q4 bz = sin Uqe
From the third of (x*) we then obtain

cos a cos a, + sin @ sin &; = cos (@ — &) =0,
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whence a; = o & n/2. Thus, we can write the formulas of coordinate
transformation (x) in one of the following two forms
2 =zcosa -+ ysina + ¢,

’

Yy = —zsina + ycosa 4 ¢,
or

2 =zxcosa + ysina + ¢,
Yy =zxzsina — y cos o + c,.

The first of these covers all the cases when the z'y’-coordinate system
can be obtained by a continuous motion from the zy-coordinate
system. The second system of formulas embraces the cases when the
z'y’-coordinate system is obtained from the xy-coordinate system
by a motion and a mirror reflection.

Quantities @, ¢, and ¢, in the transformation formulas have a sim-
ple geometrical meaning: « is, up to the multiple of 2n, the angle
formed by the z'-axis with the z-axis, and ¢, and ¢, are the coordi-
nates of the origin of the xy-coordinate system in the z'y’-coordinate
system.

In the zy-plane a new z'y'-coordinate system is introduced. The
coordinate axes of the new system in the xy-coordinate system are given
by the equations

3z + 4y +10 =0,

—4x + 3y — 15 = 0.

Find the formulas for sending x, y to x', y', given that the old origin
lies in the first quadrant in the new system.

Solution. We transform the equations of the new axes to normal
form to get

3 4 4 3 _
—s—x—|—Ty—|—2=0, -+ y—3=0.
The transformation formulas are known to have the form
, 3 4 , 4 3
x=:i_—_(?x+—5—y—|—2), y=i(-——5—z+Ty—3).

The choice of sign of the right-hand side of the formulas is determined
by the fact that the origin of the old coordinate system lies in the
first quadrant in the new system. Hence, substitution of z = 0 and
y = 0 into the right-hand sides of formulas must yield positive
values. To this end, in the first formula we should take the plus sign,
and in the second the minus sign.
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7. Motions in the Plane
The formulas of transformation of coordinates
"==zxcosa -+ ysina + ¢, (+)

Yy =+ (—zxsina + ycos a + ¢,)

have another important interpretation. Take in the plane any two
points 4, and A,. The distance between them can be expressed in the
zy-coordinate system and in the z'y’-coordinate system. We have

@y — ) + W — ) = (@3 — 2)* + (@, — 74 (#x)

Now consider a transformation of the zy-plane such that an arbitary
point (z, y) in it changes into a point (x', y') according to the for-
mulas (+). It follows from (#x) that this transformation of the plane
is motion.

It is easily seen that any motion in the zy-plane is given by formu-
las of the form (x). Namely, if a given motion transforms the xy-
coordinate system into the x’y’-coordinate system, then the transfor-
mation formulas will be the formulas describing this motion.

The motion given by (*) can be obtained from the elementary
motion given by

' =z cos o + y sin a, (k)

¥y = & (—=z sin o + y cos a),

and the transition ' =z + ¢, ¥ =y + c,.

The motion given by (#*%) with the plus sign is, by the second
formula, a rotation about the origin of coordinates. The motion given
by (%#%) with the minus sign is, by the second formula, a mirror
reflection, i.e. there is a symmetry about some straight line passing
through the origin of coordinates.

8. Inversion

Let O be an arbitrary point in a plane and R a positive number.
A transformation under which any point X, other than O, shifts to
a point X’ on the OX ray, such that OX-0X' = R?, is called the
inversion. The point O is called the centre of inversion, and R the radius
of inversion. Clearly, the inversion shifts X' to X.

Inversion can be visualized as follows. We draw a circle with centre
O and radius R (Fig. 30). If a point X lies beyond the circle, then
to obtain X’ it is necessary to draw a tangent to the circle from X and
from the point of tangency to drop a perpendicular onto the straight
line OX. The foot of this perpendicular will be X'. In fact, it is
common knowledge that in a right-angled triangle OAX we have
04* = 0X'.0X.
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If a point X lies within the circle, we must draw through it a chord
perpendicular to OX, and at the end of the chord construct the
tangent to the circle. The intersection of the tangent with OX will
yield X'.

If a point X lies on the circle, then X' coincides with X.

Under inversion, a circle that does not pass through the centre of inver-
sion becomes a circle; a circle that passes through the centre of inversion
becomes a straight line; a straight line that does
not pass through the centre of inversion becomes
a circle that passes through the centre of inversion;
a straight line that passes through the centre
inverts into itself.

Proof. We take the centre of inversion O to
be the origin of the xy-coordinate system. We
will express the coordinates z, y of point X
through the coordinates z’, y’ of the point X',
into which X changes under inversion. Since

vectors 03? and 0_)?’ are collinear, z = Az’,
and y = Ay’. Since 0X'-0X = R?, («"% +
¥'?) ((Ax')? 4+ (My')?) = R4 Hence A = R?*/(z'? + y’2). Thus,

R2 ’ Ra ’
W}ﬁy'—n y Y= —x—,‘,%ﬁ. (*)

Fig. 30

X =
Now we take an arbitrary circle. It is given by an equation of

the form
2+ y*+ar+by+c=0.

Substituting the expressions for x and y given by (), we will get
the equation of the curve into which the circle changes under inver-
sion

Sipow (Ri+aRe + bR +c (@4 ') =0.
‘The curve given by the equation
R+ aR% + bR} +c(x* + y*) =0

for ¢ 5~ 0, as we know, is acircle. Thus, an inversion changes a circle
that does not pass through the centre of inversion into a circle.

If a circle passes through the centre of inversion (¢ = 0), it trans-
forms into the straight line

R4 + aR%*c + bR2%y = 0.

The straight line ax + by + ¢ = 0 that does not pass through
the centre of inversion (¢ = 0) changes into the circle

aR*c + bR% +c(2®* +y*) =0
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that passes through the centre of inversion (the origin of coordinates).

The straight line az + by = 0 that passes through the centre of
inversion, is sent into the straight line aR%*z + bR% = 0, i.e. into
itself. This completes the proof.

EXERCISES TO CHAPTER III

1. Form the equation of the locus of points equidistant from two
points (0, 1) and (4, 2).

2. Find the points where the straight line z + 2y + 3 = 0 cuts
the axes of coordinates.

3. Find the point of intersection of the straight lines z + 2y +

=0 and 4x + 5y + 6 = 0.

4 Form the equation of the straight line that passes through
points 4 (—1, 1) and B (1, 0).

5. Find the coefficients @ and b in the equation ax + by = 1, given
that it passes through points (1, 2) and (2, 1).

6. Find the coefficient ¢ in the equation z + y 4+ ¢ = 0, given
that it passes through the point (1, 2).

7. Find the value of ¢ at which the straight linez +y +~¢=0
touches the circle 22 + y2 = 1.

8. Prove that the three straight lines z + 2y = 3, 202 — y = 1,
and 3z 4+ y = 4 meet at one point.

9. Prove that the straight lines 2 + 2y = 3 and 2z + 4y = 3 do
not intersect.

10. From the equation of a straight line, knowing that it is paral-
lel to the z-axis and passes through the point (2, 3).

11. Form the equation of a straight line, knowing that it passes
through the origin of coordinates and the point (2, 3).

12. Form the equation of the straight line that passes through
the point (z,, y,) and is equidistant from points (z,, y;) and (xz, Ya).

13. Show that the three points (z,, ¥,), (%3, ¥a), (%3, Ys) lie on
a straight line if and only if

z yg 1
z, Yy, 1{=0.
zg ys 1
14. Show that the equation
a?x? 4+ 2abzy + VY2 — 2 =0

defines a pair of straight lines. Find the equation for each of the
lines.

15. Show that any straight line canbe defined in a parametric
way by equations of the form

z=at+b, y=ec+d (—c<t< o).
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Conversely, any such system of equations can be viewed asequations
of a certain straight line in parametric form. This line is given by
an equation in implicit form
@—bec—@y—dya=0.
16. A curve y is given by the equation
o (z, y) =0,

where ® is a polynomial of degree n in z and y. Show that if the
curve ¥ has with some straight line more than n intersection points,
then it includes this straight line completely.

17. The locus of points of equal powers with respect to two cir-
cles (see Exercise 40 to Chapter 2) is called the radical axis of two
circles. Show that the radical axis is a straight line. If the circles

intersect, then it passes through the intersection points.
18. Under what condition does the straight line

ax +by +c=0

intersect the positive z-axis (negative z-axis)?
19. Under what condition is the straight line

ar+ by +c=0
not in the first quadrant?
20. Show that the straight lines given by
ax +by+¢c=0 andar —by+c=0 (b=0)

are symmetric about the z-axis.
21. Show that the straight lines given by

ax +by+e¢=0 and ax + by —c =0,
are symmetric about the origin of coordinates.
22. Consider the pencil of straight lines
ax + by+ ¢+ A(az + by +¢) =0.
Find the value of A at which a line in the pencil is parallel to the

z-axis (y-axis) and at which it passes through the originjof coordinates.
23. Under what condition does the straight line

ax + by +c=0

and the coordinate axes bound an isosceles triangle?
24. Show that the area of the triangle bounded by the straight

line
M+by+c=0 (d,b,C'-‘,éO)
and the coordinate axes is

1 c?
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25. Find the tangents to the circle
x> + y% + 2ax + 2by =0

parallel to the coordinate axes.

26. Show that the straight lines ax + by + ¢ =0, bz — ay +
¢’ = 0 meet at right angles.

27. Find the angle formed by the z-axis and the straight line

y=zxcota (——g—<a<0) .

28. Form the equations of the sides of an equilateral triangle
with side 1, with one of the sides and the altitude dropped on it as
the coordinate axes.

29. Find the interior angles of the triangle bounded by the
straight lines

z2+2y=0, 22 +y=0, and z+4y=1.
30. Under what condition is the z-axis the bisector of the angles
formed by the straight lines
ax + by =0, azx+ by =0?
31. For the angle 0 formed by the straight line
z=at+b, y=ct+d

with the z-axis derive the formula

tan 0= <,
a

32. Find the angle between the straight lines given by the equa-
tions in parametric form

z=a,t +b, z=ct-+d,
and .
y = agt + by Yy = cgt + d,.
33. Show that the quadrilateral bounded by the straight lines
dar by +c=0 (a, b,c#O),

is a rhombus. The coordinate axes are its diagonals.
34. Show that two straight lines that cut off on the coordinate
axes sections of equal length are either parallel or perpendicular.
35. Find the parallelism (perpendicularity) condition for the
straight lines given by the equations in parametric form

z = a,t + a,, T = ast + a,,
and
y =Pyt + b, Yy = Pat + bs.
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36. Find the parallelism (perpendicularity) condition for the
straight lines one of which is given by the equation

ax + by + ¢ =0,
and the other by the equations in parametric form
z=oat+p, y=vt+86.
37. In the family of straight lines given by the equations
- ax+ byt + MA@+ by +e)=0

(A is the parameter of the family), find the line parallel (perpendicu-
lar) to the straight line ax + by + ¢ = 0.

38. Given the equations of the sides of a triangle and the coordi-
nates of a point, think of the way of finding out whether or not
this point lies within the triangle.

39. Show that the distance between the parallel straight lines

ax + by +¢, =0, ax+by+c,=0
ler—ea |
Varfop2:
40. Form the equations of the straight lines parallel to the line
ax + by + ¢ =0,

that are separated from it by §.
41. Form the equation of the straight line parallel (perpendicular)

to the straight line
ar + by + ¢ =0,

Passing through the point of intersection of the straight lines
ax +by+c¢, =0 and ax + by + c3 =0.

42, Find the conditions under which points (z;, y,) and (z, y,)
are positioned symmetrically about the straight line
axr + by + ¢ = 0.

43. Form the equation of the curve 2? — y® = @2, with the

straight lines
z4+y=0 and z—y=0

as the coordinate axes.
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Chapter IV

CONIC SECTIONS

1. Polar Coordinates

We draw a ray g from an arbitrary point in a plane, and fix a direc-
tion in which an angle is measured about O. Then the position of
any point A in the plane may be specified by an ordered pair (p, 0):
(1) p is the distance of the point A from O, and (2) 0 is the angle
between the ray OA and the ray g, (Fig. 31).

The numbers (p, 8) are called the polar coordi-
nates of the point A. The fixed reference point O
is called the pole, and the ray g beginning at O
is called the polar axis.

As in the case of Cartesian coordinates, here we
may speak of the equation of a curve in polar O
coordinates. Namely, the equation

is called the equation of a curve in polar coordinates if the polar coor-
dinates of each point of the curve satisfy this equation. And con-
versely, any ordered pair (p, 0) which satisfies this equation represents
the polar coordinates of one of the points on the curve.

By way of example let us write an equation in polar coordinates
for a circle passing through the pole, with centre on the polar axis

Fig. 31

AY

/A

Fig. 32 Fig. 33

and radius R. From a right-angled triangle 044, we get 04 = 04, X
cos 0 (Fig. 32). Whence the equation of the circle is

p = 2R cos 0.
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Let us now introduce on the plane p0 an xy-coordinate system,
taking the pole O as the origin of the Cartesian coordinate system
and the polar axis as the positive semi-axis x, and choose the direc-
tion of the positive semi-axis y so that in the chosen direction it
forms an angle of + n/2 with the polar axis.

The following simple relationship is obviously established between
polar and rectangular coordinates of a point:

z=pcos0, y=psinh *

(Fig. 33). ’ o ®

We can get the equation of a curve in Cartesian coordinates, given
the equation of the curve in polar coordinates, and vice versa.

Let us, for instance, form an equation of an arbitrary straight

line in polar coordinates. The equation of a straight line in Cartesian

coordinates is
ax + by + ¢ =0.

Introducing the ordered pair (p, ) in thisequation (instead of (z, y))
according to the formulas (x), we get
p(@acos® + bsin®) +¢c =0,

Assuming further

=t —cos@, —— g nd =
= ’ Va’-l—b':Slna’a = —Po»

Va3 V a3 b3
we obtain the equation of the straight line in the form

4

p cos (& — 0) = p,.

2. Conic Sections

A conic section (or a conic) is a curve in which a plane, not passing
through the cone’s vertex, intersects a cone (Fig. 34). Conics possess
a number of remarkable properties, one of them consisting in the
following.

Each conic section, except for a circle, is a plane locus of points the
ratio of whose distances from a fixed point F and a fixed line§ is constant.
The point F is called the focus of a conic, the line § its directriz.

Let us prove this property. Let y be the curve in which the plane
o intersects a cone (Fig. 35). We now inscribe a sphere in the cone,
which touches the plane ¢ and denote by F the point of contact of
the sphere with the plane. Let ® be the plane containing the circle
along which the sphere touches the cone. We then take an arbitr-
ary point M on the curve y and draw through it a generator of the
cone, and denote by B the point of its intersection with the plane w.
We then drop a perpendicular from the point M to the line § of
intersection of the planes ¢ and .
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The curve y is said to possess the above property with respect to
the point F and the line §. Indeed, FM equals BM as tangents to the
sphere drawn from one point. Further, if we denote by k the distance

Fig. 34 Fig. 35

of M from the: plane ®, then AM = h/sin a, BM = h/sin §,
where o is the angle between the planes ® and ¢ and P is the angle
between the generator of the cone and the ]
plane o. &

Hence it follows that =

A ¢ A
AM _ AM _ sinB
FM~™ BM = sina '
B

i.e. the ratio AM/FM does not depend on the /
point M. The statement has been proved. E
Depending on the ratio A of the distances of
an arbitrary point of a conic from the focus and Fig. 36
the directrix, the curve is an ellipse (A << 1),
a parabola (A = 1), or a hyperbola (A > 1). The number A is called
the eccentricity of the conic section. k ’
Let F be the focus of a conic section and § its directrix (Fig. 36).
In case of an ellipse and a parabola (A< 1) all points of the curve
are on the one side of the directrix, namely, on the side where the
focus F is located. Indeed, for any point A lying on the other side
of the directrix

AF
A4

On the contrary, the hyperbola (A > 1) has points located on both

sides of the directrix. The hyperbola consists of two branches sepa-
rated by the directrix.

AB
——— 1.
>AA>
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3. Equations of Conic Sections
in Polar Coordinates

Let us form the equation of a conic section (a conic) in polar
coordinates p@ with the focus of the conic as the pole, and the polar
axis drawn so that it is perpendicular to the directrix and intersects
the latter (Fig. 37).

Let p be the distance from the focus to the directrix. The distance
from an arbitrary point 4 of the couic to the focus is p and the dis-

8
Ag A,
ol
F 1
Fig. 37 Fig. 38

tance from the directrix is p — p cos0 or p cos 6 — p, depending on
whether 4 and F lie on one or on opposite sides of the directrix.
Hence the equation of the conic section is
— P
p—pcosO =2 (*)
for the ellipse and parabola, and
e —
p—pcos =x2  (+%)
for the hyperbola (the plus sign corresponds to one branch of the
hyperbola, and the minus to the other).
Solving equations () and (x*) for p gives
—__M
P=TI%coso’

i.e. the equation of the ellipse and parabola, and
__xhp
P=q3Xcos0 °

i.e. the equation of the hyperbola. The plus sign corresponds to one
branch of the hyperbola, the minus to the other.

Figure 38 illustrates the dependence of the type of the conic sec-
tion on the eccentricity A.
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4. Canonical Equations of Conic Sections
in Rectangular Cartesian Coordinates

In Sec. 3 we obtained the equations of conic sections in polar
coordinates pf. Let us now pass over to rectangular coordinates z, y
and take the pole O as the origin and the polar axis as the positive
semi-axis z.

From equations (x) and (%) of Sec. 3 for any conic section, we
have

p? = A% (p — p cos 0)2.

Whence, taking into account formulas of Sec. 1 which establish
the relationship between the polar and the Cartesian coordinates:
of a point, we obtain
z? + ¥ = A2 (p — x)?,
or )
(1 — A%)a? + 2pA2x + y2 — A2p?2 = 0. (*)

This equation becomes much more simple, if we displace the
origin along the x-axis accordingly.

Let us begin with an ellipse and a hyperbola. In this case equa-
tion (*) may be written in the following way:

u—3? (x""‘ 11&’”)24_!/2_ 1p:?~;’=0.

We now introduce the new coordinates z’, y’, using the formulas

)" / ’
s+TE=2, y=v,
which corresponds to the transfer of the origin into the point
(—1%9)-

—f{—me

Then the equation of a curve will take the form

(,1_7‘12) x/z_l_y:z_ﬁ'_al;; =0’

or, by putting for brevity

A%p2 A2p?
== % Ti—m =0

we get the following equations:
for the ellipse

a?
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for the hyperbola
z'2 y'e
-~ mw —1=0.

The parameters a and b are téermed the semi-axes of an ellipse
(a hyperbola).
For the parabola (A = 1) the equation (x) will have the form

2pz + y2 — p?* =0,
or

y2—2p (—x-]—%) =0.

Introducing new coordinates

’

Il

x’:—-—x_l..._g_’ Yy Yy

we obtain the equation of the form
y'? — 2pzx’ =0.
The equations of conic sections, obtained in the coordinates z’, y’
are called caronical.
Form the equation of the conic section with focus F (x4, y,), directriz
ax + by + ¢ =0 and eccentricity M.

Solution. We reduce the equation of the directrix to normal form.
We will obtain -

ax-}-by-4-¢ _
Vate

‘The distance from the point (z, y) to the focus is

V (z—2z)2+ (y—yo)2

The distance from this point to the directrix is

| az4-by+c |
Voo -
Since the ratio of these distances is equal to the eccentricity A then
the equation of the conic section will be
Vatb Via—z)® +y—w)_,
| az+by+c

or

(=) + (Y — Yo = e (@z+ by + 92
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5. Types of Conic Sections
Ellipse (Fig. 39):
xz y’
=1
We should note here that the axes of coordinates are the axes of

symmetry of an ellipse, and the origin is the centre of symmetry.
Indeed, if the point (z, y) belongs to an ellipse, then the points sym-

Fig. 39 Fig. 40

metric to it about the coordinate axes (—z, y), (z, —y) and about the
origin (—z, —y) also belong to the ellipse, since they as well as the
point (z, y) satisfy the equation of an ellipse. The points of inter-
section of an ellipse with its axes of symmetry are called vertices
of an ellipse.

The entire ellipse is inside a rectangle |z |<l a, |y |<< b formed
by the tangents to the ellipse at its vertices (Fig. 40).

Indeed, if the point (z, y) is outside the rectangle, then at least

one of the inequalities |z | > a or |y | > b is satisfied for it, but
then

2 2
>t

and the point cannot belong to the ellipse.
We can obtain an ellipse from a circle by uniformly contracting
the latter. Let us draw a circle on the plane

R *)

We then imagine that the xy-plane is uniformly contracted with
respect to the z-axis so that the point (2, y) is moved to the point
(z', y'), where 2’ = z, and y’ =% y. Then the circle () is trans-
formed into a curve (Fig. 41). The coordinates of any of its points
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satisfy the equation
AR A
a? b2
Hence, this curve is an ellipse.
Hyperbola (Fig. 42):
72 y?
P T
Just as in the case of an ellipse, we conclude that the axes of coordi-
nates are the axes of symmetry of a hyperbola, and the origin is the
centre of symmetry.
| R The hyperbola consists of two branches
’ symmetric about the y-axis and
lying outside the rectangle |z | < a,

(x! y) | ¥y |<<b and inside the two angles formed
by its extended diagonals (Fig. 43).
%) > Actually inside the rectangle |z | <<a
and, consequently,
2 y?
- w<h
Fig. 41 * i.e. there are no points of the hyperbola

inside the rectangle. There are no such
points within the hatched portion of the plane either (see Fig. 43),
since for any point (z, y) located in this portion of the plane

b |y

'_a-<lz| L]
whence

|z | yl

a < b

and, consequently,
23 y?
P i <0<1.

It is worth mentioning another property of a hyperbola. If a
point (z, y), moving along the hyperbola goes away from the origin
of the coordinates (z2 -+ y% — oo), then its distance from one of the
diagonals of the rectangle, which are obviously specified by the
equations

z vy _ Y
—a_+T_ ' a b 0,
decreases infinitely (tends to zero).
The straight lines

=, _o =__
=T =0 0

are called the asymptotes to the hyperbola.
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The hyperbola
x2 y’ 1

o

is said to be conjugate with respect to the considered hyperbola

2
- ——1

The conjugate hyperbola has the same asymptotes but is situated
inside the auxiliary vertical angles formed by the asymptotes
{Fig. 44).

Parabola (Fig. 45):

Y2 —2px =0

has the z-axis as the axis of symmetry, since along with the point
{z, y) a point (z, —y) which is symmetric to it about the z-axis als6

. /%///

Fig. 44 Fig. 45

belongs to the curve. The point of intersection of the parabola with
its axis is called the vertex of the parabola. Thus, in this case the
origin is the vertex of the parabola.
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6. Tangent Line to a Conic Section

The tangent line to a curve at point A is, by definition, the limiting
position of the secant AB as the point B draws nearer and nearer to
the point 4 (Fig. 46).

Let a curve be given by the equation y = f (x). Let us form the
equation for a tangent line at point A4 (z,, y,). Let B (z, + Az,

Yo + Ay) be a point of the curve situated close

AY to A. The equation for the secant line is
/ B y—y0=%(x—xo).
d As B> 4
A1 (@),
'_0+_—§ and we get the equation for the tangent line
Fig. 46 Y —Yo=1 (&) (& — z). (*)

Similarly, if a curve is specified by the equation = ¢ (y), then
the equation of the tangent line at point (z,, y,) will be

z—1x9= 9" (Yo) (y — yo)- ()

Let us form an equation of a tangent line to a conic section.
The case of the parabola. The equation of a parabola may be written
in the form
y2
r= 5 .

Then the equation of a tangent line in the form (x*) will be

3-$o=‘y}',o‘ (y—yo)
or
YYo — Yy + pxo — pxr = 0.

Since the point (z,, y,) lies on the barabola and, hence, y; — 2pz, =
0, the equation of the tangent line can be represented in the
following final form:

Yo —p (z + z,) = 0.
The case of the ellipse (hyperbola). Let (z,, y,) be a point on the

ellipse, and y, 5= 0. In the vicinity of this point an ellipse can be
specified by the equation

y=b)/ 1-35,
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where the square root should be taken with the same sign as y,. The
equation of a tangent line is found by the formula (x):

ob
Y—Yo=— rx (3—30),

a“]/ '].—'ﬁ

or

zob?
y:az (x— ).

Y—Yo=—
Multiplying it by y,/b® and transposing all terms to the left-hand
side, we get
.zxo 4 Yo yyo —(ﬁ—l-—"’i):O,
or
xxo 4 Y y.llo —1=0

since ——°— -}— =1.

In the v1cm1ty of any point (x,, y,) of ellipse, where z, 5= 0 the
ellipse can be specified by the equation

2
r= a]/i —F'

The square root is taken with the same sign as z,. Then, reasoning
in a similar way and using formula (%) we get an equation for
a tangent line

x-"o oy Yo yyo =1.

Since at each point of the elhpse z, and y, cannot both be equal
to zero, then at any point (z,, y,) the equation of the tangent line to
the ellipse will be

x-"o + yyo .

The equation of the tangent line to the hyperbola

22y
=1

is obtained analogously and has the form

o __ YYo __ 1.
a2 B

Let us show that a tangent line to a conic section has only one point
in common with this section (i.e. the point of tangency). Indeed, let
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us take, for example, an ellipse

¥ _
aa_'_bs 1.

The equation of the tangent line at point (z,, y,) is

vy
ag b;' =1.
We shall now look for the points of intersection of the ellipse with
its tangent line. Eliminating z from the equations, we obtain for y
v, a® (yy 2
R
or

a® a2y, a2 x%
y? b2} (a2 + ) 2y v xzb” T2 x3 ( _-a_’_)zo'

Since the point (z,, y,) lies on the ellipse, we have z3/a® 4 yi/b® = 1,
and the equation for y has the form

2
ng (¥*—2yyo+y5) =0.

This equation has two coinciding roots y = y,. Similarly, eliminat-
ing y from the equations of theellipse and its tangent line, we get
x = z,. Thus, the ellipse has only one point in common with the
tangent line, i.e. the point of tangency (z,, y,). For the hyperbola
and parabola this is proved in a similar way.

Find the equation of tangents to the ellipse

a’-{_yz_1

parallel to the straight line y = kx.

Solution. Any straight line parallel to the given one is described
by the equation of the form y = kx + ¢. We will look for the points
of intersection of this line with the ellipse. Substituting y = kz + ¢
into the equation of the ellipse gives

3 3
xz(%+%)+2x%+%’_—1=0. (%xx)

Among the straight lines y = kx + ¢ the tangents differ in that
they have only one point of intersection with the ellipse. This means
that the quadratic equation (x#*x) has merged roots. And in that
case the discriminant of the equation is zero, i.e.

) (- 1)~ =0

From this we find the values of ¢ for which the straight line y =
kx + ¢ will be tangent to the ellipse.
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7. Focal Properties of Conic Sections

By definition, a conic section has a focus and a directrix. We are
going to show that the ellipse and hyperbola have one more focus and
one more directriz. Indeed, let the conic section be an ellipse. In the
canonical arrangement its directrix §, is parallel to the y-axis and the
focus F, lies on the z-axis (Fig. 47). The equation of the ellipse is

z2 y?
a2 T

Since in such a position the ellipse is symmetric about the y-axis,

it has a focus F, and a directrix §, which are symmetric with respect

8 Ay 5,

\\@ x, X

TN
71 T IN

Fig. 48

to the focus F, and the directrix §, about the y-axis. Reasoning
similarly, we prove that the hyperbola also has two foci and two
directrices.

We shall now show that the sum of the distances from a point of the
ellipse to its foci is constant, i.e. independent of the point. Actually,
for an arbitrary point X (Fig. 47) we have

XF, XF,
—XX—I = }\., T)(—z' = 7\,-
Hence
XF, + XF, = ) (X,X,) = const.

We can also show that the difference between the distances of an

arbitrary point of the hyperbola and its foci is constant (Fig. 48).

Let us find the foci of the ellipse and hyperbola in canonical
representation.

The equation of the ellipse is
z2 y2
wre=1

Let ¢ be the distance from the centre of the ellipse to the focis
The sum of the distances from the vertex (0, b) to the foci is equal

to 2}/ b® + ¢% The sum of the distances from the vertex (a, 0) to the
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foci is equal to 2a. Hence

Vbz—l-cz:a,

c=V a*—b?
The equation of the hyperbola is
z2 y3 1

and, consequently,

We then compare the difference between the distances from the
point on the hyperbola with the abscissa ¢ (where ¢ is the distance
from the centre of the hyperbola to the foci) with the difference
between the distances from the vertex (a, 0) to the foci. This compari-
son yields the following formula for the distance ¢

c=Vaz + b2.

We must note the following reflection property of the ellipse:
A light ray emanating from one focus and reflected by the ellipse will
pass through the other focus. In other words, if A (z,, y,) is a point
on the ellipse, then the line segments AF; and AF, make equal
angles with the tangent line at the point 4.

To prove this, it is sufficient to show that theratio of the distances
from the focus to the tangent line and to the point of tangency'A
does not depend on the focus taken: F, or F,.

The square of the distance from the focus F, (¢, 0) to the point of

tangency A (zo, Yo) is

AP} = (zy— 0+ ¥} = (z— )2 + (12— H~)

— g2 b 2 1 a2
=z, (1_7’_)_20x0+b + 2,
or, noting that a? = b% 4 ¢2,

cZy

AF} = x‘c —2cxy+ a2 = (—a—-—a)z.

The distance from the focus F, (¢, 0) to the tangent line at the
point A (zo, Y,) is

hy=k| -2 1|

where % is a normalization factor reducmg the equation of the tan-

gent line to normal form.
Whence it follows that




Ch. IV. Conic Sections 67

For the other focus F, (—c, 0) the same relation is obviously ob-
tained. The assertion is thus proved.

The hyperbola possesses a similar optical property: A light ray
emanating from one focus and reflected by the hyperbola (Fig. 49) will
seem to have come from the other focus. The
reflection property of the parabola consists
in that light rays emanating from its focus
become parallel to its axis on being re-
flected by the parabola.

8. Diameters of a Conic Section

The diameter of an ellipse (a hyperbola)
is a line passing through the centre of the
ellipse (hyperbola). The diameter of a para-
bola is a line parallel to its axis, and the
axis itself.

An arbitrary line intersects a conic section at most at two points.
If there are two points of intersection, then the line segment with
the ends at the points of intersection is termed the chord. A conic

Fig. 49

(a) (b) (c)
Fig. 50

section has the following property: The midpoints of parallel chords
lie on the diameter (Fig. 50).

This property is obvious if the chords are perpendicular to the
axis of symmetry. In this case the midpoints of the chords lie on
this axis.

Consider the general case. A family of parallel lines not parallel
to the coordinate axes can be specified by the following equations

y=kr+0b, k=0,

where % is the same for all lines.
The equations for the ellipse and hyperbola can be combined in
the following way:

az® + fy: —1 =0.
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The endpoints of the chords satisfy the system of simultaneous equa-
tions
ar? + Py? —1 =0, y=1Fkx + b.

Substituting kx + b for y in the first equation, we obtain the equa-
tion which is satisfied by the abscissas z, and z, of the endpoints of

the chord:
(o + PK?) 2% + 2Bkbx + P12 —1 = 0.

By the property of the roots of a quadratic equation
20kb
T2y = — a_-Eﬁ’— .

Thus, the abscissa of the midpoint of the chord
1tz _ Brb
2 atpRc

The ordinate y, is found by substituting z, in the equation of the
chord y = kz + b:

o=

— Bk b _
Ye= — Bka +b OL-{-ﬁk’

Whence

o
Ye= "'er

Thus, the midpoints of parallel chords y = kx + blie on a straight
line passing through the origin, i.e. through the centre of the
ellipse (hyperbola). Its slope

=%
kK = B
y==kz
is called conjugate to the diameter
y= kx‘l
which is parallel to the chords.

Obviously, the diameters are mutually conjugate, since the slope
of the diameter conjugate to

y=FKz

The diameter

is
—_ W =k
Let us consider the case of parabola. The coordinates of the end-
points of the chords satisfy the system

y2—2pr =0, y==kx+b.
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Eliminating z, we find the equation for the ordinates of the end-
points:

Hence, like the previous case

2
Y1+ Y= Tp
Thus,

Y= y——‘;'yz = % = const.

The midpoints of the chords lie on a line parallel to the z-axis (the
axis of the parabola).

Let us mention one more property of conjugate diameters: If a
diameter intersects a conic section, then the tangent lines at the points of
intersection are parallel to the conjugate diameter.

Actually, let (x4, y,) be the point of intersection of the diameter
y = kx with an ellipse (hyperbola) axz? 4+ py? = 1. The equation
for a tangent line at, the point (z,, Y,) is azz, + Pyy, — 1 = 0. Its

slope k' = — ax,/Py,. Since the point (z,, y,) lies on the diameter
y = kx, we have y, = kx,. Therefore
f
K= T

which was required to prove.

Note that in the case of a circle, the diameter conjugate to the
given one is the diameter perpendicular to it. This follows from a theo-
rem in elementary geometry: the midpoints of parallel chords of a
circle lie on the diameter perpendicular to the chords.

9. Curves of the Second Degree

A second-degree curve is the locus of points in the plane, whose coor-
dinates satisfy an equation of the form

44,2 + 2a,52Y + ag9y® + 2a,x + 2a5y + a =0, (%)

in which at least one of the coefficients a,;, a5, @55 is non-zero.
This definition is, obviously, invariant relative to a coordinate sys-
tem, since the coordinatesof a point in any other coordinate system
are expressed linearly in terms of its coordinates in the xy-system
and, consequently, the equation in any other coordinate system will
have the form ().
Let us consider what is meant by second-degree curves.
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We consider the curve in a new coordinate system z'y’ which is
related to the zy-system by the formulas

z =2z’ cos a + y' sin a,
y = —z' sina + y’ cos a.

The equation for the curve of the form () will have the following
coefficient of z'y’:

2ayy = 2a,y, oS a Sin o — 2a,, sin a cos a + 2a,, (cos? o — sin? a)
= (a;; — ay,) sin 2a + 2a,, cos 2c.

Obviously, it is always possible to choose an angle o so that this
coefficient is equal to zero. Therefore, without loss of generality,
we can assume that in the initial equation (x) a,, = 0.

We shall consider two cases:

Case A: both coefficients a,, and a,, are non-zero.

Case B: one of the coefficients, either a,, or ayq, is equal to zero.
Without loss of generality, we shall consider a,; = 0

In case 4, using a new coordinate system z'y’,

x'=x+._a_l_, y':y.l__a_z_'

a3 Q22
we bring the equation (x) to the form
apx’® + a5y’ +¢c =0 (+#)

and introduce the following subcases:

A;: ¢ £ 0, a; and a,, are of the same sign which is opposite to the
sign of c¢. The curve is obviously an ellipse.

A,: ¢ 0, a;, and a4, have different signs. The curve is a hyper-
bola.

A;: ¢5£0, a,y, ay; and c have the same sign. None of the real
points satisfies the equation. The curve is called imaginary.

A;: ¢ =0, a,, and a,, have different signs. The curve decom-
poses into two lines, since the equation (**) can be written in the form

r /_aﬁ ’ ’ l/____g_sg_ \ _
(z—l auy)(x+ auy)_o'
Ay ¢ =0, a;; and a,, have the same sign. The equation can be
written in the form

om0 (o =
(x i]/au y ) (:c +i]/au y) 0.
The curve decomposes into a pair of imaginary lines intersecting at
a real point (0, 0).
Let us now consider Case B.
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In this case, by using the new coordinate system z'y’:

=g, y'=y+T::‘ ’
we reduce the equation to the form
2a,8' + az5y’® + ¢ = 0. (k)
We then distinguish the following subcases:

B,: a; = 0. The curve is a parabola, since by transferring (or
changing) to the new coordinates

" 4
z =$'+271'¢ y'=v
we reduce the equation (xx*) to the form
2a,2" + a,y"™ = 0.

B,: a, = 0, a,, and ¢ have different signs. The curve decomposes
into a pair of parallel straight lines

c
yil/—m— .

B;: a;, = 0, ay, and c¢ are of the same sign. The curve decomposes
into a pair of imaginary non-intersecting lines

yary
yj:l]/ Z;;=O

B,: a;, = 0, ¢ = 0. The curve is a pair of coinciding straight lines.

Thus, a real curve of the second degree represents either a conic section
(ellipse, hyperbola, parabola), or a pair of straight lines (which may
even coincide).

EXERCISES TO CHAPTER IV

1. Show that the equation for any circle in polar coordinates can
be written in the form

p? + 2ap cos (@ + 0) + b = 0.

Determine the coordinates of its centre, p,, 6,, and the radius R.
2. Express the distance between two points in terms of polar coor-
dinates of these points.
3. What geometric meaning have a and p, in the equation of a
line in polar coordinates

p cos (@ — 0) = pg?

4. Form an equation (in polar coordinates) of the locus of feet of
perpendiculars dropped from the point 4 on the circle onto its tan-
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gent lines (the cardioid, see Fig. 51). Take the point A as the pole,
and the extension of radius OA as the polar axis.

5. Form the equation for the lemniscate of Bernoulli which is the
name for the locus of points the product of whose distances from the
two given points F; and F, (the foci) is constant and equal to
| F1Fy /4. Take the midpoint of the line segment joining the foci
as the pole, and the ray passing through one
of the foci as the polar axis.

6. Show that an intersection of a circular
cylinder by a plane is an ellipse. What is the
eccentricity of the ellipse if the plane inter-
sects it at an acute angle a.

7. Show that the curve

(]
p=i+a cos 0+ bsin 0

Fig. 51 is a conic section. Under what condition is the
curve an ellipse, a hyperbola, a parabola?
8. Form the equation of an ellipse by the three points (p,, 0),
(pa, 7/2) and (pg, m), knowing that one of its foci is situated at the
pole of the pO coordinate system.
9. Let A and B be the points at which a conic section intersects a
straight line passing through the focus F. Prove that

1 1
AF + BF

does not depend on the straight line.

10. Show that the inverse transformation of the parabola with
respect to the focus transforms it into a cardioid (see Exercise 4).

11. Show that a straight line intersects a conic section at most at
two points.

12. Let k be any conic section and F its focus. Show that the dis-
tance for an arbitrary point A of the conic section to the focus F
is expressed linearly in terms of paired coordinates z, y, i.e.,

AF = ox + By + v,

where a, f, y are constants.

13. Show that the locus of points, the sum of whose distances
from the two given points is constant, is an ellipse.

14. Show that the locus of points the difference of whose distances
from the two given points is constant is a hyperbola.

15. What is the locus of the centres of circles touching the two
given circles k; and k,? Consider various cases of mutual positions
of the circles k, and k,, and also the case when one of the circles de-
generates into a straight line.
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16. Justify the following method of constructing an ellipse
(Fig. 52). The sides CD and AC of a rectangle are divided into the
same number of segments of equal length. The points of division are
then joined to A and B. The points of intersection thus obtained lie
on the ellipse with the major axis AB. The minor semi-axis is equal
to half the altitude of the rectangle.

17. Justify the method of constructing the parabola illustrated
in Fig. 53.

18. Express the distances from the point (z, y) of the hyperbola

% —‘Z—: = 1 to its asymptote in terms of the abscissa (z) of the

Ay

o
Fig. 52 Fig. 53

point. Show that the distance from (z, y) to one of the asymptotes falls
off indefinitely as |z | & oo.

19. Show that the product of the distances from a point on a hy-
perbola to its asymptote is constant, i.e. independent of the point.

20. Show that the orthogonal projection of a circle on a plane is
an ellipse.

21. Show that a straight line parallel to the axis of a parabola in-
tersects the parabola at one point.

22. Show that a straight line parallel to the asymptote of a hy-
perbola intersects the hyperbola at one point.

23. Show that the equation of a hyperbola with the asymptotes

ax + by +c¢,=0and az + by +¢c3 =0
can be written as

(@, + by + ¢)) (agz + bay + ¢4) = const.
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24. The tangents to the ellipse
2 2
Sset

bave the slope k. Find the points of tangency.

25. Show that the segment of a tangent to a hyperbola between
the asymptotes is bisected by the point of tangency.

26. Show that a tangent to a hyperbola together with the asymp-
totes bounds a triangle of constant area.

27. Express the condition of tangency of a straight line

Yy —Yo=MI(z—x)
to an ellipse-

22, 2.
=1

Show that the locus of vertices (z,, y,) of right angles whose sides
touch the ellipse is a circle.

28. Show that the vertices of right angles whose sides touch a
parabola lie on the directrix, and a straight line joining the points
of tangency passes through the focus.

29. Justify the following method of construction of foci of the
ellipse. From the vertex on the semiminor axis circumscribe a circle
of radius equal to the semimajor axis. Then the points of intersection
of this circle with the major axis will be the foci of the ellipse.

30. Prove the reflection property of the hyperbola.

31. Find the focus of the parabola in canonical representation.

32. Find the directrices of the conic sections in canonical repre-
sentation.

33. Show that all conic sections %, given by the equations

z2 y2
e i w
where A is the parameter of the family, are confocal, i.e. have their
foci coincident.

34. Show that through any point of the zy-plane not belonging to
the coordinate axes pass two conic sections of the family &k, (Exer-
cise 33): an ellipse and a hyperbola.

35. Show that the ellipse and the hyperbola of the family k,
(Exercise 33) which pass through the point (z,, y,) intersect at this
point at right angles, i.e. the tangent lines to them at the point
(o, yo) are perpendicular.

36. The chord of the ellipse

2 2
G-

is bisected at the point (z¢4 yo). Find the slope of the chord.
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37. Show that the ellipse allows a parametric representation:
r=acost, y=~=bsint.

What condition do the values of the parameter ¢ corresponding to the
end-points of conjugate diameters satisfy? Prove that the sum of the
squares of conjugate diameters of the ellipse is constant (Apollo-
nius theorem). Formulate and prove a similar theorem for the hyper-
bola.

38. Any ellipse can be represented as the projection of a circle.
Show that perpendicular diameters of the circle correspond in this
projection to conjugate diameters of the ellipse. Relying on this
fact, prove that the area of the parallelogram formed by the tangent
lines at the end-points of the conjugate diameters is constant.

39. Show that the area of any parallelogram with the vertices at
the end-points of the conjugate diameters of the ellipse

22 2
a+tw=1
has one and the same value equal to 2ab.

40. Tt is known that of all the quadrilaterals inscribed in a circle
the square has the greatest area. Show that among all the quadrilat-
erals inscribed in the ellipse the parallelograms with the vertices at
the end-points of the conjugate diameters have the greatest area.

41. Show that the area of the ellipse with the semi-axes a and b
is equal to mab.

42. 1s it possible to inscribe a triangle in an ellipse so that the
tangent line at each of its vertices is parallel to the opposite side?
With what arbitrariness can it be done? What is the area of this
triangle if the semi-axes of the ellipse are a and b.

43. Think, what are the curves given by the following equations:

@22—azy+y*—2+y=0,

b)zy +y*—z+y=0,

() 2* — 4xy + 4y* 4+ z = 0,

@2 —y+z+y=0,

() 2> +2zy +y2 —1 = 0.

44. Show that the second-degree curve

(az + by + ¢ — (a2 +byy +¢) =0

decomposes into a pair of lines, possibly coincident ones.

45. As is known, all points of the ellipse are within a bounded
portion of the zy-plane. Proceeding from this fact, show that the
second-degree curve (az + by + ¢)® + (ax + By + 9)® = k2 is an

ellipse if the expressions ax + by and az - By are independent
and k £ 0.
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46. Show that the second-degree curve
(ax +by +c)(oax+ By +7)=k+#0

is a hyperbola, provided the expressions ax + by, oax + Py are in-
dependent.
47. Show that the second-degree curve

(az + by + ¢)> — (ax + By + v)* = k% 0.

is a hyperbola if ax + by, ax + Py are independent.

48. Show that if a line intersects a second-degree curve at three
points, then the curve decomposes into a pair of lines, possibly coin-
cident ones.

49. Show that if two indecomposable curves of the second degree
have five points in common, then they coincide.

Chapter V

RECTANGULAR CARTESIAN COORDINATES
AND VECTORS IN SPACE

1. Cartesian Coordinates in Space.
Introduction

Let us take three mutually perpendicular straight lines z, y, 2
intersecting at one point O (Fig. 54). We then draw a plane through
each pair of these straight lines. The plane through z and y is called
the zy-plane. Two other planes are called the xzz- and yz-planes, re-
spectively. The straight lines z, y, z are called the coordinate axes,
the point of their intersection O is called the origin of coordinates
and the zy-, yz-, zz-planes are called the coordinate planes. The point
O divides each coordinate axis into two half-lines. One of them is
conventionally called positive, the pther negative.

Now we take an arbitrary point 4 and draw through it a plane
parallel to the yz-plane (Fig. 55). It will intersect the z-axis at a
certain point A4,. The coordinate x of A will be the number whose ab-
solute value is equal to the length of OA,, and is positive if 4, lies
to the right of the origin and negative if it lies to the left of the ori-
gin. If A, coincides with the point O, then we take + = 0. Likewise,
we find the coordinates y and z of A. We will write the coordinates
of the point in parentheses after the symbol of the point, e.g.
A (z, y, z). Sometimes we will simply denote a point by its coordi-
nates (z, y, 2).
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We now express the distance between two points A, (x4, Yy, 2,) and
A, (x5, Ys, 25) in terms of the coordinates of these points.

To begin with, we consider the case where the straight line 4,4,
is not parallel to the z-axis (Fig. 56). We draw through A4, and A4,
straight lines parallel to the z-axis. They will intersect the zy-plane

at points 4, and A,. These points have the same coordinates z and

Az

Xz

yz

9 J

Xy

Fig. 54 Fig. 55 Fig. 56

y as A, and A4,, and their coordinate z is zero. We now draw a plane
through A4, parallel to the zy-plane. It will intersect the straight line

A,A, at a certain point C. By the Pythagoras theorem
AAF = A,C? + CA;.
The segments CA, and 4,4, are equal, but

lez = (&3 — ;) + (Y2 — y1)*
The length of A,C is |z, — 2z, |. Therefore,

= (@3 — 21)* + (ys — y1)® + (22 — 31)%

If A,A4, is parallel to the z-axis, then 4,44 = | 2, — 2, |. The same
result is obtained using the formula just derived, since in that case
Iy = Ty, Y1 = Ya-

Let A (zy, ¥, 3,) and B (z,, y,, 2,) be two arbitrary points. We
will express the coordinates z, y, z of point C that divides AB in the
ratio A : p in terms of the coordznates of A and B. To this end, we draw
through A, B, C straight lines parallel to the z-axis. They will inter-
sect the zy- plane at points A’ (zy, ¥,, 0), B’ (z4,¥,,0) and C’ (z, y, 0).
By the property of parallel projection

AC" _ AC _ A
TB  CB e

As we know, in the zy-plane the coordinates of point C’ that di-

vides A’B’ in the ratio A : p are expressed as

pritAzy Byi-hys

=T YT
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Similarly, if we project 4, B, C on the zz-plane, we will have

r— puzy + Azy g Bathn
Ap 7 Ap °
Thus, the point C has the coordinates
$=MI+M’ y=lly1+}«yz 7= 12y 4 Az
Ap Ap Ap *

2. Translation in Space

Translation in space is defined as a change such that an arbitrary
point (z, y, z) of a solid is sent into the point (x + a,y + b, z + ¢),
where a, b, ¢ are constants. Translation in space is given by the for-
mulas

2 =z + a, y’=y—|—b, 2 =z +e¢,

which express the coordinates z’, y’, z’ of the point into which (z, y,
z) is sent under the translation. As in a plane, the following proper-
ties of translation can be proved:

1. Translation is motion.

2. Under translation points move along parallel (or coincident)
straight lines by the same distance.

3. Under translation each straight line is moved to a new parallel
line (or to itself).

4. Whatever points A and A’, there exists only one translation
under which point 4 ehanges into A’'.

5. Two consecutive translations yield a translation.

6. The transformation inverse of a translation is a translation.

In space translation acquires the following new property:

7. Under translation in space each plane is moved either to itself
or to a new parallel plane.

Proof. Let o be an arbitrary plane. In this plane we draw two non-
intersecting straight lines a and b. Under translation a and b change
either into themselves or into parallel linesa’ and b’. A plane o changes
into a certain plane o’ that passes through straight lines a’ and
b’. If o’ does not coincide with o, then it is known to be parallel
to a.

The angle between skew lines is the angle between the intersecting
lines that are parallel to them. It follows from the properties of
translation that the angle between skew lines is the same whichever
parallel lines are taken.

The angle between a straight line and a plane is the angle between
this line and its orthogonal projection on the plane, if the line is not
perpend: ular to the plane. If the line is perpendicular to the plane,
the angle between them is considered to be 90°.
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The angle between intersecting planes is taken to be equal to that
between the straight lines obtained when these planes meet with the
plane perpendicular to their intersection line. The angle between
parallel planes is taken to be zero.

It follows from the properties of translation that the angle be-
tween the planes defined in this way is independent of the choice of
the secant plane.

3. Vectors in Space

In space, as well as in the plane, a vector is a directed line seg-
ment. For vectors in space the same basic concepts are defined:
magnitude, direction, equality of vectors.

The coordinates of a vector with origin at 4, (z;, ¥;, 2,) and end at.
A, (x4, Yo, 2,) are the numbers z, — z,, Yo — Y1, 23 — 2%,. Just as
for vectors in the plane, it is shown that equal vectors have equal
respective coordinates, and conversely, vectors with equal respec-
tive coordinates are equal. This justifies the notation of vectors by

—_—
their coordinates, e.g. a (a,, a,, a;) or (a,, a,, as).

We define addition and scalar multiplication of vectors exactly as
for vectors in the plane.

The sum of the vectors a (a,, a,, as) and b (b,, b,, bs) is the vector
¢ (a, + by, ay + by, ag + bg). And just as in the plane it is shown
that vector addition in space obeys the commutative and associative
laws. This means that for any two vectors a and b we have

a-+b=0>b-+4 a (commutative law)
for any three vectors a, b, ¢ we have
a-+ (b+c¢)=(a-+b)+ ¢ (associative law).
And as in the plane, we can prove the equality of vectors
— —_— —_—
AB + BC = AC.

The product of a vector a (a,, a,, a;) and a number A is a vector
a’ (Aa,, Aa,, Aag). Just as in the plane, we can prove that the magni-
tude of Aa is |A | |a |, and its direction coincides with that of a,
if L > 0, and is opposite to that of a, if A << 0.

Just as in the plane, we can prove that multiplication of a vector

by a number shows two distributive properties, i.e. for any two
vectors a and b and a number A we have

A (a+ b) =2a + Ab,
and for any two numbers A and p and a vector a we have
A + p) a = \a + pa.
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The scalar product of two vectors a (al, ay, ag) and b (by, by, by) is
the number a,b, + a,b, + azbs. Just as in the plane, we can prove
that the scalar product of two vectors in space is the product of their
absolute values and the cosine of the angle between the vectors.

Just as in the plane, we can prove that the scalar product of two
vectors shows the distributive property, i.e. for any three vectors
a, b, ¢ we have

(a 4+ b) ¢ = ae + be.

4. Decomposition of a Vector
into Three Non-coplanar Vectors

Just as in a plane, two non-zero vectors in space are called colli-
near if they lie on the same straight line or on parallel lines. Just as
in the plane, we can prove that if a vector b is
collinear with a vector a or is a zero vector,
then b = \Aa, where A is a number.

Three non-zero vectors in space are called
coplanar, if the vectors equal to them and hav-
ing the same origin lie in one plane. Just as in
the plane, any vector can be decomposed into
two non-collinear vectors, so in space any vector
can be decomposed into three non-coplanar vectors
in a unique manner. We now prove this.

Let a, b, ¢ be three non-coplanar vectors
and d any vector. We now show that there
is only one decomposition of d:

d = Ma + pb + ve.

Fig. 57

—_— = —

We draw from an arbitrary point O four vectors 04, OB, OC and
OD that are equal to a, b, c and d, respectively. We denote by «
the plane in whlch OA and OB lie (Fig. 57). If point D lies on OC,

then OD = vOC Hence d = ve.
If point D does not lie on OC, then we draw through it a straight
line parallel to OC. 1t will intersect the plane o at a certain point D’.

The vectors 5-5 and D—’B are collinear. Therefore, D7Z) = va’C.
—_> —>
The vector OD’ lies in a, just as OA and OB do. Therefore, OD' =
—_ —_ — — —
AOA + pOB. Since OD = OD' + D’'D, then

— — — —_
OD = MOA + pOB +vOC,
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or
d = Aa 4 pb + ve.

We have thus proved the existence of the decomposition of d.
Now prove its uniqueness. Suppose that there exists another de-
composition
d=»Aa-+ pb+ ve.

W —Na+ @ —mwh+ & —v)e=0.

We multiply this equality in a scalar manner by a vector e that is
perpendicular to b and ¢. Then

(' — 2) (ae) = 0.

Since the vectors a and e are non-zero and not perpendicular, then
ae = 0, hence A’ — A = 0. We can prove in a similar manner that
w —p=0,v —~v =0. This completes the proof of the unique-
ness of the decomposition.

The unit vectors have the same direction as the coordinate axes
and are denoted as e,, e,, e,, respectively, for the z-, y-, and z-axes.
Then for any vector a (a,, a,, a;) we have the decom position

a = a,e; + age, + ages.

Then

In fact,

— —_—

a=(a, 0, 0+ O, az, 0)+©, 0, ay

—— —_—— —_—
=a, (1., O, 0)—{-0,2 (O, 1, O) +a3 (O, O, 1)=aie, + a2e2=a3e3.

5. Vector Product of Vectors

The vector product, or cross product, of the vectors a (a,, a,, ag)
and b (b, by, b,) is defined as the vector ¢ (2,03 — azh,y, agb, — a,b,,
a,b, — agb,). The vector product of a by b will be denoted by a Ab.
It follows from the definition of vector product directly that aAb =
—b A a. If one or both vectors are zero, then their vector product is
a zero vector.

The vector product of collinear vectors is a zero vector. Conversely,
if the vector product of non-zero vectors is a zero vector, then the vectors
are collinear.

Proof. Let a (a,, a,, a3) and b (by, by, b3) be collinear vectors.
Then b = Aa, and hence b; = Aa,, by = Aa,, by = Aa;. Substitut-
ing these values of by, by, by into the expression for a A\ b, we see that
all the coordinates of a/\b are zero, and hence a/\b = 0.

We now prove the inverse statement. Let a/\b = 0. This means
that azb; — agby, =0, azh, — a;b3 =0, a,by, — ayb; = 0. Hence

a . % s =0

a3 4 L _ 4
by by’ by by’ by by ’
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i.e. the coordinates of a and b are proportional, and so the vectors

are collinear.
Let now a and b be non-zero and non-collinear vectors. We now

find the direction and magnitude of the vector a/\b. We have
(a/Ab) a = (asb; — ashs) a, + (ash, — a;b3) ag
+ (a1by — asby) a3 = 0.

Likewise, (@a/Ab) b = 0. The vector aAb is thus perpendicular to a
and b.

We will find the magnitude of a/Ab using the identity

(a2b3 — a3hs)® + (agh, — b3a,)® + (a5 — asby)?
= (a} + a3 + a3) (b7 + b3 + b)) — (@151 + asb, + agby):.
We can verify this identity by direct check.

We note that a} 4-a3 + af = |a[?, b} + b + bl = |b |3
a,b, + azb, + asb; =ab = |a | |b|cos ¢ (¢ is the angle between
a and b). Then

|laAb| = |a]|]|b|sing.

b We can assume without loss of generality
that a and b have a common origin. In that
case, | a | | b | sin ¢ is the area of the paral-

anb

a lelogram, constructed on a and b (Fig. 58).
) By way of exercise we find the area of the
Fig. 58 triangle with vertices at A4, (z;, ¥;, %),

A2 (-"32, Yo 22), A3 (xsa Ys» zs)- The magnitude
of A4, ANA,A; is the area of the parallelogram constructed on 4,4,

—_
and 4,4;. The area of the parallelogram is twice the area of the
triangle ABC. Thus,

1 ——— ——
Sy = > [A14, N\ A4As].
—_——  ——
The coordinates of 4,4, \ A,A; are

Yo—Yy 23— 2,
Ys— Yy 33— 32

23— 2y Tp— Xy

Zo— T4 yz—yt\
T3—2xy Ys— Yy |~

! Z3—Zi .’t3—.’ti

Therefore,
S, =_;_{ Yo—Ys Za—24 2 |23—32y Zp—3, |2
Ys—Yy 23—24 23—3 T3— Ty
Ty —&y Ya—Yq[2)1/2
+ L3— Ty Ys— Y4 } ’
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Specifically, if the triangle ABC lies in the zy-plane, then
1 [|®e— %1 Y2— Y1
2 ||zg— x4 Ys— Y1

SA=

6. Scalar Triple Product of Vectors

The scalar triple product of the vectors a (a,, as, as), b (by, bs, by)
and ¢ (¢;, ¢, ¢;) taken in this order is defined as the number
ay ay ag]
by by, b
€4 C C3
The scalar triple product of vectors is denoted as (abe).
The name is better explained by the following expression:
(abe) = a (bAc¢).
In fact, expanding the determinant in the elements of the first row,
we obtain
(abe) = a, (bges — bgcs) + ag (bye; — bycs) + ag (bicy — bacy)

Interchanging two rows changes the sign. It follows that the sca-
lar triple product changes sign when two linear multipliers are inter-
changed, but a cyclic permutation of the mul-
tipliers does not change the sign, i.e.,

(abe) = —(bac) = —(ach) = —(cba).
But

(abe) = (bca) = (cab).

It follows from the representation of the
scalar triple product of vectors

(abc) =a (b/\c) Fig. 59

that it is zero if and only if at least one of the vectors is zero, or the
vectors are coplanar.

The scalar triple product of non-zero non-coplanar vectors has a
simple geometrical meaning. Namely, if the vectors have a common
origin, then their scalar triple product is, up to a sign, equal to the
volume of the parallelepiped constructed on these vectors (Fig. 59). In

fact,
l(abe) | = | @Ab)e | = | S (ec) | = S | (ec) | = SH,

where S is the area of the base of the parallelepiped, H is its alti-
tude, and e is the unit vector perpendicular to the base.
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-By way of exercise we will now find the volume of the tetrahedron
with vertices at points A, (z;, ¥y, 2,), 4; (Za, Ys 25), Ag (T3, Ys» 25)s
A, (x4, Y4» 2,)- The volume of the parallelepiped constructed on

—_—— —— —

AA,, A1Ag, AA, is six times the volume of the tetrahedron. There-
fore, the volume of the tetrahedron is

{ | —> ——> —— 1 To—%y T3—T Z,—I
V=—6— (4,4, A4, AA) = S Y2— Y1 Ys—Y1 Yu—VYi1|. (*)
23—2 Z3—2%3 2,—2%

\

This expression can be represented in a more symmetric form

11 1 1
Ve L% %2 T3 T,
61ys Y2 ¥s Yu

2, 2y 23 2z,

In fact, if we subtract the first column of this determinant from the
others and expand it in the elements of the first row, we will arrive
at (x).

7. Affine Cartesian Coordinates

The Cartesian coordinates we have used so far are called rectangu-
lar, because the coordinate axes form right angles with one another.
But along with the rectangular coordinates in geometry and its ap-
plications some useis also made of the so-called affine (or oblique)
coordinates. They can be introduced as fol-
lows.

Let us draw from an arbitrary point O in space
three straight lines Oz, Oy, Oz not lying in
one plane, and lay off on each of them from
the point O three non-zero vectors e,, e,, e,
(Fig. 60). According to Sec. 4, any vector

OA allows a unique representation of the form

4

OA = re, + ye, + ze,.
Fig. 60 The numbers z, y, z are called affine Cartesian
coordinates of a point A.
The straight lines Oz, Oy, Oz are termed the axes of coordinates.
Oz is the z-axis, Oy is the y-axis, and Oz is the z-axis. The planes
Ozy, Oyz, Oxz are called the coordinate planes: Oxy is the xy-plane,
Oyz is the yz-plane, and Ozz is the xz-plane.
Each of the coordinate axes is divided by the point O (i.e., by the
origin of coordinates) into two semi-axes. The semi-axes whose direc-
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tions coincide with the directions of the vectors e,, e, e, are said to
be positive, the others negative.

