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PREFACE 

Containing the compulsory course of geometry, this textbook 
is a manual for students of universities and teachers' training col­
leges. It is particular for the impact on elementary geometry and, 
therefore, highly professional training of the school or university 
teacher-to-be. 

The geometry course is organically related to the school treatment 
of the subject. Starting with the study of coordinates and vectors, 
which is just a pleasant revision for the well-trained first-year stu­
dent, the first part of the book, analytic geometry, is easy to assimi­
late, and actually reduced to acquiring skills in applying the coordi­
nate and vector algebra methods to the solution of elementary 
geometric problems. 

The second part, differential geometry, contains the basic facts 
from the theory of curves and surfaces. 

The third part of the book, foundations of geometry, is original. 
In contrast to the traditional courses where the principal topics 
related to the axiomatic construction of geometry are solved on the 
basis of D. Hilbert's (or H. Weyl's) axiomatics, the treatment of the 
material is supported by the axiom system given at school. Thus, 
the problems of consistency, completeness and independence of axi­
oms are solved with relation to the well-known axiomatics whose 
investigation is of undoubtedly professional interest. This part 
ends in the account of the basics of projective geometry in its ana­
lytic interpretation. 

The fourth part of the book is devoted to certain topics of ele­
mentary geometry including those treated at school incompletely 
such as geometrical constructions, the measurement of lengths, areas 
or volumes. 

Considering the book as a whole, it can be said to begin with the 
school treatment, and to return to it at a higher level, providing 
extensive and profound knowledge of the school subject. We believe 
that this will necessarily interest the reader in the school or univer­
sity teacher's profession. 

I take the chance to express profound gratitude to my co-workers 
Yu.A. Aminov, A.I. Medyanik, A.D. Milk and Yu.S. Slobodyan for 
useful criticisms and valuable assistance. 



Part One 

ANALYTIC GEOMETRY 

Chapter I 

RECTANGULAR CARTESIAN COORDINATES 
IN THE PLANE 

1. Introducing Coordinates in the Plane 

Let us draw in ,the plane two mutually perpendicular lines Ox 
and Oy termed the coordinate axes (Fig. 1) which intersect at point 0 
called the origin of coordinates or simply the origin. The origin 
divides each of the axes into two semi-axes: a positive semi-axis 
shown by an arrow in the drawing, and a negative semi-axis. 

Any point A in a plane is specified by an ordered pair of real num­
bers-called the coordinates of the point-the x-coordinate (abscissa) 
and y-coordinate (ordinate) according to the following rule. 

Through the point A we draw a straight line parallel to the axis 
of ordinates (Oy) to intersect the axis of abscissas (Ox) at some point Ax 

y y y 

Ay. A 
II I 

( -, +) ( + ,+) 

0 X 

0 X 
III IV 

X ( -, -) (+, -) 

F~.1 Fi~ 2 Fig. 3 

(Fig. 2). By the abscissa of the point A we should understand anum­
ber x whose absolute value is equal to the distance from 0 to Ax 
being positive if Ax lies to the right of the origin and negative if Ax 
lies to the left of the origin. If the point Ax coincides with the origin, 
then we put the x-coordinate equal to zero. 

The y-ordinate of the point A is determined in a similar way. 
The coordinates of the point A are always enclosed in parentheses, 

A (x, y). 
The coordinate axes divide the plane into four right angles­

quadrants I, II, III and IV (Fig. 3). Within one quadrant the signs of 
both coordinates are as shown in the figure. 
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Points lying on the x-axis (i.e. on the axis of abscissas) have y-coor­
dinates equal to zero and points lying on the y-axis (i.e. on the axis 
of ordinates) have x-coordinates equal to zero. The origin of the 

y 

0 

A 

Fig. 4 

X 

x-axis and the y-axis has zero coordinates. 
The plane on which the x- and y-coordinates 

are introduced by the above method is called 
the xy-plane. An arbitrary point in this plane 
with the coordinates x and y will sometimes be 
denoted simply as (x, y). 

For an arbitrary pair of real numbers x and 
y there exists a unique point A in the xy-plane 
for which x will be its abscissa andy its ordinate. 

Indeed, suppose for definiteness x > 0 and 
y < 0. Let us take a point Ax at the distance 
x to the right the origin 0 on the x-axis and a 
point Ay at the distance y from the origin 
below the x-axis. We then draw through the 

points Ax and Ay straight lines parallel to they- and x-axes respec­
tively (Fig. 4). These lines will intersect at a point A whose abscissa 
is obviously x, and ordinate is y. In other cases x < 0, y > 0, 
x > 0, y > 0 and x < 0, y < 0. The proof is analogous. 

2. Distance Between Two Points 

Let there be given two points on the xy-plane: A1 has the coordi­
nates x1 , y1 and A 2 has the coordinates x 2 , y2 • It is required to express 
the distance between the points A 1 and A 2 in terms of their coordinates. 

y y 

0 X 0 X 

Fig. 5 Fig. 6 

Suppose x1 =1= x2 and y1 =1= y2 • Through points A1 and A 2 we draw 
straight lines parallel to the coordinate axes (Fig. 5). The distance 
between the points A and A1 is equal to I y1 - y 2 1, and the distance 
between the points A and A 2 is equal to I x1 - x 2 I· Applying the 
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Pythagoras' theorem to the right-angled triangle A 1AA 2 , we get 

(xl- x2)2 + (yl- Y2)2 = d2, (*) 

where d is the distance between the points A 1 and A 2. 
Though the formula ( *) for determining the distance between 

points has been derived by us proceeding from the assumption that 
x1 =I= x2, y1 =I= y2, it is true for other cases as well. Indeed, for 
x1 = X2, Y1 =I= Y2 d is equal to I y1 - y2 I (Fig. 6). The formula (*) 
yields the same result. For x1 =1= x2, y1 = y2 we get a similar result. 
If x1 = x2, y1 = y2 the points A 1 and A 2 coincide and the formu­
la (*) yields d = 0. 

As an exercise, let us find the coordinates of the centre of a circle 
circumscribed about a triangle with the vertices (2, -2), (-2, 2) 
and (1, 5). 

Let (x, y) be the centre of the circumcircle. It is equidistant from the 
vertices of the triangle. Equating the squares of the distances we 
derive the following equations for the coordinates x and y. Thus, 
we have 

(x - 2)2 + (y + 2)2 = (x + 2)2 + (y - 2)2, 

(x - 2)2 + (y + 2)2 = (x - 1 )2 + (y - 5)2. 
After obvious transformations, we obtain 

-x + y = 0, -x + 1y - 9 = 0. 

And hence, we obtain 
3 3 

x= 2 and y= 2 . 

3. Dividing a Line Segment 
in a Given Ratio 

Let there be given two different points on the xy-plane: A 1 (xu y1) 

and A 2 (x1,. y2). Find the coordinates x andy of the point A which di­
vides the line segment A1A2 in the ratio A.1 : A.2 • 

Suppose the segment A1A2 is not parallel to the x-axis. Projecting 
the points Alt A, A 2 on the y-axis, we have (Fig. 7) 

AlA AlA ;.1 
AA2 = AA2 = "X;'. 

Since the points A 1 , A 2 , Ahave the same ordinates as the points 
A1 , A 2 , A, respectively, we get 

AtA = ly.-yl, AA2= IY-Y21· 
Consequently, 
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Since X lies between A 1 and A2 , y1 - y andy- y2 have the same 
sign. Therefore 

Whence we find 

y- h2Y1+A1Y2 (*) 
- 1..1+"2 

If the line segment A 1A 2 is parallel to the x-axis, then 

Yt = Yz = Y· 

The same result is obtained from the formula (*) which is thus 
true for any locations of the points A1 and A 2 • 

The abscissa of the point A is found analogously. For the abscissa 
we get the formula 

-A...:zX~1 +..;......,1....:.1 x...:2:... x-
- A.l +h2 

As an exercise, let us prove Ceva's theorem from elementary 
geometry. It states: If the sides of a triangle are divided by the concur-

Y 

X 

Fig. 7 

c:b 

Fig. 8 

A 

rent cevians (cevian of a triangle is a line segment that joins the vertex of 
the triangle to a point on the opposite side), then these cevians are con­
current in the ratio a : b, c : a, b : c. 

Let A (x1 , y1), B (x2 , y2), and C (x3 , y3) be the vertices of the 
triangle and A, B, C the points of division of the opposite sides 
(Fig. 8). The coordinates of the point A are: 

X 
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Let us divide the line segment AA in the ratio (b + c) : a. Then the 
coordinates of the point of division will be 

ax1 + bxa + cx8 
:r; = ....:;....~a...:+-:-:-b-=:+,...:.c-"-

ayt+bYa+cYa y = --=-=-=-:~~...;;.::.. 
a+b+c 

If the segment BB is divided in the ratio (a + c) : b, then we get 
the same coordinates of the point of division. The same coordinates 

A A A 

(a) {b) (c) 

Fig. 9 

are obtained when dividing the segment CC in the ratio (a + b) : c. 
Hence, the segments AA, BB, and CC have a point in common, which 
was required to be proved. 

We should note that theorems from the course of elementary geo­
metry on intersection of medians, bisectors, and altitudes in the 
triangle are the particular cases of Ceva's theorem. We now proceed 
to clarify this. 

For medians (Fig. 9a) AC: CB = 1: 1, BA: AC = 1: 1, 
CB: BA = 1: 1. For bisectors (Fig. 9b) AC: CB = AC: BC, 
BA: AC =AB: AC, CB: BA = BC: AB. For altitudes (Fig. 9c) 
AC·CB= cc . cc =-1_. _1_ BA AC 1 1 

· tan a. · tan ~ tan a. · tan ~ ' : = tan ~ : tan y ' 

elf: iiA = -t-1-: -t-1-. We see that in all cases the conditions any ana. 
of Ceva 's theorem are satisfied. 

4. Equation of a Curve. Equation of a Circle 

Let there be given a curve on the xy-plane (Fig. 10). The equation 
<p (x, y) = 0 is called the equation of a curve in implicit form if the 
coordinates x, y of arry point of this curve satisfy the equation and 
any pair of real numbers x, y, satisfying the equation <p lx, y) = 0 
represents the coordinates of the point on the curve. A curve is 
obviously defined by its particular equation, therefore we may speak 
of assigning a curve by its equation. 
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In analytic geometry two problems are often considered: (1) given 
the geometric properties of a curve, form its equation; (2) given 
the equation of a curve, define its geometric properties. Let us con­
sider these problems as . applied to the circle which is a simple 
curve. 

Suppose A 0 (x0 , y0) is an arbitrary point in the xy-plane, and R 
is any positive number. Let us form the equation of a circle with 
centre A 0 and radius R (Fig. 11). 

Let A (x, y) be an arbitrary point of the circle. Its distance from 
the centre A 0 is R. The square of the distance of the point A from A 0 

y 
y 

0 X X 

Fig. 10 Fig. 11 

is equal to (x - x0) 2 + (y - y0) 2• Thus, the coordinates x, y of 
any point A of the circle satisfy the equation 

(x - X 0) 2 + (y - Yo)2 - R 2 = 0. (•) 

Conversely, any point A whose coordinates satisfy the equation 
(*) belongs to the circle, since its distance from A 0 is equal toR. 

In conformity with the above definition, the equation (•) is the 
equation of a circle with centre A 0 and radius R. 

We now consider another problem for the curve given by the 
equation 

x2 + y2 + 2ax + 2by + c = 0 (a2 + b2 - c > 0). 

This equation can be rewritten in the following equivalent form: 

(x+a)2+ (y+b) 2 -{"Va2 +b2 -c)1 =0. 

From this equation we can see that any point (x, y) of the curve is 
at the distance of V a2 + b2 - c from the point (-a, -b), and, 
hence, the curve is a circle with centre (-a, -b) and radius 
Va2 + b2- c. 

Let us consider the following problem as an example illustrating 
the application ,of the method of analytic geometry: Find the locus 
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of points in a plane the ratio of whose distances from two given points 
A and B is constant and is equal to k =1= 1. (The locus is a set of all 
points which possess the given geometric property. In the case under 
consideration we speak of such points in the plane for which the 
ratio of distances from the two given points A and B is constant.) 

Suppose that 2a is the distance between the points A and B. 
We introduce a rectangular Cartesian coordinate system in the plane 
taking the straight line AB as the x-axis and the midpoint of the 
segment AB for the origin. Let, for definiteness, the point A 
lie on the positive x-axis. The coordinates of the point A will 
then be: x = a, y = 0, and the coordinates of the point B will be: 
x = -a, y = 0. Let (x, y) be an arbitrary point of the locus. The 
squares of its distances from the points A and B are respectively 
equal to (x- a)2 + y2 and (x + a)2 + y2• The equation of the 
locus is 

or 

xz+y2+ 2 k~~/) ax+a2=0. 

Thus the locus is a circle (Apollonius' circle). 

5. Parametric Equations of a Curve 

Assume that a point A moves along a curve, and by the time t 
its coordinates are: x = q> (t) and y = 'IJ1 (t). Simultaneous equations 

X = q> (t), y = 'IJ1 (t), 
which specify the coordinates of an arbitrary point on the curve as 
functions of the parameter t are called 
parametric equations. 

The parameter t need not be time, 
it may be any other quantity which 
describes the position of a point on a 
curve. 

Let us now form a parametric equa­
tion for a circle. 

y 

X 

Fig. 12 

Suppose we have a circle with centre 
at the origin, and of radius R. The po­
sition of a point A on the circle can be 
described by the angle a. formed by the 
radius OA and by the x-axis (Fig. 12). 
The coordinates of the point A are 
R cos a., R sin a., and, consequently1 the equation of the circle 
has a form: 

x = R cos a., y = R sin a.. 
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From a parametric equation of a curve 

X = q> (t}, y = '¢ (t}, 
we can obtain its equation in implicit form: 

f (x, y) = 0. 
To do this it is sufficient to eliminate the parameter t from the equa­
tions (*}, by having found it from one equation and substituting it 
into the other, or using any other method. 

For instance, to get the equation of a circle specified by the para­
metric equations (i.e. implicitly) it is sufficient to square both equali­
ties and add them termwise. We then obtain the equation x2 + 
y2 = R2. 

The elimination of the parameter from the parametric equation 
of a curve not always yields an equation in implicit form in the sense 
of the above definition. The points not belonging to the curve may 
satisfy this equation. Now let us consider two examples. 

Assume that a curve y is given by the parametric equations 

x = a cos t, y = b sin t, 0::::;; t < 2:rr:. 
Dividing these equations by a and b, respectively, squaring and 
adding them termwise, we get the equation 

x2 y2 
(i2+/j2= 1. 

This equation is obviously satisfied by all the points belonging to the 
curve y. Conversely, if the point (x, y) satisfies this equation, then 
there can be found an angle t for which x/a = cos t, ylb = sin t, 
and, consequently, any point in the plane which satisfies this equa­
tion, belongs to the curve y. 

Let now a curve y be represented by the following equations 

x = a cosh t, y = b sinh t, - oo < t < + oo, 
where 

cosh t = + (et + e-t), and sinh t = + (e1- e-t). 

Dividing these equations by a and b, respectively, and then squaring 
them and subtracting termwise, we get the equation 

x2 y2 
ti2-b2= 1. 

The points of the curve y satisfy this equation. But not any point 
which satisfies the equation belongs to y, for instance, the point 
(-a, 0). It satisfies the equation, but does not belong to the curve, 
since on the curve y a cosh t =1= - a. 

Sometimes the equation of"a curve represented in implicit form is 
understood in a wider sense, viz., all the points satisfying the 
equation need not belong to the cur~e. 
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6. Points of Intersection of Curves 

Let there be given two curves in the xy-plane: the curve l't defined 
by the equation 

/ 1 (x, y) = 0, 

and the curve 1'2 specified by the equation 

/2 (x, y) = 0. 

We now find the points of intersection of the curves l't and 1'2 , 

i.e. the coordinates of these points. 
Let A (x, y) be the point of intersection of the curves l't and 1'2 • 

As the point A lies on the curve y17 its coordinates satisfy the equa­
tion /1 (x, y) = 0. Also, as the point A lies on the curve y 2 , its coor­
dinates satisfy the equation / 2 (x, y) = 0. Thus, the coordinates of 
any point of intersection of the curves l't and 1'2 satisfy simultaneous 
equations 

/ 1 (x, y) = 0, / 2 (x, y) = 0. 

Conversely, any real solution to this system of equations yields the 
coordinates of one of the points of intersection of the curves. 

If the curve l't is given by the equation 

ft (x, y) = 0, 

and the curve '\'2 is given by the parametric equations 

X = q> (t), y = "' (t), 

then the coordinates x, y of the points of intersection satisfy a sys­
tem of three simultaneous equations 

ft (x, y) = 0, x = cp (t), y = 'I' (t). 

If both curves are parametric 

'\'t : X = (jl1 (t), Y = 'i't (t); 

'\'2 : X = (jl2 ('t), y = '1'2 ('t), 

then the coordinates x, y of the points of intersection satisfy the 
following system of four simultaneous equations: 

X = (jll (0, Y = 'i't (0, 
X = ·Cfl2 ('t), - ·y = '1'2 ('t).· ' 
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Example. Find the points of intersection of the circles 

x2 + y2 = 2ax, x2 + y2 = 2by. 

Subtracting the equations termwise, we find ax = by. Substi-. 
tuting y = ax/b in the first equation, we get 

{ 1 + ~: ) x2 - 2ax = 0. 

Whence 

the corresponding ordinates being 

Yt=O, 

Th . f . . (O O { 2ab2 2ba• ) e required pomts o mtersect10n are , ) and a'+b• , a'+b• • 

7. Relative Position of Two Circles 

Consider two circles of radii a and b, respectively, the centre-to­
centre distance being c. What is their mutual position? 

Let 0 and 0 1 be the centres of the circles. We take 0 to be the 
origin of coordinates and the half-line 001 the x-axis to the right of 
the origin. The equations of the circles are 

lf the circles intersect, the coordinates x, y of the point of inter­
section obey both equations (•). Conversely, if the system of equa­
tions (•} has a solution, i.e. there existx andy such that they meet both 
equations, then they are the coordinates of the point of intersection 
of the circles. The number of points of intersection (if any) equals 
the number of the solutions of the system. 

Let us now solve the system (•). To this end, we first subtract the 
equations term by term. We get 2cx - c2 = a2 - b2• Hence x = 
(all + c2- b2)/2c. Substituting this value of x into the first 
equation gives 

Hence 
.. / ( as+c'-bll )2 Y=± V all- 2c • 
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We transform the expression under the radical as the difference 
of squares 

(a+ 
a•+cl-bl ) (a- al+cl-bl ) 

2c 2c 
1 = 4c1 (2ac+a2 +c2-b2) (2ac-a2-c2+b2) 

1 
= 4c2 [(a+c)2- b2][b2- (a-c)2] 

1 = 4c1 (a+b+c) (a+c-b) (b+a-c) (b-a+c). 

Thus 

y=± ic V(a+b+c)(a+c-b)(a+b-c)(b+c-a). 

It follows that if a + c > b, a + b > c and b + c > a, then the 
radicand is positive, and hence the system (•) has solutions, of which 
there are two: one of them has the root with a plus sign, and the 
other with a minus sign. And so the circles intersect at two points. 

If at least one of the factors a + c - b, a + b - c, b + c - a is 
zero1 then the system (•) has one solution, i.e. the circles touch 
each other. 

If one of the factors in the radicand is negative, then the system (•) 
has no solutions and the circles do not intersect. Two factors in the 
radicand cannot be negative, since then their sum would be negative. 
But it is known to be positive. For example, if a + c- b < 0 and 
a+ b- c < 0, then (a+ c- b)+ (a+ b- c)= 2a < 0, which 
is impossible. The situation will be the same in other cases. 

Consequently, if one of the numbers a, b, c is larger than the sum of 
the two others, then the circles do not intersect; if one of them equals the 
sum of the two others, then the circles touch; if one of them is less than 
the sum of the two others, then the circles intersect at two points. 

This examination enables us to solve the issue of the existence 
of a triangle with given sides. So for the given line segments of lengths 
a, b and c to be the sides of some triangle it is sufficient for the 
largest of a, b, or c to be less than the sum of the two others. Really, 
let us take asegmentAB of length c and draw circleswithcentres A 
and B, of radii a and b, respectively. As proved above, these circles 
intersect at a certain point C. The triangle ABC has the sides AB = 
c, AC = a, and BC = b. 

EXERCISES TO CHAPTER I 

t. Given two points on a straight line parallel to the x-axis. The 
ordinate of one of them is y = 2. Find the ordinate of the other 
point. 
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2. From a point A (2, 3) a perpendicular is dropped on the x-axis. 
Find the coordinates of the foot of the perpendicular. 

3. Through a point A (2, 3) a straight line parallel to the x-axis is 
drawn. Find the coordinates of the point where it cuts the y-axis. 

4. Find the locus of points in the xy-plane with the abscissa x = 3. 
5. Given points A (-3, 2), B (4, 1), show that the line segment 

AB cuts the y-axis, but not the x-axis. 
6. What part of the y-axes (above or below the x-axis) is cut by 

the segment AB in the previous problem? 
7. Find the distance from the point (-3, 4) to the x-axis (y-axis). 
8. Consider a point with ordinate y = 2 lying on the bisector of 

the first quadrant. Find the abscissa of the point. 
9. Solve the previous problem, given that the point lies on the 

bisector of the second quadrant. 
10. Find the locus of points in the xy-plane, with x = y. 
11. Find the locus in the xy-plane with x = -y. 
12. What is the position of the points of the xy-plane for which 

(a) I x I = a, (b) I x I = I Y I ? 
13. What is the position of the points of the xy-plane for which 

(a) I x I< a, (b) I x I< a, I y I< b? 
14. Find the coordinates of a point symmetric to the point A (x, y) 

about the x-axis (y-axis, the origin). 
15. Find the coordinates of a point symmetric to the point A (x, y) 

about the bisector of the first (second) quadrant. 
16. How will the coordinates of the point A (x, y) change if the 

y-axis is taken as the x-axis, and vice versa? 
17. Given points A (4, -2), B (1, 2), C (-2, 6), find the dis­

tances between these points, taken in pairs. 
18. Show that points A, B, C in the previous problem lie on the 

same straight line. Which of the points lies in between? 
19. Find on the x-axis a point equidistant from points (1, 2) 

and (2, 3). 
20. Find a point equidistant from the coordinate axes and from 

the point (3, 6). 
21. Given the coordinates of two vertices A and B of an equilateral 

triangle ABC, find the coordinates of the third vertex. Consider the 
case A (0, 1), B (2, 0). 

22. Given the coordinates of two adjacent vertices A and B of 
a square ABCD, find the coordinates of the remaining vertices. 
Consider the case A (1, 0), B (0, 1). 

23. What condition must the coordinates of the vertices of a trian­
gle ABC satisfy for a triangle to have a right angle at the vertex C? 

24. What condition must the coordinates of the vertices of a tri­
angle ABC satisfy for the angle A to be larger than the angle B? 

25. A quadrilateral ABCD is specified by the coordinates of its 
vertices. Determine whether or not it is inscribed in a circle. 
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26. Prove that for any real a, au a 2 , b, b1 , b2 there exists the 
following inequality 

V (a1 -a)2 + (b1 -b)2 + V (~-a)2 + (b2 -b)2 

~ V (at -a2)2+ (b,-b2)2. 

To what geometric fact does it correspond? 
27. Given the three vertices of a parallelogram ABCD: A (1, 0), 

B (2, 3), C (3, 2), find the coordinates of the fourth vertex and of the 
point of intersection of the diagonals 0. 

28. Show that points A (-1, -2), B (2, -5), C (1, -2), D (-2, 
1) are the vertices of a parallelogram. Find the point of intersection 
of its diagonals. 

29. Given one end of a line segment (1, 1) and its midpoint (2, 2), 
find the second end. 

30. Show that points (3, 0), (1, 0), (1, -2), (3, -2) are the ver­
tices of a square. 

31. Given the coordinates of the vertices of a triangle: (x1 , y1), 

(x2 , y2), and (x3 , y3), find the coordinates of the point of intersection 
of the medians. 

32. Given the coordinates of midpoints of the sides of a triangle 
(x1 , y1), (x2 , y 1), and (x3 , y3), find the coordinates of its vertices. 

33. Given a triangle with the vertices (x1 , y1), (x2 , y 2), and (x3 , y3), 

find the coordinates of vertices of a similar triangle and of a simi­
larly located triangle with the ratio of similitude A. and the centre 
of similitude at point (x0 , y 0 ). 

34. The point A is said to divide the line segment A1A 2 externally 
in the ratio A.1 : A-2 if this point lies on a straight line joining the 
points A1 and A 2 outside the segment A1A 2 and the ratio of its 
distances from the points A1 and A 2 is A.1 : A.2 • Show that the coordi­
nates of the point A are expressed in terms of the coordinates (x1 , y1), 

(x2 , y 2) of the points A1 and A2 by the formulas 
AsXt-AtXs AsYt-AtYs 

X= ~ ' ' y= ' ' • ''2-"'1 "'z-"'t 

35. Two line segments are specified by the coordinates of their 
end-points. How can we find out, without using a drawing, whether 
the segments intersect or not? 

36. The centre of gravity of two masses fLt and fL 2 located at points 
A1 (x1 , y1) and A2 (x2 , y2) is defined as a point A which divides the 
segment A1A 2 in the ratio fL 2 : fLt· Thus, its coordinates are: 

X= J.11X1 + J.lsXs ' y = JLtYt + J.12Y2 
J.11 +Its iJ.11 + J.ls • 

The centre of gravity of n masses 1-lt situated at points At is deter­
mined by induction. Indeed, if A~ is the centre of gravity of the 
first n - 1 masses, then the centre of gravity of all n masess is deter-
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mined as the centre of gravity of two masses: lln located at point An, 
and J..L1 + Jl2 + ... + lln -t, situated at point A~. Derive the for­
mulas for the coordinates of the centre of gravity of the masses ll• 
situated at points Ai (xi, Yi): 

f.1.1X1 + · · · + f.l.nXn 11 1Y1 + · · · + "nYn X= y = ...:.r....:.::..:::.....:,... _ _,_,r~.:::... 

f.l.t+ ···+f.l.n ' f.l.t+ ···+f.l.n • 
37. Find the centre of a circle lying on the x-axis, given that the 

circle passes through a point (1, 4) and its radius is 5. 
38. What are specific features in· the position of the circle 

x2 + y2 + 2ax + 2by + c = 0 (a2 + b2 - c > 0) 

with respect to the coordinate system if (a) a = 0; (b) b = 0; (c) c = 
0; (d) a = 0, b = 0; (e) a= 0, c = 0; (f) b = 0, c = 0? 

39. Show that if we substitute the coordinates of any point lying 
outside the circle in the left-hand side of the equation of a circle 
then we shall obtain the square of the length of a tangent drawn 
from this point to the circle. 

40. The power of a point A with reference to a circle is defined as 
the product of the segments of a secant drawn through the point A 
taken with the plus sign for points external to the circle and with 
the minus sign for points internal to the circle. Show that the left­
hand member of the equation of a circle x2 + y2 + 2ax + 2by + 
c = 0 gives the power of this point with reference to a circle 
when the coordinates of an arbitrary point are substituted in it. 

41. Form the equation for the locus of points of the xy-plane the 
sum of whose distances from the two given points F 1 (c, 0) and 
F 2 (-c, 0) is constant and equal to 2a (an ellipse). Show that the 

,xB y2 _2 
equation is reduced to the form as + bz = 1, where b2 = a2 - c,-. 

42. Form the equation for the locus of points of the xy-plane the 
difference of whose distances from the two given points F1 (c, 0) 
and F 2 (-c, 0) is constant and is equal to 2a (a hyperbola). Show 

,x2 yz 
that the equation is reduced to the form az - b2 = 1, where b2 = 

c2- a2. 
43. Write the equation for the locus of points of the xy-plane which 

are equidistant from the point F (0, p) and the x-axis (a parabola). 
44. Show that the following parametric equations 

x = R cost+ a, y = R sin t + b 

represent a circle of radius R with centre at the point (a, b). 
45. Form the equation for a curve described by the point on the 

line segment of length a when the end-points of the segment move 
along the coordinate axes. (The segment is divided by this point in 
the ratio A : ll·) Take as the parameter the angle made by the segment 
with the x-axis. What is the shape of the curve if A: Jl = 1? 
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46. A triangle slides along the coordinate axes with two of its 
vertices. Write the equation for the curve described by the third 
vertex (Fig. 13). 

47. Form the equation for a curve described by a point A on a circl& 
of radius R which rolls along the x-axis (Fig. 14). Take as the para-

y 

0 A 

Fig. 13 

c 

X '1' 

Fig. 14 

X 

meter the path s covered by the centre of the circle. Assume that at. 
the initial moment (s = 0) the point A coincides with the origin~ 

48. A curve is given by the equation 

ax2 + bxy + cy2 + dx + ey = 0. 

Show that, by introducing the parameter t = y/x1 we can obtain 
the followiug equations for the parametric curve: 

d+et dt+et2 
X=- a+bt+ct2 ' y=- a+bt+ct2 • 

49. Form the equation of the circle with centre at a point (1, 2),. 
given that it touches the x-axis. 

50. Form the equation of the circle, centre (-3, 4), given that 
it passes through the origin of coordinates. 

51. Show that the circle x2 + y2 + 2ax + 1 = 0 does not meet 
the y-axis. 

52. Show that the circle x2 + y2 + 2ax = 0 touches the y-axis. 
53. What condition must the coefficients of the equation of 

a circle 
x2 + y2 + 2ax + 2by + c = 0 

satisfy for the circle (a) not to intersect the x-axis; (b) to intersect 
the x-axis at two points, (c) to touch the x-axis? 

54. What condition must the coefficients of the following equa­
tions of circles 

x2 + y2 + 2a1x + 2b1y + c1 = 0, 
x2 + y2 + 2a2x + 2b2y + c2 = 0, 

satisfy for the circles (a) to intersect; (b) to touch? 
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55. Find the points of intersection of the two circles: 

x2 + y2 = 1 and x = cos t + 1, y = sin t. 

56. Find the points of intersection of the two parametric curves 

X = s2 + 1 1 X = t2 1 

and 
y = s, y = t + 1. 

·57. Show that the points of intersection of the curves 

ax2 + by2 = c, Ax6 + By6 = C 

are symmetric about the coordinate axes. 

Chapter II 

VECTORS IN THE PLANE 

1. Translation 

We introduce Cartesian coordinates x, y on the plane. A transfor­
mation of a figure F, under which its points (x, y) are carried into 
:(x + a, y + b), where a and bare two constants, is called a translation 

p' 
(Fig. 15). A translation is given by 
the formulas 

x' = x + a, y' = y + b (•) 

expressing the coordinates x', y' of 
the point into which (x, y) is carried. 

A translation is a motion. In fact, 
two arbitrary points A (x1 , y1) and 
B (x2 , y2) are transformed into A' (x1 + 

Fig. 15 a, y1 + b), B' (x2 + a, y2 + b) and 
AB2 = (x2 - xt)2+(y2-Yt)2, A'B' 2 = 

(x2 - x1)2 + (y2 - y1)2. Hence, AB = A' B'. Thus, the transfor­
mation is distance-preserving and, therefore, a motion. 

The name "translation" is justified by the shift of points along 
parallel or coincident straight lines through the same distance. Indeed, 
let two points A (x1, y1) and B (x2, y2) be sent into A' (xi + a, 
_y1 + b), B' (x2 + a, y2 + b) (Fig. 16). The midpoint of the line 
:Segment AB' as well as that of A' B have coordinates] 
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Hence, the diagonals of the quadrilateral AA 'B' B meet and bisect 
each other. It is therefore a parallelogram whose opposite sides AA' 
and BB' are parallel and equal. 

Note that the other two sides AB and A' B' are also parallel. 
Consequently, under a translation, a straight line is transformed into 
a parallel line (or into itself). 

For any two points A and A', there is one, and only one, translation 
under which A is carried into A'. 

Proof. We start with uniqueness. Let X be an arbitrary point of 
th(figure, and sent by the translation into X' (Fig. 17). As we know, 

A A' 

J)><J 
n n' 

Fig. 16 Fig. 17 

the line segments XA' and AX' possess a common midpoint 0. 
The specification of X determines 0 uniquely, whereas A and 0 
uniquely determine X', since 0 is the midpoint of AX'. The unique­
ness in the determination of X' is just what implies that of the trans­
lation. 

To prove the existence of a translation sending A into A', we 
introduce Cartesian coordinates on the plane. Let at, a 2 be the coor­
dinates of A, and a~, a~ those of A'. The translation given by 

x' = x + a~ - a11 y' = y + a - a2 

sends A into A'. In fact, when x = at, and y = a 2 , we obtain 
x' = a~. y' = a~. Q.E.D. 

It follows from the uniqueness of a translation sending a given 
point A into a given point A', which is established without involv­
ing a coordinate system, that a translation is given by formulas .of 
the form -

x' = x + a, y' = y + b 

in any Cartesian system of coordinates. The constants a and b, certain­
ly, depend on the choice of a coordinate system. 

As an exercise, we solve the following. 
Under a translation, the point ( 1 , 1) is sent into ( -1, 0). What 

point will the origin be transformed into? 
Solution. Any translation is given by the formulas x' = x + a, 

y' = y +b. Since (1, 1) is carried into (-1, 0), we have -1 = 
1 + a, 0 = 1 + b. Hence, a = -2, b = -1. Thus, our trans­
lation is given by x' = x - 2, y' = y - 1. Substituting into the 
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formulas the coordinates of the origin, x = 0, y = 0, we obtain 
x' = -2, y' = -1. Thus, the origin is transformed into the­
point (-2, -1). 

A transformation inverse to a translation is a translation. Twc; 
translations performed one after another again yield a translation_ 

Proof. Any translation is given by formulas of the form 

x' = x + a, y' = y + b. 

The inverse transformation is determined by formulas of the 
same form 

x = x'- a, y = y'- b, 

and is, therefore, a translation, thus proving the first statement. 
Now, consider two translations specified by 

x' = x + a, y' = y + b, 

x" = x' + c, y" = y' + d. 

A transformation obtained on performing these two consecu­
tively is 

x" = x + a + c, y" = y + b + d 

which is a translation, and the theorem is proved completely. 

2. Modulus and the Direction of a Vector 

We will call a directed line segment a vector (Fig. 18), and denote 
it by a small letter a, b, c, ... in bold type. Sometimes, a vector 

Fig. 18 

is given by specifying the ends of a line seg­
ment representing it. For instance, the vector 

-+ 
in Fig. 18 can be denoted by AB. With this 
method of denoting a vector a, the point A is 
called its origin, and B its end-point. If we 
denote a vector by means of the ends of a line 
segment representing it, then we always place 
the origin first. Sometimes, the notation a or 

a is used (to be read "a vector a"). 
Two half-lines are said to be co-directional if they can be made to 

coincide under a translation, i.e., if there exists a translation which 
would transform one of them into the other. 

If two half-lines a and b are co-directional, and two half-lines band c 
are also co-directional, then a and c are co-directional. Indeed, since a 
and bare co-directional, there exists a translation which transforms a 
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into b. Since b and c are co-directional, there exists a translation 
which transforms b into c. Carried out one after the other, these 
two yield a translation to transform a into c. Hence, a and c are 
co-directional. 

Two half-lines are said to be opposite if each of them is co-direc­
tional with one half-line complementary to the other. - -Two vectors AB and CD are said to be co-directional if the half-
lines AB and CD are co-directional. The modulus (or magnitude) 
of a vector is the length of a line segment representing it. The modu--lus of a vector a is denoted by I a 1, and that of AB by AB. 

Two vectors are said to be equal if they can be made to coincide 
under a translation, which means that there exists a translation 
transforming the origin and end-point of one 
into those of the other, respectively. Hence, 
equal vectors are co-directional and equal in 
modulus. Conversely, if vectors are co-directional 
and equal in modulus, then they are equal. In fact, - -let AB and CD be two co-directional vectors 
equal in modulus. The translation transforming 
C into A makes the half-line CD coincident 
with the half-line AB, since they are co-

\ -~ 
D c 

Fig. 19 

directional. And because the line segments AB and CD are equal, 
the point D is then made coincident with the point B, i.e., the - -translation sends the vector CD into the vector AB. Therefore, - -AB and CD are equal. - -Given a parallelogram ABCD, prove that the vectors AB and DC 
<O-re equal. -Solution. Let AB be subjected to a translation sending the point A 
into D (Fig. 19). A is then shifted along the straight line AD, and 
therefore, B along the parallel straight line BC. The straight line AB 
is transformed into a parallel line, and, consequently, into the straight 
line DC. Therefore, B is sent into the point C. Thus, our trans-- -lation transforms AB into DC; hence, they are equal. -Denoting a vector by its end-points (AB}, it is natural, and, as 
we see below, expedient, to consider the vector whose end-points -coincide (AA). Call it the zero vector, and denote it by 0. Its 
direction is not spoken of, and the modulus is assumed to be zero. 
All zero vectors are equal by definition. 

It follows from the translation properties that one, and only one, 
vector equal to a given vector can be marked off from any point. For 
proof, it suffices to carry out a translation under which the origin 
of the vector will be transformed into the given point. 
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3. Components of a Vector 

Let a vector a have a point At (xt, Yt) as the origin, and a point 
A 2 (x2, y2) as the end-point. Its components are the values at = -­x2 - xt, a 2 = y2 - Yt· We write a (at, a2), or simply (ata2). 
The zero vector components are zeros. 

It follows from the formula expressing the distance between two 
points in terms of their coordinates that the modulus of a vector 
with components at, a 2 is equal to V a~ + a:. 

Equal vectors have equal respective components. Consequently, if the 
respective components of two vectors are equal, then the vectors are 
also equal. 

Proof. Let At (xt, Yt) and A 2 (x2, y2) be the origin and end-point 
of a vector a. Since an equal vector a' is obtained from a by a transla­
tion, then its origin and end-point are A; (xt + c, Yt + d) and 
A~ (x 2 + c, y2 + d), respectively. Hence, both a and a' have the: 
same components x2 - Xt, Yz - Yt· 

To prove the converse statement, we suppose that the correspond-
-+ -+ 

ing components of the vectors AtA 2 and A;A~ are equal, and show 
that the vectors themselves are equal. Let x; and y~ be the coordi­
nates of the point A~, and x~, y~ those of the point A;. Giv~n that 
x2 - xt = x~- x;,y2 - Yt = y~- y;,wehavex~ = x9 + x;- xto­
y~ = y2 + y; - Yt• and the translation specified by the formulaS; 
x' = x + x~- Xt, y' = y + y;- Yt• sends At to A;, and A 2 to A~. 

-+ -+ 
i.e., AtA 2 and A;A~ are equal. Q.E.D. 

Given three points A (1, 1), B (-1, 0), C (0, 1), find a point D (x, y\ 
- -+ so that the vectors AB and CD are equal. 

-+ 
Solution. The components of AB are (-2, -1), whereas those of 

- - -+ CD (x- 0, y - 1). Since AB = CD, x- 0 = -2, y - 1 = -1, 
Hence, the coordinates of the point D are x -c -2, y = 0. 

4. Addition of Vectors 

The sum of two vectors a and b with components a10 aa and bt, b~ 
is a vector c with components at + bt, a 2 + b2 , i.e., 

a (a1 , a2) + b (bt, b2) = c (at + b10 a2 + b-z.). 

For any vectors a (at, a2), b (bt, b2), c (ct, c2), 

a + b = b + a, a + (b + c) = (a + b) + e. 
To prove, it suffices to compare th-e corresponding eam.ponents of 

the vectors on the right- and left-hand sides. We see that. they an& 
equal, and vectors with corresponding equal comp0men\s at:e eq·ual1... 
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For any three points A, B, C, the vector equation - - -AB + BC = AC 
holds. 
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Proof. Let A (x1 , y1), B (x2 , y 2), C (x3 , y 3) be the three given. 
points. The comp~ents of the vector AB are (x2 - x1 , y 2 - y1), 

whereas those of BC, (x3 - x2 , y 3 - y 2). Therefore, the components. - -of the vector AB + BC are (x3 - x1 , y 3 - y1), just those of thee - - - -vector AC. Thus, AB + BC and AC are equal. Q.E.D. 
Hence, the following method for the construction of the sum o:t 

two arbitrary vectors a and b. Viz., we have to mark off a vector b,._ 

1Zlc 
A p 

Fig. 20 Fig. 21 

equal to b from the end-point of a. Then the vector whose origiTh 
coincides with that of a, and end-point with that of b', is the sum 
a + b (Fig. 20). -Given a parallelogram ABCD, prove the vector equation AB + - -AD = AC ("parallelogram law" of vector addition). - - -Solution. We have: AB + BC = AC (Fig. 21). But the vectors. 
- - :-;t - -BC and AD are equal. Therefore, Ali+ AD = AC. 

A vector c (c1 , c2) whose sum with a vector b yields a vector a is. 
called the difference of the vectors a (a1 , a 2) and b (b1, b2), viz., 
b + c = a. Hence, we find the components of the vector c = a - b, 
i.e., c1 = a1 - b1 , c2 = a 2 - b2• - -Given two vectors AB and AC with a common origin, prove that: 
-+ - -AC -AB = BC. - - _, -Solution. We have AB + BC = AC, which means that AC -- -AB = BC. 

5. Multiplication of a Vector by a Number --The product of a vector (a1 , a 2) and a number A. is the vector--
(Aat. }..a2), viz., 

~ -~ 

(a1, a2) A= A. (at, az) =(/..at, A.a2). 
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It follows from the definition of the multiplication of a vector 
by a number that, for any vector a and two numbers!.., fl, 

(A. + fl) a = !..a + f-ta. 
For any two vectors a and b and a number 1..1 

A. (a + b) = !..a + A.b. 
The modulus of the vector !..a equals I A. II a 1. The direction of !..a 

coincides with that of a if A.> 0, and is opposite if A.< 0. - -Proof. Construct two vectors OA and OB equal to a and !..a, re-
spectively, 0 being the common origin. Let a1 and a2 be the compo­
nents of a. Then the coordinates of the point A are the values a1 and 
a 2 , whereas those of the point B are A.a1 , l..a2 • 

In the case 0 < A.< 1, Bison the line segment OA, and divides 
it in the ratio A. : (1 - !..), since its coordinates admit the represen­
tation 

A. _ 0·(1-A.)+M11 A. _ 0·(1-A.)+A.a2 

a1- (1-A.)+A. , a2- (1-A.)+A. • 

In the case A.> 1, A is on the line segment OB, and divides it in -the ratio 1 : (A.- 1). Thus, in both cases, i.e., for A.> 0, OB has -the same direction as 0 A. 
In the case A.< 0, the point 0 is on the line segment AB, and -divides it in the ratio 1 : I A. I· Hence, if A.< 0, then OB has the -direction opposite to that of OA, and we obtain 

IA.al = lf(A.at) 2 + (l..az) 2 = 11..1 lfa~+a:= P·llal. 
Q.E.D. -Given two points A (xu y1) and B (x2 , y2), prove that the vectors AB -and BA are opposite. -Solution. The components of ABare x2 - x1 and y1 - y1 , whereas - - -those of BA are x1 - x2 and y1 - y1• We see that AB = ( -1) BA. - -Therefore, AB and BA are opposite. 

6. Collinear. Vectors "" 
Two vectors are said to be collinear if they are on the same or 

parallel straight lines. 
The corresponding components of collinear vectors are proportional. 

Conversely, if the corresponding components are proportional, then the 
vectors are collinear. 

Proof. Let a (a1, a2) and b (b1, b2) be the given vectors. Assume 

that they are collinear. Consider the vector c = ± : : : b, where 
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the plus is taken when a and b are co-directional, and the minus 
when they are opposite. The vector c equals a, since they are 
co-directional, and equal in modulus. Equalizing their components. 
we obtain 

H b1 I b I bs I b I d bt bs h ence,-=+-1 - 1 , -=±-1- 1 , an -=-,i.e., t e com-
at a as a a1 a2 

ponents of a and b are proportional. 
Now, let the coordinates of a and b be proportional. We prove 

that the vectors are collinear. We have 
bt b2 
a1 a8 

Denoting the common value of these ratios by A., we obtain b1 = 
A.a1 , b2 = A.a2 • Hence, b = A.a, which means that the vectors are 
collinear. 

Given that the vectors a (1, -1) ~nd b {:-2, m) are collinear, find m. 
Solution. The components of collinear vectors are proportional. 

Th f - 2 m · l · h 2 ere ore, - 1- = _ 1, 1mp ymg t at m = . 

7. Resolution of a Vector into 
Two Non-Collinear Vectors 

If two vectors a and b are other than zero and non-collinear, then 
any vector c admits one, and only one, representation 

c = A.a + f.tb. 
Proof. If c is the zero vector, then c = O·a + O·b. Let c be non­

zero. Draw straight lines parallel to a and b through its end-points 
(Fig. 22). Accordingly, we obtain its repre­
sentation as the sum of collinear vectors 
a1 , b1 and a, b, respectively. We have 

a1 = A.a, b1 = f.tb. 
Therefore, 

c = A.a + f.tb. 
To prove the representation uniqueness, 

we suppose that there are two 
c = A.xa + fL1b, c = A.2a + !L2b. 

Fig. 22 

Subtracting one of the equalities termwise from the other, we 
obtain 

0 = (A.t - A.2)a + (!Lt - !L2)b, 
which is possible only if A.1 - A.2 = 0, !Lt - fL 2 = 0, since a and b 
are non-collinear, and the uniqueness is thus proved. 
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A vector is said to be unit if its modulus is unity. Unit vectors 
with the direction of positive coordinate half-axes are called base 
vectors. We will denote them by e1 (1, 0) on the x-axis and, by e2 (0, 1) 
on the y-axis. 

Any vector a (a1 , a 2) admits a representation in the form 

a = a1e1 + a2e2 • -- -- -- -- --In fact, (a1, a 2) = (a1, 0) + (0, a 2) = a1 (1, 0) + a2 (0, 1) = 
alel + a2e2. 

Given three vectors a (1, 0), b (1, 1), c (-1, 0), decompose e in 
terms of a and b. 

Solution. Equalizing the corresponding components of the vectors 
c and A.a + Jlb, we obtain two equations -1 = A.·1 + J1·1 and 
0 = A.·O + J1·1, from which 11 = 0, A.= -1. 

8. Scalar Product 

The scalar product of two vectors a (a1 , a11) and b (b1 , b2) is the 
value a1b1 + a 2b2 • We will employ the same notation for the scalar 
product as for the product of two numbers. The scalar product aa is 
denoted by a2• It is obvious that a2 = I a 12 • 

It follows that, for any vectors a (a1, a2), b (b1, b2), e (c1, c2), 

(a + b)e = ae +be. 

In fact, the left-hand side of the equality is (a1 + b1)c1 + (a2+ 
b2)c2, whereas the right-hand side is a1c1 + a2c2 + b1c1 + 
b2c2 • That they are equal is obvious. - -The angle between two non-zero vectors AB and AC is the angle 
BAG. The angle between any two vectors a and b is that between 
any two vectors. equal to them, but with the common origin. The 
angle between two co-directional vectors is assumed to be zero. 

The scalar product of two vectors equals the product of their moduli 
times the cosine of the angle between them. 

Proof. Let a and b be the two given vectors, and cp the angle be­
tween them. We have 

(a + b)2 = (a + b)(a + b) = (a + b)a + (a + b)b 

- aa + ba + ab + bb = a2 + 2ab + b2, 

or 
I a + b 12 = I a 12 + I b 12 + 2ab. 

Hence, the scalar product ab is expressed in terms of the lengths 
of the vectors a, band a + b, and, therefore, does not depend on the 
choice of a system of coordinates, i.e., is unaltered if the coordinate 
system is selected in a special way. Take a coordinate system xy as 
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in Fig. 23. Then, the components of a are I a I and 0, whereas those 
of b are I b I cos q> and I b I sin q>, and the scalar product is 

ab = I a I I b I cos q> + o · I b I sin q> = I a I I b I cos q>. 

It follows that if two vectors are perpendicular, then their scalar 
product is zero. Conversely, if the scalar product of two non-zero vectors 
is zero, then the vectors are perpendicular. 

Apply the scalar-product technique to the proof of the Stewart 
theorem from elementary geometry, viz., let D be a point on the side 

X c 

A B 
Fig. 23 Fig. 24 

AB of a triangle ABC (Fig. 24). Then AC"'·BD + BC2 ·AD ~ 
CD2 ·AB = AB·AD·BD. 

Proof. We have the vector equations ------CA=CD+DA, CB=CD+DB. 
Squaring them scalarly, we obtain 

-·-BC2 = CD2 + DB2 + 2CD. DB. 
Multiplying the first by BD, the second one by AD, and adding 
termwise, we have 

AC2 ·BD + BC2 ·AD 

= (CD 2 ·BD + CD 2 ·AD) + (AD 2 ·BD + BD"'·AD) 

~- --+ 2 (CD·DA·BD + CD·DB·AD). 
Since AD +DB = AB, the first bracket on the right-hand side 

equals CD2 ·AB, and the second one AB·AD·BD, whereas the third 
~- - -2CD (DA·BD + DB·AD) = 0, because the vectors DA·BD and -DB-AD are equal in modulus, but are of opposite directions. 
Thus, we obtain the equality 

AC2·BD + BC"'·AD- CD"'·AB = AB·AD·BD. 
Q.E.D. 
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EXERCISES TO CHAPTER II 

1. A translation is given by the formulas x' = x + 1, y' = y - 1. 
What points are (0, 0) (1, 0) and (0, 2) sent into? 

2. Find a and b in the translation formulas x' = x + a, y' = y + 
b, given that (1, 2) is carried into (3, 4). 

3. Is there a translation under which the point (1, 2) is sent into 
(3, 4), whereas (0, ·1) into (-1, 0)? 

4. Given that AB and CD are two parallel straight lines, and the 
points Band D are on the same side of a secant AC, prove that the 
rays AB and (JD are co-directional. 

5. Prove that the rays AB and CD in Ex. 4 are opposite if the points 
B and D are on opposite sides of the secant AC. 

6. Given three points A, B and C on a straight line, B lying in 
between A and C, point out the co-directional and opposite vectors 

~- ~ -among AB, AC, BA and BC. - - -7. Prove that I AC I~ I AB I + I BC I holds for three vectors 
""+ - -AB, BC and AC. 

8. Prove that the inequality I a + b I~ I a I + I b I holds for 
any two vectors a and b. 

9. Given four points A (0, 1), B (1, 0), C (1, 2), D (2, 1), prove - --that the vectors AB and CD are equal. 
10. Given that the modulus of a vector a (5, m) is 13, find m. --11. Find the modulus of a vector a + b if a = (1, -4), b = -- . (-4, 8). 
12. Show that the sum of n vectors with a common origin at the 

centre of a regular· n-gon, and end-points at its vertices, is zero. 
13. Given three vectors with one origin 0, and the end-points at - - ~ the vertices of a triangle ABC, show that OA + OB + OC = 0 if 

and only if 0 is the point where the three medians meet. 
14. Given a vector lmn with the origin at a point (x0 , y0) and 

the end-point at (mll, ·n6 ), where m and n are two integers not exceed­
ing in modulus M and N, respectively, find the sum of all rmn• 
expressing it in terms of the vector r with the origin at the point (0, 0) 
and the end-point at (x0 , y0). 

15. Given a finite figure F in the xy-plane with its centre of sym­
metry at the origin of coordinates, show that the sum of vectors 
with a common origin and end-points in the integral points of F, 
i.e., whose coordinates are integers, is zero if and only if the origin 
of coordinates is the common origin for all the vectors. 

t6. Prove that the vectors a (1, 2) and b (0.5, 1) are co-direction­
Jll, whereas the vectors c (-1, 2) and d (0.5, -1) are opposite. 
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17. Given the vector a (3, 4), ftnd a vector b co-directional with a, 
but of double length. 

18. Solve Ex. 17 for a vector b opposite to a. 
19. Find the modulus of the vector -2a + for a (3, 2) and 

b (0, -1). 
20. Given that the modulus of a vector A.a is 5, nnd A. if a has the 

components (-6, 8). 
21. Given the vectors a (2, -4), b (1, 2), c (1, -2), d (-2, -4), 

point out pairs of collinear ones among them. 
22. Which vectors are co-directional in Ex. 21, and which are 

opposite? Which of them are equal in modulus? 
23. For what value of n are the vectors a (n, 1), b (4, n) collinear 

and co-directional? 

24. Find unit vectors among a { -f, : ) , b ( f, i-), 
c (0, -1), d (f, --})and point out collinear ones among them, 

25. Find a unit vector collinear and co-directional with the 
vector a (6, 8). 

26. Given two midpoints M and N of two line segments AB -and CD, respectively, prove the vector equation MN = 
1 - ___. T (AC+BD). 

27. Given the base vectors e1 (1, 0) and e2 (0, 1), what are the 
components of the vector 2e1 - 3e2? 

28. ·What are the values of A. and 11 in the representation a=-
A.e1 + 11e2 of the vector a ( -5, 4)? 

29. Prove the inequality (a·b)2 =::;;;; a2b2 for two vectors a and b. 

30. Find the angle between the vectors a (1, 2), b ( 1, -+). 
31. Given two vectors a and b, ftnd the modulus of the vector 

a + b if their moduli are unity, and the angle between them is 60°. 
32. Find the angle between a and (a + b) from the previous 

exercise. 
33. Given the vertices A (1, 1), B (4, 1) and C (4, 5) of a triangle, 

ftnd the cosines of its angles. . 
34. Find the angles of a triangle with the vertices A ( 0, y3), 
( , 1 -) ( a V3) B 2, v 3 , C T , 2 . 
35. Prove that two vectors a (m, n) and b (-n, m) are either 

perpendicular or zero. 
36. Given two vectors a (3, 4) and b (m, 2), for what value of m 

are they perpendicular? 
37. Given the vectors a (1, 0) and b (1, 1), ftnd A. such that the 

vector a + A.b is perpendicular to a. 
38. For what value of A. is a + A.b in Ex. 37 perpendicular to b? 
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39. Prove that if a and bare two unit non-collinear vectors, then 
the vectors a + b and a -bare other than zero, and perpendicular. 

40. Given that two unit vectors a and b form an angle of 60°, 
prove that the vector 2b - a is perpendicular to a. 

41. Given that two vectors a + b and a - b are perpendicular, 
prove that I a I = I b 1. 

42. Given four points A (1, 1), B (2, 3), C (0, 4) and D (-1, 2), 
prove that the quadrilateral ABCD is a rectangle. 

43. Given four points A (0, 0), B (-1, 1), C (0, 2) and D (1, 1), 
prove that the quadrilateral ABCD is a square. 

44. Prove that if a and b are arbitrary non-zero and non-collinear 
vectors, then 

A.2a2 + 2A.f1 (ab) + f12b2~ 0, 
equality holding only if A. = f1 = 0. 

Chapter III 

STRAIGHT LINE IN THE PLANE 

1. Equation of a Straight Line. 
General Form 

Let us prove that any straight line in the xy-plane is described by 
an equation of the form 

ax+ by+ c = 0 

where a, b, care constants. Conversely, any equation of the form (•) is 

Fig. 25 

the equation of a straight line. 
Proof. Let g be an arbitrary straight line, 

A 0 (x0 , y0) a point on it and n (att a 2) a vec­
tor perpendicular to g (Fig. 25). Let then 
A (x, y) be an arbitrary point on the line. --Vectors A oA and n will then be perpendicu-
lar, and hence their scalar product will be 
zero. Thus, each point on g will obey 

(x- x0)a1 + (y - y 0)a 2 = 0. 
Conversely, if A (x, y) satisfies this equation, then this means that --AoA · n = 0, and hence A lies on g. 

By definition, the equation(**) is the equation of g. It can be 
rewritten as 

a1x + a2y + (-a1x0 - a2y 0) = 0. 
We see that it has the form (*). This proves the first statement. 
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Suppose now we have the equation 

ax+ by+ c = 0. 
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We will now see that it is the equation of a certain straight line. 
Let x0 , y0 be some solution of that equation, i.e. 

ax0 + by0 + c = 0. 

Using this relationship we can transform our equation as follows: 

ax+ by- ax0 - by 0 = 0, 
or 

a (x - x0 ) + b (y - y0) = 0. 

But in this form, as we have seen, it is the equation of the straight 
line passing through (x0 , y0) at right angles to n (a, b). We have 
thus proved the second statement as well. 

Note that in the equation of the straight line 

ax+ by+ c = 0 

the coefficients a and b are the coordinates of the vector ~perpendicular 
to the straight line. 

By way of exercise, we now form the equation of a straight line 
passing through two given ·points (x1 , y1) and (x2 , y 2). 

The vector e (x 2 - x1 , y 2 - y1) lies on the desired straight line. 
The vector e' {y1 - y2 , x 2 - x1) ·is perpendicular to e, since the sca­
lar product ee' = 0. This means that e' is perpendicular to the 
straight line. And then, as we already know, the equation of the 
straight line can be written as 

(x - xt) (Yt - Yz) + (y - Yt) (xz - xt) = 0. 

This equation is more easily remembered when written as: 

Examine the locus of points such that the difference of squared dis­
tances from two given points is constant. 

Solution. Let (x 0 , y 0) and (x~, y~) be the given points and (x, y) an 
arbitrary point of the locus. We have 

(x - x 0) 2 + (y- y0) 2 - (x- x~)2 - (y- y~)2 = c = const, 
or 

2x (x~- x 0) + 2y (y~- y 0) -1- x: + Y!- x~2 - y~2 - c = 0. 

We see that our equation is linear, i.e., of the first degree in x and y, 
and with constant coefficients. Consequently, our locus is a straight 
line. 
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2. Position of a Straight Line Relative 
to a Coordinate System 

We will now analyze the position of a straight line relative to 
a coordinate system if the line is described by some special form 
of the equation ax + by + c = 0. 

(1) a = 0. The equation becomes 
c 

y=-T· 
All the points on the line have thus the same ordinate (-c/b), and 
hence the straight line is parallel to the x-axis (Fig. 26a). Specifically, 
if also c = 0, the straight line coincides with the x-axis. 

(2) b = 0. The case is similar to the first one. The straight line is 
parallel to the y-axis (Fig. 26b) and coincides with it if c = 0. 

0 

y y y 

0 
X 

(a) {b) 

Fig. 26 

X 

(c) 

(3) c = 0. The straight line passes through the origin of coordinates, 
since (0, 0) satisfies the eq1lation of a straight line (Fig. 26c). 

If in the equation ax + by + c = 0 the coefficient at y is nonzero, 
then this equation can be solved relative to y. We get 

a c 
Y=-bX-b 

Or, denoting -alb = k, -c/b = q, we obtain 

y = kx + q. 

We now clarify the geometric meaning of the coefficient k in that 
equation. We take on the straight line two points A (xu y1), B (x2 , 

y2), x1 < x2 • Their coordinates obey the equation of a straight line: 

Yt = kx1 + q, Y2 = kx2 + q. 

Subtracting these equalities termwise, we will obtain y2 - y1 = 
k (x2 - x1). Hence 
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In the case shown in Fig. 27a, Ya-Yl =tana. In the case in 
Zg-Xl 

Fig. 27b, Ya-Yl =-tan a. Accordingly, the coefficient k in the­
x2-x1 

equation of a straight line is equal, up to a sign, to the tangent of 
the acute angle formed by the straight line with the x-axis. 

y y. 

X 0 X 

Fig. 27 

It is generally said that the coefficient k in the equation of a straight 
line is equal to the tangent of the angle that the line makes with th~ 
x-axis. This angle is taken to be negative in Fig. 27b. In the equation 
k is called the slope of the line. 

3. Parallelism and Perpendicularity 
Condition for Straight Lines 

Consider the equations of two straight lines: 

a1x + b1y + c1 = 0, 
a2x + b2y + c2 = 0. 

We now examine the conditions to be met by the coefficients of the­
equations of straight lines for the lines to be parallel (perpendicular). 

As we know now, the coefficients of x and y in the equation of 
a straight line are the coordinates of the vector perpendicular to the­
line. Therefore, for the lines to be parallel it is necessary and suffi­
cient that the vectors perpendicular to them be collinear. Hence the­
parallelism condition for straight lines, 

al bl 
a;= t;;"· 

For the straight lines to be perpendicular it is necessary and 
sufficient for the vectors perpendicular to them to be perpendicular 
to each other, and hence their scalar product is zero. Hence, the­
perpendicularity condition for straight lines, 

a1a2 + b1b2 = 0. 
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A straight line is specified by its equation ax + by + c = 0 and 
.a point (x0 , y 0). Form the equation of the straight line passing through 
(x0 , y 0) parallel (perpendicular) to the given straight line. 

Solution. To begin with, we form the equation of the parallel 
.straight line. Since the desired straight line is parallel to the given --<me, the vector (a, b) perpendicular to the given straight line 
will be perpendicular to the desired straight line. Knowing a point 
.and a vector perpendicular to the straight line, we obtain its equa­
tion 

a (x- x 0) + b (y- Yo) = 0. 

We now find the equation of the straight line perpendicular to --the given one. The vector (a, b) is perpendicular to the given straight -- . --line. The vector (-b, a) is perpendicular to the vector (a, b), since --their scalar product is zero. Therefore, the vector (-b, a) is perpen-
.dicular to the desired straight line. And now we can readily write 
the equation 

-b (x- x 0) +a (y- y 0) = 0. 

Consider two intersecting straight lines given by their equations 

ax + by + c = 0 and a1x + b1y + c1 = 0. 

Find the angle between them. 
Solution. The angle between straight lines, by definition, is the 

least angle formed by the intersection of two lines. This angle equals 
that between the vectors perpendicular to the straight lines, or sup­
plements it to 180°. Therefore, the cosine of the angle between the 
.straight lines equals, up to a sign, the cosine of the angle between -- --{a, b) and (a1 , b1). Using the scalar product of the vectors, we obtain 
the equation for the angle q> between the straight lines 

laa1 + bb11 = V a2 + b2 V a~+ b~ cos q>. 

Hence we find q> (0 < q> ~ :rt/2). 

4. Equation of a Pencil of Straight Lines 

<Consider two intersecting straight lines given by the equations 

ax+ by+ c = 0, 
a1x + b1y + c1 = 0. 

We will write the equation 

A. (ax + by + c) + fL (a1x + b1y + c1) = 0 ( *) 
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where A. and fl. are constants. This equation is linear, and so is the 
equation of some straight line. The coordinates of the intersection 
point of the given straight lines obey this equation, since for them 
ax + by + c = 0, a1x + b1y + c1 = 0. The equation (*) is called 
the equation of a pencil of straight lines. 

The equation of a pencil comes in handy when constructing the 
equation of a straight line passing through the point of intersection 
of the two given straight lines and meeting some additional con­
dition. By way of illustration we solve the following problem. 

Consider the equations of two intersecting straight lines ax + by + 
c = 0, a1x + b1y + c1 = 0. Find the equation of the straight line 
passing through a given point (x0 , y0) and the intersection point of the 
given straight lines. 

Solution. The straight line specified by the equation A. (ax + by+ 
c) + fl. (a1x + b1y + c1) = 0 passes through the point of inter­
section of the given straight lines. We require that it should pass also 
through (x0 , y0). To this end, it is necessary that A. (ax0 + by 0 + 
c) + fl. (a1x0 + b1y 0 + c1) = 0. For any A. and fl. that are not zero 
simultaneously and meet this equation, a straight line belonging to 
the pencil will pass through (x 0 , y0). Specifically, we can take 
A. = a1x 0 + b1y 0 + c1 , f..L = - (ax 0 + by0 +c). Then the equation 
of the desired straight line will be 

(ax + by + c) (a1x 0 + b1y 0 + c) - (a1x + b1y + c1) (ax 0 + by 0 

+c)= 0. 

5. Normal Form of the Equation 
of a Straight Line 

The equation of a straight line ax + by + c = 0 is said to be in 
normal form, if a2 + b2 = 1. It is obvious that for general form of 
the equation of a straight line to be reduced to normal form it is 
sufficient to divide it by ± V a2 + b2• 

The equation of a straight line in normal form has a simple geo­
metrical meaning. Namely, if into its left-hand side we substitute 
the coordinates of any point in the plane, then we will obtain a num­
ber that, except for sign, will equal the distance from the point to the 
straight line. And for points in one half-plane defined by the straight 
line this number is positive, and for the other negative. We will now 
prove this. · 

Let 
ax +by+ c = 0 

be .the equation of a straight line in normal form, and A 0 (x 0 , y 0) 

be some point on the straight line. Then ax 0 + by0 + c = 0, and 
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the equation of the straight line can be represented as 

a (x - x 0) + b (y - y 0) = 0. 

If now A 1 (x1 , y1) is an arbitrary point in the plane, then substitut­
ing its coordinates into the left-hand side of the equation of the 
straight line gives --a (x1 - Xo) + b (y1 - Yo) = n·AoA1, 

--+ 
where n (a, b) is the unit vector (a2 + b2 = 1). We have I n·A 0A1 1 = 
A 0A1 ·cos e = A 1B (Fig. 28). In fact, substitution of the coordi­
nates of A 1 into the left-hand side of the equation yields, up to a sign, 

the distance A 1B of point A 1 from the 
straight line. 

--+ 
Clearly, the sign of the expression n ·A oA1 

--+ 
depends on the directions of n and AoA1 , 

whether they are directed into the same 
half-plane or not. Therefore, for points in one 
half-plane the expression is positive, and 
for the other negative. 

Fig. 28 Examine the locus of points equidistant from 
two intersecting straight lines. 

Solution. Consider ax + by + c = 0 and a1x + b1y + c1 = 0-
two equations of straight lines in normal form. If we substitute the 
coordinates of an arbitrary point into the equations, we obtain, up 
to a sign, the distances from that point to the straight lines. It 
follows that the points of the desired locus obey the equation 

I ax+ by+ c I = I a1x + b1y + C1 I· 
This equation is equivalent to the two equations 

ax + by + c = a1x + b1y + c1 , 

ax + by + c = - (a1x + b1y + c1). 