Geometrically the coordinates of the point A are obtained in the
following way. We draw through the point A a plane parallel to
the yz-plane. It intersects the z-axis at a point 4, (Fig. 61). Then
the absolute value of the coordinate z of the point 4 is equal to the
length of the line segment OA, measured by the unit length | e, |.
It is positive if A, belongs to the positive semi-axis x, and is nega-

Fig. 61 Fig. 62

tive if A, belongs to the negative semi-axis 2. The other two coordi-
nates of the point (y and z) are determined by a similar construction.
If the coordinate axes are mutually perpendicular, and e,, e,, e,
are unit vectors, then the coordinates are rectangular Cartesian.
In what follows, we, as a rule, shall use the rectangular Cartesian
coordinates. Each case of application of affine Cartesian coordinates
will be specified.

8. Transformation of Coordinates
Let two systems of affine coordinates zyz and z'y’z’ be introduced
in space (Fig. 62). Express the coordinates of an arbitrary point A

NN

with respect to x'y’'z’ in terms of its coordinates with respect to xyz.
We have

—_—
O'A=z'ex+Yye,+ 2e,,
_7’ ! 4 ’
00 =zxex+yey+ 25e,
—
0A =ze,+ ye, + ze,,

— —_— —_—
O'A=0'0+0A= (zjex + ysey + z,27) + (e, + ye, 1 ze,).
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The vectors e, e,, e, allow a unique representation in terms of the
vectors eys, ey, e,:

€y = 0y 1€y | 0ypeyr -+ 0y ge,r,
€y = Olg €y - Qgg€ys 4~ Up3€,7,
€, = O3 € + Ugo€yr + Agg€,r,

where a;; are the coordinates of the vectors e,, e,, e, relative to the
basis e,-, e, e,.

*)

Substituting these expressions into the formula for 0'_2, we get
—
O0'A = (xg+ 0y + 0gyY -+ 0g42) €xr
+ (Yo + 0 12Z - QoY + 302) €y
+ (2 4 0y3% -+ Cagy + 2g52) €5
The expressions in pafentheses are the coordinates of the vector

pa—— .
O’A relative to the basis e,r, e, e,-, i.e., the coordinates of the
point A in the system z'y’z’. We get the required formulas:

&' = 004y Z + OpY + 0312 + Ty
Y' = Qs + Qg + 0322 1+ Yy,
2 = Q3% + Qpglf +- gz + 25

- The coefficients of these formulas are a,;, ;,, @;5, the coordinates
of the vector e, relative to the basis e,r, e,, e,, ay, 0yq, @y5 the
coordinates of the vector e,, ag;, @3q, 235 the coordinates of the vector
e; and z;, y,, 7, the coordinates of the point O in the coordinate
system z'y’z’.

We note that the determinant

(x+)

Qg gy gy
A=loys Qg ag|#*0.
Qg3 Qg O

Indeed, one can directly check that

Qg Oyp  Oyg
(eje ;) = |ty gy Opgl(er-eye).
%3y Qga Qg3

Since (eyeye;) =0, then A 5= 0.
For all systems of coordinates z'y’z’ which can be contimuously

transformed into one another the determinant has one and the same
sign. (The continuity of changing a system of coordinates is under-
stood as the continuity of changing the origin of coordinates O’ and
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the basis e,-, e,-, e,..) Indeed. since (e,e,e,) is non-zero, A is also non-
zero. Besides, since A changes continuously, it cannot attain values
of different signs.

If A 5= 0, then the system of formulas (%) may always be inter-
preted as a transformation from a coordinate system z'y’z’ to the
coordinate system zyz whose origin is at point (z,, y,, 3,) and the ba-
sis vectors are expressed in terms of the basis vectars of the system
z'y’z’ by the formulas ().

If both systems of coordinates zyz and z'y’z’ are rectangular, then
the coefficients of the formulas (s+) satisfy the orthogonality con-
ditions ‘

Oy + 0+ Afg =1,  0yy0p; + Qs + 03093 =0,
05y G+ 0gy =1,  0pyQgs + Cpsllys + Cpstlsy =0, (%)
05y - Ogp+ g, =1, Qg0 + Cgp0yp + g50y3 =0,

which are obtained when the formulas (*) and the following relation-
ships

e; =¢€; =¢€; =1, ee, = e, = ee, =0,
e =ep=¢ep =1, epe, =epe,=eyey =0,
are used.

Conversely, if the conditions (###) are fulfilled, then the formulas
(*x) can always be interpreted as a transformation from a rectangular
z'y’z'-coordinate system.to the system of rectangular coordinates
zyz whose origin is at the point (z;, y;, 2,) and the basis vectors are
specified by the formulas (). By virtue of the conditions (%#) the basis
vectors e,, e,, e, are unit vectors and are pairwise perpendicular.

In the case of rectangular Cartesian coordinates zyz and z'y'z,
we have A = 41, where A = 41 if one system of coordinates can
be translated into the other system. If this cannot be done without
reflection, then A = —1.

9. Equations of a Surface and a Curve in Space

Suppose we have a surface (Fig. 63).
The equation
f@y 2)=0 ()

is called the equation of a surface in implicit form.if the coordinates of
any point of the surface satisfy this equation. And conversely, any
three numbers x, y, 2z, which satisfy the equation (*), represent the
coordinates of one of the points of the surface.

Simultaneous equations

z="f (u’ v), Yy=1, (u1 U), 2= (u’ v)’ " (**)
which specify the coordinates of points of the surface as functions
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of two parameters (u, v) are called the parametric equations of a sur-
face.

Eliminating the parameters u, v from the equations (#x), we can
obtain the equation of a surface in implicit form.

Write the equation for an arbitrary sphere in rectangular Cartesian
coordinates xyz.

Let (o, Yo, 20) be the centre of the sphere, and R itsradius. Each
point (z, y, z) of the sphere is at a distance R from the centre, and,
consequently, satisfies the equation

(x — ) + (¥ — yo)* + (2 — 2> — R* = 0. (x%x)
Conversely, any point (z, y, z) which satisfies the equation (xx#) is

x Yy

Fig. 63 Fig. 64
at a distance R from (z,, y,, 2,) and, consequently, belongs to the
sphere. The equation (*x#) is, by definition, the equation of a sphere.

Write the equation for a circular cylinder with the axis Oz and radius
R (Fig. 64).

Let us take as the parameters u, v, characterizing the position of
the point (z, y, 2) on the cylinder, the coordinate z (v) and the angle
(v) made by the plane passing through the z-axis and the point (z, y,
z) with the zz-plane. We then get

x=Rcosu, y=Rsinu, z=nv,

which are the parametric equations of the cylinder.

Squaring the first two equations and adding them termwise, we get
the equation of the cylinder in implicit form:

z® + y? = R
Suppose we have a curve in space. The simultaneous equations
h (x’ Y, z) =0, f2 (=, y,2)=0

are called the equations of a curve in implicit form if the coordinates
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of each point of the curve satisfy both equations. And conversely,
any three numbers which satisfy both equations represent the coordi-
nates of some point on the curve.

Simultaneous equations

r=q (), y=0:(), z2=0s5(),

which specify the coordinates of points of the curve as functions of
some parameter (f) are called the equations of a curve in parametric
form.

Two surfaces intersect, as a rule, along a curve. Obviously, if the
surfaces are specified by the equations f, (z,y,z) = Oand f, (x,y,2) =
0, then the curve along which they intersect is given by simultaneous

equations
fl (JI, Y, Z) = 01 fz (.'L‘, Y, Z) = 0.

Let us write the equation for an arbitrary circle in space. Any circle
can be represented as an intersection of two spheres. Consequently,
any circle can be specified by a system of equations

(x—ay)®+(y—by)*+ (z2—¢;)>— R1=0, l
(T—ay)2 4 (y —by)2 + (2 —cy)2— Ry =0.

As a rule, a curve and a surface intersect at separate points. If
the surface is specified by the equation f (x, y, z) = 0, and the curve
by the equations f, (z, y, z) = 0 and f, (z, y, z) = 0, then the points
of intersection of the curve and the-surface satisfy the following si-
multaneous equations:

f(x'» Y, Z)=0, h (xv Y, Z)=O, fa (.’II, Y, Z)=0

Solving these equations we find the coordinates of the point of
intersection.

EXERCISES TO CHAPTER V

1. Given points 4 (1, 2, 3), B (0, 1, 2), € (0, 0, 3), D (1, 2, 0).
Which of these points lie (a) in the zy-plane, (b) on the z-axis, (¢) in
the yz-plane?

2. Given the point 4 (1, 2, 3), find the foot of the perpendiculars
dropped from this point on the coordinate axes and coordinate
planes.

3. Find the distances from a point (1, 2, —3) to (a) coordinate
planes, (b) coordinate axes, (c) origin of coordinates.

4. In the zy-plane find a point D (z, y, 0) equidistant from three
given points 4 (0, 1, —1), B (-1, 0, 1), C (0, —1, 0).

5. Find points equidistant from points (0, 0, 1), (0, 1, 0), (1,0, 0)
and separated from the yz-plane by a distance of 2.

6. On the z-axis find a point C (z, 0, 0) equidistant from two
points 4 (1, 2, 3), B (—2, 1, 3).
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7. Form the equation of the locus of points equidistant from the
point 4 (1, 2, 3) and the origin of coordinates.

8. Prove that a quadrilateral ABCD with vertices at 4 (1, 3, 2),
B (0, 2, 4),C (1, 1,4),D (2,2, 2) is a parallelogram.

9.  Given four points: 4 (6, 7, 8) B 8,2,6),C (4,3,2),D (2,8, 4),
show that they are vertices of a rhombus.

10. Given one end of a line segment A (2, 3, —1) and its midpoint
C (1, 1, 1), find the other end B (z, y, z) of the segment.

11. Given the coordinates of three vertices of a parallelogram
ABCD: A (2,3,2),B(0,2,4), C (4, 1, 0), find the coordinates of the
fourth vertice D and the point E of intersection of the diagonals.

12. Given points (1, 2, 3), (0, —1, 2), (1, 0, —3), find the points
symmetric to the given ones about the coordinate planes.

13. Given points (1, 2, 3), (0, —1, 2), (1, 0, —3), find the points
symmetric to the given ones about the origin of coordinates.

14. Find the values of a, b, ¢ in the formulas of translation z’ =
z+a,y =y—+b, 2 =z ¢, if under this translation the point
A (1, 0, 2) changes into 4’ (2, 1, 0).

15. Under a translation the point A4 (2, 1, —1) changes into
A" (1, —1, 0). Find the point to which the origin is moved.

16. Given points 4 (2, 7, —3), B (1, O 3), C (—3, —4, 5),

D (—2, 3, —1). Find equal vectors among AB BC 52' ZE) AC,

and BD
17. Given pomtsA 1,0, 1) B(—1 1, 2), C(O 2, —1). Find the

point D (z, y, 2), if AB and CD are equal.

18. Find the point D in exercise 17, if the sum of f-l_é and 675 is
zero.

19. Given the vectors (2, n, 3) and (3, 2, m), find at which m and
n these vectors will be collinear.

20. Given a (1, 2, 3), find the vector collinear with a such that its
origin is at 4 (1, 1, 1) and the terminus B in the xy-plane.

21. Givena (2, —1, 3)and b (1, 3, r), find at what n these vectors
will be perpendicular.

22. Given points 4 (1,0, 1), B (—1, 4, 2), C (O 2, —1), find on

the z-axis a point D (0, 0, ¢) such that AB and CD are perpendicular.

23. The vectors a and b form an angle of 60°, and the vector ¢ is
perpendicular to them. Find the magnitude of a 4+ b + e.

24. The vectors a, b, ¢ of unit length form with one another an
angle of 60°. Find the angle ¢ between the vectors (a) a and b 4 e,
(b) a and b —ec.

25. Given points 4 (0, 1, —1), B (1, —1, 2), c @3, 1 0), D (2,

—3, 1), find the cosine of the angle ¢ between AB and CD
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26. Given points 4 (0, 1, —1), B (1, —1, 2), C (3, 1, 0). Find the
cosine of the angle C of the triangle ABC.
27. Show that if the vectors a and b are perpendicular to the

vector ¢, then
(@aAb) Ae =0.

28. Show that if the vector b is perpendicular to ¢, and the vector
a is parallel to the vector ¢, then

(aAb) Ae = b (ac).
29. Show that for an arbitrary vector a and a vector b which
is perpendicular to ¢

(a/Ab) Ac=Db (ac).
30. Show that for any three vectors a, b and ¢

(@aAb) Ac = Db (ac) — a (be).

" 31. Find the area of the base of a triangular pyramid whose lat-
eral edges are equal to I, and the vertex angles are equal to «, B, .
32. Making note that

(@ADb) Ae)d = (aAb) (cAd),
derive the identity
-@aAD(Ad=
33. With the aid of the identity
@Ab) (¢Ab) = (ac) b> — (ab) (be)

derive the formula of spherical trigonometry

ac ad
be bd

sin « sin y cos B = cos f§ — cos y cos a,

where o, B, y are the sides of a triangle on a unit sphere, and B is
the angle of this triangle opposite the side f.
34. Derive the identity

(@Ab) A(eAd) = b (acd) — a (bed).
35. Show that for any four vectors a, b, ¢, d
b (acd) — a (bed) 4 d (cab) — ¢ (dab) = 0.
36. Let e,, e,, €; be any three vectors satisfying the condition
(e eqe5) = 0.
Show that any vector r allows the representation

__ (rese;) &y (regey) eg + (reieg) eg
(ejezes) ° (ejeqeg) (ereses) *
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37. Show that the solution of the following system of vector
equations
(rab) = y, (rbe) = a, (rca) = B,

where a, b, ¢ are the given vectors satisfying the condition
(abe) 5= 0,

and r is the required vector, can be written in the form

1 .
I =-be) (ac +bB +-cy).

38. Show that if e, e,, e; and r are any four vectors satisfying a
single condition (e,e,e;) = 0, then the follpwing identity takes place

(ex A ;) (reg) (es A\ ej) (rey) + (e A\ ey) (rey)
(e1e0e3) (ezeqses) (eeses) °

Tr=

+

39. Show that the solution of the system of simultaneous vector
equations
ax =a, bx =, ex =y,
where a, b, ¢ are the given vectors and x is the required vector satis-
fying the condition (abe) == 0, can be written in the form

_apAby+bAcat(EcAa)p
(abe) .

X

40. Show that r;, r,, r; are coplanar if and only if
yry Iyl T4f
Faly Toly Torg|=0.
rary Igfy T3l
41. Show that for any four vectors r,, r,, r; and r,
Ty Mry Ty03 NT,

Ialy Toly ToFg TFof, _ O
Igry Igly Tglg Il
rry r,g, r,rg r\r,

42. Let I}, l;, I3 and I, be four rays drawn from one point and o,
be the angle between rays /; and ;. Prove the identity

1 COSOy; COS@y3 COSOy,
COS Qg4 1 oSOy COSOy, |_
COSQgy COS gy 1 COS Qg ’

COSOl,y COSQy COSQ; 1
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43. Show that the coordinates of the vector r relative to the basis
e;, €;, e are given by the equalities
_ (reses) _ (regey) _ _(resey)
(eseces) ’ 2 (ereqes) ’ 3 (ereseg) ~
44. Show that the coordinates of the vector r relative to the basis
(es\es), (es/A\ey), (e;/\ey) are, respectively,
__Te __res
(ejeqep) ’ 2 (ereqeg) ’
45. Decomposing the vectors a, b, ¢ into the orthogonal basis,
prove the identity

1

Py re,
Ao = 3

! 3= (e;eqe3) °

aa ab ac
(abc)?=|ba bb bec|,
ca ¢cb ce

using the determinant multiplication theorem.
46. Prove the identity

(@aAb, bAe, ¢/ a) = (abe)?.

47. Show that the volume of a triangular pyramid with the lateral
edges a, b, ¢ and face angles a, B, y is

1 cosy cosf|t/2
V=%abc cosy 1 cosa
cosf cosa 1

48. Find the distance between two points in affine coordinates if
the positive axes form pairwise the angles «, B, v, and e,, e,, e, are
unit vectors.

49. Find the centre of a sphere circumscribed about a tetrahedron
with the vertices (e, 0, 0), (0, b, 0), (0, O, ¢), (0, 0, 0).

50. Prove that the straight lines joining the midpoints of the
opposite edges of a tetrahedron intersect at one point. Express the
coordinates of this point in terms of the coordinates of vertices of the
tetrahedron.

51. Prove that the straight lines joining the vertices of a tetra-
hedron to the centroids of the opposite faces intersect at one point.
Express its coordinates in terms of the coordinates of the vertices
of the tetrahedron.

52, Let 4; (z;, ¥4, 2;) be the vertices of a tetrahedron. Show that
the points with the coordinates

T = MZ; + A%y + AaZs + My,
¥ = My1 + Mays + Ag¥s + My,
2 = M2 + A2y + Mgz + A4z,
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are located inside the tetrahedron if A, > 0, A > 0,13 >0, A, > 0,
M+ Ay + A+ A, =1.

53. For four points 4; (z;, y;, 2;) to lie in one plane itis necessary
and sufficient that

zy Yy 3 A

Ty Y 3 1 =0
Z3 Ys 23 1 )
z, Yo % 1

Prove this.
54. Show that the surface specified by the equation
22 + y? + 2% 4 20z + 2by + 2cz2 +d =0,

is a sphere if o 4+ b? + ¢2 — d > 0. Find the coordinates of its
centre and radius.
55. A circle is specified by the intersection of two spheres

f1(z, ¥, 2) =22+ y2 + 22+ 2042 4- 2b,y + 2¢424-d, =0,
fo (@, Yy 2) = 2%+ y2 422+ 2052 + 2byy - 2¢52 + dp =0. }
Show that any sphere passing through this circle can be specified
by the equation
Mh (@, y, 2) + Mof, (x, y, 2) = 0.

56. Show that the surface specified by an equation of the form
@ (z, y) = O is cylindrical. It is generated by straight lines parallel
to the z-axis.

57. Form the equation for a right circular cone with the axis Oz,
vertex O, and the vertex angle equal to 2a.

58. Form the equation of a surface described by the midpoint of
a line segment whose endpoints belong to the curves y, and y,

| z=aa?, . z=>by?
e y=0, Vel z=0.

59. Form the equation for a surface generated by a straight line
which, intersecting the curves y; and vy,, is parallel to the yz-plane:

Z=f(.‘t), Z=(P(x)’
74 y=a, x y=b, (as=b).
60. Show that the curve
=@ (.’t), y=20 ($>O)’
when revolving about the z-axis, generates a surface specified by the
equation

2=0(V 22+ 7).
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61. Show that a cylindrical surface, with the generators parallel
to the z-axis, which passes through the curve

2=f@), 2=09@),
is specified by the equation
@ — o) =0
62. What forms do the formulas for changing the coordinates have

if the zy-plane coincides with the z'y’-plane?
63. We know that in a certain coordinate system the equation
ap®® + ag9Y® + 337 + 24,57y + 2a53yz + 20332 = R®
specifies a sphere. Find the angles between the coordinate axes.

64. Suppose we have two zyz- and z'y’z’-coordinate systems with a
common origin 0. Let e,, e,, e, be the basis of the first system, and
e;/\es, €3/\ es, e3/\ e, the basis of the second system. Derive formu-
las for changing from one system to the other.

65. The transformation from the ay-coordinate system to the
z'y’z’'-coordinate system having the same origin can be accomplished
in three stages:

Z;=2xcos@—ysing,

I yy=zsinp+ycosq, }
24 =25
Lo ==Tq,

IT y,=y,cos0—z,sin0,
zz=y,sin9—|—zicosﬂ;}

IIT y’ =z, sin Y4y, cos P,
3 =z,.
The angles ¢, 0, are called Euler’'s angles. Find out their geometri-
cal meaning.

z' =z €08 P— Y, sin P, }

Chapter VI
PLANE AND A STRAIGHT LINE IN SPACE
1. Equation of a Plane
Prove that any plane in space is described by an equation of the

form
az + by +cz+d=0, (*)

where a, b, ¢, d are constants. Conversely, any equation of the form (x)
is the equation of a certain plane.
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Proof. Let A, (xy, Yo, 2,) be some point in the plane and n (a, b, ¢)
a vector perpendicular to the plane (Fig. 65). Let then 4 (z, y, 2)

be an arbitrary point in the plane. Then A;Z and n will be perpen-
dicular, and hence their scalar product will be
zero. Thus, any point in the plane obeys the

equation
a@—=zo) + by — yo)+c (z2 —30)=0. (x%)
Conversely, if the point A (z, y, z) satisfies
Y this equation, then AOA-_; =0, and hence 4
x lies in the plane. The equation (*#) is thus the
Fig. 65 equation of our plane. It can be rewritten as

ax + by + ¢z + (—ax, — by, — cz,) = 0.
We see that it has the form (*), which was to be proved. Suppose we
have an equation
ar + by +cz 4+ d=0.

Show that it is now the equation of a certain plane. Let z,, y,, 2z,
be some solution of this equation

axy + by, + czo + d = 0.
Using this relationship we can rewrite our equation as

z

ar + by + ¢z — axy — by, — ¢z, = 0,

a@—1x0) +b@y —yo) +clz—3z)=0.

And in this form, as we know, it is the equation of the plane pas-
sing through (z,, y,, 2,) and perpendicular to n (e, b, ¢). This
proves the second statement.

Note that in the equation of the plane

ax +by+cz+d=0
the coefficients a, b, c are the coordinates of the vector perpendicular to
the plane.

It is well-known that the formulas of transformation from one Car-
tesian coordinate system to another are linear. Therefore, the equation
of the plane in any, not necessarily rectangular, coordinate system
is linear, i.e., has the form ().

or

2. Position of a Plane Relative
to a Coordinate System

Let us consider features specifying the p‘osition of a plane in
space, relative to a coordinate system, if its equation has the
following particular form:
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1. a = 0, b = 0. Vector n (perpendicular to the plane) is parallel
to the z-axis. The plane is parallel to the xy-plane and, in particular,
coincides with it at the zy-plane if d = 0.

2. b = 0, ¢ = 0. The plane is parallel to the yz-plane and coin-
cides with it if d = 0.

3. ¢ =0, a = 0. The plane is parallel to the zz-plane and coin-
cides with it if d = 0.

4 a=0,b50,c50. A vector n is perpendicular to the z-axis:
e,n = 0. The plane is parallel to the z-axis, in particular, it passes
through it if d = 0.

5. as<0, b= 0, ¢ 5= 0. The plane is parallel to the y-axis and
passes through it if d = 0.

6. a %<0, b0, c =0. The plane is parallel to the z-axis and
passes through it if d = 0.

7. d = 0. The plane passes through the origin (whose coordinates
0, 0, O satisfy the equation of the plane).

If in the equation of the plane the coefficient of z is nonzero, then
the equation can be solved for z. It becomes

z=pz+qy+r.
The coefficients p and g in this equation are called angular coefficients.

3. Normal Form of Equations
of the Plane

If a point 4 (z, y, z) belongs to the plane
az + by + ez +d =0, )

then its coordinates satisfy the equation ().
Let us consider what geometrical meaning has the expression

ar + by +cz +d

if the point A does not belong to the plane.
We drop a perpendicular from the point 4 onto the plane. Let

A (xg, Yo, 20) be the foot of the perpendicular. Since the point 4,
lies on the plane, then

axy + by, + ¢z + d = 0.
Whence

ar + by +cz +d
=a(@—2o) + by —yo) + cz— 3z
—=n-A,4d = + |n |8,

where n is a vector perpendicular to the plane, with the coordinates
a, b, ¢, and § is the distance from the point 4 to the plane.
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Thus
ax +by +cz+d
is positive on one side of the plane, and negative on the other, its
absolute value being proportional to the distance from the point A to
the plane. The proportionality factor

+|n|=2VaF+ b2+
If in the equation of the plane
a? + b% 4?2 =1,
then
ax + by +cz4d
will be equal, up to a sign, to the distance from the point to the

plane. In this case the plane is said to be specified by an equation in

the normal form.
Obviously, to obtain the normal form of the equation of a

plane (%), it is sufficient to divide it by
+VEFET

4. Parallelism and Perpendicularity of Planes

Suppose we have two planes
ax+by+ciz+dy =0, ] (*)
s+ oy + 52 4-dy =0.

Consider the condition under which these planes are. (a) parallel,
(b) mutually perpendicular.

Since a,, b,, ¢, are the coordinates of the vector n, perpendicular to
the first plane, and a,, b,, ¢, are the coordinates of the vector n,
which is perpendicular to the second plane, the planes are parallel
if the vectors n,, n, are parallel, i.e. if their coordinates are propor-
tional:

a1 _ b _ o

as by Cy

Moreover, this condition is sufficient for parallelism of the planes if
they are not coincident.

For the planes (%) to be mutually perpendicular it is necessary
and sufficient that the mentioned vectors n, and n, are mutually
perpendicular, which for non-zero vectors is equivalent to the con-
dition

nl‘n2 = O or alaz + blb2 + c102 = O.
Let the equations (%) specify two arbitrary planes. Find the angle
made by these planes.
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The angle 6 between the planes is either equal to the angle
between the vectorsn, and n, perpendicular to the planes, or together
with it makes the angle of 180°._ Thus, in any case

[nyomg | = |my | |ny |cos.
Whence
| a1ae+-bibe+-cics |
Va+ui+ad Val+oi+d

cos0=

5. Equations of a Straight Line

Any straight line can be specified as an intersection of two planes.
Consequently, any straight line can be specified by the equations

az+ by +ez2+dy =0, }
a2+ boy + 2+ dy =0,

the first of which represents one plane and the second the other.
Conversely, any compatible system of two such
independent equations represents the equations
of a straight line.

Let 4, (z,, Yo, 2,) be a fixed point on a
straight line, 4 (z, y, 2) an arbitrary point of
a straight line, and e (%, I, m) a non-zero vector
parallel to the straight line (Fig. 66). Then

—_
the vectors 4,4 and e are parallel and, con-
sequently, their coordinates are proportional,
i.e.

(*)

Fig. 66

T—2Zg  Y—UYo _ 2—2

kT m (x#)

Such an equation of a straight line is called canonical and is a par-
ticular case of (+), since it allows an equivalent

T—7%o Y—Yo Y—Y __ 2—%

k1 m

corresponding to (x).

Suppose a straight line is represented by the equations (). Let
us form its equation in canonical form. For this purpose it is suffi-
cient to find a point 4, on the straight line and a vector e parallel
to this line.

Any vector e (k, I, m) parallel to the straight line will be parallel
to each of the planes (%), and vice versa. Consequently, k, [, m sa-
tisfy the equations

ak +byl4-¢ym =0, }

azk + bzl + Com = 0. (***)
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Thus, any solution of the system (s) can be taken as z,, y,, z, for
the canonical equation of the straight line and any solution of (%x+)
as the coefficients k, I, m, for instance

b, ¢ c ay a; by

as b,

k= y = , m= o

by ¢, Ca Gy

From the equation of a straight line in canonical form we can
derive its equations in parametric form. Namely, assuming the com-
mon value of the three ratios of the canonical equation equal to ¢,
we get

=kt +zo, y=1lt +yy z=mt+ 3z,

which are the parametric equations of a straight line.

Let us find out what are the peculiarities of the position of a straight
line relative to the coordinate system if some of the coefficients of the
canonical equation are equal to zero.

Since the vector e (k, I, m) is parallel to the straight line, with
m = 0 the line is parallel to the zy-plane (ee, = 0), with I = 0 the
line is parallel to the zz-plane, and with &£ = 0 it is parallel to the
yz-plane.

If £ = 0 and I = 0, then the straight line is parallel to the z-axis
(e]le,); if I =0 and m = 0, then it is parallel to the z-axis, and
if X = 0 and m = 0, then the line is parallel to the y-axis.

6. Relative Position of a Straight Line
and a Plane, of Two Straight Lines

Suppose we have a plane and a straight'line respectively specified
by the equations

ax + by +cz+d =0,

T—Zo _ Y—Yo __ 2—2%

k1 m °*

Since the vector (i,— 5—,_:) is perpendicular to the plane, and the

vector (E_l:7n) is parallel to the straight line, then the straight line
and the plane will be parallel if these vectors are perpendicular, i.e. if

ak + bl + cm = 0. (*)

Moreover, if the point (zo, ¥o, 20) belonging to the straight line
satisfies the equation of the plane

axy + byy + ¢z +d =0,
then the straight line lies in the plane.
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—

The straight line and the plane are perpendicular if the vectors (a, b, c)

-—
and (k, 1, m) are parallel, i.e. if
i= —b- = —c- . (**)

We can obtain the parallelism and perpendicularity conditions
for a straight line and a plane if the straight line is represented by
the intersection of the planes

ar+by+cez+d =0,
ag + boy + coz + dy = 0.

It is sufficient to note that the vector with the components

by ¢ ¢y a4 a; by

Cy Gy

k= m=

) l=

b

by ¢, a, b,

is parallel to the straight line and make use of the conditions (x)
and (xx).

Suppose two straight lines are specified by the equations in ca-
nonical form

z—z'  y—y  z—3
kl - ll - ml 2

z—2z" y—y" z—3" (#4)
ku = lll - mlr

—_——
Since the vector (k', I', m') is parallel to the first line, and the

—_—
vector (k”, I”, m") is parallel to the second line, then the lines are
parallel if

kl l' ml
?—

In particular, the straight lines coincide if a point of the firstline,
say (z’, y’, '), satisfies the equation of the second line, i.e. if

z —2" y,_yn P
U T m

—
The straight lines are perpendicular if the vectors (k', I', m') and

k", 1", ;’7) are perpendicular, i.e. if
EE 4+ U1 +m'm” =0.
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7. Basic Problems on Straight Lines
and Planes

Form the equation of the straight line passing through two given
points Al (xl’ Y1y zl) and Az (xz» Ya» Za)-
The vector e (z, — z;, Yo — Y1, 25 — 3,) lies on the straight
line. Accordingly, the straight line is given by the equations
rT—xy _ Y—Yi1 _ 2—2

Za—2Zy  Ya—Y1  Fa—% °

Form the equation of the plane passing through three points
Ay @15 Y1y 31)s A (%2, Yay 20) and Ay (x5, Y3, 25).

——
Let 4 (z, y, z) be an arbitrary point in the plane. Then A,4,,
i —_—
A,;A,, and A,A are coplanar, and hence their scalar triple product is
zero. From this we obtain the required equation
T—& Y=Y 22—z
Ty— 2y Ya—Yy Za—32|=0.
T3— &y Ys—Y1 23—3%
Form the equation of the plane passing through a point (z4, Yo, %o)
and parallel to the plane
ax + by +cz+d=0.
The desired equation will be
a(@—2xo) +b@y —yo) +c(—3z)=0.

In fact, this plane passes through the given point and is parallel to
the given plane.
Form the equation of the straight line passing through the point
(xo, Yo» 20) parallel to the straight line
z—z' _ y—y _ z2—s3

k I 0m

’

The desired equation is

T—T _ Y—UWo__2—"%

k l m

The straight line passing through (x4, Yo, 2o) perpendicular to the

plane

ax +by +cz+d=0,
is given by

T—Zy Y=Y _ 2%

a b c
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The plane perpendicular to the straight line

’ ’

z—z' _ y—y' _ z—:z
kT m

and passing through the point (x,, y,, 3,) is given by
k(@ —z) 41l —yo)+m@E—z) =0

Form the equation of the plane passing through the point (z¢, Yo, 2,)
parallel to the straight lines

z—z y—y z—3
% = 7 = m

z—z"  y—y'  z—13"
k' - lﬁ m'

Since the vectors (k’,I’, m’) and (%", I’, m;) are parallel to the
plane, then their vector product is perpendicular to the plane. Hence
the desired equation

1 ’
l” mll

or in shorthand

U
kll lll

m' K

I E ] A ] e

T—Zy Y—Yo 2—2
kl ll ml
k" 1 m”

=0.

EXERCISES TO CHAPTER VI

1. Find the line segments cut off by the plane ax 4 by + cz +
d = 0 on the coordinate axes, if abed == 0.

2. Show that the line of intersection of the planes given by a,z +
by = dy, a,x + by = d, is parallel to the z-axis.

3. Show that the planes given by

ar +by+cz+d=0and ax + by +cz+d, =0

have no points in common if d 5= d,.

4. Show that any plane parallel to the plane ax + by + ¢z +
d = 0 is given by an equation of the form az + by + ¢z + d' = 0,
where d’ =% d.

5. A plane is given by the equation ax + by + ¢z +d = 0.
What condition must the coordinates of P (k, I, m) satisfy for the
straight line passing through this point and the origin of coordi-
nates to be perpendicular to the plane?
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6. Given the point P (k, [, m), find the equation of the plane pas-
sing through the origin of coordinates O and perpendicular to the
straight line OP.

7. Find the point of intersection of three planes given by the

equations
z+y+z=1, z2—2y=0, 2xr+y+3z2+4+1=0.
8. Show that the planes given by
z+y+z=1,2x+y+324+1=0,24+224+1=0

do not have a single point in common.

9. Under what condition is the plane given by ax + by + ¢z +
d = 0 perpendicular to the zy-plane?

10. A plane is given by the equation 2z + 3y 4+ z = 1. Indicate
a vector parallel to the plane.

11. A straight line is the line of intersection of the planes 2z 4
3y+2=1, x+y -+ 2z=1. Indicate a vector parallel to the
straight line.

12. Form the equation of a plane given two points (z;, ¥;, %)
and (z,, Y3, 2,) situated symmetrically about it.

13. What is the locus of points whose coordinates satisfy the
equation

(ax + by + cz + d)* — (ax + Py + vz +8)* = O0?
14. Show that the curve represented by the equations

f(@ Yy, 2) +az+by+ez+d =0, ]
f (@, ¥y 2) + ap® +-boy 4oz +dy =0,
is plane, i.e., all its points are in a certain plane.
15. Write an equation for the plane which passes through the
circle of intersection of the two spheres
2?+y*+24+ax+by+ezt+d=0,
2+ y+z24+ax+py+yvz2+6=0.
16. Show that inversion transforms a sphere either into a sphere

or into a plane.
17. Show that the equation of any plane which passes through
the line of intersection of the planes

ax +by +cz4+d=0,
oz + Py +vz+68 =0,
can be represented in the form

Maz + by +cz2+d)+ p(ax + By + vz + 8) = 0.
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18. Show that the plane passing through the three given points
(xi, yi, 3;) (i =1, 2, 3) is specified by the equation

z y 2z 1
zy Yy 24 1 0
Zy Y2 2 1
z3 Y3 33 1

19. Find the conditions under which the plane
ar + by +ecz+d=0

intersects the positive z-axis (y, 2).
20. Find the volume of the tetrahedron bounded by the coordi-
nate planes and the plane

ar +by+cz+d=0
if abed 5= 0.
21. Prove that the points in space for which
lzl+lyl+lzI<a,

are inside an octahedron with centre at the origin and the vertices:
on the coordinate axes.

22. Given a plane ¢ by the equation in rectangular Cartesiam
coordinates

ax +by +cz+d=0,
form an equation of the plane ¢’ symmetric to o about the zy-plane-

(about the origin 0).
23. Given a family of planes depending on the parameter A

ax +by +ecz+d+ A(ax+ Py + vz +8) =0,
find a plane parallel to the z-axis.
24, In the family of planes
(@ + by + ¢z + dy) + A (a2 + boy + coz + dy)
+ w(agz + bgy + cyz + dg) = O
find the plane parallel to the zy-plane. The parameters of the family

are A and p.
25. The planes specified by the equations in rectangular Cartesian

coordinates
ar + by +cz+d=0,
ax +by +cz+d =0,

where d == d’, have no points in common, hence, they are parallel..
Find the distance between these planes.
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26. The plane
ax +by +d=0

is parallel to z-axis. Find the distance from the z-axis to this plane.
27. What is the locus of points whose distances from the two
given planes are in a given ratio?
28. Form the equations of the planes parallel to the plane

ar +by+ez+d=0

and located at a distance § from it.
29. Show that the points in space satisfying the condition

laz + by + ez + d | < 82,
lie between the parallel planes
ar + by + ¢z +d =62 =0.

30. Given are equations of the planes containing the faces of a
tetrahedron and a point M specified by its coordinates. How do you
find whether or not the point M lies inside the tetrahedron?

31. Derive formulas for the transition to a new system of rectan-

gular Cartesian coordinates z'y’z’ if the new coordinate planes are
specified in the old system by the equations

oz + by +ez+d =0,
asxz + bgy + ¢z +dy =0,
azx + byy + ¢cgz +dy = 0.
32. Find the angles formed by the plane
ar +by+cz+d=0

and the coordinate axes.
33. Find the angle formed by the plane

z2=pz+qy + !
with the zy-plane.
34. Show that the area of a figure F in the plane

z2=pz+qy+1
and the area of its projection F onto the xy-plane are related as
SE=V1+p+¢S F).
35. Under what condition does the plane
ar +by +cz4+d=0

intersect the z- and y-axes at equal angles? Under what condition
does it intersect all three z, y- and z-axes?
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36. Among the planes of a pencil
Aagx + by +cz+d) + p(agx + by + ¢z +dy) =0
find the plane perpendicular to the plane
ar + by + ¢z +d=0.
37. Let
oz + by + ¢z +dy =0,
asxt + byy + ¢z + dy =0,
agr + bgy + ¢z +dg =0
be the equations of three planes not parallel to a straight line. Show

that any plane passing through the point of intersection of the given
planes has the equation of the form:
M (ax + by + oz + dy)
+ hg (@sx + boy + €3z 4 dy)
+ A (agz + bgy + ¢z + dy) = 0.

38. Under what condition does a straight line represented by the
equation in canonical form intersect the z-axis (y-axis, z-axis)?
Under what condition is it parallel to the plane zy (yz, zz)?

39. Show that the locus of points equidistant from three pairwise
non-parallel planes is a straight line.

40. Show that the locus of points equidistant from the vertices of
a triangle is a straight line. Form its equations given the coordinates
of the vertices of the triangle.

41. Show that two straight lines entirely lying on the surface
pass through each point of the surface

z = axy.

42. If the straight lines specified by the equations
a,z+ by +e¢y2+dy =0, }
as®+boy +coz+dp =0

and
a3z +bgy +c3z+d; =0, ]
ax+by+ecz+d,=0,
intersect, then
ay by ¢y d;
az by ¢y dy
as by ¢ ds
a, b, ¢, d,
Show this.
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43. Find the parallelism (perpendicularity) condition for the
straight line
a2+ by +ciz+d; =0, ]
%+ by + a2+ dy =0,
and the plane
ax + by + ¢z +d=0.

44. Find the parallelism (perpendicularity) condition for the
straight lines

oz +by+ez+d, =01}
asx +boy + oz +dy =0
and
asz - bgy 4¢3z 4-dy =0,
ar+by+ez+d,=0.

45. Find the equation for a conical surface with the vertex (z,,
Yo, %), Whose generators intersect the plane

ar +by +ecz+d=0
at an angle a.
46. Write the equation for a straight line passing through the
point (x4, Yo, 20) and parallel to the planes

ax + by +cz+d =0,
ast + byy + ¢z + dy = 0.

47. Form the equation of a conical surface with the vertex at
point (0, 0, 2R) if it passes through a circle specified by the inter-
section of the sphere

22+ y? + 22 = 2Rz
with the plane
ar + by +cz 4+ d=0.

How does this conical surface intersect the xy-plane.

48. Stereographic projection of a sphere on a plane is defined as the
projection from an arbitrary point of this sphere onto the tangent
plane at a diametrically opposite point. Show that in stereographic
projecting to the circles on the sphere there correspond circles and
straight lines on the plane of projection.

49. Form the equation of a plane equidistant from two skew lines
represented by the canonical equations.

50. Show that any plane passing through the straight line

ax + by + ez +dy =0,
asr + by + ¢z + dy = 0,
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is specified by an equation of the form
Mayx + by + ez + dy) + p (@e + by + ¢z + dy) = 0.
51. Show that the plane passing through the straight line

.

z—z' _ y—y _ z—z
E 1l T m

’

and the point (z,, Yo, 20), Dot lying on the line is specified by the
equation

T—xy Y—Yo 2—2%
=y Y'—yo 2'—%

k l m
52. Show that any straight line intersecting the given lines:
a,x+ by +eciz+dy =0, }
a4 by + o2+ dp =0,
a3 + bgy +c5z2+d3 =0, l
ax+by+tez+d,=0,
is represented by the equations
M(ax + by + ez + dy) + p (asx + boy + ¢z + dy) =0,
M (asx + bgy + ¢z + dy) + p' (agx + by + ¢z + dy) = 0.
53. Show that the conical surface generated by straight lines pas-
sing through the origin and intersecting the curve ¢ (z, y) = 0,
2z = 1 is specified by the equation
® (ﬁ , l) =0.

2z z

=0.

Chapter VII

QUADRIC SURFACES

1. Special System of Coordinates

A quadric surface is defined as the locus of points in space whose
Cartesian coordinates satisfy an equation of the form

a1, 2% + ag9y?® + age2® + 2a,,1y + 2a05yz. -+ 20,472
+ 20,47 + 2a5y + 22342 + a4a = 0. (%)
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This definition is obviously invariant of the system of coordinates
chosen. Indeed, the equation of the surface in any other system of
coordinates z'y’z’ is obtained from the equation (*) by replacing
z,y and z by linear expressions with respect to z’, y’, z’, and, conse-
quently, in the coordinates z’, y’, 2z’ will also have the form (*).

A plane intersects a quadric surface along a trace, which is described
by a second-degree equation. Indeed, since the determination of sur-
face is invariant with reference to the coordinate system chosen, we
may regard the plane zy (z = 0) as a secant plane (a plane that in-
tersects the surface). And this plane obviously intersects the sur-
face along the second-order curve

ay@® + 20157y + @g0Y® + 20147 + 25,y + a4 = 0.

To study the geometrical properties of a quadric surface it is only
natural to refer it to such a coordinate system in which its equation
will have the simplest form.

Now we are going to give a coordinate system in which the equation
of the surface will be much simpler. Namely, the coefficients of yz, xz,
and zy in the equation will be zero.

Consider the function F (4) of a point 4 (z, y, 2) defined in the
entire space, except for the origin, by the equality

F (A) — a112% +ag9y® + as_az’ 28392y + 2a93y2 -+ 20,572
( )= 3+ yot22 .

It is bounded on a unit sphere (2* + y* 4+ 22 = 1) and, conse-
quently, reaches the absolute minimum at some point 4,. And since
it is constant along any ray emanating from the origin (F (Az, Ay,
Az) = F (x, y, z)), then at 4, the function F reaches the absolute
minimum of values with reference to the whole space (and not only
on unit sphere).

Let us introduce new Cartesian coordinates x’', y’, z’ with the ori-
gin O retained and assume the ray OA4, to be the positive semi-axis
z. As is known, the relation between the coordinates z, y, z and
z', y', 7’ is established by the formulas of the form

z =0y &' oy’ + a2,
Y = Qg Z’ + Olgoly’ + ag2’, (%)
2 =04 x" + QgoY’ + 37’

The equation of the surface in the new coordinates z’, y’, 2’ is obtai-

ned from the equation (x) upon replacing z, y, z by ', y’, z’ according
to formulas (**) and has the form

a;x'? + agy'® + ag3z’® + 2a107'y" + 2a,y'z" + 2a14%'7
+ 2a3,2" + 2a5,y’ + 2a43" + a,, = 0.
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The function F in the new coordinates has the form

F(4)= a5y 78+ a35y" 2+ 592" + 21,2y + 203592 + 2052' 7
z'24y'2 45"
and is obtained by replacing z, y, z in the old expression for F by
z',y’, 2’ also according to the formulas (#*). The form of the deno-
minator remains unchanged, since it represents the square of the
distance of the point A from the origin which is expressed in both
systems in the same way.

According to the chosen system of coordinates 2’y’z’ the minimum
of the function F is reached at 2’ = 0, y’ = 0, z’ = 1. Therefore,
if in the expression for F we put 2’ =0, 2’ = 1, then we get a func-
tion of a single variable

f (y:) =a;,y"—|—2a;3y'—|-a§3

1+y2 !
which reaches the minimum at y’ = 0. Consequently,
af (¥') _ ’_
G =0 for y’' =0.
But
af (v') — O
il W 2a,,.

Thus, the coefficient of y'z’ in the equation of the surface is equal
to zero. It is shown in a similar way that the coefficient of z'z’ is
also equal to zero.

Ee}r)lce, the equation of the surface in the coordinate system z'y’'z"
will be

a5z’ + 2a5,2'y" + agy'® + 2a,2" + 2a5,y" + 2a,,2
+ @552 + ag = 0.
If now we introduce new coordinates z”, y”, z” according to the
formulas
' = z"cos 0 + y" sin 0,
y' = —z" sin 6 4+ y” cos 0,

’ ”

2 =7,

then by appropriate choice of the angle 8 we can obtain the coefficient
of z"y” also equal to zero.

And so, there exists such a system of rectangular Cartesian coordi-
nates in which the equation of the surface has the form

41122 + agy® + ag42® + 2a,2 + 2ay + 2a5z2 + a = 0.



112 Part One. Analytic Geometry

2. Classification of Quadric Surfaces

As is shown in the preceding section, by changing to an appropriate
system of coordinates the equation of a quadric surface can be re-
duced to the form

a132% + agel® + a3e7® + 2a:% + 2a5y + 2a4z + a = 0. (*)

We shall distinguish three basic cases:

A: all coefficients of the squares of the coordinates in equation (x)
are non-zero;

B: two coefficients are non-zero, and the third one, for instance
agg, is equal to zero;

C: one coefficient, say agg, is non-zero, and two others are equal
to zero.

In Case A, by changing to a new coordinate system according to
the formulas

! = e = B2 P 2

x—z-l-au, y y+a”. z Z+a33’
which corresponds to the translation of the origin, we reduce the
equation to the form

azx’® + Py'2 + yz'2 +6 = 0.

Now we distinguish the following subcases of the case A:

A,: 8§ = 0. The surface is a cone either imaginary if o, p, v are
of the same sign, or real if among the numbers a, B, y there are num-
bers having different signs.

A;: § 0, o, B, y are of the same sign. The surface represents
an ellipsoid either imaginary if a, B, v, 8 are of the same sign, or
real if the sign of § is opposite to that of a, B, y.

Ag: § 5= 0, of the four coefficients «, B, v, 8 two coefficients are of
one sign, the remaining two having the opposite sign. The surface is
a hyperboloid of one sheet.

A,: § == 0, one of the first three coefficients has a sign opposite to
that of the remaining coefficients. The surface is a two-sheeted hy-
perboloid.

In Case B by transition to new coordinates according to the for-
mulas

ay ' ay ’
xl =X _— = —_— 2 =12
+ agn ’ Y .l/+ agg [ ]

we reduce the equation of the surface to the form
az'? + By'® + 2pz’ + ¢ = 0.

Here we shall distinguish the following subcases:
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B:p=0,¢g= 0. The surface decomposes into a pair of planes

a:'—_l—]/—%y’:O

either imaginary if o and § are of the same sign, or real if a and p
are of opposite signs.

B,: p = 0, ¢ 5= 0. The surface is a cylinder either imaginary if o, p
and g are of the same sign, or real if there are coefficients with differ-
ent signs. In particular, if o and P are of the same sign, then we
have an elliptic cylinder, and if o and p have different signs, then we
have a hyperbolic cylinder.

By: p %= 0. Paraboloids. Changing to new coordinates

" "o " ot _g__
T =z ] y - y ’ ) z =2 _l- 2p )
we reduce the equation of the surface to the form

ox" + By" + 2pz" = 0.

The paraboloid is elliptic if o and § are of the same sign, and hyper-
bolic if o and f are of different signs.
In Case C we change to new coordinates z’, y', 2z':

’__ " __ . _Gas
x _$9 y —.1]’ 2 -—-Z+ ayy .
Then the equation will take the form
v2'* +pr4+qy+r=0
and we may distinguish the following subcases:

Cy: p =0, g = 0. The surface decomposes into u pair of parallel
planes: imaginary if y and r are of the same sign, or real if y and r
have opposite signs, or coincident if r = 0.

C,: at least one of the coefficients p or g is non-zero. Preserving

the direction of the z-axis, we assume the plane px +qy +r =0
to be the plane y’z’. Then the equation will take the form

yz'? + 8z’ = 0.
The surface is a paraebolic cylinder.
3. Ellipsoid
The equation of the ellipsoid is (Fig. 67)
oz® + fy* + y2* + 8 = 0.
Dividing it by 8§ and taking 8/a = —a?, 6/p = —b?, O6/y = —ct,
we reduce it to the form
Y] 2 3
w+awt+aa—1=0, ®)
where a, b, ¢ are the semi-azes of the ellipsoid.
8-0845
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It is seen from equation () that the coordinate planes are the
planes of symmetry of the ellipsoid, and the origin is the centre of

symmetry.
Just as the ellipse is obtained from the circle by uniform compres-
sion, so any ellipsoid can be generated by uniformly compressing a

y

Fig. 67 Fig. 68

sphere with respect to two mutually perpendicular planes. Namely,
if a is the greatest semi-axis of the ellipsoid, then it can be obtained
from the sphere

z2 yﬁ 23
wtatw—1=0
by uniformly compressing it with respect to the xzy-plane with the
compression ratio ¢/a and with respect to the zz-plane with the com-

pression ratio b/a.
If two semi-axes of an ellipsoid are equal, for instance, a = b,
then it is called an ellipsoid of revolution.

z2 y2 z2
T+ —1=0
Intersecting it with any plane z = h parallel to the xy-plane, we

obtain a circle
224 yr=(1 _l‘i) a2, z=h

c?

with centre on the z-axis. Hence, in this case the ellipsoid is gene-
rated by revolving the ellipse

2 2
Frd-tm0

contained in the zz-plane, about the z-axis (Fig. 68).
If all the three semi-axes of the ellipsoid are equal, then it is a sphere:
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The line of intersection (the trace) of an ellipsoid with an arbitrary
plane is an ellipse.

Indeed, the trace is a second-order curve. Since this trace is finite
(the ellipsoid is finite), it cannot be either a hyperbola or a parabo-
la. Nor can it be a pair of straight lines, and consequently it is an
ellipse.

4, Hyperboloids

Just as in the case of the ellipsoid, the equation of hyperboloids
can be reduced to the form

3 2 2
S to1-0
(a hyperboloid of one sheet, Fig. 69),
: ] y2 2
atw—at+1=0
(a hyperboloid of two sheets, Fig. 70).

In both hyperboloids the coordinate planes serve as the planes of
symmetry, and the origin of coordinates as the cenire of symmetry,

\Z

4 z

Fig. 69 Fig. 70

If the semi-axes a and b of a hyperboloid are equal, then it is
called a hyperboloid of revolution and is obtained by revolving the
hyperbola about the z-axis

i —:—:—1:0, y=0

o
in the case of a hyperboloid of one sheet and the hyperbola

z’

in the case of a hyperboloid of two sheets.
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A general type hyperboloid (2 5% b) can be obtained from a hyper-
boloid of revolution (¢ = b) by uniformly compressing (or stret-
ching) the latter with respect to the xz-plane in the ratio b/a. On cros-
sing hyperboloids with an arbitrary plane various conic sections may
result. For instance, the planes z = k parallel to the xzy-plane inter-
sect a hyperboloid of one sheet

£+ yﬁ __2:__1:=O

a? 2 c
fn ellipses
2 y2 h2
wt+tE—w—1=0, z=h,

and the planes y =h (| k | 5= b) parallel to the zz-plane in hyper-
bolas
z2 2 h2

| The plane y = b intersects the hyperboloid along two straight
ines:

2 2
-5,—— %——_- 0, y=bs.
5. Paraboloids

The equations of paraboloids are reduced to the form
2 yﬂ
i i

(an elliptic paraboloid, Fig. 71),
z2 yﬂ
@

(a hyperbolic paraboloid, Fig. 72).

The xz- and yz-planes are the planes of symmetry of paraboloids.
Their intersection (the z-axis) is called the azis of a paraboloid, and
the intersection of its axis with the surface is termed the vertex.

If a = b an elliptic paraboloid is said to be a paraboloid of revo-
lution. It is formed by revolving a parabola

z2
Z=F, y=0

about the z-axis. A general-type elliptic paraboloid can be obtained
from a paraboloid of revolution

z2 yz
=gt

by wniformly compressing (stretching) it with respect to the xz-plane.
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Both paraboloids (elliptic and hyperbolic) are intersected by
planes parallel to the xz- and yz-planes along parabolas that are

AZ

Y =0

Fig. 71 Fig. 72,
Fig. 73 Fig. 74

parallel and equal. Indeed, the planes x = h intersect an elliptic
paraboloid along parabolas
h2 y2
I——g=r, = h.
If each of these parabolas is displaced in the direction of z, by a
line segment h?/a%, then we obtain one and the same parabola

2
Z=:—2, x=h

Whence it follows that an elliptic paraboloid is generated by translat-

ing a parabola z = b: , x = 0, with its vertex moving along a parabola

z=a—,, y = 0 (Fig. 73).

A hyperbolic paraboloid is generated in a similar way (Fig. 74).

The planes parallel to the zy-plane, except for zy-plane itself, cut
an elliptic paraboloid along ellipses, and a hyperbolic paraboloid

along hyperbolas. The zy-plane intersects a hyperbolic parabolold
along two straight lines.
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6. Cone and Cylinders

The equations of the cone and cylinders of the second order may
be written in the form

_%’_.F_g__‘c"_::O (a cone, Fig. 75),

%+—;’T-—1=0 (an elliptic cylinder, Fig. 76),

7‘:’1_ 7’)’;__1 =0 (a hyperbolic cylinder, Fig. 77),
_l‘:;_.. py =0 (a parabolic cylinder, Fig. 78).

Fig. 77 Fig. 78
An arbitrary cone is obtained from a circular cone
z2 y2 22
ata—m=0
by compressing (stretching) it uniformly with respect to the xz-plane.

Elliptic, hyperbolic and parabolic cylinders intersect the zy-plane
along an ellipse, hyperbola and parabola, respectively, and are gen-
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erated by straight lines parallel to the z-axis, which intersect the
curves mentioned.

An arbitrary elliptic cylinder is obtained from a circular cylinder
by compressing (stretching) the latter uniformly with respect to the
zz-plane.

We conclude that the cone

22 yz 2
which is called the asymptotic cone, is related with the hyperboloids
of one and two sheets

z2 2 22
Tt —a=1=0
in a natural way.
Each plane passing through the z-axis intersects the hyperboloids
along hyperbolas, and the cone along two generators which are the

asymptotes of these hyperbolas. In particular, the xz-plane (y = 0)
intersects the hyperboloids along hyperbolas

2 283
a7 wx1=0
and the cone along two straight lines
z2? 22
i

which are the asymptotes of these hyperbolas.

7. Rectilinear Generators
on Quadric Surfaces

Cones and cylinders are not the only surfaces described by the sec-
ond-degree equations which contain rectilinear generators. A hy-
perboloid of one sheet and a hyperbolic paraboloid possess this prop-
erty as well.

Indeed, a straight line g,, specified by the equations

_ z v 1 (= AYS
i=h(5+3), 1=5(5-%) )
lies on a hyperbolic paraboloid
Z= 2_r (%*)
T a? b2

since any point (x, y, z) satisfying equation () also satisfies equa-
tion (**) which results as a corollary by termwise multiplication.

In addition to a family g,, one more family of straight lines g is
located on a hyperbolic paraboloid:

i=h(5—%). 1=%(5+%)
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Analogously: on the hyperboloid of one sheet
x2 2 22
R

there are two families of rectilinear generators

o f-ier(iod). Eri=t(1+d);
i f-f-h(id), F+i=t(i-4).

In both cases (a hyperbolic paraboloid and hyperboloid of one
sheet) rectilinear generators belonging to one family do not intersect,
whereas those belonging to different families intersect.

The presence of rectilinear generators on a hyperbolic paraboloid
and a hyperboloid of one sheet makes it possible to introduce a new

Fig. 79 Fig. 80

method of generating these surfaces. Namely, let us take three rec-
tilinear generators g,, g,, gs; belonging to one family. Then each
rectilinear generator g belonging to the second family intersects
81, 82, 8s- Consequently, the surface is generated by the straight
lines g which intersect the three given lines (Fig. 79).

As to the hyperboloid of revolution of one sheet, it is also formed
by revolving any of its rectilinear generators about the axis of the
surface (Fig. 80).

8. Diameters and Diametral Planes
of a Quadric Surface

A straight line, as a rule, intersects a quadric surface at two points.
If there are two points of intersection, then the line segment with the
end-points being the points of intersection is called the chord.
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The midpoints of parallel chords of a quadric surface lie in a plane
(termed the diametral plane). Let us prove this.

Let a quadric surface be defined by the equation in an arbitrary
rectangular Cartesian eoordinate system

an®® + 2a102y + ... + a4 = 0. (»p
To simplify notation we will introduce the following:

2F = a;,2® 4 2a520 + . . . + ag4,

Fip=apz + a,y + ay52 + ay,,

Fy = anx + agl + 6532 + ay,,

F, = a3 + Ggql + ags3 + ag,.

Let the chords be parallel to the line %=%=—: and let z, y,

z denote the coordinates of the midpoints of an arbitrary chord. Therw
the coordinates of the end-points of the chord may be written as

n=z+M, y,=y-+ut 2z =1z-+ i
o= — M, Y,=y—pt, 2, =123— vi.
Substituting these coordinates into (%) gives
2F + 2t (\F, + pF, + vF))
+ 2 (aud® + aggp® + agev® + 2a0p + 2a95uv + 2a5vA) = 0,
It follows from this that the coefficient of ¢ must be zero
AMFy + wFy, + vF, = 0. (%Y
This is the equation of the diametral plane that corresponds to the
chords of the given direction A:p:wv.
If a surface has a centre, then each diametral plane passes through
the centre. Accordingly, the centre of a surface is given by
F,=0, F,=0, F,=0. (e p

For a second-degree curve we reason along the same lines. We wilk
only provide the final result.
Let a curve be given by

20 = a,,2* + 2ay57Y + agoy® + 24,57 + 2a53y + az3 = 0.
We set
D, = a,,2 + a;5) + ay,
Dy = agx + az3y + ags.

The diameter corresponding to the chords of the direction ) : p, i.e. pa-
rallel to the straight line

>|s

=L
p
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is given by
AD, 4 pd, = 0.

The centre of the curve (if any) is found from the simultaneous equa-

tions |
o, =0, ®,=0.

9. Axes of Symmetry for a Curve.
Planes of Symmetry for a Surface

We now proceed to find the planes of symmetry for a surface defined
in arbitrary coordinates.

Let A:p:v be the direction perpendicular to the symmetry plane.
Since the midpoints of chords of direction A : p : v lie in the plane of
symmetry, the latter is given by

M, + wF, + vF, = 0. (x)
Since the direction A:p:v is perpendicular to the plane (%), then
audtanpav  ashtasspt-assV  aziA - agep -+ agsv (#%)
A - m - v :
Having found from this system A :p:v and substituted into (), we
obtain the equation of the plane of symmetry of the surface.
To simplify the finding of A : p : v from (+*), we denote by & the

common value of the three relations (x*). The result will be the
equivalent system

(@ayy —&) A4 app+-ayv=0, }

Agih + (@32 —E) U+ ayv =0,
agih - agph 4 (ag; —E) v=0.
Since A, p, v are not all zero, then

(%)

ay—E§ ap Q43
Qgy A —E& ay; |=0.
asy ass ag;—§

Finding & and substituting the result into (+#%), we find A:p:v.

If we can find the planes of symmetry of a surface, we can readily
find a coordinate system in which the equation of the surface will
have canonical form.

So considering second-degree curves similarly we come to the con-
clusion that for them the axes of symmetry are given by

AD;, — pud, = 0.
From the system
(ayy—8 A+apn=0, ]
apih+ (a2 —E) n=0.
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where ‘§ is a root of the equation

ay —§& (121

=0,
(2N as—§

we find A:p.