Consequently, the desired locus consists of two straight lines. Clearly, 
these are the lines including the bisectors of the angles obtained when 
the two straight lines intersect. 

6. Transformation of Coordinates 

Consider xy- and x'y' -coordinate systems in a plane (Fig. 29). 
We now establish the relation between the coordinates of an arbitrary 
point relative to these coordinate systems. 

Let 
a1x + b1y + c1 = 0, 
a2x + b2y + c2 = 0 
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be the equations of the y'- and x' -axes in normal form in the xy­
coordinate system. 
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The equation of a straight line in normal form is defined uniquely 
up to a sign of all the coefficients of the equation. Therefore, we can 
consider without loss of generality that for a certain point A 0 (x 0 , y 0) 

in the first quadrant of the x'y' -coordinate system we have 

atXo + b1Yo + C1 > 0, 
a2Xo + b2Yo + C2 > 0 

(in the opposite case we can change the sign of the coefficients). 
Statement. The coordinates of an arbitrary point x', y' relative to 

the x'y' -coordinate system are expressed through the 
coordinates x, y of the same point in the xy-coor­
dinate system by 

x' = a1x + b1y + c1 , 

y' = a2x + b2y + c2• 

We prove, for example, the first of these. The 
right- and left-hand sides of the equation are 

y 

X 

equal in absolute value, since this value is the -0-9-----~x 
distance from the point to the y' -axis. In each of 
the half-planes defined by the y' -axis, the right­
and left-hand sides of the formula retain the sign 

Fig. 29 

and change it in passing from one half-plane to the other. And since 
for A 0 the signs coincide, they coincide for any point in the plane. 

The second formula is proved in an analogous fashion. 
Since 

a1x + b1y + c1 = 0, 
a2x + b2y + c2 = 0 

are the equations of two intersecting straight lines in normal form, 
then the coefficients a1 , b1 , a 2 , b2 in (•) are related by 

a~+ b~ = 1, 
a:+ b: = 1, 

a1a2 + b1b2 = 0. 

If we take into consideration the first two of (u), we can represent 
a1 , b11 a 2 , b2 as 

a1 = cos a., b1 = sin a., 
a1 = cos ctu b2 = sin a.1• 

From the third of (••) we then obtain 

cos a. cos a.1 + sin a. sin a.1 = cos (a. - ~) = 0, 
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whence a 1 = a + n/2. Thus, we can write the formulas of coordinate 
transformation (•) in one of the following two forms 

or 

x' = x cos a + y sin a + c1 , 

y' = -x sin a+ y cos a+ c2 

x' = x cos a + y sin a + c1 , 

y' = x sin a - y cos a + c2• 

The first of these covers all the cases when the x'y' -coordinate system 
can be obtained by a continuous motion from the xy-coordinate 
system. The second system of formulas embraces the cases when the 
x'y'-coordinate system is obtained from the xy-coordinate system 
by a motion and a mirror reflection. 

Quantities a, c1 and c2 in the transformation formulas have a sim­
ple geometrical meaning: a is, up to the multiple of 2n, the angle 
formed by the x' -axis with the x-axis, and c1 and c2 are the coordi­
nates of the origin of the xy-coordinate system in the x'y' -coordinate 
system. 

In the xy-plane a new x'y' -coordinate system is introduced. The 
coordinate axes of the new system in the xy-coordinate system are given 
by the equations 

3x + 4y + 10 = 0, 
-4x + 3y - 15 = 0. 

Find the formulas for sending x, y to x', y', given that the old origin 
lies in the first quadrant in the new system. 

Solution. We transform the equations of the new axes to normal 
form to get 

The transformation formulas are known to have the form 

x' = ± ( ~ X+ : y + 2) , y' = + ( - + X++ y- 3) . 

The choice of sign of the right-hand side of the formulas is determined 
by the fact that the origin of the old coordinate system lies in the 
first quadrant in the new system. Hence, substitution of x = 0 and 
y = 0 into the right-hand sides of formulas must yield positive 
values. To this end, in the first formula we should take the plus sign, 
and in the second the minus sign. 



Ch. III. Straight Line in the Plane 

7. Motions in the Plane 

The formulas of transformation of coordinates 

x' = x cos a + y sin a + c1 , 

y' = ± (-x sin a+ y cos a+ c2) 
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have another important interpretation. Take in the plane any tw() 
points A 1 and A 2• The distance between them can be expressed in the­
xy-coordinate system and in the x'y'-coordinate system. We have-

(x2 - x1)2 + (y2 - Y1)2 = (x: - x~)2 + (y~ - y~)2 . (**} 

Now consider a transformation of the xy-plane such that an arbitary 
point (x, y) in it changes into a point (x', y') according to the for­
mulas (• ). It follows from (**) that this transformation of the plane­
is motion. 

It is easily seen that any motion in the xy-plane is given by formu­
las of the form (•). Namely, if a given motion transforms the xy­
coordinate system into the x'y' -coordinate system, then the transfor­
mation formulas will be the formulas describing this motion. 

The motion given by (•) can be obtained from th-e elementary 
motion given by 

x' = x cos a+ y sin a, 

y' = ± (-x sin a+ y cos a), 

and the transition x' = x + c1 , y' = y + c2• 

The motion given by (•••) with the plus sign is, by the second 
formula, a rotation about the origin of coordinates. The motion given 
by (•**) with the minus sign is, by the second formula, a mirror 
reflection, i.e. there is a symmetry about some straight line passing 
through the origin of coordinates. 

8. Inversion 

Let 0 be an arbitrary point in a plane and R a positive number. 
A transformation under which any point X, other than 0, shifts t() 
a point X' on the OX ray, such that OX ·OX' = R 2 , is called the­
inversion. The point 0 is called the centre of inversion, and R the radius­
of inversion. Clearly, the inversion shifts X' to X. 

Inversion can be visualized as follows. We draw a circle with centre­
a and radius R (Fig. 30). If a point X lies beyond the circle, then 
to obtain X' it is necessary to draw a tangent to the circle from X and 
from the point of tangency to drop a perpendicular onto the straight 
line OX. The foot of this perpendicular will be X'. In fact, it is 
common knowledge that in a right-angled triangle OAX we have-
0A2 = OX'·OX. 
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If a point X lies within the circle, we must draw through it a chord 
perpendicular to OX, and at the end of the chord construct the 
tangent to the circle. The intersection of the tangent with OX will 
yield X'. 

If a point X lies on the circle, then X' coincides with X. 
Under inversion, a circle that does not pass through the centre of inver­

.sion becomes a circle; a circle that passes through the centre of inversion 

Fig. 30 

becomes a straight line; a straight line that does 
not pass through the centre of inversion becomes 
a circle that passes throu.gh the centre of inversion; 
a straight line that passes through the centre 
inverts into itself. 

Proof. We take the centre of inversion 0 to 
be the origin of the xy-coordinate system. We 
will express the coordinates x, y of point X 
through the coordinates x', y' of the point X', 
into which X changes under inversion. Since - -vectors OX and OX' are collinear, x = f..x', 
and y = f..y'. Since OX' ·OX = R 2 , (x'2 + 

y' 2) ((f..x')2 + (f..y')2) = R'. Hence f.. = R2/(x' 2 + y'2). Thus, 

Now we take an arbitrary circle. It is given by an equation of 
the form 

x2 + y2 + ax + by + c = 0. 

:Substituting the expressions for x and y given by (•), we will get 
the equation of the curve into which the circle changes under inver­
-sion 

x'Z~y'z (R4 + aR2x' + bR2y' +c (x'2+ y'~) =0. 

"The curve given by the equation 

R 4 + aR2x + bR2y + c (x2 + y2) = 0 

for c =1= 0, as we know, is a circle. Thus, an inversion changes a circle 
that does not pass through the centre of inversion into a circle. 

If a circle passes through the centre of inversion (c = 0), it trans­
forms into the straight line 

R' + aR2x + bR2y = 0. 

The straight line ax + by + c = 0 that does not pass through 
the centre of inversion (c =r- 0) changes into the circle 

aR2x + bR2y + c (x2 + y2) = 0 
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that passes through the centre of inversion (the origin of coordinates). 
The straight line ax + by = 0 that passes through the centre of 

inversion, is sent into the straight line aR2x + bR2y = 0, i.e. into 
itself. This completes the proof. 

EXERCISES TO CHAPTER III 

1. Form the equation of the locus of points equidistant from two 
points (0, 1) and (1, 2). 

2. Find the points where the straight line x + 2y + 3 = 0 cuts 
the axes of coordinates. 

3. Find the point of intersection of the straight lines x + 2y + 
3 = 0 and 4x + 5y + 6 = 0. 

4. Form the equation of the straight line that passes through 
points A (_:1; 1) and B (1, 0). 

5. Find the coefficients a and b in the equation ax + by = 1, given 
that it passes through points (1, 2) and (2, 1). 

6. Find the coefficient c in the equation x + y + c = 0, given 
that it passes through the point (1, 2). 

7. Find the value of c at which the straight line x + y + c = 0 
touches the circle x2 + y2 = 1. 

8. Prove that the three straight lines x + 2y = 3, 2x - y = 1, 
and 3x + y = 4 meet at one point. 

9. Prove that the straight lines x + 2y = 3 and 2x + 4y = 3 do 
not intersect. 

10. From the equation of a straight line, knowing that it is paral­
lel to the x-axis and passes through the point (2, 3). 

11. Form the equation of a straight line, knowing that it passes 
through the origin of coordinates and the point (2, 3). 

12. Form the equation of the straight line that passes through 
the point (x0 , y0) and is equidistant from points (x1 , y1) and (x2 , y2). 

13. Show that the three points (xH y1), (x2 , y2), (x3 , y3) lie on 
a straight line if and only if 

x, Yt 1 
X2 Y2 1 = 0. 
Xa Ya 1 

14. Show that the equation 

a2x2 + 2abxy + b2y2 - c2 = 0 
defines a pair of straight lines. Find the equation for each of the 
lines. 

15. Show that any straight line can be defined in a parametric 
way by equations of the form 

x =at+ b, y:...... et + d (- oo < t < oo). 
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Conversely, any such system of equations can be viewed as equations 
of a certain straight line in parametric form. This line is given by 
an equation in implicit form 

(x - b) c - (y - d) a = 0. 

16. A curve '\' is given by the equation 

ro (x, y) = 0, 

where ro is a polynomial of degree n in x and y. Show that if the 
curve '\' has with some straight line more than n intersection points, 
then it includes this straight line completely. 

17. The locus of points of equal powers with respect to two cir­
cles (see Exercise 40 to Chapter 2) is called the radical axis of two 
circles. Show that the radical axis is a straight line. If the circles 
intersect, then it passes through the intersection points. 

18. Under what condition does the straight line 

ax+ by+ c = 0 
intersect the positive x-axis (negative x-axis)? 

19. Under what condition is the straight line 

ax+ by+ c = 0 

not in the first quadrant? 
20. Show that the straight lines given by 

ax + by + c = 0 and ax - by + c = 0 (b =1= 0) 
are symmetric about the x-axis. 

21. Show that the straight lines given by 

ax + by + c = 0 and ax + by - c = 0, 

are symmetric about the origin of coordinates. 
22. Consider the pencil of straight lines 

ax + by·+ c + A (a1x + b1y + c1) = 0. 
Find the value of A at which a line in the pencil is parallel to the 
x-axis (y-axis) and at which it passes through the origit\of coordinates. 

23. Under what condition does the straight line 

ax+ by+ c = 0 
and the coordinate axes bound an isosceles triangle? 

24. Show that the area of the triangle hounded by the straight 
line 

ax + by + c = 0 (a, b, c =1= 0) 

and the coordinate axes is 
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25. Find the tangents to the circle 

x2 + y2 + 2ax + 2by = 0 

parallel to the coordinate axes. 

5t 

26. Show that the straight lines ax + by + c = 0, bx - ay + 
c' = 0 meet at right angles. 

27. Find the angle formed by the x-axis and the straight line 

y = x cot a (- ~ <a< 0) . 
28. Form the equations of the sides of an equilateral triangle 

with side 1, with one of the sides and the altitude dropped on it as 
the coordinate axes. 

29. Find the interior angles of the triangle bounded by the 
straight lines 

x + 2y = 0, 2x + y = 0, and x + y = 1. 

30. Under what condition is the x-axis the bisector of the angles 
formed by the straight lines 

ax+ by = 0, a1x + b1y = 0? 

31. For the angle 9 formed by the straight line 

x = at + b, y = ct + d 

with the x-axis derive the formula 

tan e = ..:.. 
a 

32. Find the angle between the straight lines given by the equa­
tions in parametric form 

x = a1t + b1 , x = c1t + ~. 
and. 

33. Show that the quadrilateral bounded by the straight lines 

±ax ± by + c = 0 (a, b, c =1= 0), 

is a rhombus. The coordinate axes are its diagonals. 
34. Show that two straight lines that cut off on the coordinate 

axes sections of equal le'D.gth are either parallel or perpendicular. 
35. Find the parallelism (perpendicularity) condition for the 

straight lines given by the equations in parametric form 

and 
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36. Find the parallelism (perpendicularity) condition for the 
straight lines one of which is given by the equation 

ax+ by+ c = 0, 

and the other by the equations in parametric form 

x = at+ ~. y = yt + (). 
37. In the family of straight lines given by the equations 

- a1x + b1y + c1 + A. (a2x + b2y + c2) = 0 

(A. is the parameter of the family), find the line parallel (perpendicu­
lar) to the straight line ax + by + c = 0. 

38. Given the equations of the sides of a triangle and the coordi­
nates of a point, think of the way of finding out whether or not 
this point lies within the triangle. 

is 

39. Show that the distance between the parallel straight lines 

ax + by + c1 = 0, ax + by + c2 = 0 

40. Form the equations of the straight lines parallel to the line 

ax+ by+ c = 0, 

that are separated from it by(). 
41. Form the equation of the straight line parallel (perpendicular) 

to the straight line 
ax+ by+ c = 0, 

passing through the point of intersection of the straight lines 

a1x + b1y + c1 = 0 and a2x + b2y + c2 = 0. 

42. Find the conditions under which points (x1 , y 1) and (x2 y 2) 

are positioned symmetrically about the straight line 

ax+ by+ c = 0. 

43. Form the equation of the curve x2 - y2 = a2 , with the 
straight lines 

x + y = 0 and x - y = 0 

as the coordinate axes. 
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Chapter IV 

CONIC SECTIONS 

1. Polar Coordinates 

We draw a ray g from an arbitrary point in a plane, and fix a direc­
tion in which an angle is measured about 0. Then the position of 
any point A in the plane may be specified by an ordered pair (p, a): 
(1) p is the distance of the point A from 0, and (2) a is the angle 
between the ray OA and the ray g, (Fig. 31). 

p/A. The numbers (p, a) are called the polar coordi­
nates of the point A. The fixed reference point 0 
is called the pole, and the ray g beginning at 0 
is called the polar axis. 

As in the case of Cartesian coordinates, here we 
may speak of the equation of a curve in polar 
coordinates. Namely, the equation 

oA·--g 

q> (p, a) = o Fig. 31 

is called the equation of a curve in polar coordinates if the polar coor­
dinates of each point of the curve satisfy this equation. And con­
versely, any ordered pair (p, a) which satisfies this equation represents 
the polar coordinates of one of the points on the curve. 

By way of example let us write an equation in polar coordinates 
for a circle passing through the pole, with centre on the polar axis 

y 

0 

0 X 

Fig. 32 Fig. 33 

and radiusR. From a right-angled triangleOAA 0 we getOA = OA 0 X 
cos a (Fig. 32). Whence the equation of the circle is 

p = 2R cos a. 
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Let us now introduce on the plane p9 an xy-coordinate system, 
taking the pole 0 as the origin of the Cartesian coordinate system 
and the polar axis as the positive semi-axis x, and choose the direc­
tion of the positive semi-axis y so that in the chosen direction it 
forms an angle of + 1t/2 with the polar axis. 

The following simple relationship is obviously established between 
polar and rectangular coordinates of a point: 

X = p COS 9, y = p sin 9 
(Fig. 33). 

We can get the equation of a curve in Cartesian coordinates, given 
the equation of the curve in polar coordinates, and vice versa. 

Let us, for instance, form an equation of an arbitrary straight 
line in polar coordinates. The equation of a straight line in Cartesian 
coordinates is 

ax+ by+ c = 0. 

Introducing the ordered pair (p, 9) in this equation (instead of (x, y)) 
according to the formulas (•), we get 

p (a cos e + b sin 9) + c = 0, 
Assuming further 

a cos a, b s1·n,.. and c - -n0, 
V~+~ V~+~= ~ V~+~ r 

we obtain the equation of the straight line in the form 
p cos (a - 9) = Po• 

2. Conic Sections 

A conic section (or a conic) is a curve in which a plane, not passing 
through the cone's vertex, intersects a cone (Fig. 34). Conics possess 
a number of remarkable properties, one of them consisting in the 
following. 

Each conic section, except for a circle, is a plane locus of points the 
ratio of whose distances from a fixed point F and a fixed line 6 is constant. 
The point F is called the focus of a conic, the line 6 its directrix. 

Let us prove this property. Let y be the curve_ in which the plane 
u intersects a cone (Fig. 35). We now inscribe a sphere in the cone, 
which touches the· plane u and denote by F the point of contact of 
the sphere with the plane. Let ro be the plane containing the circle 
along which the sphere touches the cone. We then take an arbitr­
ary point M on the curve y and draw through it a generator of the 
cone, and denote by B the point of its intersection with the plane ro. 
We then drop a perpendicular from the point M to the line 6 of 
intersection of the planes u and ro. 
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The curve y is said to possess the above property with respect to 
the point F and the linel). Indeed,FMequals BM as tangents to the 
sphere drawn from one point. Further, if we denote by h the distance 

Fig. 34 Fig. 35 

of M from the· plane ro, then AM = hi sin ex., BM = h/sin ~. 
where ex. is the angle between the planes ro and o and ~ is the angle 
between the generator of the cone and the 
plane ro. 

Hence it follows that 
AM AM sin~ 
FM= BM = sina. ' 

i.e. the ratio AMIFM does not depend on the 
point M. The statement has been proved. 

Depending on the ratio A. of the distances of 
an arbitrary point of a conic from the focus and Fig. 36 
the directrix, the curve is an ellipse (A.< 1), 
a parabola (A. = 1), or a hyperbola (A.> 1). The number A. is called 
the eccentricity of the conic section. · 

Let F be the focus of a conic section and l) its directrix (Fig. 36). 
In case of an ellipse and a parabola (A.~ 1) all points of the curve 
are on the one side of the directrix, namely, on the side where the 
focus F is located. Indeed, for any point A lying on the other side 
of the directrix 

A~> A~::;;;,1. 
AA AA ::::---

On the contrary, the hyperbola (A.> 1) has points located on both 
sides of the directrix. The hyperbola consists of two branches sepa­
rated by the directrix. 
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3. Equations of Conic Sections 
in Polar Coordinates 

Let us form the equation of a conic section (a conic) in polar 
coordinates pe with the focus of the conic as the pole, and the polar 
axis drawn so that it is perpendicular to the directrix and intersects 
the latter (Fig. 37). 

Let p be the distance from the focus to the directrix. The distance 
from an arbitrary point A of the conic to the focus is p and the dis-

F 

Fig. 37 Fig. 38 

tance from the directrix is p- p cos e or p cos e- p, depending on 
whether A and F lie on one or on opposite sides of the directrix. 
Hence the equation of the conic Eection is 

P =A 
p-p cose 

for the ellipse and parabola, and 

P =±A. 
p-pcos e '(**) 

for the hyperbola (the plus sign corresponds to one branch of the 
hyperbola, and the minus to the other). 

Solving equations (•) and (**) for p gives 
/..p 

P= 1+/..cose ' 

i.e. the equation of the ellipse and parabola, and 
±i..p 

p= 1±/..cose' 

i.e. the equation of the hyperbola. The plus sign corresponds to one 
branch of the hyperbola, the minus to the other. 

Figure 38 illustrates the dependence of the type of the conic sec­
tion on the eccentricity A.. 
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4. Canonical Equations of Conic Sections 
in Rectangular Cartesian Coordinates 
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In Sec. 3 we obtained the equations of conic sections in polar 
coordinates pe. Let us now pass over to rectangular coordinates x, y 
and take the pole 0 as the origin and the polar axis as the positive 
semi-axis x. 

From equations (•) and (**) of Sec. 3 for any conic section, we­
have 

p2 = 'A,2 (p - p cos 8)2• 

Whence, taking into account formulas of Sec. 1 which establish 
the relationship between the polar and the Cartesian coordinates: 
of a point, we obtain 

x2 + y2 = 'A,2 (p _ x)2, 
or 

This equation becomes much more simple, if we displace the· 
origin along the x-axis accordingly. 

Let us begin with an ellipse and a hyperbola. In this case equa-· 
tion (*) may be written in the following way: 

( p'J..'I. ) 2 pi'J..I O 
(1-'A2) x+ 1-i..~~ +y2-1-).•= . 

We now introduce the new coordinates x', y', using the formulas 

)._'l.p I x+ 1_;,1 =x, y=y', 

which corresponds to the transfer of the origin into the point 

(- /ai~> o). 
Then the equation of a curve will take the form 

(1- 'A,2) x'2 + y'2- ;.sp• - 0 
1-i..•- ' 

or, by putting for brevity 

we get the following equations: 
for the ellipse 

x'• y'B 
-+--1=0 at bB ' 



58 Part One. Analytic Geometry 

for the hyperbola 

The parameters a and b are termed the semi-axes of an ellipse 
(a hyperbola). 

For the parabola (A. = 1) the equation (•) will have the form 

2px + y2 - p2 = 0, 
or 

Introducing new coordinates 

x' = - x + ~ , y' = y 

we obtain the equation of the form 

y' 2 - 2px' = 0. 

The equations of conic sections, obtained in the coordinates x', y' 
are called canonical. 

Form the equation of the conic section with focus F (x0 , y 0), directrix 
ax + by + c = 0 and eccentricity A.. 

Solution. We reduce the equation of the directrix to normal form. 
We will obtain 

The distance from the point (x, y) to the focus is 

V (x-xo) 2+ (Y-Yo) 2• 

The distance from this point to the directrix is 

I ax+by+c I 
Va1 +b1 • 

Since the ratio of these distances is equal to the eccentricity A. then 
the equation of the conic section will be 

yaq=bi V(x-xo) 1 +<Y-Yo)1 =I, 
I ax+by+c I 



Ch. IV. Conic Sections 59 

5. Types of Conic Sections 

Ellipse (Fig. 39): 

We should note here that the axes of coordinates are the axes of 
symmetry of an ellipse, and the origin is the centre of symmetry. 
Indeed, if the point (x, y) belongs to an ellipse, then the points sym-

y y 

X X 

Fig. 39 Fig. 40 

metric to it about the coordinate axes (-x, y), (x, -y) and about the 
origin (-x, -y) also belong to the ellipse, since they as well as the 
point (x, y) satisfy the equation of an ellipse. The points of inter­
section of an ellipse with its axes of symmetry are called vertices 
of an ellipse. 

The entire ellipse is inside a rectangle I x I~ a, I y I~ b formed 
by the tangents to the ellipse at its vertices (Fig. 40). 

Indeed, if the point (x, y) is outside the rectangle, then at least 
one of the inequalities I x I >a or I y I> b is satisfied for it, but 
then 

and the point cannot belong to the ellipse. 
We can obtain an ellipse from a circle by uniformly contracting 

the latter. Let us draw a circle on the plane 
x• ys 
-~ +-. =1. a a 

We then imagine that the xy-plane is uniformly contracted with 
respect to the x-axis so that the point (x, y) is moved to the point 
(x', y'), where x' = x, and y' =.!!.. y. Then the circle (•) is trans-

a 
formed into a curve (Fig. 41). The coordinates of any of its points 
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satisfy the equation 
z'Z y'Z 

--;;s+bl=1. 
Hence, this curve is an ellipse. 

Hyperbola (Fig. 42): 
xz yz 
Iii"- Iii"= 1. 

Just as in the case of an ellipse, we conclude that the axes of coordi­
nates are the axes of symmetry of a hyperbola, and the origin is the 

y 
(x,y) 

X 

centre of symmetry. 
The hyperbola consists of two branches 

symmetric about the y-axis and 
lying outside the rectangle I x I< a, 
I y I < b and inside the two angles formed 
by its extended diagonals (Fig. 43). 

Actually inside the rectangle I x I <a 
and, consequently, 

Fig. 41 i.e. there are no points of the hyperbola 
inside the rectangle. There are no such 

points within the hatched portion of the plane either (see Fig. 43), 
since for any point (x, y) located in this portion of the plane 

!.<l.JLL 
a I xI ' 

whence 
~<l.IL!_ 

a b 
and, consequently, 

~-.!C..<0<1. aZ bZ 

It is worth mentioning another property of a hyperbola. If a 
point (x, y), moving along the hyperbola goes away from the origin 
of the coordinates (x2 + y2 - oo), then its distance from one of the 
diagonals of the rectangle, which are obviously specified by the 
equations 

~+.JL=o ...=.__.JL =0 
a b ' a b ' 

decreases infinitely (tends to zero). 
The straight lines 

~+.JL=O ~-.JL=O 
a b ' a b 

are called the asymptotes to the hyperbola. 
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The hyperbola 
xz yz 
---=-1 a• b1 

is said to be conjugate with respect to the considered hyperbola 

xz y" 
-az-bl= 1. 

The conjugate hyperbola has the same asymptotes but is situated 
inside the auxiliary vertical angles formed by the asymptOtes 
{Fig. 44). 

Parabola (Fig. 45): 

y2 - 2px = 0 

has the x-axis as the axis of symmetry, since along with the point 
(x, y) a point (x, -y) which is symmetric to it about the x-axis alsO 

y 

X 
X 

Fig. 42 Fig. 43 

y· 

x· 

Fig. 44 Fig. 45 

belongs to the curve. The point of intersection of the parabola with 
its axis is called the vertex of the parabola. Thus, in this case the 
origin is the vertex of th& parabola. 
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6. Tangent Line to a Conic Section 

The tangent line to a curve at point A is, by definition, the limiting 
position of the secant AB as the point B draws nearer and nearer to 
the point A (Fig. 46). 

Let a curve be given by the equation y = f (x). Let us form the 
equation for a tangent line at point A (x 0 , y 0). Let B (x 0 + !:ix, 

Yo + !:iy) be a point of the curve situated close 
to A. The equation for the secant line is 

ll.y ( y- Yo= ll.x x-Xo)· 

As B-+A 

!~ -+ !' (xo) ~ 
o x and we get the equation for the tangent line 

Fig. 46 Y - Yo = f' (xo) (x - Xo). (•) 

Similarly, if a curve is specified by the equation x = q> (y), then 
the equation of the tangent line at point (x 0 , y 0) will be 

X- Xo = q>' (Yo) (y -Yo)· (u) 

Let us form an equation of a tangent line to a conic section. 
The case of the parabola. The equation of a parabola may be written 

in the form 
y2 

X= 2p. 

Then the equation of a tangent line in the form (••) will be 

X-Xo=k (y-yo) 
p 

or 

YYo - Y: + PXo - px = 0. 
Since the point (x 0 , y0) lies on the parabola and, hence, y~ - 2px0 = 
0, the equation of the tangent line can be represented in the 
following final form: 

YYo- P (x + X0) = 0. 
The case of the ellipse (hyperbola). Let (x0 , y 0 ) be a point on the 

ellipse, and y 0 =1= 0. In the vicinity of this point an ellipse can be 
specified by the equation 

.. / xz 
y=b v 1---az' 
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where the square root should be taken with the same sign as y0 • Tha 
equation of a tangent line is found by the formula (*): 

y-Yo=- ~ob 2 (x -Xo), 
a2 v 1-~ 

or 

a2 

xobl 
Y-Yo= ---(x-xo)· Yoa2 

Multiplying it by y 0/b2 and transposing all terms to the left-hand 
side, we get 

or 

· xg Yil smce 42 +1}2= 1. 
In the vicinity of any point (x0 , y0) of ellipse, where x 0 =1= 0 tha 

ellipse can be specified by the equation 

x=av1- ~:. 
The square root is taken with the same sign as x 0 • Then, reasoning 
in a similar way and using formula (**) we get an equation for­
a tangent line 

Since at each point of the ellipse x 0 and Yo cannot both be equal 
to zero, then at any point (x0 , y 0) the equation of the tangent line to. 
the ellipse will be 

The equation of the tangent line to the hyperbola 

is obtained analogously and has the form 
XXo _.J!.J!.!__1 
a2 b2 - • 

Let us show that a tangent line to a conic section has only one point 
in common with this section (i.e. the point of tangency). Indeed, let 
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us take, for example, an ellipse 
xll y2 
as'b2= 1. 

The equation of the tangent line at point (x0 , y 0) is 

XXo-'- YYo = 1 
all ' bll • 

We shall now look for the points of intersection of the ellipse with 
its tangent line. Eliminating x from the equations, we obtain for y 

.Jt._ + !!_ ( YYo - 1) 2 -1 = 0 
b2 xa b2 , 

z~(xt-4-Y8)-2 a2yo ~{1-xg)=O 
Y b2xg all ' bll Y xgbs 1 x~ all • 

Since the point (x0 , y0) lies on the ellipse, we have x~/a2 + y~/b2 = 1, 
.and the equation for y has the form 

b:;2 (Y2 - 2YYo + y~) = 0. 
0 

This equation has two coinciding roots y = y0 • Similarly, eliminat­
ing y from the equations of the ellipse and its tangent line, we get 
.x = x 0 • Thus, the ellipse has only one point in common with the 
tangent line, i.e. the point of tangency (x0 , y0). For the hyperbola 
and parabola this is proved in a similar way. 

Find the equation of tangents to the ellipse 
x2 yll 
az-+b2=1, 

parallel to the straight line y = kx. 
Solution. Any straight line parallel to the given one is described 

by the equation of the form y = kx + c. We will look for the points 
of intersection of this line with the ellipse. Substituting y = kx + c 
into the equation of the ellipse gives 

2 { 1 k• } 2 kc ell 1 0 ( 
X az+/ji" + xbS+bl- = . ***) 

Among the straight lines y = kx + c the tangents differ in that 
they have only one point of intersection with the ellipse. This means 
that the quadratic equation (•••) has merged roots. Ap.d in that 
.ease the discriminant of the equation is zero, i.e. 

( :2 + ~: ) ( ~: - 1) - k:~~~ = 0. 
From this we find the values of c for which the straight line y = 

kx + c will be tangent to the ellipse. 
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7. Focal Properties of Conic Sections 

By definition, a conic section has a focus and a directrix. We are 
going to show that the ellipse and hyperbola have one more focus and 
one more directrix. Indeed, let the conic section be an ellipse. In the 
canonical arrangement its directrix lh is parallel to the y-axis and the 
focus F1 lies on the x-axis (Fig. 47). The equation of the ellipse is 

xll yl 
Q2+b2=1. 

Since in such a position the ellipse is symmetric about the y-axis1 

it has a focus F 2 and a directrix ~ 2 which are symmetric with respect 

y 

X x· 

Fig. 47 Fig. 48 

to the focus F1 and the directrix ~ 1 about the y-axis. Reasoning 
similarly, we prove that the hyperbola also has two foci and two 
directrices. 

We shall now show that the sum of the distances from a point of the 
ellipse to its foci is constant, i.e. independent of the point. Actually, 
for an arbitrary point X (Fig. 47) we have 

Hence 
XF1 + XF2 =A. (X1X 2) = const. 

We can also show that the difference between the distances of an 
arbitrary point of the hyperbola and its foci is constant (Fig. 48). 

Let us find the foci of the ellipse and hyperbola in canonical 
representation. 

The equation of the ellipse is 
x2 y2 
(i2+1)2= 1. 

Let c be the distance from the centre of the ellipse to the foci. 
The sum of the distances from the vertex (0, b) to the foci is equal 
to 2Vb2 + c2• The sum of the distances from the vertex (a, 0) to the 
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foci is equal to 2a. Hence 

V b2+ cz=a, 

and• consequently, 
c= Va2-b2. 

The equation of the hyperbola is 
:z:2 y2 
til- bi"= 1. 

We then compare the difference between the distances from the 
point on the hyperbola with the abscissa c (where c is the distance 
from the centre of the hyperbola to the foci) with the difference 
between the distances from the vertex (a, 0) to the foci. This compari­
son yields the following formula for the distance c 

co:: V a2 + b2. 

We must note the following reflection property of the ellipse: 
A light ray emanating from one focus and reflected by the ellipse will 
pass through the other focus. In other words, if A (x 0 , y0) is a point 
on the ellipse, then the line segments AF1 and AF2 make equal 
angles with the tangent line at the point A. 