The system of coordinates, in which the equation of the curve as-
sumes canonical form, is determined from the considerations similar
to those used above for surfaces.

EXERCISES TO CHAPTER VII
1. A curve in the plane

a3 2® + 2a,,2y + ag0y® + 20,2 + 2a5y +a =0
is an ellipse (hyperbola, parabola). What does the quadric surface
z2 = ay;,2% + 2a,,2y + ay5y® + 20,z + 2ay + @

represent?
2. Show that the quadric surface

M@z + by + ez + d)? + p (@92 + by + ez + dg)® =0

is divided into a pair of planes. .
3. To obtain the projection on the zy-plane of the curve of inter-
section of the surface

2% 4 agy? + ag522 + 207y + ... + a4, =0 (*)
with the plane
z=uax + by + ¢,

we should substitute z = az + by + ¢ in equation (x). Prove this.
4. Show that the sections of a quadric surface by parallel planes
are homothetic and are positioned similarly. .
5. Show that a conical surface generated by straight lines passing
through a given point and intersecting a second-degree curve is a
quadric surface. .
6. Form the equation of the surface generated by the straight line

z2=ax+ b,

’ b1 9 d O
R ] (@, b, ¢, d=0)
rotating about the z-axis.

7. If a << ¢, then the ellipsoid of revolution

z2 y2 22
atata=1
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is a locus of points the sum of whose distances from the two given
points (the foci) is constant. Find the foci of the ellipsoid.
8. Suppose we have an ellipsoid

ax? + By + yz2 +6 = 0.
Show that if the surface
oz + Py + 8" +6 —A @ +y* + 2 +p)=0

decomposes into a pair of planes, then these planes intersect the
ellipsoid along circles. Use this fact to justify the method of finding
circular sections of the ellipsoid.

9. Show that the ellipsoid

x2
1 b2+

may be specified by the parametric equations:

a?

=qgcosucosv, y=>bcosusinv, z=csinu.
10. What is the surface
(@ + by + 12)® + (ax + by + cy2)?
4 + (asz + bgy + ¢32)* =1,
as by ¢
as by cy|5=0?
as by ¢
11. Find the circular sections of the hyperboloid

:—:+—”i—‘—2-1=0.

b2 2

12. Show that through any point in space not belonging to the
coordinate planes, pass three surfaces of the family

=1

a=+x + ba+x + ca+x

(A, the parameter): an ellipsoid, a hyperboloid of one sheet, and a
hyperboloid of two sheets.

13. Show that the plane %zl w" =00 z+z° =0 passing through

2
2

the point (zy, Yo, 29) Oof a hyperbohc parab0101d %—%4—2:0
intersects the paraboloid along two rectilinear generators belonging
to different families.
14. Find rectilinear generators of a hyperbolic paraboloid z = axy.
15. Form the equation of a surface generated by straight lines
parallel to the zy-plane and intersecting two given skew lines.
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16. Show that the equation of a circular cone with the vertex at
the origin, the axis%:%:%, and the vertex angle 2a can be

written in the form
(Az+py+v2)?
(@ +y2+22) (M +p2+v?)
17. Show that the equation of a circular cylinder of radius R
H4

and with the axis %: %:T%n be written in the form

zz+y2+zz—~32=%y;i+?.
18. Find the axis of the circular cone
z? + y* + 2 — (az + by + ez)® = 0.
19. Find the vertex and the axis of the parabola
@z + by +c)* +ax+ Py +v=0

= cos2a.



Part Two

DIFFERENTIAL GEOMETRY

Chapter VIII

TANGENT AND OSCULATING PLANES OF CURVE

1. Concept of Curve

The concept of transformation of a figure, or a set of points, is
known from elementary geometry. Let us recall it. If each point of
a figure F is displaced somehow, then we obtain a new figure F’
which is said to be obtained by a transformatior from F. A transfor-
mation of F is said to be continuous if it sends near points of F to the
near points of F', which means that if a point X of F is sent into
point X’ of F’, then, for any & > 0, there exists § > 0 such that
any point Y of F, which is from X at a distance less than 6, is car-
ried into a point of F’', which is from X’ at a distance less than e.
A transformation sending different points of a figure F into different

T

Fig. 81 Fig. 82

points of a figure F’ is said to be topological if it is continuous as well
as its converse of F’ into F. A transformation of a figure is said to be
locally topological if it is topological in a sufficiently small neigh-
bourhood of each of its points.

We now give several definitions related to the concept of curve.
We will call a figure obtained by a topological transformation of an
open line segment an elementary curve. A figure whose each point
possesses a three-dimensional neighbourhood such that the part of
the figure contained in it is an elementary curve is called a simple
curve (Fig. 81). A figure obtained by a locally topological transfor-
mation of a simple curve is known as a generic curve. The generic
curve in Fig. 82 is obtained by a locally topological transformation
of the circumference.
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Due to these definitions, the study of any curve “in the small” is
reduced to that of an elementary curve. Let 9 be an elementary
curve which is a topological transformation of a line segment AB.
If we introduce a coordinate ¢ on the straight line AB as the num-
ber axis, then any transformation of the line segment AB into y can
be given by the equations

z=f@), y=1 ), z2=7FQ®), (*)

where f,, fs and f, are continuous functions, with
AE)—=AEN+FE)—Ff )N+ I @) —f @) +*0

for different values of ¢’ and .

We call the equations (%) the parametric equations of the curve y, t
being the parameter. An elementary curve admits different methods
of specifying it parametrically. E.g., ¥ can be given by the equations

c=fH@M), ¥y=f@®) z="7f@x)

where @ (t) is any continuous, strictly monotonic function of <

2. Regular Curve

We call a curve y regular (i.e., k times differentiable) if it admits
a regular parametrization, or specification by parametric equations

z=f@®), y=/Ff (), z2=71 (),

where f,, f, and f, are regular functions (i.e., k times differentiable)
which satisfy the condition

Fi+fs+Fs+#0.
For k = 1, a curve is said to be smooth.
A curve is said to be analytic if it admits an analytic parametriza-

tion (i.e., the functions f,, f, and f; are analytic).
Certam curves admit a parametric representation

z =t, y=‘(p(t), Z='l|)(t),
or, which is equivalent,
y=9¢ @), z=1v (@),

for a suitable choice of the coordinate axes. This parametrization
sometimes turns out to be very convenient in the study of curves.
Accordingly, the question arises, when does a curve admit such a
parametrization at least “in the small”?

The answer is supplied by the following theorem.

Let v be a regular curve, and

z=fE), y=7fi @), z=F[ ()
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its regular parametric representation in the neighbourhood of the point
{20, Yo, 2,) corresponding to t = ¢,. If t =1, f; (£) %0, then the
<urve can be given by the equations

V=9@, z=1v(@

in a sufficiently small neighbourhood of (xy, Yo, 2,), Where ¢ (x) and
4 (x) are regular functions of x.

Proof. By the implicit function theorem, there exists a regular
function yx (z) equal to t, for = z,, identically satisfying the
equation

z=f, (x )

for z near to z,. Differentiating the identity for x = z,, we obtain
1 = f, (to) ¥ (zo). Hence, %' (z,) 9= 0, which means that the func-
tion ¥’ (z) is monotonic in the vicinity of = z,, and we can in-
troduce the parameter x instead of ¢ by putting t = ¥ (z).

We obtain

y="fs(x @) z=Ffs ().
Q.E.D.

3. Singular Points of a Curve

Let y be a curve, and P a point in it. P is called an ordinary point
if the curve admits a smooth parametrization

t=hH®, y=f@®, z2=Ff0, fA+fi+F3+0

in its neighbourhood. If there is no such parametrization, then the
point is said to be singular. The problem of singular points of a plane
-<curve is in many practically important cases solved by the following
theorem.

Let y be a curve given by parametric equations

z =" (@), y =fs ().

Then a point P of the curve is ordinary if the derivative of the func-
tions f, and f,, which is the first non-zero one, is odd at it. P is singular
if its derivative which is the first non-zero one is even.

Proof. Without loss of generality, we assume that P is at the ori-
gin, and the value of the parameter ¢, associated with P, is zero.
By the Taylor formula,

2= 2P O Fe @), y=-p (5 O+ 1),

For definiteness, let n << m.
In the case of odd n, we introduce the parameter

T = t"
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instead of ¢, T being a monotonic function of ¢{. The obtained para-
metrization of the curve is smooth, since

dfy | _ i 1) 1 am
T |p= lim = = S £ (0) 0.

Therefore, P is ordinary for odd r.

Now, let » be even, in which case f, (f) does not change sign (of
£ (0)) in the neighbourhood of P. Therefore, the curve is either in

y y

o x [o) ¥
(a) (b)
Fig. 83

the half-plane z > 0 if f{» (0) > 0, or the half-plane £j<<0 if f{» (0) <<
0 in the neighbourhood of P. Assume that P is ordinary. The curve
then admits a smooth parametrization

T=q, (1), Y=03(1), @2+ @2%0

in the neighbourhood. Since @, 4+ @, 5= 0, and ¢, is of the order
not higher than g,, @; 5~ 0 at P. Hence, @, (7) in the neighbourhood
of P changes sign; therefore, the curve y is placed in both half-planes
2 >0 and # << 0 in the neighbourhood of P, and we have come to
a contradiction. Thus, the point P is singular for even n.

For even n and odd m, a singular point is called a cusp of the first
kind. The form of the curve in the neighbourhood of such a point is
shown in Fig. 83a. For even n and even m, n << m, a singular point
is called a cusp of the second kind. The form of the curve of such a
singular point in its neighbourhood is shown in Fig. 83b.

The case m = n is reduced to the above (n << m) with a correspond-
ing rotation of the coordinate axes.

4. Vector Function of Scalar Argument

Below, we will often resort to the elementary means of vector ana-
lysis, due to which we give principal definitions.

A vector function is said to be given in an interval a <<t << b if
each value t is associated with a vector f (£). The concept of limit is
introduced for vector functions in the same manner as for scalar ones.
Viz., the limit of a vector function f (t) as t — t, is a vector ¢ such that

lim | £ (f) — ¢ | = O.
t->1o
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863. 3 —1 14 16
5 —2) ( ) ( 9 10)
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866. s2 —3 1 976 2 0 —2
(4 —5 2) (1 1 2) (18 12 )
5 —73 111 23 15 11
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A vector function with continuous derivatives up to order % on an
interval (a, b) is said to be k times differentiable on the interval.

Let £ (t) be a vector function, and A (¢), p (¢) and v (f) the compo-
nents of the vector f (t). If the scalar functions A, p and v are-differ-
entiable, then the vector function f is also differentiable. Con-
versely, if f is differentiable, then A, p and v are differentiable.

In fact, if we denote the base vectors by e,, e, and e;, then

F@) =M@ e, + n () ey + v (t) ey (*)

It is obvious that the differentiability of the vector function f
follows from that of the functionsA, p and v. To prove the converse
statement, it suffices to notice that

ARy =1(@)e, p@)=1E@F)e, v (@) =1(@)e,.

The Taylor formula is also valid for vector functions. Viz.,
n
F@+h) =1+l (V4 ...+ (O (1) e (¢, B),

where | & (¢, ) | -0 as b —0.

For proof, it suffices to represent the vector function f (f) in the
form (*), and apply the Taylor formula to the functions A (), p (t)
and v (¢).

The three equations for specifying a curve parametrically

z="f ®, y=1f@®), z=7Ff ()

can be represented as one vector equation
r=1{ (), (%)

where r is the vector of a point on the curve, i.e., whose origin is at
the origin of coordinates, and the end-point on the curve

E@) =1 (t) e, + fa (2) g + f3 (2) €.

The equation (*#) is called the vector equation of the curve. The regu-
larity of the curve means that of the vector function f, whereas the
condition f;2 4 f;2 + f;2 = 0 means that the vector f' 5= 0.

5. Tangent to a Curve

The concept of tangent to a curve is already known to us. Now,
we give another definition equivalent to the prior one, but more
convenient for our immediate goals.

Let y be a curve, P a point on it, and g a straight line passing
through P. Take a point Q near to P, and denote its distances from P
and g by d and §, respectively (Fig. 84). We call the straight line g
a tangent to y at P if §/d — 0 as Q — P.
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If y possesses a tangent at P, then the straight line PQ tends to
the tangent as Q — P. Conversely, if a straight line PQ approaches
a certain straight line as Q — P, then it is a tangent, to prove which
it suffices to notice that §/d is the sine of the angle made
by g and PQ.

A smooth curve y has one, and only one, tangent at
each point. If

r=1f()

is the vector equation of the curve, then the tangent at the
point P corresponding to a value of parameter t has the
same direction as the vector §' (t).

Proof. Assume that y has a tangent g at the point
P (t). Let v be the unit vector associated with the
straight line g. The distance d from the point Q (¢t -+ %) to P equals
| £ + k) — £ (t) |, whereas the distance § from Q to the tangent
is | (¢ +h) —E@) AL

By definition of a tangent,

Fig. 84

§ __1E@+Rn—t@) ATl
5= (|(f;|t-+h)—f(t)| —0 as h—>0.
However,
’(f(t+h)—f(t)) A tl
[Ee¢+n—FE) ATl _ h LA @AT]
[ £@E4-R)—1E() | |f(t+’2—-f(t)l | E@) |

Hence, ' A\ T = 0. Because ' 5= 0, the vectors f' and v are col-
linear. Thus, if a tangent does exist, then it has the direction of the
vector f', and, is, therefore, unique.

That a straight line g passing through the point P, and having the
direction of the vector f’, is a tangent, is also true. Indeed, the above
argument shows that

£ (1)
DTN TrHT]  aroaren_,

s _
= HEDEICL ~TTarge

for such a curve.

6. Equations of Tangents for Various Methods
of Specifying a Curve

As we know, a straight line passing through a point (z,, y,, Zo),

and having the direction of a vector (a, b, ¢), can be given by the
equations
T—Zy  Y—UYo __ Z2—2%a

a b c
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Since we know the direction of the tangent to the curve, we can
easily derive its equation. If a curve is given by

e=H®), y=/,f@), z="1@),

then the tangent at the point associated with a value of the para-
meter ¢ has the-same direction as the vector f (f) with components
f1 (&), fs (®), f, (t). Therefore, the equations of the tangent at this
point are

c—f@®) _ y—f@®) _z2—1()
1) 13 (@) fs@® °
In the case of a plane curve given by the equations
x=hH@), y=1f @,
that of the tangent is written as
z—f1 (1) _ y—fad)

fi®) — fa(®)
If a curve is given by the equations
y=1@), z=9 @, ()

then the equations of the tangent are obtained simply from that of
a parametrically given curve. It suffices to notice that the specifi-
cation of a curve by the equations (*) is equivalent to the parametric

representation
z=1t y=f@), z=9(@.

Therefore, the equations of the tangent to the curve at a point with
abscissa x, are
y—f (2o) __ 2— @ (zy)

=% =@ v @

or, in equivalent form,
y=1f@)+ 1 (x) (x — ),
z2 =@ (x) + @' (xo) (x — zy).
If the curve is plane, and given by y = f (z), then we obtain the

familiar equation :
y=1f@)+ 1 @) (x — ).
We now make up the equations of the tangent to a curve given in

implicit form

Q@ y 2=0, Y@y 2=0
at a point (z,, Y,, z,), where the rank of the matrix

(%. Py cpz)
Ve Yy VP,

is two.
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Let

z=z(), y=y@), z=12(@)

be a regular parametrization of the curve in the neighbourhood of
(0, Yo» 20), and £, the associated value of the parameter.
Differentiating the identities

@@, y@®, z@) =0, @), y@, z@)=0,
we obtain
0" + @ + @2 =0, Pz’ + Py’ +pz’ =0.
Hence, the tangent vector i («', y', 2') is perpendicular to the

vectors (@, @y, q>;), (s Py» 1|>’,), and, therefore, has the direction
of their vector product. Thus, we come to the equation of the tangent

T—% __Y—W _ 2%
Py Pz 192 Px Px ‘Pyl ?
‘Py ‘Pz \Pz ‘Px “I’x ‘Py

(the derivatives @, @,, . . ., @, being taken at the point of contact
(x01 Yoy zo))'

If the curve is plane, and given by an equation @ (z, y) = 0, then
the equation of its tangent is

T—% _ Y—Uo
Py —Qx
or
@—2)) 9+ (¥ —¥0) 9y, = 0,

to see which it suffices to notice that, being space, this curve is given
by the two equations ¢ (z, y) = 0 and z = 0.

The plane passing through a point P, and perpendicular to the
tangent at this point, is called the normal plane to the curve at P.
Obviously, it is not hard to form its equation, since the tangent vec-
tor is perpendicular to the plane.

7. Osculating Plane of a Curve

Let y be a curve, P a point on it, and o a plane passing through P.
Denote the distance from a point Q on the curve to P by d, and that
from Q to o by §. We will call a the osculating plane of y at P if the
ratio §/d* -0 as Q — P (Fig. 85).

A twice differentiable curve y has an osculating plane at each of its
points. Meanwhile, it is either unique, or any plane containing the
tangent to the curve is osculating.

If

r=r(t)
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is the equation of the curve, then the osculating plane is parallel to
the vectors ¥’ and r".
Proof. Let o be the osculating plane of ¢ at a point P associated
with a value of the parameter . Denote by e the unit normal vector.
We have

d=|r@Et+h)—r@l 6=le@C¢+r)—r@)l

. ' (2)
& le(@th—ru | _ R
a2 (r(+h—r@): (r' () h+-e5h)2
er’ (t) , er’ (t) .
h + 2 +31 |
r'2(t)+e, 7

Since §/d* —-~0,¢e, -0,e3 >0asQ — P,and 1’ (t) 50, er’ (t) =
0, we derive er” (f) = 0. Thus, if an osculating plane does exist,
then the vectors r’' () and r” (f) are parallel
to it.

That an osculating plane always exists can
be seen easily, for which we take a plane a
parallel tor’ (f) and r” (t), regarding any plane
as parallel to the zero vector. Then er’ (£)=0,
er” (t) = 0, and,-therefore,

6 . legl .
—dT—- _—_r"(t)-l-es -—)O as Q—)-R. Fig. 85

Thus, there is an osculating plahe at each
point of the curve. It is unique if r' and r” are non-collinear.
However, if they are collinear, or r" = 0, then any plane passing
through the tangent to the curve is osculating.

To make up the equation of the osculating plane of a curve at a
point P, consider an arbitrary point A (z, y, z) of the plane. Then

—_—
the three vectors P4, r’ and r” are coplanar, each of which is either

parallel to the plane o or is in it. Therefore, their scalar triple
product is zero.

Let the curve be given by the equations

z=FfH@), y=Fft), z=7Ff(x).

Then the coordinates of the vector r’ are f;, f;, f;, those of r" are
— R —
f1» 13 ;s and those of PA are x — f,, Yy — f,, 2 — f4.

—
Since the scalar triple product of PA, r’ and r” is zero, the oscu-
ating plane equation is

z—fi () y—/fa(t) z—f3(t)
1 @) 12 (®) f3 () |=0.
11 () 2@ - 1,0
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Each straight line passing through a point of a curve perpendicu-
lar to the tangent is called a normal to the curve. Two normals can
be distinguished in the case where the osculating plane is unique,
viz., the principal normal, or normal lying in the osculating plane,
and the binormal, or the normal perpendicular to the osculating
plane. With the known tangent and osculating plane equations,
the derivation of the principal normal and binormal equations is,
obviously, not complicated.

8. Envelope of a Family of Plane Curves
A curve y: x = z (t), y = y (¢) is said to be the envelopejof a
family of curves y;: @ (z, y, t) = 0, t being the parameter of the
Ya

Fig. 86 Fig. 87

family, if y, touches y at each of its points (¢), i.e., if they possess
a common tangent (Fig. 86).

With such a definition of an envelope, on substituting z (f) and
Y (¢) in the equation ¢ (z, y, t) = 0, we obtain the identity

@), y@,t =0
Differentiating, we get
P2’ + @y’ + ¢y = 0.
It turns out that @z’ 4 ¢,¥' = 0. In fact, @, y_'; is the tangent

vector for the curve y, whereas (p, — a;) that for y, at the same
point. Since they are collinear, z'/p, = y'/ — @, and @z’ +
W =0.
Thus, the functions « (¢) and y (¢) satisfy the simultaneous equa-
tions
(P(x’ Y, t)=07 Pt (x? Y, t)=0,

and can be found from them.
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As an example, we find the envelope of the normals to a plane
curve (Fig. 87). Let the curve be given by two equations

z=z(), y=y@.

Since z’ and y’ are the coordinates of the tangent vector, the equa-
tion of the normal is

-z +@G—y@)y =0 ()
Differentiating with respect to ¢, we obtain
@—z@®a" O+ @—y @)y @) —22 @) —y?@)=0.

Solving it simultaneously with () for 2 and y, we derive the equa-
tions of the envelope

@2ty y (z'24y'2) 2’
r=zx(t)— —zy, y=yO)——r—m
assuming that y"z’ — z"y’ =4 0.

The envelope of the normals to a plane curve is called [its evolute.
The evolute of a curve possesses many remarkable properties, and
we note some of them in the sequel.

EXERCISES TO CHAPTER VIII

1. A point M moves in space so that its projection onto the xy-
plane moves uniformly along a circle x%2 4+ y? = a? with angular
velocity @, and the projection onto the z-axis moves uniformly with

y

8 ]

Fig. 88

velocity ¢. The curve described by M is called a heliz. Make up its
parametric equations, taking time ¢ as the parameter. Assume that M/
has the coordinates a, 0, 0 at the initial moment ¢ = 0.

2. A circle of radius a rolls uniformly without slipping with veloc-
ity v along the z-axis. Find the equation of the curve described by
a point of the circle if it coincides with the origin at the initial mo-
ment ¢t = 0 (such-a curve is called a cycloid, Fig. 88).
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3. Find the parametric equation of the curve

$s+y3—3axy=0,

taking t = y/x as the parameter (Cartesian folium; Fig. 89).
4. A helix

x=acoswl, y=asinowt, z=ct

is projected onto the zy-plane by straight lines parallel to the yz-

y{t
Yy
— -
(o] X
Fig. 89 Fig. 90 Fig.91

plane, and making an angle 8 with the z-axis. For what 6 will the
projectior possess singular points? Clarify their nature.
5. Find the singular points of the cycloid

. vt vi
z=vt-—asin —, yza(i—cos—a—),

and clarify their nature.
6. Find the singular points of the astroid

z=uacos®t, Yy =asindt,

and clarify their nature (Fig. 90).
7. Find the singular points of the tractrixz

x=asint, y=a(cost—|—ln tan—;-) O<t<m),

and clarify their nature (Fig. 91).
8. Make up the equations of the tangent, osculating plane, normal
plane, principal normal and binormal at the point (1, 0, 0) on the

helix
x = cos i, =gint, z=1.
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9. Make up the equation of the tangent to the curve given by the
equations
2+yrt2=1, 242=2z

at the point (0, O, 1).

10. Find the equation of the tangent to the curve z = 2, y = 3
at the point (0, 0).

11. Find the equation of a parabola of the form

y=2a*+ax+b,
which is tangent to the circle,
22+ y? = 2.

12. Prove that, fora tractrix, part of the tangent between the point
of contact and the y-axis is constant (see Ex. 7), i.e., independent of
the choice of a point of tangency.

13. Line segments of the same length are marked off on the binor-
mals to a helix. What is the curve formed by the end-points?

14. At what angle do the hyperbolas

— 2
zy =¢, 2 —y=rc,

intersect?
15. Given the family of curves g,

s+ =t

prove that two of them pass through each point of the zy-plane not
on the coordinate axes, and that they intersect at right angles.
16. Show that if the tangents to a curve pass through the same
point, then the curve is either a straight line or a straight line seg-
ment.
17. Show that the tangents to a helix

r=acos w, Yy =asinowt, 2z=Dbt

make a constant angle with the zy-plane, and that the principal
normals intersect the z-axis.

18. Show that if the tangents to a curve are parallel to a certain
plane, then the curve is plane.

19. On what condition are the straight lines

a (W) z-+by ) y+ey (t)z+d, (8) =0
ay() z+ba () y+c(t)24+dz () =0

tangent to a certain curve? Find the curve.
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20. Make up the equation of the osculating plane of the curve given
by equations

(p(x,y,z)=0, 1|J(x,y,Z)=O

at a point (z, y, 2).
21. Given the osculating planes of a curve

A@Mz+B@B)y+C@Ez+D(E) =0,
find the equations of the curve
z=z (@), y=y@, z=1z().

22. Find the equation and form of the envelope of the family of
straight lines cutting a triangle of area 2a® off the quadrant Ozy.

23. Find the equation and form of the envelope of a family of
straight lines intercepting a segment of the same length a on the coor-
dinate axes.

24. Find the envelope of the trajectories of a point particle project-
ed from the origin of coordinates with velocity v, at various angles
(parabola of safety).

Chapter IX

CURVATURE AND TORSION OF CURVE

1. Length of a Curve

Let an elementary curve be given by equations

z==z(), y=y@), z=13():.

The limit of the lengths of broken lines starting at points (z (¢;),
y @), t, =a,tats, ..., th =0 (@ <ty<<tz...), and inscribed
in the curve (@ << t << b), provided that its segment lengths decrease
indefinitely, is called the length of the arc (segment of the curve).

Any segment of a smooth curve is of certain length. If the curve is
given by an equation r = r (t), then the length of a segment a < t < b
of the curve is determined by the formula

S=

|’ (t) | dt.

Q ey O
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Proof. The length of the broken line equals
21w () =1 (b |
R

b
e () dt+{ D ta—tad 17 0) 1= [ 177 ) 1t}
k a

i

-+

~—~ e

DIt =1 (tam) | — 2 (ta—tacs) 1 (&) 1}
k

k

The second term on the right-hand side is arbitrarily small for
sufficiently small ¢, — t,_, by definition of integral, whereas the
third term admits a representation in the form

th tp
ZI | r'(t)dt\—Z’ g r (tk)dtl;
Rty Rt

therefore, it does not exceed

tp
5§ ire—rae
R tp_q

the difference between the vector moduli being not greater than the
modulus of their difference by the “triangle inequality”.

Since the vector function r’ () is continuous, and, therefore, uni-
formly continuous on the interval a <C ¢t <C b, we obtain |r' (¢) —
r’ (tz) | << e. Hence, the third term does not exceed

b
S edt=(b—a)e.

a

Summing up, we conclude that if the segments of a broken line
decrease indefinitely, then the differences ¢, — t;_, also decrease,
and the length of the broken line tends to the limit

b
s=S|r’(t)|dt.

Q.E.D.

We now give formulas for the length of a curve in various cases of
its specification, viz.,
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(i) given by the equations

z=z(), y=y@), z=:z(),
ty

st t) = | VErryTTta,

21
(ii) given by the equations
y=y (@@, z=z(),

X

s (zy, 7)) = S Vi+y2+z7da.

£2)

For plane curves in the zy-plane, we have to set z' = 0.

2. Natural Parametrization of a Curve
Let y be a smooth curve given by a vector equation
r =r (i)

We introduce a function s () in accordance with the formula

i
s (0) =S I (2) | dt.
te

This function has a simple geometric meaning, viz., | s (f) | is the
length of the segment [%,, t] of y. s (f) is strictly monotonic, since

ds ’
=¥ ®H1>0.

Therefore, s can be taken as the parameter of the curve. Such a
parametrization of the curve is said to be natural.

In the natural parametrization case, the tangent vector to the
curve r’(s) is unit, i.e., | (s) | = 1.

In fact,

but s’ =| r' |; therefore, |% | =1.

3. Curvature

Let P be an arbitrary point of a regular curve y, and Q its point
near to P. Denote by AO the angle between the tangents at P and Q,
and by | As | the length of the arc PQ (Fig. 92).
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The limit of the ratio A8/| As | as Q — P is called the curvature
of y at P.

A regular (twice continuously differentiable) curve has certain cur-
vature k, at each point. If

r=r(s)
is the natural parametrization of the curve, then

By =1r"(s) |

Let two points P and Q be associated with values s and s 4 As
of the parameters. The angle Af equals that between the unit tan-
gent vectors T (s) = r' (s) and T (s + As) =1’ (s + As).

Fig. 92

Since T (s) and t (s + As) are unit, and make the angle A8, |t (s +
As) — % () | = 2sin 3 (Fig. 99).
Hence,
2sin A0 g 80
lt+As)—v(s) | _ "3 073 a8
IAs | T T TAs] T A6 T TAs[C
2

Noticing that A® —~0 as | As | >0 by the continuity of < (s)
and passing to the limit, we obtain
[ () | =k
Q.E.D.
Let the curvature be other than zero at a given point. Consider
the vector v = kir” (). ¥ is unit, and placed in the osculating plane.
1

Besides, it is perpendicular to the tangent vector v, since <% =1,
and, therefore, tt' = wvk, = 0. Thus, it has the direction of the
principal normal, obviously unaltered if the point from which ares s
are counted off or the reference direction are changed. Speaking of
the unit principal normal vector in the sequel, we will mean w.
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It is obvious that the vector v A\ v = P has the same direction as
the binormal to the curve. We will call it the unit binormal vector.

We now find the expression for curvature with any specification
of the curve. Let it be given by a vector equation

r=r(t).
Express the second derivative of the vector function r with respect

to the arc s in terms of the derivatives with respect to ¢,
We have

r =ry.
Hence,
r? =g,
Therefore,
r—=—1
8 _'/172-
Differentiating the equality with respect to ¢ once again, we obtain
s — (')
A VO

Squaring and making note of s'2 = r’?, we have
r”zrlz —_— (rlrll)a
ey
or, which is equivalent,
(" Ar")2
=
It follows for the curvature of a curve given by equations

r=z(), y=y@), z=12(@)
that

2"z

2 z

2 [y |2 2
R s A
k= @ tyirzeye

If the curve‘is plane and placed in the xy-plane, then

zll yll
y ’

k2= (xl'yl_y"zl)z
t (z"24y'2)3
and if a plane curve is given by an equation of the form y = y (),
then
2 __ y"?
= (t+y2)3
Remark. By definition, curvature is non-negative, it is useful to

assume, however, that it may be positive for some plane curves and
negative for others. Meanwhile, we will adopt the following argu-
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ment. In moving along the curve, the tangent vector r'(f) turns in
the direction of increasing t. Depending on the sense of rotation,
curvature is regarded either as positive or negative (Fig. 94). If the
curvature sign for a plane curve is determined just
by this condition, then we obtain either

. xﬂyl—yﬂxl _ xﬁyl_yﬂzf
k= (z"24y'2)3/2 or k= (z'24y'2)3/2 *
In particular,
¥ —— v
k= aFymE O k= aEen
if the curve is given by an equation of the form Fig. 94
y =y @). )
As an exercise, we find all the curves of zero curvature at each
point.
We have

ky=1r"{)|=0.

Hence, r" (s) = 0, and r (s) = as + b, where a and b are constant
vectors.

Thus, a curve with zero curvature everywhere is either a straight
line or a straight line segment.

4. Torsion of a Curve

Let P be an arbitrary point of a curve y, and Q its point near to P.
Denote the angle between the osculating planes at P and Q by A9,
and the length of the curve segment PQ by | As |. By the absolute

value of torsion | ky | of y at P, we under-

stand the limit of the ratio AO/| As | as

Q — P (Fig. 95).

A regular (thrice continuously differen-
tiable) curve has certain absolute torsion
| ky | at each point where the curvature is
other than zero. If

r=r(s)

is the natural parametrization, then
[(r'r"r™) |
Ly ==

Proof. If the curvature of the curve y at P is different from zero,
then, by continuity, it is also other than zero at points near to P.
The vectors r’ (s) and r” (s) are non-zero and non-parallel at each
point with non-zero curvature. Therefore, there exists a certain os-
culating plane at each point Q close to P.

Fig. 95
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Let B (s) and P (s + As) be the unit binormal vectors at two points
P and Q of y. AD equals the angle between P (s) and p (s + As).
Since P (s) and P (s + As) are unit, make the angle A0, we have

1B+ A9 —B ) | = 2sin 3.

Therefore,
2sin—l-32 i —Ai
1B (s+A9—P ()| _ 2 _ STy a8
|As] |As| A6 |As] *
2
Hence, passing to the limit as | As | -0, we obtain
ke | = 1B |

The vector B’ is perpendicular to P, since p'p = (%[52) =0. It is
easy to see that it is also perpendicular to «.
Indeed,
pP=FCAVW=vAv+rAWV.
However, t’ || v. Therefore, p’ = t A v’, in which case p’ is per-
pendicular to v. Thus p’ is parallel to v; hence,

kg | = 1B'v I
Substituting V=Ti1-r~” and ﬁ=-%ar—, we derive
1
r'rr”
lfey| = I( L4 1Ry
1

, Q.E.D.
We now define the torsiorn of a curve.
It follows from the parallelism of p’ and v that, in moving along
a curve in the direction of increasing s, the osculating plane of the
curve rotates about the tangent, due to which we define the torsion
of the curve by the equality
ks = + |k2 ls
take the plus if the rotation of the tangent plane is in the direction
from P to v (Fig. 96), and the minus if it occurs in the direction from v
to . With this definition of the torsion of a curve, we will have either
kg =p'v or ky, = — ) ;,r ),
1
We now find the expression for the torsion of a curve in the case
of any regular parametrization r = r (f).
We have
re=1r't, r,=rt24r't", rgs=r"t'4+ {v, r'},
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where {r’, r"} is a linear combination of the vectors r’ and r". Sub-
stituting the expressions obtained for r;, ry, and ri;; in the formula
for k,, and noticing that ¢t'2 = 1/(r'2), we
obtain
. (r'r"r")
=~ A
We now find all the curves with zero 7

torsion at each point. P
We have

ky=p'v=0.

Besides, since p'vt = 0, and p'p =0,
we obtain p’ = 0, p = B, = const. .

The vectors v and P are perpendicular. Fig. 96
Hence, r'fy = 0 and (r (s) — ry) o = O,
which means that the curve is in the plane given by the vector
equation (r — ry) o = 0.

Thus, a curve with zero torsion at each point is plane.

5. Frenet Formulas

Three half-lines emanating from a point on the curve, and with
the directions of three vectors v, v and P, are the edges of a trihedral
angle called a moving trihedral.

Express the derivatives of ¥, v and P with respect to the arc of
the curve in terms of v, v and p themselves.

We have

“I = l‘” = kl‘V.
To obtain B, we recall that it is parallel to v, and pf'v = k,.
Hence,
! = kyv.
Finally,
V=FBAY=FAT+BAT
=kvVAT+EPpAY=—(kT + k).

The formulas

v = kv,
"= _kit_k2ﬁ|
B' = k2V

are called the Frenet formulas.

The curvature and torsion of a curve are functions of arc length s
along the curve. The equations

ky=0(@), ki=1v()
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specifying the curvature and torsion of the curve as functions of arc
length s are called the ratural equations of the curve.

It turns out that a curve is determined uniquely up to position in
space by its natural equations if k, > 0.

6. Evolute and Evolvent of a Plane Curve

Let y be a regular (thrice differentiable) curve given by an equation
of the form r = r (s). Cut off a line segment equal to the curvature
radius p = kil in the direction of the vector v, on the normal to the
curve from its arbitrary point P. We call the segment’s end-point|the
centre of curvature of the curve. The name is due to contact of order
three between the circle with this centre and radius p, and the curve
at P, i.e., the distance from a point on the curve to the circle is
an infinitesimal of order three with respect to the distance from P.
Recall that a tangent has contact of order two with the curve.

If it is a curve, then the locus of the centres of curvature is called
an evolute. We show that an evolute is the envelope of the normals
to a curve. In fact, the equation of an evolute is

~ 1 N
r—r—l—k—lv,
whereas the tangent vector of the evolute is
T (Y v A gy (L)
l‘—r—|—(k1) V—l—Tl-( k“t)—-(kl)v,

and is thus directed along a normal to the curve. Therefore, the
normal is a tangent to the evolute, which means that the evolute of
a curve is the envelope of its normals.

Note that if k; 5= 0, then the length of the evolute a s << b
equals

b b
§1a0= ) oy

or the difference between the curvature radii at the ends of the seg-
ment.

We now define the evolvent of a curve. Let r = r (s) be a curve
with the natural parametrization. If s << 0, then we mark off a line
segment of length | s | from a point on the curve on its tangent along
the direction of the vector v, and along the opposite direction if s > 0.
The curve described by the end of this segment is called the evolvent
of the curve. .

The formation of an evolvent can be visualized asfollows. Imag-
ine an inextensible string fixed on a curve with one end, and wound
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around it. If we wind the thread off the curve by pulling a tits free
end, then it describes the evolvent of the curve (Fig. 97).
This curve is the evolute for its evolvent. Indeed, the equation

of an evolvent is y

r=r — s,

whereas the tangent vector of the evolvent is
P =r—v— sk,v = —skv.

It follows that a tangent to a curve is a nor-
mal to the evolvent. Therefore, the given curve Fig. 97
is the evolute for its evolvent.

Evolutes and evolvents have found important areas of practical
applications, e.g., the teeth of cylindrical gear wheels have the form
of the evolvents of circles.

EXERCISES TO CHAPTER IX

1. Find the length of a segment —a <C z <C a of a parabola y = ba?.
2. Find the length of the segment of a curve

z=acosht, y=asinht, z=at

between the points O and ¢.
3. Find the length of the astroid

z=acos®t, y=asindt.
4. Find the length of the segment 0 <C ¢ << 2n of the cycloid
z=a({—sint), y=a (@ — cosi).

5. Find the expression for the arc length of a curve given in polar
coordinates by an equation p = ¢ (0).
6. Find the curvature of the curve

x=1t—sint, y=1—cost, z=4sin—%—.

7. Find the curvature of the curve given by the implicit equations
z+sinhz=siny+y, z4+e&=z+In@l+2z)+1

at the point (0, 0, 0).
8. Find the curvature of a circle of radius R.
9. Find the curvature and torsion of

z=uacosht, y=asinht, 2z =at.
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10. Find the curvature of the ellipse
22 y?
@ =1
at its vertices,
11. Show that the curvature and torsion of a helix are constant.

12. Derive a formula for the curvature of the plane curve given
in polar coordinates by the equation

)
T

13. Prove that if the tangents to a curve make a constant angle
with a certain straight line, then the principal normals are perpen-
dicular to the line.

14. Prove that if the osculating planes of a curve are concurrent,
then the torsion of the curve is zero, and, therefore, the curve is plane.

15. Find the torsion of the curve

r= S e () \e' () dt,

where e (f) is a vector function satisfying |e (f) | = 1, e’ (t) = 0.
16. Prove that if the tangents to a curve make a constant angle
with a certain direction, then the ratio of the curvature to the torsion
is constant,
17. Find the evolute of the parabola

y? = 2pz.
18. Show that the evolute of the tractrix

x=—-a(lntan%+cost) , Yy=asint

N x
is the caterary curve y=a cosh -

19. Find the evolvents of the circle 2% 4+ y* = R2.
20. Find all the plane curves -with the given natural equation
k, =k (s).
121. How can the equations of a curve be found, given one of the
three vector functions t (s), v (s) or P (s)?
22. Prove that if a curve possesses  one of the following four
properties, viz.,
(a) the tangents make a constant angle with a certain direction,
(b) the binormals make a constant angle with a certain direction,
(c) the principal normals are parallel to a certain plane,
and .
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(d) the ratio of curvature to torsion is constant, then it possesses
the other three properties.

23. Prove that if the curvature and torsion of a curve are constant,
then this is a helix.

Chapter X

TANGENT PLANE
AND OSCULATING PARABOLOID OF SURFACE

1. Concept of Surface

Let G be a set of points in the plane. A point X of G is said to be
interior if all points of the plane, which are sufficiently near to X,
belong to G. This means that there is a positive number & such that
all points in the plane, whose distance from X is less than &, lieinG.
A set G is said to be open if each of its points is interior. A set G is
called a domain if it is open, and if any two of its points can be joined
with a broken line lying in G. E.g., a circle without its boundary
circumference is a domain:

Let G be a domain in the plane. A pomt X of the plane is said to
be boundary for G if there are points in &, which are arbltrarlly near
to X, and if there are points not belongmg to G, which means that,
for any & > 0, there are points belonging to G, which are from X
at a distance less than g, and if there are points not in G. The boundary
points make up the boundary of the domain G. In the above example
the circumference bounding a circle consists of boundary points. An-
nexing the boundary to a domain, we obtain a closed domain.

The concepts of interior point of a set in space, of open set, domain
and closed domain are defined verbatim as for planar sets. ‘A neigh-
bourhood of a point is any open set containing the point. In particular,
an e-neighbourhood is the set of points which are from a given point
at a distance less than e.

We now give a few definitions related to the concept of surface.

We will call a figure obtained by a topological transformation of
a plane domain an elementary surface. A figure is called a simple surface
if each of its points possesses. a three-dimensional neighbourhood
such that part of the figure, contained in the neighbourhood, is an
elementary surface. A generic surface is a figure obtained by a locally
topological transformation of a simple surface.

Due to these definitions, the study of any surface “in the small”

reduced to that of an elementary surface.
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Let an elementary surface F be obtained by a topological trans-
formation of a plane domain G. Introduce Cartesian coordinates u,
v in the plane of G. The equations

T = fl (u1 U), y=1/, (u’ U)7 z = fs (u1 U) (*)

specifying a transformation of G into F are said to be parametric.

The values u© and v completely specify the position of a point in
the surface, and are called curvilinear, or Gauss, coordinates on the
surface.

For fixed u (or v), the equations (%) specify certain curves in the
surface. They are called coordinate lines. The lines along which only
u varies (v = const) are called the u-curves, whereas those along which
only v varies (v = const) are termed the v-curves. ‘

Specifying a surface by the equations

x:fl (u1 U), y=f2 (u, U), Z=f3 (u1 U)
is equivalent to that by one vector equation
r=1f(u, v),
where
r = ze, |+ ye, + zeg,
f (u, U) = fl (u, U) el + fz (u, U) e2 + fs (u, U) e3'

2. Regular Surfaces

We call a surface F regular if each of its points possesses a neigh-
bourhood admitting a regular parametrization, or parametric re-
presentation

$=f1 (u, U), y=f2 (u’ U), Z=f3 (u, U),
where f,, f;, fs are regular functions (¥ times continuously
differentiable, k¥ = 1) such that the rank of the matrix

(fm fau f3u,)

fiv fzv fsu

is two, i.e., at least one of the determinants of order two is not zero.

In the case of vector specification by an equation r = f (u, v), this

means that f, A f, 55 0, and that the vectors f, and f, are non-zero

and non-collinear. When k& = 1, the surface is said to be smooth.
Let a smooth surface be given by parametric equations

r=f (u, v), Y=/, (u9 U), z = fg (u, v),

ftu fzu
fw fzv

and

at a point Q, (uq, Uy)- .
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We prove that the surface in the neighbourhood of Q, admits a
specification by an equation of the form

z=F (z, y).
By the implicit function theorem, the system of equations
z=f W v, y=/f @, v
can be solved for u, v in the neighboﬁrhood of (ug, vy). We obtain

u=¢@ y, v="10(@y).
Introducing parameters «, p instead of u, v according to the formu-
las u = ¢ (a, B), v="1 (2, B), we get
z=a, y=P z=f@@ B), V(= p)
or, which is equivalent,

z=fy (¢ (z, y), V(@ y)=FI@ y),
and the statement is thus proved.

3. Tangent Plane to a Surface

Let @ be a surface, P a point in it, and « a plane passing through P
(Fig. 98). Take another point Q in the surface, and denote its dis-
tances from P and a by d and h, respec-
tively.

We will call a the tangent plane to the
surface at P if the ratio h/d -0 as Q — P.

A smooth surface @ possesses one, and only
one, tangent plane at each point.

If r =r(u, v) is some smooth parametri-
zation of the surface, then the tangent plane at
a point P (u, v) is parallel to the vectors
ry (u, v) and r, (u, v).

Proof. Assume that @ at P (u, v) possesses a tangent plane o.
Let n be the unit vector perpendicular to o. The distance d from a
point Q (u + Au, v + Av) to P (u, v) is equal to |r (u + Au,
v+ Av) —r (u, v) |, whereas that from Q to « is

|(r (w4 Au, v+ Av) —r (4, v)) n|,
B |(r(uidAu, v4 Av)—r (u, v)) n|

d " |r(u+Au, v+Av)—r (u, V)|
By definition, #/d —0 as Au and Av independently tend to zero.
In particular,

Ifr (w4 Au, v) —r (u, v)) n|
| (u+Au, v)—r(u, v)]|

Fig. 98

— 0 as Au—~ 0.
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However,

l r(utAu, v)—r (u, "’-nl

Ir(utAu, v)—r(@u, v)n| __ Au fry (u, v)n|
|r(u+Au, v)—r(u, D)l - r(u—l—-Au, l))—l' (uv l)) Il'u (u1 v)l
Au

Thus,
r, (u, v) n = 0.

Since r, (u, v) =0 (r, A r, = 0), the equality r, (u, v) n = 0
holds if and only if r, (u, v) is parallel to . It is shown similarly
that r, (u, v) is also parallel to a, and, since both are non-zero and
non-parallel, i.e., (r, /A r,) = 0, the tangent plane is unique if it
exists.

We now prove the existence of a tangent plane. Let a plane «
be parallel to r, (u, v) and r, (u, v). We show that it is tangent to
the surface at the point P (u, v).

We have
B |(r(ud-Au, v4+Av) —r(u, v))n|
d 7 Ir(u+Au, vFA)—r (u, v)|

| (ryn) Au+ (rpn) Av+ey YV Aud+ Av?|
vy Au+-ry Av+-e4 V Auit Av?|
1841
Au Av
]/Auﬁ—I—Av“‘ R VAuRF A2

where | g, | and | €5 | tend to zero as Au, Av — 0.
To prove that h/d —0 as Au, Av —0, it suffices to show that,
for any Au and Av,”

) ry Au ry Av
V Aut f Av? V At AvE

where ¢ is a certain constant.
Since the sum of the squares of Au/Y Au+ Av? and Av/}/ Au?+ Av?
is unity, at least one of them is not less than 1/} 2. E.g., let

Au/V A2+ AR>1// 2. Denote by e the unit vector coplanar
with the vectors r, and r,, and perpendicular to r,. We have

>c>0,

ry Au r, Av
V Au?F Av? V Aut- Av?
Au Av |
... A, _———)e
>|(nymr " VEaTe)

sme

—|(rue)-m7l/l Ty —= V3
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where 0 is the angle between r, and r, Similarly, if
AvlY Auz+Av:=1/Y 2, then
ry Au ry Av sin 0
V AurF At + VAurt A® =1l 275 Ve *®
Thus, we can take the least of the values |ru|sin 0/Y'2 and
Ir,| sin 8/)/ 2 as the constant c.

Q.E.D.
4. Equation of a Tangent Plane

We now make up the equation of a tangent plane to a surface given
by parametric equations

z=z@u,v), y=y @, v), z=1z(u,v).
Let Q, (u,, 'vp) be a point on the surface, and 4 (z, y, z) an arbi-
—_—

trary point in the tangent plane at Q,. Then the vectors Q,4, r,
and r, are coplanar, Therefore, their scalar triple product is zero.
Hence, the equation of the tangent plane is

T—1x (Ugy, Vo) Y—Y (Uoy Vo) 2—2 (U, Vo)
Zy, (Ugy Vo) " Yu (U Vo) a 2z, (U, Uo) =0,
Ty (ub: ?0) Yo (uo, vu)“ Zy (um vo)

To derive the equation of a tangent plane to a surface given by
an equation z = f (z, y), it suffices to notice that this'is only a brief
form of specifying the surface parametrically, as

z=u, y=v, z=7Ff®u, v.
Consequently, the tangent plane equation is
z—xy Y—yo 2—1 (%o, Yo)
1 0 fx (%os Yo) =0,
) O 1 fy (zm yo)
or .
2 —f (X0, Yo) = fx (o, ¥o) (& — 2o) + fy (o, Yo) W — Yo)-
We now find it for a surface given implicitly by the equation
Q@ ¥y 2 =0, ox+ ¢+ ¢z%0.
Let y
z=z@ v, y=yWv), 2=z v
be some parametric representation of the surface. Differentiating the
identity
QW v), ywv), z@vv)=0
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with respect to u and v, we obtain
Pl y + PyYu + P2y = 0
PaTy + Pyl + 9.3, =0,

Hence, the vector with components ¢, ¢,, ¢, is perpendicular to
the vectors r, and r, and, therefore, to the tangent plane. Knowing
the vector perpendicular to the plane, we easily obtain itsequation,
viz.,

(@ — z4) @x (xo, Yo» 20) + W — yo) Py (*o, Yor 20)
_l_ (Z - ZO) QP (Io, Yo, ZO) = 0'

A straight line passing through a point P on a surface at right
angles with the tangent plane at this point is called the normal to
the surface at P. Obviously, the normal to a surface has the same
direction as the vector r, A r,. Hence, its equation is not difficult
to make up.

5. Osculating Paraboloid of a Surface

Let @ be a regular surface, P a point on it, and U a paraboloid
with vertex P and axis coinciding with the normal to the surface
at P. Take on @ a point Q near to P. A
straight line passing through Q, and parallel
to the axis, intersects the paraboloid at a cer-
tain point Q’. Denote by & the distance be-
tween Q and Q’, and by d that between Q and
P, U is said to be osculating at a point P of
the surface if h/d* -0 as Q — P (Fig. 99).

At each point of regular surface (twice con-
tinuously differentiable), there is one, and
only one, osculating paraboloid; in particular,

Fig. 99 it may generate into a parabolic cylinder or
plane.

Proof. Let the surface be given by an equation in vector form
r =r (4, v) (assuming as always that r, A r, 5= 0). We introduce
a coordinate system x, y, z by taking as the zy-plane the tangent plane
to the surface at a point P, and the normal to the latter as the
z—a?(is. Meanwhile, as the vector r, A r, is directed along the z-
axis,

Ty Iy
Yo Yo

Therefore, in a sufficiently small neighbourhood of P the surface
can be given by an equation of the form

z= [ (z, y).

0.
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Since the tangent plane equation at P is
z = zf, (0, 0) + yfy (0, 0),

and this is the zy-plane, f, (0, 0) =0, f, (0, 0) = 0. Accordingly,
the expansion of the function f (z, y) in the neighbourhood of the
origin is of the form

1@ 9) =5 (r2®+ 252y + ty®) +e (2, ¥) (@ + ),

where r, s, ¢t are the second derivatives of f (z, y) at the origin (r =
fray $ = fryy t=1fyy), and & (z, y) >0 as x, y —0. Thus, the
equation of the surface in the neighbourhood of the origin is of the
form '

Z=-%—\rx2+28xy+ ty?) +e(z, y) (22 +y?).

Any paraboloid with vertex at the origin and the z-axis and also
its degeneracy into a parabolic cylinder or plane, can be given by an
equation of the form

z = ax® + 2bxy + cy?. (%)

We prove that if an osculating paraboloid does exist, then it is
unique. Let the paraboloid (x) be osculating.

We have
w3 0ot 2e—nate—amtee »etm
e 2+ i+ 2 (2, )

Putting y = 0, and letting £ — 0, we see that
h 1
- | - (r—a) [ .

Hence, a = r. Similarly, we conclude that ¢ = t. Settingz = y —
0, we then find that & = s. Thus, if an osculating paraboloid exists,
then it must have the equation

_— % (ra®+ 2sxy +ty?),

and is, therefore, unique.
That it is osculating can be seen easily. Viz.,

_h_ le(z, y) (x24p?)|
a2 T By (a, y)

thus completing the proof.

<le(z, y)| =0,
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6. Classification of Surface Points

The form of a regular surface in a sufficiently small neighbour-
hood of an arbitrary point is given, to a first approximation, by a
tangent plane, and, to a second approximation, by osculating para-
boloid. Depending on the osculating paraboloid, the points of a
surface are classified into elliptic, hyperbolic, parabolic and planar
ones.

A point of a surface is said to be elliptic if the osculating paraboloid
is elliptic at it. In a sufficiently small neighbourhood of such a point,
the surface resembles an elliptic paraboloid (Fig. 100a).

(a) () (c)

Fig. 100

A point of a surface is said to be hyperbolic if the osculating para-
boloid at it is hyperbolic (Fig. 1000).

A point of a surface is said to be parabolic if the osculating para-
boloid degenerates into a parabolic cylinder (Fig. 100c).

A point of a surface is said to be planar if the osculating paraboloid
degenerates into a plane (which is tangent to the surface) (Fig. 100d).

Let P be an elliptic point of a surface. Construct an osculating pa-
raboloid at P and cut the surface with a plane parallel to the tangent
one at the point at the distance 1/2 from it, obtaining an ellipse in
the section. Its projection onto the tangent plane is called the Dupin
indicatriz, or the indicatrixz of the normal curvature.

Since the equation of a paraboleid is z =% (rz® + 2szy + ty?),
that of the Dupin indicatrix
ra® + 2szy + ty? = +1,

where the plus and minus depend on where the surface is placed,
viz., in the half-space z > 0 or z << 0.

Directions at a point P on a surface are said to be conjugate if
they are those of the Dupin indicatrix conjugate diameters at P.
Directions at P are said to be principal if they are those of the Dupin
indicatrix axes at the point.

The Dupin indicatrix of a surface at a hyperbolic point is defined
similarly, consisting of two conjugate hyperbolas given by the equa-
tion

rz® + 2sxy + ty? = +1,
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the plus corresponding to one, and the minus to the other (conju-
gate) hyperbola. In addition to conjugate and principal directions,
at a hyperbolic point, we introduce the concept of asymptotic direc-
tions, viz., those of the indicatrix asymptotes.

At a parabolic point P of the surface, the Dupin indicatrix con-
sists of two parallel straight lines symmetric about P. At a planar
point, a Dupin indicatrix does not exist.

The name “Dupin indicatrix” is related to the French geometer
Ch. Dupin who introduced the concept. The term “indicatrix of the
normal curvature” will be made clear by what follows.

EXERCISES TO CHAPTER X

1. Given the circle
22+ (x —a)® = R?%, a>R,

in the 2z plane, find the equation of the surface obtained by rotat-
ing it about the z-axis (torus).
2. Determine the form of the surface given parametrically by

r=acosucosv, Y = acosusinv, z=csinu,

and find its implicit equation.

3. Find the equation of the surface obtained by rotatlng a curve

= ¢ (u), 2 = (u) about the z-axis (surface of revolution).

4. A straight line g moves in space so that

(a) it always intersects the z-axis at right angles,

(b) the point where g meets the z-axis moves uniformly with ve-
locity a,

(c) g rotates uniformly about the z-axis with angular velocity o.

Find the equation of the surface described by g (kelical surface,
helicoid).

5. What is the form of the surface formed by the principal normals
to a helix?

6. The surface formed by translating a curve along another is
called a translation surface. Prove that a translation surface can be giv-
en by an equation of the form r=¢ (u) 4% (v), where @ and ¢ are
two vector functions, of which ¢ depends only on u, and ¥ only
on v.

7. Show that the locus of the midpoints of line segments whose
ends are on two given curves is a translation surface.

8. Make up the equation of the surface formed by straight lines
parallel to a vector a, and intersecting a curve r = r (u) (cylirdrical
surface).

9. Find the equation of the surface formed by straight lines pas-
sing through a point (a, b, ¢), and intersecting a curve r = r (u)
(conical surface).
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10. Show that the equation of any surface formed by straight
lines can be written as r = f (u) + vg (u), where f and ¢ are two
vector functions.

11. Show that the equation of the tangent plane at a point (z,,
Yo, 2o) on a surface ax®* 4 by® + ¢z = 1 can be written as axz, +
byy, + czz, = 1.

12. Make up the equation of the tangent plane to a sphere

r=acosucosv, y=acosusinv, z=asinu

at the point (a, 0, 0).
13. Show that all the tangent planes to the surface z = z¢ (?yt_)

pass through the origin of coordinates.
14. Show that the surfaces

e+t =ar, 2+y+2=0 P+P+2=y

intersect at right angles.

15. Show that the normals to the surface = ¢ (u) cos v, y =
¢ (u) sinv, z = (u) intersect the z-axis.’

16. Find the surface formed by the normals to y = x tan z along

the straight line y = z, z = _nl‘_
17. Find the equation of the osculating paraboloid to an ellipsoid

x2 y2 22
wtEta=

at the point (0, 0, ¢).

18. Investigate the nature of points (viz., whether they are el-
liptic, hyperbolic or planar) on quadric surfaces.

19. Prove that if a smooth surface has only one point in common
with a plane, then the plane is tangent at the point.

20. Prove that if a surface touches a plane along a certain line,
then each point in the line is either parabolic or planar.

21. Let @ be a surface, P a point on it, and a the tangent plane
at P.

Prove that

(a) if P is elliptic, then all points on @, which are sufficiently near
to P, are on one side of «,

(b) if P is hyperbolic, then there are points on @, as close to P
as we please, and on opposite sides of a.

22, Prove that if all points on a curve y on a surface are planar,
then the curve is plane.

23. Prove that there are elliptic pomts on a closed surface.
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24. Prove that if all normals to a surface intersect a certain
straight line, then it is either a surface of revolution or a domain on a
surface of revolution.

25. Prove that if all normals to a surface are concurrent, then it
is either a sphere or a spherical domain.

Chapter XI

SURFACE CURVATURE

1. Surface Linear Element

Let @ be an elementary surface obtained by a topological trans-
formation of a domain G in the uv-plane, and u = u (), v = v (?)
a curve in G. A transformation of G into @ transforms the curve into
a curve y on @. If @ is given by a vector equationr = r (u, v), theny
is specified by r =r (v (2), v (2)).

Its length is determined by the formula

o [V [ R (B o () (2) £ () o

= S V 2 du? + 2r,r, du dv + r3 dv?, (%)
H

v

where } denotes integration along y.

The auadratic form
ds? =r3 du? - 2r,r, du dv 4 r3 dv?

is called the first fundamental form, or surface linear element. We will
employ the notation

ry = E, ’l‘ult,,‘=ﬁf, =G

for its coefficients. It follows from the formulas () for the length of
a curve, that, to measure it, the knowledge of its first fundamental
form is sufficient, due to which the first fundamental form is said to
determine a metric on the surface.

Let u = u, (t),v = v, (t)andu = u, (1);v = v, (tr) be the equa-
tions of two curves in a domain G, which pass through a point (u,, v).
A transformation of G into a surface @ carries them into two curves y,
and y, on @. We call the angle 8 between the half-tangents to these
curves the angle between y; and y, at their common point P (u,, vy).
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We have

Yy , .’ ’
Fify - (ryus+rovg) (Tuus—rov3)
Ve yre V eaui ol V (vaus+rov))?

_ Eufuj+F (ujvs+ ugvi) +Gopvs
(Eu st 2Fuiv;, 1 Gu2)/2 (Eujd+ SFuywy+ Gust) i/

cos 0 =

If we denote by d and § differentiation with respect to u and v
along y; and y,, then the formula can be written as

E du du-+ F (du dv-+dv 8u) -G dv dv (#%)
(E du®-2F du do+ G dv3)1/% (E bud -+ 2F 0u 0v 1 G 021 /2

It is seen from (%*) that the angles between curves on a surface are
also determined by the first fundamental form.

We now clarify on what condition the u-, v-curves on the surface
are orthogonal, i.e., intersect at right angles. Along the u-curves,
du == 0, dv = 0, whereas along the v-curves §v = 0, u = 0. There-
fore, cos 0 = 0, or u-, v-curves are orthogoral if and only if F du
Sv=20, ie if F=0.

A length-preserving, or, as we call it, metric-preserving trans-
formation, is called a deformation of the surface. A deformation is
also called an isometric transformation. Surfaces transformed into
each other by an isometric transformation are said to be isometric.
Under a saitable parametrization, isometric surfaces possess the
same first fundamental form. A surface “in the small” is usually de-
formable. A surface “in the large”, e.g., a sphere, may net be de-
formable. Any regular (twice differentiable) surface which is isometric
to a sphere is a congruent sphere.