To prove this, it is sufficient to show that the ratio of the distances 
from the focus to the tangent line and to the point of tangency:A 
does not depend on the focus taken: F1 or F 2 • 

The square of the distance from the focus F1 (c, 0) to the point of 
tangency A (x 0 , y0) is 

AF~ = (x0 -c)2 + y:= (x0 -·c)2 + ( b2- x!~2 ) 

=x: ( 1- ::) - 2cx0 + b2+c2, 

or, noting that a2 = b2 + c2 , 

AF~ = x:~~ - 2cx0 + a2 = ( c;o - a) 2 . 
The distance from the focus F1 (c, 0) to the tangent line at the 

point A (x0 , y 0 ) is 

h1 = k 1 c:: - 11 . 
where k is a normalization factor reducing the equation of the tan­
gent line to normal form. 

Whence it follows that 
ht k 

AFt =a· 
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For the other focus F 2 ( -c, 0) the same relation is obviously ob­
tained. The assertion is thus proved. 

The hyperbola possesses a similar optical property: A light ray 
emanating from one focus and reflected by the hyperbola (Fig. 49) will 
seem to have come from the other focus. The 
reflection property of the parabola consists 
in that light rays emanating from its focus 
become parallel to its axis on being re­
flected by the parabola. 

8. Diameters of a Conic Section 

The diameter of an ellipse (a hyperbola) 
is a line passing through the centre of the 
ellipse (hyperbola). The diameter of a para­
bola is a line parallel to its axis, and the 
axis itself. 

Fig. 49 

An arbitrary line intersects a conic section at most at two points. 
If there are two points of intersection, then the line segment with 
the ends at the points of intersection is termed the chord. A conic 

(a) (b) 

Fig. 50 

section has the following property: The midpoints of parallel chords 
lie on the diameter (Fig. 50). 

This property is obvious if the chords are perpendicular to the 
axis of symmetry. In this case the midpoints of the chords lie on 
this axis. 

Consider the general case. A family of parallel lines not parallel 
to the coordinate axes can be specified by the following equations 

y = kx + b, k =1= 0, 

where k is the same for all lines. 
The equations for the ellipse and hyperbola can be combined in 

the following way: 
ax2 + ~y2 - 1 = 0. 
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The endpoints of the chords satisfy the system of simultaneous equa­
tions 

a,x2 + ~y2 - 1 = 0, y = kx + b. 

Substituting kx + b for y in the first equation, we obtain the equa­
tion which is satisfied by the abscissas x1 and x2 of the endpoints of 
the chord: 

(a+ ~k2) x2 + 2~kbx + ~b2 - 1 = 0. 

By the property of the roots of a quadratic equation 
2~kb 

x, +xa= - a.+~ks. 

Thus, the abscissa of the midpoint of the chord 
Xt+Xs ~kb 

Xe= 2 =-a.+~k2" 

The ordinate Yc is found by substituting Xc in the equation of the 
chord y = kx + b: 

~k2b a.b 
Yc =- a.+~ks + b = a.+~k~~ • 

Whence 
a. 

Yc= -j:ikXc• 

Thus, the midpoints of parallel chords y = kx + b lie on a straight 
line passing through the origin, i.e. through the centre of the 
ellipse (hyperbola). Its slope 

k'--~ - ~k" 

The diameter 
y = k'x 

is called conjugate to the diameter 

y = kx, 

which is parallel to the chords. 
Obviously, the diameters are mutually conjugate, since the slope 

of the diameter conjugate to 
y = k'x 

is 

- ~~' =k. 

Let us consider the case of parabola. The coordinates of the end­
points of the chords satisfy the system 

y2 - 2px = 0, y = kx +b. 
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Eliminating x, we find the equation for the ordinates of the end­
points: 

Hence, like the previous case 

Thus, 

Yc = Yl + Y2 =o J!.... = const. 
2 k 

The midpoints of the chords lie on a line parallel to the x-axis (the 
axis of the parabola). 

Let us mention one more property of conjugate diameters: If a 
diameter intersects a conic section, then the tangent lines at the points of 
intersection are parallel to the conjugate diameter. 

Actually, let (x0 , y 0) be the point of intersection of the diameter 
y = kx with an ellipse (hyperbola) ax2 + fiy2 = 1. The equation 
for a tangent line at the point (x0 , Yo) is axx0 + fiyy 0 - 1 = 0. Its 
slope k' = - ax0/~y0 • Since the point (x0 , y0) lies on the diameter 
y = kx, we have Yo = kx0 • Therefore 

k'=-~' 

which was required to prove. 
Note that in the case of a circle, the diameter conjugate to the 

given one is the diameter perpendicular to it. This follows from a theo­
rem in elementary geometry: the midpoints of parallel chords of a 
circle lie on the diameter perpendicular to the chords. 

9. Curves of the Second Degree 
A second-degree curve is the locus of points in the plane, whose coor­

dinates satisfy an equation of the form 

a11x2 + 2a12xy + a 22y2 + 2a1x + 2a2y +a = 0, (•) 

in which at least one of the coefficients a11 , a12 , a 22 is non-zero. 
This definition is, obviously, invariant relative to a coordinate sys­

tem, since the coordinates of a point in any other coordinate system 
are expressed linearly in terms of its coordinates in the xy-system 
and, consequently, the equation in any other coordinate system will 
have the form (•). 

Let us consider what is meant by second-degree curves. 
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We consider the curve in a new coordinate system x'y' which is 
related to the xy-system by the formulas 

x = x' cos a + y' sin a, 
y = -x' sin a + y' cos a. 

The equation for the curve of the form (*)will have the following 
coefficient of x' y': 

2a~ 11 = 2a11 cos a sin a - 2a22 sin a cos a + 2a12 (cos2 a - sin2 a) 
= (a11 - a22) sin 2a + 2a12 cos 2a. 

Obviously, it is always possible to choose an angle a so that this 
coefficient is equal to zero. Therefore, without loss of generality, 
we can assume that in the initial equation (*) a12 = 0. 

We shall consider two cases: 
Case A: both coefficients au and a 22 are non-zero. 
Case B: one of the coefficients, either au or a22 , is equal to zero. 

Without loss of generality, we shall consider au = 0. 
In case A, using a new coordinate system x'y', 

x' =x+~, y' =Y+~, an a22 

we bring the equation (•) to the form 

aux'2 + a22y'2 + c = 0 

and introduce the following subcases: 
A1: c =1= 0, au and a22 are of the same sign which is opposite to the 

sign of c. The curve is obviously an ellipse. 
A2 : c =I= 0, au and a12 have different signs. The curve is a hyper­

bola. 
A3 : c =1= 0, au, a22 and c have the same sign. None of the real 

points satisfies the equation. The curve is called imaginary. 
A4 : c = 0, a11 and a22 have different signs. The curve decom­

poses into two lines, since the equation(**) can be written in the form 

{ x'-J/-::: y') { x' + y- ::: y') = 0. 

A6: c = 0, a11 and a22 have the same sign. The equation can be 
written in the form 

{ x' - t v::: y') { x' +tV::: y') = 0. 

The curve decomposes into a pair of imaginary lines intersecting at 
a real point (0, 0). 

Let us now consider Case B. 
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In this case, by using the new coordinate system x'y': 

x'=x, , +Ill! y =Y -, 
a22 

we reduce the equation to the form 

2a1x' + a 22y' 2 + c = 0. (***) 

We then distinguish the following subcases: 
B1 : a1 =1= 0. The curve is a parabola, since by transferring (or 

changing) to the new coordinates 

x" = x' + _c_ y• = y' 
2at ' 

we reduce the equation (•••) to the form 
2a1x" + a22y"2 = 0. 

B2: a1 = 0, a 22 and c have different signs. The curve decomposes 
into a pair of parallel straight lines 

y+-./- c =0. V aaa 

B3: a1 = 0, a 22 and c are of the same sign. The curve decomposes 
into a pair of imaginary non-intersecting lines 

y ± iJI~ c =o. 
a22 

B~: a1 = 0, c = 0. The curve is a pair of coinciding straight lines. 
Thus, a real curve of the second degree represents either a conic section 

(ellipse, hyperbola, parabola), or a pair of straight lines (which may 
even coincide). 

EXERCISES TO CHAPTER IV 

1. Show that the equation for any circle in polar coordinates can 
be written in the form 

p2 + 2ap cos (a + 8) + b = 0. 

Determine the coordinates of its centre, p0 , 80 , and the radius R. 
2. Express the distance between two points in terms of polar coor­

dinates of these points. 
3. What geometric meaning have a and p0 in the equation of a 

line in polar coordinates 

p cos (a -- 8) = Po? 

4. Form an equation (in polar coordinates) of the locus of feet of 
perpendiculars dropped from the point A on the circle onto its tan-
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gent lines (the cardioid, see Fig. 51). Take the point A as the pole, 
and the extension of radius OA as the polar axis. 

5. Form the equation for the lemniscate of Bernoulli which is the 
name for the locus of points the product of whose distances from the 
two given points F1 and F 2 (the foci) is constant and equal to 
I F1F 2 12/4. Take the midpoint of the line segment joining the foci 

as the pole, and the ray passing through one 
of the foci as the polar axis. 

6. Show that an intersection of a circular 
cylinder by a plane is an ellipse. What is the 
eccentricity of the ellipse if the plane inter­
sects it at an acute angle a. 

7. Show that the curve 

c 
p 

Fig. 51 is a conic section. Under what condition is the 
curve an ellipse, a hyperbola, a parabola? 

8. Form the equation of an ellipse by the three points (p1 , O)r 
(p2 , n/2) and (p3 , n), knowing that one of its foci is situated at the 
pole of the pe coordinate system. 

9. Let A and B be the points at which a conic section intersects a 
straight line passing through the focus F. Prove that 

1 1~ 
AF + BF 

does not depend on the straight line. 
10. Show that the inverse transformation of the parabola with 

respect to the focus transforms it into a cardioid (see Exercise 4). 
11. Show that a straight line intersects a conic section at· most at 

two points. 
12. Let k be any conic section and Fits focus. Show that the dis­

tance for an arbitrary point A of the conic section to the focus F 
is expressed linearly in terms of paired coordinates x, p, i.e., 

AF = ax + ~y + y, 

where a, ~. y are constants. 
13. Show that the locus of points, the sum of whose distances 

from the two given points is constant, is an ellipse. 
14. Show that the locus of points the difference of whose distances 

from the two given points is constant is a hyperbola. 
15. What is the locus of the centres of circles touching the two 

given circles k1 and k2? Consider various cases of mutual positions 
of the circles k1 and k2 , and also the case when one of the circles de­
generates into a straight line. 



Ch. IV. Conic Sections 73 

16. Justify the following method of constructing an ellipse 
(Fig. 52). The sides CD and AC of a rectangle are divided into the 
same number of segments of equal length. The points of division are 
then joined to A and B. The points of intersection thus obtained lie 
on the ellipse with the major axis AB. The minor semi-axis is equal 
to half the altitude of the rectangle. 

17. Justify the method of constructing the parabola illustrated 
in Fig. 53. 

18. Express the distances from the point (x, y) of the hyperbola 

:: - ~: = 1 to its asymptote in terms of the abscissa (x) of the 

y. 

A B X 

Fig. 52 Fig. 53 

point. Show that the distance from (x, y) to one of the asymptotes falls 
off indefinitely as I x I -+ oo. 

19. Show that the product of the distances from a point on a hy­
perbola to its asymptote is constant, i.e. independent of the point. 

20. Show that the orthogonal projection of a circle on a plane is 
an ellipse. 

21. Show that a straight line parallel to the axis of a parabola in­
tersects the parabola at one point. 

22. Show that a straight line parallel to the asymptote of a hy­
perbola intersects the hyperbola at one point. 

23. Show that the equation of a hyperbola with the asymptotes 

a1x + b1y + c1 = 0 and a2x + b8y + c2 = 0 

can be written as 
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24. The tangents to the ellipse 
xz xll 
(ii"+bl= 1 

have the slope k. Find the points of tangency. 
25. Show that the segment of a tangent to a hyperbola between 

the asymptotes is bisected by the point of tangency. 
26. Show that a tangent to a hyperbola together with the asymp­

totes bounds a triangle of constant area. 
27. Express the condition of tangency of a straight line 

Y - Yo = A. (x - x 0) 

to an ellipse 
x2 yz_ 
a-+b2= 1. 

Show that the locus of vertices (x0 , y0) of right angles whose sides 
touch the ellipse is a circle. 

28. Show that the vertices of right angles whose sides touch a 
parabola lie on the directrix, and a straight line joining the points 
()f tangency passes through the focus. 

29. Justify the following method of construction of foci of the 
{lllipse. From the vertex on the semiminor axis circumscribe a circle 
<>f radius equal to the semimajor axis. Then the points of intersection 
()f this circle with the major axis will be the foci of the ellipse. 

30. Prove the reflection property of the hyperbola. 
31. Find the focus of the parabola in canonical representation. 
32. Find the directrices of the conic sections in canonical repre­

sentation. 
33. Show that all conic sections k" given by the equations 

xs y2 
a2+i. +bz+;. = 1, 

where A. is the parameter of the family, are confocal, i.e. have their 
foci coincident. 

34. Show that through any point of the xy-plane not belonging to 
the coordinate axes pass two conic sections of the family k" (Exer­
cise 33): an ellipse and a hyperbola. 

35. Show that the ellipse and the hyperbola of the family k,. 
{Exercise 33) which pass through the point (x0 , y0) intersect at this 
point at right angles, i.e. the tangent lines to them at the point, 
{x0 , y 0) are perpendicular. 

36. The chord of the ellipse 

~+~=1 a11 b2 

is bisected at the point (x81 y 0). Find the slope of the chord. 
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37. Show that the ellipse allows a parametric representation: 

x = a cos t, y = b sin t. 

What condition do the values of the parameter t corresponding to the 
end-points of conjugate diameters satisfy? Prove that the sum of the 
squares of conjugate diameters of the ellipse is constant (Apollo­
nius theorem). Formulate and prove a similar theorem for the hyper­
bola. 

38. Any ellipse can be represented as the projection of a circle. 
Show that perpendicular diameters of the circle correspond in this 
projection to conjugate diameters of the ellipse. Relying on this 
:fact, prove that the area of the parallelogram formed by the tangent 
lines at the end-points of the conjugate diameters is constant. 

39. Show that the area of any parallelogram with the vertices at 
the end-points of the conjugate diameters of the ellipse 

xs y2 
Q2+bi"=1, 

has one and the same value equal to 2ab. 
40. It is known that of all the quadrilaterals inscribed in a circle 

the square has the greatest area. Show that among all the quadrilat­
erals inscribed in the ellipse the parallelograms with the vertices at 
the end-points of the conjugate diameters have the greatest area. 

41. Show that the area of the ellipse with the semi-axes a and b 
is equal to nab. 

42. Is it possible to inscribe a triangle in an ellipse so that the 
tangent line at each of its vertices is parallel to the opposite side? 
With what arbitrariness can it be done? What is the area of this 
triangle if the semi-axes of the ellipse are a and b. 

43. Think, what are the curves given by the following equations: 

(a) x2 - xy + y2 - x + y = 0, 
(b) xy + y2 - x + y = 0, 

(c) x2 - 4xy + 4y2 + x = 0, 
(d) x2 - y2 + x + y = 0, 
(e) x2 + 2xy + y2 - 1 = 0. 

44. Show that the second-degree curve 

(ax + by + c)2 - (a1x + b1y + c1) 2 = 0 
decomposes into a pair of lines, possibly coincident ones. 

45. As is known, all points of the ellipse are within a bounded 
portion of the xy-plane. Proceeding from this fact, show that the 
second-degree curve (ax + by + c)2 + (ax + ~y + '\'? = k2 is an 
ellipse if the expressions ax + by and ax + ~y are independent 
and k =1= 0. 
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46. Show that the second-degree curve 

(ax + by + c) (ax + ~y + y) = k =1= 0 

is a hyperbola, provided the expressions -ax + by, ax + ~y are in­
dependent. 

47. Show that the second-degree curve 

(ax + by + c)2 - (ax + ~y + y)2 = k =1= 0. 

is a hyperbola if ax + by, ax + ~y are independent. 
48. Show that if a line intersects a second-degree curve at three 

points, then the curve decomposes into a pair of lines, possibly coin­
cident ones. 

49. Show that if two indecomposable curves of the second degree 
have five points in common, then they coincide. 

Chapter V 

RECTANGULAR CARTESIAN COORDINATES 
AND VECTORS IN SPACE 

1. Cartesian Coordinates in Space. 
Introduction 

Let us take three mutually perpendicular straight lines x, y, z 
intersecting at one point 0 (Fig. 54). We then draw a plane through 
each pair of these straight lines. The plane through x andy is called 
the xy-plane. Two other planes are called the xz- and yz-planes, re­
spectively. The straight lines x, y, z are called the coordinate axes, 
the point of their intersection 0 is called the origin of coordinates 
and the xy-, yz-, xz-planes are called the coordinate planes. The point 
0 divides each coordinate axis into two half-lines. One of them is 
conventionally called positive, the pther negative. 

Now we take an arbitrary point A and draw through it a plane 
parallel to the yz-plane (Fig. 55). It will intersect the x-axis at a 
certain point Ax· The coordinate x of A will be the number whose ab­
solute value is equal to the length of OAx, and is positive if Ax lies 
to the right of the origin and negative if it lies to the left of the ori­
gin. If Ax coincides with the point 0, then we take x = 0. Likewise, 
we find the coordinates y and z of A. We will write the coordinates 
of the point in parentheses after the symbol of the point, e.g. 
A (x, y, z). Sometimes we will simply denote a point by its coordi­
nates (x, y, z). 
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We now express the distance between two points A 1 (x1, y1 , z1) and 
A 2 (x2, y2, z2) in terms of the coordinates of these points. 

To begin with, we consider the case where the straight line A 1As 
is not parallel to the z-axis (Fig. 56). We draw through A 1 and As 
straight lines parallel to the z-axis. They will intersect the xy-plane 
at points A1 and A2. These points have the same coordinates x and 

z z 

X 

Fig. 54 Fig. 55 Fig. 56 

y as A 1 and A2, and their coordinate z is zero. We now draw a plane 
through A 2 parallel to the xy-plane. It will intersect the straight line 
A 1A1 at a certain point C. By the Pythagoras theorem 

A1A: = A 1C2 + CA:. 

The segments CA 2 and ~A~ are equal, but 

A1A: = (x2 - x1)2 + (Y2 - Y1fa. 

The length of A 1C is I z1 - z2 1. Therefore, 

A1A: = (x2 - X1)2 + (y2 - Y1)2 + (z2 - z1)2. 

If A 1A 1 is parallel to the z-axis, then A 1A 1 = I z1 - z2 I· The same 
result is obtained using the formula just derived, since in that case 
X1 = X2, Y1 = Ya· 

Let A (x1 , y1 , z1) and B (x2, y2, z2) be two arbitrary points. We 
will express the coordinates x, y, z of point C that divides AB in the 
ratio A.: ~in terms of the coordin,ates of A and B. To this end, we draw 
through A, B, C straight lines parallel to the z-axis. They will inter­
sect the xy-plane at points A' (x1, Y1> 0), B' (x2 , y2, 0) and C' (x, y, 0). 
By the property of parallel projection 

A'C' AC A. 
C'B' = CB =""it 

As we know,, in the xy-plane the coordinates of point C' that di­
vides A' B' in the ratio A. : ll are expressed as 

X= J.&Zt+Ms y = llYt+AYz 
A.+" ' A.+ 11 • 
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Similarly, if we project A, B, C on the xz-plane, we will have 

Thus, the point C has the coordinates 

X = f.1X1 + Axs y = J.I.Y1 + AY2 
A+f.t I A+f.t I 

2. Translation in Space 

Translation in space is defined as a change such that an arbitrary 
point (x, y, z) of a solid is sent into the point (x + a, y + b, z +c), 
where a, b, c are constants. Translation in space is given by the for­
mulas 

x' = x + a, y' = y + b, z' = z + c, 

which express the coordinates x', y', z' of the point into which (x, y, 
z) is sent under the translation. AE in a plane, the following proper­
ties of translation can be proved: 

1. Translation is motion. 
2. Under translation points move along parallel (or coincident) 

straight lines by the same distance. 
3. Under translation each straight line is moved to a new parallel 

line (or to itself). 
4. Whatever points A and A', there exists only one translation 

under which point A changes into A'. 
5. Two consecutive translations yield a translation. 
6. The transformation inverse of a translation is a translation. 
In space translation acquires the following new property: 
7. Under translation in space each plane is moved either to itself 

or to a new parallel plane. 
Proof. Let a be an arbitrary plane. In this plane we draw two non­

intersecting straight lines a and b. Under translation a and b change 
either into themselves or into parallel lines a' and b'. A plane a changes 
into a certain plane a' that passes through straight lines a' and 
b'. If a' does not coincide with a, then it is known to be parallel 
to a. 

The angle between skew lines is the angle between the intersecting 
lines that are parallel to them. It follows from the properties of 
translation that the angle between skew lines is the same whichever 
parallel lines are taken. 

The angle between a straight line and a plane is the angle between 
this line and its orthogonal projection on the plane, if the line is not 
perpend: ular to the plane. If the line is perpendicular to the plane, 
the angle between them is considered to be 90°. 
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The angle between intersecting planes is taken to be equal to that 
between the straight lines obtained when these planes meet with the­
plane perpendicular to their intersection line. The angle between 
parallel planes is taken to be zero. 

It follows from the properties of translation that the angle be­
tween the planes defined in this way is independent of the choice of 
the secant plane. 

3. Vectors in Space 

In space, as well as in the plane, a vector is a directed line seg­
ment. For vectors in space the same basic concepts are defined: 
magnitude, direction, equality of vectors. 

The coordinates of a vector with origin at A 1 (x11 y1 , z1) and end at 
A 2 (x2 , y2 , z2) are the numbers x2 - x11 y2 - y1 , z2 - z1 • Just as 
for vectors in the plane, it is shown that equal vectors have equal 
respective coordinates, and conversely, vectors with equal respec­
tive coordinates are equal. This justifies the notation of vectors by 

their coordinates, e.g. a (a1 , a 2 , a3) or (a1 , a 2 , a3). 

We define addition and scalar multiplication of yectors exactly as 
for vectors in the plane. 

The sum of the vectors a (a1 , a 2 , a3 ) and b (b1 , b2 ,. b3) is the vector 
c (a1 + b1 , a 2 + b2 , a3 + b3). And just as in the plane it is shown 
that vector addition in space obeys the commutative and associative­
laws. This means that for any two vectors a and b we have 

a + b = b + a (commutative law) 

for any three vectors a, b, c we have 

a + (b + c) = (a + b) + c (associative law). 

And as in the plane, we can prove the equality of vectors 

~ - ~ 
AB+BC=AC. 

The product of a vector a (a11 a 2 , a3) and a number A. is a vector 
a' (A.a1 , A.a 2 , A.a3). Just as in the plane, we can prove that the magni­
tude of A.a is I A. I I a 1. and its direction coincides with that of a, 
if A. > 0, and is opposite to that of a, if A.< 0. 

Just as in the plane, we can prove that multiplication of a vector 
by a number shows two distributive properties, i.e. for any two 
vectors a and b and a number A. we have 

A. (a + b) = A.a + A.b1 

and for any two numbers A. and f.l. and a vector a we have 

(A. + f.l.) a = A.a + f.1.a. 
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The scalar product of two vectors a (a1 , a 2 , a3) and b (b1 , b2 , b3) is 
the number a1b1 + a 2b2 + a3b3 • Just as in the plane, we can prove 
that the scalar product of two vectors in space is the product of their 
absolute values and the cosine of the angle between the vectors. 

Just as in the plane, we can prove that the scalar product of two 
vectors shows the distributive property, i.e. for any three vectors 
a, b, c we have 

(a + b) c = ac + be. 

4. Decomposition of a Vector 
into Three Non-coplanar Vectors 

Just as in a plane, two non-zero vectors in space are called colli­
near if they lie on the same straight line or on parallel lines. Just as 

D 

a 

Fig. 57 

in the plane, we can prove that if a vector b is 
collinear with a vector a or is a zero vector, 
then b = A.a, where A. is a number. 

Three non-zero vectors in space are called 
coplanar, if the vectors equal to them and hav­
ing the same origin lie in one plane. Just as in 
the plane, any vector can be decomposed into 
two non-collinear vectors, so in space any vector 
can be decomposed into three non-coplanar vectors 
in a unique manner. We now prove this. 

Let a, b, c be three non-coplanar vectors 
and d any vector. We now show that there 
is only one decomposition of d: 

d = A.a + f.th + vc. ---We draw from an arbitrary point 0 four vectors OA, OB, OC and 
-+ 
OD that are equal to a, b, c and d, respectively. We denote by a. 

---+ -the plane in which OA and OB lie (Fig. 57). If point D lies on OC, 
~ ---+ 

then OD = vOC. Hence d = vc. 
If point D does not lie on OC, then we draw through it a straight 

line parallel to OC. It will intersect the plane a. at a certain point D'. 
- - ---+ The vectors OC and D'D are collinear. Therefore, D'D = vOC. 
~ - - -The vector OD' lies in a., just as OA and OB do. Therefore, OD' = 

---+ - - - ---+ A.OA + f.lOB. Since OD = OD' + D'D, then 

- - - -OD= A.OA + J.tOB+vOC, 
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or 
d = A.a + Jlb + vc. 

We have thus proved the existence of the decomposition of d. 
Now prove its uniqueness. Suppose that there exists another de­

composition 
d = A.'a + Jl'b + v'c. 

Then 
(A.' - A.) a + (!1' - !1) b + (v' - v) c = 0. 

We multiply this equality in a scalar manner by a vector e that is 
perpendicular to b and c. Then 

(A.' - A.) (ae) = 0. 

Since the vectors a and e are non-zero and not perpendicular, then 
ae =1= 0, hence A.' -A.= 0. We can prove in a similar manner that 
11' - 11 = 0, v' - v = 0. This completes the proof of the unique­
ness of the decomposition. 

The unit vectors have the same direction as the coordinate axes 
and are denoted as e1 , e2 , e3 , respectively, for the x-, y-, and z-axes. 
Then for any vector a (a1 , a2 , a 3) we have the decomposition 

a = a1e1 + a 2e2 + a 3e3 • 

In fact, 
____ _. -----+ -----+ 

a= (a1, 0, 0) + (0, a2, 0) + (0, 0, a3) 

-----+ -----+ -----+ 
= a 1 (1, 0, 0) + a2 (0, 1, 0) + a8 (0, 0, 1) = a1e1 + a2e2 = a3e3• 

5. Vector Product of Vectors 

The vector product, or cross product, of the vectors a (a10 a2 , a3) 

and b (b1 , b2 , b3) is defined as the vector c (a 2b3 - a 3b2 , a3b1 - a1b3 , 

a1b2 - a 2b1). The vector product of a by b will be denoted by aAb. 
It follows from the definition of vector product directly that a A b = 
-b A a. If one or both vectors are zero, then their vector product is 
a zero vector. 

The vector product of collinear vectors is a zero vector. Conversely, 
if the vector product of non-zero vectors is a zero vector, then the vectors 
are collinear. 

Proof. Let a (a1 , a 2 , a3) and b (b1 , b2 , b3) be collinear vectors. 
Then b = A.a, and hence b1 = A.a1 , b2 = A.a 2 , b3 = w3 • Substitut­
ing these values of b1 , b2 , b3 into the expression for a A b, we see that 
all the coordinates of aAb are zero, and hence aAb = 0. 

We now prove the inverse statement. Let a A b = 0. This means 
that a 2b3 - a3b2 = 0, a 3b1 - o,1b3 = 0, a1b2 - a 2b1 = 0. Hence 
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i.e. the coordinates of a and b are proportional, and so the vectors 
are collinear. 

Let now a and b be non-zero and non-collinear vectors. We now 
fi.nd the direction and magnitude of the vector aAb. We have 

(a,\b) a= (a2ba- aab 2) a1 + (aab1 - a1ba) a 2 

+ (a1b2 - a 2b1) aa = 0. 

Likewise, (aAb) b = 0. The vector aAb is thus perpendicular to a 
and b. 

We will fi.nd the magnitude of a/\b using the identity 

(a2ba - aab 2) 2 + (aab1 - baa1) 2 + (a1b2 - a 2b1) 2 

= (a~ + a: + a:) (b~ + b: + b;) - (a1b1 + a 2b2 + aaba)2 • 

We can verify this identity by direct check. 
We note that a~ +a: + a: = I a 12 , b~ + b= + b: = I b 12 , 

a1b1 + a 2b2 + aaba = ab = I a I I b I cos q> (q> is the angle between 
a and b). Then 

Fig. 58 

I a A b I = I a I I b I sin q>. 

We can assume without loss of generality 
that a and b have a common origin. In that 
case, I a I I b I sin q> is the area of the paral­
lelogram, constructed on a and b (Fig. 58). 

By way of exercise we fi.nd the area of the 
triangle with vertices at A 1 (x1 , y1 , z1), 

A 2 (x 2 , y2 , z2), A a (xa, Ya• Za)· The magnitude -- -- --of A 1A 2 A A 1A a is the area of the parallelogram constructed on A 1A 2 -· and A 1A a· The area of the parallelogram is twice the area of the 
triangle ABC. Thus, 

1 _._.. --
81!. = 2 IAtAz A AtAal· -- ---.. The coordinates of A 1A2 1\ A 1A 3 are 

IYz-Yt Zz-Zti•IZz-Zt Xz-Xtl, IXz-Xt Yz-Yt\. 
Ya-Yt Za-Zt Za-Zt Xa-Xt Xa-Xt Ya-Yt 

Therefore, 

SA=...!. {I Yz-Yt Zz-Zt 12 +I Zz-Zt Xz-Xt 12 
2 Ya-Yt Za-Zt Za-Zt Xa-Xt 

+IXz-Xt Yz-Ytl2 } 1' 2 

Xa-Xt Ya-Yt 
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Specifically, if the triangle ABC lies in the xy-plane, then 

6. Scalar Triple Product of Vectors 

The scalar triple product of the vectors a (a1, a 2, as), b (b1 , b2 , bs) 
and c (c1, c2 , c3) taken in this order is defined as the number 

ai a2 aa 

b1 b2 ba • 
ci c2 Ca 

The scalar triple product of vectors is denoted as (abc). 
The name is better explained by the following expression: 

(abc) = a (b/\ c). 

In fact, expanding the determinant in the elements of the first row, 
we obtain 

(abc) = a1 (b 2c3 - b3c 2) + a 2 (b3c1 - b1cs) + as (b1c2 - b11c1) 

=a (bf\c). 
Interchanging two rows changes the sign. It follows that the sca­

lar triple product changes sign when two linear multipliers are inter­
changed, but a cyclic permutation of the mul­
tipliers does not change the sign, i.e., 

(abc) = -(bac) = -(acb) = -(cba). 

But 
(abc) = (bca) = (cab). 

It follows from the representation of the 
scalar triple product of vectors 

(abc) = a (b !\c) Fig. 59 

that it is zero if and only if at least one of the vectors is zero, or the 
vectors are coplanar. 

The scalar triple product of non-zero non-coplanar vectors has a 
simple geometrical meaning. Namely, if the vectors have a common 
origin, then their scalar triple product is, up to a sign, equal to the 
volume of the parallelepiped constructed on these vectors (Fig. 59). In 
fact, 

l(abc) I = I (a;\ b) c I = I s (ec) I = s I (ec) I = SH, 

where S is the area of the base of the parallelepiped, H is its alti­
tude, and e is the unit vector perpendicular to the base. 
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By way of exercise we will now find the volume of the tetrahedron 
with vertices at points A1 (x1 , y1 , z1), A 2 (x2 , y2 , z2), A 3 (x3 , y3 , z3), 

A 4 (x4 , y4 , z4). The volume of the parallelepiped constructed on ---- -~ ----;. 

A1A 2 , A1A 3 , A 1A 4 is six times the volume of the tetrahedron. There-
fore, the volume of the tetrahedron is 

x2 -x1 x3 -x1 X -X1 
1 ~-~ -~ -~ 1 ~ 

V=6 (AtAz AtAa AtA4) = 6 Yz-Yt Ya-Yt Y4-Yt 
z2 - Z1 z3 - Z1 z4 - z1 

This expression can be represented in a more symmetric form 

1 1 1 1 

V = _1_ X 1 Xz x3 X 4 

6 Yt Yz Ya Y~o 
z1 z2 z3 z4 

In fact, if we subtract the first column of this determinant from the 
others and expand it in the elements of the first row, we will arrive 
at (•). 

7. Affine Cartesian Coordinates 

The Cartesian coordinates we have used so far are called rectangu­
lar, because the coordinate axes form right angles with one another. 
But along with the rectangular coordinates in geometry and its ap­
plications some use is also made of the so-called affine (or oblique) 

z coordinates. They can be introduced as fol­
lows. 