A transformation of a surface is said to be conformal if it is angle-
preserving. Conformal transformations play an important part in
cartography. Maps are actually conformal representations of do-
mains on the earth’s surface. The expedience of a map conformal
representation is due to its similarity “in the small”, and a faithful
reproduction of the form of small domains.

cos0=

2. Area of a Surface

Let ® be a smooth surface. Partition it into small domains g,
and take a point P as a base point in each, projecting one domain g
onto the tangent plane at this point. Denote the projection area by
o (g). By the area of ®, we understand

S=ling}o(g),

provided that the domains g of the surface partition decrease in size
without limit.
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p—

We now find the formula for the area of a surface given by a vector
equation r = r (u, v), for which we first derive an expression for
o (g). Introduce Cartesian coordinates z, y, z by taking P as the
origin, and the tangent plane at this point as the xy-plane. Let the
surface be then given in g by equations

t=zWv), y=yWyv), z=1z(@, v).

For sufficiently small g, their projections onto the tangent plane,
i.e., the zy plane, are unique; therefore, u, v can be regarded as cur-
vilinear coordinates on the projection. As is known from analysis,
the area of a plane domain is found by the formula

0=SS Zu Yu

T Yo
with respect to curvilinear coordinates.
The integrand can be répresented in the form

Zy Yu
Z, Yo ‘_—"l(ru/\rv)nP"

where np is the unit normal vector to the surface at P, and we can
write

dudv,

Do (g) = SS |(ry A1, n*| du dv,
[e2)

4

where n* is a vector function on the surface, constant in each of
the domains g, and equal to the unit vector of the normal at the base
point P of the domain.

Now, passing to the limit, provided that g decrease in size without
limits, we obtain the formula for the area

S= S S [(ry Ary) n].dudv.
()
Since the vectors r, A r, and n are collinear,

S= S S Iru Axy | dudy.
R
Noticing that

[P ATp|2=riry — (r,r,)2 = EG—F2,
we obtain
S= SS V EG—FE du dv.
@

We see that the area of a surface, too, is determined by its first fun-
damental form.
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If a surface is given by an equation of the form z = z (z, y), then

. E=142z, F=2z,2, G=147z.

Therefore,
s= | [ VITaTHdzay.

3. Normal Curvature of a Surface

Given a curve y on a surface specified by a vector equation r =
r (u, v), we introduce the natural parameter (s) of this curve.
Then u and v are functions of s, and the curve is given by an equation
r=r (u(s), v(s). As we know,
l';s = kl\’,
where v is the principal unit normal vector, and %, the curvature.
Multiplying throughout by the unit surface normal vector n, we

obtain
r;n = k, cos 0, (*)

0 being the angle between v and n.
To transform the left-hand side, we see that

r:s = l'uu/' + l'v')” + l'uu.u'l2 + zruuu'v’ + rvvvlz-
Therefore,
g = (ruun) u'24-2 (ryon) u'v’ + (rp,n) v'2

__(ryun) du?+-2 (ryon) du dvt- (rypn) dov?
- E du®+4-2F du dv}-G dv?

The quadratic form in the numerator is called the second funda-
mental form of the surface. We will always use the notations

ryyt =1L, r,;n =M, r,n=N

for its coefficients.
Now, we derive from (x) that
L du?®+2M du dv+4 N dv?
Edu®y oF dudvo+ Gadv® *

Hence, k, cos 0 depends only on the direction of y, i.e., the value
du/dv. Therefore, k&, cos 6 is the same for all curves with a common
tangent. If we take as the curve the surface section by a plane perpen-
dicular to the tangent plane (rormal section), then | cos 0 | = 1; con-
sequently,

k,cos0 =

ky | cos 0 | = k,,

where %, is the normal section curvature. If we ascribe a suitable
sign to normal curvature, then the formula can be simply written as

k, cos 0 = k,. (%)
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Meanwhile,
__ Ldu?4-2M dudv+ N dv?

ko= E du?+-2F du dv+G dv?

The relation (+%) between curvature on a surface and normal cur-
vature is the subject matter of the Meusnier theorem.

We now obtain expressions for the first and second fundamental
form coefficients if the surface is given by parametric equations

x=z(u, U)1 y=yYy (u’v U), z =z(u, U)'

We have
E =ry =7y + yu + 20
F=ryr, =22, +Yul¥o + 2u0s
=1; =2 + Yo + 20,
and
Tuu Yuu Zuu
Ty Yu Zu
L=r,.n=r (ru Arp) — (ryuulyly) _ 1% Yo 2
uu YU e, Arl Iru Arol ]/-EG—-F2

Similarly, we find
Zyp Yoo Zov

Zu Yu Zu

Zuv Yuv Zuv
Ty Yu Zy
M= | Zo Yo 20 , N= K )
V EG—F? VEG—F?
To determine the coefficients of fundamental forms of the surface
if it is given by an equation such as z = z (z, y), it suffices to notice
that the specification is equivalent to parametric equations
xr = u, y=v, z=z(u,v),
in which case we obtain for the coefficients,

E=1+4+p® F=p, G=1+4+4¢,

t

Vitp+ae ' Vitr+e '’ Vitrta '’
where p, g, r, s, t are the first and second derivatives of the function
z(z, y), Viz., p = 24, @ = 2y, T = Zxx, S = Zyxy, L = Zyy.

4. Indicatrix of the Normal Curvature

Take a point O on a surface as the origin of coordinates, and the
tangent plane in it as the zy-plane. As we know, the surface in the
neighbourhood of O is then given by the equation

Z=% (ra?+ 2szy +ty”) + e (z, ) (@*+?),

where ¢ (z, y) >0 as z, y —0.
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The osculating paraboloid at O is

3= —%- (ra®+ 2szy + ty?),
whereas the Dupin indicatrix at the same point is
ra® + 2szy + ty? = 1.

[t is easy to see that the first and second fundamental forms of the
surface, and those of the osculating paraboloid at O, are the same.
Viz., the first and second fundamental forms are

dz?® + dy?
and
rda® + 2sdx dy + t dy?.

Hence, the normal curvature of a surface and its osculating parabo-
loid is the same in the same direction. Viz.,

k __rdz34-2sdxdy+tdy?
LA dz?4-dy?

We now turn to the Dupin indicatrix at O (Fig. 101), and find
the expression for the normal curvature in a direction OQ in terms
of the coordinates z and y of the point Q in

the indicatrix. We have de:dy =z : y.
Therefore,

b — ra? - 2szy -ty
T Ay
Since Qisin the indicatrix, the numerator

equals =41, and the denominator OQ?2.
Hence,

1
k,.=—0-:%,— (*)
which reveals the relation of the Dupin indicatrix to the normal
curvature, and, therefore, the origin of its second name, “the in-
dicatrix of the normal curvature”.
From the formula (*), we derive that
(i) the normal curvature of a surface in an asymptotic direction is
zero, and
(ii) the normal curvature of a surface along principal directions at-
tains extreme values.
We now take the principal directions as those of the coordinate
axes z and y. Then s = 0, and
=r(—_%___\? % \?
=r (yarrar) + ()
Putting dy = 0, we obtain k, = r, while setting dz = 0, k;, = ¢,
where %, and k, are the normal curvatures along the principal di-
rections.
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Denoting
dzl Y dz? +dy? =cos0, dy/V dz*+dy*=sin0,
we obtain the Euler formula
ky = kj, cos? 0 + Kk, sin? 9, (%)

0 being the angle made by a given direction with the principal which
is associated with k.

5. Conjugate Coordinate Lines on a Surface

The above concept of conjugate directions of a surface is related
to the Dupin indicatrix, due to which we find the equations of the
osculating paraboloid and Dupin indicatrix in an oblique coordinate
system z, y, z closely related to a parametrization of u, v. Viz., we
take r,, r, and n as the basis vectors along the coordinate axes. Let
a point O on the surface be associated with coordinates u = u,,
v = v,. The surface equation in the neighbourhood of O can be writ-
ten as

F=ry (8 —Uo) -+ (0—00) + 5 (Fuu (46— 1) 2,y (u— i) 0 —Dg)

+r,, (V—19)?) +e (u, V) [(u—ug)?+ (v—1v,)2].
We assert that the paraboloid given by the equation

2= (La®+ 2Mzy + Ny?) (*)

is osculating at O. In fact, it can be given by parametric equations
T=U—Uy, Y=V—DVp

2= (L (u—ug)® 4+ 2M (—uq) (0 —v0) + N 0 —v9)?).

It can be easily verified by computation that the paraboloid and
surface at O have the same first and second fundamental forms and,
therefore, the same normal curvature, which already fully deter-
mines an osculating paraboloid.

From the osculating paraboloid equation (), we obtain that of the
indicatrix of the normal curvature,

Lz® + 2Mzy + Ny® = 1.

As we know, for two directions dz/dy and 6z/8y to be conjugate
with respect to this curve, it is sufficient that

L dz 6z + 2M (dx 6y + dy 8z) + N dy 6y = 0.
Since dr == du, dy = dv, 6z = bu, 6y =8v at O,
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the condition for conjugacy of the directions d and § of the surface is
L du bu + 2M (du 8v + dv 8u) + N dv 6v = 0.

We call u- and v-curves conjugate if the coordinate line directions
at each point are conjugate. In the case of conjugate lines, M = 0.
Conversely, if M = 0, then the coordinate lines are conjugate. In-
deed, dv = 0 in the direction of the u-curves,and 6u = 0 in that
of the v-curves. Therefore, 2Mdu 6v = 0, with the consequence that
M = 0. Conversely, if M = 0, then 2Mdu év = 0.

A line in a surface is said to be asymptotic if its direction at each
point is asymptotic. Since the normal curvature along an asymptotic
direction is zero,

Ladu®+ 2M dudv + N d? =0,

which is just the asymptotic line equation.

If the coordinate lines on a surface are asympiotic, then L = 0, and
N = 0. Conversely, if L =0, and N = 0, then the coordinate lines
are asymptotic.,

In fact, if a u-curve is asymptotic, then L du? = 0, and L = 0.
If a v-curve is asymptotic, then Ndv® = 0, and N = 0. Conversely;
if L =0, and N = 0, then Ldu? = 0, and Ndv?® = 0, i.e., the coor-
dinate lines are asymptotic.

Due to the second fundamental form simplicity in the case of
asymptotic coordinate lines, it seems expedient to make use of the
latter in general considerations. However, it should be borne in
mind that asymptotic coordinate lines can be introduced only in
the neighbourhood of a hyperbolic point, whereas conjugate ones
in the neighbourhood of an elliptic or a hyperbolic point, and an ar-
bitrary family of coordinate lines can te taken, provided they have
no asymptotic directions.

Remark. The concept of asymptotic direction has been defined by
us in terms of the Dupin indicatrix, and related only to the case of
a hyperbolic point. Meanwhile, it is completely characterized by
the fact that the normal curvature along this direction was zero, due
to which we can extend the notion of asymptotic direction to the cases
of parabolic and planar points, assuming a direction asymptotic if
the normal curvature is zero. With this definition, we still have two
asymptotic directions at a hyperbolic point, and one at a parabolic
point, whereas, at a planar point, any direction is asymptotic.

6. Lines of Curvature

The principal directions of a surface have been defined by us as
those of the Dupin indicatrix axes. We then proved (see Sec. 4) that
principal directions are characterized by the normal curvature having
extreme values along them. Therefore, principal directions can be
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specified just by this property, and the concept of principal direction
is then extendable to planar points with no Dupin indicatrix. Since
the normal curvature is zero at a planar point in any direction, each
direction is principal.

Generally speaking, there are two principal directions at each
point of a surface, with the exception of planar and special elliptic
points with a circle as the Dupin indicatrix (spherical points), where
any direction is principal.

We now find a condition on which a direction du/dv of a surface
should be principal.

We have

11 Ldu2+2M du dv+- N dv?
I E du?+-2F du dv-}-Gdn? °

Since theright-hand side hasan extreme value for a principal direc~
tion as a functionofdu, dv, its derivatives with respect to these
variables are zeros.

kp =

Hence, .
2(Ldu+t M dv) Z(Edu-l—de)
T T I1=0,
2(Mdu+t N dv) 2 (F du+G dv) =0,
I I3 -

where I and II denote the first and second fundamental forms.
We derive

Ldu+ M dv II

E du-F dv =T =kn,
MdutNdy _ 11 _
Fdu+Gdv — I — ™™

Consequently, the principal direction equation is

Ldu- M dv . M du+N dv -0,
Edu-+F dv F du-Gdv

which can be written in a form more convenient to be committed
to memory, viz.,

dv: —dudv du?
L M N

A line on a surface is called a line of curvature if its direction is
principal at each point. Therefore, (x) is the curvature line
differential equation.

If the coordinate lines on a surface are those of curvature in a do-
main containing no planar or spherical points, then ¥ = 0, and



17) Part Two. Diflerential Geometry

M = 0. Indeed, there are two principal, orthogonal and conjugate
directions at each point. Therefore, F = 0, and M = 0.

In conclusion, we prove the following Rodrigues theorem.

In differentiating along a principal direction,

dn = —k, dr,
where k, is the normal curvature.
Proof. Introduce coordinate lines u, v so that the direction of the
u-curve at a given point is principal, and the coordinate lines are
orthogonal. Since n® = 1, we have n,n = 0, i.e., the vector n, is

perpendicular to n, and, therefore, admits a resolution in terms of
the vectors r, and r,, viz.,

n, = Ary + pr,.
Multiplying scalarly throughout by r,, and noticing that r,r, = 0
J(orthogonality), n,r, = —M = 0 (conjugacy), we obtain p = 0.
Now, multiplying throughout by r,, we get

n,r, = Ar%, ie., —L =AE,
Hence,

L
—A=%,

Jbut this is the normal curvature %k, along the direction of u.
Thus,

n, = —k,r,.

Q.E.D.
7. Mean and Gaussian Curvature of a Surface

The mean curvature of a surface is half the sum of the principal
curvatures. The total, or Gaussian, curvature of a surface is the product
-of the principal curvatures.

At an elliptic point, the principal curvatures have like signs;
therefore, the Gaussian curvature is positive. At a hyperbolic point,
the principal curvatures have unlike signs; therefore, the Gaussian
curvature is negative. At a parabolic or planar point, the Gaussian
-curvature is zero.

We now find the expression for the mean and Gaussian curvature
of a surface in terms of the first and second fundamental form coef-
ficients. In the previous section, we have derived two formulas for
‘the normal curvature along a principal direction du/dv, viz.,

b o= LdutMdv o Mdut-Ndy
n Edu+tFdv ° T Fdu4-Gdv ’

‘which can be rewritten as
Ldu+4-Mdy—Fky, (Edu+Fdy)=0,
Mdu+4 N dv—k, (Fdu+Gdv)=0.
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Eliminating du and dv, we obtain

L—~Ek, M—Fk,

M—Fk, N—Gk, ,=°'

or
(EG — F?) B, — (LG — 2FM + NE) k,, + (LN — M?) = 0.

This quadratic equation has two roots, %y and k,, the principal
curvatures of the surface.

By the property of the roots of a quadratic equation,
khp+kn _ LG—2FM-+NE
2 2(BG—FP !

e LN —M?®
knkn = "pg—pr

Such are the expressions for mean and Gaussian curvature.

The concept of total curvature was introduced by F. Gauss who
gave another definition. Viz., let P be an arbitrary point of a surface,
and g its small neighbourhood, Translate the unit normal vectors at
different points of the domain g, so that they have a common origin.
Then their ends are on the unit sphere, and form a certain set g (spher-
ical imageof g). According to F. Gauss, the total curvature of the
surface at P is the limit of the ratio of the area of g to that of g as g
is contracted to P. We show that this definition leads to the same
expression, i.e., the principal curvature product. For simplicity,
we confine ourselves to the case of an elliptic point P,

We introduce coordinate lines u, v in the neighbourhood of P,
so that their directions are principal at the point.

The domain area is

S@={ [IruArlduav,

whereas that of g
S (g) = S S [n, An,| dudv.

Since the domain of integration with respect to the variables u,
v is the same in both formulas,

. S(g _ IngAnpl
im0 = TruArel

By the Rodrigues theorem, m, = —k,r,, n,= —kyr,. Therefore,

2 S(E‘) e I L
S = ke

Q.E.D.
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8. Example of a Surface
of Constant Negative Gaussian Curvature

An example of a surface of zero Gaussian curvature is the plane.
Its normal curvature along any direction is zero. Therefore, the
Gaussian curvature is also zero.

An example of a surface of constant positive curvature is a sphere
with radius R. Its normal curvature along any direction is 1/R.
Therefore, the Gaussian curvature is 1/R2

We now construct an example of a surface
of constant negative Gaussian curvature. We
‘shall seek it among surfaces of revolution.

A surface of revolutionis obtained by rotat-
ing a plane curve aboutan axis in the plane.
Sections of a surface of revolution by planes pas-
sing through the axis are called meridians, and
those by planes perpendicular to the axis par-
allels.

Since a surface of revolution is symmetric
about the plane of any meridian, its directions
along meridians are principal. Therefore, di-
rections along parallels are also principal.

It is obvious that the normal curvature of
a surface along the direction of a meridian
is the curvature of the latter. The normal cur-
vature along the direction of a parallel is expressed in terms of its
curvature by the Meusnier formula.

Take as the z-axis that of the surface, and consider a meridian
in the zz-plane. Let its equation be x = z (z). The normal curvature
along its direction is then

”
x
kn

=T
whereas that along the parallel
1
A28’

1/z being curvature, and 1/(1 + z'2)'/2 the cosine of the angle between
the tangent to the meridian and the axisof the surface (z-axis). Hence,
the Gaussian curvature is

K = k=

._.
n= —

————x'

z(14-2'2)2 °
Multiplying throughout by zz’, we obtain
z'a"

Kea' = =Ty
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integrating, we get

1
K32+C=w )

where ¢ is a constant. To make further integration in terms of ele-
mentary functions possible, we put ¢ = 1.

Then
z'2
K.’tz = — m‘,— .
Set ' =tan 6. We have
Kx?2 = —sin20, z= 1/1—_1( sin 0.
Further,
dz 1 cos? 0 1 1 .
Tl =t g b= (o5 —sin ) do.
Hence, )

1 0
Z=T/T_K_ (co§6+lntan—§—) + 4.

The constant ¢, can be assumed to be equal to zero.
Thus, the meridian can be given parametrically as

1
V=K

The curve is called a tractriz, and the surface of constant negative
curvature obtained by rotation around the z-axis a pseudosphere
(Fig. 102).

(cose-{-ln tan—e—) .

1 .
x—ﬁSlne, 2= 3

EXERCISES TO CHAPTER XI

1. Find the first fundamental form of the surface of revolution
z =9 (u)cosv, y = ¢ (u) sinv, z =1y (u).

2. Show that a surface of revolution can be parametrized so that
its first fundamental form is du® + G (u) dv?.

3. Find the length of the curve given by u = v on the surface
whose first fundamental form is du? + sinh? u di?.

4. Find the angle at which the coordinate lines z = z,, y = y,
intersect on the surface z = axy.

5. Show that the coordinate lines u, v are orthogonal on the helicoid
xr=aucosv, Yy = ausinv, z = bv.

6. Find the curves (called loxodromes) making equal angles with
the meridians on a sphere.

7. Find the area of the quadrilateral bounded by ¥ =0, u =1,
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v=0, v=1 on the helicoid
r=ucosv, y=usinv, z=n.

8. Show that the areas of domains on the paraboloids z = % (@ +

y%), z = azy, projected onto the same domain of the zy-plane,
are equal.

9. Show that if a surface admits a parametrization such that the
first fundamental form coefficients are independent of u and v, then
the surface is locally isometric to the plane.

10. Prove that there exists a conformal mapping of a surface of
revolution onto a plane, so that the surface meridians are carried
into straight lines passing through the origin, and the parallels into
circles centred at the origin. Consider the particular case of

Z = COS u COS U, Y = COS u sin v, 2 = sin u (sphere).
11. Prove that there exists a conformal mapping of a sphere onto
a plane such that the meridians and parallels are sent into straight
lines z = const and y = const.

12. Show that there is an isometric mapping of a helicoid z =
ucosv, y=usinv, 2 =mv onto a catenoid x = acos f, y =

o sin B, z= m cosh™ %, so that the rectilinear generators of the
former correspond to the meridians of the latter.

13. Find the second fundamental form of the helix z = u cos v,
y=usinv, z2=u.

14. Find the normal curvature of a paraboloid z =§ (az? + by?)
at the point (0, 0) along the direction dx:dy.

15. Show that, for any parametrization, the second fundamental

form of the plane is identically zero and directly proportional to
the first fundamental form under any parametrization of a sphere.

16. Find asymptotic lines on the surface z=%—+—%.
17. Find asymptotic lines on the catenoid
z =coshucosv, y = coshusinv, 2 = u.

18. Show that one family of asymptotics on a helicoid consists of
straight lines, and the other of helices.

19. Prove that the coordinate u-, v-curves on a translation surface
r= U (u) + V (v) are conjugate.

20. Show that meridians and parallels of a surface of revelution
are its lines of curvature.

21. Determine the principal curvatures of a paraboloid z = axy
at the point (0, 0, 0).

22. Find the lines of curvature on the helicoid

z=ucosv, y=usinv, z=cv.
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'23. Find the mean and Gaussian curvatures of a paraboloid z =
axy at the point (0, 0, 0).

24. Prove that Gaussian curvature is positive at elliptic points
of a surface, negative at hyperbolic, and zero at parabolic and planar.

25. Show that the mean curvature of a helicoid and catenoid is
zero.

26. Prove that the Gaussian curvature of a cylindrical or conical
surface is zero.

27. Prove that the Gaussian curvature of the surface formed by
the tangents to a curve is zero.

28. Show that if the mean curvature of a surface is zero everywhere,
then the asymptotic lines are orthogonal.

29. Show that if each point on a surface is spherical, i.e., the
normal curvaturé along any direction is unaltered, then the surface
is either a sphere or part of a sphere.

30. A surface ® is said to be parallel to a surface F if it is the locus
of the ends of line segments of constant length, cut off on the nor-
mals to F, Their ends are regarded as corresponding points of the
surfaces.

Show that

(a) the tangent planes at the corresponding points of F and @ are
parallel,

and

(b) the lines of curvature of F correspond to those of @.

31. Express the mean and Gaussian curvature of a surface in
terms of those of a parallel surface.

32. Prove that a spherical mapping of a surface of zero mean cur-
vature is eonformal. ‘

Chapter XII
INTRINSIC GEOMETRY OF SURFACE

1. Gaussian Curvature as an Object
of the Intrinsic Geometry of Surfaces

By the intrinsic geometry of a surface, we understand the bramch
of geometry, which studies the properties of the surface and its
figures in relation only te the length of curves.

As to regular surfaces, we can say that their intrinsic geometry
studies properties determined by the first fundamental form. Thus,
the length of curves on a surface, angles between them and areas of
domains are objects of the intrinsic geometry. We shall now prove
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that Gaussian curvature is also an object of intrinsic geometry, since

it admits en expression in terms of the first fundamental form coeffi-
cients only.

We have
LN —M?
K= EG—F? ?
N Tyu Yuu Zyu Tor Yoo Zop
LN=TG—__’T Tu Yu 32y |*| Zu Yu 2u|.
Ty Yo 2y Ty Yo 2o

Multiplying the determinants together according to the familiar
rules, we obtain

. (ruurvv) (ruuru) (ruurv)
LN =

Fo—FT (rurpo) E F .
(rsTo0) F G
Similarly, '
(ruv)2 (ru nru) (ruvrv)
M2 = o= (rurys) E F .
(roryy) F G
Hence,
. (ruuTon) = (Fyo)?® (ryulu) (ruulo)
K= Te—FT (ruTpp) E F
(roTop) F G
0 (ruory) (ruory)
—| (ruruy) E F .
(Torun) F G
Differentiating

r2=F, rno,=F, ri=0G
with respect to u and v, we obtain

1
?Glu

1
Tyuly =_2‘Eu$ Pyoly =
l'uvru='2—‘ vy  Tuuly = u_‘2_Em

1

1
Tyol'y :=-2—G,,, rvvru=Fv‘—'2—Gu-

Now, differentiating the fifth equality with respect to v, the fourth
with respect to u, and subtracting termwise, we obtain

1 1
Tyuloo— r;z.w = 7 Guu +Fuv - Euu'
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Substituting the values found in the expression for Gaussian cur-
vature, we derive

[ (—%Guu"‘Fuv—%Ev ) ‘;—Eu (Fu _%Ev)

1 1
K= b {l (F,,——z-Gu) E F
| =Gy F G
1 1
0 +E -G
1
—|+E, E F )
el

It was F. Gauss who for the first time expressed total curvature only
in terms of the first fundamental form coefficients and their deriva-
tives.

Note that if a surface is parametrized so that its first fundamental

form is
ds? = du?® + G dv?,

then the Gaussian curvature is
1 ——
= —75' (VG)um

to see which, it suffices to make use of the above (Gauss) formula.

The expression of Gaussian curvature only in terms of the first
fundamental form coefficients and their derivatives demonstrates
that the first and second fundamental forms of a surface are not in-
dependent. The question arises naturally whether there are other
relations between the coefficients. Another two formulas obtained
by K. M. Peterson and D. Codazzi turn out to be valid, viz.,

2(EG—F? (L,— M) E E, L
' +|F F, M|=0,
—(EN —2FM +-GL) (E,—F,) |G G, N
2(EG—F? (M,—N,) E E, L
+|F F, M|=0.
—(EN—2FM +GL) (F,—G,) |G G, N

The following Bonnet theorem states that there are no other re-
lations between the first and second fundamental form coefficients.
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Let
Edu?+ 2F dudv + G dv? and L du® + 2M du dv + N dv*

be any two quadratic forms, of which the former is positive definite.
If the Gauss-Peterson-Codazzi relations hold for their coefficients, then
there exists, and is unique up to disposition in space, a surface for which
these are the first and second fundamentals forms, respectively.

2. Geodesic Lines on a Surface

A line on a surface is said to be geodesic if its principal normal
at each point where the curvature is other than zero coincides with
the normal to the surface.

We now make up the differential equation for geodesics. Let r =
r (t) be any parametrization of a geodesic. Since the vectors r’
and r" lie in the osculating plane,

(r"r'n) = 0. (*)

We can always locally take u or v as a parameter of the line. If we
take u, then

r=r, +r,
and
r" = ry, + 2ry U0+ rpv'? + orut.

Substituting these expressions in (x), and solving the equation

for v", we get

1 .
V' = T (ruu—+2r, v +rppV'?ry, +r,v'n)

which is seen to be a second-order differential equation. It follows
from the unique existence theorem for solutions to such an
equation that, along any direction, one, and only one, geodesic passes
through each point of the surface.

It is obvious that straight lines on a plane are geodesics. Since a
straight line can be drawn through any point in a plane and along
any direction, they exhaust all the plane geodesics. Similarly, great
circles, and they only, are geodesics on a sphere.

A parametrization of a surface is said to be semi-geodesic if the
coordinate lines of one family are geodesics, and those of the other
are orthogonal to the former. We now clarify what is the form of the
surface linear element with respect to such a semi-geodesic para-
metrization. E.g., let a family of u-curves consist of geodesic lines.
Then

(ruurun) = 0. (*+)

Resolve r,, in terms of non-coplanar vectors r,, r, and n.

We have

Iy, = ar, + pr, + yn. (aex%)
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Substituting this in (%), we obtain p (r,r,n) = 0, i.e., p = 0.
Multiplying (*s%) scalarly by r,, and noticing that r,r, = F =
0 (net being orthogonal), we obtain
r,.r, = pr; =0,
whereas

1 1
FuuTo = (TuTp)u -5 (r3)o= -3 E,=0.

Therefore, £ depends only on u.
We introduce a new parameter u by putting
du = VE du.
The linear element
ds* = E du® + G dv®
then takes the form
ds® = du® + G diA.
In turns out that a semi-geodesic parametrization of a surface
can be introduced always, and very much at random. Viz., if y is a
curve on a surface, then we can introduce such a semi-geodesic para-

metrization in its neighbourhood that one family of coordinate lines
consists of geodesics orthogonal to y. However, we do not give the proof.

3. Extremal Property of Geodesics

Here, we prove the following extremal property of geodesics.

A geodesic on a sufficiently small line segment is shorter than any
curve near to it, which passes through the same points.

Proof. Let y be a geodesic, P a point in it, and 4, B two of its
points near to P. We prove that any curve joining A and B, which
is near to y, will be longer than the line segment AB on ¥.

Draw through P a geodesic y perpendicular to y, and introduce
a semi-geodesic parametrization in the neighbourhood of the point.

by taking geodesics orthogonal to y as the family of u-curves.

Let y be any curve joining 4 and B in the parametrized neigh-
bourhood. Then its length is

(B) (B)
s= (Varrear > | 1dul> B —u (),
(4) (4)
where A | u (B) — u (4) | is that of the line segment AB of y.

Q.E.D.
The geodesics’ extremal property permits us to obtain their equa-.
tions as those of the variational problem for the functional

s= S V Eu't ¥ 2Fu'v’ + Gv'edt,
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containing only the first fundamental form coefficients E, F, G
and their derivatives, which means that geodesics are an object of
the intrinsic geometry of the surface.

4. Surfaces of Constant Gaussian Curvature

Let @ be a surface of constant Gaussian curvature K,’and P a

point on it. Draw an arbitrary geodesic y through P, and introduce
a semi-geodesic parametrization in its neighbourhood by taking the

geodesics orthogonal to y as the family of u-curves. The surface linear
element then assumes the form

ds® = du?® + G di2.
We take arc length along y as the parameter v. Therefore, G (0, v)=
1 along it, i.e., whenu = 0.

We show that then G, = 0 on . Sincey is a geodesic, (r,,r,n) = O.
Resolve the vector r,, in terms of r,, r,, n. We obtain

Iy, = ar, + fr, + . (%)

Substituting this for r,, in¥(r,,r,n) = 0, we get a (r,r,n) =0,
ie.,, o =0.
Multiplying (*) throughout by r,, we see that r,,r, = 0. How-

ever, TIyry, = (ryr,) —% (r3)y = —%Gu. Therefore, G, = 0 along
v, when u = 0.
The Gaussian curvature of a surface with the linear element du? 4
G dv? is known to be given by
6)
Ke — VO
Ve
Hence, for a surface of constant Gaussian curvature K, G satisfies
the differential equation

(V&) uu+ KV E=0. (**)
Consider the following three cases, viz.,
1) K>0,(2) K<0, 3) K =0.
In the first, the general form of )/ G satisfying (x#) is
VG=A @) cosV Ku+ B (v)sin Y Ku.

Since G (0, v) =1 and G, (0, v) =0, we have 4 (v) =1 and
B (v) = 0. Thus, if K >0, then there exists a parametrization of the
surface, for which the first fundamental form is

ds? = du? +4- cos? V?u dv2.
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Similarly, in the second case,
ds? = du? 4+ cosh? V:—Ku dv2.
Finally, in the third,
ds? = du? | dv®.

Hence, surfaces of the same constant Gaussian curvature are locally
isometric. In particular, surfaces of constant positive Gaussian cur-
vature K are locally isometric to a sphere]of radius 1/} K, those
of zero Gaussian curvature are locally isometric to the plane, and
those of constant negative curvature to the pseudosphere.

5. Gauss-Bonnet Theorem

Consider a curve y and its point P. The curvature of its projection
onto the tangent plane at P is said to be geodesic. For the geodesic
curvature of r = r (f), we obtain

1
K= W— (l"l‘ln).

We can see that the geodesic curvature of a geo- @
desic is zero. It turns out that geodesic curvature
is also an object of the surface intrinsic geo-
metry. Fig. 103
The following Gauss-Bonnet theorem is valid.

Let G be a domain on a surface, homeomorphic to a circle, and bound-
ed by a regular curve y. Then

inds=2n— SGS K do.

Here, integration with respect to arc length s of y is meant on the
left-hand side, and with respect to the area of G on the right, geo-
desic curvature % assumed positive, where y is convex outwards, and
negative, where it is convex inwards.

" If y is piecewise smooth with interior angles at the break points ay,
then

S ®ds-+ 2 (m—o;) =2n— S S K do,
v i G

with no smoothness violations in integrating along yp (Fig. 103).
In the case of a geodetic triangle (where the sides are geodesics),

M—0y — Oy —Oy= — S S K do.
G
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In particular,
o
ai_l_az_l..aa_n—.ﬁT

for a spherical triangle, where R is the radius of the sphere, and o
the triangle area.

6. Closed Surfaces

A simple surface is said to beclosedif it is finite and without bound-
ary.

Let F be a simple closed surface. Partition it into polygonal do-
mains g, homeomorphic to a circle, so that any two domains of the
decomposition either have no common points, or have a common ver-
tex, or a common side. Applying the Gauss-Bonnet formula to each
gr, We obtain

S w* ds 4 D) (v —of) = 2m— S S K do,
i & ,
and see that

2nfz-—SSKdo

F

on the right-hand side if we add all these equalities together term-
wise, where f, is the number of g;. The first addends on the left are
eliminated, since a side of gr is that of another gs's and x* = —xh’,
Summing up the angles o for all i and k, we obtain the angle-sum for
all the domains, which can be odne simply if we first find that of
the angles with a common vertex (equal to 2m). Therefore, the sum
of all o} is 2nfy, fo being the number of vertices in the surface par-
tition into polygonal domains.
There are as many addends m in

211 (e—af)

as there are vertices in the polygonal domain g, or, which is equiv-
alent, as there are sides in it. Hence, on adding these sums to-
‘gether, mt is counted as many times as there are sides in the decom-
position of F into gy, and then taken twice, since each belongs to
two domains of the partition. Thus, the result can be represented as

Onf, — 2nfy= 2mfy— S S K do,
F
and

o S,,S K do=f,—f,+ fo *
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The integer
XF)=fa—f+ 1 (%%)

is called the Euler characteristic of the surface. It follows from (x#)
that the Euler characteristic does not depend on the partition of a sur-
face into polygonal domains.

Defined according to (x#), the concept of Euler characteristic
makes sense for any simple surface, not necessarily regular. It can be
proved that, in the general case, too, it does not depend on the method
for partitioning the surface. Since, under a topological transforma-
tion of a surface F into a surface F’, the partition of the former into

C e
I//’-‘\\
i 'R
@
Fig. 104 Fig. 105

polygonal domains is carried into that of the latter, f,, f,, f, remain-
ing unchanged, the Euler characteristic is unaltered under a topological
transformation of a surface.

We now find the Euler characteristic of a convex polyhedron
(meaning its total area). Any convex polyhedron can be obtained
by a topological transformation of a sphere, for which it suffices
to project the latter with centre inside the former onto its surface.
Hence, the Euler characteristic of a convex polyhedron is two, and
if the number of vertices of a convex polyhedron is a,, that of edges a.,,
and that of faces ay, then

Oy — 0y + Qg = 2

{(Euler theorem).

Since a topological transformation does not alter the Euler char-
acteristic, the question naturally arises as to how well a simple sur-
face can be specified by it. It turns out that simple surfaces with the
same Euler characteristic are topologically transformable into each
other.

We illustrate by examples of different topological types of simple
surfaces. Imagine an elastic sphere with two circular holes. Pull at
their edges, and join them as shown in Fig. 104. The closed surface
obtained is called a sphere with a handle. A sphere with two or more
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handles can be obtained similarly. The Euler characteristic of a
sphere with p handles is 2 — 2p. In particular, that of the torus is
zero. It turns out that any simple closed surface can be obtained by
a topological transformation of a sphere with handles.

A handle can be attached to a sphere differently, viz., by pulling
the edge of one opening outwards, drawing it inside, and then joining
it to the edge of another hole as in Fig. 105. The obtained figure can-
not be regarded as a surface in the sense of our definition, since, as
it turns out, there is no simple surface from which the figure could be
locally obtained by a topological transformation. However, such
surfaces do exist in four-dimensional space. Therefore, taking a some-
what generalized notion of surface, we can also regard such figures
as general surfaces.

We speak of the surface constructed that it is obtained by attach-
ing to the sphere a handle of the second kind, and is unilateral, i.e.,
we can go from inside the sphere outside, and vice versa. Unilateral
surfaces are also said to be non-orientable.

EXERCISES TO CHAPTER XII

1. Given the linear element ds® = A (du® + div?) of a surface, show
that its Gaussian curvature is

K=__1_(aﬂln}»+0“‘lnk)

2\ du? ov?

2. Given the linear element ds® = du? 4 2 cos ® du dv + di? of
a surface, show that its Gaussian curvature is

Dyy
sinw °

3. Prove that if coordinate lines are those of curvature, then the
Peterson-Codazzi equations are

L,=HE, N,= HG,.

4. Prove that a surface of zero mean curvature can be parametrized
so that its first and second fundamental forms are

I =\ (du? + di?),
11 = du? — di2.

5. Show that an asymptotic geodesic line is straight.

6. Show that if a geodesic line is that of curvature, then it lies in
a plane.

7. Prove that cylindrical surface geodesics meet the rectilinear gen-
erators at the same angle.
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8. Find the geodesic lines on a surface with the linear element

du?--dv?

ds® = —_—

9. Prove that cylindrical and conical surfacesas well as those:

folrmed by the tangents to space curves are locally isometric to a
plane.

10. A sphere of unit radius is described from the vertex of a con--
vex polyhedral angle. Find the area of the contained sphere if the-
sum of the dihedral angles is a.

11. Prove that the sum of the angles of a geodetic triangle on a
surface of positive Gaussian curvature is greater than n, and less than
n on a surface of negative curvature.

12, Prove that the area of any geodetic triangle is not greater than
n/a® if it lies on a surface of negative Gaussian curvature K < —a®.

13. Find the Euler characteristic of a torus.

14. What is the Euler characteristic of a closed surface, given that
it is ?topologically equivalent to a sphere with n handles of the first
kind?



Part Three
FOUNDATIONS OF GEOMETRY

Chapter XIII
HISTORICAL SURVEY

1. Euclid’s Elements

Geometry began as an empirical science, and became especially
much developed with the Egyptians who applied it to earth measure-
ment and irrigation work.

In the first millennium B.C., the Egyptians’ geometric knowledge
'was adopted by the Greeks, thus starting a new stage. The Greek
geometers of the 7th-3rd cc.B.C. not only enriched the science
with new facts, but also took important steps towards the formula-
tion of a rigorous logical sequence.

The many-century work was summarized and systematized by
Euclid (330-275 B.C.) in his famous Elements. Euclid for the first time
introduced a strictly logical account of geometry. Its treatment was
so immaculate for his epoch that, during two thousand years since
the Elements appeared, the book has remained a unique geometry
manual. Books I-IV and VI of the whole number of thirteen were
devoted to geometry proper, and accounted for its plane chapters,
as well as Books XI-XIII embracing solid geometry. The others
contained arithmetic in geometric treatment. Each opened with a
definition of new concepts. E.g., Book 1 contained 23 definitions.

In particular,

DEFINITION 1. A point is that which has no part.

DEFINITION 2. A line is breadthless length.

DEFINITION 3. A straight line is a line which lies evenly with the
points on itself.

The definitions were followed by postulates and axioms (common
notions).

E.g.,
Postulate 1. It is postulated to draw a straight line from any point
to any point.

Postulate 5. It is postulated that, if a straight line falling on two
straight lines makes interior angles on the same side less than two right
angles, the two straight lines, if produced indefinitely, meet on that
side on which are the angles less than the two right angles.

Axiom 1. Things which are equal to the same thing are also equal
to one another.

V
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Axiom 2. If equals be added to equals, the wholes are equal.

Both postulates and axioms were assumed without proof, it re-
maining unknown by which principle some statements were taken
as postulates, and others as axioms.

Axioms were followed in a strict sequence by theorems and con-
struction problems under the general title Propositions, so that the
proof or solution of each subsequent statement was based on the
previous. Here is one of them.

If two triangles have the two sides equal to two sides respectively,
and have the angles contained by the equal straight lines equal, they
will also have the base equal to the base, the triangle will be equal
to the triangle, and the remaining angles will be equal to the remain-
ing angles respectively, namely those which the equal sides subtend.

Though the Elements have been a paragon for a very long time,
they did not at all attain the modern level of rigor. The definitions
of geometric objects in the first book were given in a manner of de-
scriptions, and not at all perfect at that. E.g., Definition 4 of a
straight line did not make it different from a circumference, whereas
Definition 2 of an arbitrary line mentioned length and breadth which
should have been defined themselves.

We must not think, however, that all the definitions preceding
the first book were defective. On the contrary, part of those, includ-
ing a circumference, triangle, right, acute and obtuse angles, were
either flawless or insignificantly imprecise, which can be easily rec-
tified. Meanwhile, if we remember that the properties of geometric
objects, described by the inaccurate definitions were never used in
proof, then they can be omitted without any detriment to the ac-
count.

As to the postulates and axioms, their formulations were irre-
proachable, the statements essential, and formed the basis for the
subsequent proofs.

Finally, we turn just to them. The proofs of all the propositions,
as conceived by the author of the Elements, had to be eventually
based on the geometric object properties determined by the postu-
lates and axioms. However, even cursory familiarity with Euclid’s
proofs shows that a number of such properties and relations among
geometric objects could not be clarified either by postulates or axi-
oms. E.g., in the proof for the above-mentioned proposition on the
congruence of triangles, Euclid made use of a motion, and referred
in some others to the properties of mutual disposition of points on a
straight line, expressed by the term “between”.

The question naturally arises if we can free the Euclidean proofs
of this defect by possibly replacing them with others based only
on postulates and axioms. The answer has been obtained comparative-
1y not long ago. It turned out that this could be done only by a suit-
able completion of the Euclidean postulates and axioms.
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2. Attempts to Prove the Fifth Postulate

Certain of the above defects of the Elements have already been
noticed by the ancient Greeks, due to which attempts to improve
the treatment were made. The principal goal was to reduce the Eu~
clidean postulate and axiom system to minimum.

The natural way to solve the problem is in deducing some of the
postulates and axioms from the others. The Elements were just in
this way stripped of the fourth postu-
late (where the equality of all right angles
was meant).

However, all the efforts to get rid of
the fifth postulate were of no avail,
though geometers have tried to do it for
more than two thousand years. The typi-

Fig. 106 cal mistake of most of its proofs was either

purposeful or accidental use of some or

other statement not explicitly contained in the remaining postu-
lates and axioms, and not following from them.

E.g., here is the proof of Proclus.

Given a + B << 2d (Fig. 106), prcve that the straight lines g"
and g" meet at a certain poini C.

Draw through the point A a straight line g” parallel to g'. Take
a point B on g”, and drop the perpendicular to g” from it. Since the
distance from g” increases without limit as that between B and 4
grows, and the distance between g’ and g" is.constant, there is a
point C on g" belonging to g’. This is just where g’ and g” meet.

The property of parallel straight lines, to which we have resorted
in the proof, is not explicitly contained in the other postulates or
axioms. Moreover, it cannot be deduced from them.

The fifth postulate can be proved on the basis of a great many
other statements.

E.g.,

(i) All perpendiculars to one side of an acute angle cut its other side.

(ii) There exist similar triangles which are not congruent.

(iii) There exist triangles of arbitrarily large area.

(iv) There exist triangles whose angle-sum is equal to two right angles.

(v) Through a point outside a given straight line, not more tham
one parallel line can be drawn.

Though the attempts to prove the fifth postulate did not lead
to the desired result, they undoubtedly played a positive part ip
the development of geometry, often enriching it with new interesting
theorems whose proofs were not based on the fifth postulate. One
of them proved by A. Legendre states that the sum of the angles of
any triangle is not greater than two right angles.
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3. Discovery of Non-Euclidean Geometry

‘One of the methods to which many geometers of the 18th c.
and the first half of the 19th ¢. resorted in hope to prove the fifth
postulate consisted in replacing it by its negation or some other
statement equivalent to the negation. All possible propositions logi-
cally following from the postulate and axiom system so altered were
then proved similarly to the method used in the Elements. If the
£ifth postulate does, in fact, follow from the other postulates and
axioms, then the postulate and axiom system so formed is self-con-
tradictory. Therefore, we shall sooner or later come to two mutually
exclusive results, thus proving the fifth postulate.

G. Saccheri, J. Lambert and A. Legendre tried to prove it exactly
in this manner.

The first one considered a rectangle with two right base angles and
equal non-adjacent sides (Fig. 107). There can be three hypotheses

Fig. {107 Fig. 108

regarding the other two "angles which are obviously equal, viz.,
that they are right, obtuse or acute. He proved that the right-angle
hypothesis and fifth postulate were equivalent, i.e., the latter could
be proved on postulating the former and vice versa. Having postu-
lated the obtuse-angle hypothesis, G. Saccheri came to a contradic-
tion, and, finally, postulated that of acute angles, deriving various
«corollaries which are absurd from the point of view of customary
geometric ideas. E.g., parallel lines either possess only one common
perpendicular, on both sides of which they diverge without limit, or
have none, and, approaching each other asymptotically in one direction,
diverge in the other without limit.

G. Saccheri made no conclusion that a contradiction was obtained
only because of the derived results being contrary to the usual ideas
about straight line disposition, and was stubbornly looking for a
iogical absurdity. Such a contradiction was eventually “found” by
him—however, due to a computational error.

A similar construction was considered by J. Lambert who took a
quadrilateral with three right angles (Fig. 108), and, similarly to
G. Saccheri, investigated the three hypotheses for the angle at the
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fourth vertex. Proving that the right-angle hypothesis is equivalent
to the fifth postulate, that of an obtuse angle is impossible, and, having
postulated the acute-angle conjecture similarly to G. Saccheri, he
obtained numerous corollaries which reveal paradoxical properties
of straight line disposition.

Nevertheless, as well as G. Saccheri, J. Lambert did not see any
contradiction. He could not find any logical contradiction either;
still, the acute-angle hypothesis was not rejected.

Developing corollaries to the acute-angle hypothesis, J. Lambert
discovered that they were analogous to the geometry on the sphere,
and expressed the correct conjecture for this hypothesis “to be valid
on some imaginary sphere”. Among the 17th c. geometers, it was
J. Lambert who stood nearest to the correct solution of the fifth-
postulate problem.

In his “proof” of the fifth postulate, A. Legendre considered the
following three hypotheses regarding the angle-sum of a triangle, viz.,

(i) The sum of the angles of a triangle is equal to two right angles.

(ii) The sum of the angles of a triangle is greater than two right
angles.

(iii) The sum of the angles of a triangle is less than two right angles.

He proved that the first hypethesis is equivalent to the fifth postu-
late, and that the second one is impossible. Finally, accepting the
third hypothesis, he also came to a contradictionbyimplicitly mak-
ing use of the fifth postulate through one of its equivalents.

The great Russian mathematician N.I. Lobachevsky (1792-1856)
who is honoured for the discovery of a new geometry, Lobachevskiar:
geometry, also began with an attempt to prove the fifth postulate.

As is shown above (Sec. 2), one of the fifth postulate equivalents
is in the statement that not more than one straight line parallel to
a given one passes through an outside point. N.I. Lobachevsky
replaced the fifth postulate by the following.

At least two straight lines not intersecting a given one pass through
an outside point.

Similarly to his predecessors, N.I. Lobachevsky hoped to find
a contradiction in the Euclidean corollary system so altered. How-
ever, having developed his theory to make it on par with the Elements
in contents, N.I. Lobachevsky saw that the system was non-contra-
dictory, and draw a remarkable conclusion regarding the existence
of a geometry different from Euclidean, with the fifth postulate
not holding. It all happened in 1826.

At first glance, N.I. Lobachevsky’s conclusion may seem insuffi-
ciently well-founded. In fact, how can it be guaranteed that there
would be no contradiction if we developed his theory further? Never-
theless, the same can be also applied to Euclidean geometry, so that,
from the standpoint of logical comnsistency, both geometries are
equivalent. Moreover, subsequent investigations have shown that
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they are closely related, with the logical consistency of one depending
on that of the other.

Thus, both Euclidean and Lobachevskian geometries are equiva-
lent as logical systems. Which of them reflects space relations in the
surrounding world better can be found only by experience. N.I. Lo-
bachevsky understood this himself, and measured the angle-sum of
an astronomical triangle to the purpose.

N.I. Lobachevsky was the first, but not the only geometer, who
discovered the existence of a geometry different from Euclidean.

The new geometry was also discovered by F. Gauss who wrote
about it in his letters.

Three years after N.I. Lobachevsky's work had seen the light,
the Hungarian mathematician J. Bolyai (1822-1860), being unaware
of his predecessor’s research, published a paper with an account of
the same theory, but in a less developed form.

4. Works on the Foundations of Geometry
in the Second Half of the 19th Century

Not many of N.I. Lobachevsky's contemporaries understood him,
and agreed with his discovery. The majority, among whom there
were many great mathematicians, treated it sceptically.

The universal recognition of Lobachevskian geometry was con-
siderably assisted by the after-Lobachevsky geometers, and, first of
all, by E. Beltrami (1862) who proved that the Lobachevsky plane:
geometry is valid on a surface of constant negative curvature if hyper-
bolic lines are thought of as geodesics, while a motion is understood.
in the sense of isometric mapping of the surface onto itself.

This was a proof that Lobachevskian geometry is non-contradic-
tory. Indeed, a contradiction in it would correspond in the above
interpretation to that in the theory of Euclidean surfaces, i.e., to
one in Euclidean geometry.

A vulnerable point in the proof of Lobachevskian geometry con-
sistency, if it is based on the Beltrami interpretation is, as D. Hil-
bert had demonstrated, that there exists no complete Euclidean
surface of constant negative curvature without singularities, and,
therefore, the geometry of only part of the Lobachevsky plane can
be interpreted on it. The drawback was eliminated in the later
models by H. Poincaré and F. Klein.

F. Klein interpreted hyperbolic plane geometry inside a circle
in the Euclidean plane, where its chords are understood as straight.
lines, and motions as collineations preserving the circumference.
The proof on the basis of this interpretation that Lobachevskiam
geometry is consistent will be seen to be irreproachable. We reproduce
it in Ch. XV,
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At the same time, it is the substantiation of the fifth postulate
independence from the other Euclidean postulates and axioms. In
fact, if the fifth postulate were a corollary to the other postulates or
axioms, then Lobachevskian geometry would be contradictory as
containing two mutually exclusive statements, the Lobachevskian
.and Euclidean fifth postulates.

The general tendency to mathematical rigor, which marked all
works in the second half of the 19th c., and the solution to the
“fifth postulate problem made geometers subject the geometric axiom
.system to a thorough investigation. The researches showed that
the Euclidean axioms are not at all perfect, first of all because they
are incomplete. As we shall see later, they omit a number of axiom
groups absolutely necessary for strict proofs, and the Euclidean
axiom system was then completed with lacking axioms. Thus,
M. Pasch (1882) supplied the Euclidean axiomatics with the axioms
of order. One of tham now bears his name.

The Euclidean axiom study was completed by D. Hllbert in 1899,
The axiom system given by D. Hilbert consists of five groups, viz.,
axioms of incidence, axioms of order, congruence axioms, axioms of
.continuity and the parallel axiom, all referring to objects of three
kinds, i.e., points, straight lines, planes, and the three relations
among them, expressed by the terms “incident”, “between” and
“‘congruent”. What is a point, straight line or plane, and what is the
true meaning of the above relations, was not made precise. Every-
thing assumed as known is expressed by the axioms, and the geo-
metry constructed thus admits concrete realizations which can go
very far from the usual ideas.

D. Hilbert subjected this system of axioms to a very profound
and comprehensive investigation. In particular, he proved that it
is non-contradictory if arithmetic is non-contradictory. Further,
besides that of parallelism, he showed the independence of certain
.other axioms, and, finally, investigated the problem of how far a
-geometry can be developed if some or other axiom groups into which
the whole system is divided are taken as its basis.

D. Hilbert almost completed the many-century work on the found-
ations of elementary geometry. It was very highly assessed by the
contemporaries, and awarded the Lobachevsky prize in 1903.

5. System of Axioms for Euclidean Geometry
according to D. Hilbert

The system of axioms for Euclidean geometry according to D. Hil-
bert consists of five groups, viz., axioms of incidence, axioms of
.order, axioms of congruence, the parallel axiom and axioms of con-
tinuity.
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Axioms of incidence determine the properties of mutual disposition
of points, straight lines and planes, expressed by the term “incident”
or some equivalent ones.

I,. For any two points 4 and B, there is a straight line incident
with each of these points.

I,. For any two points 4 and B, there exists not more than one
straight line incident with each.

I;. There exist at least two points in a straight line. There exist
at least three points not in the same straight line.

I,. For any three points 4, B and C not in the same straight line,
there exists a plane incident with each. For any plane, there always
exists a point incident with it.

I;. For any three points A, B, C not in the same straight line,
there exists not more than one plane incident with these points.

Is. If two points A and B of a straight line a are in a plane «,
then every point of a is in that plane.

I,. If a point A4 is in two planes a and B, then there exists at least
one other point B in « and f.

Is. There exist at least four points not in a plane.

Axioms of order express the properties of mutual disposition of
points in a straight line or plane, determining the concept “between”.

I1,. If a point B is between points 4 and C, then A, B and C
are distinct points, and B is also between C and A4.

II,. For any two points 4 and C, there exists at least one point
B in the straight line AC, so that C is between A and B.

IT5. Of any three points in a straight line, not more than one is
between the other two. .

The term “between” for points in a straight line permits us to
define the concept of line segment in the usual manner.

I1,. Let A, B and C be three non-collinear points, and a a line
in the plane ABC, which does not contain 4, B or C. Then if a con-
tains a point of the segment AB, a will also contain a point of the
segment AC or a point of the segment BC (Pasch axiom).

The axioms of congruence determine the concept of “congruence”,
or equality, for line segments and angles.

II1,. If A and B are two distinct points in a straight line @, and
A’ a point in the same or another line a’, then there exists a point
B’ on the same side of a’ as A’, so that the line segment AB is con-
gruent to the line segment A’B’.

III,. If two line segments are congruent to a third, then they are
congruent to each other.

III;. Let AB and BC be two segments on a line a such that AB
and BC share only the point B in common. Furthermore, let A'B’
and B'C' be segments on line a’ such that A’B’ and B'C’ share only
B’ in common. Then if AB is congruent to A’'B’ and BC is congruent
to B'C’', we have AC congruent to 4'C’.
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An angle is defined as a figure consisting of two different rays
emanating from the same point.

I1I,. One, and only one, angle congruent to a given angle can be
marked off a given half line into a given half-plane determined by
this half line and its extension.

Ik If AB= A,B,, AC = A,C, and LA = L A, in two triangles
ABC and A,;B\C,, then /B = /B, LC=/,C,.

"IV. Parallel axiom. Let a be an arbitrary straight line, and 4
an outside point; then there exists not more than one straight line
through A4, not intersecting a in the plane determined by a and A.

The axioms of continuity.

V, (Archimedes’ axiom). Let AB and CD be two line segments.
Then there exist a finite number of points 4,, 4,, ..., 4, in the
straight line AB, so that the line segments 44,, 4,4,,..., A4,
are congruent to CD, and the point B is between 4 and 4,. .

V., (Aziom of linear completeness). The set of points in a straight
line, satisfying axioms of order, the first axiom of congruence and
Archimedes’ axiom, does not admit any extension, i.e., no points
can be added to this set, so that all the axioms hold.

Chapter XIV

SYSTEM OF AXIOMS FOR EUCLIDEAN GEOMETRY
AND THEIR IMMEDIATE COROLLARIES

1. Basic Concepts

It is rather complicated to give Euclidean geometry deductive
structure on the basis of the Euclid-Hilbert axioms. Difficulties
arise almost at once, in introducing the concept of measure of line
segments and angles; accordingly, we resort to another axiom system
where these problems are eliminated.

In our treatment, the basic concepts are a point, straight line
and plane, the relation of incidence for points, straight lines and
planes, expressed by the term “incident”, that of order for points
in a straight line, expressed by the terms “between”, “length” for
line segments and “measure of angles in degrees”. These concepts
are not defined, and everything assumed known about them is given
axiomatically.

The dxiom system which we shall employ mostly coincides with
the axiomatics of the school geometry course; however, it is some-
what weakened. In particular, the axiom of marking off a line
segment ‘of given length on a half-line from its origin is replaced
by the weaker axiom of existence of a line segment of given length,



Ch. XIV. System of Axioms for Euclidean Geometry 195

and the axiom of constructing an angle is omitted at all. Their
introduction at school is due to purely methodological reasons, and
aimed at the simplicity of the treatment at the beginning of the
course.

For convenience, we first formulate axioms for the plane, and
then introduce the group of axioms C for space. The axioms for the
plane are naturally divided into groups in accordance with the basic
concepts of incidence, order and measure.

2. Axioms of Incidence

The axioms of incidence determine the properties of mutual
disposition of points and straight lines, given by the term “incident”.
Meanwhile, the expression “a point is incident with a straight line”,
“a point lies in a straight line” and “a straight line passes through a
point” are assumed to be equivalent.

If a point is incident with two straight lines, then we will say
that they intersect at the point, or that it is the point of their
intersection.

The group of the axioms of incidence includes the following two.

Axiom I;. For any two points, there exists one, and only one,
straight line passing through them.

Axiom I,. In each straight line, there are at least two points. There
exist three points not in the same straight line.

It follows from Axiom I, that two straight lines either do not inter-
sect or intersect only at one point. In fact, if they had at least two
intersection points, the straight lines would pass through these
points, which is contrary to Axiom I,. According to the latter, only
one straight line passes through any two points. It follows that a
straight line is completely determined by specifying two of its
points, thus making it possible to denote a straight line by two points
(e.g., a straight line AB).

It follows from Axiom I, that, for any straight line, there exists
a point not in this line. Indeed, of the three points whose existence
is stated by Axiom I,, at least one is outside the given straight line.

The axiom corresponding to Axiom I,, and given in the school
treatment of the subject, requires that there should be points (there-
fore, at least two) in each straight line, and that there should be
points outside it. In this form, the axiom is taken by the student
as something that goes without saying. The statement in the form
of I, with two points in a straight line may cause confusion, since
the visual image of a straight line assumes the existence of an infinite
set of points in it and outside.
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3. Axioms of Order

The axioms of order express the properties of mutual disposition
of points in straight lines and planes. Meanwhile, the relation of
mutual disposition of points in a straight line is used and expressed
by the term “between”.

Axiom II,. Of any three points in a straight line, one, and only
one, is between the other two.

The expression “a point B is between points 4 and C” is equivalent
to “a point B separates the points A and C”, or “the points 4 and C
are on opposite sides of the point B”. If B separates 4 and C, then
according to Axiom II,, 4 does not separate B and C. Instead, B
and C can be said to lie on the same side of A.

The concept of straight line segment is introduced by means of
that of “between” for points in a straight line. Viz., part of the straight
line between two points 4 and B, i.e., the set of its points between
A and B, is called the line segment AB.

Axiom II,. A straight line separates the set of points in a plane,
which are not incident with it, into two subsets (half-planes), so
that the line segment joining two points in one half-plane does not
meet the straight line, whereas the line segment joining two points in
different half-planes does meet it.

We call part of a straight line AB consisting of all those points
which are on the same side of the point A along with the point B,
the half-line, or ray, AB. A is called the origin of the half-line.

Draw through the origin 4 of the half-line'AB any straight line a
different from the straight line AB. Then the half-line AB consists
of those, and only those, points of the straight line AB, which are in the
same half-plane as the point B with respect to a. In fact, for any straight
line a, any line segment of the straight line AB can intersect a
only at A. It follows that if X is a point in the half-line AB, then
the segment BX does not intersect a, i.e., X and B are in the same
half-plane. If X is a point in the straight line 4B in the same half-
plane with B, then the segment BX does not intersect a; therefore,
X and B are on the same side of 4, i.e., X belongs to the half-line
AB, and the statement is thus proved.

A point A in a straight line a divides this straight line into two half-
lines, and is the origin of each. The points in one half-line are not
separated by A, whereas those in different half-lines are separated by it.
For proof, it suffices to draw through A4 a straight line b different
from a. Then parts of a¢ in different half-planes with respect to b
are just the half-lines in question. The half-lines of one straight
line with the common origin are said to be complementary.