Let us draw from an arbitrary point 0 in space 
three straight lines Ox, Oy, Oz not lying in 
one plane, and lay off on each of them from 
the point 0 three non-zero vectors ex, ey, Cz 
(Fig. 60). According to Sec. 4, any vector 

OA allows a unique representation of the form 

OA = xex + yey + zez. 
Fig· 60 The numbers x, y, z are called affine Cartesian 

coordinates of a point A. 
The straight lines Ox, Oy, Oz are termed the axes of coordinates. 
Ox is the x-axis, Oy is the y-axis, and Oz is the z-axis. The planes 

Oxy, Oyz, Oxz are called the coordinate planes: Oxy is the xy-plane, 
Oyz is the yz-plane, and Oxz is the xz-plane. 

Each of the coordinate axes is divided by the point 0 (i.e., by the 
origin of coordinates) into two semi-axes. The semi-axes whose direc-
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tions coincide with the directions of the vectors ex, e11 , e 2 are said to 
be positive, the others negative. 

Geometrically the coordinates of the point A are obtained in the 
following way. We draw through the point A a plane parallel to 
the yz-plane. It intersects the x-axis at a point Ax (Fig. 61). Then 
the absolute value of the coordinate x of the point A is equal to the 
length of the line segment OAx measured by the unit length I ex j. 
It is positive if Ax belongs to the positive semi-axis x, and is nega-

x' 
z 

X z 

Fig. 61 Fig. 62 

tive if Ax belongs to the negative semi-axis x. The other two coordi­
nates of the point (y and z) are determined by a similar construction. 

If the coordinate axes are mutually perpendicular, and ex, e11 , ez 
are unit vectors, then the coordinates are rectangular Cartesian. 

In what follows, we, as a rule, shall use the rectangular Cartesian 
coordinates. Each case of application of affine Cartesian coordinates 
will be specified. 

8. Transformation of Coordinates 

Let two systems of affine coordinates xyz and x'y'z' be introduced 
in space (Fig. 62). Express the coordinates of an arbitrary point A 
with respect to x' y' z' in terms of its coordinates with respect to xyz. 

We have 

-+ 
O'A = x'ex• + y'e11• + z'e2 •, 

-+ 
0'0 = x~ex• + y~ey• + Z~C2•, 

-OA =Xex+ yt>11 +ze2 , 

-+ -+ -+ 
0' A= 0'0 + OA = (x~ex• + y~ey• + z~ez·) + (xex + ye11 + ZC2 ). 
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The vectors ex, ey, ez allow a unique representation in terms of the 
vectors e:x:', ey•, ez': 

e:x: = CX.ue:x:• + CX.12ey• + CX.tsez•, } 

eu = CX.21ex• + CX.zzey• + CX.zsez', 

ez = CX.stE'x• + CX.szey• + CX.sse:•, 

where cx.11 are the coordinates of the vectors ex, ey, ez relative to the 
basis ex'• ey•, ez'• 

~ 

Substituting these expressions into the formula for 0' A, we get -0' A= (x~ + cx.ux + CX.ztY + CX.s1Z) ex• 

+ (y~ + CX.tzX + CX.zzY + CX.a2Z) ey• 

+ (z~ + CX.13X + CX.zsY + CX.asz) ez·· 

The expressions in parentheses ar.e the coordinates of the vector 
~ -

O'A relative to the basis ex•, ey•, ez•, i.e., the coordinates of the 
point A in the system x'y'z'. We get the required formulas: 

x' = CX.uX + CX.ztY + CX.atZ + x;, } 
y' = CX.tzX + CX.zzY + CX.szZ + y;, 
z' = cx.13x_+ CX._zsY -1;- CX.aaZ + z;. 

(**) 

· The coefficients ·of these formulas are cx.1i, cx.12, cx.13, the coordinates 
of the vector- ex relative to the basis ex'• ey•, ez•, cx. 21 , cx.22 , cx. 23 the 
coordinates of the vector ey, cx. 31 , cx. 32 , cx. 33 the coordinates of the vector 
ez and x;, y;, z; the coordinates of the point 0 in the coordinate 
system x'y'z'. 

We note that the determinant 

CX.u CX.zt CX.a1 

Ll = CX.12 CX.zz CX.az =I= 0 · 
CX.1a CX.zs CX.aa 

Indeed, one can directly check that 

CX.u 

(exeueJ = CX.u 

CX.at 

CX.tz CX.1a 

cx.22 CX.za ( ex•ey•ez') . 
CX.az CX.as 

Since (exeyez) =I= 0, then Ll =I= 0. 
For all systems of coordinates x'y'z' which can be continuously 

transformed into one another the determinant has one and the same 
sign. (The continuity of changing a system of ~oordinates i~ under­
stood as the continuity of changing the origin of coordinates 0' and 
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the basis ex'• ey'• ez··) Indeed. since (exeyez) is non-zero, !i is also non­
zero. Besides, since !i changes continuously, it cannot attain values 
of different signs. 

If !i =1= 0, then the system of formulas (**) may always be inter­
preted as a transformation from a coordinate system x'y'z' to the 
coordinate system xyz whose origin is at point (x~, y;, z~) and the ba­
sis vectors are expressed in terms of the basis vectors of the system 
x'y'z' by the formulas (•). 

If both systems of coordinates xyz and x' 11' z' are rectangular, then 
the coefficients of the formulas (**) satisfy the orthogonality con-
ditions · 

a:1 + a~2 + a~s = 1, CX.uCX.zt + CX.tzCX.zz + a13a2a = 0, } 
a;l + a;2 + a:a = 1, CX.ztCX.at + CX.zzCX.az + CX.zaCX.aa = 0, 
a:l + a!2 + a:1 = 1, CX.atCX.u + CX.azCX.tz + CX.asCX.ts = 0, 

which are obtained when the formulas (*) and the following relation­
ships 

~ = e~ = e~ = 1, 

e:. = e:· = e~· = 1, ex•ey' = ey•ez' = ez'ex' == 0, 
are used. 

Conversely, if t~e con<1:itions (***) are fulfilled, then the formulas 
(**)can always be intl:)rpreted as a transformation from a rectangular 
x' y' z' -coordinate system.- to the system of rectangular coordinates 
xyz whose origin is at the point (x;, y~, z;) and the basis vectors are 
specified by the formulas(*). By virtue of the conditions(***) the basis 
vectors ex, ey, ez are unit vectors and are pairwise perpendicular. 

In th.e case of rectangular Cartesian coordinates xyz and x' y' z, 
we have !i = ±1, where !i = +1 if one system of coordinates can 
be translated into the other system. If this cannot be done without 
reflection, then !i = -1. 

9. Equations of a Surface and a Curve in Space 

Suppose we have a surface (Fig. 63). 
The equation 

f (x, y, z) = 0 

is called the equation of a surface in implicit form.if the coordinates of 
any point of the surface satisfy this equation. And conversely, any 
three numbers x, y, z, which satisfy the equation (•), represent the 
coordinates of one of the points of the surface. 

Simultaneous equations 

x = f1 (u, v), y = f 2 (u, v), z = fa (u, v), ' (**) 

which specify the coordinates of points of the surface as functions 
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of two parameters (u, v) are called the parametric equations of a sur­
face. 

Eliminating the parameters u, v from the equations (u), we can 
obtain the equation of a surface in implicit form. 

Write the equation for an arbitraTy sphere in rectangular Cartesian 
coordinates xyz. 

Let (x0 , y0 , z0) be the centre of the sphere, and R its radius. Each 
point (x, y, z) of the sphere is at a distance R from the centre, and, 
consequently, satisfies the equation 

(x - Xo)2 + (y - y0)2 + (z - z0)2 - R2 = 0. (•••) 
Conversely, any point (x, y, z) which satisfies the equation (***) is 

z 

z 

X y 

Fig. 63 Fig. 64 

at a distance R from (x0 , y 0 , z0) and, consequently, belongs to the 
sphere. The equation (•••) is, by definition, the equation of a sphere. 

Write the equation for a circular cylinder with the axis Oz and radius 
R (Fig. 64). 

Let us take as the parameters u, v, characterizing the position of 
the point (x, y, z) on the cylinder, the coordinate z (v) and the angle 
(u) made by the plane passing through the z-axis and the point(x, y, 
z) with the xz-plane. We then get 

x = R cos u, y = R sin u, z = v, 
which are the parametric equations of the cylinder. 

Squaring the first two equations and adding them termwise, we get 
the equation of the cylinder in implicit form: 

x2 + y2 = R2. 

Suppose we have a curve in space. The simultaneous equations 
f1 (x, y, z) = 0, f 2 (x, y, z) = 0 

are called the equations of a curve in implicit form if the coordinates 



Ch. V. Rectangular Cartesian Coordinates and Vectors in Space 89 

of each point of the curve satisfy both equations. And conversely, 
any three numbers which satisfy both equations represent the coordi­
nates of some point on the curve. 

Simultaneous equations 
x = q>t (t), y = q> 2 (t), z = q> 3 (t), 

which specify the coordinates of points of the curve as functions of 
some parameter (t) are called the equations of a curve in parametric 
form. 

Two surfaces intersect, as a rule, along a curve. Obviously, if the 
surfaces are specified by the equations ft (x, y, z) = 0 and f 2 (x, y, z) = 
0, then the curve along which they intersect is given by simultaneous 
equations 

ft (x, y, z) = 0, / 2 (x, y, z) = 0. 

Let us write the equation for an arbitrary circle in space. Any circle 
can be represented as an intersection of two spheres. Consequently, 
any circle can be specified by a system of equations 

(x-a1) 2 -t (y-b1) 2 -t (z-··c1) 2 - R~= 0, } 
(x-a2)2+ (y-bz)2 + (z-c2)2- R: = 0. 

As a rule, a curve and a surface intersect at separate points. If 
the surface is specified by the equation f (x, y, z) = 0, and the curve 
by the equations ft (x, y, z) = 0 and / 2 (x, y, z) = 0, then the points 
of intersection of the curve and the ·surface satisfy the following si­
multaneous equations: 

f(x, y, z) = 0, ft (x, y, z) = 0, / 2 (x, y, z) = 0. 
Solving these equations we find the coordinates of the point of 

intersection. 

EXERCISES TO CHAPTER V 

1. Given points A (1, 2, 3), B (0, 1, 2), C (0, 0, 3), D (1, 2, 0). 
Which of these points lie (a) in the xy-plane, (b) on the z-axis, (c) in 
the yz-plane? 

2. Given the point A (1, 2, 3), find the foot of the perpendiculars 
dropped from this point on the coordinate axes and coordinate 
planes. 

3. Find the distances from a point (1, 2, -3) to (a) coordinate 
planes, (b) coordinate axes, (c) origin of coordinates. 

4. In the xy-plane find a point D (x, y, 0) equidistant from three 
given points A (0, 1, -1), B (-1, 0, 1), C (0, -1, 0). 

5. Find points equidistant from points (0, 0, 1), (0, 1, 0), (1, 0, 0) 
and separated from the yz-plane by a distance of 2. 

6. On the x-axis find a point C (x, 0, 0) equidistant from two 
points A (1, 2, 3), B (-2, 1, 3). 
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7. Form the equation of the locus of points equidistant from the 
point A (1, 2, 3) and the origin of coordinates. 

8. Prove that a quadrilateral ABCD with vertices at A (1, 3, 2), 
B (0, 2, 4), C (1, 1, 4), D (2, 2, 2) is a parallelogram. 

9. Given four points: A (6, 7, 8). B (8, 2, 6), C (4, 3, 2), D (2, 8, 4), 
show that they are vertices of a rhombus. 

10. Given one end of a line segment A (2, 3, -1) and its midpoint 
C (1, 1, 1), find the other end B (x, y, z) of the segment. 

11. Given the coordinates of three vertices of a parallelogram 
ABCD: A (2, 3, 2), B (0, 2, 4), C (4, 1, 0), find the coordinates of the 
fourth vertice D an!l the point E of intersection of the diagonals. 

12. Given points (1, 2, 3), (0, -1, 2), (1, 0, -3), find the points 
symmetric to the given ones about the coordinate planes. 

13. Given points (1, 2, 3), (0, -1, 2), (1, 0, -3), find the points 
symmetric to the given ones about the origin of coordinates. 

14. Find the values of a, b, c in the formulas of translation x' = 
x + a, y' = y + b, z' = z + c, if under this translation the point 
A (1, 0, 2) changes into A' (2, 1, 0). 

15. Under a translation the point A (2, 1, -1) changes into 
A' (1, -1, 0). Find the point to which the origin is moved. 

16. Given points A (2, 7, -3), B (1, 0, 3), C (-3, -4, 5), 
-+- ~ ----+- -+ -+-

D (-2, 3, -1). Find equal vectors among AB, BC, DC, AD, AC, 
~ 

and BD. 
17. Given points A (1, 0, 1),B (-1, 1, 2), C (0, 2, -1). Find the 

~ 

point D (x, y, z), if AB and CD are equal. 
---+ ---+ 

18. Find the point D in exercise 17, if the sum of AB and CD is 
zero. 

-----+ ----+ 
19. Given the vectors (2, n, 3) and (3, 2, m), find at which m and 

n these vectors will be collinear. 
20. Given a (1, 2, 3), find the vector collinear with a such that its 

origin is at A (1, 1, 1) and the terminus Bin the xy-plane. 
21. Given a (2, -1, 3) and b (1, 3, n), find at what n these vectors 

will be perpendicular. 
22. Given points A (1, 0, 1), B (-1, 1, 2), C (0, 2, -1), find on 

--+ 
the z-axis a point D (0, 0, c) such that AB and CD are perpendicular. 

23. The vectors a and b form an angle of 60°, and the v~ctor c is 
perpendicular to them. Find the magnitude of a + b + c. 

24. The vectors a, b, c _of unit length form with one another an 
angle of 60°. Find the angle q> between the yectors (a) a and b + c, 
(b) a and b - c. . 

25. Given points A (0, 1, -f), B (1, -1, 2), · C (3, 1, 0), D (2, 
---+ --+ 

-3, 1), find the cosine of the angle q> between AB and CD. 
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26. Given points A (0, 1, -1), B (1, -1, 2), C (3, 1, 0). Find the 
cosine of the angle C of the triangle ABC. 

27. Show that if the vectors a and b are perpendicular to the 
vector c, then 

(af\b) 1\ c = 0. 

28. Show that if the vector b is perpendicular to c, and the vector 
a is parallel to the vector c, then 

(af\b) f\c = b (ac). 
29. Show that for an arbitrary vector a and a vector b which 

is perpendicular to c 

(af\b)f\c=b (ac). 
30. Show that for any three vectors a, b and c 

(a/\ b) 1\ c = b (ac) -a (be). 

· 31. Find the area of the base of a triangular pyramid whose lat­
eral edges are equal to l, and the vertex angles are equal to a, ~. y. 

32. Making note that 

((af\b) f\c) d = (a/\b) (cf\d), 
derive the identity 

· (a 1\ b) (c 1\ d) = I :: ::I· 
33. With the aid of the identity 

(af\b) (cf\b) = (ac) b2 - (ab) (be) 

derive the formula of spherical trigonometry 

sin a sin y cos B = cos ~ - cos y cos a, 
where a, ~. y are the sides of a triangle on a unit sphere, and B is 
the angle of this triangle opposite the side ~· 

34. Derive the identitr 

(af\b) f\(cf\d) = b (acd)- a (bed). 

35. Show that for any four vectors a, b, c, d 

b (acd) - a (bed) + d (cab) - c (dab) = 0. 

36. Let e1 , e2 , e3 be any three vectors satisfying the condition 

(e1e2e3) =I= 0. 

Show that any vector r allows the representation 
r = (rflte3) e1 + (re3e1) es· -t- (re1es) e3 • 

(e1e2es) • {e1e2e8) . (ele,~a) 
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37. Show that the solution of the following system of vector 
equations 

(rab) = y, (rbc) = ex., (rca) = ~. 

where a, b, c are the given vectors satisfying the condition 

(abc) =1= 0, 

and r is the required vector, can be written in the form 

r = (a~c) (acx. + b~ + cy). 

38. Show that if e1 , e2 , e3 and r are any four vectors satisfying a 
single condition (e1e2e3) =1= 0, then the following identity takes place 

r = (e1 1\ e2) (re8) + (e2 1\ e3) (re1) + (e3 1\ e1) (re2) 
(e1e2e3) (e1e2e8) (e1e2e3) 

39. Show that the solution of the system of simultaneous vector 
equations 

ax = ex., bx = ~. ex = y, 

where a, b, c are the given vectors and x is the required vector satis­
fying the condition (abc) =1= 0, can be written in the form 

(a 1\ b) y +,(b 1\ c) cx.+(c 1\ a)~ 
x = ...:.._..:....:........:...;:........:...;.;....(,.:-abt-c""")-...;....:---'-.:........o..:.. 

40. Show that r1 , r2 , r 3 are coplanar if and only if 

rtrt rtrz rtra 

r2rt rzr2 rzra =0. 
rart rarz rara 

41. Show that for any four vectors r1 , r 2 , r 3 and r4 

rtrt rtrz rtra r 1r4 

rzrt rzrz rzra r2r4 =0. 
rart rarz rara r3r4 

r~r 1 r4r2 r4r3 r4r4 

42. Let l 1 , l2 , l3 and l 4 be four rays drawn from one point and ail 
be the angle between rays li and l1. Prove the identity 

1 cos cx. 12 cos a 13 cos av, 
cos (X,21 1 cos (X,23 cos a 24 =0. 
cosa31 cos a 32 1 cos a 34 

cos a. 1 cos a,2 cos (X,43 1 
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43. Show that the coordinates of the vector r relative to the basis 
e1 , e2 , e3 are given by the equalities 

A _ (re2e3) A _ (re3e1) A _ (re1e2) 
1- (e1e~s) ' 2 - (e1e2ea) ' 3 - (eleses) • 

44. Show that the coordinates of the vector r relative to the basis 
(e.{\,e3), (e3 (\e1), (e1(\e2) are, respectively, 

A _ re1 A _ re2 A ___ re3 
1 - (e1e2e3) ' 2 - (ele~s) ' 3 - (e1e2e3) • 

45. Decomposing the vectors a, b, c into the orthogonal basis, 
prove the identity 

aa ab ac 

(abc) 2 = ba bb be 
ca cb cc 

using the determinant multiplication theorem. 
46. Prove the identity 

(af\b, bf\c, c(\a) = (abc)2 • 

47. Show that the volume of a triangular pyramid with the lateral 
edges a, b, c and face angles a, ~. y is 

1 cos y cos ~ 1/2 
1 V = 6 abc cos y 1 cos a 

cos~ cos a 1 

48. Find the distance between two points in affine coordinates if 
the positive axes form pairwise the angles a, ~. y, and ex, ey, ez are 
unit vectors. 

49. Find the centre of a sphere circumscribed about a tetrahedron 
with the vertices (a, 0, 0), (0, b, 0), (0, 0, c), (0, 0, 0). 

50. Prove that the straight lines joining the midpoints of the 
opposite edges of a tetrahedron intersect at one point. Express the 
coordinates of this point in terms of the coordinates of vertices of the 
tetrahedron. 

51. Prove that the straight lines joining the vertices of a tetra­
hedron to the centroids of the opposite faces intersect at one point. 
Express its coordinates in terms of the coordinates of the vertices 
of the tetrahedron. 

52. Let A 1 (xb y1, z1) be the vertices of a tetrahedron. Show that 
the points with the coordinates 

x = A1x1 + A2x 2 + A3x3 + A4x4, 

Y = A1Y1 + A2Y2 + AaYs + A~Y4• 
z = A1z1 + A2z2 + A3z3 + A4z4 
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are located inside the tetrahedron if A1 > 0, A9 > 0, As> 0, A4 > O, 
~ + A2 + As + A4 = 1. 

53. For four points Ai (xi, Yi• zi) to lie in one plane itis necessary 
and sufficient that 

Xt Yt Zt 1 

~ Y2 z2 1 
=0. 

X a Ys Zs 1 
X~o Y~o Z~o 1 

Prove this. 
54. Show that the surface specified by the equation 

x2 + y2 + z2 + 2ax + 2by + 2cz + d = 0, 

is a sphere if a2 + b2 + c2 - d > 0. Find the coordinates of its 
centre and radius. 

55. A circle is specified by the intersection of two spheres 

11 (x, y, z) =x2 +y2 +z2 +2a1x+2b1y+2c,z+d1 =0, } 
12 (x, y, z) =x2 +Y2 +z2 +2a2x+2b2y+2c2z+d2 =0. 

Show that any sphere passing through this circle can be specified 
by the equation 

A.tlt (x, y, z) + A-212 (x, y, z) = 0. 

56. Show that the surface specifi.ed by an equation of the form 
<p (x, y) = 0 is cylindrical. It is generated by straight lines parallel 
to the z-axis. 

57. Form the equation for a right circular cone with the axis Oz, 
vertex 0, and the vertex angle equal to 2a.. 

58. Form the equation of a surface described by the midpoint of 
a line segment whose endpoints belong to the curves y1 and y2 

z =ax2, 
'Vt= 0 

Y= ' 

z =by2, 
y2: X==O. 

59. Form the equation for a surface generated by a straight line 
which, intersecting the curves y1 and y 2 , is parallel to the yz-plane: 

z =I (x), z = <p (x), 
'Vt: 'V2: b (a =F b). 

y=a, y= ' 

60. Show that the curve 
z = <p (x), y = 0 (x > 0), 

when revolving about the z-axis, generates a surface specifi.ed by the 
equation 
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61. Show that a cylindrical surface, with the generators parallel 
to the z-axis, which passes through the curve 

z = f (x), z = cp (y), 
is specified by the equation 

I (x) - cp (y) = 0. 
62. What forms do the formulas for changing the coordinates have 

if the xy-plane coincides with the x'y'-plane? 
63. We know that in a certain coordinate system the equation 

a11x2 + a22y2 + a83z2 + 2a12xy + 2a23y.z + 2a81zx = R2 

specifies a sphere. Find the angles between the coordinate axes. 
64. Suppose we have two xyz- and x'y' z' -coordinate systems with a 

common origin 0. Let e1 , e2 , e3 be the basis of the first system, and 
ed\e9 , e9 f\e 3 , e3 f\e1 the basis of the second system. De:t:ive formu­
las for changing from one system to the other. 

65. The transformation from the xy-coordinate system to the 
x'y'z'-coordinate system having the same origin can be accomplished 
in three stages: 

X1 =XCOS(jl-ysincp,} 
I y 1 = x sin cp + y cos cp, 

z1 =z; 

Xz=Xh } 
II Yz = y1 c~s 8-z1 sine, 

Zz = y 1 Slll 8 + z 1 COS 8; 

x' = x2 cos'¢- y2 sin '\jl, } 

III y: = x2 sin '¢ + y2 cos'¢, 
z =z2• 

The angles cp, e, '¢ are called Euler's angles. Find out their geometri­
cal meaning. 

Chapter VI 

PLANE AND A STRAIGHT LINE IN SPACE 

1. Equation of a Plane 

Prove that any plane in space is described by an equation of the 
form 

ax + by + cz + d = 0, 
where a, b, c, dare constants. Conversely, any e(];uation of the form (•) 
is the equation of a certain plane. 
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Proof. Let A 0 (x0 , y0 , z0) be some point in the plane and n (a, b, c) 
a vector perpendicular to the plane (Fig. 65). Let then A (x, y, z) 

--+ 
be an arbitrary point in the plane. Then A 0A and n will be perpen-

Fig. 65 

dicular, and hence their scalar product will be 
zero. Thus, any point in the plane obeys the 
equation 

a (x - x 0) + b (y - Yo)+c (z - z0)= 0. (••) 

Conversely, if the point A (x, y, z) satisfies 

this equation, then A 0A · n = 0, and hence A 
lies in the plane. The equation ( **) is thus the 
equation of our plane. It can be rewritten as 

ax + by + cz + (-ax 0 - by0 - cz 0) = 0. 
We see that it has the form (•), which was to be proved. Suppose we 
have an equation 

ax + by + cz + d = 0. 

Show that it is now the equation of a certain plane. Let x 0 , y 0 , z0 

be some solution of this equation 

UX0 + by 0 + CZ 0 + d = 0. 
Using this relationship we can rewrite our equation as 

ax+ by + cz- ax 0 - by 0 - cz0 = 0, 
or 

a (x - x0) + b (y - y0) + c (z - z0) = 0. 
And in this form, as we know, it is the equation of the plane pas­

sing through (x 0 , y0 , z0) and perpendicular to n (a, b, c). This 
proves the second statement. 

Note that in the equation of the plane 

ax + by + cz + d = 0 
the coefficients a, b, care the coordinates of the vector perpendicularto 
the plane. 

It is well-known that the formulas of transformation from one Car­
tesian coordinate system to another are linear. Therefore, the equation 
of the plane in any, not necessarily rectangular, coordinate system 
is linear, i.e., has the form (•). 

2. Position of a Plane Relative 
to a Coordinate System 

Let us consider features specifying the position of a plane in 
space, relative to a coordinate system, if its equation has the 
following particular form: 
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1. a = 0, b = 0. Vector n (perpendicular to the plane) is parallel 
to the z-axis. The plane is parallel to the xy-plane and, in particular, 
coincides with it at the xy-plane if d = 0. 

2. b = 0, c = 0. The plane is parallel to the yz-plane and coin­
cides with it if d = 0. 

3. c = 0, a = 0. The plane is parallel to the xz-plane and coin­
cides with it if d = 0. 

4. a = 0, b =1= 0, c =1= 0. A vector n is perpendicular to the x-axis: 
exn = 0. The plane is parallel to the x-axis, in particular, it passes 
through it if d = 0. 

5. a =1= 0, b = 0, c =1= 0. The plane is parallel to the y-axis and 
passes through it if d = 0. 

6. a =1= 0, b =1= 0, c = 0. The plane is parallel to the z-axis and 
passes through it if d = 0. 

7. d = 0. The plane passes through the origin (whose coordinates 
0, 0, 0 satisfy the equation of the plane). 

If in the equation of the plane the coefficient of z is nonzero, then 
the equation can be solved for z. It becomes 

z = px + qy + r. 

The coefficients p and q in this equation are called angular coefficients. 

3. Normal Form of Equations 
of the Plane 

If a point A (x, y, z) belongs to the plane 

ax + by + cz + d = 0, 

then its coordinates satisfy the equation (•). 
Let us consider what geometrical meaning has the expression 

ax+ by+ cz + d 

if the point A does not belong to the plane. 
We drop a perpendicular from the point A onto the plane. Let 

A 0 (x 0 , y0 , z0} be the foot of the perpendicular. Since the point A 0 

lies on the plane, then 

ax0 + by 0 + cz0 + d = 0. 
Whence 

ax+ by+ cz + d 

= a (x- x0) + b (y -Yo) + c (z- z0) --= n·AoA = ± In 16, 
where n is a vector perpendicular to the plane, with the coordinates 
a, b, c, and 6 is the distance from the point A to the plane. 
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Thus 
ax+ by+ cz + d 

is positive on one side of the plane, and negative on the other, its 
absolute value being proportional to the distance from the point A to 
the plane. The proportionality factor 

±In I=± Va2 +b2+c2. 

If in the equation of the plane 
a2 + b2 + c2 = 1, 

then 
ax+by+cz+d 

will be equal, up to a sign, to the distance from the point to the 
plane. In this case the plane is said to be specified by an equation in 
the normal form. 

Obviously, to obtain the normal form of the equation of a 
plane (•}, it is sufficient to divide it by 

± V a2+b2+c2. 

4. Parallelism and Perpendicularity of Planes 

Suppose we have two planes 

a1x+b1y+c1z+d1 =0, } 
a2x+ bzy + CzZ + dz = 0. 

Consider the condition under which these planes are: (a) parallel, 
(b) mutually perpendicular. 

Since alt b1 , c1 are the coordinates of the vector n1 perpendicular to 
the first plane, and a 2 , b2 , c2 are the coordinates of the vector n 2 
which is perpendicular to the second plane, the planes are parallel 
if the vectors n1 , n 2 are parallel, i.e. if their coordinates are propor­
tional: 

Moreover, this condition is sufficient for parallelism of the planes if 
they are not coincident. 

For the planes (•) to be mutually perpendicular it is necessary 
and sufficient that the mentioned vectors n1 and n 2 are mutually 
perpendicular, which for non-zero vectors is equivalent to the con­
dition 

n1 ·n2 = 0 or a1a2 + b1b2 + c1c2 = 0. 

Let the equations (•) specify two arbitrary planes. Find the angle 
made by these planes. 
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The angle e between the planes is either equal to the angle 
between the vectors n1 and n 2 perpendicular to the planes, or together 
with it makes the angle of 180°. _ Thus, in any case 

I nl •nz I = I nl I I n2 I cos e. 
Whence 

5. Equations of a Straight Line 

Any straight line can be specified as an intersection of two planes. 
Consequently, any straight line can be specified by the equations 

a1x+b1y+c1z+d1 =0, } 
azx+ b2y +c2z+d2 =0, (•) 

the first of which represents one plane and the 
Conversely, any compatible system of two such 
independent equations represents the equations 
of a straight line. 

Let A 0 (x0 , y0 , z0) be a fixed point on a 
straight line, A (x, y, z) an arbitrary point of 
a straight line, and e (k, l, m) a non-zero vector 
parallel to the straight line (Fig. 66). Then -the vectors AoA and e are parallel and, con-
sequently, their coordinates are proportional, 
i.e. 

x-x0 y-y0 z-z0 
-k- = -z- =--;;---- (**) 

second the other. 

z 

y 

Fig. 66 

Such an equation of a straight line is called canonical and is a par­
ticular case of (•), since it allows an equivalent 

x-xo- y-yo y-yo z-zo 
-k-- -z- ' -l- = -m-

corresponding to ( *). 
Suppose a straight line is represented by the equations (•). Let' 

us form its equation in canonical form. For this purpose it is suffi­
cient to find a point A 0 on the straight line and a vector e parallel 
to this line. 

Any vector e (k, l, m) parallel to the straight line will be parallel 
to each of the planes (•), and vice versa. Consequently, k, l, m sa­
tisfy the equations 

a1k + btl-1- c1m = 0, } 
a2k+ b2l+c2m=0. 
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Thus, any solution of the system (•) can be taken as x 0 , y0 , z0 for 
the canonical equation of the straight line and any solution of (•••) 
as the coefficients k, l, m, for instance 

From the equation of a straight line in canonical form we can 
derive its equations in parametric form. Namely, assuming the com­
mon value of the three ratios of the canonical equation equal to t, 
we get 

x = kt + x 0 , y = lt + y0 , z = mt + z0 

which are the parametric equations of a straight line. 
Let us find out what are the peculiarities of the position of a straight 

line relative to the coordinate system if some of the coefficients of the 
canonical equation are equal to zero. 

Since the vector e (k, l, m) is parallel to the straight line, with 
m = 0 the line is parallel to the xy-plane (eez = 0), with l = 0 the 
line is parallel to the xz-plane, and with k = 0 it is parallel to the 
yz-plane. 

If k = 0 and l = 0, then the straight line is parallel to the z-axis 
(e II ez); if l = 0 and m = 0, then it is parallel to the x-axis, and 
if k = 0 and m = 0, then the line is parallel to they-axis. 

6. Relative Position of a Straight Line 
and a Plane, of Two Straight Lines 

Suppose we have a plane and a straight:line respectively specified 
by the equations 

ax + by + cz + d = 0, 
x-x0 y-y0 z-z0 
-k-=-l-=-m-· 

--~ 
Since the vector (a, b, c) is perpendicular to the plane, and the 

vector (k, T,-;;,) is parallel to the straight line, then the. straigh! lin: 
and the plane will be parallel if these vectors are perpendwular, z.e. l/ 

ak + bl +em = 0. (•) 

Moreover, if the point (x 0 , y0 , z0) belonging to the straight line 
satisfies the equation of the plane 

ax 0 + by 0 + cz0 + d = 0, 

then the straight line lies in the plane .. 
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--.....-+ 

The straight line and the plane are perpendicular if the vectors (a, b, c) 
--~ 

and (k, l, m) are parallel, i.e. if 

a b c ( 
k"=T =1n· **> 

We can obtain the parallelism and perpendicularity conditions 
for a straight line and a plane if the straight line is represented by 
the intersection of the planes 

a1x + b1y + c1z + d1 = 0, 

a2x + b2y + c11z + d2 = 0. 

It is sufficient to note that the vector with the components 

is parallel to the straight line and make use of the conditions (•) 
and (**)· 

Suppose two straight lines are specified by the equations in ca­
nonical form 

x-x' = y-y' = z-z' } 
k' l' m' ' 

x-x" y-y" z-z" 
--p;- = -l-" - = ----;;r- . 

---~ 

Since the vector (k', l', m') is parallel to the first line, and the 
---~ 

vector (k", l", m") is parallel to the second line, then the lines are 
parallel if 

k' l' m' 
v=r=Tii"· 

In particular, the straight lines coincide if a point of the firstline, 
say (x', y', z'), satisfies the equation of the second line, i.e. if 

---~ 

The straight lines are perpendicular if the vectors (k', l', m') and ----(k", l", m") are perpendicular, i.e. if 

k'k" + l'r + m'm" = 0. 
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7. Basic Problems on Straight Lines 
and Planes 

Form the equation of the straight line passing through two given 
points A1 (x1, Yu z1) and A 2 (x1u y2 , z2). 

The vector e (x2 - x1, y2 - y1, z2 - z1) lies on the straight 
line. Accordingly, the straight line is given by the equations 

Form the equation of the plane passing through three points 
A1 (xl, Yt• Zt), A2 (x2, Y2• Z2) and Aa (xa, Ya. Zs)· --. 

Let A (x, y, z) be an arbitrary point in the plane. Then A 1A 1 , -- --AlAs, and A 1A are coplanar, and hence their scalar triple product is 
zero. From this we obtain the required equation 

x-x1 y-y1 z-z1 

~-Xt Y2-Yt Z2-Zt =0. 
Xa-Xt Ya-Yt Za-Zt 

Form the equation of the plane passing through a point (x0 , y0 , z0) 

and parallel to the plane 

ax + by + cz + d = 0. 

The desired equation will be 

a (x- x 0) + b (y- Yo) + c (z- z0) = 0. 

In fact, this plane passes through the given point and is parallel to 
the given plane. 

Form the equation of the straight line passing through the point 
(x0 , y 0 , z0) parallel to the straight line 

x-x' y-y' z-z' 
-k- = -l- = -m-

The desired equation is 
x-xo Y-Yo z-zo 
-k- = -~- = -m-

The straight line passing through (x 0 , y0 , z0) perpendicular to the 
plane 

ax + by + cz + d = 0, 
is given by 
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The plane perpendicular to the straight line 

x-x' y-y' z-z' 
-k-=-l- = -;n-

and passing through the point (x 0 , y 0 , z0) is given by 

k (x- x0 ) + l (y- y0) + m (z- z0) = 0. 
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Form the equation of the plane passing through the point (x0 , y 0 , z0) 

parallel to the straight lines 

x-x' y-y' z-z' 
-k-' - = -l-, - = ---mr-
x-x" y-y" z-z" ---r- = -r = ---;;r- . 

---+ ---+ 
Since the vectors (k', l', m') and (k", l", m") are parallel to the 

plane, then their vector product is perpendicular to the plane. Hence 
the desired equation 

ll' m' I I m' k' I I k' l' I (x-xo) l" m" +(Y-Yo) m" k" +(z-zo) k" l" =0, 

or in shorthand 

x-x0 y-y0 z-z0 

k' l' m' =0. 
k" l" m" 

EXERCISES TO CHAPTER VI 

1. Find the line segments cut off by the plane ax + by + cz + 
d = 0 on the coordinate axes, if abed =1= 0. 

2. Show that the line of intersection of the planes given by a1x + 
b1y = d1 , a2x + b2y = d2 is parallel to the z-axis. 

3. Show that the planes given by 

ax + by + cz + d = 0 and ax + by + cz + d1 = 0 

have no points in common if d =1= ~· 
4. Show that any plane parallel to the plane ax + by + cz + 

d = 0 is given by an equation of the form ax + by + cz + d' = O, 
where d' =1= d. 

5. A plane is given by the equation ax+ by + cz + d = 0. 
What condition must the coordinates of P (k, l, m) satisfy for the 
straight line passing through this point and the origin of coordi­
nates to be perpendicular to the plane? 
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6. Given the point P (k, l, m), find the equation of the plane pas­
sing through the origin of coordinates 0 and perpendicular to the 
straight line 0 P. 

7. Find the point of intersection of three planes given by the 
equations 

x + y + z = 1, x- 2y = 0, 2x + y + 3z + 1 = 0. 

8. Show that the planes given by 

x + y + z = 1, 2x + y + 3z + 1 = 0, x + 2z + 1 = 0 
do not have a single point in common. 

9. Under what condition is the plane given by ax + by + cz + 
d = 0 perpendicular to the xy-plane? 

10. A plane is given by the equation 2x + 3y + z = 1. Indicate 
a vector parallel to the plane. 

11. A straight line is the line of intersection of the planes 2x + 
3y + z = 1, x + y + z = 1. Indicate a vector parallel to the 
straight line. 

12. Form the equation of a plane given two points (x1 , y1 , z1) 

and (x2, y2, z2) situated symmetrically about it. 
13. What is the locus of points whose coordinates satisfy the 

equation 

(ax+ by+ cz + d)2 - (ax+ ~y + yz + ~)2 = 0? 

14. Show that the curve represented by the equations 

f(x, y, z)+a1x+b1y+c1z+d1=0,} 
f(x, y, z)+a2x+b2y+c2z+d2 =0, 

is plane, i.e., all its points are in a certain plane. 
15. Write an equation for the plane which passes through the 

circle of intersection of the two spheres 

x2 + y2 + z2 + ax + by + cz + d = 0, 
x2 + y2 + z2 + ax + ~y + yz + ~ = 0. 

16. Show that inversion transforms a sphere either into a sphere 
or in to a plane. 

17. Show that the equation of any plane which passes through 
the line of intersection of the planes 

ax + by + cz + d = 0, 
ax + ~y + yz + ~ = 0, 

can be represented in the form 

'A. (ax + by + cz + d) + !.t (ax + ~y + yz + ~) = 0. 



Ch. VI. Plane and a Straight Line in Space 10& 

18. Show that the plane passing through the three given points 
(x;, y;, z;) (i = 1, 2, 3) is specified by the equation 

X y z 1 
Xt Yt Zt 1 
Xz Y2 Zz 

1 =0. 

Xs Ys Zs 1 

19. Find the conditions under which the plane 

ax + by + cz + d = 0 

intersects the positive x-axis (y, z). 
20. Find the volume of the tetrahedron bounded by the coordi­

nate planes and the plane 

ax + by + cz + d = 0 
if abed =1= 0. 

21. Prove that the points in space for which 

I x I + I Y I + I z I < a, 

are inside an octahedron with centre at the origin and the vertices 
on the coordinate axes. 

22. Given a plane o by the equation in rectangular Cartesiall> 
coordinates 

ax + by + cz + d = 0, 

form an equation of the plane o' symmetric to o about the xy-plan& 
(about the origin 0). 

23. Given a family of planes depending on the parameter A. 

ax + by + cz + d + A. (ax + ~y + yz + 6) = 0, 

find a plane parallel to the z-axis. 
24. In the family of planes 

(a1x + b1y + c1z + d1) + A. (a 2x + b2y + c2z + d2) 

+ fl. (a3x + b3y + c3z + d3) = (} 

find the plane parallel to the xy-plane. The parameters of the family­
are A. and fl.· 

25. The planes specified by the equations in rectangular Cartesian 
coordinates 

ax + by + cz + d = 0, 
ax + by + cz + d' = 0, 

where d =1= d', have no points in common, hence, they are paralleL 
Find the distance between these planes. 
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26. The plane 
ax+ by+ d = 0 

is parallel to z-axis. Find the distance from the z-axis to this plane. 
27. What is the locus of points whose distances from the two 

given planes are in a given ratio? 
28. Form the equations of the planes parallel to the plane 

ax + by + cz + d = 0 

;and located at a distance (l from it. 
29. Show that the points in space satisfying the condition 

I ax + by + cz + d 1 < ()2, 

lie between the parallel planes 

ax + by + cz + d + () 2 = 0. 

30. Given are equations of the planes containing the faces of a 
tetrahedron and a point M specified by its coordinates. How do you 
find whether or not the point M lies inside the tetrahedron? 

31. Derive formulas for the transition to a new system of rectan­
gular Cartesian coordinates x'y'z' if the new coordinate planes are 
specified in the old system by the equations 

a1x + b1y + c1z + d1 = 0, 
a2x + bsY + c2z + d2 = 0, 
a8x + b8y + c8z + d8 = 0. 

32. Find the angles formed by the plane 

ax + by + cz + d = 0 

;and the coordinate axes. 
33. Find the angle formed by the plane 

z=px+qy+l 
with the xy-plane. 

34. Show that the area of a figure F in the plane 

z=px+qy+l 

.and the area of its projection F onto the xy-plane are related as 

s (F) = y 1 + pz + qz s (F). 

35. Under what condition does the plane 

ax+by+cz+d=O 

intersect the x- and y-axes at equal angles? Under what condition 
.does it intersect all three x, y- and z-axes? 
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36. Among the planes of a pencil 

A. (a1x + b1y + c1z + d1) + 1.1. (a 2x + b2y + c2z + d2) = 0 

find the plane perpendicular to the plane 

27. Let 
ax + by + cz + d = 0. 

a1x + b1y + c1z + d1 = 0, 
a2x + b2y + c2z + d2 = 0, 
a3x + b3y + c3z + d3 = 0 
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be the equations of three planes not parallel to a straight line. Show 
that any plane passing through the point of intersection of the given 
planes has the equation of the form: 

A1 (a1x + b1y + c1z + d1) 

+ A. 2 (a 2x + b2y + c2z + d2) 

+ A3 (a 3X + b3y + C3Z + d3) = 0. 
38. Under what condition does a straight line represented by the 

equation in canonical form intersect the x-axis (y-axis, z-axis)? 
Under what condition is it parallel to the plane xy (yz, zx)? 

39. Show that the locus of points equidistant from three pairwise 
non-parallel planes is a straight- line. 

40. Show that the locus of points equidistant from the vertices of 
a triangle is a straight line. Form its equations given the coordinates 
of the vertices of the triangle. 

41. Show that two straight lines entirely lying on the surface 
pass through each point of the surface 

z = axy. 

42. If the straight lines specified by the equations 

a1x+b1y+c1z+d1=0,} 
a2x + bzy + c2z + d2 = 0 

and 

intersect, then 

Show this. 

a3x+b3y+c3z+d3 =0, } 
a,.x+b,.y+c,.z+d,. = 0, 

at b1 Ct d1 
az bz Cz dz 

=0. 
a a ba Cs da 
a,. h,. c,. d,. 
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43. Find the parallelism (perpendicularity) condition for the 
straight line 

and the plane 

a1x+b1y+c1z+d1 =0,} 
a2x + b2y + c2z + d2 = 0, 

ax + by + cz + d = 0. 

44. Find the parallelism (perpendicularity) condition for the 
straight lines 

and 

a1x+b1y+c1z+d1 =0,} 
a2x + b2y + c2z + d2 = 0 

a3x + b3y + c3z + d3 = 0, } 
a4x + b4y + c4z + d4 = 0. 

45. Find the equation for a conical surface with the vertex (x0~ 
y0 , z0), whose generators intersect the plane 

ax+by+cz+d=O 
at an angle a. 

46. Write the equation for a straight line passing through the 
point (x0 , y0 , z0) and parallel to the planes 

a1x + b1y + c1z + d1 = 0, 
a2x + b2y + c2z + d2 = 0. 

47. Form the equation of a conical surface with the vertex at 
point (0, 0, 2R) if it passes through a circle specified by the inter­
section of the sphere 

x2 + y2 + z2 = 2Rz 
with the plane 

ax + by + cz + d = 0. 

How does this conical surface intersect the xy-plane. 
48. Stereographic projection of a sphere on a plane is defined as the 

projection from an arbitrary point of this sphere onto the tangent 
plane at a diametrically opposite point. Show that in stereographic 
projecting to the circles on the sphere there correspond circles and 
straight lines on the plane of projection. 

49. Form the equation of a plane equidistant from two skew lines 
represented by th'e canonical equations. 

50. Show that any plane passing through the straight line 

a1x + b1y + c1z + d1 = 0, 

a 2x + b2y + c2z + d2 = 0, 
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is specified by an equation of the form 

A. (a1x + b1y + c1z + d1) + 11 (a 2x + b2y + c2z + d2) = 0. 

51. Show that the plane passing through the straight line 

x-x' y-y' z-z' 
-k- = -l- = ----;n-
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and the point (x 0 , y0 , z0), not lying on the line is specified by the 
-equation 

X-Xo y- Yo z- Zo 

x' - x0 y'- y0 z' - z0 = 0. 
k l m 

52. Show that any straight line intersecting the given lines: 

a1x+b1y+c1z+d1 =0, } 
a2x + b2y + c2z + d2 = 0, 
a3x+ b3y+c3z+d3 =0, } 
a,.x+ b,_y+c,.z+d4 =0, 

is represented by the equations 

A. (a1x + b1y + c1z + d1) + 11 (a 2x + b2y + c2z + d2) = 0, 

A.' (a3x + b3y + c3z + d3 ) + 11' (a4x + b4y + c4z + d4) = 0. 

53. Show that the conical surface generated by straight lines pas­
:sing through the origin and intersecting the curve IP (x, y) = 0, 
.z = 1 is specified by the equation 

lj) (: 1 ~) =0, 

Chapter VII 

QUADRIC SURFACES 

1. Special System of Coordinates 

A quadric surface is defined as the locus of points in space whose 
Cartesian coordinates satisfy an equation of the form 

a11x2 + a 22y2 + a33z2 + 2a12xy + 2a23yz_ + 2a13xz 

+ 2a14x + 2a24y + 2a34z + a44 = 0. (*) 
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This definition is obviously invariant of the system of coordinates 
chosen. Indeed, the equation of the surface in any other system of 
coordinates x'y'z' is obtained from the equation (•) by replacing 
x, y and z by linear expressions with respect to x', y', z', and, conse­
quently, in the coordinates x', y', z' will also have the form (•). 

A plane intersects a quadric surface along a trace, which is described 
by a second-degree equation. Indeed, since the determination of sur­
face is invariant with reference to the coordinate system chosen, w& 
may regard the plane xy (z = 0) as a secant plane (a plane that in­
tersects the surface). And this plane obviously intersects the sur­
face along the second-order curve 

aux2 + 2a12xy + a22y2 + 2a14x + 2a24y + a44 = 0. 

To study the geometrical properties of a quadric surface it is only 
natural to refer it to such a coordinate system in which its equation 
will have the simplest form. 

Now we are going to give a coordinate system in which the equation 
of the surface will be much simpler. Namely, the coefficients of yz, xz,. 
and xy in the equation will be zero. 

Consider the function F (A) of a point A (x, y, z) defined in th& 
entire space, except for the origin, by the equality 

F (A) _ aux2 + a22y2 + a33z2 + 2a12xy + 2a88 yz + 2a13xz 
- .z2+yB+zB ' 

It is bounded on a unit sphere (x2 + y2 + z2 = 1) and, conse­
quently, reaches the absolute minimum at some point A 0 • And sine& 
it is constant along any ray emanating from the origin (F (t..x, ')..y,. 
')..z) = F (x, y, z)), then at A 0 the function F reaches the absolut& 
minimum of values with reference to the whole space (and not only 
on unit sphere). 

Let us introduce new Cartesian coordinates x', y', z' with the ori­
gin 0 retained and assume the ray OA 0 to be the positive semi-axis 
z. As is known, the relation between the coordinates x, y, z and 
:x', y', z' is established by the formulas of the form 

x = a 11x' + a 12y' + a 13z', } 
y =a2tx' + a22Y' +a2az', 
z = aatx' + aa2Y' + aaaz', 

The equation of the surface in the new coordinates x', y', z' is obtai­
ned from the equation (•) upon replacing x, y, z by x', y', z' according 
to formulas (••) and has the form 

a~1x' 2 + a~ 2y' 2 + a;3z'2 + 2a~2x'y' + 2a;3y'z' + 2a~aX'z' 

+ 2a;,x' + 2a~4y' + 2a;.z' + a~, = 0. 
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The function F in the new coordinates has the form 

1 '2+ 1 'Z+a' '2+2 1 ' '+2 ' 1 '+2 1 1 1 F (A) = a11x a22y 33z a12x y a13y z a 13x z 
x'2+y'2+z'Z 

and is obtained by replacing x, y, z in the old expression for F by 
x', y', z' also according to the formulas (** ). The form of the deno­
minator remains unchanged, since it represents the square of the 
distance of the point A from the origin which is expressed in both 
systems in the same way. 

According to the chosen system of coordinates x'y'z' the minimum 
of the function F is reached at x' = 0, y' = 0, z' = 1. Therefore. 
if in the expression for F we put x' = 0, z' = 1, then we get a func­
tion of a single variable 

f ( ') _ai1Y' 1 +2a;sY'+a3s 
y - 1+y'l ' 

which reaches the minimum at y' = 0. Consequently, 

df (y') - 0 f I 0 
dy' - or y = . 

But 

df (y') I = 2a' • 
dy' y'-0 23 

Thus, the coefficient of y'z' in the equation of the surface is equal 
to zero. It is shown in a similar way that the coefficient of x' z' is 
also equal to zero. 

Hence, the equation of the surface in the .coordinate system x'y' z' 
will be 

a;1x'2 + 2a; 2x'y' + a~ 2y' 2 + 2a; 4x' + 2a;4y' + 2a;4z' 
+ a;3z' 2 + a~ 4 = 0. 

If now we introduce new coordinates x", y", z" according to the 
formulas 

x' = x" cos e + y" sin e' 

y' = -x" sin e + y" cos e' 
z' = z", 

then by appropriate choice of the angle ewe can obtain the coefficient 
of x"y" also equal to zero. 

And so, there exists such a system of rectangular Cartesian coordi­
nates in which the equation of the surface has the form 

a11x 2 + a 22y2 + a88z2 + 2a1x + 2a2y + 2a 3z + a = 0. 
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2. Classification of Quadric Surfaces 

As is shown in the preceding section, by changing to an appropriate 
-system of coordinates the equation of a quadric surface can be re­
.duced to the form 

a11x2 + a 22Y2 + assZ2 + 2a1x + 2a2y + 2a3z + a = 0. (•) 

We shall distinguish three basic cases: 
A: all coefficients of the squares of the coordinates in equation (•) 

:are non-zero; 
B: two coefficients are non-zero, and the third one, for instance 

ass. is equal to zero; 
C: one coefficient, say ass. is non-zero, and two others are equal 

to zero. 
In Case A, by changing to a new coordinate system according to 

the formulas 

x'=x+~, y'=y+~. z'=z+~, 
au a22 ass 

which corresponds to the translation of the origin,. we reduce the 
.equation to the form 

ax'2 + ~y' 2 + '\'Z'2 + 6 = 0. 

Now we distinguish the following subcases of the case A: 
A1 : l) = 0. The surface is a cone either imaginary if a, ~. '\' are 

of the same sign, or real if among the numbers a, ~.'\'there are num­
bers having different signs. 

A2 : l) =1= 0, a, ~. '\' are of the same sign. The surface represents 
an ellipsoid either imaginary if a, ~. '\'• l) are of the same sign, or 
real if the sign of 6 is opposite to that of a, ~. '\'· 

As: l) =1= 0, of the four coefficients a, ~. '\'. l) two coefficients are of 
.one sign, the remaining two having the opposite sign. The surface is 
a hyperboloid of one sheet. 

A4: l) =1= 0, one of the first three coefficients has a sign opposite to 
that of the remaining coefficients. The surface is a two-sheeted hy­
perboloid. 

In Case B by transition to new coordinates according to the for­
mulas 

, + a1 , + as , 
X =X -, y =Y - 1 Z =Z 

au asa 

we reduce the equation of the surface to the form 

ax'2 + ~y' 2 + 2pz' + q = 0. 

Here we shall distinguish the following subcases: 
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B1: p = 0, q = 0. The surface decomposes into a pair of planes 

x' + y- ! y' = 0 

either imaginary if a and ~ are of the same sign, or real if a and ~ 
are of opposite signs. 

B2: p = 0, q =1= 0. The surface is a cylinder either imaginary if a, ~ 
and q are of the same sign, or real if there are coefficients with differ­
ent signs. In particular, if a and ~ are of the siulle sign, then we 
have an elliptic cyltnder, and if a and ~have different signs, then we 
have a hyperbolic cylinder. 

B3 : p =1= 0. Paraboloids. Changing to new coordinates 

x"=x', y"=y', z"=z'+ 2~, 
we reduce the equation of the surface to the form 

cx.:r:"2 + ~y"2 + 2pz" = 0. 
The paraboloid is elliptic if a and ~ are of the same sign, and hyper­
bolic if a and f} are of different signs. 

In Case C we change to new coordinates x', y'; z': 

x'=:t, y'=y, z'=z+~. 
«aa 

Then the equation will take the form 

yz' 11 + px + qy + r = 0 
and we may distinguish the following subcases: 

C1 : p = 0, q = 0. The surface decomposes tnto a pair of parallel 
planes: imaginary if y and r are of the same sign, or real if y and r 
have opposite signs, or coincident if r = 0. 

C2 : at least one of the coeffieients p or q is non-zero. Preserving 
the direction of the z-axis, we assume the plane px + qy + r = 0 
to be the plane y' z'. Then the equation will take the form 

yz' 2 + 6x' = 0. 
The surface is a parflbolic cylinder. 

3. Ellipsoid 

The equation of the ellipsoid is (Fig. 67) 

(1,3;2 + f}y2 + yt.2 + 6 = o. 
Dividing it by 6 and taking 6/a = -a•, M~ = -b2 , 6/y = -c', 
we reduce it to the form 

zl yl zl 
Iii" +lil+cs-1 =0, 

where a, b, c are the semi-a:teG of the ellipsoid. 
8-0845 
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It is seen from equation (•) that the coordinate planes are the 
planes of symmetry of the ellipsoid, and the origin is the centre of 
symmetry. 

Just as the ellipse is obtained from the circle by uniform compres­
sion, so any ellipsoid can be generated by uniformly compressing a 

y 

z 

X 

y 

Fig. 67 Fig. 68 

sphere with respect to two mutually perpendicular planes. Namely, 
if a is the greatest semi-axis of the ellipsoid, then it can be obtained 
from the sphere 

by uniformly compressing it with respect to the xy-plane with the 
compression ratio cia and with respect to the xz-plane with the com­
pression ratio bla. 

If two semi-axes of an ellipsoid are equal, for instance, a = b, 
then it is called an ellipsoid of revolution. 

Intersecting it with any plane z = h parallel to the xy-plane, we 
obtain a circle 

xz+yz= ( 1- ~:) az, z=h 

with centre on the z-axis. Hence, in this case the ellipsoid is gene­
rated by revolving the ellipse 

contained in the xz-plane, about the z-axis (Fig. 68). 
If all the three semi-axes of the ellipsoid are equal, then it is a sphere. 
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The line of intersection (the trace) of an ellipsoid with an arbitrary 
plane is an ellipse. 

Indeed, the trace is a second-order curve. Since this trace is finite 
(the ellipsoid is finite), it cannot be either a hyperbola or a parabo­
la. Nor can it be a pair of straight lines, and consequently it is an 
e1lipse. 

4. Hyperboloids 

Just as in the case of the ellipsoid, the equation of hyperboloids 
can be reduced to the form 

~+~-~-1=0 a2 bl cz 

(a hyperboloid of one sheet, Fig. 69), 

~+£..-~+1=0 az bZ c• 

(a hyperboloid of two sheets, Fig. 70). 
In both hyperboloids the coordinate planes serve as the planes of 

symmetry, and the origin of coordinates as the centre of symmetry, 

z 
z 

Fig. 69 Fig. 70 

If the semi-axes a and b of a hyperboloid are equal, then it is 
called a hyperboloid of revolution and is obtained by revolving the 
hyperbola about the z-axis 

x• zl ----1=0, y=O a• c• 
in the case of a hyperboloid of one sheet and the hyperbola 

.=:-~+1=0, y=O a• cl 

in the case of a hyperboloid of two sheets. 
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A general type hyperboloid (a+ b) can be obtained from a hyper­
boloid of revolution (a = b) by uniformly compressing (or stret­
ching) the latter with respect to the xz·plane in the ratio bla. On cros­
sing hyperboloids with an arbitrary plane various conic sections may 
result. For instance, the planes z = h parallel to the xy-plane inter­
sect a hyperboloid of one sheet 

~+~-~-b=O 
a2 b2 ell 

in ellipses 

and the planes y = h (I h I =1= b) parallel to the xz-plane in hyper­
bolas 

x2 .zll h2 
7 - 7 -1+bi"=o, y=h. 

The plane y = b intersects the hyperboloid along two straight 
lines: 

5. Paraboloids 
'rhe equations of paraboloids are reduced to the form 

x• y2 
Z=(.i2+b2 

(an elliptic paraboloid, Fig. 71), 
z2 yll 

.i=7-b2 

(a hyperbolic paraboloid, Fig. 72). 
The xz- and y.e-planes are the planes of symmetry of paraboloids. 

'Their intersection (the z-axis) is called the axis of a paraboloid, and 
the intersection of its a:tis with the surface is termed the vertex. 

If a = b an elliptic paraboloid is said to be a paraboloid of revo­
lution. It is formed by revolving a parabo1a 

z2 
Z=/.i2' y=O 

about the z-axis. A general-type elliptic paraboloid can be obtained 
.from a paraboloid of revolution 

zll y2 
Z=-+-a2 a1 

bytmlii.fo.rmly compressing (stretching) it with respect to the xz-plane. 



Ch. VII. Quadric Surfaces 117 

Both paraboloids (elliptic and hyperbolic) are intersected by 
planes parallel to the xz- and yz-planes along parabolas that are 

z 

z 

X 

Fig. 71 

Fig. 73 Fig. 74 

parallel and equal. Indeed, the planes x = h intersect an elliptic 
paraboloid along parabolas 

h" y2 
z- as= v , x =h. 

If each of these parabolas is displaced in the direction of z, by a 
line segment h2/a2 , then we obtain one and the same parabola 

X=h. 

Whence it follows that an elliptic paraboloid is generated by translat. 

ing a parabola z =~: , x = 0, with its vertex moving along a parabola 
,x2 • 

z = 2 , y = 0 (Fig. 73). a 
A hyperbolic paraboloid is generated in a similar way (Fig. 74). 
The planes parallel to the xy-plane, except for xy-plane itself, cut 

an elliptic paraboloid along ellipses, and a hyperbolic paraboloid 
along hyperbolas. The xy-plane intersects a hyperbolic paraboloid 
along two straight lines. 
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6. Cone and Cylinders 

The equations of the cone and cylinders of the second order may 
be written in the form 

z 

Fig. 75 

z 

Fig. 77 

(a cone, Fig. 75), 

(an elliptic cylinder, Fig. 76), 

(a hyperbolic cylinder, Fig. 77), 

(a parabolic cylinder, Fig. 78). 

z 

Fig. 76 

y 

Fig. 78 

An arbitrary cone is obtained from a circular cone 
xz y2 zll 0 
7+1i2-cs= 

by compressing (stretching) it uniformly with respect to the xz-plane. 
Elliptic, hyperbolic and parabolic cylinders intersect the xy-plane 

along an ellipse, hyperbola and parabola, respectively, and are gen-
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erated by straight lines parallel to the z-axis, which intersect the 
curves mentioned. 

An arbitrary elliptic cylinder is obtained from a circular cylinder 
by compressing (stretching) the latter uniformly with respect to the 
xz-plane. 

We conclude that the cone 

~+~-~=0 as . bl ell ' 

which is called the asymptotic cone, is related with the hyperboloids 
of one and two sheets 

x2 ys zll 

----s +-b.--. ± 1 =0 a e 
in a natural way. 

Each plane passing through the z-axis intersects the hyperboloids 
along hyperbolas, and the cone along two generators which are the 
asymptotes of these hyperbolas. In particular, the xz-plane (y = 0) 
intersects the hyperboloids along hyperbolas 

x2 z2 
Iii"- C2 ± 1 = 0, 

and the cone along two straight lines 
xs z2 
---=0 
all ell ' 

which are the asymptotes of these hyperbolas. 

7. Rectilinear Generators 
on Quadric Surfaces 

Cones and cylinders are not the only surfaces described by the sec­
ond-degree equations which contain rectilinear generators. A hy­
perboloid of one sheet and a hyperbolic paraboloid possess this prop­
erty as well. 

Indeed, a straight line g,._, specified by the equations 

Z=.r. -+- , 1=- ---~(X fl) 1 (X Y)• 
a b A a b ' 

lies on a hyperbolic paraboloid 
xll yll 

z = 7- ""i)2 (**) 

since any point (x, y, z) satisfying equation (*) also satisfies equa­
tion (**) which results as a corollary by termwise multiplication. 

In addition to a family g,._, one more family of straight lines g~ is 
located on a hyperbolic paraboloid: 

z=i.(:-!)· 1=~(:+:). 
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Analogously: on the hyperboloid of one sheet 

there are two families of rectilinear generators 

-=-+....:.=! ( 1 + .!.) . 
a c A b ' 

g).: .=_ _ _:_=f.. (1+.!.), 
a c b, 

x z 1 ( Y) (i+ -c=I' 1-b . 

In both cases (a hyperbolic paraboloid and hyperboloid of one 
sheet) rectilinear generators belonging to one family do not intersect, 
whereas those belonging to different families intersect. 

The presence of rectilinear generators on a hyperbolic paraboloid 
and a hyperboloid of one sheet makes it possible to introduce a new 

Fig. 79 Fig. 80 

method of generating these surfaces. Namely, let us take three rec­
tilinear generators g1 , g2 , g3 belonging to one family. Then each 
rectilinear generator g belonging to the second family intersects 
g1 , g2 , g3 • Conseq_uently, the surface is generated by the straight 
lines g which intersect the three given lines (Fig. 79). 

As to the hyperboloid of revolution of one sheet, it is also formed 
by revolving any of its rectilinear generators about the axis of the 
surface (Fig. 80). 

8. Diameters and Diametral Planes 
of a Quadric Surface 

A straight line, as a rule, intersects a quadric surface at two points. 
If there are two points of intersection, then the line segment with the 
end-points being the points of intersection is called the chord. 
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The midpoints of parallel chords of a quadric surface lie in a plane­
(termed the diametral plane). Let us prove this. 

Let a quadric surface be defined by the equation in an arbitrary· 
rectangular Cartesian coordinate system 

a11x2 + 2a1~y + . . . + a44 = 0. (•)• 

To simplify notation we will introduce the following: 

2F = 4nX2 + 2aurY + . . . + a44 , 

F x = a11x + a12y + a13z + a14 , 

F y = a21x + a22y + a23z + a114 , 

F z = aatX + auY + aasZ + aa4· 

Let the chords be parallel to the line ~ = JL = _:. and let x, Yr 
,.. fl. v 

z denote the coordinates of the midpoints of an arbitrary chord. Thea 
the coordinates of the end-points of the chord may be written a~ 

x1 = x + i.t, y1 = y + f..tt, z1 = z + vt, 

x2 = x - i.t, y2 = y - f..tt, z2 = z - vt. 

Substituting these coordinates into (*) gives 

2F ± 2t (i.Fx + f1Fy + vFz) 

+ t2 (aui..2 + auf12 + aaaV2 + 2auAf1 + 2all3fl'V + 2aslvi..) = 0-r 

I t follows from this that the coefficient of t must be zero 

i.Fx + f.lFy + vFz = 0. (••} 
This is the equation of the diametral plane that corresponds to the­

chords of the given direction i.: f1: v. 
If a surface has a centre, then each diametral plane passes through 

the centre. Accordingly, the centre of a surface is given by 

Fx=O, Fy=O, Fz=O. (***~ 

For a second-degree curve we reason along the same lines. We willi 
only provide the final result. 

Let a curve be given by 

2<1> = a11x2 + 2a12xy + a2zY2 + 2a13x + 2a23Y + a33 = 0. 
We set 

<l>x = a11x + a12y + a13, 

<l>y = aux + azzY + azs· 

The diameter corresponding to the chords of the direction i. : fl, i.e. pa­
rallel to the straight line 
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is given by 
A.<l>x + 11<l>y = 0. 

The centre of the curve (if any) is found from the simultaneous equa­
tions , 

<l>x = 0, <l>y = 0. 

9. Axes of Symmetry for a Curve. 
Planes of Symmetry for a Surface 

We now proceed to find the planes of symmetry for a surface defined 
in arbitrary coordinates. 

Let A. : 11 : v be the direction perpendicular to the symmetry plane. 
Since the midpoints of chords of direction A. : 11 : v lie in the plane of 
.symmetry, the latter is given by 

A.Fx + 11Fy + vFz = 0. (•) 
Since the direction A.: 11: v is perpendicular to the plane (•), then 

au).+ az1!1+ a22V a21h+ a221-t+ a2sV a31A.+ as21-t+assV (**) 
). = !1 = v 

Having found from this system A.: 11: v and substituted into (•), we 
obtain the equation of the plane of symmetry of the surface. 

To simplify the finding of A.: 11: v from (**), we denote by ; the 
.common value of the three relations (**)· The result will be the 
equivalent system 

(au- s) A.+ ai2l1 + auv = 0, } 
az1A + (azz- s) 11 + azaV = 0, 
aatA. + aazl1 + (aaa- s) v = 0. 

Since A., 11· v are not all zero, then 

au-s a12 a13 
az1 azz-s azs =0. 
a31 aaz a sa- s 

Finding ; and substituting the result into (***), we find A.: 11: v. 
If we can find the planes of symmetry of a surface, we can readily 

find a coordinate system in which the equation of the surface will 
have canonical form. 

So considering second-degree curves similarly we come to the con­
clusion that for them the axes of symmetry are given by 

From the syste~ 
A.<l>x - 11<l>y = 0. 

(au-s) A.+atzl1=0, } 
a21A.+ (azz-s) 11 =0. 