A half-line is completely determined by specifying its origin
and some other point, which justifies the notation of a half-line by
two points (e.g., a half-line AB), the origin placed first.
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A triangle is a figure consisting of three points not in one straight
line, and three line segments joining the points pairwise. The points
are called the vertices of the triangle, and the line segments joining
them its sides.

It follows from Axiom II, that if a straight line not passing through
any vertex of a triangle intersects one of its sides, then it intersects one,
and only one, of the other two sides.

In fact, let ABC be a triangle, and a a straight line intersecting
its side AB. The points A and B are in different half-planes with
respect to a. The point C is in one of them. If C is in the same half-
plane with 4, then a does not intersect the line seginent AC, but does
intersect the line segment BC. If C is in the same half-plane with B,
then a does not intersect BC, but does intersect AC. In both cases,
a intersects one, and only one, of the sides AC or BC of the triangle.
This theorem is taken in the Hilbert axiomatics as an axiom, and
called the Pasch axiom.

4. Axioms of Measure for Line Segments
and Angles

Axiom III,. Each line segment is of length greater than zero. If
a point C is in a line segment A B, then its length is equal to the sum
of those of the line segments AC and BC.

Introducing this axiom into the school course, we rely on the
student’s understanding how a line segment is measured by means
of some known tool, e.g., a ruler with scale marks. However, it
should be borne in mind that Axiom III;, does not at all assume
any measurement. It only states the possibility to associate any
line segment with a number (its length), so that the conditions of
the axiom are fulfilled.

On the other hand, we should not think that the length of a line
segment whose existence is stated by Axiom III, is something differ-
ent from what we obtain by making measurements in the usual way.
Nevertheless, this requires proof (see Ch. XVIII, Sec. 1).

Axiom III, permits us to introduce coordinates on a straight line,
i.e., associate each point in the line with a real number, so that if
z (4) and z (B) are the coordinates of two points A and B, then the
length of the line segment AB equals | x (B) — z (4) |.

In fact, let O be a point in the straight line. We associate it with
zero as its coordinate. O divides the straight line into two half-lines.
We agree to call one of them the positive side of O, and the other
the negative side of 0. Now, if a point A is on the positive side, then
its coordinate x (4) is the length of the line segment O4; if A is
on the negative side, then its coordinate is a negative number whose
absolute value is the length of OA.
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We show that the length of the line segment AB equals
|z (B) — z (A) |. If the points A4 and B are in different half-lines,
then the length of AB equals the sum of those of 04 and OB. There-
fore, AB = |z (B) — z (A) |. Assume that A and B are on the
same side, e.g., positive. Of the three points O, A and B, one lies
between the other two. It cannot be O, since A and B are in one half-
line. Hence, this is either A or B, e.g., B. Then the length of 04
equals the sum of those of OB and BA. Therefore, the length of AB
equalsz (4) —z (B) = |z (BY —z (4) |-
The other cases of mutual disposition of
O, A and B are considered similarly.

An angle is a figure formed by two dif-
ferent half-lines called its sides, with a
common origin called its vertex. If the
. sides of an angle are complementary half-
lines of one straight line, then the angle
is said to be straight.

We will say that a rayc is between the

Fig. 109 sides of an angle (ab) if it emanates from

its vertex; .and intersects some line seg-

ment with the end-points on the angle sides. In the case of a

straight angle, we assume that any ray emanating from its vertex,
and different from its sides, is between the sides of the angle.

It is easy to see that if a ray is between the sides of an angle, then
it intersects any line segment with the ends on the sides of the angle
(Fig. 109). In fact, by definition, a ray ¢ intersects some line segment
AB whose ends are on the angle sides. Let CD be another such line
segment. Applying the Pasch theorem to the triangle ABC, straight
line containing ¢, triangle BCD and the straight line again, we con-
clude consecutively that-C meets BC and CD.

Axiom III,. Each angle has a certain measure in degrees greater
than zero. A straight angle has 180°. If a ray ¢ is between the sides
of an angle (ab), then the measure in degrees equals the sum of those
of the angles (ac) and (bc).

We note the following theorem.

If we mark off on a half-line a arnd its extension two angles (ab)
and (ac) lying in the same half-plane, then either the ray c is between
the sides of (ab), or the ray b is between the sides of (ac). In any case,
(be) = | (ac) — (ad) |.

Proof. Take a point 4 in the ray a, a point 4, in its complement,
and a point C in the ray ¢. The straight line containing the ray &
intersects the side 44, of the triangle ACA,; therefore, by the Pasch
theorem, it intersects either the side AC or the side 4,C just with b,
since the complementary ray is in the other half-plane. If b
intersects the line segment AC (Fig. 110a), then it is between the sides
of the angle (ac), with (ac) = (ab) + (bc). Hence, (bc) = (ac) — (abd).
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Assume that b intersects 4,C at a point D (Fig. 110b). Applying
the Pasch theorem to the triangle ADA, and straight line containing
¢, we conclude that ¢ intersects the line segment AD, and, therefore,

()

Fig. 110

is between the sides of (ab). Meanwhile, (ab) = (ac) + (bc); hence,
(be) = | (ac) — (ab) |, and the theorem is thus proved completely.

5. Axiom of Existence
of a Triangle Congruent to a Given One

Two lines are called equal (or congruent) if they are of equal length.
Two angles are called equal: (or congruent) if they have the same mea-
sure in degrees. Two triangles ABC and A4,B,C, are called congruent if
LA=/LA, L B=/B,, LC=/,C,, AB= A,B,, BC = B,(,,
AC = A,C,. Briefly, it is expressed by saying that twe triangles are
congruent if the corresponding sides and corresponding angles are equal.
The correspondence between the vertices and sides of congruent
triangles is reflected in the notation of their vertices. If we say that
a triangle ABC is congruent to a triangle 4,B,C,, then the correspond-
ing vertices are A and 4,, B and By, C and C}, and the corresponding
sides AB and A,B,, AC and A,C,, BC and B,C,. To designate the
congruence of triangles, the usual symbol will be wused (e.g.,
AABC = AA,B,C,). Meanwhile, it is important in what order
the vertices are written. AABC = AA,B,C, means that /A4 =
LA, /LB= LBI, ..., whereas AABC = AB;A,C, quite a
different fact, viz.,/ A = /.B,,/.B=/A4,,

Axiom IV. Let ABC be a triangle, and a a “half-line. Then there
exists a triangle 4,B,C, congruent to the triangle ABC, in which
the vertex A, coincides with the origin of the ray a, the vertex B,
is in a, and the vertex C, is in the given half-line with respect to the
straight line containing a.

It follows that we can mark off one, and only one, line segment equal
to a given one from the origin of a given half-line.

In fact, let @ be a given half-line, and AB a given line segment.
Take a point C outside the straight line 4B. By Axiom IV, there
exists a triangle 4,B,C, congruent to the triangle ABC, in which
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A, is the origin of the ray a, and the vertex B, is in the ray. The
line segment A,B, equals the line segment AB, since AABC =
AA,B,(C,.

We now prove the uniqueness of the line segment. Assume that
we can mark off two line segments OX and OY equal to a given
one, and, therefore, equal to each other, on a half-line with the
origin 0. Of the three points O, X and Y, one lies between the other
two. This cannot be O, since X and Y are not separated by the origin
of the half-line. If this is X, then OY = OX 4 XY, which is impossi-
ble, since OX = 0Y, and XY > 0. It is proved similarly that ¥
cannot lie between O and X; a contradiction, and the statement is
thus proved.

It follows from Axiom IV that one, and only one, angle equal to a
given one can be marked off on a given half-line into the half-plane
determined by this half-line and its extension.

In fact, let ABC be the given angle. By Axiom 1V, there exists
a triangle 4,B,C, congruent to the triangle ABC, in which A, coin-
cides with the origin of the ray, the vertex B, is in the ray, and the
vertex C, is in the given half-plane. The angle 4,B,C, equals the
angle ABC, since AABC = AMA,B,C,.

To prove the uniqueness, we assume that two angles (ab) and
(ac) equal to the given angle can be marked off on the half-line a.
We know that then (be) = | (ac) — (ab) | = 0, which is contrary
to the positiveness of the angle (bc) measured in degrees, and the
uniqueness is thus proved.

6. Axiom of Existence
of a Line Segment of Given Length

Axiom V. For any real number d > 0, there exists a line segment
of length d.

It follows from Axiom V that one, and only one, line segment of
any prescribed length can be marked off on any half-line from itsorigin.

In fact, by Axiom V, there exists some line segment AB of given
length. It was shown in the previous section that one, and only one,
line segment equal to AB can be marked off from the origin of a
given half-line.

It also follows that the introduction of coordinates on a straight
line establishes a one-to-one correspondence between its points and
real numbers. Indeed, since a line segment of any prescribed length
can be marked off on the positive and negative sides of the origin O,
then a mapping of the set of points in the straight line onto the set of
real numbers, under which the points in the straight line are associated
with their coordinates, is one-to-one.

We now prove the following theorem:

For any real number 8 <<180°, one, and only one, angle (ab) whose
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measure in degrees is 0 can be marked off vn a given half-line a into a
given half-plane.

Proof. First of all, we notice that there are angles whose measures
in degrees may be arbitrarily small. In fact, let ABC be any angle
other than straight, and a its measure in degrees. Take a point D
in the line segment AC. Then L ABC = £/ ABD + / CBD. There-
fore, the measure of at least one of
L ABD and £ CBD is in degrees not
greater than a/2. The existence of an
angle whose measure in degrees is not
greater than a/4, etc., is proved similar-
ly. Thus, there exist angles whose
measure in degrees may be arbitrarily & o A a
small. Fie. 111

Now, let a, be the ray complemen- &
tary to a ray a (Fig. 111).

Mark off an angle (a,b,) less than 180° — 0 on a, into the given
half-plane. By the property of supplementary angles, the angle
(ab,) is greater than 0.

Take a point A on a, and a point B, on the ray b;. Let X be an
arbitrary point of the segment AB,. Denote by M (0) the set of
those points X of AB,, for which the angle AOX is not greater than 0.
Let d be the supremum of the lengths of the segments 4X if X —
M (0), and X, such a point of the segment that AX,=d (Fig. 111).
We state that the angle AOX, equals 0.

Assume that £ A0X, = a << 0. Mark off on the half-line 0X,
into the half-plane with the point B, a sufficiently small angle X ,0X’
less than the angle X,0B,, and less than 6 — a. Then the angle
AOX' is less than 0, which is impossible, since AX' > AX, = d,
and the point X'is incident with M (9).

Assume now that ZAO0X, = a > 0. Mark off a sufficiently small
angle X,0X’ on the half-line OX, into the half-plane with A4, less
than the angle X,04, and less than a — 0. Then the angle 40X’
is greater than 6. By definition of X, there exist points X" arbitrar-
ily near to it so that the angle AOX" is not greater than 6. The point
X' is in the line segment X"A. Therefore, the angle 40X’ is less
than 0; a contradiction. Thus, the angle AOX, is equal to 0. Its
uniqueness has been proved earlier.

The complexity of the above proof, and it can hardly be made
essentially simpler, accounts for the fact that, in the school treat-
ment, this statement is taken as an axiom.

Accordingly, the question naturally arises, can the axiom of
marking off on a half-line a line segment of given length be omitted
in the school axiomatics, too, and not replaced by a weaker axiom
of the existence of a line segment of given length? It turns out that
this cannot be done (see the proof in Ch. XV),
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7. Parallel Axiom

Two straight lines on a plane are said to be parallel if they do
not meet. :

Axiom VI, Through a point not in a given straight line, not more
than one straight line parallel to the given passes in the plane.

It follows that the property of parallelism of straight lines is tran-
sitive. Viz., if a straight’line a is parallel to a straight line b, and b
is parallel to a straight line ¢, then a is parallel to c. In fact if a
and ¢ met, then two straight lines parallel to b, viz., a and ¢, would
pass through the point of their intersection, which is contrary to
Axiom VI.

It also follows from Axiom VI, that if a straight line intersects
one of two parallel straight lines, then it also intersects the other. In
fact, let a straight line ¢ intersect one of two parallel straight lines a
and b, say, b, but not intersect the other, i.e., a. Then two straight
lines parallel to a, viz., b and ¢, pass through the point where b
and ¢ meet, which is contrary to ‘Axiom- VI.

8. Axioms for Space

Axiom C,. For any' plane, there exist points incident with it,
and points not incident with it.

Axiom C,. If two distinct planes have a ])omt in common, then
they intersect in a straight line.

Axiom C,. If two distinct straight.lines have a point in common,
then there is one, and only one, plane through them.

Note several corollaries to the axioms for space.

There is one, and only one, plane through a straight line and an
outside point.

Proof. Let a be the glven straight lme and B a point not in it
(Fig. 112). Take a point A in a. Such a point exists by Axiom I,.
Draw a straight line b through 4 and B (Axiom I,). The lines ¢ and b
are different, since B of b does not lie in a. The lines ¢ and b also
have a common point, A. Draw a plane a through @ and b (Axiom Cg).
It passes through ¢ and B.

We now show that, passing through ¢ and B, o is unique. Assume
that there exists another plane o’ passing through ¢ and B, and
different from o.. By Axiom C,, @ and o’ intersect in a straight line.
Therefore, any three points common to o and o’ are in a straight
line. But B and any two points in ¢ are sure not to-be in one straight
line. The contradiction completely proves the theorem.

If two points in a straight line lie in a plane, then the whole
line lies in the plane.

Proof. Let a be a given straight line, and o a given plane (Fig. 113).
By Axiom I,, there exists a point A not in a. Draw a plane a’ through
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a and A. If o’ coincides with &, then o contains a, which is just
what is stated by the theorem. If o' is different from a, then they
intersect in a straight line a’ containing two points of a. By Axiom I,,

'Fig. 112 Fig. 113

a' coincides with a; therefore, a is in a, thus completing the proof.

One, and only one, plane can-be drawn through three points not in
the same straight line.

Proof. Let A, B, C be the three given points not in the same
straight line (Fig. 114). Draw the straight lines AB and AC. They
are different, since A, B and C are not in the same straight line.
By Axiom Cj, a plane containing 4, B, C can be drawn through 4B
and AC. -

Prove that the plane o passing through 4, B and C is unique. In
fact, the plane passing through 4, B and C contains AB and AC,
and is unique by Axiom C,.

Chapter XV

INVESTIGATION OF EUCLIDEAN GEOMETRY AXIOMS

1. Preliminaries

In connection with the axiomatic construction of Euclidean
geometry, three questions naturally arise, viz.,

1. Is the axiom system adopted consistent, i.e., can two mutually
exclusive corollaries not be derived by logical argument?

2. Is the axiom system complete, i.e., can it not be completed
with new axioms consistent with, and not following from the already
adopted?

3. Are the adopted axioms independent, i.e., do certain axioms
not follow from the others?

The solution to these problems, given in the present chapter, is
closely related to the construction of concrete models of an axiom
system. A model consists in the indication of quantities of three
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kinds of arbitrary nature, symbolically named “points”, “straight
lines” and “planes”, and relations among them symbolically expressed
by the terms “incident”, “between” and “measure”, for which the
axioms are fulfilled due to their concrete character.

As a matter of fact, the basic notions of geometry are not defined,
and everything we know of them is expressed in axioms. Therefore,
all our conclusions regard quantities of arbitrary nature, provided
the axioms are fulfilled for them and for the relations among them
(which can also be very much different from the visual imagery).

To prove the axiom system consistency is to show that at least
one of its models exists. To prove that a given axiom is in-
dependent means to indicate a model in which all the other
axioms except the given one hold. Finally, the proof that some or
other axiom system is complete can be performed by showing the
isomorphism of all models, i.e., establishing such a one-to-one
correspondence between their points, straight lines and planes that
the corresponding elements are in similar relations.

2. Cartesian Model of Euclidean Geometry

We now indicate one of the Euclidean geometry models called
Cartesian. For simplicity, we will construct this model on the plane.
It can be easily seen, however, that a similar construction is also
valid for a system in space.

We call any pair of real numbers z, y taken in order (z, y) a point,
and the numbers themselves its coordinates. The set of all points
whose coordinates satisfy a linear equation

ar +by +¢=0, a*®+ b2£0

is called a straight line. The equation is called the equation of the
straight line. The straight lines x = 0 and y = 0 are called the
coordinate axes, whereas the point (0, 0) the origin.

We will say that a point belongs to a straight line if it is one of its
points, i.e., its coordinates satisfy the equation of the straight line.

We show that, with such a concrete understanding of basic con-
cepts, the axioms of incidence hold for Euclidean geometry.

Axiom I, which is valid here states that one, and only one, straight
line can be drawn through two points. In fact, let (z;, y;) and (z,, ys)
be the two given points.

The straight line determined by the equation

—z)@s—y)— @ —y) g — ) =0

passes through them, since their coordinates satisfy it. To prove
its uniqueness, we assume that two straight lines

ax +by+c=0, azrxz+by-+c¢ =0
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pass through (z,, y,) and (z,, y,). Since these two simultaneous
equations have two solutions z,, y, and z,, y,, they are dependent,
i.e., different only by a multiplier, and the straight lines coincide.
Axiom I, which also holds here states that at least two points are
in each straight line, and that there exist three points not in one
straight line.
In fact, let

ax +by +¢c=0

be the equation of a straight line. Then at least one of the coefficients
a, b, say, b, is other than zero. We take two arbitrary numbers z,
and z, (2, 5~ z,), and find y, and y, by the formulas

Y1 = _ax_1b-|_-__c_, y2=_ax2b—-|—c

The points (z;, y,) and (z,, y,) lie in our straight line.

To prove the existence of three points not lying in the same
straight line, we take (0, 0), (0, 1) and (1, 0). In fact, assume that
they are in a certain line ax + by + ¢ = 0. Substituting their
coordinates in the equation, we obtain consecutively that ¢ = 0,
b =0 and a = 0. However, a? + b%? must be other than zero, and
the contradiction proves the thorem.

3. “Betweenness’” Relation
for Points in a Straight Line.
Verification of the Axioms of Order

We now define the term “between” for the points in a straight
line. Let ax + by + ¢ = 0 be the equation of a straight line, and
(21, y4), (2, y5) and (x4, y5) three points in it. In the case where b 5= 0,
we will say that (x5, y;) is between (x,, y,) and (x,, y,) if the differ-
ences r; — z3 and rg — &, have the same signs, i.e., the number x4
is between z, and z,. For a 5= 0, we will say that (z3, y;) is between
(zy, y,) and (z,, y,) when the differences y, — y3; and y; — y, have
the same signs. To make the given definition correct, it is required
that both defining methods should be equivalent if a = 0 and b % 0.

We now prove this equivalence.

If b5<0, then

ary+c . azy+c azg-}c
b v Y= — b y Y= — b

Y= —

Vhi—Ys= _-Z-(xi_xs)’ Ys—Y= “‘% (23— ,).

We see that if #, — x3 and z3 — z, have the same signs, then
Yy — Ys and y3 — y, also have the same signs, and definition equiv-
alence is thus proved.
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We now verify that the axioms of order hold. Axiom II, states
that one, and only one, point of three in a straight line is between
the other two. Let ax 4 by + ¢ = 0 be the equation of the straight
line, and (z,, y,), (z3, ¥,), (x5, ys) three points in it. Assume that
b 5= 0 in the equation. It follows that z,, x,, z; are all different.
Indeed, if z; = z,, then

Y= — a.tlb+c —_ ax2+c _——

i.e., (z;, y,) and (z,, y,) coincide, whereas we mean three different
points. Thus, all z,, z,, z; are different. Place them in .ascending
order. For definiteness, let r, <<z, << ;. Then the differences
zy — &; and z; — z, have the same signs; therefore, (z,, y,) is be-
tween (z,, y,) and (x5, y3). The differences £, — z, and 2, — x5 have
different signs. Hence, (x5, y5) does not lie between (z,, y,) and (z,, y,).
The differences z; — ;3 and z, — z, also have different signs. There-
fore, (z,, y,) does not lie between (z,, y,) and (x5, y3) either. Thus,
of three points in a straight line, one, and only one, lies between the
other two.

We now verify that plane-separation Axiom II, also holds. Let
ax -+ by 4+ ¢ = 0 be the equation of the straight line in question.
We will say that a point (z, y) in the plane, not incident with az -+
by +c¢ =0, is in the first half-plane if ax + by + ¢ >0, and
in the second if ax + by + ¢ << 0. The axiom states that if two
points 4, (z,, y,) and A4, (x,, y,) lie in the same half-plane, then the
line segment A;4, does not meet the straight line. If they are in
different half-planes, then the line segment does intersect the straight
line.

We show that our plane separation into two half-planes possesses
this property. In fact, let ax + Py + y = O be the equation of the
straight line joining 4, to 4,. Suppose, for definitiness, that p = 0.
Then z;, < x << z, Or 2, << x << z, for all points (z, y) of the line

segment A,A4,. Substitute their coordinates x and y = — % (ax + 9)

in ax + by + c. We obtain a linear function of 2: f (x) = ¢,z + c,.
If A, and A, are in the same half-plane, then f (x,) and f (x,) have
the same signs; therefore, f () preserves sign in the whole interval
(x,, z;), which means that 4,4, does not intersect ax + by + ¢ =
0. However, if A; and A, are in different half-planes, then f (z,)
and f (z,) have different signs; therefore, f (x) vanishes in (z,, z,),
and 4,4, intersects the straight line. The case p = 0 (then a = 0)
is considered similarly. Thus, the axioms of order do hold in the
Cartesian model.
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4. Length of a Segment. Verification
of the Axiom of Measure for Line Segments

The number

A=V @—2P T G—

is called the distance between two points (z,, y,) and (z,, y,) in the
Cartesian model.

The length of a line segment is the distance between its ends.

To verify that the axiom of measure for line segments (Axiom 11I,)
holds in the Cartesian model, we notice, first of all, that each seg-
ment has certain length greater than zero. Let 4 (,, y,) and B (z,, y5)
be two points in a straight line, and C (z;, y;) a point between them
and in the same straight line. We prove that the length of the line
segment AB equals the sum of those of the segments AC and BC.
Let y = px + q be the straight line equation. Since C is between
A and B, either z, <zy <<z, Oor 2, >z3> 1z, E.g., let z; <
T3 < Zo.

We have

Y1 =p2, +4q, Yy =px;+4q, Ys=pTs-+q.
The length of ab equals

V @a— 22+ Wa— )%=V (&, — z,)%+ (pz;— pz,)?
= (2, —xy) V1+P2-

Similarly, that of AC is (x;—x,) YV 1+ p?, and (z,—x5) YV 1+ p?
of BC. We see that the length of AB equals the sum of those of AC
and BC; thus, Axiom III, holds in the Cartesian model.

For the distances between points in the Cartesian model, the
triangle inequality is valid. Viz., the distance between two points is
not greater than the sum of their distances from a third point, and is
necessarily less if these three points are not in the same straight line.

Proof. Let a, b, ¢ and d be any four non-negative numbers.

We have

a®d* 4 b%c® > 2abed,

equality occurring only if ad = be. Add a%c® 4+ b%d? to both sides,
and take the square root.
We obtain

V @+ 5% (2 +d? >ac -+ bd.

Doubling, we then add a® 4 b® + ¢* 4 d®* to both sides, and
again take the square root.
We get

Vate+Ve+E=Ve+a*+ @+
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Now, we put e =23 — 2, b=ys— Yy, c =2, — 23, d=
Y — Y3 Then the distance between (z,, y,) and (z,, y,) is on the
right, whereas the sum of their distances from (z,, y;) on the left.
Inequality turns into equality only if ad = be, or if

(zs — 21) W2 — ¥s) = (x93 — z3) (ys — W),
i.e., our points are in the same straight line
(zs — 7) (y2 — ys) = (xs — z5) (ys — V),

the coordinates of any of them satisfying the equation.
A motion in the Cartesian model is a transformation given by
formulas of the form

' =ax + by + ¢,
y' = —bx + ay + 4,

where the constants a and b are such that a®2 + b = 1. We see by
straightforward verification that motions form a group, which means
that a transformation inverse to a motion is a motion, two motions
performed one after the other also yield a motion, and the identity
transformation (¢’ = z, y’ = y) is again a motion.

It is verified immediately that a motion preserves distances between
points.

It follows from the triangle inequality that a motion transforms
straight lines into straight lines, half-lines into half-lines, and
line segments into line segments.

5. Measure of Angles in Degrees. Verification of Axiom III,

We define the measure of angles in degrees in the Cartesian model.
First of all, we assume that the measure of a straight angle is 180°.
Consider an angle at the origin with sides in the half-plane > 0
and the equations

y="hkz, y=kaz (x>0).
Then

*

0— 180]5

is the measure of our angle in degrees.

We now define the measure of an angle in degrees if it is in general
position. Let ABC be an angle other than straight. Let ax -+ by -
¢ = 0 be the equation of the straight line AC. Without loss of

T2

dt
*Here, we understand S I—_i_—tg by m.
00
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generality, we can assume that a®> + b®> = 1. The motion given by
the formulas

2 =ax + by + ¢

y = —bz + ay
transforms AC into the y-axis. Then, applying the motion given by
4z =z + o,y =y + P, we can send the vertex of the angle B
into the origin by carrying out these two motions one after the
other with a convenient choice of @ and f. Meanwhile, AC will be
transformed into a straight line 2 = const. We can shift AC into
the half-plane £ > 0 by the choice of sign in the second motion for-
mula. Thus, the angle ABC is transformed by a motion into an
angle with vertex at the origin and sides in the half-plane z > 0.
It is the measure of this angle in degrees that we take for the angle
ABC.

To see that the above definition of the measure of an angle ABC
in degrees is correct, we have to prove its independence of a motion
transforming ABC into an angle in the indicated position. To show
that this is really so, we suppose the angle 4BC is transformed into
an angle 4,0C,, and into an angle 4,0C, by another metion. Since
all motions form a group, the angle 4,0C, is transformed by a motion
into the angle 4,0C,.

Lety = ki, y = kzz (z > 0) be the equations of the sides of the
angle 4,0C,, and 2’ = az + By, ¥y = —Pz + ay the motion
transforming it into the angle 4,0C,. To find the equations of the
sides of the latter angle, we solve the formulas specifying the motion
for z and y, and obtain z = az’ — By’, y = Pz’ + ay’, substituting
which in the side equations for the angle 4,0C;, we obtain those
for the angle 4,0C,, viz.,

’ [} , ak
y=kiz, kj=-an=t —B

Phta -
’. k
=k, k= gk:+£
The measure of the angle 4,0C; in degrees is
180 h\*
n |J 1422 )
k1
and that of the angle 4,0C,
180
l S 1+
ki

It is easy to see that they are equal..In fact, it suffices to notice

that a change of the variable by the formula v = at—

Bt _'_2 trans-
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forms one expression into the other, and the definition correctness
for the measure of an angle in degrees is thus proved.

Now, suppose we have an angle (ab) and a ray ¢ between its sides,
intersecting some line segment with ends on them. Perform a motion
under which the angle is transformed into an angle (a,b,) with vertex
at the origin and sides in the half-plane z > 0. The ray ¢ is then
transformed into a ray ¢, between the sides of (a,b,). Therefore,
the verification of Axiom III, is reduced to the case where the vertex
of the angle is at the origin, and the sides are in the half-plane
z>0.

For check, we suppose that y = %z (xr > 0) is a half-line between
the sides of the angle y = kx, y = k,z (x > 0), which intersect the
straight line z = 1 at the points (1, k) and (1, k,). The half-line
meets the line segment with the ends at these points; therefore, % is
between k; and k,.

We have
R ke kg
180 S dt -+180 3 dt 180 (1 dt
T 1412 { 1427 =n hj 1422
1

Since both addends on the left-hand side have the same signs,

7Y kg
120 S 4 180 S — 18 l( dt
1+t2 n 1—|—t’l JTFED

-
pe

which means that the measure of the angle in degrees is equal to the
sum of those of the angles formed by y = kx (x > 0) and its sides.
Thus, Axiom III, holds in the Cartesian model.

6. Validity of the Other Axioms
in the Cartesian Model

We now verify that Axiom IV of existence of a triangle congruent
to a given one holds for a given disposition with respect to a half-
line. Let ABC be the given triangle, and PQ the half-line. It is
required to prove the existence of a triangle A4,B,C, congruent to
the triangle ABC, so that the vertex A, coincides with the origin
of PQ, the vertex B, is in this half-line, and the vertex C; in the
given half-plane with respect to PQ.

Let axr + by + ¢ = 0 be the equation of the straight line AB.
Without loss of generality, we can assume that a®> + b* = 1. The
motion specified by the formulas

+z =azx+ by +c¢
+y = —bzx + ay + A
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transforms AB into the y-axis. We cansend the point 4 into the origin,
the point B onto the half-axis y > 0, and transform the half-plane
containing the point C into the half-plane z > 0 with respect to
AB by a convenient choice of A and the signs of «’ and y’. We denote
the obtained motion by S.

Now, let a2z + b,y + ¢; = 0- be the equation of the straight
line PQ The motion given by the formulas

+2' = ax + by + ¢
+y = —bzt+ay+p

transforms PQ into the y-axis. By a convenient choice of p and the
signs of 2’ and y’, we can send the point P into the origin, the point Q
onto the half—axns y > 0, and transform the given half-plane with
respect to PQ into the half—plane z > 0. We denote the obtained
motion by H, and the inverse by H™.

Perform the motions S and H-%.one after the other. The triangle
ABC is then transformed into a triangle A,B,C; with the given
disposition relative to the half-line PQ. It remains to prove that
they are congruent. Since the motion preserves distances, their
corresponding sides are congruent. We now show that the correspond-
ing angles are congruent. To find the measure of the angle 4,B,C,
in degrees, we transform it by a motion into an angle 4,0C, with
vertex at the origin and sides in the half-plane z > 0.

We take as the measure of the angle A4,B;C, in degrees that of
the angle 4,0C,, for which we have a formula (see Sec. 5). Since
the angle ABC is transformed by a motion into the angle A,B,C,,
and the latter into the angle 4,0C,, the angle ABC is transformed
by a motion jnto the angle 4,0C,, and, therefore, has the same
measure as the angle 4,B,C,. Thus, they are congruent. The con-
gruence of the other corresponding angles of the trlangles ABC and

A,B,C, is proved similarly. The val1d1ty of Axiom IV in the Car-
tesian model is proved.

That Axiom V of the existence of a line segment of any given
length d holds in the Cartesian model is sufficiently obvious. In
fact, the line segment with ends at the points (0, 0) and (d, 0) has
length Y/ (@ — 0)2 + (0 — 0)2 = 4.

To verify that the parallel axiom holds, we prove that, in the
Cartesian model, not more than one straight line can be drawn parallel
to a straight line az + by + ¢ = 0 through an outside point (z,, ¥,)-
Assume that there are two such lines e,z + by + ¢, = 0, az +
b,y + ¢, = 0 passing through (z,, yo), and parallel to the given line,
i.e., never meeting it. Then both pairs of simultaneous equations

ax+by+e =0 aux+by+ec=0
ax +by +c¢c=0 ar +by +¢c=0




212 Part Three. Foundations of Geometry

are inconsistent, or have no solutions. Therefore,
ay by
a b

a; by

b =0.

Hence, a; b,
=0.
. . a; b,
Since the simultaneous equations

oz + by +c¢ =0

as + bay +¢c3 =0
have a solution x = z,, y = y,, they are dependent, and differ only
by a multiplier, which means that the straight lines are coincident
contrary to the assumption. Thus, the validity of this axiom in the
Cartesian model is proved.

7. Consistency and Completeness
of the Euclidean Geometry Axiom System

The system of axioms for any theory T, and, in particular, for
Euclidean geometry, is consistent if it admits at least one model R.

In fact, if two mutually exclusive corollaries could be derived
from the system of axioms for T', then this would be also possible
for R. Since the validity of each statement in R, corresponding to
an axiom in 7, seems doubtless due to the nature of the objects in R
and the relations among them, to obtain two such corollaries in R
is impossible. Hence the impossibility to come to a contradiction
in T.

We have already constructed one model of Euclidean geometry,
viz., Cartesian. The method was to indicate a system of objects
called points and straight lines, and a system of relations among
them, so that all the statements contained in the Euclidean geometry
axiom system were valid. The conclusion that they are, in fact,
true was made on the basis of the corresponding theorems related
to the theory of real numbers. Since they are, eventually, deducible
from the axioms for arithmetic, we can warrant the Cartesian model
construction, provided that the arithmetic axiom system is consis-
tent. Thus, we obtain a solution to the problem of the Euclidean
geometry axiom system consistency in the following form.

The Euclidean geometry axiom system is consistent if the arithmetic
axiom system is.

We now turn to the problem of an axiom system completeness.
Consider two models R’ and R” of a certain theory 7. We call them
isomorphic if their elements can be put into a one-to-one correspond-
ence preserving the axiomatically determined relations.

An axiom system 7T is said to be complete if no new axioms can be
added, which do not follow from those of T, and are consistent
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with them. We certainly assume that the new axioms do not in-
troduce any new relations, and that the new system so formed admits
a model. The problem of an axiom system completeness is inti-
mately related to that of an isomorphism of all its models. Viz., if
all models of an axiom system T are isomorphic, then it is complete.

Indeed, let an axiom system T be incomplete, which means that
there is a certain statement a not deducible from the axioms of T,
and consistent with them. Meanwhile, two consistent axiom systems

T’ and T” can be formed by adding to T the axiom a or its negation a.
Let R’ and R” be two models of 7' and T”, each of which is, at

the same time, that of 7. Since a is valid in T’, and a in 7", these
models of T are not isomorphic, and the statement is thus proved.

The Euclidean geometry axiom system is complete, i.e., no new
axioms regarding points, straight lines or planes and the relations
among them, determined by the azioms, can be added, so that they do
not follow from the already adopted axioms, and are consistent with
them. ’ ' ’

For proof, it suffices to establish that all models of Euclidean
geometry are isomorphic. Since it is obvious that two models iso-
morphic to a third are isomorphic to each other, it suffices to prave
the isomorphism of all models of the Cartesian one.

We now establish such an isomorphism. Let R be any model of
Euclidean plane geometry. Introduce rectangular Cartesian coordi-
nates on the plane as is done in analytic geometry (Part One). Each
straight line on the plane is known to be given by a linear equation
axr + by + ¢ = 0, and each such equation to be that of a certain
straight line.

It is also known that the mutual disposition of three points in
a straight line, expressed by the term “between”, leads to a certain
relation among the point coordinates. Viz., if a point (z, y) is between
(z;, y,) and (z,, y,), then either z is between z, and z,, or y is between
y, and y, or both.

For the distance between (2, y;), (z., ¥5) in rectangular Cartesian

coordinates, the formula V (zs — 2,)® + (y; — y,)° is deduced,
and the concept of motion introduced as of a distance-preserving
transformation, for which the formulas

2 =ax + by +¢
+y = —bz +ay + ¢
are obtained. It is proved, meanwhile, that measures of angles in
degrees are preserved under motions.
All the above is well-known from analytic geometry (see Part One).
Associate a point (z, y) in the Cartesian model with a point in

the model R with coordinates x and y, while a straight line ax 4
by +¢ =0 in the Cartesian model with that in R, given by

@ + b* = 1)
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the same equation. We assert that this one-to-one correspondence
between the Cartesian model points and straight lines and those in R
is an isomorphism. In fact, if a point 4 is in a straight line a in the
Cartesian model, and A’, a’ are the corresponding point and straight
line in R, then A’ is in a’. If three points 4, B, C in the Cartesian
model are on a straight line, and B is between A and C, then the
corresponding points A’, B’, C' are positioned similarly in R, i.e.,
B’ is between A’ and C’. The corresponding line segments of the
Cartesian model and R are equally long, as expressed by the same
formula in terms of the end-point coordinates.

We show that the corresponding angles in the Cartesian model and
R are of the same measure in degrees. First of all, we notice that
motions are given by the same formulas, and preserve measures in
degrees. Transform by a motion the corresponding angles of our
models into those with sides

y=xtan0,, y==ztan6,, x>0, —i‘-<01, 62<-£

Then the measure of the angle in degrees is | 0, — 0, | 180° in R,
whereas that of the corresponding angle

%0—| 59 T =5 ten”t (tan 6y

— tan™ (tan 0,)| = |0,

We see that the measures of the corresponding angles in degrees
are the same in both models.

Thus, the established correspondence between points and straight
lines of the Cartesian model and R is an isomorphism, whence all
the Euclidean geometry axiom system models are isomorphic; there-
fore, the axiom system is complete.

8. Independence of the Axiom of Existence
of a Line Segment of Given Length

An axiom a of a theory T with axiomatic construction is said to
be independent if it cannot be derived as a corollary to the other
axioms. The usual method for the proof of independence of some
or other axiom « is in the construction of a model R of the system
of axioms for T without a, in which @ would not be valid. If such
a model is constructed, then a is independent.

Indeed, if a were obtained as a corollary to the remaining axioms,
then the statement a would also hold in R, which is contrary to its
construction.
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It is just in this way that we prove the independence of the axiom
of existence of a line segment of given length from the remaining
Euclidean geometry axioms. We prove the following theorem.

The axiom of existence of a line segment of given length is indepen-
dent, i.e., it cannot be obtained as a corollary to the other Euclidean
geometry axioms.

Proof. Let G be a set of real numbers, containing all rational,
and also all those obtained from the rational by a finite number of
additions, subtractions, multiplications, divisions and square-root
operations. It is evident that the sum, difference, product, quotient
of two numbers from G, and also the square root of any non-negative
number, are again in G. It is known also that the numbers from G
do not exhaust all real numbers. Moreover, G is at most countable,
whereas the set of all real numbers is uncountable.

We now construct the Cartesian model of Euclidean geometry as
before, but only with the elements from G.

Thus, we call a pair of numbers (z, y) from G a point, and the set
of points satisfying any linear equation ax 4 by + ¢ = 0 with
coefficients in G a straight line. The relation of order for points in a
straight line is, as before, defined in terms of the point coordinates.
A motion is a transformation given by formulas of the form

r =ar+by+e £y =-—br+ay+d @+ b =1)

with coefficients in G. The length of a line segment and the measure
of an angle in degrees are defined as before verbatim.

We can now start verifying the axioms. All the proofs given in
connection with the Cartesian model of Euclidean geometry (see
Secs. 2-8) are repeated verbatim except that for the axiom of exist-
ence of a line segment of given length, since it does not hold at all.

Indeed, the length of any segment is the distance between its end-
points, and is determined by the formula

V(xz_ xg)2+ (Yo — Y1) %

Since the values z,, y,, ;, ¥, are in G, the length of the segment
is also in G. The axiom of existence of a line segment of given length
states that, for any real number d, there is a line segment of length d.
Since the numbers from G do not exhaust all real numbers, there is
a value d that cannot be the length of any segment. Therefore, the
axiom of existence of a line segment of given length does nothold
in the model constructed, and, hence, this axiom does not depend
on the others in Euclidean geometry.
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9. Independence of the Parallel Axiom

The parallel axiom for Euclidean geometry is independent, i.e.,
cannot be deduced from the other axioms.

Proof. According to the general method for the axiom independ-
ence proof, it suffices to construct such a model of the Euclidean
geometry axiom system without the parallel axiom that it does not
hold. We shall now construct such a model, for simplicity confining
ourselves to the system of axioms for the plane.

By a point, we understand any point in the Euclidean plane
inside the unit circle

2+ <A,

and by a straight line any chord of the circle. The incidence and
order relations are understood to be the same as in Euclidean geo-

metry.
By a motion, we mean a transformation of the forms
z' =ax+ by
24 p2—
:I:y'=—bx—}—ay (a +b_1) (*)
or
’ 1-— 2 ’
d=tEE v bt e

and also any transformation obtained by performing two in (*) and
(%) one after the other.

It is obvious that the motions form a group. The transformations
(*) and (+x) send the circle 2% + y®2<<1 into itself, it being
obvious for (), and easily verifiable for (x%), since 2’2 4 y'2 << 1.
Hence, any motion transforms the circle «* + y* << 1 into itself.

It is seen by straightforward check that any motion can be given
by formulas of the form

s oZ+biyte s __ 0%+ boy+co
T ="wtoyte ' ¥ T atbyte ()
(denominators being the same).

Hence, by a motion, straight lines are transformed into straight
lines. In fact, let a straight line 2 be given by an equation Az +
By + C = 0. Solving (%#%) for z, y, and substituting them in
Az 4+ By + C = 0, we obtain a linear equation A'z’ + B'y’ +
C’'=0 in 2’ and y’, which means that & is transformed into a straight
line k' with this equation.

A motion preserves the order of points in a straight line. In fact,
for definiteness, let B0 and B’ =0 in the equations of two
straight lines %~ and A’. Substituting

Az4-C
"
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in the first formula of (¥**), we obtain
o — o+

=35
which establishes the relation between the coordinate z of a point
in » and the coordinate z’ of the corresponding point in h', viz.,
dz' __ ad—Py
z T (yz+98)2 "

We see that dx’/dx preserves sign. Therefore, 2’ is a monotonic func-
tion of z, which means that if, for three points z;, <<z, < z, in h,
then either z; << z; << x, or z; > z; > z, in k' for the corresponding:
points, and motions preserve the order of points in straight lines.

Since, under a motion, straight lines are transformed into straight.
lines, and the order of points is preserved, line segments are trans-
formed into line segments, and rays into rays.

We define the distance between two points 4 (z,, y,) and B (z,, y,)
as follows. The straight line AB meets the circumference 2 + y* =
1 at two points C (z;3, y,) and D (z,, y,). We call the value

Iln ( T3—2Ty . Ty—T )
ZTg—Tg . Zy—2y

the distance between A and B if z, 5~ z,, or a similar expression,
replacing z by y, if y, 5= y,. In the case where z, 5~ z,, and y, 5= y,,
we can use any formula with the same result. As a matter of fact,
for z, 5= z,, y; 5= Y5, @ 5= 0 and b 5% 0 in the equation ax + by +

¢c=0 of AB. Hence, z = —iya"'—c. If we substitute y for =
by means of the latter expression, then we obtain
Iln =¥ . VU )l
Ys—VYs Yas—Ys
Motions preserve distances. Indeed, let a motion send two points.

A (z;, y,) and B (zz, y2) into A (1, yl) and B’ (z;, y;). The distance
between A and B

d=|1n ( T3—2 ., Ty—y )
T3—2xg ° Ty—Zy

9,
whereas that between 4’ and B’

z§—2x) 2 —21
d’ =l In ( f 1 1 )I
:ca—x, Ty—2xg

The relation between the coordinate z of a peint in AB and the
coordinate z’ of the corresponding point in A’B’ is known to be
established by the formula

. oz+P
r= yz+96 °
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Substituting it in the formula for d’, we obtain after a simple
calculation that d' = d, i.e., the distance between two points is
preserved under a motion.

The measure of an angle in degrees is defined as for the Cartesian
model (see Sec. 5), with the only difference that a motion is under-
stood here in the sense of the above definition.

The measure of an angle in degrees is preserved under a motion.

We should now verify that the axioms hold in the model construct-
ed. That the axioms of incidence and order are valid is quite
obvious. That the axiom of measure for line segments holds follows
from the law of logarithms

Inab =1lna 4+ Inb.

That the axiom of measure is true for angles is verified verbatim
as in the Cartesian model, the motion understood in the sense of the
above definition.

The verification of the axiom of existence of a triangle congruent
to a given one is done as for the Cartesian model.

To verify the axiom of existence of a line segment of given length,
consider a segment with ends at points (0, 0) and (z, 0), [In 117:::
in length. It is evident that any number d can be thus obtained by
a convenient choice of z.

In a word, all the axioms for Euclidean geometry hold in the
constructed model except the parallel axiom. In fact, through a
given point in a circle, we can draw an infinite number of chords
not intersecting a given one. It is the construction of this model that
proves the independence of the parallel axiom from the other Euclid-
ean geometry axioms.

10. Lobachevskian Geometry

We have proved that the parallel axiom does not depend on the
other Euclidean geometry axioms. It follows that the former can be
replaced by its negation in the Euclidean geometry axiom system.
The axiom system so formed is also consistent, since it does admit
a model (see Sec. 9). The corresponding geometry is said to be Loba-
chevskian. Thus, Lobachevskian geometry axiom system consists
of that for Euclidean geometry, the parallel axiom replaced by
the Lobachevskian. Viz., through every point not in a straight line,
there are at least two straight lines not intersecting it.

It turns out that the system of axioms for Lobachevskian geometry
is complete; therefore, the latter can be studied in any of its models.
The one obtained in the previous section is due to F. Klein, and
often called the Klein model of Lobachevskian geometry.
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In Lobachevskian geometry, a whole pencil of straight lines
not intersecting a given straight line passes through a given outside
point. Its extreme lines are said to be parallel to the given in the
sense of Lobachevsky. Straight lines parallel in the sense of Loba-
chevsky are represented in the Klein model as chords with a common
end.

We now clarify how perpendicular straight lines are represented
in the Klein model. If they intersect at the centre of the circle, then
their perpendicularity in the
sense of Lobachevsky implies the
usual perpendicularity in the
sense of Euclidean geometry
(Fig. 115a). In the case where
straight lines do not meet at the
centre, their perpendicularity in
the sense of Lobachevsky means
that the tangents at the ends of (a) (b)
one chord intersect at the exten-
sion of the other (Fig. 115b). We Fig. 115
give the proof later.

Knowing how to find the distance between points in the Klein
model, we can find the distance ds between two arbitrarily near points
(z, y) and (z + dz, y + dy), or the linear element of the Lobachevsky
plane. Omitting the necessary argumentation, we only give the
final result, viz.,

2 2__ — 2
ds® —¢ dz?4dy2 —(x dy —y dz)
1—az2—y2

L}

where ¢ is a positive constant.

Considering the linear element ds? as that of a surface in Euclidean
space, we clarify what is characteristic of the surface. Accordingly,
we find its Gaussian curvature. By the Gauss formula (Ch. XI,
Sec. 7) for Gaussian curvature in terms of the linear element coef-
ficients, we get K = —c. Thus, the Lobachevsky plane is locally iso-
metric to a surface of constant negative curvature, and we obtain another
model of Lobachevskian geometry. This was constructed by
E. Beltrami.

We now establish what straight lines are in the Beltrami model.
Their characteristic property is that they are the shortest. Since
a mapping of the Lobachevsky plane onto a surface of constant
negative curvature is isometric, the Lobachevsky straight lines on a
surface of constant negative curvature in the Beltrami model
are geodesic lines. The distance between points in the Beltrami model
is the length of the geodesic segment joining them.

What is a motion in the Beltrami model? It is a distance-preserving,
or isometric, transformation of the surface.
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A good number of the Euclidean geometry theorems also hold in
Lobachevskian geometry, e.g., on the sum of supplementary angles
and congruence of vertically opposite angles, tests of congruence of
triangles, etc. Still, there are certain theorems in Lobachevskian
geometry, not being true for Euclidean geometry. We illustrate by
several examples.

In Lobachevskian geometry, the sum of the angles of a triangle is
less than 180°.

In Lobachevskian geometry, there exist no triangles of arbitrarily
large area.

In Lobachevskian geometry, there are no similar or congruent tri-
angles.

We now prove them by means of the Beltrami model.

By the Gauss-Bonnet theorem,

a+p+y—a= Ko, (+)

where o, B, y are the angles of a triangle (in radians), ¢ is its area,
and K a negative constant. Since K << 0, we have o + f + y < =,
and the first theorem is thus proved.

To prove the second statement, we remember that

o= 2Bt y—x
% .

Since o, B, y >0, we have 0 < n/| K |, i.e., the area of any

triangle is bounded by =n/| K |, and the second theorem is also

proved.
For the proof of the third theorem, we assume that

LA =LA, /LB=/B, /C=/,C
A,B, = kAB, A,C, = kAC, B,C, = kBC, k<1

for two triangles ABC and A,B,C,. Move the triangle 4,B,C, so
that its vertex A, coincides with 4, the vertex B, is on the side 4B,
and the vertex C, is on the side AC. The triangle 4,B,C, is then
inside the triangle ABC, and, therefore, is of less area. But the
area of a triangle is expressed in terms of its angle-sum by the for-
mula (x), whereas the corresponding angles of our triangles are
congruent; a contradiction, and the third theorem is proved as well.

We now give another model of Lobachevskian geometry, the
Poincaré model. Project the Klein circle 2> + y2 << 1 onto the
hemisphere 2% + y%> + 22 = 1, 2 > 0 by straight lines parallel to
the z-axis, and, in turn, the hemisphere onto the yz-plane from the
point (1, 0, 0). We then obtain a mapping of the circle 22 + y%* << 1
onto the half-plane of the yz-plane (z > 0).

We now clarify into what the circle chords, i.e., Lobachevsky
straight lines, will be transformed. A point (z, y) in the circle is

under the first projection sent into the point.(z, y, V1 — 2® — y?)
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on the hemisphere. To find the trace of (z, y) on the yz-plane under
the second projection, consider the projecting line given by the
equations

and intersecting the yz-plane at the point

= - - Y
2=0, y=—I7, s=—o VI-Z—p"
We have
5, 2 A—2® 14z
y2+22= e = 1=z
Hence,
_tpR 5 o
T 1yt

Let a chord be given by the equation

ax + by + ¢ = 0.

Substituting the expression for z and y, we obtain the equation
of the curve into which the chord is sent under the mapping in
question, viz.,

a(—1+12+2) +2by+c(t+y*+2) =0,

or

(c+a) @2 +2)+2by+(—a+¢c) =0, 2>0.

If ¢ 4+ a 5= 0, then it is the equation of a semi-circle with centre
on the y-axis. If ¢ 4+ a = 0, then it is that of a straight line per-
pendicular to the y-axis (Fig. 116). Thus,
the Lobachevsky straight lines are re-
presented in the Poincaré model by semi-
circles with centres on the half-plane
boundary and by straight lines perpendic-
ular to it.

If, according to  (%«), the vari- Fig. 116

ables y andz are introduced into the
linear element ds® of the Lobachevsky plane instead of xz and y,
then, as computations show, it can be reduced to the form
dst— Ptz
z2
Since dy® + dz® is the linear element of the yz-plane, a mapping
of the Lobachevsky plane onto the Poincaré half-plane is conformal.
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In conclusion, we notice that Lobachevsky motions correspond
in the Poincaré model to inversions with respect to circles with
centres on the boundary of the half-plane, translations parallel to
the half-plane boundary, and similarities with respect to centres
on the half-plane boundary.

Chapter XVI

PROJECTIVE GEOMETRY

1. Axioms of Incidence for Projective Geometry

Projective geometry originated in the first half of the 19th c.,
and is related to the name of the French geometer V. Poncelet
(1788-1867) who delineated the subject matter of projective geometry,
i.e., the properties of figures and of related quantities invariant
under any projection.

Projective geometry was also much developed by M. Chasles
(1793-1880) and J. Steiner (1769-1863). Thanks to the works of
K. Staudt (1798-1867), the science was freed of the concept of metric,
foreign to it, and was turned into a discipline only studying the
properties of. geometric figure disposition.

Projective geometry is constructed on the basis of a system of
axioms of incidence, order, and also the axiom of continuity.

Axioms of incidence speak of mutual disposition of points, straight
lines and planes, expressed by the term “to be incident”. Meanwhile,
the agreement remains valid regarding the equivalent expressions
indicated in the Euclidean geometry axioms of incidence.

Axiom 1,. For any two points 4 and B, there is a straight line
incident with each of these points.

Axiom I,. For any two points A and B, there exists not more
than one straight line incident with each.

Axiom I,. There exist at least three points in each straight line.
There are at least three points not in one straight line.

Axiom I,. There is a certain plane a passing through any three
non-collinear points 4, B and C. There is at least one point in each
plane. : '

Axiom I;,. Not more than:one plane passes through any three
points not in one straight line.

Axiom Ig. If two points 4 and B of a straight line ¢ are in a plane
o, then each point of the line is in c.

Axiom I,. If two planes have a point in common, then they have
at least one more point in common.
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Axiom I3. There are at least four points not in one plane.

Axiom I,. Any two straight lines in one plane have a common
point.

We see that the axioms of incidence for projective geometry con-
tain those of Euclidean geometry, and differ from the latter only in
Axiom I, requiring the existence of at least three points in a straight
line, and Axiom I, stating that any two straight lines in one plane
should meet.

Hence, all the corollaries to the axioms of incidence for Euclidean
geometry also hold in projective geometry. Axioms Iy and Iy permit
us to extend the set of the corollaries; in particular, it can be easily
proved that

(i) a straight line and a plane always have a point in common,

(ii) two planes have a straight line in common, and

(iii) three planes have a point in common.

2. Desargues Theorem

The most important of the corollaries to the axioms of incidence
for projective geometry is the Desargues theorem on two sets of three
points in perspective.

A set of three points is a figure made up of- three points not in one
straight line, its vertices, and three lines joining them pairwise, its
sides. Two sets of three points
ABC and A'B’C’ are said to pos-
sess a centre of perspective S if the
vertices A and A’, B and B’, C
and C’ are in straight lines pas-
sing through S. ABC and 4'B’C’
are said to possess an axis of per-
spective s if the sides AB and
A'B’, BC and B'C’', AC and A'C’
meet at its points.

If two sets of three points ABC
and A'B'C’ possess an axis of per- Fig. 117
spective, then they also have a cen-
tre of perspective. Conversely, if they have a centre of perspective,
then they also have an axis of perspective (see Fig. 117).

Proof. First, we notice that if two corresponding vertices or sides
of two sets of three points coincide, then the statement of the theorem
is quite obvious. Therefore, we can confine ourselves to the case
where the corresponding vertices and sides are different.

To begin with, we assume that the planes ¢ and ¢’ of these sets
are different. Then the planes intersect in a straight line s, its points
exhausting all points common to ¢ and o’.
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Let the sets have an axis of perspective. Since the sides 4B and
A'B’ meet, but are different, there is one, and only one, plane y in-
cident with them. The planes o and P incident with the sides BC
and B'C’, AC and A'C’, respectively, are determined similarly.
Since o and ¢’ are different, , p and y are also different, the first
two intersecting in CC’, f and y in AA’, whereas y and « in BB’
It follows that the point S common to all the planes is the centre
of perspective of the sets.

Let the sets have a centre of perspective. Since A4’ and BB’
meet, the points A, A’, B, B’ are in one plane. Therefore, the straight
lines AB and A’B’ intersect, and, since the planes o and o’ of these
sets are different, the point, where the straight lines meet, is incident
with the straight line s in which ¢ and ¢’ intersect. It is shown simi-
larly that the sides AC and A'C’, BC and B’C’ also intersect at s.
‘Therefore, the sets have the axis of perspective s.

Now, let both sets be in one plane ¢, and s their axis of perspective.
Draw through s a plane ¢’ other than o. Such a plane exists, for, by
Axiom Ig, there is a point P not in o, and, by Axiom I,, there are
two points Q and R in s. ¢’ is incident with P, Q, R, and different
from ¢ by Axiom I;.

We now take a point O outside ¢ and ¢’. Such a point does exist.
In fact, there are four points K, L, M, N not in one plane. At least
one of the points is outside o. Let it be N. Project K, L and M onto
¢ from N as a centre. The points K, L, M obtained are not in one
straight line. Therefore, in o, there is a point not in s. The existence
of such a point in ¢’ is proved similarly. By Axiom I4, the straight
line joining these two points possesses at least one more point O
lying outside ¢ and o’.

Project the set of three points A’'B’C’ onto ¢’ from O, obtaining
a set of three points A”B"C". The straight line s is the axis of per-
spective for the sets ABC and A"B"C”". Therefore, they have a centre
of perspective S (proved). Let S be the projection of S onto o from O
as a centre. We assert that S is the centre of perspective for ABC
and A'B’'C’.

Indeed, the straight lines 44", BB", CC” meet at S. Consequently,
their projections AA4A’, BB’, CC' onto o meet at S.

Now, let these sets be in one plane o, and possess a centre of
perspective S. Take a point O outside ¢. In the straight line OA4,
there is a point 4 different from 4 and O. Join it to S with a straight
line g, and project A’ onto it from O. Denote the projection by A4'.
The point S is the centre of perspective for the sets ABC and A’B’C’
possessing an axis of perspective s (proved), whose projection onto o
is the axis of perspective for ABC and A'B'C’. Q.ED
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3. Completion of Euclidean Space with
the Elements at Infinity

The system of axioms for projective geometry is complete. It can be,
therefore, studied in any of its models, the simplest and most visual
obtained by completing Euclidean space with the elements at infinity,
i.e., points, straight lines and planes at infinity, as follows.

First, homogeneous coordinates are introduced. Any four numbers
Zy, g, T3, L4, £y = 0, related to the Cartesian coordinates of a point
by

=% =2 =2
Tz, ? y z, ! 2= z, (*)
are called its homogeneous coordinates in Euclidean space.

Thus, the homogeneous coordinates of a point are not determined
uniquely. If z,, z,, z3, , are the homogeneous coordinates of a point,
then the values pz,, pz,, pzs, pry, p 5= 0, are also those of the same
point.

With respect to Cartesian coordinates, a plane is given by a linear
equation

ax + by +cz+d=0.

Substituting z, y and z expressed in terms of homogeneous coordi-
nates, and noticing that x, = 0, we obtain an equation

ax1+bx2+c¢3+dx4=0,

now with respect to homogeneous coordinates.

Thus, with respect to homogeneous coordinates, a plane is given by
a homogeneous linear equation.

Similarly, we conclude that, with respect to homogeneous coordinates,
a straight line is given by two independent, homogeneous simultaneous
linear equations. '

Each set of four numbers x,, x5, =3, Z,4, £, 5= 0, is associated with
a certain point in space with Cartesian coordinates z, y, z which
can be found by the formulas (). A set of four numbers with 2, = 0
does not correspond to any point. We will say that they are associated
with a point at infinity, provided not each is‘zero. Euclidean space
completed with points at infinity is said to be projective. A plane
in a projective space is a set of points whose homogeneous coordi-
nates satisfy a homogeneous linear equation, and a straight line a
set of points satisfying two independent simultaneous linear equa-
tions. With such an agreement, the passage from Euclidean-to a pro-
jective space is accompanied by completing each Euclidean straight
line with a point at infinity, each plane with a straight line at infinity,
and space with a plane at infinity.
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In fact, the set of the points at infinity in space satisfies the
equation z, = 0. It is linear, and, by definition, that of a plane. The
points at infinity in a plane satisfy the two simultaneous equations

ax1+bx2+cx3+d$4=0, $4=0,

by definition, specifying a projective line.
The points at infinity in a straight line are given by the simul-
taneous equations

ax, + bxy + cx; + dr, =0
a'.l‘l + blxz + C'x3 + d’$4 = O, Ly = O

having a non-trivial solution which is unique up to a constant
multiplier. Hence, the passage from a Euclidean straight line to
a projective one is accompanied by adding one point at infinity to
the former.

If plane problems are considered, then three homogeneous coordi-
nates z,, Z, and x, are used. Meanwhile, those points for which z3=10
are at infinity. In a projective plane, a straight line is given by a
homogeneous linear equation

az, + bxzy + czg = 0;
in particular, that at infinity by z; = 0.

4. Topological Structure
of a Projective Straight Line and Plane

We now find certain simple forms topologically equivalent to a pro-
jective straight line and plane, defining nearnessin a projective space.
We call the set of all points y (y,, Y2, Y5, Y4) for which |2, — y, | <
€, Ixz—yz |<31 Ix3—y3|<8, Ix4_y4 |<eaneighbourhood
of a point z (z,, x,, x5, £,) in a projective space. We assume
that a point y is near to z if & is sufficiently
small.

Take the semi-circle 2% 4+ (y — 1)? =1,
y < 1, in the zy-plane. The projection of the
z-axis as a Euclidean straight line onto the
semi-circle from its centre is a topological
transformation of a straight line into a semi-
circle (Fig. 118). As a projective straight line,
the z-axis has the point at infinity (1, 0, O).
The sufficiently distant points of the z-axis, when |z | is large,

are near to the point at infinity, since the coordinates 1, 0, % are

homogeneous, which makes it possible to regard the semi-circle ends
as identical, and associate them with the point at infinity in the

Fig. 118
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z-axis. We then obtain a topological mapping of the projective line
onto a closed curve, a semi-circle with coincident ends. Thus, a pro-
jective straight line is topologically equivalent to a closed curve, e.g.,
circle.