Ch. VII. Quadric Surfaces i23 

where ··~ is a root of the equation 

I au - ~ au I = 0, 
a21 a22-~ 

we find A. : 1-l· 
The system of coordinates, in which the equation of the curve as­

sumes canonical form, is determined from the considerations similar 
to those used above for surfaces. 

EXERCISES TO CHAPTER VII 

1. A curve in the plane 

a11x2 + 2a12xy + a 22y2 + 2a1x + 2a2y + a = 0 
is an ellipse (hyperbola, parabola). What does the quadric surface 

z = a11x2 + 2a12xy + a 22y2 + 2a1x + 2a2y + a 

represent? 
2. Show that the qu11dric surface 

A (a 1x + b1y + c1z + d1) 2 + 1-l (a2x + b2y + c2z + d2) 2 = 0 

is divided into a pair of planes. 
3. To obtain the projection on the xy-plane of the curve of inter­

section of the surface 

a11x 2 + a22y2 + a33z2 + 2a12xy + . . . + a44 = 0 ( *) 

with the plane 
z =ax+ by+ c, 

we should substitute z = ax + by + c in equation (•). Prove this. 
4. Show that the sections of a quadric surface by parallel planes 

are homothetic and are positioned similarly. 
5. Show that a conical surface generated by straight lines passing 

through a given point and intersecting a second-degree curve is a 
quadric surface. 

6. Form the equation of the surface generated by the straight line 

z=ax+b, } 
z=cy+d 

(a, b, c, d=FO) 

rotating about the z-axis. 
7. If a < c, then the ellipsoid of revolution 

x2 y2 z2 -+-+--1 all a2 c2 - ' 
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is a locus of points the sum of whose distances from the two given 
points (the foci) is constant. Find the foci of the ellipsoid. 

8. Suppose we have an ellipsoid 

ax2 + ~y2 + yz2 + {} = 0. 
Show that if the surface 

ax2 + ~y2 + '\'l2 + {} ~A. (x2 + y2 + 12 + !1) = 0 
decomposes into a pair of planes, then these planes intersect the 
ellipsoid along circles. Use this fact to justify the method of finding 
circular sections of the ellipsoid. 

9. Show that the ellipsoid 
x2 y2 z2 ---L-+-=1 a2 ' b2 c2 

may be specified by the parametric equations: 

x = a co!! u cos v, y = b cos u sin v, z = c sin u. 

10. What is the surface 

(a1x + b1y + c1z)2 + (a2x + b2y + c2z)2 

if 
+ (a3x + b3y + c3z)2 = 1, 

at bt Ct 

a2 b2 c2 =I= 0? 
aa ba Ca 

11. Find the circular sections of the hyperboloid 
x2 y2 zll 

"'42+bi" -Ci"-1 =0. 
12. Show that through any point in space not belonging to the 

coordinate planes, pass three surfaces of the family 
xll y2 z2 

all+1.. + bli+X + cli+A = 1 

(A., the parameter): an ellipsoid, a hyperboloid of one sheet, and a 
hyperboloid of two sheets. 

13. Show that the plane :~0 - ~~0 + z1zo = 0 passing through 

the point (x0 , y0 , zo) of a hyperbolic paraboloid :: - ~: + z = 0 

intersects the paraboloid along two rectilinear generators belonging 
to different families. 

14. Find rectilinear generators of a hyperbolic paraboloid z = axy. 
15. Form the equation of a surface generated by straight lines 

parallel to the xy-plane and intersecting two given skew lines. 



Ch. VII. Quadric Surfaces 125 

16. Show that the equation of a circular cone with the vertex at 
the origin, the axis ~ = lL =..!., and the vertex angle 2a can be 

"' J.l. v 
written in the form 

(Az+JJ.Y+vz)2 _ 2 
(x•+yll+z2) (Ali+JJ.ll+vll)- cos a. 

17. Show that the equation of a circular cylinder of radius R 

.and with the axis ~ = .JL=-=..ean be written in the form 
"' J.l. v 

z2+ y2+z2-R2= (A.x±JJ.~+vz)ll 
~·+J.I. +v• 

18. Find the axis of the circular cone 

x2 + y2 + z2 - (ax + by + cz)2 = 0. 

19. Find the vertex and the axis of the parabola 

(ax + by + c)2 + ax + ~y + y = 0. 



Part Two 

DIFFERENTIAL GEOMETRY 

Chapter VIII 

TANGENT AND OSCULATING PLANES OF CURVE 

f. Concept of Curve 

The concept of transformation of a figure, or a set of points, is 
known from elementary geometry. Let us recall it. If each point of 
a figure F is displaced somehow, then we obtain a new figure F' 
which is said to be obtained by a transformation from F. A transfor­
mation ofF is said to be continuous if it sends near points ofF to the­
near points of F', which means that if a point X of F is sent int& 
point X' of F', then, for any e > 0, there exists () > 0 such that 
any point Y of F, which is from X at a distance less than t5, is c.ar­
ried into a point of F', which is from X' at a distance less than e. 
A transformation sending different points of a figure F into different 

l' 

(x 
' 

Fig. 81 Fig. 82 

points of a figure F' is said to be topological if it is continuous as well 
as its converse of F' into F. A transformation of a figure is said to be­
locally topological if it is topological in a sufficiently small neigh­
bourhood of each of its points. 

We now give several definitions related to the concept of curve. 
We will call a figure obtained by a topological transformation of an 
open line segment an elementary curve. A figure whose each point 
possesses a three-dimensional neighbourhood such that the part of 
the figure contained in it is an elementary curve is called a simple 
curve (Fig. 81). A figure obtained by a locally topological transfor­
mation of a simple curve is known as a generic curve. The generic 
curve in Fig. 82 is obtained by a locally topological transformation 
of the circumference. 
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Due to these definitions, the study of any curve "in the small" is 
reduced to that of an elementary curve. Let '\' be an elementary 
curve which is a topological transformation of a line segment AB. 
If we introduce a coordinate t on the straight line AB as the num­
ber axis, then any transformation of the line segment AB into '\' can 
be given by the equations 

x = ft (t), y = / 2 (t), z = / 3 (t), (•) 

where / 11 / 2 and / 3 are continuous functions, with 

U1 (t') -It W))2 + U2 (t') - /2 W))2 + Ua (t')- Is (t"))2 =1= o 
for different values of t' and t". 

We call the equations (*)the parametric equations of the curve y, t 
being the parameter. An elementary curve admits different methods 
of specifying it parametrically. E.g.,'\' can be given by the equations 

X = ft (q> (-r)), Y = /2 (q> (-r)), z = fs (q> (-r)), 

where q> (-r) is any continuous, strictly monotonic function of ,; 

2. Regular Curve 

We call a curve'\' regular (i.e., k times differentiable) if it admits 
a regular parametrization, or specification by parametric equations 

X = / 1 (t), Y = / 2 (t), z = / 3 (t), 

where ft, / 2 and / 3 are regular functions (i.e., k times differentiable) 
which satisfy the condition · 

f'~ + r: + r: =I= 0. 
For k = 1, a curve is said to be smooth. 
A curve is said to be analytic if it admits an analytic parametriza­

tion (i.e., the functions fv / 2 and / 3 are analytic). 
Certain curves ad:oiit a parametric representation 

X = t, y = q> (t), Z = '¢ (t), 

or, which is equivalent, 

y = q> (x), z = '¢ (x), 

for a suitable choice of the coordinate axes. This parametrization 
sometimes turns out to be very convenient in the study of curves. 
Accordingly, the question arises, when does a curve admit such a 
parametrization at least "in the small"? 

The answer is supplied by the following theorem. 
Let '\' be a regular curve, and 

X= / 1 (t), y = / 2 (t), z = / 3 (t) 
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its regular parametric representation in the neighbourhood of the point 
~x0 , y0 , Z 0) corresponding to t = t 0 • If t = t0, /~ (t) =I= 0, then the 
curve can be given by the equations 

11 = <p (x), z = 11' (x) 

.in a sufficiently small neighbourhood of (x0 , y0 , z0), where <p (x) and 
·'IJ (x) are regular functions of x. 

Proof. By the implicit function theorem, there exists a regular 
function x (x) equal to t0 for x = x 0 , identically satisfying the 
.equation 

x =It (x (x)) 

for x near to x0 • Differentiating the identity for x = x 0 , we obtain 
1 = !~ (t0) x' (x0). Hence, x' (x0) + 0, which means that the func­
tion x' (x) is monotonic in the vicinity of x = x 0 , and we can in­
-troduce the parameter x instead of t by putting t = X (x). 

We obtain · 
Y = fz (X (x)), z =Is (x (x)). 

Q.E.D. 
3. Singular PoltlttJ Of a Curve 

Let y be a cur-ve, and P a point in it. P is called an ordinary point 
:if the curve admits a smooth parametrization 

x = /1 (t), Y = lz (t), z =Is (t), f~ + f': + f': =I= 0 
in its neighbourhood. If there is no such parametrization, then the 
point is said to be singular. The problem of singular points of a plane 
-curve is in many practically important cases solved by the following 
:theorem. 

Let y be a curve given by parametric equations 

X = II (t), Y = fz (t). 

Then a point P of the curve is ordinary if the derivative of the func­
tions ft and / 2 , which is the first non-zero one, is odd at it. P is singular 
.if its derivative which is the first non-zero one is even. 

Proof. Without loss of generality, we assume that P is at the ori­
gin, and the value of the parameter t, associated with P, is zero. 
By the Taylor formula, 

X = ~; (f~m (0) + e.( t)) , 11 = ::; (f~ml (0) + e2 ( t)) . 

For definiteness, let n ::::;;; m. 
In the case of odd n, we introduce the parameter 

't = tn 
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instead of t, 't' being a monotonic function of t. The obtained para­
metrization of the curve is smooth, since 

dft I = lim ft (t) = _1 r~ (0) * o. 
d't P t-+0 tn nl 1 

Therefore, P is ordinary for odd n. 
Now, let n be even, in which case / 1 (t) does not change sign (of 

~n) (0)) in the neighbourhood of P. Therefore, the curve is either in 
y y 

0 

(a) 

X 

Fig. 83 

the half-plane x > 0 if J~nl (0)> 0, or the half-planex;<O if j~n) (0)< 
0 in the neighbourhood of P. Assume that Pis ordinary. The curve 
then admits a smooth parametrization 

X = c:pl ('t'), Y = c:pll ('t'), c:p? + c:p~2 =fo 0 

in the neighbourhood. Since c:p? + c:p~2 =1= 0, and c:p1 is of the order 
not higher than c:p 2, c:p~ =1= 0 at P. Hence, c:p1 ('t') in the neighbourhood 
of P changes sign; therefore, the curve y is placed in both half-planes 
x > 0 and x < 0 in the neighbourhood of P, and we have come to 
a contradiction. Thus, the point P is singular for even n. 

For even n and odd m, a singular point is called a cusp of the first 
kind. The form of the curve in the neighbourhood of such a point is 
shown in Fig. 83a. For even n and even m, n < m, a singular point 
is called a cusp of the second kind. The form of the curve of such a 
singular point in its neighbourhood is shown in Fig. 83b. 

The case m = n is reduced to the above (n < m) with a correspond­
ing rotation of the coordinate axes. 

4. Vector Function of Scalar Argument 

Below, we will often resort to the elementary means of vector ana­
lysis, due to which we give principal definitions. 

A vector function is said to be given in an interval a < t < b if 
each value t is associated with a vector f (t). The concept of limit is 
introduced for vector functions in the same manner as for scalar ones. 
Viz., the limit of a vector function f (t) as t-+ t0 is a vector c such that 

lim I f (t) - c I = o. 
t .... to 



*858. 1 2 3 ... n-1 n 

n 1 2 ... n-2 n-1 
· n-1 n 1 ... n-3 n-2 · 

2 34 ... n 1 
859. ( a a+h a+2h .•• a+(n-2) h a+(n-1) h] 

~~(~~~)~.~ .. a:~ ...... a.+.(~~3~h. ~~(~~~)~ • 

a+h a+2h a+3h ... a+(n-1) h a 

*860. 1 1 1 1 1 

1 8 82 83 8n-1 . 
1 82 8' 8• 82(n-t) 

1 83 8• 8• 83(n-1) 

. . . 
1 8n-1 82(n-1) 83(n-1) ••• 8(n-1)• 

h 2n+ .. 2n 
w ere e = cos n 'stn n. 

Solve the following matrix equations: 

861. (12) -(35) 862. (3-2)-'(-12) 
34·X- 59· x.5-4- -56' 

863. (3 -1) (5 6) (14 16) 
5 -2 .x. 7 8 = 9 10 • 

864. (1 2 .:_3) ( 1 -3 0) 
3 2 -4 . X= 10 2 7 . 
2 -1 0 10 7 8 

865. X. ( ~ _ ~ _ ~) = ( = ~ ~ ~) • 
-5 2 1 -2 15 0 

866. (! =~ !) .x. (~ ~ ~) = (1~ 1~ -:). 
5 - 7 3 1 1 1 23 15 H 

867. (~ =!)·x=(~!). 868. X·(!:)=(: t!)· 
138 
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A vector function with continuous derivatives up to order k on an 
interval (a, b) is said to be k times differentiable on the interval. 

Let f (t} be a vector function, and A. (t), f..l (t) and v (t) the compo­
nents of the vector f (t}. If the scalar functions A., f..l and v are-d~ffer­
entiable, then the vector function f is also differentiable. Con­
versely, iff is differentiable, then A., f..l and v are differentiable. 

In fact, if we denote the base vectors by e1 , e2 and ea, then 

f (t) = A. (t) e1 + f..l (t} e2 + v (t} es. 

It is obvious that the differentiability of the vector function f 
follows from that of the functions A., f..l and v. To prove tne converse 
statement, it suffices to notice that 

A. (t} = f (t) eu f..l (t} = f (t} e2 , v (t} = f (t} ea. 

The Taylor formula is also valid for vector functions. Viz., 

f (t+h) =f (t) +hf' (t) + ... + :~ (f<n) (t)+B (t, h)), 

where I B (t, h) I -+0 as h -+0. 
For proof, it suffices to represent the vector function f (t) in the 

form (*}, and apply the Taylor formula to the functions A. (t}, f..l (t) 
and v (t}. 

The three equations for specifying a curve parametrically 

X=/1 (t}, y=/2 (t}, Z=/3 (t) 

can be represented as one vector equation 

r = f (t), (**) 

where r is the vector of a point on the curve, i.e., whose origin is at 
the origin of coordinates, and the end-point on the curve 

f (t) =It (t) el +Is (t) e2 + /s (t) ea. 

The equation(**) is called the vector equation of the curve. The regu­
larity of the curve means that of the vector function r; whereas the 
condition f? + /;2 + /;2 =1= 0 means that the vector f' =1= 0. 

5. Tangent to a Curve 

The concept of tangent to a curve is already known to us. Now, 
we give another definition equivalent to the prior one, but more 
convenient for our immediate goals. 

Let'\' be a curve, P a point on it, and g a straight line passing 
through P. Take a point Q near toP, and denote its distances from P 
and g by d and (), respectively {Fig. 84). We call the straight line g 
a tangent to '\' at P if ()/d-+ 0 as Q -+ P. 
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If "( possesses a tangent at P, then the straight line PQ tends to 
the tangent as Q -.P. Conversely, if a straight line PQ approaches 
a certain straight line as Q --+ P, then it is a tangent, to prove which 

Fig. 84 

it suffi.ces to notice that /)/dis the sine of the angle made 
by gand PQ. 

A smooth curve y has one, and only one, tangent at 
each point. If 

r = f (t) 

is the vector equation of the curve, then the tangent at the 
point P corresponding to a value of parameter t has the 
same direction as the vector f' (t). 

Proof. Assume that y has a tangent g at the point 
P (t). Let 't' be the unit vector associated with the 

straight line g. The distanced from the point Q (t +h) to P equals 
I f (t + h) - f (t) I, whereas the distance l) from Q to the tangent 
is I (f (t + h) - f (t)) 1\ " 1. 

By definition of a tangent, 

6 l(f(t+h)-f(t))/\'~'l_.o as h-.O. 
d = If (t+h)-f (t) I 

However, 

l<f<t+h)-f(t)) 1\ "I 
l(f(t+h)-f(t))/\'tl h lf'(t)/\'tl 

lf(t+h)-f(t)l = lf(t+~-f(t)l --+ lf'(t)l 

Hence, f' 1\ 't' = 0. Because f' =1= 0, the vectors f' and 't' are col­
linear. Thus, if a tangent does exist, then it has the direction of the 
vector f', and, is, therefore, unique. 

That a straight line g passing through the point P, and having the 
direction of the vector f', is a tangent, is also true. Indeed, the above 
argument shows that 

I f' (t) I 
6 (f (t+h)-f (t)) 1\ 1 f' (t) 1 --+ If' (t) 1\ f' (t) I = 0 

d If (t+h)-f (t) I If' (t) 11 

for such a curve. 

6. Equations of Tangents for Various Methods 
of Specifying a Curve 

As we know, a straight line passing through a point (x 0 , y 0 , z0), ---and having the direction of a vector (a, b, c), can be given by the 
equations 

x-x0 Y-Yo Z-Zo 
-a-=-b-=-c-· 
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Since we know the direction of the tangent to the curve, we can 
easily derive its equation. If a curve is given by 

x = /1 (t), y = /2 (t), z = / 3 (t), 

then the tangent at the point associated with a value of the para­
meter t has the-Same direction as the vector f' (t) with components 
f~ (t), f~ (t), f~ (t). Therefore, the equations of the tangent at this 
point are 

.e-ft (t) 
li (t) 

y-f2(t) 
/2 (t) 

z-/3 (t) 
/3 (t) • 

In the case of a plane curve given by the equations 

X = /1 (t), y = /2 (t), 
that of the tangent is written as 

x-ft (t) 
t; (t) 

If a curve is given by the equations 

y = f (x), z = q> (x), 
then the equations of the tangent are obtained simply from that of 
a parametrically given curve. It suffices to notice that the specifi­
cation of a curve by the equations (*) is equivalent to the parametric 
representation 

X = t, y = j (t), Z = q> (t). 
Therefore, the equations of the tangent to the curve at a point with 

abscissa x 0 are 
y-f(x0) z-c:p (x0) 

X- X - - -7"7--'7"'-
0- f' (xo) - c:p' (xo) ' 

or, in equivalent form, 

Y = f (x0) + f' (x0) (x - x0), 

z = q> (x0) + q>' (x0) (x - x 0). 

If the curve is plane, and given by y = f (x), then we obtain the 
familiar equation 

Y = f (xo) + f' (xo) (x - X0). 

We now make up the equations of the tangent to a curve given in 
implicit form 

q> (x, y, z) = 0, '¢ (x, y, z) = 0 
at a point (x0 , y0 , z0), where the rank of the matrix 

( q>x q>y q>z) 
'¢x '¢y '¢z 

is two. 
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Let 
X = X (t), y = y (t), Z = Z (t) 

be a regular parametrization of the curve in the neighbourhood of 
(x 0 , y 0 , z0), and t 0 the associated value of the parameter. 

Differentiating the identities 

q> (x (t), y (t), z (t)) = 0, 'iJ (x (t), y (t), z (t)) = 0, 

we obtain 

q>rz;' + q> uY' + q>zz' = 0, 'i'xX' + 'i'uY' + 'Pzz' = 0. 
Hence, the tangent vector r' (x', y', z') is perpendicular to the 

------~ ~ 

vectors (q>x, q>y, q>z), ('¢x• 'i'u• 'Pz), and, therefore, has the direction 
of their vector product. Thus, we come to the equation of the tangent 

(the derivatives q>x, q> u• ••• , q>z beillg taken at the point of contact 
(xo, Yo, zo)). 

If the curve is plane, and given by an equation q> (x, y) = 0, then 
the equation of its tangent is 

x-x0 Y-Yo --=-, q>y -q>x 

or 
(x - Xo) <i>x + (y -Yo) q>y = 0, 

to see which it suffices to notice that, being space, this curve is given 
by the two equations q> (x, y) = 0 and z = 0. 

The plane passing through a point P, and perpendicular to the 
tangent at this point, is called the normal plane to the curve at P. 
Obviously, it is not hard to form its equation, since the tangent vec­
tor is perpendicular to the plane. 

7. Osculating Plane of a Curve 
Let y be a curve, P a point on it, and a a plane passing through P. 

Denote the distance from a point Q on the curve to P by d, and that 
from Q to a by 6. We will call a the osculating plane of y at P if the 
ratio fJ!iP -o as Q -P (Fig. 85). 

A twice differentiable curve y has an osculating plane at each of its 
points. Meanwhile, it is either unique, or any plane containing the 
tangent to the curve is osculating. 

If 
r = r (t) 



Ch. VIII. Tangent and Osculating Planes of Curve 135 

is the equation of the curve, then the osculating plane is parallel to 
the Vftctors r' and r". 

Proof. Let a. be the osculating plane of y at a point P associated 
with a value of the parameter t. Denote bye theunitnormal vector. 

We have 
d = I r (t + h) - r (t) I, 6 = I e (r (t + h) - r (t)) I, 

{; I e (r (t+h)-r (t)) I I e ( r' (t) h+-4!2. h2+eth2) I 
di'= (r(t-th)-r(t))l = (r'(t)h+e8h)2 

-~~+~+et'j 
- r'a (t)+e3 

Since 6/dl -+ 0, e1 -+ 0, e 3 -+ 0 as Q -+ P, and r' (t) =I= 0, er' (t) = 
0, we derive er" (t) = 0. Thus, if al). osculating plane does exist, 
then the vectors r' (t) and r" (t) are parallel 
to it. 

That an osculating plane always exists can 
be seen easily, for which we take a plane a 
parallel tor' (t) and r" (t), regarding any plane 1 
as parallel to the zero vector. Then er' (t)=O, 
er" (t) = 0, and,- therefore, 

ll . let I O Q R 
ds= r' 2 {t)+e3 -+ as -+ ,-. Fig. 85 

Thus, there is an osculating pla'n~ at each 
point of the curve. It is unique if r' and r" are non-collinear. 
However, if they are collinear, orr" = 0, then any plane passing 
through the tangent to the curve is osculating. 

To make up the equation of the osculating plane of a curve at a 
point P, consider an arbitrary point A (x, y, z) of the plane. Then -the three vectors P A, r' and r" are coplanar, each of which is either 
parallel to the plane~ or is _in it. Therefore, their scalar triple 
product is zero. 

Let the curve be given by the equations 

X=/1 (t), y=/2 (t), Z=/3 (t). 
Then the coordinates of the vector r' are f~, j~, 1;, those of r" are - ···~--

j~, J;, fa, and those of PA are x- /1 , y- / 2 , z- / 8 • -Since the scalar triple product of PA, r' and r" is zero, the oscu-
ating plane equation is 

x- fdt) 
t; (t) 

t; (t) 

y-fz(t) z-/3 (t) 
~~ (t) t; (t) = 0. 
t; (t) . t; (t) 
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Each straight line passing through a point of a curve perpendicu­
lar to the tangent is called a normal to the curve. Two normals can 
be distinguished in the case where the osculating plane is unique, 
viz., the principal normal, or normal lying in the osculating plane, 
and the binormal, or the normal perpendicular to the osculating 
plane. With the known tangent and osculating plane equations, 
the derivation of the principal normal and binormal equations is, 
obviously, not complicated. 

8. Envelope of a Family of Plane Curves 

A curve y: X = X (t), y = y (t) is said to be the enveloper of a 
family of curves '\'t: IP (x, y, t) = 0, t being the parameter of the 

1a 

Fig. 86 Fig. 87 

family, if '\'t touches y at each of its points (t), i.e., if they possess 
a common tangent (Fig. 86). 

With such a definition of an envelope, on substituting x (t) and 
y (t) in the equation lj) (x, y, t) = 0, we obtain the identity 

IP (x (t), y (t), t) = 0. 

Differentiating, we get 

IPxX' + <pyy' + IPt = 0. 
--+ 

It turns out that IPxX' + IP yY' = 0. In fact, (x', y') is the tangent 

~---vector for the curve y, whereas (IJ)y - IPx) that for '\'t at the same 
point. Since they are collinear, x' ilj)y = y' I - IPx• and IPxX' + 
lj)yy' = 0. 

Thus, the functions x (t) and y (t) satisfy the simultaneous equa­
tions 

cp (x, y, t) = 0, IPt (x, y, t) = 0, 
and can be found from them. 
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As an example, we find the envelope of the normals to a plane 
curve (Fig. 87). Let the curve be given by two equations 

X = X (t), y = y (t). 

Since x' andy' are the coordinates of the tangent vector, the equa­
tion of the normal is 

(x - x (t)) x' + (y - y (t)) y' = 0. 

Differentiating with respect to t, we obtain 

(x - x (t)) x" (t) + (y - y (t)) y" (t) - x' 2 (t) - y' 2 (t) = 0. 

Solving it simultaneously with ( *) for x and y, we derive the equa­
tions of the envelope 

(x'2+y'2)y' (x'2+y'2)x' 
x=x(t)- y":c'-x"y' , y=y(t)- x"y'-y"x' ' 

assuming that y" x' - x"y' =1= 0. , 
The envelope of the normals to a plane curve is called ,its evolute. 

The evolute of a curve possesses many remarkable properties, and 
we note some of them in the sequel. 

EXERCISES TO CHAPTER VIII 

1. A point M moves in space so that its projection onto the xy­
plane moves uniformly along a circle x2 + y2 = a2 with angular 
velocity w, and the projection onto the z-axis moves uniformly with 

Jill~ 0 X 

Fig. 88 

velocity c. The curve described by M is called a helix. Make up its 
parametric equations, taking timet as the parameter. Assume that M 
has the coordinates a, 0, 0 at the initial moment t = 0. 

2. A circle of radius a rolls uniformly without slipping with veloc­
ity v along the x-axis. Find the equation of the curve described by 
a point of the circle if it coincides with the origin at the initial mo­
ment t = 0 (such -a curve is called a cycloid, Fig. 88). 
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3. Find the parametric equation of the curve 

z3 + y3 - 3axy = 0, 

taking t = ylx as the parameter (Cartesian folium; Fig. 89). 
4. A helix 

x = a cos rot, y = a sin rot, z = ct 

is projected onto the xy-plane by straight lines parallel to the yz­

Y 

y 

X 

X 
X 

Fig. 89 Fig. 90 Fig.91 

plane, and making an angle e with the z..:axis. For what e will the 
projection possess singular points? Clarify their nature. 

5. Find the singular points of the cycloid 

t . vt x=v -as1n-, 
a 

and clarify their nature. 

y = a ( 1-cos ~ ) , 

6. Find the singular points of the astroid 

x = a cos3 t, y = a sin3 t, 

and clarify their nature (Fig. 90). 
7. Find the singular points of the tractrix 

x=asint, y=a(cost+lntan ~) (O<t<n), 

and clarify their nature (Fig. 91). 
8. Make up the equations of the tangent, osculating plane, normal 

plane, principal normal and binormal at the point (1, 0, 0) on the 
helix 

x = cost, y =sin t, z = t. 
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9. Make up the equation of the tangent to the curve given by the 
equations 

x2 + y2 + z2 = 1, x2 + z2 = x 

at the point (0, 0, 1). 
10. Find the equation of the tangent to the curve x = t2 , y = t3 

at the point (0, 0). 
11. Find the equation of a parabola of the form 

y = x2 +ax+ b, 

which is tangent to the circle, 

x2 + y2 = 2. 

12. Prove that, fora tractrix, part of the tangent between the point 
of contact and the y-axis is constant (see Ex. 7), i.e., independent of 
the choice of a point of tangency. . 

13. Line segments of the same length are marked off on the binor­
mals to a helix. What is the curve formed by the end-points? 

14. At what angle do the hyperbolas 

xy = cl, x2 - y2 = c2 

intersect? 
15. Given the family of curves g'J.. 

x2 ys 
aZ-1.. + b•-1.. = 1, 

prove that two of them pass through each point of the xy-plane not 
on the coordinate axes, and that they intersect at right angles. 

16. Show that if the tangents to a curve pass through the same 
point, then the curve is either a straight line or a straight line seg­
ment. 

17. Show that the tangents to a helix 

x = a cos rot, y = a sin rot, z = bt 

make a constant angle with the xy-plane, and that the principal 
normals intersect the z-axis. 

18. Show that if the tangents to a curve are parallel to a certain 
plane, then the curve is plane. 

19. On what condition are the straight lines 

a1 (t)x-t-b1 (t)y+c1 (t)z+d1 (t)=0} 
a 2 (t) x+ b2 (t) y + c2 (t) z+dz (t) =0 

tangent to a certain curve? Find the curve. 
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20. Make up the equation of the osculating plane of the curve given 
by equations 

cp (x, y, z) = 0, '¢ (x, y, z) = 0 

at a point (x, y, z). 
21. Given the osculating planes of a curve 

A (t) x + B (t) y + C (t) z + D (t) = 0, 

find the equations of the curve 

X = X (t), y = y (t), Z = Z (t). 

22. Find the equation and form of the envelope of the family of 
straight lines cutting a triangle of area 2a2 off the quadrant Oxy. 

23. Find the equation and form of the envelope of a family of 
straight lines intercepting a segment of the same length a on the coor­
dinate axes. 

24. Find the envelope of the trajectories of a point particle project­
ed from the origin of coordinates with velocity v0 at various angles 
(parabola of safety). 

Chapter IX 

CURVATURE AND TORSION OF CURVE 

1. Length of a Curve 

Let an elementary curve be given by equations 

X = X (t), y = y (t), Z = Z (t). 

The limit of the lengths of broken lines starting at points (x (ti), 
y (t1)), t1 =a, t2 , t3 , ••• , tn = b (t1 < t2 < t3 ••• ), and inscribed 
in the curve (a::::;;; t::::;;; b), provided that its segment lengths decrease 
indefinitely, is called the length of the arc (segment of the curve). 

Any segment of a smooth curve is of certain length. If the curve is 
given by an equation r = r (t), then the length of a segment a::::;;; t::::;;; b 
of the curve is determined by the formula 

b 

s= J lr'(t) ldt. 
a 
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Proof. The length of the broken line equals 

~ I r (tk) -r (tk-1) I 
k 

b b 

141 

= J I r' (t) I dt + { ~ (t_~- tk_J I r' (tk) 1- j I r' (t) I dt} 
a k a 

+ {~ I r (tk) -r (tk-1) 1- ~ (tk -tk-t) I r' (tk) I}. 
k k 

The second term on the right-hand side is arbitrarily small for 
sufficiently small tk - tk_1 by definition of integral, whereas the 
third term admits a representation in the form 

tk tk 

~I ) r'(t)dtj- ~ j ~ r' (tP.) dtj; 
k tk-1 k tk-1 

therefore, it does not exceed 

tk 

~ J lr' (t) -r' (tk) I dt, 
k tk-1 

the difference between the vector moduli being not greater than the 
modulus of their difference by the "triangle inequality". 

Since the vector function r' (t) is continuous, and, therefore, uni­
formly continuous on the interval a ~ t ~ b, we obtain I r' (t) -
r' (tk) I < e. Hence, the third term does not exceed 

b 

J edt= (b-a) e. 
a 

Summing up, we conclude that if the segments of a broken line 
decrease indefinitely, then the differences tk - tk_1 also decrease, 
and the length of the broken line tends to the limit 

b 

s = J I r' (t) I dt. 
a 

Q.E.D. 
We now give formulas for the length of a curve in various cases of 

its specification, viz., 
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(i) given by the equations 

X=X{t), y=y (t), Z=Z (t), 
t. 

S (t1, tJ =) v X' 2+ y'Z+ z'Z dt, 
t. 

(ii) given by the equations 

Y=Y (x), z =Z (x), 
:lea 

s (xi, X2) = 1 V 1 + y' 2+ z'2 dx. 

For plane curves in the xy-plane, we have to set z' = 0. 

2. Natural Parametrization of a Curve 

Let y be a smooth curve given by a vector equation 
r = r (t). 

We introduce a function s (t) in accordance with the formula 
t 

s (t) = 11 r' (t) I dt. 
t, 

This function has a simple geometric meaning, viz., I s (t) I is the 
length of the segment [t0 , t] of y. s (t) is strictly monotonic, since 

th r,= I r' (t) I >0. 

Therefore, s can be taken as the parameter of the curve. Such a 
parametrization of the curve is said to be natural. 

In the natural parametrization case, the tangent vector to the 
curve r' (s) is unit, i.e., I r' (s) I = 1. 

In fact, 

buts'= I r' I; therefore, I :: j = 1. 

3. Curvature 

Let P be an arbitrary point of a regular curve y, and Q its point 
near toP. Denote by tie the angle between the tangents at P and Q, 
and by I tis I the length of the arc PQ (Fig. 92). 
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The limit of the ratio Ae/ I As I as Q _. P is called the curvature 
of '\' at P. 

A regular (twice continuously differentiable) curve has certain cur­
vature k 1 at each point. If 

r = r (s) 

is the natural parametrization of the curve, then 

kt = I r" (s) 1. 
Let two points P and Q be associated with values s and s + As 

of the parameters. The angle Ae equals that between the unit tan­
gent vectors 't (s) = r' (s) and 't (s + As) = r' (s + As). 