To find a topologically equivalent form of a projective plane, we
take the hemisphere z2 + y2 + (z — 1)? =1, z<<1 (Fig. 119a).
Repeating the same argument as for a projective straight line, we
conclude that the projective zy-plane can be topologically mapped
onto the hemisphere if diametrically opposite points of its boundary
are regarded as identical. However, in contrast to a projective
straight line, it is rather hard to imagine the form obtained, and we

AI B/

A' B

\\\

(a) (b) (c)
Fig. 119

remove a segment consisting of two half-segments cut off by the
planes x = ¢ and £ = —¢ for small ¢ (Fig. 119a). Since their ends
in the hemisphere boundary are assumed to be identical, they all
make up a complete segment when taken together.

We now investigate the remaining part of the hemisphere, which
is between the planes 2 = +¢&. It is not complicated to imagine
its topological transformation into a narrow rectangle (Fig. 119b)
whose sides AB and A’B’ are coincident, the point 4 falling on 4°,
and B on B’. The obtained surface is called a Mobius strip (Fig. 119¢).

Its boundary is made up of the sides AB’ and BA’ extending each
other if the rectangle is glued into a Mdbius strip. A Mdbius strip
is a unilateral surface. If, specifying a direction of the normal to the
surface at a point C, we take a non-stop walk along the dotted line,
then we come to C again, reversing the normal direction. These
properties may be better illustrated by a narrow slip of paper with
its narrower sides glued together.

Returning to the problem of a topologically equivalent form for
a projective plane, we glue its segment (or a topologically equivalent
circle) to a Mobius strip. We then obtain a closed surface topologi-
cally equivalent to the projective plane.
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5. Projective Coordinates
and Projective Transformations

Investigating Euclidean space, we first introduce rectangular
Cartesian coordinates, and then affine coordinates expressed in
terms of the former according to

' = apx + a9y + a52 +

Y = ant + agy + a2z + a,
’

2 = a5 T + gl + a5z + ag

with a non-zero determinant of the matrix (a;;). Similarly, proceed-
ing from homogeneous coordinates x; for a projective space, we
introduce projective coordinates z; by the equations

Z; = an%; + 19T + a15%5 + 4147,
’
Ty = A%y + Age%y + Ag5T3 + Ag4%y (*)

Ty = Ay + Q3e%y + A33%3 + a34%,

Ty = 0% + G49T2 t+ GgsTs + Q4474

with a non-zero determinant of the matrix (a;;). Notice that, as
well as the homogeneous coordinates of a point, those projective are
not simultaneously zeros, for if all z; vanish, then (*) have only the
zero solution for z;, the determinant being different from zero.
Since homogeneous coordinates are not determined uniquely, those
projective are not unique either. Viz., if x; are the projective coordin-
ates of a point, then px; are also those of the same point for p 5= 0.

It is obvious that, with respect to projective coordinates, a plane is
given by a linear equation, whereas a straight line by two independent
linear equations. In fact, the equation of a plane is linear with respect
to homogeneous coordinates. If we express z; in terms of z} from the
formulas (%), and substitute the result in the plane equation, then
we obtain a linear equation for xi.

The four planes specified by the equations z; = 0 with respect
to projective coordinates are said to be coordinate planes. The tetra-
hedron whose faces are in these planes is also said to be coordinate.
Its vertices are

@, 0,0,0), (,1,0,0), (,0,1,0), (©0,0,1).

The point with projective coordinates (1, 1, 1, 1) is said to be
unit.

We show that any four planes not passing through one point can be
taken to be coordinate, and each point not in any of them as unit.

In fact, let
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@ty + 19Ty + aigg + ajzy =0, i=1, 2,3, 4

be the plane equations.
We introduce new coordinates z; by the formulas

xi = hi (@ + @197y + ais%s + auzy), =1, 2, 3, 4

In the new coordinate system, the given planes are coordinate,
since z; = 0. In the new coordinate system, we can make a given
point (z,, z,, 24, x,) unit (i.e., so that z; = 1) by choosing the fac-
tors A;.

It is obvious that the passage from one projective coordinate sys-
tem to another is of the form (x). Indeed, if the equations (*) specify-
ing the passage from homogeneous coordinates x; to projective z;
are solved for z;, and the obtained expressions substituted in the
formulas for the passage from z; to projective coordinates z7, then
we obtain formulas for the passage from z; to 27 of the form ().

The formulas () can be interpreted as specifying a transformation
of space, under which a point (z,, z,, 3, z,) is carried into a point
(x;, z;, x5, x;) with respect to the same projective coordinate system.
This transformation is said to be projective. It is evident that the
inverse of a projective transformation is also projective. Two projec-
tive transformations performed one after the other yield a projective
transformation. The identity transformation is projective. In short,
projective transformations form a group. It is obvious that a projective
transformation sends planes into planes, and straight lines into straight
lines. As in the case of space, three projective coordinates expressed
in terms of homogeneous are introduced on the plane by the formulas

Ty = A%y + 0197y + 04574
T, = ATy + ey + Ga5%s (%)

.

Ty, = Qg% -+ A3a%y + G33Tg

with a non-zero determinant of the matrix (a;;).
With respect to projective coordinates for the plane, any straight
line is given by a homogeneous linear equation

4%y + sy + agzs = 0.

Instead of coordinate tetrahedron, the concept of coordinate
triangle is introduced on the plane.

A transformation of a plane with respect to the same projective
coordinate system, given by the formulas (x#), is said to be projec-
tive. It is obvious that a projective transformation carries planes into
Planes, and straight lines into straight lines.
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For brevity, the equations (x) specifying coordinate and projective
transformations will be written from now on as ' = Az, and the
plane equation a,x, + ayr, + aszg + a,x, = 0 as ax=0. Besides,
we will use the superscripts z!, x2, 23, z¢ for coordinates, and not
z,, Ty, Ty, Z4.

6. Cross Ratio

Let P, (z}), P, (zf), Py (zi) and P, (zi) be points in a straight
line.
The number calculated by the formula

i g i g
zy oy Ty T3
25 a| |ef S|
(PyPyPyP)) = ———— + ————+ (5))
.‘ti .‘l:i ’ .1:2 x2.
- i.d i d
T, T Ty T

in terms of projective coordinates is called the cross, or double, ratio
of the points taken in given order.

If we want the above definition to be correct, then we have to
require that the value of any cross ratio should not depend on the
sulierscripts i, j of the coordinates, in whose terms it is found.

et
ar =0, bzx=0 (x)

be the equations of the straight line with the points P; whose coordi-
nates are solutions to the homogeneous system (x) of rank 2. There-
fore, any of its solutions can be represented as a linear combination
of two independent ones. It follows that the coordinates of P, and
P, are representable in terms of those of P, and P, by the equations

zi=z}+ haf, xf=xl+pai,

substituting which in the cross ratio formula, we obtain

: M
(P1P2P3P,‘)=-E-,

Therefore, in fact, cross ratio is independent of the choice of coordi-
nate superscripts i and j.

We prove that cross ratio is independent of the choice of a coordinate
system. Indeed, let the passage to a new coordinate system be carried
out by the formula

z = Azx.
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Then
z, = Ax,, x,= Az,
z, = A (¢, + Azy) = Az, + Mz, = z7 + Az,.

z, = A (3, + pxy) = Az + pdz, = z; + pa;

We see that the coordinates of P, and P, are expressed in terms
of those of P; and P, with respect to the new coordinate system by
the same formulas as with respect to the old. Therefore, the cross
ratio of the points with respect to the new coordinate system is the
same, viz., A/p. Thus cross ratio does not depend on the choice of
a coordinate system.

Cross ratio is unaltered under a projective transformation, which
means that if P,, P,, P, and P, are sent into four points Q,, Q,, Q4
and Q,, respectively, then

(P 1P, P sP ) = (01020304)-

Formally, proof is identical to the above of the cross ratio inde-
pendence from the choice of a coordinate system.

Cross ratio does not change in projecting, which means that if four
points in a straight line are projected from a certain point S onto
another line, then they have the same cross ratio. Indeed, take S
as the vertex of the coordinate triangle (0, 0, 1), and the straight
line onto which the points are projected as the coordinate lime
2 = 0. Let a,2' + a,x* + az2® = 0 be the equation of the straight
line with the points in question. The projective transformation
given by

2 =z, ¥ =2t ¥ = a2 + ax® + agad

preserves the straight lines passing through S, and, therefore, sends
the given points into their projections on z® = 0. Since a projective
transformation is cross-ratio preserving, cross ratio remains unaltered
under a projection, too, and the statement is thus proved.

The cross ratio of four concurrent straight lines in a plane is that
of four points obtained in intersecting an arbitrary straight line
with the four given. Since a projection leaves cross ratio unaltered,
the cross ratio of straight lines so defined does not depend on a
transversal.

The cross ratio of four planes passing through a straight line is
defined similarly. We take an arbitrary line intersecting the planes,
and the cross ratio of the four intersection points as that of the
planes. The cross ratio of planes so defined does not depend on the
choice of a transversal.

In conclusion, we give formulas to compute the cross ratio
of four points in terms of their Cartesian coordinates. If we assume
that the coordinates in the cross-ratio formula are homogeneous, take
i =1, j=4, and pass from homogeneous coordinates to Cartesian,
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then

(PyPyPyP) = [t - 220

Zy—xy T Zg—zy

If we assume i = 2 or i=3, then we obtain a similar formula,
with x replaced by y or z, respectively.

7. Harmonic Separation of Pairs of Points

We say that two points C and D in a straight line separate har-

monically two points 4 and B if (ABCD) = —1, with the immediate
consequence that if C and D separate harmonically A and B, then
A and B do the same for C and D. R

A complete quadrangle is a set of four
points in a plane, each three of them non-
collinear, together with the six straight lines
joining them. The points are termed vertices,
and-the straight lines joining them edges. The
edges of a complete quadrangle without
common vertices are said to be opposite. The 4 - C.B D
points where the opposite edges meet are Fig. 120
said to be diagonal. In Fig. 120, the vertices
of the complete quadrangle are P, Q, R and S, whereas the dia-
gonal points A, B and T.

Let A and B be two diagonal points of the complete quadrangle
PQRS, and C and D those where the straight line AB cuts the edges
concurrent at the third diagonal point. Then C and D separate har-
monically A and B.

Proof. Let A, B and R be the vertices of the coordinate triangle,
and S the unit point, viz.,

A@1,0,0), B(@O,1,0), R(@O01), SA,1,1).

To find the coordinates of C, we remember that they are expressed
in terms of those of S and R. We have 2! =1 + A-0, 22 =1 +
A0, 22 =1 + A-1. Since 2> = 0 on the straight line AB, the coor-
dinates of C are 1, 1, 0. The coordinates 1, 0, 1 and 0, 1, 1 of P and
Q are found similarly. Those of D are expressed in terms of the coor-
dinates of P and Q, viz., 21 =1 + A0, 22 =0 + A1, 22 =1 +

A-1. Since z® = 0, A = —1. Therefore, the coordinates of D are
1, —1, 0. Knowmg those of A, B, C and D, we find easily that
(ABCD) = —1.

A, B, C and D are projected from R into P, Q, T and D. Hence,
P and Q separate harmonically T and D. P, Q, T and D are projected
from A into R, S, T and C. Therefore, R and S separate harmonically
T and C.
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We now clarify what is the mutual disposition of A, B and C
in a Euclidean straight line if D is at infinity. Take AB as the z-axis.
Let D approach infinity, remaining finite.

We have
(ABCD) '—-‘”3 o F2—% LT3 . Ty -1
—zy, | Xg—x,  Xp—Ty = XTg— &, :
As z, - oo, the ratio (z; — z,)/(x, — z,) — 1. Therefore,

(x, — z3)/(xy — x3) - —1, i.e., C approaches the mid-point of
AB without limit. When D is at infinity, i.e., the straight lines
AB and PQ are parallel, C will be the mid-point of the segment AB.

This property permits us to solve the following problem of elemen-
tary geometry.

Given a line segment AB and its mid-point C. Only by means of a
ruler, draw a straight line PQ parallel to the straight line AB through
an arbitrary point P.

Solution. Draw the straight line AP. Take any point R in it,
other than 4 and P.- Draw the straight lines RC, PB, and find a
point S where they meet. Draw the straight line 45 until it meets
the straight line RB at a point Q. The straight line PQ is parallel
to AB.

The following problem is solved similarly.

Given two parallel straight lines and a line segment on one of them.
Using only a ruler, bisect the line segment (i.e., find its mid-point).

8. Curves of the Second Degree
and Quadric Surfaces

A locus of points in a plane, satisfying an equation of the form
a2t + 20,5022+ . . 4 4523 =0 (%)

is called a curve of the second degree (or conic). The definition is
invariant with respect to the choice of a projective coordinate system,
since the passage to another one is related to a linear transformation
of the variables, and, therefore, does not affect the form of the
equation.

It is known from algebra that the quadratic form on the left-hand
side of (*) can be reduced to one of the canonical forms

o 22t 8, a2t g3t o 2,
2 2 2
by a linear transformation.
From the projective geometry standpoint, this algebraic result

can be interpreted as the existence of a pro]ectlve coordinate system,
Wwith respect to which the equation of the given second-degree curve



234 Part Three. Foundations of Geometry

takes one of the forms
22?4 23" =0, 222" — 13" =0,

2 2 2 2 2
o — 22" =0, 2"+ 22" =0, 21"=0. (*%)

In the first case, the curve is said to be imaginary. No point in the
plane satisfies it, since projective coordinates cannot be zero simul-
taneously. In the second case, the curve is called an oval. In the third
case, it splits into two straight lines ! — 22 = 0, 2! 4 22 = 0, and
in the fourth, into two imaginary lines 2! — iz? = 0, 2! + ix? = 0.
Finally, the curve decomposes into two coincident lines «!' = 0.

The algebraic result that the left member of the equation (%)
is reducible to canonical form can be interpreted differently, viz.,
as the possibility to convert by a projective transformation the given
curve (%) into one of those given by (**) with respect to the same
projective coordinate system.

Quadric surfaces are defined similarly, viz., as loci of points in
space, satisfying an equation of the form

4
2 aijxix] =0
i, j=1

with respect to projective coordinates xi. The existence of a projec-
tive coordinate system, with respect to which the surface equation
takes one of the canonical forms

2 2 2 2 2 2 2 2
a2 a2 =0, 242 42 -2t =0,

2 2 2 2 2 2 2
o a2 — a3 — 2t =0, 422" 423" =0,

2 2 2 2 2 2 2 2
a4 22— 23 =0, 2"+ 22 =0, 2 —22"=0, 2t'=0

is proved as for curves of the second degree. This can be also regarded
as the possibility to reduce a given surface by a projective transfor-
mation into that given by one of the above equations.

The tangent to a curve of the second degree at a point A, (z}) is
the limiting position of the secant passing through 4, and a point
of the curve 4 (z) near to it as A — A,, i.e., aszt »>zi, i =1, 2, 3.

Make up the equation of a tangent to a curve of the second degree,
given by the equation )} a;sziz’ = 0. Let © be a small neighbour-

hood of A, and A4 (z%) an outside point in the secant A,A. We normal-
ize its coordinates, so that 2} (zi)?2 = 1. Those of 4 can be express-
ed in terms of A, and A. Viz., 2t = z} + Azi, substituting which
in the curve equation, we get

Arz Z a”zi.'l‘j + 2}\« 2 a”xix{; -{— Z a”x";x{; = 0.
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The third addend on the left-hand side is zero, since A4, is on the

curve. Cancelling A, and passing to the limit as A — 4,, or as A —0,
we obtain an equation which the limiting line, i.e., the tangent,
does satisfy, viz.,

D ayyaia) =0.

Remark. We considered the neighbourhood ® and normalization
of coordinates zi-in order to conclude from 4 — A4, that A —0,
and A a;ix 0.

The locus of plane section tangents passing through a given point
is called the tangent plane to the surface at the point. The deriv-
ation of the equation for a plane tangent to a quadric surface is in

no way different from that of a tangent to a curve of the second
degree, and we obtain the following tangent plane equation, viz.,

2 a,xa:’ =0.

i, j=1

9. Steiner Theorem

The totality of all straight lines passing through one point is
called a pencil of lines. The point is termed its centre. The correspon-
dence between the lines of two pencils is called projective if there
is a projective transformation sending the lines of one into the cor-
responding lines of the other. If the cor-
responding lines of two pencils intersect on
one straight line, then such acorresponden-
ce is called a perspectivity. Obviously, it
is a projective transformation.

The following Steiner theorem is valid.

The locus of points where the correspond-
ing straight lines of two projective, but not Fig. 121
perspective, pencils meet, is a non-singular
conic. Conversely, two pencils with centres on a curve of the second
degree and the corresponding straight lines intersecting on the curve,
are projective.

Proof. Take the centres of the pencils as those of the coordinate
triangles S, (1, 0, 0), S, (0, 1, 0), and any point P (0, O, 1) as the
third centre (Fig. 121). Let X (xi) be the point where the correspond-
ing straight lines of the pencils meet. Find the coordinates of the
point X, (z!) where the straight line S;X cuts the straight line
§,P, expressing them in terms of those of S; and X as z; = ! +
A1, z} = 22 + A-0, 2§ = 2® + A-0. Similarly, we find the coordi-
nates of the point X, (xi) where the straight lines S,X and S,P inter-
sect, viz., z, = 2%, z; = 3.




236 Part Three. Foundations of Geometry

Now, let A4; (af), i =1, 2, 3, be the points where the straight
lines of the pencil with centre S; meet S,P, and let B; (b)), i=
1, 2, 3, be the points where the corresponding straight lines of the
second pencil meet S, P. Since the pencils are projective, (4,4 ,4 ;X,)=
(B,ByB3X,), and the locus equation is

2

ai a} aj af b} b} b b3
a§ a}l . |a} af bl b3 bl b2
ai a} a3 a3 b} b} b} b3
z2 23 z2 28 zl 23 zl 28

For the coordinates of X, we obtain a homogeneous equation of the
second degree. Therefore, the locus of X is a curve of the second
degree.

We now prove the second statement of the theorem.

Let Sy, 4,, A;, A3 and S, be five points on a non-singular conic.
There exists a projective transformation sending S,, 4,, 4,, Ag
into S,, 4,, A,, A;, and establishing a projectivity between the
pencils with vertices §; and §,. The corresponding straight lines
intersect on a certain curve of the second degree (proved), S;, 4;, 4,,
A;, S, belonging to the curve. To complete the proof, we have to
show that two non-singular conics with five points in common are
coincident. : .

Carry out a projective transformation under which one curve is
given by the equation y = z? with respect to Cartesian coordinates
and the other by an equation of general form F (z, y) = 0. Sub-
stituting y = #® in the second, we obtain a fourth-degree polynomial
F (z, %) = 0. Since the curves have five points in common, the
polynomial is equal to zero for five values of x, and, therefore, is
zero-identically. Hence, y = a2 is wholly on the curve F (z, y) = 0.
Interchanging them, we conclude that the second curve lies on the
first, and they are coincident.

10. Pascal Theorem

We now prove the following Pascal theorem.

Let v be a non-singular curve of the second degree, and 4,, 4,, . . .
..., Ag siz points in it. Then the three points where the straight lines
A Ay and A,A,, AgA, and A Ag, AyAg and A 3A; meet are in the same
straight line (Fig. 122).

Usually, the Pascal theorem is stated rather simply, viz., the
opposite sides of a hexagon inscribed in a curve of the second degree
intersect on one straight line, understanding by the hexagon any closed
broken line of six segments, and by its sides the straight lines contain-
ing the segments.

Obviously, it suffices to prove the Pascal theorem for any non-
singular conic, since any two non-singular conics are reduced into
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each other by a projective transformation, while any projective
transformation sends straight lines into straight lines, and, in par-
ticular, points in a straight line into those in another straight line.

Let y be the parabola z = y?, and «;; (z, y) = O the equation of
a straight line 4;4;. We form the expression

P (z, y) = 03406035 — Molga0asliys (»)

which is a polynomial of the third degree with respect to z, y. The
coordinates of 4,, A,, ..., Ag satisfy the equation P (z, y) = 0,
for the first and second addends of
P (z, y) vanish.

Take any point 4 in y, other than
A,;, and choose A, so that the coor-
dinates of A also satisfy P (z, y) =
0. Seven points of y will then
satisfy P (z, y) = 0.

If we substitute y®> for z in
P (z,y) = 0, then we obtain the
equation P (y2, y) = O of the sixth
degree, but satisfied by seven differ- Fig. 122
ent values of y, or seven points. It is
known that it must be an identity, and, therefore, satisfied by any y,
which means that each point on the parabola vy satisfies P (x, y)=0.

Regarding P (z, y) as a polynomial in z with coefficients as those
in y, we divide it by £ — y2, and obtain

P(x9 y) = (x_yz)o(xo y) + R (y),

where Q (z, y) is the quotient, and R (y) the remainder polynomials.
Since each point on the parabola x — y? = 0 satisfies P (z, y) =
0, R (y) is zero for all y, i.e., R (y) = 0. Thus,

p (zo y) = (z - yz) Q (.‘E, y)9

where Q (z, y) is a polynomial. Since P (z, y) is a polynomial of the
third degree, Q (z, y) is that of the first degree, and

P (z, y) = (x — y? (axz + by + ).

It follows from () that the points mentioned in the statement of
the Pascal theorem satisfy P (x, y) = 0. Since they are not on v,

i.e., the parabola x = y?, they belong to the straight line ax + by +-
¢ =0.

Q.E.D.
We prove the Pappus theorem as a corollary.

Given two straight lines with three points A,, A,, A3 in one of them,
and another three A,, A;, Agin the other. Then the three points where
the straight lines A,Ag and AyA,, A\Ag and AzA;, AyAg and AzAsg
meet are in one straight line.
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Proof. Let .
422+ 20152y + ... +ag3=0 (**)

be the equation of our pair of straight lines. We can make it that
of a non-singular conic

ay, 22420552y + ... +agy =0 (%%*)

by an arbitrarily small change of the coefficients in (*).

Mark points B,, B,, ..., Bg in it, nearest to 4,, 4,, ..., 4,
By the Pascal theorem, the three pomts where the straight lines
B,B;, and B,B,, ... meet are in one straight line. Now, let the
coefficients in (**x) tend to the corresponding ones in (¥%). Then
B; approach A4, 1ndeﬁn1tely Hence, the three points where 4,45
and A,A,, ... meet are in one stralght line.

Q.E.D.

11. Pole and Polar

Let y be a non-singular conic, and 4, (z}) an outside point. Draw
a straight line through A,, intersecting y at two points which we
denote by A, (z) and 4, (zi). Let X (z%) be a point in this straight
line, along with A, separating A, and A, harmonically. We show
that all the points X so determined are in one straight line called the
polar of A,, and A, its pole.

We now find the equation of the polar.

Let

D ayziri=0
be that of y. Express the coordinates of 4, and 4, in terms of those
of X, and X. We have
zi=azt+ Az, zi=2z'4pal
Since (4,4,4,X) = AMp = —1, p = —\A. Because A4; and A,
are on v,
D ay; (&t 4 Axd) (zF 4+ Axd) =0,
D ayy (@t — Aad) (2F — Axf) =
Subtracting termwise, we obtain an equation
2 ayaiz) =0 (*)

satisfied by the coordinates of X. Being linear, it is, therefore, that
of a straight line, just the polar of A4,.
If A,y is on the curve, our construction does not make sense, and
we then define the polar formally as the straight line given by (*).
It easily follows from the polar equation that if the polar of (xf)
passes through (z!), then that of (xi) passes through (zi).
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In fact, the polar of (zi) has the equation

2 ai,xia:{; = 0,
whereas that of (z})

2 ai,xizf =0.

If the polar of (xi) passes through (z}), then
2 a;5ziw} =0,

And if a;; = aj;, then
2 aijzg.'l:{ = O,

i.e., the polar of (z{) passes through (z), thus completing the proof.
Hence, if a point moves along a straight line, then its polar always

Fig. 123

passes through the pole of this line. Conversely, if a straight line passes
through a given point and rotates, then its pole moves along the polar
of the point.

Two straight lines are said to be conjugate if each of them passes
through the pole of the other. The conjugate diameters of a central
curve of the second degree are conjugate. The pole of each is the
point at infinity of the other. (Recall that the point half-way between
two points in a straight line is the harmonic conjugate of the point
at infinity.)

The polar of a point admits a simple geometric construction
(Fig. 123). Viz., draw through a given point D two straight lines,
each intersecting the curve at two points. The polar of D passes
through the diagonal points R and S of the complete quadrangle
ABPQ. In fact, by the property of a complete quadrangle, C, D
separate harmonically 4, B, whereas D, T the points P, Q). There-
fore, C and T are on the polar of D.

The solution of the following elementary geometry problem is based
just on the property of a pole and polar.

Given a circle and an outside point, construct the tangents from the
point to the circle by means of a ruler only.
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Solution (Fig. 124). Construct the polar a of A. The points where
it meets the circle are the points of tangency. In fact, the tangents
are the polars of the points of contact, and, therefore, pass through
the pole of a, or A.

We now turn to the Klein model of Lobachevskian geometry, and
clarify how perpendicular straight lines are represented there. If

Fig. 124 Fig. 125

two straight lines intersect at the centre of a circle, then to be per-
pendicular in the sense of Lobachevsky means the usual perpendicul-
arity according to Euclid. Perpendicular diameters are conjugate.
Since Lobachevsky motions in the Klein model are circle-preserving
projective transformations, to be. perpendicular for two straight
lines in general position is to be conjugate with respect to the cir-
cumference of the Klein circle. Thus, those straight lines, or chords
of the circle, are perpendicular to a given straight line, which pass
through the pole. ' '

It should be noted in connection with the above that one, and
one only, perpendicular can be drawn to two non-intersecting and
non-parallel (in the sense of Lobachevsky) straight lines in the
Lobachevsky plane. (How such a perpendicular is constructed in the
Klein model is shown in Fig. 125.)

12. Polar Reciprocation, Brianchon Theorem

Let y be a non-degenerate conic. Map the set of points and straight
lines in a projective plane onto itself, associating an arbitrary point
with its polar relative to y, and an arbitrary straight line with its
pole. We call this mapping polar reciprocation.

Polar reciprocation possesses an important property following
from those of a pole and the polar. Viz., if two points A and B are
associated with two straight lines ¢ and b, then the line A B is associat-
ed with the point where they meet. If a and b are associated with
A and B, then the point of their intersection is associated with the
straight line AB.
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Apply polar reciprocation to the proof of the following Brianchon
theorem.

The straight lines joining the opposite vertices of a hexagon circum-
scribed about a non-degenerate conic are concurrent (Fig. 126).

By the hexagon, we understand any closed broken line of six
segments, and by its sides the straight lines
containing the segments.

Polarreciprocation with respect to the curve
with the circumscribed hexagon sends the
sides into their points of tangency with the
curve, while the vertices into the straight
lines joining the corresponding points -of
contact. We obtain an inscribed hexagon.
By the Pascal theorem, its opposite sides
intersect on a straight line associated with
the point through which the straight lines
pass, joining the opposite vertices of the circumscribed heqxa}g(;:r;.

The concept of the polar of a point relative to a non-degenerate
quadric surface is introduced similarly to a plane. Here, however,
the polar is a plane.

If a surface is given by an equation

Fig. 126

4
2 a,-,xia:’ = 0,
i, =1

then the polar of the point (z}) by
2 a”xi.'tf; = 0.

The concept of polarity in space is introduced in terms of a pole
and the polar. This is a mapping of the set of points, straight lines
and planes in space, under which an arbitrary point is associated
with its polar, an arbitrary plane with its pole, and an arbitrary
straight line with that on which the polars of any two of its points
meet.

13. Duality Principle

We now dwell on one of the basic facts of projective geometry,
viz., the duality principle.

If, in the axioms of incidence, we replace the expression “a point
is in a straight line” by “a point is incident with a straight line”,
and “a straight line passes through a point” by “a straight line is
incident with a point”, then, on replacing in each axiom the term
“point” by “straight line”, and “straight line” by “point”, we obtain
statements which hold due to the corresponding axioms.
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In fact, the new version of Axiom I, states that, for two points A
and B, there exists a straight line incident with them. The correspond-
ing statement that, for two straight lines, there exists a point incident
with them follows from Axiom I,.

Axiom I,. For two distinct points 4 and B, there is not more than
one straight line incident with them. The corresponding statement
follows. Viz., for two distinct straight lines a and b, there exists
not more than one point incident with them.

Axiom I;. For a given straight line, there exist three points incident
with it. There are three points not incident with one straight line.

b

3
a
b3 a, 2

b,
c a

By B, B, 4 B
Fig. 127 Fig. 128

The corresponding statement is that, for a given point A, there
exist three straight lines incident with it, and that there are three
straight lines not incident with one point. In fact, due to Axiom I,
there exist two points B and C not in one straight line with 4. By
the same axiom, there are three points on the straight line BC. The
straight lines in question join the three points to A. The second
statement also follows from Axiom I;. In fact, join three non-collinear
points pairwise. The three straight lines obtained are not concurrent.

In the independent construction of plane projective geometry,
i.e., not in space, D. Hilbert showed that the Desargues theorem
should be regarded as an axiom of incidence. However, its self-
duality is obvious.

Duality also turns out to occur in the other axioms for plane
projective geometry, and not only in the axioms of incidence. We
then have the principle of duality for the plane.

If a certain statement A holds for points and straight lines, and is
expressed in terms of incidence and order, then a statement A’ is also
valid, when the term “point” is replaced by “straight line”, and “straight
line” by “point”.

E.g., let three points A,, A, and 4; be incident with a straight
line a, By, B, and B, three points incident with a straight line b,
and Cyy, i 5= j, the points incident with the straight lines A4;B; and
A;B;. Then C;; are incident with one straight line ¢ (Fig. 127).
This is the Pappus theorem.



Ch. XVI. Projective Geometry 243

Now, the dual statement. Let three straight lines a,, a, and a,
be incident with a point 4, by, by and by three straight lines incident
with a point B, and ¢;;, i 5= j, the straight lines incident with the
points a;b; and a;b;, etc. Then c;; are incident with one point C
(Fig. 128).

The duality principle is also valid in projective space, i.e., the
validity of any proposition A for points, straight lines and planes
entails a statement A, where the term “point” is replaced by “plane”,
and “plane” by “point”.

In projective geometry, duality naturally receives analytic
expression. Below, we illustrate this fact.

We call the coefficients of the equation of a straight line its tan-
gential coordinates, (as well as those of a point) obviously defined
only up to an arbitrary nonzero multiplier.

For fixed u,, u, and u;, the equation

UZy + UsZy + UsTz = 0

is known to be that of a straight line with u,, u,, ug as coordinates,
and that of a pencil of straight lines with centre (z,, z,, z5) for fixed
z,, o and zj.

It is also known that, for any two points (y;) and (z;) on a straight
line, the coordinates of an arbitrary point on it can be represented
in the form z; = Ay; + pz;. Similarly, for any two straight lines (v;)
and (w,;) of a pencil, the coordinates of an arbitrary straight line
in it can be represented as u; = Av; + pw;.

Finally, we can show that the cross ratio of four straight lines
in a pencil is determined by the same formula, with the coordinates
of points replaced by the coordinates of the lines.

In space, the tangential coordinates of planes are introduced simi-
larly, and analogous facts established.

A curve of the second class is a figure formed by all straight lines
whose coordinates satisfy an equation

byuy + 2byguqug + . o . + bguy = 0.

It is formed either by the tangents to a curve of the second degree or
consists of two pencils of possibly coinciding straight lines.

14. Various Geometries in Projective Qutlook

In his work Vorlesungen iiber nicht-Euklidische Geometrie, F, Klein
has established a remarkable relation between Euclidean, Lobachev-
skian and Riemannian geometries, the latter in the narrow sense,

In Ch. XV, we considered a model of Lobachevskian geometry on
the Euclidean plane in the circle 22 + y® << 1. It is evident that
this model can be regarded as valid for a projective plane in the
domain z? 4+ z; — x; << 0 bounded by a curve of the second degree,



244 Part Three. Foundations of Geometry

The question arises, can a similar model be obtained on a projective
plane for Euclidean geometry, too?

It is easily seen not to be very hard to do, and that the Cartesian
model considered in Ch. XV is the one. In fact, we call the points
on a projective plane with x5 540 points of a Euclidean plane, and pro-
jective transformations of the form

z{ = &, cos 0 — ex, sin 0 4 a,x;
Z; =z, 8in 0 4 ex, cos O 4 a,r;, &= +1 (x)

z, = Zg

we call motions.
If the straight line z; = 0 is said to be at infinity, and Cartesian
coordinates are referred to, then the transformations become

!

2 =zxcos® —eysinb + a,
y =xsin 0 4 ey cos O +a2.

In the Cartesian model of Euclidean geometry, motions are given
by precisely the same formulas.

The projective transformations (x) can also be characterized
geometrically. They preserve the singular curve of the second class
u? + u? = 0. Indeed, it consists of two pencils of straight lines
u, + iuy = 0, u; — iuy = 0 with centres at the points (1, i, 0),

, —i, 0).
It is easy to see that () either leaves the points fixed (e = 1)
or interchanges them (¢ = —1), thus preserving uj + u; = 0.

It should be noted, however, that the projective transformations
determined by the above geometric property do not include the trans-
formations (x) solely, and have a more general form

z; = p (z, cos 6 — ex, sin 0) 4 a,z;
z, = p (x, sin 0 -+ ex, cos 0) + a,z; .

z, = I3
containing similitudes, and not exclusively motions.

The axiom system for Riemannian geometry in the narrow sense
consists of the axioms of incidence, order, continuity axiom for
projective geometry and axioms of congruence for Euclidean geometry,
admitting a model similar to the above. Viz., all the axioms hold
on the plane if by a point we understand a point on a projective
plane, by a straight line a projective line, relations of incidence and
order in the sense of projective geometry, and, finally, by motions
projective transformations preserving the imaginary non-degenerate
conic z? + z; + 23 = 0.

A similar model is valid in the axioms for space.
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The curves of the second class u; + u} + u; = O are formed by
the tangents to the second-degree curves z; + z; 4+ x2 = 0. Any
projective transformation preserving z} + z; 4= 27 = 0 then also
preserves u? + u? 4+ u} = 0. Hence, projective transformations
preserving a curve of the second class u? + ul + eu} = 0 correspond
to motions in Riemannian geometry if ¢ = 41, to those in Loba-
chevskian geometry if ¢ = —1, and, finally, to Euclidean motions
and similitudes if ¢ = 0.

A curve of the second degree or second class is called the absolute
if it is invariant with respect to projective transformations associated
with some or other geometry.

In considering the Klein model of Lobachevskian geometry, we
have noted that the distance between two points 4 and B in the
Lobachevsky plane is equal to the logarithm of the cross ratio of
four points, the two given and two points where the straight line AB
meets the absolute. A similar result also holds for Riemannian
geometry. In all the geometries, the angle between two straight lines
a and b is measured by the logarithm of the cross ratio of four straight
lines, of which two are a and b, and the other two belong to the
pencil ab and the absolute (as a curve of the second class).

EXERCISES TO CHAPTER XVI

1. Given that AB || A,B,, BC || B,C, and AC || A,C, in two tri-
angles ABC and A,B,C,, prove that the straight lines A4,, BB,, CC,
are either concurrent or parallel.

2. Given that AA, || BB, || CC,, AB || A,B, and AC || A,C, in
two triangles ABC and 4,B,C,, prove that BC || B,C,.

3. Find the homogeneous coordinates of the point at infinity on

. . rx—a y—>b z—c
a straight line - =T =

4. Given that three points (a;, a,, as, a,), (b;, bs, bs, b,) and
(¢, ¢, %3, x,) are in the same straight line, find z,; and z,.

5. Given three points on a straight line, prove that there exists
a projective transformation sending them into (—1, 0, 0, 1),
o, 0,0,1), 1, 0,0, 1).

6. Given cross ratio (ABCD) = E, find that of the same points
taken in any other order, e.g., (CBAD).

7. Find the cross ratio of four straight lines y = ztana, y =
ztan B, y = x tany, y = z tan §.

8. Find the Euler characteristic of a projective plane.

9. Account for the following method of constructing an ellipse
(Fig. 129). Divide two line segments AC and CD into an equal num-
ber of parts, and join to B and A the corresponding division points,
starting from 4 and C, the intersection point lying on the arc AE
of the ellipse with semi-axes O4 and OE.
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10. We know how to construct the polar of a point with respect
to a given curve of the second degree. Now, how can we find a pole
if the polar is given?

11. How will the general equation to a non-degenerate conic be
simplified if the straight line z; = 0 is the polar of the point (0, 0, 1)?

12. How will the equation of a non-degenerate conic be simplified
if the coordinate triangle vertices are the poles of its opposite sides?

13. State the proposition dual to the Steiner theorem.

14. Show that polar reciprocation with respect to a sphere carries
a regular polyhedron with centre at that of the sphere into a regular

Fig. 129’

polyhedron, too, viz., a tetrahedron intoa tetrahedron, a cube into
an octahedron, an octahedron into a cube, a dodecahedron into an
icosahedron, and an icosahedron into a dodecahedron.

15. A perpendicular PQ is dropped to a straight line a from an
outside point P on the Lobachevsky plane, and a parallel straight
line b (in the sense of Lobachevsky) drawn. Find the dependence of
gle angle between PQ and b (parallel angle) on the distance from

to a.

16. Prove that Lobachevsky parallel lines approach each other
indefinitely in the parallelism direction, and diverge without
limit in the opposite direction.



Part Four

CERTAIN PROBLEMS OF ELEMENTARY
GEOMETRY

Chapter XVII

METHODS FOR SOLUTION OF CONSTRUCTION PROBLEMS

1. Preliminaries

To pose a construction problem means to require the construction
of a geometric figure by means of some prescribed drawing instru-
ments. The school course of geometry usually considers construction
problems by means of compasses and ruler.

It is assumed that, by means of a ruler as an instrument for geo-
metric constructions, we can draw an arbitrary straight line through
one or two given points. No other operations can be performed; in
particular, no line segments can be marked off even if the ruler
has scale marks, both of its edges cannot be used, etc. .

As to compasses as an instrument for geometric constructions,
we can describe a circle of a given radius from a given centre. In
particular, a given line segment can be cut off on a given straight
line from a given point.

A solution of a given construction problem usually includes the
following, viz., (i) analysis, (ii) construction, (iii) proof that the
solution is correct and (iv) investigation of the solution.

The search for a solution starts with assuming that the problem
has been solved, or the figure constructed. The figure is then studied
(as well as its relation to the data) until the sequence of constructions
leading to a solution becomes clear. To carry out the actual construc-
tion is, as a rule, not necessary, and only the proof of the solution
correctness is, i.e., that we shall, in fact, obtain a figure with the
required properties. By investigation, we decide whether or not
the problem will always have a solution for some or other concrete
data, and how many solutions it may have.

Analysis is the most difficult point. No definite recipe can be
given; however, there are several methods for making it easier.

We illustrate by example.

Construct a triangle, given a side, an adjacent angle and the sum
of the other two sides.

Analysis. Assume that the problem has been solved, and a triangle
ABC in which AB =¢, LABC =60, AC 4 BC =l constructed
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(Fig. 130). We see that if the line segment CA is cut off on the exten-
sion of theline segment BC, then we can find the position of a point D,
since AC 4+ BC = I. Meanwhile, the unknown vertex C is equidist-
ant from 4 and D. Hence the construction outline. Take a line
segment AB equal to ¢, construct an angle equal to 8 on the half-line

2 D
c q
g | 5
A |
B 4 B 70 4
Fig. 130 Fig. 131

BA, and mark off on the side of the angle a line segment BD equal
to I, after which draw the perpendicular bisector g of AD. It meets
BD in C, the vertex of the triangle.

Proof. Since g is the perpendicular bisector, AC = CD; therefore,
AC + BC =CD + BC = 1. Thus, AB =¢, LABC =0, BC +
AC = 1, and the constructed triangle, in fact, satisfies the conditions
of the problem.

Analysis. First of all, we notice that the problem has no solution
if I < e, since any two sides of a triangle are together greater than
the third. Let I > c. Show that the problem has one, and only one,
solution. Indeed, g intersects the side AD of the triangle ABD, and,
therefore, one of the other two sides AB or BD (not passing through
B, since AB = BD). If it intersected AB, we would then have AB =
AO + OB = BO + OD > BD (Fig. 131). But AB < BD, c <.
Consequently, g cuts BD, and the problem does have a solution. It
is obvious that the solution is unique, for a straight line can intersect
a line segment only at one point.

2. Locus Method

It consists in the following. Assume that we have decided during
the analysis of a solution to a construction problem that it will be
solved if a certain point X satisfying two conditions is found. The
locus of points satisfying the first condition is a certain figure F,
and the locus satisfying the second is a certain figure F,. The required
point X belongs both to ¥, and F,, and is the point of their inter-
section.

In order that X could be found as the intersection of F; and F,,
it is required that the figures should admit a construction by means
of our drawing instruments, i.e., compasses and a ruler, for which
the figures should consist of straight lines and circles only. In this
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connection, of special interest are loci of points, which are straight
lines and circles.

We now list some of the most important of them.

1. Locus of points equidistant from a given point is a circle with
centre at the point.

2. Locus of points equidistant from a given straight line consists
of two lines parallel to the given one, and at the given distance
from it.

3. Locus of points equidistant from two given points is the straight.
line perpendicular to the line segment with ends at these points
and passing through its mid-point (perpendicular bisector).

4. Locus of points equidistant from two given intersecting straight
lines consists of the bisectors of the angles formed by the lines.

5. Locus of points, from which a line segment AB is visible at
a given angle0, and which are on one side of the straight line 4B,
is an arc with ends at A and B.

6. Locus of points, whose distances from two given points are in
a given ratio m : n (m/n 5= 1), is a circle (Apollonius’ circle; see
Ch. I, Sec. 4).

7. Locus of points whose distances from two given straight lines
are in a given ratio A consists of two straight lines. (If the line
equations are normal,

ax +by+c¢=0, ax+by-+ec=0,

then the straight lines of the locus are given by

(ax +by +¢) + A(ax + by +¢) =0,
(az + by +¢) — M (x4 by + ¢;) = 0.)

8. Locus of points such that the difference of squares of their
distances from two given points is constant is a straight line per-
pendicular to that joining the points (see Ch. III, Sec. 1).

9. Locus of points such that the tangents drawn from them to two
given circles are equal is a straight line if the circles are disjoint,
or part of the straight line passing through the points where the
circles meet, without the line segment joining the points.

We now give an example of a solution by the locus method.

Given four points A, B, C, D, find a point X such that /L AXB =
L BXC = £CXD.

Solution. Assume that the problem has been solved (Fig. 132).
Then the line segment X B is an angle bisector in the triangle AXC.
As we know, an internal bisector divides the opposite side in the
ratio of the sides containing the angle bisected. Therefore,

AX : CX = AB : BC,
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which means that X belongs to the locus of points, the ratio of whose
distances from A and C is AB: BC, i.e., a circle. Similarly, we
conclude that X belongs to the locus of points, also a circle, such
that the ratio of the distances from B and D is BC : CD. The required
point is where the circles meet.

3. Similarity Method

Certain problems become ill-posed if one of their conditions is
dropped, admitting infinitely many solutions, and yielding figures
similar to the required. If we construct one of such figures, then
the required may be obtained by a similitude.

We illustrate by two examples.

Construct a triangle, given two angles and the perimeter.

Solution. If we omit the condition that the triangle should have
the given perimeter, then the problem is reduced to the construction

D¢

4 B c D
Fig. 132 Fig. 133

of a triangle with two given angles. It is rather easy. Take an arbit-
rary line segment AB, and construct the given angles on the half-
lines AB and BA. We obtain a triangle ABC with the given angles
{Fig. 133). It is similar to the required. To obtain the desired tri-
angle, the triangle constructed should be subjected to a suitable
similitude.

Cut off on the side 4B produced, line segments BD and DE equal
to the sides BC and AC, and also on the half-line AC a line segment
AF equal to the perimeter. Draw through B and D two straight
lines parallel to EF. The line segments AH, HG and GF form the
required triangle. They and the sides of the constructed triangle are
proportional to the perimeters of therequired and constructed triangles.

Construct a circle touching the sides of an angle, and passing through
a given point.

Solution. Neglect the requirement that the circle should pass
through a given point. It is easy to construct an auxiliary circle
tangent to the sides of the angle, for which we make equal intercepts
on the sides, and draw perpendicular straight lines through their
ends. The centre of this circle is just where they meet. To obtain
the required circle, the circle constructed should be subjected to
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a homothety with respect to the vertex of the angle, and with ratio
AS/BS. The centre of the sought-for circle is at the intersection of
the straight lines SO and AO’ parallel to OB, where A is the point
through which the circle should pass, S the vertex of the angle, B
one of the points of intersection of the ray SA and the auxiliary

circle, O the centre of the auxiliary, and O’ that of the required
circle.

4. Reflection Method

It may happen so that a figure to be constructed possesses points
symmetric about a certain straight line or point, in which case it
will be found useful to carry out a similitude with respect to the
straight line or point, respectively.

We illustrate by two examples.

Construct a line segment AB with the given mid-point O and ends on
two given straight lines a and b.

Solution. Assume that the problem has been solved. Then the
ends of the segment are symmetric about O. If one of the lines, say,
a, is reflected in O, then we obtain a straight line a’ passing through
the other end-point B. Thus, B is obtained by intersecting b with a’
which is symmetric to a with respect to O. It then suffices to extend
the straight line BO until it meets ¢, and we obtain the second
end-point, 4.

Given three straight lines a, b and ¢, construct a line segment AB
perpendicular to ¢, with the mid-point on it, and ends on a and b.

Solution. Assume that the problem has been solved. Then the
ends of the required line segment are symmetric about ¢. Therefore,
if a is reflected in ¢, then it will turn into a straight line &’ passing
through B. Thus, B is where b meets a’. We then draw through B
a straight line perpendicular to ¢, and thereby find the required
line segment.

Note that, as well as in the previous problem, we can give here
any figure instead of the straight lines a or b, and any figure admitting
a construction with compasses and ruler instead of the third straight
line, i.e., consisting of straight lines and circles.

5. Translation Method

It consists in translating some parts of a required figure with the
purpose of obtaining a new one admitting a known construction.

We illustrate by two examples.

Construct a trapezium, given the bases and diagonals.

Solution. Assume that the problem has been solved, and a trapezium
ABCD constructed (Fig. 134). Translate the diagonal BD, so that
its vertex B coincides with the vertex C. We now know all the sides
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of the triangle ACD,, two equal to the trapezium diagonals, and
the third to the sum of the bases. Hence the following solution. We
first construct the triangle ACD,, find the point D (4D being
the known base of the trapezium), then draw through C a straight
line parallel to AD, and another through D parallel to CD,. They
meet at B, and the trapezium ABCD possesses the given bases
and diagonals.

Given two circles k,, k,, and a straight line a. Construct a line segment
AB = d parallel to a with ends on k,, k,.

Solution. Assume that the problem has been solved, and the line
segment AB constructed (Fig. 135). If one of the circles, e.g., %,

B C
~
~
~
;[ X ——No—
4 D D,
Fig. 134 Fig. 135

is translated through d so that it remains parallel to a, then it turns
into a circle passing through the other end, B. Thus, B is at the
intersection of k, with the circle obtained by tranmslating k,. We
then find the line segment itself by drawing through B a straight
line parallel to a.

6. Rotation Method

It consists in rotating some parts of a figure with the purpose of
obtaining a new one with known construction.

We illustrate by two examples.

Given two circles k, and k,, and a point A. Construct an isosceles
triangle with vertex A, and angle 0 at A, and base vertices on k, and k,.

Solution. Assume that the problem has been solved, and the
triangle A BC constructed (Fig. 136). The vertex B is made coincident
with the vertex C on rotating the side AC about A through 6. Hence
the solution. Viz., rotate &, about A through 6. The obtained circle
intersects k, at the vertex B of the required triangle. To find C, draw
a circle with centre at A and radius 4B until it meets k,.

Construct a square whose sides pass through four given points A, B,
C and D.

Solution. Assume that the square has been constructed (Fig. 137).
Turn the line segment DB about D through 90°, and then translate
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it so that D coincides with A. Meanwhile, B’ 'falls on the point .B”
in the side passing through C (or in this side produced), wh1c31
follows from the congruence of the right triangles BED and AFB".
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Fig. 136 Fig. 137

We then draw the line CB" containing this side, another line
parallel to CB” through A, and two straight lines perpendicular to
the latter through B and D. The constructed square is the required.

7. Inversion Method

The inversion concept was introduced in Ch. III, Sec. 8, where
we proved that a circle inverts into a circle (or a straight line
if the given circle passes through the centre of inversion). A straight
line which does not pass through the centre in-
verts into a circle, and into itself if it does.

Inversion can be represented geometrically
as follows. Let O be its centre. Describe a cir-
cle, centre O, with radius of inversion (Fig. 138).
Then an outside point A inverts into A’, the
intersection of O4 with the chord joining the
ends of the tangentsfrom A. The proof is sim-
ple, viz., by the property of right triangles,
OA.0A' =0B%?=r% A’ invertsinto 4, and it
becomes clear how to find 4 if 4’ is given.

Besides the above properties of transforming straight lines and
circles, inversion possesses another remarkable one. It preserves angles
between curves. This means that if two curves intersect at some angle,
then they invert into two curves intersecting at the same angle. For
proof, we notice first of all that inversion preserves tangency,
i.e., if two curves touch at a certain point, or possess a common
tangent, then they invert into two curves tangent at the correspond-
ing point.

Now, let two curves y, and y, meet at a point A (Fig. 139). Draw
through the point two tangent straight lines. A inverts into a certain
point A’. Draw two circles k&, and %, touching the straight lines at
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A, and passing through A’. (If either 9, or y, is tangent to OA, then
we shall have just this line instead of the circle.) The circles meet at
A and A’ at the same angle.

Both %, and k, invert into themselves. In fact, by the property of
secants, OB-OB’ = 0OA-0A’ = r?. v, and 7, invert into two curves

/ \
I }’An
/
AY /.
Fig. 139 Fig. 140

¥: and vy, touching %, and %, at A’. Since the circles intersect at the
same angle, y; and y; meet at A’ at the same angle as v,, v, at 4,
and the statement is thus proved.

We now illustrate by an example
how to apply inversion to the solution
of a construction problem.

Given two intersecting circles and a
point A. Describe a circle passing through
A, and tangent to the two given circles.

Solution. Assume that the circle has
been constructed (Fig. 140). Apply in-
version with respect to the point where
the given circles meet. A then in-
verts into a certain point 4, the given
circles invert into straight lines, while

Fig. 144 the required circle into a circle tan-

gent to these straight lines, passing

through 4’, and whose construction is known (see Sec. 3). We then

carry out the inverse transformation, and the constructed circle in-
verts into the required.

Given three circles, two of which intersecting. Construct a circle
touching all the three.

Solution. As in the previous problem, we use inversion relative
to the point where the two given circles meet. Two circles of the
three then invert into straight lines, and the problem is reduced to
the construction of a circle tangent to two straight lines and a circle
(Fig. 141). A circle k, of radius 0,0, concentric with the required,
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passes through the point O, and touches two straight lines parallel
to the given, which are from the latter at a distance of the radius
of the given circle. Thus, the problem is again reduced to the con-
struction of a circle passing through a given point O, and touching
the two given straight lines. We then find its centre O; and the circle
itself. Having carried out the inverse transformation, we find the
required circle.

Note that inversion and the passage to concentric circles, which
we have just used, permit us to solve the general problem of con-
structing a circle touching three given ones (Apollonrius’ problem).

8. On Solvability of Construction Problems

It is sometimes very difficult to solve a construction problem with
the aid of compasses and a ruler, e.g., the Malfatti problem of the con-
struction of three circles touching the sides of a triangle, and each
other. There are also impossible construction problems such as dupli-
cation of the cube when it is required to find the edge of a cube with
volume twice greater than that of a given one.

The answer to the question whether or not a given problem is
solvable by means of compasses and ruler is supplied by the follow-
ing theorem. :

A problem whose analytic solution leads to an equation unsolvable
by radicals is a construction which is impossible with compasses and
ruler. Conversely, if the analytic solution of a problem leads to an
answer involving only rational operations and taking square roots,
then the construction is possible.

In fact, suppose that the construction is possible. Let the base
plane be the xy-plane. Drawing straight lines and circles, and per-
forming simultaneous computations related to the determination of
intersection points, we then come to expressions involving only
rational operations and taking square roots, which proves the first
part of the theorem.

Conversely, if the analytic solution of a problem leads to an
answer only involving rational operations and taking square roots,
then the answer can be found by construction by compasses and
ruler. For proof, it suffices to recall that expressions of the form
a+b, a—-b, aTb, Vab, Va® + b%, where a, b and ¢ are three
given line segments, can be constructed by compasses and ruler.

We illustrate by two examples.

Construct the side of a regular decagon inscribed in a circle of radius R.

Solution. The side of a regular decagon is the base of an isosceles
triangle whose sides are equal to R, and the vertex angle is 36°
(Fig. 142). Its bisector drawn from a base vertex separates it into
two isosceles triangles AOC and ABC. Therefore, AB = AC = OC.
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By the property of an angle bisector,

BC __ oC
AB — 04 -
Hence, denoting AB by z, we obtain

R;’” =4, #*4Rz—R=0.

Its positive root is

X =

—R+V'5R® _ V5R-R—R
2 - 2 :
To construct a line segment of length z is easy. Take a semi-
circle with diameter 6R, and drop the perpendicular SN to the

N
M
o
T I sTR
Fig. 142 Fig. 143

diameter (Fig. 143). Cut off SM = R. Therefore, half the line
segment MN is of the required length z.

The problem of duplication of a cube leads to the equation
x23 — 2 = 0, where z is the side of the cube whose volume is twice
the unit one. It has been proved that the roots cannot be solvable
by radicals. Therefore, the problem of duplication of a cube is
unsolvable by means of compasses and ruler.

Another impossible construction problem unsolvable is that of
trisecting an angle when it is required to divide an arbitrary angle
into three equal parts. Analytically, it also leads to an equation of
the third degree, which is generally unsolvable by radicals.

EXERCISES TO CHAPTER XVII *

1. Construct a circle of given radius, touching two given ones.
2. Find a point from which two given line segments are visible
at given angles.

* Borrowed from A. Adler’s Theory of Geometric Constructions (Uchpedgiz,
Moscow, 1940).
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3. Inscribe a right triangle in a given circle, so that the sides
containing the right angle pass through two given points.

4. Given three circles of the same radius, construct a circle touch-
ing them externally.

5. Find a point from which the sides of a given triangle are visible
at 120°,

6. Construct a circle intersecting three given ones at right angles.

7. Find a point from which three given circles are visible at the
same angle.

8. Given a straight line AC and an outside point B, find such a
point X on AC that AX 4 XB equals a given line segment I,

9. Given two concentric circles and a point P, draw a straight
line through P so that the line segment contained by the circles
is visible from their centre at a given angle o.

10. Given two pairs ,of parallel straight lines and a point P,
draw a straight line through P so that both pairs make equal inter-
cepts on it.

11. Given two circles and a point, draw a straight line through it
so that the circles cut off chords of given length.

12. Inscribe a parallelogram with given directions of the sides into
a given quadrilateral.

13. Construct a square, given the sum of its side and diagonal.

14. Inscribe a square in a given triangle.

15. Given a circle with two radii, construct a chord trisected by
them.

16. Inscribe in a given quadrilateral a rhombus so that its sides
are parallel to the diagonals of the quadrilateral.

17. Describe a circle touching a given straight line, and passing
through two given points.

18. Construct a triangle, given its altitudes.

19. Construct a triangle, given an angle, the altitude and bisector
drawn from the vertex of the angle.

20. Construct a triangle, given a median and.altitude drawn from
the same vertex and the circumradius.

21. Construct a triangle, given a side, the sum of the other two sides
and the altitude drawn on one of them.

22. Construct a triangle, given a side, the opposite angle and the
sum of the other two sides.

23. Draw a straight line through the point where two given circles
meet so that the sum of the chords cut off is greatest (when the chords
do not overlap).

24. Construct a triangle, given the perimeter, circumradius and
one of the angles.

25. Construct a triangle, given the three medians.

26. Construct a parallelogram, glven the dlagonals and angle
between them.
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27. Given a triangle, circumscribe an equilateral triangle of great-
est area.

28. Construct a quadrilateral, given its sides and the line segment
joining the mid-points of the diagonals.

29. Given a triangle ABC and a straight line g passing through
C, flmd a point X on g, from which AC and BC are visible at equal
angles.

30. Given a triangle ABC and a point D on the straight line AB,
find a point X on the straight line AC, from which AD and DB are
visible at the same angle.

31. Given a straight line g and two points A and B on opposite
sides of it, find a point X on g, so that AX + XB is the least.

32. Inscribe in a square an equilateral triangle, given one of its
vertices.

33. Describe a circle touching a given one, and passing through
two given points.

Chapter XVIII

MEASURING LENGTHS, AREAS AND VOLUMES

1. Measuring Line Segments

By the “measure axiom” for line segments, each segment is of certain
positive length. If a point C on a straight line AB is between A and B,
then the length of the line segment AB equals the sum of those of
the line segments AC and BC. Thus, the axiom requires that each
line segment should be associated with a certain value, the
above additive property being valid. No measurements of the line
segment are assumed. The question naturally arises as to the rela-
tion of the results of a practical measurement which we normally
make to the segment length whose existence is stated by the axiom.

Recall how a measurement is performed practically. Let AB be
a given line segment. We take a standard of length, e.g., of one
meter, make one of its ends coincident by a motion with that of the
line segment, say, 4, and mark the point 4; where the other end of
the standard goes. Similarly, we mark points 4,, A, ... . If one
of the points 4, so marked coincides with B, then we will say that
the length of the line segment is » metres. This is the practical result
of the measurement. Does it coincide with the number associated with
the line segment by the measure axiom?

To prove that it does, we see that the length of 44, is equal, by
the measure axiom, to the sum of those of A4, and 4,4,. Since a
motion preserves the lengths of line segments, 4,4, = A4; =1.
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Therefore, the length of A4, = 2, which corresponds to the results
of the practical measurement if B =A,. It is proved similarly that
if B= A,, the practical measurement result coincides with the
length of AB, prescribed by the measure axiom.

It may happen that B does not coincide with any of 4 ,. Then there
are such neighbouring points 4,_, and A, that B is in 4, 4.
In practical measurement, we say that the length of AB is between
n — 1 and n metres. If we speak of the length determined by the
measure axiom, then the result is the same. In fact, by the measure
axiom, the length of AB equals the sum [of those of 44, ; and
A,—,B. Hence, it is greater than n — 1. Similarly, we conclude that
it is less than n.

For more precise measurement of the length of a line segment in
practice, we divide the standard into 10, or some other number, equal
parts, and perform the measurement by one of the known methods.
Analysis which we omit here shows that the result of the practical
measurement coincides with the one following from the measure
axiom.

In connection with the practical measurement of the length of a
line segment by cutting off a standard of length, the natural ques~
tion arises as to what entails the existence of such a point 4,
that the point B belongs to the line segment A4 ,? It is not hard to
give an answer. A4, is of length n. And when 7 is sufficiently large,
the length of AB is less than n (meaning the length of the line seg-
ment, determined by the measure axiom). Hence, B belongs to 44,
Thus, that B belongs to A4, for sufficiently large n (and, therefore,
the possibility to measure line segments in practice) follows from the
properties of real numbers, viz., for any number d > 0, there exist;
a natural number » such that d<C n. :

We have drawn the reader’s attention to this circumstance, be-
cause, with another axiomatic construction of geometry, e.g., due
to H. Hilbert, where the concept of the length of a line segment is
not basic, and obtained in the measurement process, the existence of
the point A, is introduced as an axiom (Archimedes’ axiom).

Note another circumstance in connection with the practical mea-
surement of a line segment. If the measurement process does not stop
after a finite number of steps, then we obtain two sequences of points
P, and Q, possessing the following properties, (i) the point B is
between P, and Q,, (ii) the lengths of the line segments AP, form a
nondecreasing sequence, whereas those of the line segments AQ, a
nonincreasing one, (iii) the length of the line segment P, Q,, is 1/10". By
the property of real numbers, both sequences have the same limit,
Since the length of AB is greater than that of AP, and less than that
of AQ,, this common limit is the length of 4AB. Thus, the practical
measurement method always yields the length of the line segment;
prescribed by the measure axiom.
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2. Length of a Circumference

At school, the discussion of the length of a circumference starts
with visual imagery. The student is asked to imagine a thread in
circular form, cut it, and pull at its ends. Then the length of the
obtained line segment is that of the circumference. Further, it be-
comes clear from the visual imagery that the length of a circum-
ference can be made as little different as we please from the perimeter
of the inscribed convex polygon with sufficiently small sides. On
the basis of this proposition, it can be then proved in a perfectly
strict manner that the ratio of the length of a circumference to
its diameter is independent of the circumference, i.e., is the same
for any two circumferences.

The defect of this treatment is that we do not give a definition of
the concept of the length of a circumference, and then introduce a

proposition requiring proof, which is caused

D by purely methodical argument. The con-

cept of the length of a circumference as-

sumes.familiarity with that of the limit or

supremum of a sequence. They seem com-

plicated to the intermediate school student,
and the proofs cannot be grasped at all.

The rigorous treatment of the problem of
the length of a circumference is in the fol-
lowing. First, we define the concept.

Fig. 144 Viz., the length of a circumference is the

supremum of the perimeters of convex

polygons inscribed in a circumference, or the least number greater

than the perimeter of any of them. To make the definition correct,

or to define the length of a circumference, it is required that the pe-

rimeters of the inscribed polygons should be all bounded. The latter
is proved by the following theorem.

If a convex polygon P, lies inside a convex polygon P,, then the pe-
rimeter of P, is not greater than that of P,. If P, is not coincident with
D,, then its perimeter is less than that of P,.

Proof. Draw a straight line a containing one side of P, (Fig. 144).
P, is on one side of this line, whereas P, either on the same side of
a or there are points on P,, lying on opposite sides, in which case a
breaks P, into two polygons. Let Q, be the one in the same half-
plane with P, relative to a. It contains P;, and has perimeter less
than that of P,. In fact, the passage from P, to Q, is related to the
replacement of the broken line by the line segment 4 B joining itsends.

Performing the same construction with each side of P,, we finally
obtain P,. Hence, if P, does not coincide with P,, then its perimeter
is less than that of P,.

Q.E.D.
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We now prove another proposition from the school textbook. Viz.,
the length of a circumference is as little different as we please from the
perimeter of the inscribed convex polygon with sufficiently small sides,

Proof. First, we see that, for any € > 0, a convex polygon can
be inscribed in a given circle so that its perimeter is different from the
length of the circumference by not more than &. In fact, assume that the
statement is false. Then the perimeter of any inscribed polygon is
not greater than ! — e, ! being the length of the circumference.
Therefore, the number [ is not the least value greater than the pe-

rimeter of any inscribed polygon. I — -g— is less than /, and also greater

than the perimeter of any inscribed polygon; a contradiction, and
the statement is thus proved.

Now, let P be a polygon inscribed in the circle, with perimeter
different from the length of the circumference by not more than
e >0, and P’ an inscribed polygon with sides less than 6. Complete
P’ with the vertices of P. The polygon P” so formed has perimeter
not less than P’. On the other hand, it is not greater than l. If we
omit in P” the segments of the broken line, meeting at the vertices
of P, then its perimeter decreases, but not more than by 2r8, where
n is the number of vertices of P. Hence, the perimeter of P’ is not
less than | — & — 2rd. Since after the choice of ¢, n is fixed, ] — & —
2nd can be made as little different from I as we please for suffi-
ciently small & and 6.

Q.E.D.

With the given definition of the length of a circumference, the
question arises how it is related to that of the length of a curve, viz.,
as the limit of the lengths of broken lines inscribed in the curve,
which we made use of in Ch. IX. It turns out that the above defini-
tion leads to the same result. In fact, we have proved that the pe-
rimeters of convex polygons inscribed in a circumference can be made
as little different from its length as we please if their sides are suf-
ficiently small. This means that the length of a circumference is
the limit of the perimeters of inscribed convex polygons if the lengths
of their sides decrease arbitrarily.

3. Areas of Figures

The school treatment of the topic of area starts with the discussion
of crops on two plots, one in the form of a square, and the other of
arbitrary form. This argument is followed by the conclusion regard-
ing the existence of area and its properties, viz., additivity and equal-
ity for congruent figures. Further, proceeding from the existence of
area and on the basis of its properties, we can rigorously deduce
formulas for the areas of simple figures such as a rectangle, paral-
lelogram or triangle.
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The strict theory of area should be started with the proof of the
following theorem.

On a set of simple figures admitting partition into a finite number
of non-overlapping triangles, i.e., without common interior points, a
function S called area can be defined so that it possesses the following
Dproperties, viz.,

(i) for figures with interior points, S > 0,

(ii) if a figure G is made up of two figures G, and G, having no in-
terior points in common, then S (G) = S (G;) + S (Gy),

(iii) congruent figures have equal areas, and

(iv) for a square with unit side, S = 1.

The function S satisfying conditions (i)-(iv) is unique.

Proof. We define the area S as follows. Put § = % ah for a

triangle, where «a is its side, and %~ the altitude on it. For any figure
G, the quantity § is determined as the

2 sum of the areas of triangles in any of

its partition. To make the above defini-
G tion correct, it is required that the area
of a triangle should not depend on the

side taken or the altitude drawn, and that

the area of a figure, defined in terms of

the addition of areas of the component

A B, C tx:iangles, should not depend on a parti-
tion into them.
Fig. 145 First, we prove that the area of a

triangle does not depend on the side
taken and corresponding altitude. Let ABC be a given triangle
(Fig. 145). Draw its altitudes CC, and BB,. The right triangles
AC,C and AB,B are similar, since the angle 4 is common. Hence,

AC cC
G5 =55 AC-BB,=AB-CC,.

Therefore, we obtain the same result not depending on the side
AC and altitude BB,, or the side AB and altitude CC,.

We now prove that, in partitioning a triangle into smaller ones,
its area equals the sum of those of the component triangles irrespec-
tive of the partitioning method.

First, we consider the partition in Fig. 146, where the triangle
ABC is broken into triangles CAD,, CD\D,, CD,D,, ..., all of
them with the same altitude kA from their common vertex C. It is
also that of the triangle ABC.

The sum of the areas of the triangles is

ADy-h D,Dy-h DyDg-h AD,+D;Dg+4- DyD vea)oh
21 + 123 + 323 +=( 1+D, a'lz' sDs+...) .
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Since AD, + DD, + D,Ds + ... = AB, the sum of the areas
is A—Bz—}-' , or the area of the triangle ABC.
We now consider an arbitrary partition of the triangle ABC into

smaller ones. Assume that any two triangles in the partition either

C
c

Dy D, Ds - A » B
Fig. 146 Fig. 147

have no common points, or have a common vertex, or a common side.
E.g., such a partition is shown in Fig. 147.

In Fig. 148, another partition triangle PQR is shown. Its area can
be represented as the algebraic sum of
those of the three triangles APQ,
AQR, ARP obtained from the triangle
PQR by replacing one of the vertices
with 4. The sign of the areas in the sum
is determined by the following rule.
If a vertex to replace A is on one side
with it relative to the straight line
joining the other two vertices, then the
area of the triangle is taken with Fig. 148
a plus; if it is on the other side,
then with a minus. If, replacing with 4, three points are in one
straight line, then the addend is omitted, i.e., the area is assumed
to be zero.

E.g., consider the position of the triangle PQR in Fig. 148.

As we have proved,

S (PQR) = § (PQO) + S (QRO),
S (APQ) = S (APO) + S (PQO),
S (ARQ) = S (ARO) + S (QRO),
S (APR) = 8§ (APO) + S (ARO).

Hence,
S (PQR) = S (APQ) + S (ARQ) — S (ARP).

The correctness of our statement regarding the representation of
the area of the triangle PQR as the algebraic sum of those of the
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triangles APQ, AQR and ARP has been verified by a concrete exam-
ple of the position of the triangle PQR. We could also consider other
possibilities for its position, and see that our statement is always valid.

Representing the area of each partition triangle as the algebraic
sum of those of triangles with A as a vertex, we add together the
areas of all the triangles in the partition, and obtain the sum of
those of triangles AXY, where XY is a side of a partition triangle.
If XY is inside the triangle ABC, then the area of the triangle AXY
is involved in the sum twice, because XY is the side of two triangles
in the partition. Since they are on opposite sides of the straight line
XY, the area of the triangle AXY is once with a plus, and once with
a minus, thus eliminating each other.

If the line segment XY is on the side BC of the triangle ABC,
then the area of the triangle AXY is only once involved in the sum,
with a plus. However, if the side XY is on
AB or AC, then the area of AXY simply is
zero. Eventually, the sum of the areas of the
triangles in our partition is that of the
triangles AXY with sides XY on the side
BC of the triangle ABC. It hasbeen proved
earlier that it is equal to the area of the
latter, and thus equals the sum of the areas
of the triangles in any partition.

Now, let a simple figure F be in one
case partitioned into triangles A, A,,

Fig. 149 A;, . .., and, in another case, into triangles
Ay, A}, A, . . .. We prove that the sums of
the areas of the triangles in the first and second partitions are

equal.

The triangles in the first and second partition, taken together,
divide F into convex polygons, viz., triangles, quadrilaterals,
pentagons and hexagons, each of which is the part common to one
triangle in the first partition and another in the second. (One such
pentagon is shown in Fig. 149.) Break them into triangles A",
A’y Ay, ..., and do it so that every two either have no common
points at all, or have a common vertex, or a common side.

It has been proved that each Aj of the first partition of F equals
the sum of the areas of the triangles Ay’ involved. Similarly, each
triangle Ay’ of the second partition is represented as the sum of A;".
Therefore, the sums of the areas of the triangles both of the first
and second partitions of F equal that of the areas of A;". Hence, the
sums of the areas of the first and second partition triangles are equal,
i.e., the area of F is independent of the way it is partitioned into
triangles.

We now prove that the area so defined, in fact, possesses proper-

ties (i)-(iv). The first of them is obvious. To prove the second, sup-
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pose that the figure G is partitioned into two figures G, and G, with-
out common interior points. Let G, be partitioned into triangles
A;, and G, into triangles Az. We then obtain a partition of G into
A} and Ay. The area of G, equals the sum of the areas of A;, whereas
that of G, is the sum of the areas of A;. The area of G is the sum of
the areas of A; and Aj. Therefore, it equals that of the areas of G,
and G,, and the second property is thus proved.

The third property of area follows from the equality of the areas.
of congruent triangles (the corresponding sides are equal, and the
altitudes on them are also equal).

We now prove the fourth property. A square with unit side is.
divided by a diagonal into two right triangles with unit sides con-
taining the right angles, the area of each being 1-1/2. Therefore, the:
area of the square is 1.

Finally, we prove that area is determined uniquely by properties.
(i)-(iv), which has been actually proved in the school textbook, where-
it was shown on the basis of these properties that the area of a rec-
tangle with sides a and b equals ab and that the area of a triangle-
is one-half the product of its base and altitude. The uniqueness in
the definition of the area of a triangle implies that in the definition
o{ the area of any simple figure, and the theorem is thus proved com-
pletely.

We now define the concept of area for any figure. We will say that
a figure G possesses certain area if, for any & > 0, there exists a
simple figure G, containing G, and a simple G, contained in G, whose-
areas differ by not more than e. For figures with area in the sense of
the above definition, the value of the area S (G) can be defined as the
infimum of those of simple figures containing G or as the supremum
of the areas of simple figures contained in G. The area so defined for
figures having area possesses properties (i)-(iv). However, we do not.
give the proof here.

A simple sufficient test of the existence of area for a figure is that
its boundary should have zero area; in particular, if the boundary
of the figure consists of rectifiable curves.

In the school course of geometry, they usually consider figures
which are bounded by straight line segments or circles.
They all possess area in the sense of the above definition.

4. Volumes of Solids

The school treatment of the topic of the volume of solids also
starts similarly, viz., with a clear proof of the existence of volume,
and its properties of additivity and equality for congruent solids.
1?1 strict treatment of the topic assumes the proof of the following
theorem.
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On a set of simple solids admitting partition into a finite number of
disjoint triangular pyramids, a function V called volume can be defined
to possess the following properties, viz.,

(i) for solids with interior points, V >0,

(ii) if a solid T is made up of two solids T, and T, without interior
Dboints in common, then

VA(T) =V (T) + V(T,),

(iii) congruent solids have equal volumes,
and

(iv) for a cube with unit edge, V = 1.

The function V satisfying conditions (i)-(iv) is unique.

In principle, proof is not different from that of the corresponding
theorem for the areas of simple figures. Viz., the volume of a simple
solid is defined as the sum of those of triangular pyramids compos-

ing it, whereas that of a pyramid is defined by the formula V = —;— Sh,

where S is the area of its base, and & the altitude on it. The correct-
ness of the definition is then proved, or the independence of the vol-
ume of a triangular pyramid from the choice of its base, as well as
that of the volume of a simple solid from its partition into triangular
pyramids.

The proof that the volume definition is correct is followed by
the verification of (i)-(iv), and, finally, by that of the uniqueness of
volume.

The concept of volume is defined for any solids as follows. We
will say that a solid T has certain volume if, for any & > 0, there
exists a simple solid T, containing T and a solid T, contained in
T, whose volumes differ by not more than &. For a solid T with vol-
ume in the sense of this definition, its volume V (T') is defined either
as the infimum of the volumes of simple solids containing T or as
the supremum of the volumes of simple solids contained in it. The
volume so defined of solids (which have volume) satisfies conditions
(i)-(iv).

A simple sufficient test for the existence of volume of a solid is
that its boundary should have zero volume. In the school course of
geometry, they consider solids bounded by pieces of planes, and of
cylindric, conic or spherical surfaces. It is easy to see that each of
them can be contained by a simple solid of arbitrarily small volume.
Therefore, solids bounded by such surfaces do have certain volume.
In school treatment, the existence of volume in the sense of the above
definition is usually implied in deducing the formula for volume.
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5. Area of a Surface

The school textbook supplies the following definition of the area
of a surface. Let F be a surface, and Fy the set of points in space,
which are from the surface at a distance not greater than
8. We call the limit of the ratio V (F4)/28 as 6 —0 the area of the
surface F. This definition is explicitly clear, especially after the
example of the amount of paint necessary for a surface to be coated
and a square lamina. It also possesses the advantage that it makes
very simple the deduction of formulas for the areas of surfaces studied
at school, viz., of a sphere, spherical cap, spherical zone, cylinder
and cone.

However, the question arises as to the definition relation to that
of the area of a surface, given in higher school, and, in particular,
to the one from Ch. XI. We now show that both lead to the same
formula for the area of a surface.

We now introduce curvilinear coordinates u, v, w in the neigh-
bourhood of a surface F as follows. Cut off a line segment of length
{ w | on the normal to F at a point (u, v), and take the values u, v, w
as the coordinates of its end, w being positive on one side of the sur-
face, and negative on the other. The Cartesian coordinates of the
point (z, y, 2) are certain functions of u, v, w. To make the passage
from coordinates z, y, z to u, v, w possible, it is required that the
Jacobian J should not vanish, viz.,

Zu Yu 2Zu
J=|Z» Yo 2%, |5%0.
Zw Yw 2w

We show that this holds in a sufficiently small neighbourhood
of the surface, or for sufficiently small w. We will assume the 'sur-
face regular and, at least, twice differentiable.

If we denote the position vector of a point on the surface by
r (4, v), and the unit normal vector by n (u, v), then

J= ((l‘ + wn)u (r + wn)v (r + wn)w)-

For w=0, J = (,rp,n) = |r, Ar,|==0. Therefore, J =0
also in a certain neighbourhood of the surface, i.e., for sufficiently
small |w |.

Now, let the curve  bounding the surface be rectifiable, and of
length I. Divide it into /8 equal parts (without loss of generality,
we assume /6 integral). Construct cubes with centres at each divi-
sion point, and edges 48. Their total volume is not greater than

£ (48)". Let Fy be that part of the solid Fs, which is filled with the
normals of length 6 to the surface F. Its volume is different from
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that of Fy by not more than% (40)%. Therefore, for certain 0,
0<< 01, we have

V (Fs) =V (Fi) +8  (49)%,
1 1 ”
-5V (Fg) = =5 V (Fs) + 63218.
Passing to the limit as 6 — 0, we obtain
S (F)= hm 5V (Fs) = hm - V (Fy).

We now calculate the 11m1t on the rlght-hand side, viz.,
hm—- V (Fy) =limz S S J du dv dw

F, |(w| <6

26

)
= SFS L%l? %5 S (ry + wnyr, + wn,n) dw] dudv= SFS (ryr,n) du dv.

Thus,
SF= SFS (ruryn) du dv = SFS ry A rp| dudv,

and we obtain the same formula for the area of a surface, which was
derived in Ch. XI with another definition of area.

Chapter XIX

ELEMENTS OF PROJECTION DRAWING

1. Representation of a Point on an Epure

A solid is represented on the plane by means of projection with
parallel straight lines. Usually, its projection onto one plane does not
lead to a full image. Therefore, two or even three projections onto
two or three planes, respectively, are used. We consider the repre-
sentation of a solid by means of orthogonal projection onto two
planes.

Let H and V be two planes meeting at right angles in a straight
line z (Fig. 150). For convenience, we will assume H horizontal,
and V vertical. A solid is orthogonally projected onto H and V.
The projection of a solid onto the horizontal plane is said to be hor-
izontal, whereas that on the vertical vertical. H and V are called the
projection planes, and x the axis of projection. On projecting the figure
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onto H and V, we turn H through 90° about x until it coincides with
V. Both projections will then be in one plane. The drawing so ob-
tained with the representation of both projections is called an epure.

Consider the position of the horizontal and vertical projections
of an arbitrary point on the epure. The following property is valid.

The vertical and horizontal projections of a point on the epure are
represented as points in the straight line perpendicular to the axis of
projection.

vV
14 A
x - — x
|
H Ay
H)
Fig. 150 Fig. 151

Proof. Draw a plane o perpendicular to the axis of projection z
through the given point A to cut the planes H and V in two straight
lines a, and a, (Fig. 151). The horizontal projection 4, of 4 is in
a,, since the perpendicular from A to H is in . Similarly, the ver-
tical projection A, of A is in a,. The straight lines a, and a, are per-
pendicular to x. Like any motion, a rotation is angle-preserving, and
a,, a, are made coincident when H and V coincide after the rotation.
Thus, the projections of A are represented as points of a, on the
epure.

2. Problems Leading to a Straight Line

Given a straight line a by its projections on the epure, and the hori-
gontal projection of a point A in a, find the vertical projection of A.

Solution. Let ¢, and a, be the horizontal and vertical projections
of a, and A, the horizontal projection of A (Fig. 152). The vertical
projection of A is in the straight line perpendicular to' the axis
of projection passing through 4,; it is also on the vertical pro-
jection a, of a. Therefore, it is the point where the straight lines meet.

Given a straight line a and an outside point A by its projections on
the epure, construct the projections of the straight line passing through
A, and parallel to a.
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Solution. Since parallel straight lines have parallel projections,
the projections of the required straight line are obtained if we draw

a
P
///
g
a2 A
e
x 7
X
\\\L
ay 14\1
Al \\
a,
Fig. 152 Fig. 153

through the projections of A straight lines parallel to the correspond-
ing projections of a (Fig. 153).

3. Determination of the Length
of a Line Segment

Find the length of a line segment AB, given its projections on the
epure.

Solution. If AB is parallel to one of the projection planes, e.g.,
the vertical plane, then its length equals that of the projection onto
it. We shall learn whether or not AB is par-
B, B, allel to the vertical plane from its horizon-
tal projection which should be parallel to

the axis of projection.
Assume that AB is not parallel to any
1 *' of the projection planes. Rotate AB about
A ———F'ﬁf‘bx the straight line projecting A onto the hor-
: /7 izontal plane. The projections of B will
1 then vary. Viz., the horizontal projection
of B moves along a circle with centre at a
B, point A,, and the vertical projection along
. a straight line b, parallel to the axis of pro-
Fig. 154 jection passing through a point B,

(Fig. 154).

When the line segment is parallel to the vertical plane, the pro-
jection of B, falls on a straight line parallel to the axis of projection,

passing through A,. Denote B, in this position by B,. The line
segment A,B, is the horizontal projection of a line segment equal to
AB, and parallel to the vertical plane. Its vertical projection A,B,
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is not hard to find. The vertical projection of the end B of the line
segment rotated is in the intersection of the straight line passing
through B,, and perpendicular to the axis of projection and b,. As
indicated above, AB is equal to 4,B,.

4. Problems Leading to a Straight Line
and a Plane

Let H and V be two projection planes, and o an arbitrary plane
intersecting the planes in two straight lines A and v, respectively
(Fig. 155), called the traces of o on the projection planes. Viz., i
is called the horizontal trace, and v the vertical trace.

Fig. 155

The traces of a plane intersect on the axis of projection or are
parallel to it if the plane is parallel to the axis. If the plane is par-
allel to one of the projection planes, then it possesses one trace. It
is vertical if the plane is parallel to the horizontal, and horizontal
if it is parallel to the vertical plane. Planes are represented as their
traces on the epure.

Find the straight line where two planes meet, given by their traces on
the epure, i.e., determine the projections of the straight line.

Solution. Let o and f be the given planes, a, and a, the traces of
a, and b, and b, those of p (Fig. 156). The straight line ¢, in which a
and P intersect, cuts the vertical plane at a certain point P. Its ver-
tical projection P is the point where the plane vertical traces meet,
i.e., a, and b,, while the horizontal projection P, is on the axis
of projection.

Similarly, ¢ cuts the horizontal plane at a point Q whose hori-
zontal projection Q, is the point where a, and b; meet, while the
vertical projection is on the axis of projection. The required pro-
jections of ¢ are obtained if we join the point Q, to P, (vertical pro-
jection) and P, to Q, (horizontal projection).
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Given a straight linz by its projections on the epure, find the traces of
the plane passing through the line perpendicular to the given projec-
tion plane, e.g., H

Solution. Since the plane is perpendicular to H, its horizontal
trace coincides with the horizontal projection of the given line,
whereas the vertical trace is perpendicular to the axis of projection.
"To obtain the vertical trace, a straight line should be drawn perpendi-
cular to the axis of projection through the point where the line
horizontal projection meets the axis (Fig. 157).

Given the projections of a straight line and the traces of a plane, find
the point where the line meetsthe plane, i.e., the projections of the point.

Solution. Draw through the given straight line a plane perpendic-
wlar to H, and find a straight line & in which the plane intersects

az

X

™.,

Fig. 157 Fig. 158

the given one. Similarly, we find the straight line v in which the given
plane intersects the one passing through the given straight line per-
pendicular to the vertical plane. The projections of the required
point are the points where the corresponding projections of 2 and v
meet.

Given the projections of two intersecting straight lines and the hori-
zontal projection of a point, find the vertical projection of the point if
it is known to be in the plane determined by the given straight lines.

Solution. Draw an arbitrary straight line through the horizontal
projection C, of the given point, intersecting the horizontal pro-
jections a; and b, of the given lines (Fig. 158). Denote the intersec-
tion points by A4, and B,, and draw through them straight lines per-
pendicular to the axis of projection. Denote by A, and B, respect-
ively, the points where they meet the vertical projections of the given
straight lines. The line segments 4,B; and 4,B, are the horizontal
and vertical projections of the line segment with ends on the given
straight lines. Hence, the vertical projection C, of the required point
is where the straight line passing through C, perpendicular to
the axis of projection meets 4,B,.
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5. Representation of a Prism
and a Pyramid

Solving solid geometry problems, we often have to represent sol-
ids by their parallel projections onto a plane. The general theory used
in Vt.his case is known from the school course of geometry.

iz.,

(i) Straight line segments are represented on the projection plane
as straight line segments.

(ii) Parallel line segments of a figure are represented as parallel
line segments.

(iif) The ratio of line segments on one straight line or parallel
straight lines is preserved in parallel projection. In particular, the

D 5

- N

Fig. 159 Fig. 160

mid-point of a line segment is represented as that of its projection.

These rules are necessary, because their violation is always cons-
picuous.

We now consider the representation by parallel projection of the
most frequently represented solids, prisms and pyramids. The later-
al edges of a prism are parallel and equal; therefore, they are repre-
sented as parallel line segments equal in length. In the case of a
right prism, its lateral edges are usually represented as vertical line
segments. Since the lateral faces of a prism are parallelograms, and
parallelism is preserved in parallel projection, they are represented
as parallelograms in the projection plane. Thus, to represent a right
prism with a given polygon as the base, we have to draw parallel
straight lines through its vertices, cut off equal line segments on them,
and join their ends in the same sequence as on the base (Fig. 159).

To represent an oblique prism, we do the same, with the only
difference that the lateral edges are drawn to be parallel to each
other, but not vertical (Fig. 160). Anyway, we have to see to it
that the edge projections should not overlap. Otherwise, the repre-
sentation is not convincing. For better impression, the edge projec-
tions not visible by the observer can be represented in dotted lines.
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The base of a triangular prism is represented on the projection
plane as an arbitrary triangle, whereas that of a parallelepiped must,
naturally, be a parallelogram. In representing the base of a prism,

we should generally resort to the above rules.
In particular, the parallel sides of a base should
be represented as parallel line segments, while
the projection of a point-symmetric base should
also be point-symmetric.

In representing the base of a pyramid, we
should follow the same rules as for the base
of a prism. The height of aregular pyramid is
represented as a vertical line segment, where-

Fig. 161 as its foot as the base circumcentre. If the

pyramid is triangular, then the circumcentre

of its base is at the point of intersection of the three medians
(Fig. 161).

6. Representation of a Cylinder, a Cone
and a Sphere

In representing a cylinder and a cone, it is most difficult to draw
their basis. As the projections of circles, they are represent-
ed as ellipses. To construct an ellipse with a given major axis, we
can first construct a circle on the major axis as on diameter
(Fig. 162), decrease proportionally the

| — vertical half-chords, e.g., twice, and join
the obtained points with smooth curves. If
— we take sufficiently many points, then the

ellipse representation is quite accurate.
Normally, in solving problems, we confine
ourselves to four points, the ends of the

semi-axes. Drawing an ellipse through them

N is simplified by knowing the directions of
tangents.

Fig. 162 To construct a cylinder with the

obtained base, we draw several gener-
ators through the base points, cut off equal intercepts on them,
and join their ends with a smooth curve. The extreme generators on
the cylinder projection touch the bases.

To inscribe a regular polygon in the base of a cylinder, it is first
inscribed in the circle from which the ellipse is obtained, and then
vertical straight lines are drawn through the vertices to meet the
ellipse (Fig. 163).

The obtained points are the vertices of the required polygon. We
then easily construct the prism inscribed in the cylinder with this
base.
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In constructing a prism circumscribed about a cylinder, we should
remember that the sides of the prism bases are tangent to the cylin-
der bases, and the corresponding points of tangency on the upper and
lower bases are the ends of a generator.

Fig. 164

To represent a cone, we first construct its base as of a cylinder,
viz., draw the cone height from the centre of the ellipse as a vertical
line segment, and then, from the cone vertex, extreme generators so
that they touch the base (Fig. 164).

In the case of a sphere, parallel projection is assumed orthogonal
to the projection plane. The sphere, therefore, is represented as a
circle.

7. Construction of Sections

Solving solid geometry problems, it is often necessary to con-
struct a section of a solid on its representation. Here, we give cer-
tain hints which can be used in such a construction. First of all, note
that the section of a prism by a plane parallel to its lateral edges is
a parallelogram whose sides in the lateral faces are parallel to lateral
edges. The section of a cylinder by a plane parallel to its axis is a
rectangle represented as a parallelogram whose opposite sides are
two generators of the cylinder. A section of a pyramid (or cone)
with a plane passing through the vertex is a triangle whose one
vertex is that of the pyramid (resp. cone), and the other two are
on the base contour.

The section of a prism or a cylinder by a plane parallel to the bases
is congruent to the base, and obtained from it by a translation. The
section of a pyramid or a cone with a plane parallel to the base is
homothetic to the base with respect to the vertex. This permits us
to construct sections with such planes easily.

To construct a solid with a plane in general position is more dif-
ficult. Consider the principal case, given a straight line g in which the
secant plane meets that of the prism base. E.g., a section passes
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through a side of the base (Fig. 165). Let a point A be given on the
prism edge, and a secant plane pass through it.

We draw the plane of the face with A. It intersects the base in a
straight line. Let B be the point where the straight line meets g.
The straight line AB is in the secant plane and the plane of the face.

Fig. 165 Fig. 166

Therefore, the line segment AC of this line, which is in the prism
face, is a side of the required section.

We then find a point D in the next face, upper base. The line
segment CD should be parallel to g. Proceeding further, we find all
the vertices of the polygonal section, and thus construct the section
itself. For convenience, the section is sometimes shaded.

The section of a pyramid with a plane in general position is con-
structed similarly. First, the intersection of the secant plane with

' the base is found, and then the procedure is
the same as for a prism.
// Consider the section of a cone with a plane
//// in general position, intersecting the plane
of the base in a given straight line g. Suppose
a point 4 is given on the lateral surface, and
a secant plane passes through it (Fig. 166).
Draw some plane through the vertex and A. It
intersects the lateral surface in two generators.
) Let Bbe the intersection with g of this plane
Fig. 167 trace on the base plane. The intersection of AB
with the generator is then a point C of the sec-
tion. Any number of points in thesection canbe constructed thus. Join-
ing them with a smooth'curve, we obtain the section by the given plane.

The section of a cylinder by a plane is constructed similarly.

The section of a sphere by a plane is a circle, and its parallel pro-
jection an ellipse (Fig. 167).



Ch. XIX. Elements of Projection Drawing 277

EXERCISES TO CHAPTER XIX

1. Account for the following method of constructing the parallel
projection of a regular hexagon. Viz., take the projections of every
other vertex arbitrarily; find the point O where the medians of the
triangle meet these projections, and then find the projections of the
remaining three vertices symmetrically to the constructed with
respect to O.

2. Given the parallel projection of a circle (ellipse) and the pro-
jection of one of its diameters, how can the projection of the perpen-
dicular diameter be constructed?

3. Given the parallel projection of a circle, construct the pro-
jection of an inscribed square if one of its vertices is known.

4. Given the projection of a circle, how can that of a circumscribed
square be constructed?

5. Given the parallel projection of a circle, construct the pro-
jection of the inscribed equilateral triangle if the projection of one
of its vertices is known.

6. Given the projection of a circle, how can that of a circumscribed
equilateral triangle be constructed?

7. Given the projection of a prism, construct its section passing
through the lateral edge and a point in one of the faces if the pro-
jection of the point is known.

8. Given the parallel projection of a prism, construct its section
passing through a base side and a point in one of the faces if the pro-
jection of the point is known.

9. Given the parallel projection of a prism, construct a section
passing through two points on the sides of one of the bases and
through a given point on one of the lateral edges.

10. Given the parallel projection of a prism, construct a section
parallel to the bases, and passing through a given point in a lateral
face.

11. Given the parallel projection of a regular triangular pyramid,
construct the section passing through a lateral edge and the height.

12. Given the parallel projection of a triangular pyramid, con-
struct the section passing through a base side, and dividing the height
in a given ratio.

13. Given the parallel projection of a pyramid, how can the sec-
tion passing through the vertex and two points on the base be con-
structed if their projections are known?

14. Given the parallel projection of a pyramid, how can the sec-
tion parallel to the base, and passing through a point given in a later-
al face, be constructed if the projection of the point is known?

15. Given the parallel projection of a pyramid, how can the sec-
tion passing through three points on lateral edges be constructed?
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16. Given the parallel projection of a cylinder, how can the pro-
jection of an inscribed (resp. circumscribed) regular quadrangular
prism be constructed?

17. Given the parallel projection of a cylinder, how can the pro-
jection of an inscribed triangular (resp. hexagonal) prism be con-
structed? The same question for a circumscribed prism.

18. Given the parallel projection of a cone, how can the pro-
jection of an inscribed triangular (resp. hexagonal) pyramid be
constructed? The same question for a circumscribed pyramid.

19. Given the parallel projection of a cone, how can an inscribed
(resp. circumscribed) regular quadrangular pyramid be constructed?

20. Given the parallel projection of a cylinder (resp. cone), how
can the section parallel to the base, and passing through a given
point of the height, be constructed? '

Chapter XX

POLYHEDRAL ANGLES AND POLYHEDRA

1. Cosine Law for a Trihedral Angle

Theorem. Let a., B and y be the face angles of a trihedral angle, and
C the dihedral angle opposite to y. Then

cos y = cos & cos f -} sin @ sin f cos C.

Proof. Let S be the vertex of the trihedral angle, a, b, ¢ its edges,
a, P, y the face angles made by the edges
b and ¢, ¢ and a, a and b, respectively, and
C the dihedral angle at the edge ¢, i.e., op-
posite to y (Fig. 168).

First, we assume that o and P are acute.
Cut off on ¢ segment SC of unit length,
and draw perpendiculars from C until they
meet a and b at points A and B, respective-
ly. Apply the cosine law to the triangles
ABC and ABS.

Fig. 168

We have
AC?* + BC? — 2AC-BC-cos C = AB?,
SA? + SB? — 28S4-.-SB-cos y = AB?,
or
tan2 o tan2 f—2 tan o tan p cos C
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1 1 1
= ot + cos’p < Tosa cosp Co0SY (*)
Noticing that
1 2y — _ tan2B—
60s2a’—tan a'—i, coszﬁ tan 6—17

we obtain from (x) that
cos y = cos & cos B + sin e sin p cos C.

If a is obtuse, and B acute, then we have to take the intersection
of the perpendicular to ¢ with a produced. The relation () from which
to express cos y still holds, since o is replaced by 180° — a, C by
180° — C, and y by 180° — . Similarly, (#) is valid also if p is ob-

tuse.
Q.E.D.
2. Trihedral Angle Conjugate to a Given One

Let a, b and ¢ be the edges of a trihedral angle with vertex S. The
plane of the angle (bc) separates the space into two half-spaces with
the half-line a in one of them. Draw the half-line a’ from S perpendic-
ular to the plane of the angle (bc), di-
rected into the half-space complemen-
tary to that with a. Similarly, con-
struct the half-lines b’ and ¢’ perpen-
dicular to the planes of the angles (ac)
and (ab), respectively. The trihedral
angle whose edges are the half-lines
a’, b’ and ¢’ is said to be conjugate
to the original angle (abc) (Fig. 169).
It is easy to see that the faces of a con-
jugate angle are perpendicular to the
edges of the given one. The conjuga-
cy property is commutative, i. e., if Fig. 169.

a trihedral angle (a’b’c’) is conjugate

toa trihedral angle (abc), then (abc) isconjugate to (a’b’c’). We conclude
from the property of angleswhosesides are perpendicular each to each
that the face angles of a conjugate angle and the corresponding dihedral
angles of the given trihedral angle are supplementary. Viz., the
face angle (b'c’) and the dihedral angle at the edge a are supplemen-
tary, etc. Similarly, dihedral angles of a conjugate trihedral angle and
the corresponding face angles of the given one are supplementary.
In particular, the dihedral angle with the edge a’ and the plane angle
(bc) are supplementary.

Theorem. Let A, B, C be the dihedral angles of a trihedral angle,
and vy the face angle opposite to C.

Then
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cos C = — cos A cos B + sin A sin B cos ¥.

It is a simple corollary to the cosine law for a trihedral angle con-
jugate to a given one.

3. Sine Law for a Trihedral Angle
Theorem. Let a, f and y be the face angles of a trihedral angle, and
A, B, C the opposite dihedral angles. Then

sina _ sinf _ siny
sin4 = sin B sinC *

Proof. Cut off on the edge ¢ a unit line segment SC (Fig. 170).
Drop from C the perpendicular on the plane of the angle (ab). De-

note its foot by C, and draw from C planes
perpendicular to the edges e and b. Denote
by A and B the points where they meet a
and b or their extensions,

We now find the length of the perpen-
dicular CC. From the right triangle SCB
with the right angle at B, we obtain

CB = 1-sin a.

Now, from the right triangle CBC with

the right angle at C, we find the length of
Fig. 170 CC. Viz.,
CC = CB sin B = sin « sin B.

The length of CC can be found differently, from the right triangle

ACS and CAC, viz.,

CC = sin P sin 4.
Comparing the expressions for CC, we find
sin o 8in B = sin P sin A.
Hence,

sinoe _ sinf
sind = sinB°*

Similarly, we obtain the relation

sinf _ siny Q.E.D.

sinB =~ sinC °
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4. Relation Between the Face Angles
of a Polyhedral Angle

Theorem. Any two face angles of a convex trihedral angle are together

greater than the third.
Proof. Let a, fp and y be the face angles of a trihedral angle.

Show that y<<a + B. If o 4+ > 180°, then the statement is
obvious, since y << 180°. Let & + p<C 180°. Applying the Cosine Law
to the trihedral angle, we get

cos y = cos & cos f§ + sin a sin B cos C.

Since cos C > — 1, and sin o and sin f are positive,
cos p > cos o cos f — sin « sin B,

its right-hand side being nothing but cos (@ + ). Thus, cos y >

AN

ay

Az
ah Ay as

ay az

Fig. 171 Fig. 172.

cos (@ + pB). We know that the cosine decreases as the angle
increases from 0° to 180°. Hence, y < o + f.
Q.E.D.

Theorem. The sum of the face angles of a convex polyhedral angle
is less than 360°,

Proof. Let a,, a,y, . .., a, be the edges of a convex polyhedral
angle with vertex S. Mark two points 4, and 4, on the sides a, and
a,. Now, take a point A4 on the side ag, sufficiently near to S, and
draw a plane o through 4,, 4, and 4 (Fig. 171). If A, is sufficiently
near to S, o intersects all a,, a,, ag, ..., a,. Let 4, 4,, ...,
A, be the points where o meets the edges of the angle, vertex
S. It follows from the convexity of the polyhedral angle that the
polygon P with vertices A4,, A,, 43, ..., A, is convex, too
(Fig. 172).

Consider the polyhedral angle, vertex §, and trihedral angles with
vertices A,, 4,5, ..., An,. The sum of all its face angles consists
of that of the angles of P, i.e., 180°n — 360°, and the angle-sums of
the triangles 4,4,S, 4,4,S, ..., A,A,S, or 180°n. Thus, the sum
of all face angles is 2-180°n — 360°.
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The angle of P is less than the sum of the other two angles for each
trihedral angle, vertex A,. Therefore, the above sum is greater than
(180°n — 360°) 2 4- 6, where 8 is the sum of the face angles at S,
i.e.,

(180°n — 360°) 2 + 6 << 2-180°n — 360°.

Hence, 6 << 360°.
Q.E.D.

5. Area of a Spherical Polygon

Let V be a convex polyhedral angle. Take the unit sphere with
centre at the vertex. The figure P obtained when the sphere intersects
V is called a convex spherical polygon. The points where the edges
of the angle meet the sphere are called vertices, and the arcs of the
great circles obtained by the intersection of the faces with the sphere
are called sides. The angles of the polygon o, equal the dihedral

angles of V.
0 The area of a spherical polygon P can be

found by the Gauss-Bonnet theorem.
ax We have
A g Z(Jt—ah)=2n—SSKdS.
k

as P
‘« Since K = 1,
S(P)=Dap—n(n—2),

Fig. 173 where 7 is the number of sides. In particular,
S =0 +oy +ag—=n
for a spherical triangle.

We now give the elementary deduction of the formula for the area
of a spherical polygon. We start with a triangle. Let V be a trihedrgl
angle whose faces break the sphere into eight triangles symmetric
about the centre of the spheres (Fig. 173). Let A be the spherical
triangle in the intersection of V with the sphere, and &, @4, a; its
angles. The figure formed by the triangles A and A, is part of the
sphere contained inside a dihedral angle equal to a,.

Therefore, its area is

(o

S (8) + S (A) = (5% ) 4= 20,

Similarly, we obtain
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The sum of the areas of the triangles A;, A,, A; and A equals the
area of the hemisphere, 25, whereas A; is symmetric to A,, and is,
therefore, equal to it in area.

We obtain

S (A) + S (A) + S (A,) + S (Ay) = 2x.

Adding the first three equalities together termwise, and subtract-
ing the fourth one, we get

Hence,
SA) =0, +oa, +a;— mx.
Q.E.D.

Now, let V be a polyhedral angle. Draw planes through one edge
and each of the others, intersecting the sphere in great circles which
break P into triangles similarly to a plane polygon triangulated by
diagonals emanating from one vertex. If we write the obtained formu-
las for the area of each triangle, and add them termwise, then we get
the area of the polygon S (P) on one side, and the sum of its angles
and —x (n — 2) on the other.

Thus,

S(P)= op—n(n—2).
Q.E.D.

6. Convex Polyhedra. Concept of Convex Body

According to the definition given at school, a polyhedron is a solid
bounded by a finite number of planes. This should be understood in
the sense that the whole boundary of the polyhedron, or its surface,
is in these planes. A polyhedron is said to be convex if it is on one
side of each of the bounding planes, i.e., in one of the half-spaces
determined by the plane. The following theorem gives a clear idea
of the structure of a convex polyhedron.

A convex polyhedron is made by the intersection of a finite number of
half-spaces with a common interior point. Conversely, the intersection
of a finite number of half-spaces, if bounded and having an interior point,
is a convex polyhedron.

Proof. Let P be a solid bounded by a finite number of planes ay,
i.e., a convex polyhedron, and 4 its interior point. Each o} sepa-
rates space into two half-spaces. Suppose that Ej is the half-space
with A, E; being closed, i.e., ay < E,.

We state that the intersection P’ of E} is P. In fact, let X € P.
It also belongs to each Ep, and to their intersection; therefore,
Pc P,
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Now, let X € P’. Show that X € P. Since A is an interior point
of P, points of the line segment AX, which are near to 4, also be-
long to P. If X is not in P, then AX intersects its surface at a cer-
tain point Y belonging to one of a,. Therefore, A and X are on op-
posite sides of oy, which is contrary to the definition of P’, and the
first statement of the theorem is thus proved.

Proof of the second statement is quite simple. The intersection of
a finite number of half-spaces, if bounded and having interior points,
is a solid bounded by a finite number of planes; therefore, it is a con-
vex polyhedron, and the theorem is thus proved completely.

A bounded closed set with interior points, which contains, along
with any two of its points, the line segment joining them, is called a
convex body. It is obvious that a convex polyhedron is a convex body.
An example of a convex body which is not a convex polyhedron may
be given by a sphere. In general, any solid bounded by a closed reg-
ular surface with non-negative Gaussian curvature is convex. It
can be proved that any convex body is representable as the inter-
section of a number of half-spaces. Generally speaking, the set of
these half-spaces is infinite.

Similarly, the concept of plane convex domain is defined as the set
of points, which contains, along with any two of its points, the line
segment joining them. Any plane convex domain is the intersection
of a number of half-planes. For a convex polygon, their
number is finite.

7. Euler Theorem for Convex Polyhedra

The Euler theorem in question has been proved in Sec. 6, Ch. XII,
by the Gauss-Bonnet theorem. Viz., we have proved that, for any
convex polyhedron,

oy — 0y + oy = 2,

where o, is the number of vertices, o, the number of edges, and o, the
number of faces.

We now give a simple elementary proof.

Let P be a convex polyhedron, and F its face. Take an interior
point in F, and shift it a little outside. Project the polyhedron onto
the plane of the face from this point. F then transforms into itself, and
the remaining part of P is projected inside. The projections F
of the faces break F into convex polygons (Fig. 174).

The angle-sum of a polygon F, is

op = nn, — 2m, (»)
where 7, is the number of sides. To find the sum of the angles of all

F,, including F, we add all (x) together termwise. The second addend
on the right-hand side is then repeated o, times, i.e., the number of
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Fy, including F. The sum of the first addends is 2ne,. The factor 2

appears, because each side belongs to two polygons.
Thus,

= 2no, — 2m0,. F

We now find the angle-sum o in another way,
first adding the angles of the polygons at a
common vertex. Meanwhile, if a vertex is
inside F, then the sum of the angles at this
vertex is 2n. However, if it is one of those of
F, then the sum of the angles at this vertex is
twice the corresponding angle of F. Therefore, .
o can be represented in the form Fig. 174

= 2n0y — 2 2 (n — Bp),
where B, are the angles of F, and summation is over the vertices of

F. The value 1 — P, is an exterior angle of F. Since the sum of the
exterior angles of a convex polygon is 2,

g = 2“&0 - 4“.

Comparing the expressions obtained for ¢, we obtain the Euler
formula

Ay — 0y + g = 2.
Q.E.D.

8. Cauchy Theorem

Convez polyhedra equidecomposable into congruent faces are congruent.
(By a convex polyhedron, we understand the surface, and not the
solid.)

Proof. Assume the contrary, that there exist two non-con-
gruent convex polyhedra P, and P, equidecomposable into congruent
faces. It is then obvious that P; will have edges with dihedral
angles different from the corresponding angles of P,. We assign a
plus or a minus to each of the edges according as the dihedral angle
is greater or less than the corresponding one of P,. It is evident that
if a distinguished edge emanates from a certain vertex, then at least
another distinguished edge necessarily emanates from the same ver-
tex, too. Therefore, the distinguished edges have no free vertices,
and break P, into domains g. If all g are homeomorphic to the circle,
then the Euler characteristic is

'X.=°°o“°51+°52=2,
where a, is the number of the distinguished vertices (from which the

distinguished edges emanate), o, that of the distinguished edges,
and a, that of g.
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If there are domains g non-homeomorphic to the circle, then
oy — a4 + ay > 2, since our partition can be completed with
new sides without altering the number of domains and vertices
(Fig. 175). Their introduction only decreases &y — @, + o, and when
all the domains are homeomorphic to the circle, we have a, — a; +
oy = ) = 2. Thus, for our partition of the polyhedron into domains,

Qo — Oy + 0> 2.

The boundary of each domain g is a broken line whose segments are
assigned either a plus or a minus. We assume an angle at the vertex
of g distinguished if its sides have opposite signs. We now estimate
the total number of the distinguished angles of the domains g. The
number of the distinguished angles is not greater than n if n is even

Fig. 175 Fig. 176

for a domain with r sides, and not greater than n — 1 if n is odd.
Therefore, the total number of the distinguished angles is

o< 2a3 + 4a, + 4ag + 6ag + . . .,

where ag, a4, a5, . . . are the numbers of domains with three, four,
five sides, etc.
Since each distinguished edge belongs to two domains,

D) na, = 204,
doy — boty = ) (2n—4) a, =2a5+ 4a,+6a;+8ag+ . . .

Hence,
o< bda, — 4a,.

To obtain a lower estimate to ®, we show that the number of the
distinguished angles at a given vertex is not less than 4. If it is
less than 4, then the distinguished edges are either prescribed the
same sign, or the edges prescribed opposite signs do not alternate, i.e.,
in walking around the vertex of an angle, we first meet the edges with
one sign, and then with the other (Fig. 176, where the non-distin-
guished edges are shown in dotted lines). To prove that both of
these possibilities are improbable, we suppose that a and b are the
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extreme edges with a plus. It is clear intuitively that, in passing from
a given polyhedral angle of the polyhedron P; to the corresponding
angle of the polyhedron P,, the angle (2b) must decrease if we consider
that part of polyhedral angle, to which the “positive” edges be-
long, and, vice versa, must increase if we consider the part with the
“negative” edges. However, if there are no distinguished edges in
the part under consideration, then the angle (ab) remains unaltered.
Anyhow, if there are distinguished edges in the polyhedral angle,
we then come to a contradiction. It remains to supply a strict proof.

Thus, let a convex polyhedral angle V = (a;ay . . . a,) be trans-
formed into a convex polyhedral angle V' with an increase of dihe-
dral angles at the edges a,, a3, . . ., a,_;, and preserving the num-

Fig. 177.

ber of the face angles (a,a,), (asas), . .., (@nya,). We show by
induction that the face angle (a,a,) then increases, the statement
for tribedral angles following from the Cosine Law.

Consider the convex angles V,, = (za, ... a,_,y) obtained from
V if the number of dihedral angfes at the edges a, and a,_, grows,
but not greater than in passing from V to V'. We choose V,, such
that the face angle (xy) is greatest. Show that the dihedral angle at
least at one of its edges a, or a,_, is the same as in V’. In fact, if
both angles are less, then V,, can be slightly deformed, increasing
the face angle (zy) (Fig. 177), which is contrary to the choice of V.

In passing from V,, to V’, the plane angle (zy) increases by the
induction hypothesis, since the two corresponding dihedral angles
are congruent, which permits us to reduce the problem to the case
of (n — 1)-hedral angles. Finally, first passing from V to V,,, and
then from V,, to V', we conclude that the face angle (a,a,) increases
in passing from V to V', which is just what was required to show.

We now complete the proof of the Cauchy theorem. Since the num-
ber of the distinguished angles is not less than 4 at each distinguished
vertex,

o= 4da,.



288 Part Four. Problems of Elementary Geometry

Comparing the inequality with the above o <C 4a; — 4a,, we have
bdo, << 4oy, — 4oy, ie., oy — o, + a, << 0, which is contrary to the
above relation oy, — a; + a,> 2.

Q.E.D.

A convex polyhedron can be cut into a finite number of convex
polygons. The question naturally arises, given a finite number of
convex polygons, can a convex polyhedron be glued together from
them only by deformation? It turns out that it is always possible if
the sides to be glued together are of the same length, and the angle-
sum of the polygons whose vertices coincide on gluing is not greater
than 2n (4. D. Alexandrov theorem, in whose proof the Cauchy
theorem is used essentially).

9. Regular Polyhedra

According to the school definition, a convex polyhedron is said
to be regular if its faces are regular polygons with the same number
of sides, and the same number of edges meet at each vertex.

The faces of a regular polyhedron may be either equilateral trian-
gles, or squares, or regular pentagons. Indeed, starting with a reg-
ular hexagon, the interior angles are not less than 120°, and, since
not less than three edges meet at each vertex, the sum of the face
angles would then be not greater than 3-120° = 360° at the vertex
of a regular polyhedron, which is impossible, because we know that
the sum of the face angles of any convex polyhedral angle is less
than 360°.

If the faces of a regular polyhedron are equilateral triangles, then
the number of edges at a vertex must not be greater than 5. In fact,
if it is greater than five, the sum of the face angles at the vertex of
the polyhedron is not less than 360°, which is impossible. Thus, the
number of edges meeting at a vertex of a regular polyhedron with
triangular faces must only be three, or four, or five. That in a
regular polyhedron with square or pentagonal faces can only be
three.

To find all regular convex polyhedra, we start with those with
three edges meeting at each vertex. It follows from the Cosine Law
for a trihedral angle that the dihedral angles are congruent in such
a polyhedron, and uniquely expressed in terms of face angles. There-
fore, proceeding from some vertex, and consecutively completing the
faces, we come to three regular polyhedra, viz., a tetrahedron, cube
and dodecahedron (Fig. 178).

If more than three edges meet at a vertex of a regular polyhedron,
in which case the faces are triangles, then the problem gets more
complicated. Nevertheless, it is not hard to construct two of such
polyhedra. In one, called an octahedron, the vertices are the centres
of the faces of a cube, and, in the other called an icosahedron, the ver-
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tices are the centres of.the faces of a dodecabedron. Four edges meet
at each vertex of an octahedron, and five of an icosahedron (Fig. 179).

A
) O

Tetrahedron Cube Dodecahedron
Fig. 178

EX
i

Fig. 179

The question arises, can there be any other regular polyhedra
with triangular faces, in which four edges meet at each vertex, si-
milarly to an octahedron, or five as in an icosahedron. It turns out that
there are no other regular polyhedra of this form, which follows from
the Cauchy theorem stating that convex polyhedra equidecomposable
into congruent faces are congruent.

EXERCISES TO CHAPTER XX

1. Find the dibhedral angles at the base of a regular n-sided pyra-
mid if the lateral face angles at the base are a.

2. Find the angles of the lateral faces of a regular n-sided pyramid
if the base dihedral angles are f§.

3. Find the dihedral angles at the base of a regular »n-sided py-
ramid if the lateral faces make an angle y with the base.

4. Find the dihedral angles at the lateral faces of a regular n-sided
pyramid if the base dihedral angles are fi.
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5. Find the dihedral angles at the base of a regular n-sided pyra-
mid if the dihedral angles at the lateral edges are 8.

6. Find the dihedral angles at the lateral edges of a regular n-sided
pyramid if the vertex face angles are ¢

7. Find the angle between the edge of trihedral angle and the
plane of the opposite face, given the face (resp. dihedral) angles.

8. Given the dihedral angles at one vertex of an oblique paral-
lelepiped, how can the dihedral angle at any other vertex be found?

9. Given the base angles and those formed by a lateral edge with
the base sides at the common vertex of an oblique triangular prism,
how can the angles formed by the other lateral edges with the base
sides be found?

10. Find the dihedral angles of the regular convex polyhedra:
a tetrahedron, an octahedron, a dodecahedron, and an icosahedron.

11. Find the circumradii and inradii of the convex regular
polyhedra: a tetrahedron, a cube, an octahedron, a dodecahedron
and an icosahedron.

12. How many different methods are there to make a regular
polyhedron (tetrahedron, cube, octahedron, dodecahedron and
icosahedron) coincident with itself?



ANSWERS TO EXERCISES,
HINTS AND SOLUTIONS

Chapter I

1. 2. 2, (2, 0). 3. (0, 3). 4. A straight line parallel to the y-axis and separat-
ed from it by 3 units. 5. The ends of AB lie in different half-planes relative to
the y-axis, but in one half-plane relative to z. 6. Positive. 7. 4 (3). 8. 2. 9. —2.
10. A straight line that contains the bisectors of the first and third quadrants.
11. A straight line which contains the bisectors of the second and fourth qua-
drants. 12. (a) On straight lines parallel to the y-axis separated from it by a;
(b) on the bisectors of the coordinate angles. 13. (a) Ina strip bounded by straight
lines parallel to the y-axis and separated from it by a; (b) within a rectangle
with centre at the origin of coordinates and sides 2a and 2b parallel to the coor-
dinate axes. 14. (z, —y); (—=, y); (—z, —y). 15. The coordinates of the point
symmetric to A (z, y) about the bisector of the first (second) quadrant
will be y and z (or, respectively, —y, —=z). 16. If we interchange the coordinate
axes, then A (z, y) will have the abscissa y, and the ordinate z. 17. AB = 5,
AC = 10, BC = 5. 18. Compare the distances between the points. Point B
lies between A and C. 19. (4, 0). 20. (3, 3) and (15, 15). 24. The third vertex C
1+2y3 )

of the triangle lies at the distance AB from 4 and B: C ( 2+2V3 , 3

or C ( 2—2V3 , 1_3 1/3) . 22. Make use of the fact that in a square the

sides are equal and the diagonals are }/2 times greater than the sides.
Answer: (a) C (1, V'2),D (V' 2, 1); (b) € (—1,0), D (0, —1). 23. Make use of
the Pythagoras theorem. If A (zy, y1), B (za, ¥3), C (23, y5) are the vertices of the
triangle with a right angle (C), then (z3—z;)*-+(ys—31)?-+ (23— 235)*+ (yg—yq)2=
(xg — 2,)% + (y2 — y)? 24, If A (x4, y1), B (z3, y3), C (z3, ys) are the verti-
ces of the triangle, then (z3 — z3)® + (y3 — ya)® > (23 — z,)% + (ys — )2
This follows from the fact that in a triangle a longer side is opposite a larger
angle. 25. Find the centre O of the circle circumscribed about the triangle A BC,
and compare the radius of this circle with the distance from the centre to the
point D. 26. The coordinate notation of the “inequality of the triangle”. The
inequality means that the distance between (a, b) and (a;, b,) is not larger than
the sum of their distances to (az, by). 27. Make use of the fact that the diagonals
of a parallelogram bisect each other. Answer: D (2, —1), O (2, 1). 28. 0, —2).
See the previous problem. 29. (3, 3). 30. Show that the quadrilateral is
a parallelogram (Ex. 27). Compare the lengths of the sides and dia-
gonals. 31. Make use of the fact that the medians are divided at the
intersection point in the ratio 2 : 1 counting from the vertices. Answer: (z, +
zy + 24)/3. 32. The mid-points of the sides of the triangle and ome of
its vertices are the vertices of a parallelogram. Answer: A (2, — z, + 24,
Y1 — Ys + ys)» B,(-"’s"“‘h""zs; _ys_.fll‘i" Y2), _C (g — 23 +- 24, Y — ys +
y1). 33. The vertices of the original triangle divide in the ratio A- (1 — 1) the
Segments connecting (zy, y,) with the vertices of the given triangle. Answer:
(4 —2) 2o+ Azy, (1 — M) yo+ Myy)s (A —A) 2o+ Azy, (4 —A) o + Aya),
((1 — 4) 2o + Mxs, (1 — A) yo + Ayg). 34. Make use of the geometric considera-
tions associated with the division of a line segment in a given ratio. 35. Let
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(z1, y1) and (z,, ys) be the ends of one line segment, and (z3, ys) and (z4, yo)
are those of the other. If the segments intersect, the point of intersection divides
the first segment in the ratio A: (1 — A), and the second in the ratio p: (1 — p).
The result is two representations for the coordinates of the intersection point:
A —Naz+Arg=(1 —p)zg 4 pz,, and (1 —A)y; +Ay; = (1 —K')Il3+
py,. The segments intersect if the solutions to this system in terms of A and p
meet the conditions 0 << A, p << 1. 36. Use the method of mathematical induc-
tion. 37. z, = 4, z, = —2. 38. (a) At a = 0, the centre of the circle lies on
the axis of ordinates, (b) at b = 0, the centre lies on the axis of abscissas, (c) at
¢ = 0, the circle passes through the origin of coordinates, (d) at a = 0, b = 0,
the centre of the circle is at the origin of coordinates, (e) at a = 0, ¢ = 0, the
circle touches the axis of abscissas at the origin of coordinates. 39. Notice that
(x — a)® 4 (z — b)? is the square of the distance from (z, y) to the centre of
the circle and apply the Pythagoras theorem to a right-angled triangle whose one
side is a line segment of a tangent, and the other is the radius of the circle.
40. Use the fact that for external points the degree is the square of the tangent,
and for the internal points it is the square (with a minus sign) of the half-
chord passing through the given point perpendicular to the diameter connecting
this point with the centre of the circle. 41. Let (z, y) be a point of the locus. Its

distances from F; and Fgare V (z—c)®+y2 and V (z+¢)?-Fy2, respectively.
The locus is described by the equation V' (z —¢)2 + 42+ V (z + ¢)® + 42 =

- 2 23
2a. In order to reduce this equation to the form %—I——g,—:i,we will trans-
pose the first radical to the right-hand side of the equation and square both sides.

We get z+¢)®+y2=4a®— 42V (@ — )+ 42 + (= — ¢)* + 2. We leave
the radical on the right-hand side of the equation and transpose the other terms
to the left-hand side. Then after some simplifications we obtain cx — a2 =
—aV (& — ¢)® + #°. Squaring both sides we ob;.ain. after simple transforma-
2
tions, a? — a%c® = a%y® + (a® — c?)2%, whence %4— az_y—cT'— 1, a® — c2 = b2,
42, The problem is solved similarly to the previous one. The original equation
sV (@—cf F@P—V (@tec’+y*=:=+22. 43. The equation of the locus is

Viy—pF+22=y. Squared and simplified, the equation becomes —2py +
p® + 22 = 0. 44. The equation of a curve in implicit form is (z — at)’
(y — b)2 = R2. 1t is seen from this that a and b are the coordinates of the

centre and R is the radius. 45. The equations of the curve are z =

_i cos it
PERTRG
y= xlf;_lp sin ¢t. At A = p, the curve is a circle. 46. The equation of the curve is
z=acost -+ hsint, y= bsint -+ h cos ¢, where a, b, » and the parameter ¢
have values as shown in Fig. 13. To derive these equations, represent the abscissa
z and the ordinate y of the point on the curve as the algebraic sum of lengths of
projections of the segments of the broken line OABC. 47. The equations of the

curve are z = R (—;T—sin %—) andy = R (1—cos Ts?-) (cycloid). The prob-

lem is solved as the previousone. Here the broken line is OTSA. 48. Solving
the equations ax? + bzy + cy®+ dzr + ey = 0 and ¢t= %forzand y, we ob-

tain the parametric equations of the curve. 49. (zr — 1) + (y — 2)® = 4. 50.
(z + 3)2 4+ (y — 4)® = 25. 51. The simultaneous equations xz2 4 y® 4 2az +-
{ = 0, z = 0 have no solutions. 52. The given circle and the y-axis are tan-
gent, since the simultaneous equations z? + y2 + 22z = 0, 2 = 0 have only
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one solution: z = 0, y = 0. 53. The points of intersection of the circle with the
z-axis are obtained gy solving the simultaneous equations 22 4 y® 4 2az 4
2by + ¢ =0, y = 0. The circle does not intersect the z-axis if the roots of
the equation 22 4 2az -+ ¢ = 0 are imaginary. The circle intersects the z-axis
at two points, if the roots of this equation are real and different. The circle
touches the axis if the roots coincide. 54. The circles intersect at two points if
R; 4+ R, > d, where R, and R, are radii of the circles, and d is the distance
between their centres. R,, R, and d can be expressed in terms of the coefficients
of the equations of the circles. We can also find these conditions, solving the sys-
tem composed of the equations of these circles. 55. The points of intersection
V3 ) ( 1 V3

of the circles are ( —;— ' 3 ———) . 56. The point of intersection of

2° 2

the curves is (1, 0). 57. If (x, y) obeys the equations of the curve, then the
points (—z,y) and (z, —y), symmetric about the axes of coordinates, also obey
these equations. Therefore, the points of intersection are symmetric about
the axes of coordinates.

Chapter II

1. 1, —1), (2, —1), (1, 1). 2. a = b = 2. 3. Does not exist. 4. Under the
translation sending 4 into C, B is sent into B’ of CD, with BB’ || AC. Therefore,
B and B’ are in one half-plane relative to AC, and B’ is in the half-line CD,

while the ray CB’ coincides with C_lz 5. See the hint to Ex. 4. 6. IE, A—Z', EE
are co-directional vectors, whereas BA is opposite to each of them. 7. Apply the

— —_

triangle inequality to 4, B and C. 8. See Ex. 7. 9. The vectors AB and CD have
the corresponding coordinates equal. 10. +12. 11. 25. 12, Under the rotation of
all the vectors through 2n/n, the sum is turned through the same angle. But,
the vector system js transformed into itself. Therefore, their sum is zero. 13.
First, use the formula for the coordinates of the point 4, where the medians

— —= —_
meet, and prove that Ay,4 4+ A4¢B + 4C = 0. Then use the representation

— — —_ = — —>- — —- —
for' the vectors OA = 04, + A4, OB = OBy + BB, OC = OA,+ A,C.
14, If the vectors have O (0, 0) as the origin, then their sum is zero. Then use
the representation of the vector r,, = r3,, + r,, where r, is the vector from

(9, Yo) to O, whereas r,,, from-O to (m6, nd). Answer: 2 Y= —(2M +1) X
m,n
(2N + 1) r. 15. See the hint to Ex. 14. 16. b = 0.5a. Therefore, the vectors

a and b are co-directional. d = —0.5¢. Hence, the vectors ¢ and d have opposite
directions. 17. b (6, 8). 18. b (—6, —8). 19.10. 20. A, — % Ay = — % 21,

The collinear vectors are a and e, b and d. 22. The co-directional vectors are a
and ¢, and those with opposite directions band d; |b|=e|, |a]=|d]|. 23. n=
2. 24, |al= |e|=|d]|=1, the vectors a and d ara collinzar. 25. e (0.6, 0.8).
26. Compare the corresponding coordinates of the vectors ﬁz’v and % (ZE'—I—I_?B).
They are equal. 27, (2, —3). 28. A = —5, w = 4. 29, ab = |a |-| b |-cos 6,
cos 0<< 1. 30.90°.31. | a+ b |2 = (a 4 b)2. Answer: V3. 32. 30°. 33. cos 4 =
0.6, cosB=0, cosC =0.8. 34. £A = 30°, £B = 60°, 2C = 90°. 35. If
m = n = 0, then the vectors are zero. If m? + n? 5= 0, then the vectors are

perpendicular, for ab = 0. 36. m =—-% .37.A=—1. 38. A =— 1 . 39. Find
the scalar product of the vectors. 40. See the hint to Ex. 39. 41. Since (a + b) X
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X(@a—b=a—b=]aj2—|b|?2=0, we have |a| = | b|. 42. First,
show that the quadrilateral is a parallelogram, and then compare its diagonals,
43. Prove that the quadrilateral is a parallelogram, and then compare its side
Wli’;gl the diagonal. 44. Make use of the fact that A%a2 4 2Apab + p2h? = (Aa
pb)2.

Chapter 111

.o+ y—2=0. 2. (0, —%) (—3,0). 3. (1, —2). 4. 2+ 2y — 1= 0.
1
3

and only if it has with it only one point in common. Answer: ¢ = +V 2. 8. The
point of intersection of the first two straight lines obeys the third equation.
9. The equations of the straight lines are not consistent. Multiplying the first
one by 2, we obtain 2z 4 4y = 6, and from the second one 2z + 4y = 3. There
are no z and y satisfying both equations. 10. y = 3. 11. 3z — 2y = 0. 12. Use
the fact that the straight line bisects the segment with the ends (zy, 1), (z2, y2).
Answer: z (y; + ¥ — 2y0) — ¥ (21 + 3 — 229) = 2o (1 + ya) — yo (71 + 7).
z y 1
z3 Yo 1
z3 yg 1
tion of a straight line. The coordinates of all the three points (x;, y,), (zq, ¥,),
(z3, ys) obey this equation. 14. The equation admits of an equivalent
form (az 4+ by— c) (ax + by + ¢) = 0. It is seen that this equation is satis-
fied by three points of the straight lines az + by + ¢ =0, az + by — ¢ = 0,
and only they. 15. Let A (b, d) be any point on the straight line and e (a, ¢) be a
—

-
vector on the line; then for any point P (z, y) on the line OP = 0A - te. Hence,
z=b+tat, y=d-+ct, —oo <t<<oo. 16. We will define the straight
line by a parametric equation: z = at 4 b, y = ¢t + d. The equation w (at + b,
ct 4+ d) = 0 is satisfied for more than » various values of ¢. And since its degree
is n, then it is an identity, i.e. it is satisfied for all ¢, and the line lies on the
curve y. 17. If the equations of the circles are 22 + y? + 24,2 + 2b;y + ¢, = 0
and z% 4+ y® + 2a42 + 2b,y + ¢, = 0, then the equation of the locus of points
of equal degrees will be (22 4 y® 4+ 2ay2 + 2byy + ¢;) — (22 + ¥2 + 24,z +
2bsy + ¢4) = 0. This equation is linear, therefore it is the equation of a straight
line. The points of intersection of the circles obey it, since both parentheses

5.a=b=—.6.c= —3.7. Use the fact that a straight line touches a circle if

13. The equation =0 is linear in z and y and hence this is the equa-

. c c c c .
vanish. 18. —7>0(7>0) . 19. = >0 and 4> 0. 20. If the point (z, y)

obeys the first equation, then the point symmetric to it about the z-axis, i.e.point
(z,—y), obeys the second equation. Therefore, the straight lines are symmetric
about the z-axis. 21. If the point (z, y) obeys the first equation, then the point
symmetric about the origin of coordinates, i.e. (—z, —y), obeys the second
equation. Therefore, the straight lines are symmetric about the origin of coor-
dinates. 22. The straight line in the pencil is parallel to the z-axis, if a + Aq; =
= 0 (the y-axis, if b + Ab; = 0). The straight line of the pencil passes through
the origin of coordinates, if ¢ + Ac; = 0. 23. The sides of this triangle are the
segments cut off by the straight line from the coordinate axes. The line produces

an isosceles triangle if | a |=| b |. 25. y=+V a® — b2 — b, 2=+ V a® — b2—
a. 26. The vectors (a, b) and (b, —a) are perpendicular to the straight lines
and to each other, since their scalar product is zero. 27. 0°. 28. +V 3z4y=
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=Q y = 0. 29. cos-!

3 3 3 a
V10 cos-! V1o n — 2 cos~?! W 30. 7=
a s
—b—i. 31. The vector (a, c¢) is parallel to the straight line. 32. cos® =
laye1+asea|
Vai+a-Veite

(:l: % , + %) . 34. The straight lines are given by the equations az + ay =

=b, cx * cy = d. These straight lines are either parallel or perpendicular.

. 33. The vertices of the quadrilateral are the points

—_— —_—
35. The vectors (a;, B,) and (ca, Ps) are parallel to the straight lines. The paral-

lelism condition for the lines is Z—1=—gl— . The perpendicularity condition
2 2

—
for the lines is a2y + BB, = 0. 36. The vector (a, b) is perpendicular to

—
the first straight line, and vector (o, ) to the second. Therefore, the paralle-

lism condition is ac 4+ by = 0; the perpendicularity condition is i::— = —}:— R
37. Make use of the parallelism and perpendicularity conditions discussed in
Sec. 3. 38. Make use of the fact that substituting the coordinates of two
points into the left-hand side of the equation gives an expression of the
same sign, if the points lie on one side of the straight line, and of different
signs, if the points lie on either side of.the line. 39. Reduce the equa-
tion of one straight line to normal form and substitute into it the coordinates
of any point of the other straight line. 40. See Ex. 39. 41. Make use of the equa-
tion for a pencil of lines. 42. Form the equation of the perpendicular bisector to

the line segment with the ends (zy, y,), (23, y5) and compare it with the equation
2

ar + by + ¢ = 0. 43. x'y'=12.

Chapter IV

2. Let 4 (p,, 0;) and B (p,, 0,) be the given points. From the Cosine Law in
the triangle OAB: AB? = p} + p% — 2p,p, cos (0, — 0;). 3. p, is the distance
from the pole to the straight line, o is the angle formed by the straight line
p cos (@ — 0) = p,y with the polar axis. 4. p = R (1 — cos 0), where R is the

radius of the circle. 5. {) —a V2 cos 20. 6. Repeat the reasoning for a plane in-
tersecting a cone. The ellipse eccentricity is sin . 7. The equation can be written

[+
1+ V a2 b2 cos (Q—a)
tion of the polar axis by the angle o givesp =

b
in equivalent form p = , 0= tan'l-z— . Rota-

c
1+ YV a?rb2cos
will be an ellipse, if Y a? F b® < 1, a hyperbola, if V a® b2 > 1, a parabo-
la, if Y a® + b%=1. 8. From the conditions of the problem, find the constants a,
(see Ex. 7). 9. Make use of thg

. The curve

b, cin the equation p = 17 acos g—l-bsinﬂ
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equation for the conic section in polar coordinates. 10. Inversion in polar coor-
dinates with respect to the pole has the form p'= -;— , 6 =20. 1. Finding

the points of intersection of the straight line with the conic section requires
solving a quadratic equation. But it has not more than two roots. 12. If the
focus of a conic lies at the origin of coordinates, the equation of the conic
becomes 22 + y® = A (az + by + ¢)? (ax + by + ¢ = 0 is the equation of the
directrix). It follows that V' z® + 2 =V'A (az + by +¢) = az + By + y.
13. See Sec. 7, Ch. IV. 14. See Sec. 7, Ch.IV. 15, Pay attention to the
fact that for the locus under consideration either the sum or the difference
of the distances from the centres of the circles is constant. 16. Form
the equation of the locus of points of intersection. 17. Form the equa-
tion of a curve obtained by the given construction. 18 The normal form

of the equation of the asymptotes is z —l—%)= 0,
l/ a? +or b2

%—%) = 0. For the points on the hyperbola with the abscis-

saxzy==+b ]/- —14. The distance from this point to the asymptotes

z x? 1 z
@R =T

VR VR R

We see that the second expression decreases indefinitely as | z | = co. 19. The

equation of the hypel‘bol.';\ can be written as \ -]7-l—— ( —:-.l_%)

z Yy )'
| l/ (——' b b2
ckets are the dlsEances from the points (z, y) to the asymptotes. We see that
-1
their product is constant and equal to ( —+5 58 ) . 20. Form the equa-
tion of the projection of the circle, assuming that the plane passing through
the centre of the circle is the plane of the projection, and the intersec-
tion of the zy-plane with the plane in'which the circle lies is the z-axis. The equa-

-1
|= (—1——|——1—) . The factors in square bra-
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2, v
R® ' R%cos?0
the angle between the circle’s plane and the zy-plane. 21. Take the
parabola arranged canonically relative to the coordinate system. 22, The

tion of the projection of the circle will be =1, where 0 is

y2
= =1 are given by

curves parallel to the asymptotes of the hyperbola ‘;;T_ 53

the equations -%:!:—‘Z—- ~~ec. 23. Make use of the result of Ex. 19.

2% b2 a%k ) ( b2 a%k

( Vaete ' Vaete T Vaketrer ' Vaete
25. The abscissas of the points of intersection of the tangents with the

asymptotes a , b , 4 . b (where
Zo__ W' T __ Yo NN oy Yo
b b a b a b

a a

Zg, Yo are the coordinates of the points of tangency) obey the conditions

%( 2 42 )=xo. For the ordinates holds a similar relation.

Zo_ Yo' Fo ¥

a b +
Hence follows the statement of the problem. 26. If z;, z, are the abscissas
of the points of intersection of the tangent with the asymptotes, and « is the

angle formed by the asymptotes with the z-axis, then § =—;— ( c:sla )-

2o

( i ) +sin 2a= 1 a*sin2a . - 27. The equation of the desired locus is
cos o 2 cosz2a ‘¢ " -

284 y2 = b2 - a®. 28. See Exercise 27. 29. Find the coordinates of the foci

constructed and see that ¢ = } a? — b2. 30. See Sec. 7, Ch. IV. 31. (%-, 0) o

32, The directrices of the ellipse and hyperbola are z=+ -% , where a is the

major (real) semi-axis, e is the eccentricity. 33. Find the coordinates of
the foci 34. Examine the behaviour of the left-hand side of the equation
a2+2\.+b3+x 1 for A varying from —oco to +oco and z and y fixed, to
show that the roots of th equation relative to A satisfy the inequali-
ties —b%2 > Ay > —a® > A,. AtA = ); we have a hyperbola. AtA = A, we
have an ellipse. 35. The tangents to the conic sections are o | Yo  _

a2—|—7\.1 b2+xl

1, a:j—okg -+ bzﬁo)uz = 1. For them the orthogonality condition is
z} i _ . -

@I (a2+h2)+(b2+)~1) (b2+M) =0. This condition really holds. We
z3 o _ _ . i

have pERww + e wa 1, a“-}-k, -+ b”+7~2 1. Subtracting these rela

zj

tions term by term and cancelling (A — A;), we obtain @) (@ Fha) +
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vh _ . z, b2
W_—m— 0. This completes the proof. 36. y: «gz - 37. Corre

sponding to the conjugate diameters of the ellipse are the values #; and
tq of the parameter ¢, which differ by =/2. For a hyperbola the difference

of the squares of conjugate diameters is constant. 38. Make use of the fact that
the tangents at the points of intersection of the diameter with a conic section
are parallel to the conjugate diameter. 39. See Exercise 38. 40. Make use of the
fact that a parallelogram with its vertices at the ends of conjugate diameters is
the projection of the square inscribed in the circle (see Exercise 38). 41. Make
use of the fact that the ellipse is the projection of a circle. 42. Make use of the
fact that the ellipse is the projection of a circle and of the properties of parallel
projection. 43. Reduce the equations of the curves to canonic form (a) ellipse,
(b) hyperbola, (c) parabola, (d) pair of various straight lines, (e) pair of coinci-
dent straight lines. 44. The equation can be written in equivalent form (az
by + ¢ + ax + by + ¢y) (ax + by + ¢ — ayz — byy — ¢;) = 0. 45. The curve
is within the parallelogram determined by the intersection of two strips
lax+by +c| <V'Ek |az 4+ By + v | < V'k. 46. Take as new axes of coer-
dinates tﬁe bisectors of the angles formed by the straight lines ax + by + ¢ = 0,
az + Py + v = 0. 47. The problem can be reduced to the previous one by ex-
Eanding the left-hand side of the equation into twe linear factors. 48. See the

int to Exercise 49. 49. The second-degree curve az? + bzxy -+ cy® + dz -+ ey =

. . . = d-t-et . dt-tet?
0 admits of the parametric equation z= pE Ty y= —aFbiten"

It follows that two different second-degree curves have enly four points in com-
mon,

Chapter V

1. &z:) In the zy-plane lies the point D; (b) on the z-axis lies the point C;
(¢) in the yz-plane lies the point B. 2. 4,, (1, 2, 0), 4., (1, 0, 3), 4,, (0, 2, 3),
Ay (1,0,0),4,(0,20), 4, (0,0, 3). 3. (a) The distance to the zy-plane is 3,
to the zz-plane 2, and to the yz-plane 1; (b) the distance to the z-axis is V13,
to the y-axis ¥ 10, to the z-axis }/'5; (c) the distance to the origin of coordina-
tes is V' 14. 4. D(%, —1— o). 5. (2,2, 2) and (—2, —2, —2). 6. (0, 0, 0).
7. z42y+3z=17. 8. See that the diagonals of a quadrilateral intersect and are
bisected by the point of intersection. 9. Show at first that the given four points
are the vertices of the parallelogram. 10. B (0, —1, 3). 1. D (6, 2, —2),
E (3, 2, 1). 12. The points symmetric to (1, 2, 3) about the zy-, yz-, and
zz-planes are respectively (1, 2, —3), (—1, 2, 3), (1, —2, 3). 13. (—1, —2, —3),
0,1, =2), (—1,0,3). 14. e =1, b =1, c=—215. (=1, —2, 1). 16. The

—
equal vectors are AB and DC, BC and AD. 17. D (—2,3,0). 18. D (2,1, —2).
_ 4 9 > (2 1 ) 1 _
19. n=-, m=—, 20. AB(s '3 ,0). 21, n=-. 22, c=1.
23. Va2 4+ b2+ c2+lal-|bl. 24. (a) cosq>=71—§—; (b) ¢ =90° 25.
2

cos @ = 3 2 — . 26. cos C = = 27. The vectors a/\b and ¢ are collinear.

28. The vectors (aAb)Ac and b (ac) are equal in magnitude and have the
same direction. 29. Represent a as the sum of the vectors parallel and perpendicular
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to ¢. Next, make use of the results of Exercises 27 and 28. 30. Make use of
the results of the three previous exercises. 31. If a, b, ¢ are the vectors with
the origin at the vertex of the pyramid and the ends at the vertices of its base,

then S=% [(@a — b)A(a — ¢)]. Answer:

S = l/ (sin%+sin -g—+sin %—) [(1—V§) sin %‘--l—sin %+sin %] X

. o = . B . ¥ . a . B PR
I/[sm >+ V' 2) sin 5 +sin = ] [sm 5Fsin <+ VY 2)sin 2
32, Make use of the identity (a/\b)Ae = b (ac) — a (ed). 33. Take as a, b, €
the vectors with the origin at the centre of the sphere and the termini at the ver-
tices of the spherical triangle. 34. Make use of the formula of Exercise 30. 35.
Make use of the identity (aAb)A(cAd) + (eAd)A(a/\b) = 0. 36. The vector
r admits of the representation r = Ae; 4 Ase, + Ageg. Find A, Ay, Ay by
multiplying this relation scalarly by the vectors e, Aej, e;/A\es, e;A\e;. 37.
Represent the selution as r = Aja + Ab -+ Age. Multiplying this equality sca-
larly by aAb, bAe, ¢Aa, find A, Ay, A;. 38. The vectors e, Aes, e;Aes, es\e;
are not coplanar. Therefore, r = A, (e;\e;) -+ Ay (eg/\e€3) 1+ A (es/\e;). Mul-
tiplying this relation scalarly by e,, e,, e5 gives A;, Ag, Ag. 39. Represent the so-
lution in the form z = A, (bAc) 4 Ag (cAa) + Az (aAb). Multiplying this
relation scalarly by a, b, ¢ gives Ay, Ay, Ay. 40. Any three coplanar vectors are
linearly related, i.e. there exist simultaneously nonzero numbers A;, Ay, Ag
such that Ayr; - Agrg 4 Agry = 0. Multiplying this relation scalarly by ry, ry, rg
gives

Ay (ryr1) =+ Ag (ryry) - Ag (ryrs) = O,
Ay (rary) + Ag (rorg) -+ Ag (rrs) = O,
Ay (rgry) =+ Ag (rgry) + Ag (rgrg) = O,

This system of equations for A,, Ay, Az has a nontrivial solution (not all A’s are
zero). Therefore, the determinant of the system is zero. 41. See hint to Exercise 40.
42, See hint to Exercise 41. 43. See hint to Exercise 36. 44. See hint to Exer-
cise 38. 46. Make use of the identity of Exercise 34. 47. Make use of the identity
of Exercise 45. 48.d? = (y; — 2,)® + (y3 — 29)® + (ys — 23)® -+ 2 (yy, — zy) X
008 0 o+ 2 (3s — 21) 08 Bk 2 (oo — g} 205 749, af%, b/2"c/2. 50 AT (2 ys
24), (T3s Ya» 23)s (T3, Y3 23), (Tas Ya» 34) aTe the vertices of a tetrahedron, then the
point of intersection of ﬁ:e straight lines connecting the midpoints of the oppo-

site edges has the coordinates -Zi toat stz mtyatystou

4 ! 4 ?
mz—z""-—“ . 51, For each segment connecting the vertex of a tetrahedron
with the centre of mass of the oEposite face find the coordinates of the point
that divides this line segment in the ratio 3:1 reckoning from the vertex. 52. The
point with the coordinates z, y, z is the centre of mass for the masses Ay, Ag, Ag,
z y z 1
z 29 1

A, at the vertices of the tetrahedron. 53. The equation 2 V2 % =0is
Z3 ys 23 1

Ty Yy 24 1
linear in z, y, z. Therefore, this is the equation of a plane. 1n this plane lie the
points 4;, since their coordinates obey this equation. 54. The equation
admits of the equivalent representation (zr —a)2+ (y — )2+ (z — ¢)2 =

(Ve F % + ¢ — d®2. 55. The equation Af;-}Asfy = O is the equation of a
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sphere. This sphere passes through the circle of intersection of these spheres, since
for the points on that circle /; = 0, f = 0. By appropriately selecting A, and
As we can make this sphere pass through the given point. 56. If the coordinates
of the point 4 (z, y, z) satisfy the equation cﬁ (z, y) = 0, then the coordinates of
any point on the straight line passing through 4 and parallel to the z-axis satisfy
this equation. 57. Let 4 (z, y, z) be an arbitrary point on the cone. Then

—_ —
OA-e, = | OA | cos a. Hence the equation of the cone is z2 = (22 + »2 + 23X
cos? o. 58. The curves can be given by parametric equations

= u, z=0,
Ty =0, Ya: Yy =0,
. z = au?, = bl
The coordinates qf the points on the surface are
0 u
e= =t
 04+v _w
y'— 2 - 2 "
__ au?4-bv?
= 3 .

Substituting » and v from the first two equations into the third, we obtain the
equation of the surface in implicit form z = 2az® - 2by2. 59. We go over to
the parametric equations of the curves

z =1, z=1
Yiig=a, " Yiy=?d
s=f()  z=0.
The straight line in question connects the points {¢, a, f (¢)), and (¢, b, @ (2)).
The coordinates of the points on this straight line can be represented in the form
' ) z=M+(1—AMN1t,
y=ha+ (1 —2b,
s=MO+01—-Me@.

This is the parametric equation of the desired surface (parameters ¢ and 4). By
expressing A and ¢ from the first two equations and substituting into the third

one, we find the equation for the surface in implicit form z = %:—;gf(x)+

: 'Z @ (z). 60. We use as parameters the distance from a point on the surface to
the z-axis and the angle of rotation. Then z = rcos 0, y = rsin 0, z = f (r).
61. The equation f (z) — @ (y) = 0 is the equation of a cylindrical surface (see
Exercise 56). It can be written as (f (z) —2) — (9 (y) —2) = 0. It is seen
that the points on the curve given by the equations z=f (z), z = ¢ (z) satisfy
this equation. 62. z' = ayz + ajoy + a5, ¥ = agz + agy + ay, z' = z. 63.
The equation of the sphere can be written as (ze, + ye, + ze,)*? = R®. Com-
parison of it with the given equation gives

— -] —
ayy = €%, agq = €}, agy = €3,

Q13 = €48y, @ 3 = €€y Ay = €8y,
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a
31 cos p = 12

e e
y*z Qa3 , cos ﬂ — ]/ .
21182

V"éﬁ - V g5 V g ’

64. Make use of the results of Exercises 43 and 44.

COoS O =

Chapter VI

- 1.

contain z. Therefore, if the point (z, y, z) obeys these equations, then each point

on the straight line passing through this point parallel to the z-axis obeys them.

3. The simultaneous equations az + by +cz+d =0, az+ by +cz+d; =0

are not consistent. Subtracting the equations termwise gives d — d, = 0, which

contradicts the condition of the problem. 4. See Exercise 3. By properly select-

ing d’ we can make the plane ax 4 by -+ ¢z + d' = 0 pass through the given
—_

-Z- R l%—’ , % . 2. Pay attention to the fact that both equations do not

—_— —_—
point. 5. The vectors (a, b, ¢) and (k, I, m) must be collinear. Both are perpendic-
ular to the plane az + by +cz2+d=0.6. kx 4+ ly + mz=0.7. (2,1, —2).
8. The simultaneous equations z +y+z2=1, 22+ y+ 32+ 1= 0, and
z + 2z + 1 = 0 are not consistent. Adding together term by term the first and
the third equations and subtracting the second one gives 1 = 0. 9. Ate¢ = 0.

— . .
10. Any vector (k, I, m), for which 2k 4 31 4+ m = 0 is parallel to the plane,
_— —_— —_—
e.g. (1, —1, 1). 11. Take the vector product of (2, 3, 1) and (1, 4, 1). 12. Make
use of the fact that the desired plame is the locus of points equidistant from the
given points. 13. The equation permits the equivalent representation (az + by +
cz+ d 4+ azx 4+ By +vz2+06) (az+ by +cz+ d— az — Py — yz2—8)=0.
It is seen that the equation defines two planes: ax 4+ by + ¢z + d + (axr +
By + yz 4+ 6) = 0. 14. By subtracting the equations termwise we will obtain
the equation of the plane a;z + byy + ¢z + dy—(asx + bay + ¢z + dy) = 0.
Satisfying this equation are the points of the curve given by

f@ y 2+ art+by+eaz+d =0,
f (= y, 3) + agx + byy + cy2 + dy = 0.

Hence, the curve is plane. 15. az + by +cz+d — (az 4+ Py + yz 4+ 8) = 0.
See theb hint to Exercise 14. 16. Inversion relative to the origin of coordinates is
given by .

= R2z’ L y= R2y’ p— R2z’
z2fy' 322 ° z'3fy'2z3 ° z 2t ystz8 °
z y 2 1
18. The equation 7141 7 1 =0 is linear in z and y. Satisfying it are
Zy Ys 2z 1
Z3 ys 23 14

the coordinates of the given points (z;, ys, z;). 19. The plane intersects the posi-

3
tive z-axis, if d/a << 0. 20. The volume of the tetrahedron is V=% fdl;
21. The set of points in space that meet the condition |z | + |y |+ |z| < a
is the intersection %eneral part) of half-spaces defined by the inequalities
+z + y + z < a. This is an octahedron with vertices at the points (+a, 0, 0),
0, +a, 0), (0, 0, =a). 22. The plane symmetric to the plane about the zy-plane
is given by the equation az + by — ¢z -+ d = 0. 23. The plane parallel to the
z-axis does not contain z in its equation. Hence, the parameter A is determined

.
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by the condition ¢ + yA = 0. 24. The parameters A and p are found from the
conditions a; + Aa; + pag =0 and b, + Aby + pby = 0. 25. The distance

d—d’
between the planes is § = .I__ . 26. . 27, If the plane
i Vatota = Vate panes
are given by the equations in normal form a,z -+ by + ¢,z + d; = 0 and
ag% + bgy + cyz + dy = 0, then the locus is given by the equations azr +
biy + ez + dy + A (agz + by + gz + dg) = 0. Hence it consists of two
planes. 28. See Exercise 25. 29. Change to the normal form of the equation of

Planes. 30. See Exercise 38 in Chapter 3. 31. If the equations of planes are reduced
to normal form, then

+2’ = ayz + by + 1z + dy,
¥’ = agz + bay + cyz + d,
+z' = agx + bgy + c3z + dj.

—_—
32, The vector (a, b, c) is perpendicular to the plane. The angle o formed by the
plane with the z-axis is found from the condition sin o = |a]

Vatoite:
o << % . 33. The angle formed by the given plane with the zy-plane is found
H;w' 34. See Exercise 33. 35. The plane
intersects the z- and y-axes under equal angles if | a [=] b |. 36. The parame-
ters A and p must meet the condition (Aa, + pas) a4 (Aby +pubg) b+ (Aey -+ peg) e =0.
37. For any n (a, b, ¢) in the pencil of planes a plane with the normal n can be
found. To this end, we must take A;, Ag, Ay Such that they meet the conditions
Mo, + k:a, + Ans:asle'lbl + x;ba + k3b3=l.lc1 + 3-2:2 =+ Ases . 38. The straight

. . . . . L
line intersects the z-axis (or the y-, z-axes, respectively), if %:7‘:-

( -"-‘To:_% ’ z—,:=%°—) . The straight line is parallel to the zy-plane (yz-, zz-
planes, respectively), if m =0 (k=0, I =0, respectively). 39. Form the equation of
the locus for the normal form of the equations of the planes. 40. The locus of
points equidistant from two vertices of a triangle is a plane. The desired locus is
the intersection of two planes, and hence, a straight line. 41. The straight line
given by the intersection of the planes y = A, z = alx lies on the surface, since
the points of this curve obey the equation of the surface. The straight line given
by the equations z = p, z = apy also lies on the surface. 42. When the deter-
minant is zero the following system of equations is consistent:

iz + by + ¢z +dy =0,
agz + bay + ¢z + dy = 0,
agr + bgy + cgz + dg = 0,
a2z + by + ¢z + dy =0,
But this system is consistent, since the straight lines intersect. 43. The vector
by ¢ G o a b

c c3 as ag by
44, See the hint to Exercise 43. 245. The equation2 of2 the c‘.:)nic surface is
=) a-:n(z__bny_‘ﬁ 2z+ C—z)el® _ [(—=0)® + (y—yo)® + (2 — 20)?] sin? c.

from the condition cos & =

of the parallel straight line has the coordinates

, .

k]




Answers to Exercises, Hints and Solutions 303

T—%y __ _Y—UYo 2—2, . -
46. el lo ol Ta b 47. Let A (z, y, z) bea point of the conic sur-
by cg ¢ ag as by

face other than a vertex. We find the coordinates of the points of intersection of
the generator passing through the point A4 with the plane az 4 by + ¢z + d = 0.
Substituting these coordinates into the equation of the sphere 22 + 32 + 2=
2Rz, we obtain the equation of the desired conic surface. The intersection of a
conic surface with the zy-plane isa circle. 48. See Exercise 47. 49. If the straight
—z _y_y’_z_zl x_xﬂ_y_yﬂ—
Y kl - ll - ml * k' - l' -
z—:n_,,z——, then the plane that is equidistant from them passes through the point
z' z' ’ " 7' P ——
_g ’ Y -Iz-y ’ —Iz- parallel to (¥, I', m’),

lines are given by the equations z

with the coordinates

-— *
(%", 1", m"). 50. The plane given by
a2+ byy+e124-dy _ @t byt caztds
aZo+b1yotc1Zo+d1 ~ asTotbayotcazot+ds ’
passes through the given point and a point (24, ye, 2o) that does not lie on the

—

straight line. 51. The vector (2’ — zg, ¥’ — ¥, 2 — 2o) A(%, 1, m) is perpendic-
ular to the desired plane. 52. Any straight line which meets the two given
straight lines can be regresented as an intersection of two planes, one of which
passes through the first line, the other through the second. 53. The surface given
by equations of the form ¢ (% , _zy_) =0 is formed by the straight lines passing
through the origin of coordinates, since together with point (z, y, z) the equation
is satisfied by any point (Az, Ay, Az). The surface intersects the plane z = 1 along
the curve ¢ (z, y) = 0.

Chapter VII

| 1. The surface z = a;,2% + 24,57y + ag9y® + 2042 + 2agy + a is an ellip-
tical paraboloid (hyperbolic parallaoloid, parabolic cylinder). 2. The left-hand
side of the equation can be represented as the product of two linear factors. 3.
The coordinates of points on the curve along which the plane intersect the sur-
face satisfy the equation which results. 4. See Exercise 3. 5. Form the equation
of the conic surface. Take this point as the origin of coordinates, and the plane,
in which curve lies as the plane z = const (see Exercise 57, Ch. V). 6. The quad-

—b\2 —d \2
ric surface 22 -} y?= ( 2 - b) + ( 2 < d ) . 7. The foci are on the z-axis at the

distance } c*—a® from the origin of coordinates. 8. The intersection of the
elligsoid with the planes is at the same time the intersection of these planes
with the sphere 22 4 y2 + 22 4+ u = 0. 9. Eliminate the parameters u, v and
change to the equation of the surface in implicit form. 10. Ellipsoid. To prove
this use the bounded nature of the surface. 11. See Exercise 8. 12. See the hint
to Exercise 34, Ch. IV. 13. Consider the projection of the line of intersection on
the zy-plane. 14, The first family is 2 = A, z = ahy, the second family is y = p,

—

z=gpz. 16. To use the fact that (A, p, v') and (z, y, 5) form the angle a. 17. If 4
is the projection of the point 4 (z, y, 3) on the straight line T_r_2 ’

— — —
then (0A)2+ R?=(0A4)2. Exp-ess |OA| in terms of the scalar product of (A, u, v)
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—-—
and (z, y, z). 18. See Exercise 16. 19. The diameters of the parabola are parallel
to the straight line az + -?-yb;- ¢ = 0. The axis of the parabola is the straight
. ac.

line ax-l—by—l-c—l-w—o.

Chapter VIII

. . vt
1. z=acosot, y=asin ot, z=rct. 2. x=vt——asm7, y=a—

t 2 s es .
a cos 25 3.z= 13a T Y= 13‘”!3 . 4. If the pencil of the projecting lines

a
is parallel to the yz-plane, then the equations of the projection are 2= acos oz,
y=ct tan 6-|-a sin wt. The projection has singular points if tan 6== + 20 .

c
They are cusps of the first kind. 5. Singular points are cusps of the first kind.
6. The singular points are (4a, 0), (0, +a). They are cusps of the first kind. 7.
The singular point (a, 0) is a cusp of the first kind. 8. The equation of the tan-

gent is 1.6'1 =%=—i— , of the osculating plane y —z=0, of the normal plane
y + z = 0, of the princip-al normal y = z =0, and of the binormal ?——”——1=—"{—=
.. %=%=Z_Ti. 10. z = 0. 11 y = 2* + 3z + 3. 12. Find the length

of the tangent segment. 13. A helix. Find its equation, taking that from Ex. 1.
t4. At right angles. The tangents to the curves at their common point (z, y) are
perpendicular. 15. See the hint to Ex. 34, Ch. IV. 16. The equation of the tan-
gent at an arbitrary point ¢ of the curve isz;:(ctgt):y;z)(t)zz:z t()t) . With-
out loss of generality, we can assume that the tangents pass through the origin.

z(t) _ y@® _ z2() o et Y)Y 0 ie ¥
Then OO 70 . Hence, y’z —a'y=0, and (z) =0, i.e., .=

" z .
¢, =const. Similarly, - =0= const. Thus, our curve is at the intersection of the

two planes, which means that it is either a straight line or its part. 17. Find
the angle 6 between the tangent and the z-axis. Find the equation of the princi-
al normal at an arbitrary point, and show that it is the equation of a straight
ine cutting the z-axis. 18. Let n (a, b, c) be a vector perpendicular to the plane.
The tangent vector of the curve is perpendicular to n. Hence, az’ (t) + by’ (¢) +
¢z’ (t) = 0, which means that az (t) + by (¢) + ¢z (t) = d = const., i.e., the
curve is in the plane ax + by + ¢z = d. 19. The point of the curve (z (), y (¢),
z (t)) satisfies the two pairs of simultaneous equations identically with respect
to £

o)z @ +bOy@Fea@®z@)+d@)=0 ()
ag ()2 @)+ bWy (@) +eca®z(t)+dy(t)=0
oWz O +b@®y @O)+tea@®¢)=0 (%)

a3 () 2" () + b Ay () +ea(®)2 (t) =0

The first two mean that the point of the curve belongs to the tangent, and the
other that the tangent vector is parallel to the planes whose intersection forms
the tangent. Differentiating the first two equations with respect to £, we obtain
by means of the latter two that .
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a@z@O+HOyO+eci@®z@®)+di@®=0
aa®)z@+bOy@O+c@z@)+d@®)=0

Thus, for the functions z (¢), y (¢), 2 (¢), we have the four equations (*) and (##=)
from which they can be found. Anyway, in order that they may be solved, it is
necessary that

(eee)

ap(t) by (1) e (1) dp ()
ay () by (1) ca(?) dy(?)
ag (t) b1 (2) c1(t) di()
az (1) b3 (1) 3 () d3 ()

20. Let l (:,” i” 7 0 at ‘the point (z, y, z) in question. Then the curve is given
) z Yz

by the equations y = y (z), z = z (z) in the neighbourhood of the point. Differ-

entiating the identities ¢ (z, y (z), z (z)) = 0, (z, ¥ (z), 2z (z)) = O, we consecu-

tively find y’ (z), 2z’ (2), y" (z), 2" (z), and then easily write down the osculating

plane equation. 2f. Apply the argument used in the hint to Ex. 19. 22, The
- 2

family of the straight lines cutting off a triangle of area % can be givén by the

equation %—l—hy:a, A being the parameter. The envelope of the family is the

2
branch of the hyperbola a:y-—-aT inside the angle Ozy. 23. Find the implicit

equation of the path of a point mass projected with velocity v, at an angle a to
the horizontal, and then find the envelope of the paths. Answer: y=—§%
0

i , g is the acceleration due to gravity.

2

Chapter IX

T Zas T a0 -
1, g 200V 1F4a% "‘12'2(2"”"“‘/1+4“2b2) .2.s=a) 2sinh¢. 3. s=ba.

[:2Y — ¢

4, s = 8a. 5. 5= S V pEFp2d6. 6. klzi-]/i—l—sin’ —;— . 7. The curve can be
01

given by equations of the form y =.y (z), 2 = z () in the neighbourhood of the

point in question. Find the derivatives y', y”, 2’ and z” for z = 0. Curvature can
Ve

then be found easily. Answer: k; = 95 8. Make use of the parametric equation
- . 1 . 1

th l = i i . —_— [ —
of the circle z=R cost, y=R sin ¢t. Answer: k, - 9. ky=———s7

1

ky = Smcoshi’ 10. The ellipse is given by the equation y=»5 ]/1—:72 in the

neighbourhood of the vertex (0, ). We obtain k1=—ab7 for the curvature at this-

vertex, which is the same at (0, —b). The curvature is k1=b—‘:— on the z-axis. 11.

Find the curvature and torsion of the helix, and show that they do not depend
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on parameter. 12. Apgly the general formula for the curvature of a curve given
‘ber equations z = p (0) cos 0, y = p (0) sin 6. 13. Let a be the direction vector
of the straight line, and t the unit tangent vector of the curve. We have at =
const. Differentiating with respect to the arc of the curve, and noticing that
v = kv, we obtain av= 0, i.e., the principal normal is perpendicular to the
straight line. 14. The osculating plane equation can be written in the form
(r — r (s)) p = 0, where p is the unit binormal vector. Without loss of generali-
1y, we can assume that the osculating planes pass through the origin. Then
T (5) P (s) = 0. Differentiating with respect to s, we obtain *f + r (k,v) =
korv = 0. If the tangent to the curve does not pass through the origin, then rv s~
0. Therefore, k, = 0, and the curve is plane. (If, for any s, the tangent does
pass through the origin, then the curve is either a straight line or its part.) 15.
ky = 1. 16. From the data, av = const, where a is a constant vector, and t the
{angent unit vector. Difierentiating with respect to the arc s, we obtain ak,v = 0.
For k, 5= 0, av = 0. Diffferentiating with respect to s again, we obtain —ak,v —
ak,f = 0. Since the vector T makes a constant angle with a, and v is perpendicu-
lar to a, B also forms a constant angle with a. Therefore, ap = const, and it

follows from k, (at)+ kg (af)=0 that -’I%‘— is constant. 17. A semicubical parabo-

. .
la 27py2 =8 (x—p). 19. z= R (c0osO + (6 —¢)sinB), y=R (sin —
@ —c)cosB). 20. z=\sina(s)ds, y= | cosa (s)ds, where o« ()=

o

5 k (s) ds. 21. Assume that the function = (s) is given. We have © (s) = r’ (s).

Hence, r (s) = S T (s) ds. If either B (s) or v (s) is given, then we first find « (s).

‘We have B’ = k,v. Hence, t=ﬂ— . Now, r(s)=S 0 ds. Let v (s) be

PG
given. We have v/ = —kt — kof. Multiplying vectoriaﬁy by v, we obtain v’ A
= —kf + kyv. We find © (s) from the two equations, and express r (s) in
¢erms of it. 22. Proof is based on the use of the Frenet formulas. E.g., if the
first condition is fulfilled, then at = const, where a is a constant vector. It fol-
dows that av = 0 (see Ex. 13), and the principal normals are parallel to a plane

perpendicular to the vector a. Further, we conclude that pa=const, and ":—1=

2
const (see the answer to Ex. 16). 23. The curvature and torsion of a helix are
constant, and may assume any values for a convenient choice of the curve para-
meters. Since a curve is uniquely determined by specifying its curvature and
torsion, any curve with constant curvature and torsion is a helix.

Chapter X

1. 22 + (]/:::2 + ¥ — a)®? = R?. 2. The sphere 22+ 2+ 22 =42 3. z=
@ (u) cos v, y = @ (u) sin v, z =P (u). 4. z = v cos wu, y = v sin wu, z = au.
5. In moving along a helix, the principal normal rotates uniformly about its
axis, and intersects it at right angles. Therefore, the surface formed by the prin-
cipal normals to a helix is a helicoid (see Ex. 4). 6. For u = const, the curve
r= @(u) + ¥ (v) is obtained from the curve r = 1 (v) by a translation through
the vector @ (u). 7. If the curves are given by equations r = ry (1), r = ry (v),
then the locus of the mid-points of line segments with ends on the given curves

is given by r= L(“_)_z'l'ﬁ_("_) 8. The equation of the surface is r = r (u)4-va
with parameters u and v. 9. The equation of the surfaceisr = p — (r (z) — p) v,

—_—
where p is the vector (a, b, c). 10. The equation of a curve intersecting the straight
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lines is given by an equation r = f (u). If @ (u) is the director vector, then the
vector of any point on the surface can be specified by r = f (u) -+ vg (u). 11.
See the derivation of the equation of tangents to an ellipse and 'a hyperbola in
‘Ch. 4, Sec. 6. 12. z = a. 13, Find the equation of a tangent plane at an arbi-
trary l;goint of the surface, and show that the point (0, 0, 0) satisfies it. 16. A hy-
perbolic paraboloid. 17. The equation of the ellipsoid in the neighbourhood

. . x3 y2?
of the point (0, 0, ¢) can be represented in the form z=c¢ 1 B The
2 2
osculating paraboloid equation is z=c--¢ ( 1 —-%— (%-{— %—) ) . 18. The points

are elliptic on the ellipsoid, hyperbolic on the hyperboloid, elliptic on the elliptic
paraboloid, hyperbolic on the hyperbolic paraboloid, and parabolic on the cyl-
inders and cone. 19. Let the plane in question have the vector a as its normal,
and the considered point as the origin. Since the surface and the plane have
only one point in common, the surface is on one side of the plane. Therefore,
either ar (v, v) > 0 or ar (u, v) < 0, equality occurring only at one point. It
follows that ar,, = 0, and ar, = 0 at this point, i.e., the plane is tangent to the
surface. 20. Take some point on the line as the origin, and the tangent plane to
the surface at the point as the zy-plane. Represent the surface equation in the

form z= —;— (rz®+ 2szy +ty?)+ € (z, y) (z®+y?). At the elliptic and hyper-

bolic points, r£ — s = 0. Hence, deduce that z% + z2 > 0 for sufficiently small
22 4 y? if 2?2 4 y? 5£ 0. It means that the zy-plane cannot be tangent at the
points near the origin, which is contrary to the conditions of the problem.
21. Take the tangent plane at P as the zy-plane, and represent the equation of

tbe surface in the form z=% (rz® 4 2szy +ty®) € (z, y) (z2+y?). Mind that

rz? 4 2szy -+ ty? has constant sign at an elliptic point P, and is alternating at a
hyperbolic one. 22. Representing the surface equation in the form z = z (z, y),
we notice that d?z = 0 at planar points. Therefore, d?z = 0 along y. It follows
that z = ax + by + ¢ along y, where a, b, ¢ are constant, i.e., y is planar.
23. If we take a sphere containing a surface, and decrease its radius, then it
will eventually touch the surface. The point of tangency is elliptic. 24. Let the
intersections of the surface with the planes passing through the given straight
line, and the planes perpendicular to the straight line, be coordinate lines. 25.
If the point in question is the origin, then the vector of the point on the surface
r (4, v) is a normal. Therefore, rr, = 0, rr, = 0, i.e., r dr = 0; consequently,
2 = const (sphere).

Chapter XI

1. (@"24+¢'?) du? 4 @2dv®. 2. Use the result of Ex. 1. Introduce a new para-
meter u; instead of u, setting du;=V ¢+ 2du. 3. s=|sinhu,—sinhu, |.
4. cos 0= a*ZoYo

’ Vitaiad V1+ayd
that F = 0. 6. Let = R cosucosv, y= R cos usinv, z= R sin u be the
{Jarametric equation of the sphere, and the lines v = const, meridians. The
inear element of the sphere is ds? = R? (du? 4 cos®u dv?). Let the loxodrome

u=u (v) intersect the meridians at an angle 6. Find cos 6=

. 5. Find the first fundamental form, and show

Vitcostu-u?®

Hence, 2cos u' = tan 0, sin u = v tan 4 const is the loxodrome equation.
7. s= —l;— (V241n (14+72)). 8. The tangent planes of the paraboloids make
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equal angles with the zy-plane at the corresponding points (with the same projec-
tion). 9. The fundamental form E du? 4 2 Fdu dv 4 Gdv?® with constant coef-
ficients is transformed into du} 4+ du. Hence, the surface is locally isometric to
the plane. 10. The linear element of the plane with respect to polar coordinates
p, 0 is of the form dp? 1+ p2d062 (show!). Reduce the linear element of the surface
of revolution du?® -+ G (u) dv® to the form f (u,) (du} + u? dv?) by introducing
u = @ (u,) instead of u. 11. Transform the linear element of the sphere du2 |
cos? u dv® to the form A (u;) (du} 4 dv?). 12. Show that the linear elements

of the surfaces coincide with a convenient choice of parameters. 13. —2dud

s p-b g Vifu '
__adx®+4-bdy _ .

14. k,= do Ty " 15. The normal curvature of the surface is k,=
L du?-4-2M dudv+ N dv? |
E du?4-2F du dv+Gdv? ’

E = 0 from the formula for %, ; putting du = 0, we obtain G = 0. Now, setting
du = dv 5 0, we obtain F = 0. k,, does not depend on the ratio du : dv for the

k, =0 for the plane. Putting dv=0, we obtain

sphere. Putting du=0 we obtain kn=%; putting dv =0, we obtain k, = %
Set du=dv. Then k, == Lt2M+N L :—Jl . Hence, L_M =—JL, ie.,

E42F+G E @G E-F G

the second fundamental form is proportional to the first. 16. z=g¢,y,
=T =cy (¢, ¢y being constant). 17. z=cosh ucosv, y=-coshusinv,
z=u. 18. Find the asymptotic lines on the helicoid. 19. M = (r,,n)=0, since
ryp=0. 20. Take meridians and parallels as coordinate lines, and show that
F=0, M=0. 21. a and —a. 22. In (u+V u2+c®) —v=const, In (u+
l/u’—|—c2) +v=const. 23. Mean curvature is zero, whereas Gaussian curva-
ture —a®. 24. Take the tangent plane to the surface as the zy-plane. 25. Find
the mean curvatures of the helicoid and catenoid. 26. Find the Gaussian curva-
ture of the cylindric surface, using the result of Ex. 8, Ch.-X. 27. The equation
of the surface formed by the tangents to the curve r=r (1) is r = r (u) 4+
vr’ (u). Find the Gaussian curvature of the surface. 28. If the asymptotic lines
are taken as the coordinate ones, then the second quadratic form is 2M dudv

MF .

and mean curvature H—(ET——F_Z)“/_" If H=0, then F=0, i.e., the coor:
dinate lines are orthogonal. 29. By the Rodrigues theorem, n, = Ary, n, = Ar,.
Differentiating the first equality with respect to v, the second with respect to u,
and subtracting termwise, we obtain A,r, — Ayr, = 0. Hence A, = 0, A, = 0,
and, therefore, = const. Integrating dn = Adr, we obtain n = Ar -+ ¢,
(Ar 4 ¢)2 = 1, which is a sphere. 30. Take the vector equation of the surface @
in the form r = r (v, v) 4+ An (u, v), where r (x, v) is the vector of a point on the
surface F, and n (u, v) the unit normal vector at the point. Prove by the Rodri-
gues theorem that the tangent planes to F and @ are parallel at the corresponding
points, and also that the principal directions at the points are corresponding.
31. Prove that, along the corresponding principal directions of the surfaces F

and @, their normal curvatures are related by ——1—=-——1—+A, and then ex-
kn (M) kn

ress the mean and Gaussian curvature of @ in terms of those of F. 32. If the
ines of curvature are taken as the coordinate lines, then, by the Rodrigues theo-
rem, Ny = —k,r,, N, = —k,ry. Since k; + k} = 0, n} = kir2, n} = kirl. Be-
sides, since ryr, = 0, and nyn, = 0, dn? = k}dr2, which just means that a
spherical mapping of the surface is conformal.



Answers to Exercises, Hints and Solutions 309

Chapter XII

1. Use the Gauss formula to express Gaussian curvature in terms of the first
fundamental form coefficients. 4. Take the lines of curvature on the surface as
the coordinate lines. Making use of the fact that L depends only on u, and N only
on v (see Ex. 3), reduce the second fundamental form to du? — dv?. The second
fundamental form is then reduced to A (du? -+ dv?), since mean curvature is ze-
T0. 5. For an asymptotic line, the osculating plane coincides with the tangent
plane to the surface, and, for a geodesic line, it is perpendicular to the tangent
plane. Hence, the curvature is zero, and the curve a straight line. 6. Take as the
parameter on the curve its arc. Since it is a line of curvature, r' = An’. Because
it is a geodesic, r" =pn. Hence, r"=p'n+4pn’ (x"r"r’)=(n'n + pn’pnin’)=0.
Therefore, the torsion of the curve is zero, and the curve is plane. 7. Cyl-
indrical surface is locally isometric to the plane. The rectilinear generators on
the plane correspond to parallel straight lines. But, a straight line meets the
family of parallel straight lines at the same angle. 8. The given linear element
is that of the Lobachevsky plane in the Poincaré model. Therefore, geodesics
are the curves u = const ans (v — ¢))? + 2 = 2. 9. Prove that all these sur-
faces are of zero Gaussian curvature. 10-12, Make use of the Gauss-Bonnet theo-
rem. 13. It follows from the definition of total curvature in the sense of Gauss
that if Gaussian curvature does not ‘change sign in a domain G, then o (G) =

I 5 s del , where o (G) is the area of the spherical image of G. With this in

mind, prove that the Euler characteristic of a torus is zero. 14. Take a solid in
the form of a cylinder, and make » circular openings in it, parallel to the axis.
Smooth the surface of the obtained solid, and apply the Gauss-Bonnent theo-
rem on the basis of the argument given in the hint to Ex. 13. Answer: 2 (1 — n).

Chapter XV1

1. Complete Euclidean space with the elements at infinity, and apply’ the
Desargues theorem. 2. Complete Euclidean space with the elements at infinity,
and make use of the Desargues theorem. 3. The homogeneous coordinates of the
point at infinity on the straight line are k, {, m, 0. 4, The third point coordi-
nates are linearly expressed in terms of those of the first two as Aa; + pby = ¢4,
Aay + pby = ¢3, Aag + pbs = z5, Aag + pb, = z,. From the first two equa-
tions, we find A and p, and then z; and z,. 5. Make use of two projections. 6.
Transform the points 4, B, C, D by a projective transformation into the points
4, (—-1,0,0,1), B, (0,0,0,1), C; (1, 0,0, 1), D, &, 0,0, 1). 7. Take the cross
ratio of the four points at which the given straiglht lines intersect the straight
sin (¢ —v) . sin(a—3&)
sin(B—vy) ~ sin(f—0)
10. Take two points on the polar, and construct their polars; the required pole
is the intersection. 11. a;3 = 0, ag3=0. 12. a;; = 0 for i 5= j. 13. If a projectiv-
ity is set between the points of the two given straight lines, not reduced to
simply projecting one straight line onto the other, then the straight lines join-
ing the points touch a curve of the second degree. 14. Under polar reciproca-
tion, the vertices are transformed into the face planes, and the face planes into
the vertices. Therefore, the cube is transformed into the octahedron, and the do-
decahedron into the icosahedron. 15. Use the Klein model of Lobachevskian
geometry. Take the point P as the centre of the circle. Then the parallel angle
is simply Euclidean. Find the distance PQ in the sense of Lobachevsky, express-
ing it in terms of the parallel angle. Use the distance formula. 16. Use the dis-
tance formula in the Klein mode% of Lobachevskian geometry, and also the con-
dition for two straight lines to be perpendicular.

line z=1, . 8. x=1.9. Make use of the Steiner theorem.
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Chapter XVII

1. Use Locus 1. 2. Use Locus 5. 3. Use Locus 5. 4. The circle passing through
the centres of the given circle is concentric with the required. 5. See Ex. 2,
6. The difference between the squares of the distances from the centre of the re-
quired circle to those of the two given circles equals the difference between their
radii squared. Use Locus 8. 7. The ratio of the distances from the required point
to the centres of the two given circles is equal to the ratio of the radii. Use Lo-
cus 6. 8. Cut off a line segment AD = [ on the half-line AC. The required point
X is equidistant from B and D. Use Locus 3. 9. First, construct a line segment
with ends on the circles, visible at their centre at the angle a, for which take any
equal angle with vertex at the centre. 10. The required straight line is paralle}
to the diagonal of the parallelogram obtained by the given intersecting straight
lines. 11. If we take chords of given length in the given circles, and con-
struct concentric circles touching them, then the required straight line is the
common tangent to the constructed circles. 12. Provided the three vertices of
the parallelogram are on the sides of the quadrilateral, and the sides are of the
given directions, find the locus of the fourth point (straight line). 13. Use the
similarity method. 14. Use the similarity method, first constructing any square
whose two vertices are on one side of a triangle, and the third on the other. 15.
Apply the similarity method, first constructing some line segment parallel to
the chord joining the radii ends, which is trisected by them. 16. Appl{ the
similarity method, first constructing some rhombus whose sides are parallel to
the diagenals of the quadrilateral and two adjacent vertices are on the adjacent
sides of the quadrilateral 17. Use the theorem on the segments of a secant and
tangent to a circle, drawn from one point. 18. Apply the similarity method, the
altitudes being inversely proportional to the sides. 19. First, construct a right
triangle in which the given angle bisector is the hypotenuse, and the altitude
one of the sides containing the right angle. 20. First, construct a right triangle
in which the given median and altitude are the hypotenuse and one of the sides
about the right angle, respectively. Then find the circumcentre. 21. First, con-
struct a right triangle in which the given side is the hypotenuse, and the given
altitude one of the sides about the right angle. 22. Let ABC be the required
triangle with the given angle o at the vertex C, side AB and the sum of the
sides AC and BC. Cut off the line segment AD =AC -+ BC on the half-line AC.

The triangle ADB can be constructed easily, because £ D=—€2L— . 23. Mind that

the angles of the triangle whose two vertices are the ends of the chords, and the
third is the second point where the circles meet, do not depend on the straight
line which should be perpendicular to the common chord. 24. If the given
angle is at a circumference of given radius, then we obtain the opposite side of
the required triangle, and the problem is reduced to Ex. 22. 25. Ap¥ y the transla-
tion method. Form a triangle by translating the medians. 26. 1f ABCD is the
required parallelogram, and E the point where its diagonals meet, then two sides
AE and BE and the included angle of the triangle A BE are known. 27. The lo-
cus of the vertices of the required triangle is a circle, and the problem is reduced
to Ex. 23. 28. Apply the translation method. 29. Apply reflection in g. 30.First,
find the point D' on the straight line AC, symmetric to D about the straight
line BX. 31. Find the point B’ symmetric to B about g. The point X is at the
intersection of the straight lines AB’ and g. 32. Rotate the square about the
given vertex of the triangle through 90°. 33. Aphply inversion to transform the given
circle into a straight line. The problem is then reduced to Ex. 17.

Chapter XIX

1. The centroid is the projection of the circumcentre of the hexagon. 2. The
projection is the conjugate diameter. 3. Construct the projections of the diago-
nals (see (Ex. 2)). 4. First, construct the projection of the inscribed square.
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5. Let A be the given vertex, O projection of the centre of the circle, and A’
point symmetric to A4 with respect to O. The opposite side of the triangle passes
through the mid-point of the line segment OA’, and is parallel to the diameter
conjugate to AA4’. 6. Construct the l(:rojection of the inscribed regular triangle,
and draw through its vertices straight lines parallel to the opposite sides.

Chapter XX

i
tan o tan -::—
a=tan-1—1- . 3. tan™! tan y
cos fp tan — cos —
n n

1. cos-1 . 2, The vertex angle is x—2a, and the base angle

. 4. n—cos™! (cos2 Bsin? B cos -2'—13) .

1 0! ﬂ.
/" 1+cosd —es

. 6. m—cos!

1—0052—ﬂ (cot i-tan-i)
n 2 n

o, B, y are the face angles of the trihedral angle, then the angle between the
V cos® 0.4-cos® B2 cos s cos B cos ¥

N 2n
5. sin 7 teos 1. 7.1

plane of y and the opposite edge is cos-!

sin y
Given the dihedral angles A4, B, C of given trihedral angle, the
angle between the edge with C an the opposite face is
cos-1 V cost A+ cos® B+2cos Acos B cos C

sin C :
vertex with the known angles into any other vertex at which the dihedral
angles should be found. 9. Let ABC be the triangle in the prism base,
and AD a lateral edge. The required Eig‘lef> at thuerices B and C are
found by means of the scalar products AD-BC and AD-CB. Make]use of the

. -— — — . .

decompeosition BC = BA -+ AC. 10. The cosines of the dihedral angles equal

1/3 for the tetrahedron, —1/3 for the octahedron, — cos 351 / 2 sin’—g- for the
27

dodecaherdon, and —( 144 cos—5-) 3 for the icosahedron. 11. If a is the

edge of a regular polyhedron, 2y the dihedral angle at its edges, and n the
number of the sides in one face, then the inradius and circumradius are

a tan y 2 V 1+cos? % tan2y, respectively. 12, The tetrahedron

8. By a translation, send the

b
2 tan% 2sin &

n
is made coincident with itself by 24 different motions, the cube and octahedron
by 48, and the dodecahedron and icosahedron by 420.
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