; ~-.·,l / ~J! I ,C/J1 
( ~i 

p 

Fig. 92 Fig. 93 

Since 't (s) and 't' (s + As) are unit, and make the angle Ae, I 't' (s + 
As) - 't (s) I 2 sin A: (Fig. 93). 

Hence, 

2 . A6 sm-
1 't(s+As)-'t(s) I _ 2 

IAsl - IAsl 

.AO 
sm2 Ae 

A6 "TTsT. 
2 

Noticing that Ae -.0 as 1 As 1 -+0 by the 
and passing to the limit, we obtain 

continuity of 't' (s) 

I r" (s) I = k1 . 

Q.E.D. 
Let the curvature be other than zero at a given point. Consider 

the vector 'Y = : 1 r" (s). 'Y is unit, and placed in the osculating plane. 
Besides, it is perpendicular to the tangent vector 't', since 't'11 = 1, 
and, therefore, n' = 't'Yk1 = 0. Thus, it has the direction of the 
principal normal, obviously unaltered if the point from which arcs s 
are counted off or the reference direction are changed. Speaking of 
the unit principal normal vector in the sequel, we will mean v. 
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It is obvious that the vector ,; 1\ v = fl has the same direction as 
the binormal to the curve. We will call it the unit binormal vector. 

We now find the expression for curvature with any specification 
of the curve. Let it be given by a vector equation 

r = r (t). 

Express the second derivative of the vector function r with respect 
to the arc s in terms of the derivatives with respect to tc 

We have 
r' = r;s'. 

Hence, 
r'2 = s's. 

Therefore, 
, r' 

fa=--=-· 
yr'2 

Differentiating the equality with respect to t once again, we obtain 
" , r" (r'r,.) r' 

r s =--- . 
ss yr't (yf'i)s 

Squaring and making note of s' 2 = r' 2 , we have 
t r"2r'2 - (r'r")l 

kl = (r'2)s • 

or, which is equivalent, 
2 (r' f\r")2 

kl = (r't)a • 

It follows for the curvature of a curve given by equations 

X = X (t), y = y (t), Z = Z (t) 
that 

I x" y" 12 f y" z" 12 I z" x" 12 
2 _ x' y' + y' z' + z' x' 

kl- (x'2+ y'2+z'2)3 

If the curve is plane and placed in the xy-plane, then 

2 (x"y'-y"x')2 
kl = (x'2 + y'2)3 ' 

and if a plane curve is given by an equation of the form y = y (x), 
then 

y"2 k: = (1 + y'2)8 

Remark. By definition, curvature is non-negative, it is useful to 
assume, however, that it may be positive for some plane curves and 
negative for others. Meanwhile, we will adopt the following argu-
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ment. In moving along the curve, the tangent vector r' (t) turns in 
the direction of increasing t. Depending on the sense of rotation, 
curvature is regarded either as positive or negative (Fig. 94). If the 
curvature sign for a plane curve is determined just 
by this condition, then we obtain either 

x"y' -y"x' 
k = (x'l+ y'2)3f2 

In particular, 
y" 

k =--= (1 + y'2)3f2 

x"y' -y"x' 
or k = - -,-ii:--;--:,':':"::'":::­

(x'2 + y'2)3f2 

if the curve is given by an equation of the form Fig. 94 
y = y (x). 

As an exercise, we find all the curves of zero curvature at each 
point. 

We have 
k1 = I r" (s) I = 0. 

Hence, r" (s) = 0, and r (s) = as+ b, where a and b are constant 
vectors. 

Thus, a curve with zero curvature everywhere is either a straight 
line or a straight line segment. 

4. Torsion of a Curve 

Let P be an arbitrary point of a curve y, and Q its point near to P. 
Denote the angle between the osculating planes at P and Q by .!la, 
and the length of the curve segment PQ by I .!ls 1. By the absolute 

value of torsion I k 2 I of y at P, we under-
A& stand the limit of the ratio .!l8/ I Lls 1 as 

Q -+ P (Fig. 95) .. 

Fig. 95 

A regular (thrice continuously differen­
tiable) curve has certain absolute totsion 
I k 2 I at each point where the curvature is 
other than zero. If 

r = r (s) 

is the natural parametrization, then 
l(r'r•r"')l 

lk21= k2 • 
1 

Proof. If the curvature of the curve y at P is different from zero, 
then, by continuity, it is also other than zero at points near to P. 
The vectors r' (s) and r" (s) are non-zero and non-parallel at each 
point with non-zero curvature. Therefore, there exists a certain os­
culating plane at each point Q close to P. 
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Let~ (s} and ~ (s + L\s) be the unit binormal vectors at two points 
P and Q of y. .::\8 equals the angle between ~ (s) and ~ (s + L\s). 

Since ~ (s) and ~ (s + L\s) are unit, make the angle .::\8, we have 

I ~ (s f L\s) - ~ (s) I = 2 sin ~e . 
Therefore, 

I~ (s+.:\s)-~ (s) I 
1.:\sl 

2 . .:\8 sm-2-

1.:\s I 

.M 
smT M 

M "IXSI 
2 

Hence, passing to the limit as I L\s I -+ 0, we obtain 

I k2 I = I P' 1. 
The vector P' is perpendicular to ~. since P'~ = ( ~ ~2 } = 0. It is 

easy to see that it is also perpendicular to "t. 

Indeed, 

P' = ("t 1\ v)' = "t' 1\ v + "t 1\ v'. 

However, "t' II v. Therefore, ~' = "t 1\ v', in which case P' is per­
pendicular to 't. Thus P' is parallel to v; hence, 

I ka I = 'I ~," 1. 

Substituting v = : 1 rt' derive 

Q.E.D. 
We now define the torsion of a curve. 
It follows from the parallelism of P' and v thai, in moving along 

a curve in the direction of increasing s, the osculating plane of the 
curve rotates about the tangent, due to which we define the torsion 
of the curve by the equality 

k2 =±I k2 I, 
take the plus if the rotation of the tangent plane is in the direction 
from~ to v (Fig. 96}, and the minus if it occurs in the direction from v 
to~- With this definition of the torsion of a curve, we will have either 

, · (r'r"r"') 
k 2 = ~ v or k 2 = - ki . 

We now find the expression for the torsion of a curve in the case 
of any regular parametrization r = r (t). 

We have 

r; = r't', r:. = r't' 2 + r't", r;;s = r"'t'3 + {r', r"}, 
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where {r', r"} is a linear combination of the vectors r' and r". Sub­
stituting the expressions obtained for r~, r:, and r;;; in the formula 
for k2 , and noticing that t' 2 = 1/(r'2), we 
obtain 

(r' r"r"') 
(r' /\r")" • 

We now find all the curves with zero 
torsion at each point. 

We have 

k~ = P'v = 0. 

Besides, since P'"C = 0, and P'fl = 0, 
we obtain P' = 0, fl = Po = const. 

The vectors "C and Pare perpendicular. Fig. 96 
Hence, r'flo = 0 and (r (s)- r0 ) flo = 0, 
which means that the curve is in the plane given by the vector 
equation (r - r0) Po = 0. 

Thus, a curve with zero torsion at each point is plane. 

5. Frenet Formulas 

Three half-lines emanating from a point on the curve, and with 
the directions of three vectors "C, v and p, are the edges of a trihedral 
angle called a moving trihedral. 

Express the derivatives of "C, v and fl with respect to the arc of 
the curve in terms of "C, v and fl themselves. · 

We have 
"C 1 = r" = k1v. 

To obtain P', we recall that it is parallel to v, and fl'v = k2• 

Hence, 

Finally, 

·v' = (fl/\ "C)' = fl' 1\ "' + fl/\ "'' 
= k2v 1\ "' + k1fl/\ v = -(k1"C + k2fl). 

The formulas 
"C' = k1v, 
v' = -k1"C-k2fl, 
P' = k2v 

are called the Frenet formulas. 
The curvature and torsion of a curve are functions of arc length g 

along the curve. The equations 
k1 = <p (s), k1 = '¢ (s) 
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specifying the curvature and torsion of the curve as functions of arc 
length s are called the natural equations of the curve. 

It turns ,out that a curve is determined uniquely up to position in 
space by i(s natural equations if k1 > 0. 

6. Evolute and Evolvent of a Plane Curve 

Let y be a regular (thrice differentiable) curve given by an equation 
of the form r = r (s). Cut off a line segment equal to the curvature 
radius p = : in the direction of the vector v, on the normal to the 

1 --
curve from its arbitrary point P. We call the segment's end-pointjthe 
centre of curvature of the curve. The name is due to contact of order 
three between the circle with this centre and radius p, and the curve 
at P, i.e., the distance from a point on the curve to the circle is 
an infinitesimal of order three with respect to the distance from P. 
Recall that a tangent has contact of order two with the curve. 

If it is a curve, then the locus of the centres of curvature is called 
an evolute. We show tlraT an evolute is the envelope of the normals 
to a curve. In fact, the equation of an evolute is 

- 1 ' 
r=r+~v, 

whereas the tangent vector of the evolute is 

;I =r' + c:1) I'\'+ :1 (-k,-r) = ( ;1 )' "· 
and is thus directed along a normal to the curve. Therefore, the 
normal is a tangent to the evolute, which means that the evolute of 
a curve is the envelope of its normals. 

Note that if k~ =1= 0, then the length of the evolute a ~ s::::;;; b 
equals 

or the difference between the curvature radii at the ends of the seg-
ment. \ 

We now define the evolvent of a curve. Let r = r (s) be a curve 
with the natural parametrization. If s <::: 0, then we mark off a line 
segment of length I s I from a point on the curve on its tangent along 
the direction of the vector -r, and along the opposite direction if s > 0. 
The curve described by the end of this segment is called the evolvent 
of the curve. 

The formation of an evolvent can be visualized as follows. Imag­
ine an inextensible string fixed on a curve with one end, and wound 
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around it. If we wind the thread off the curve by pulling a tits free 
end, then it describes the evolvent of the curve (Fig. 97). 

This curve is the evolute for its evolvent. Indeed, the equation 
of an evolvent is 

r = r- n, 

whereas the tangent vector of the evolvent is 

? = r - 't - sk1v = -sk1v. 

It follows that a tangent to a curve is a nor-
mal to the evolvent. Therefore, the given curve Fig. 97 
is the evolute for its evolvent. 

Evolutes and evolvents have found important areas of practical 
applications, e.g., the teeth of cylindrical gear wheels have the form 
of the evolvents of circles. 

EXERCISES TO CHAPTER IX 

1. Find the length of a segment -a ::::;;;; x ::::;;;; a of a parabola y = bx2 • 

2. Find the length of the segment of a curve 

x = a cosh t, y = a sinh t, z = at 

between the points 0 and t. 
3. Find the length of the astroid 

x = a cos3 t, y = a sin3 t. 

4. Find the length of the segment 0 ::::;;;; t =:;;;; 2:rt of the cycloid 

x = a (t - sin t), y = a (1 - cos t). 

5. Find the expression for the arc length of a curve given in polar 
coordinates by an equation p = c:p (8). 

6. Find the curvature of the curve 

·X= t-sin t, y= 1-cost, 

7. Find the curvature of the curve given by the implicit equations 

x + sinh x = sin y + y, z + ez = x + ln (1 + x) + 1 

at the point (0, 0, 0). 
8. Find the curvature of a ·circle of radius R. 
9. Find the curvature and torsion of 

x = a cosh t, y = a sinh t, z = at. 
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10. Find the curvature of the ellipse 

~+~=1 all bl 

at its vertices. 
11. Show that the curvature and torsion of a helix are constant. 
12. Derive a formula for the curvature of the plane curve given 

in polar coord,inates by the equation 

13. Prove that if the tangents to a curve make a constant angle 
with a certain straight line, then the principal normals are perpen­
dicular to the line. 

14. Prove that if the osculating planes of a curve are concurrent, 
then_ the torsion of the curve is zero, and, therefore, the curve is plane. 

15. Find the torsion of the curve 

r= J e (t) /\e' tt) dt, 
- -

where e (t) is a vector function satisfying I e (t) I = 1, e' (t) =I= 0. 
16. Prove that if the tangents to a curve make a constant angle 

with a certain direction, then the ratio of the curvat.ure to the torsion 
is constant. 

17. Find the evolute of the parabola 

y2 = 2px. 

18. Show that the·evolute of the tractrix 

x = -a {In tan T +cos t) , y =a sin t 

is the catenary curve y =a cosh...=_ . 
a 

19. Find the evolvents of the circle x2 + y2 = R2• 
20. Find all _the _plane curves -with the given natural equation 

k1 = k (s). 
21. How can the equations of a curve he found, given one of the 

three vector functions 'f (s), v (s) or fl (s)? 
22. Prove that if a curve possesses- one of the following four 

properties, viz., 
(a) the tangents make a constant angle with a certain direction, 
(b) the binormals make a constant angle with a certain direction, 
(c) the principal normals are parallel to a certain plane, 

and 
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(d) the ratio of curvature to torsion is constant, then it possesses 
the other three properties. 

23. Prove that if the curvature and torsion of a curve are constant, 
then this is a helix. 

Chapter X 

TANGENT PLANE 
AND OSCULATING,PARABOLOID OF SURFACE 

1. Concept of Surface 

Let G be a set of points in the plane. A point X of G is said to be 
interior if all points of the plane, which are sufficiently near to X, 
belong to G. This means that there is a positive number 8 such that 
all points in the plane, whose distance from X is less than e, lie in G. 
A set G is said to be operi if each of its points is interior. A set G is 
called a domain if it is open, and if any two of its points can be joined 
with a broken line lying in G. E.g., a circle without its boundary 
circumference is a domain; 

Let G be a domain in the plane. A point X of the plane is said to 
be boundary for G if there are points in G; which are arbitrarily near 
to X, and if there are points not belonging to G, which means that, 
for any 8 > 0, there are points belonging to G, which are from X 
at a distance less than 8, and if there are points not in G. The boundary 
points make up the boundary o~ the. domain G. In the above example, 
the circumference bounding 'a circle consists of boundary points. An­
nexing the boundary to a domain, we obtain a closed domain. 

The concepts of interior point of a set in space, of open set, domain 
and closed domain are defined verbatim as for planar sets. A neigh­
bourhood of a p~int is any open set containing the point. In particular, 
an 8-neighbourhood is the set of points which are from a given point 
at a distance less than e. 

We now give a few definitions related to the 'Concept of surface. 
We will call a figure obtained by a topological transformation of 

a plane domain an elementary surface. A figure is called a simple surface 
if each of its points possesses. a three-dimensional neighbourhood 
such that part of the figure, contained in the neighbourhood, is an 
elementary surface. A generic surface is a figure obtained by a locally 
topological transformation of a simple surface. 

Due to these definitions, the study of any surface "in the small" 
reduced to that of an elementary surface. 
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Let an elementary surface F be obtained by a topological trans­
formation of a plane domain G. Introduce Cartesian coordinates u, 
v in the plane of G. The equations 

x=/1 (u,v), y=/2 (u,v), z=fa(u,v) (•) 

specifying a transformation of G into F are said to be parametric. 
The values u and v completely specify the position of a point in 

the surface, and are called curvilinear, or Gauss, coordinates on the 
surface. 

For fixed u (or v), the equations (*) specify certain curves in the 
surface. They are called coordinate lines. The lines along which only 
u varies (v = const) are called the u-curves, whereas those along which 
only v varies (u = const) are termed the v-curves. 

Specifying a surface by the equations 

x = / 1 (u, v), y = / 2 (u, v), z = /a (u, v) 

is equivalent to that by one vector equation 

r = f (u, v), 
where 

r = xe1 + ye2 + ze3 , 

f (u, v) = /1 (u, v) e1 + / 2 (u, v) e 2 +fa (u, v) ea. 

2. Regular Surfaces 

We call a surface F regular if each of its points possesses a neigh­
bourhood admitting a regular parametrization, or parametric re­
presentation 

x = f 1 (u, v), y = f 2 (u, v), z = fa (u, v), 

where ft, / 2 , fa are regular functions (k times continuously 
differentiable, k > 1) such that the rank of the matrix 

{ ftu f2u fau) 

\/1v /2'J fav 

is two, i.e., at least one of the determinants of order two is not zero. 
In the case of vector specification by an equation r = f (u, v), this 
means that fu 1\ f v =I= 0, and that the vectors fu and f v are non-zero 
and non-collinear. When k = 1, the surface is said to be smooth. 

Let a smooth surface be given by parametric equations 

x = /1 (u, v), y = /2 (u, v), z = /3 (u, v), 
and 

at a point Q0 (u 0 , v0) •. 
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We prove that the surface in the neighbourhood of Q0 admits a 
specification by an equation of the form 

z = F (x; y). 

By the implicit function theorem, the system of equations 

x = / 1 (u, v), y = / 2 (u, v) 

can be solved for u, v in the neighbourhood of (u 0 , v0). We obtain 

u = cp (x, y), v = '¢ (x, y). 

Introducing parameters a, ~instead of u, v according to the formu:.. 
las u = cp (a, ~), v = '¢ (a, ~), we get 

x = a, y = ~. z = /3 (cp (a, ~), '¢ (a, ~)), 

or, which is equivalent, 

z = /3 (cp (x, y), '¢ (x, y)) = F (x, y), 

and the statement is thus proved. 

3. Tangent Plane to a Surface 

Let <I> be a surface, P a point in it, and a a plane passing through P 
(Fig. 98). Take another point Q in the surface, and denote its dis­
tances from P and a by d and h, respec­
tively. 

We will call a the tangent plane to the 
surface at P if the ratio h!d-+0 as Q -+P. 

A smooth surface <I> possesses one, and only 
one, tangent plane at each point. 

If r = r (u, v) is some smooth parametri­
zation of the surface, then the tangent plane at 
a point P (u, v) is parallel to the vectors Fig. 98 
ru (u, v) and r v (u, v). 

Proof. Assume that <I> at P (u, v) possesses a tangent plane a. 
Let n be the unit vector perpendicular to a. The distance d from a 
point Q (u + du, v + dv) to P (u, v) is equal to I r (u + du, 
v + Av) - r (u, v) I, whereas that from Q to a is 

I (r (u + du, v + dv)- r (u, v)) n I, 
h l(r(u+~u. v+~v)-r(u. u))nl 
d= !r(u+~u, v+~v)-r(u, v)l • 

By definition, hid -+ 0 as du and dv independently tend to zero. 
In particular, 

l[r (u+~u. v)- r (u, v)) n I -+ O as du ...-+ O. . 
lr (u+ ~u. v) -r (u, v)l 
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However, 

I r(u+llu,Avu)-r(u, v)·nl 
f(r(u+llu, v)-r(u, v))nf u 

fr(u+llu, v)-r(u, v)f - lr(u+llu,;~-r(u, v) I -
Thus, 

ru (u, v) n = 0. 

fru (u, v) nf 
fru (u, v) I 

Since ru (u, v) =I= 0 (ru /\ r v =I= 0), the equality ru (u, v) n = 0 
holds if and only if r u (u, v) is parallel to a. It is shown similarly 
that r v (u, v) is also parallel to a, and, since both are non-zero and 
non-parallel, i.e., (ru (\ r v) =1= 0, the tangent plane is unique if it 
exists. 

We now prove the existence of a tangent plane. Let a plane a 
be parallel to ru (u, v) and rv (u, v). We show that it is tangent to 
the surface at the point P (u, v). 

We have · 

h I (r (u+ flu, v+ llv) - r (u, v)) n I 
-;r= fr (u+llu, v+llv)-r (u, v) I 

I (run) flu+ (rvn) llv+ 81 V-,-llu~1,....,+,-A.,...v-=2 1 

lru llu+rv llv+ea V llu2+flv2f 

te1l 

l·ru _flu +rv llv +e21 ' 
V flu2+ flv2 V !lull+ flv2 

wJwre I 8 1 I ~iid I 8 2 I tend to . zero as !lu, !lv - 0. 
· To prove that ]1,/d .:-+ 0 as !l·u, !lv -0, it suffices to show that, 

for any !lu' and !iv;·. · 

I. ru flu + rv llv I > C > O 
V flu2+flv2 V f1u2+flv2 ' 

where c is a certain constant. 
Since the sum of the squares of !lu/V !lu2 + !lv2 and !lv/V !lu2 + L\v2 

is unity, at least one of them is not less than 1/y2. E.g., let 
!lulV !lu2 + !lv2 ;;;:.1/V 2. Denote by e the unit vector coplanar 
with the vectors ru and rv, and perpendicular to rv. We have 

I ru flu + rv llv I 
V llu2 +flvl -y·flu2+llv• 

;;;:.J ( ru y ll.:s~flv2 + rv V ll:sv+llv2 } e I 
I flu \ sine =(rue) ,/ ;;;:.lrul ,,~2 • 

" llu2 + flv2 " 
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where a is the angle between ru and r 0 • Similarly, if 
L1v/V L1u2 +L1v2 ~1/V2, then 

I 
ru flu + rv llv I:::::;:: I I sin e 

Yllu2+flv2 yflu2+flv2 ,;::-- rv y2 • 
Thus, we can take the least of the values lrul sin arV2 and 

lrvl sin8tV2 as the constant c. 
Q.E:D. 

4. Equation of a Tangent Plane 

We now make up the equation of a tangent plane to a surface given 
by parametric equations 

x = x (u, v), y = y (u, v), z =. z (u, v). 

Let Q0 (u 0 , ·v0 ) be a point on the surface, and A (x, y, z) an arbi-
--+ 

trary point in the tangent plane at Q0 • Then the vectors Q0A, ru 
and r v are coplanar. Therefore, their sc~.lar. triple product is zero. 

Hence, the equation of the tangent plane is 

x-x~,~ y-y~,~ z-z~.~ 

Xu (u0, v0) · · Yu (u0 , v0) · Zu (u0 , v0) = 0. 

Xv (u'o, Vo) Yv (uo, vJ . Zv (uo, Vo) 

To derive the equation of a tangent plane to a surface given by 
an equation z = f (x, y),'it suffices to notice that this' is only a brief 
form of specifying the surface. parametrically, ~s 

or 

x = u, y ::::: v, z = f (u, v). 

Consequently, the tangent plane equation is 

x-Xo Y-:-Yo z-f(xo, Yo) 

1 0 f x (xo, Yo) = 0, 

0 f fu (xo, Yo) 

z - f (xo, Yo) = fx (xo, Yo) (x - Xo) + fu (xo, Yo) (y -Yo)· 

We now find it for a surface given implicitly by the equation 

cp (x, y, z) = 0, cp~ + cp~ + cp: =I= 0. 
Let 

x = x (u, v), y = y (u, v), z = z (u, v) 

be some parametric representation of the surface. Differentiating the 
identity 

cp (x (u, v), y (u, v), z (u, v)) = 0 
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with respect to u and v, we obtain 

(j)xXu + {j)yYu + (j)zZu = 0 

(j):\..X v + fl!yYv + (j)zZv = 0, 

Hence, the vector with components crx. cp 11 , crz is perpendicular to 
the vectors ru and r v and, therefore, to the tangent plane. Knowing 
the vector perpendicular to the plane, we easily obtain its equation, 
viz., 

(x - Xo) crx (xo. Yo. Zo) + (y - Yo) {j)y (xo. Yo. Zo) 

+ (z - Zo) <ilz (xo, Yo. Zo) = 0. 

A straight line passing through a point P on a surface at right 
angles with the tangent plane at this point is called the normal to 
the surface at P. Obviously, the normal to a surface has the same 
direction as the vector ru 1\ r 0 • Hence, its equation is not difficult 
to make up. 

5. Osculating Paraboloid of a Surface 

Let <I> be a regular surface, P a point on it, and U a paraboloid 
with vertex P and axis coinciding with the normal to the surface 

at P. Take OB <I> a pojnt Q near to P. A 
straight line passing through Q, and parallel 
to the axis, intersects the paraboloid at a cer­
tain point Q'. Denote by h the distance be­
tween Q and Q', and by d that between Q and 
P. U is said to be osculating at a point P of 
the surface if h!cP -o as Q - P (Fig. 99). 

At each point of regular surface (twice con­
tinuously differentiable), there is one, and 
only one, osculating paraboloid; in particular, 

Fig. 99 it may generate into a parabolic cylinder or 
plane. 

Proof. Let the surface be given by an equation in vector form 
r = r (u, v) (assuming as always that ru 1\ r v =1= 0). We introduce 
a coordinate system x, y, z by taking as the xy-plane the tangent plane 
to the surface at a point P, and the normal to the latter as the 
z-axis. Meanwhile, as the vector r u 1\ r v is directed along the z-
axis, 

I Xu X 0 I =I= O. 
Yu Yo 

Therefore, in a sufficiently small neighbourhood of P the surface 
can be given by an equation of the form 

z= f (x, y). 
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Since the tangent plane equation at P is 

z = xfx (0, 0) + Yfu (0, 0), 

and this is the xy-plane, fx (0, 0) = 0, / 11 (0, 0) = 0. Accordingly, 
the expansion of the function f (x, y) in the neighbourhood of the 
origin is of the form 

f f (x, y) = 2 (rx2 + 2sxy + ty2) + 8 (x, y) (x2 + y2), 

where r, s, t are the second derivatives off (x, y) at the origin (r = 
fxx. s = fxu• t = /yy). and 8 (x, y) -+0 as x, y -+0. Thus, the 
equation of the surface in the neighbourhood of the origin is of the 
form 

Any paraboloid with vertex at the origin and the z-axis and also 
its degeneracy into a parabolic cyli_nder or plane, can be given by an 
equation of the form 

z = ax2 + 2bxy + cy2• (*) 

We prove that if an osculating paraboloid does exist, then it is 
unique. Let the paraboloid (•) be osculating. 

We have 

h I---} ((r-a) x2+2 (s-b) xy+(t-c) y2)+e (x, y) (x2+y2) I 
(12= x2+y2+f2(x, y) 

Putting y = 0, and lettingx -+0, we see that 

:~ -I-} (r-a) I· 
Hence, a= r. Similarly, we conclude that c = t. Setting x = y -+ 

0, we then find that b = s. Thus, if an osculating paraboloid exists, 
then it must have the equation 

1 
r= 2 (rx2+2sxy+ ty2), 

and is, therefore, unique. 
That it is osculating can be seen easily. Viz., 

h le (x, v)(x2+ Y2) I 0 
(j2 = x2+y2+J2 (x, Y) < f8 (x, Y) I- , 

thus completing the proof. 
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6. Classification of Surface Points 

The form of a regular surface in a sufficiently small neighbour­
hood of an arbitrary point is given, to a first approximation, by a 
tangent plane, and, to a second approximation, by osculating para­
boloid. Depending on the osculating paraboloid, the points of a 
surface are classified into elliptic, hyperbolic, parabolic and planar 
ones. · 

A point of a surface is said to be elliptic if the osculating paraboloid 
is elliptic at it. In a sufficiently small neighbourhood of such a point, 
the surface resembles an elliptic paraboloid (Fig. 100a). 

(a) (b) (c) (d) 

Fig. 100 

A point of a surface is said to be hyperbolic if the osculating para­
boloid at it is hyperbolic (Fig. 100b). 

A point of a surface is said to be parabolic if the osculating para­
boloid degenerates into a parabolic cylinder (Fig. 100c). 

A point of a surface is said to be planar if the osculating paraboloid 
degenerates into a plane (which is tangent to the surface) (Fig. 100d). 

Let P be an elliptic point of a surface. Construct an osculating pa­
rabolo'id at P ana cut the surface with a plane parallel to the tangent 
one at the point at the distance 1/2 from it, obtaining an ellipse in 
the section. Its projection onto the tangent plane is called the Dupin 
indicatrix, or the indicatrix of the normal curvature. 

Since the equation of a paraboloid is z = ~ (rx2 + 2sxy + ty2), 

that of the Dupin indicatrix 

rx2 + 2sxy + ty2 = ±1,, 
where the plus and minus depend on where the surface is placed, 
viz., in the half-space z > 0 or z < 0. 

Directions at a point P on a surface are said to be conjugate if 
they are those of the Dupin indicatrix conjugate diameters at P. 
Directions at Pare said to be principal if they are those of the Dupin 
indicatrix axes at the point. 

The Dupin indicatrix of a surface at a hyperbolic point is defined 
similarly, consisting of two conjugate hyperbolas given by the equa­
tion 

rx2 + 2sxy + ty2 = ±1, 
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the plus corresponding to one, and the minus to the other (conju­
gate) hyperbola. In addition to conjugate and principal directions, 
at a hyperbolic point, we introduce the concept of asymptotic direc­
tions, viz., those of the indicatrix asymptotes. 

At a parabolic point P of the surface, the Dupin indicatrix con­
sists of two parallel straight lines symmetric about P. At a planar 
point, a Dupin indicatrix does not exist. 

The name "Dupin indicatrix" is related to the French geometer 
Ch. Dupin who introduced the concept. The term "indicatrix of the 
normal curvature" will be made clear by what follows. 

EXERCISES TO CHAPTER X 

1. Given the circle 

z2 + (x- a)2 = R 2 , a> R, 
in the xz plane, fi.nd the equation of the surface obtained by rotat­
ing it about the z-axis (torus). 

2. Determine the form of the surface given parametrically by 

x = a cos u cos v, y = a cos u sin v, z = c sin u, 

and fi.nd its implicit equation. 
3. Find the equation of the surface obtained by rotating a curve 

x = q> (u), z = '¢ (u) about the z-axis (surface of revolution). 
4. A straight line g moves in space so that 
(a) it always intersects the z-axis at right angles, 
(b) the point where g meets the z-:axis moves uniformly with ve­

locity a, 
(c) g rotates uniformly about the z-axis with angular velocity ro. 
Find the equation of the surface described by g (helical surface, 

helicoid). 
5. What is the form of the surface formed by the principal normals 

to a helix? 
6. The surface formed by translating a curve along another is 

called a translation surface. Prove that a translation surface can be giv­
en by an equation of the form r = q> (u) + '¢ (v), where q> and '¢ are 
two vector functions, of which q> depends only on u, and '¢ only 
on v. 

7. Show that the locus of the midpoints of line segments whose 
ends are on two given curves is a translation surface. 

8. Make up the equation of the surface formed by straight lines 
parallel to a vector a, and intersecting a curve r = r (u) (cylindrical 
surface). 

9. Find the equation of the surface formed by straight lines pas­
sing through a point (a, b, c), and intersecting a curve r = r (u) 
(conical surface). 
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10. Show that the equation of any surface formed by straight 
lines can be written as r = f (u) + vcp (u), where f· and cp are two 
vector functions. 

11. Show that the equation of the tangent plane at a point (x 0 , 

y 0 , z0) on a surface ax2 + by2 + cz2 = 1 can be written as axx0 + 
byy 0 + CZZ0 = 1. 

12. Make up the equation of the tangent plane to a sphere 

x = a cos u cos v, y = a cos u sin v, z = a sin u 

at the point (a, 0, 0). 

13. Show that all the tangent planes to the surface z = xcp { ~ ) 
pass through the origin of coordinates. 

14. Show that the surfaces 

intersect at right angles. 
15. Show that the normals to the surface x = cp (u) cos v, y = 

cp (u) sin v, z = '¢ (u) intersect the z-ax.is. · 
16. Find the surface formed by the normals to y = x tan z along 

the straight line y = x, z = ~ . 
17. Find the equation of the osculating paraboloid to an ellipsoid 

at the point (0, 0, c). 
18. Investigate the nature of points (viz., whether they are el­

liptic, hyperbolic or planar) on quadric surfaces. 
19. Prove that if a smooth surface has only one point in common 

with a plane, then the plane is tangent at the point. 
20. Prove that if a surface touches a plane along a certain line, 

then each point in the line is either parabolic or planar. 
21. Let <1> be a surface, P a point on it, and a the tangent plane 

at P. 
Prove that 
(a) if P is elliptic, then all points on <I>, which are sufficiently near 

to P, are on one side of a, 
(b) if P is hyperbolic, then there are points on <1>, as close to P 

as we please, and on opposite sides of a. 
22. Prove that if all points on a curve "( on a surface are planar, 

then the curve is plane. 
23. Prove that there are elliptic points on a closed surface. 
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24. Prove that if all normals to a surface intersect a certain 
straight line, then it is either a surface of revolution or a domain on a 
surface of revolution. 

25. Prove that if all normals to a surface are c~mcurrent, then it 
is either a sphere or a spherical domain. 

Chapter XI 

SURFACE CURVATURE 

1. Surface Lin,ear Element 

Let $ be an elementary surface obtained by a topological trans­
formation of a domain G in the uv-plane, and u = u (t), v = v (t) 
a curve in G. A transformation of G into$ transforms the curve into 
a curve 'Von$. If$ is given by a vector equation r = r (u, v), then 'V 
is specified by r = r (u (t), v (t)). 

Its length is determined by the formula 

s = }Vr?dt=) J,/r~ ( ~~ t +2rurD { ~~) ( :~) +r~ { :~ ) 2 dt 

= ) V r~ du2 + 2rurD du dv + r! dv2 , 

'I' 

where ~ denotes integration along 'V· 
'I' 

The quadratic form 

ds2 = r~ du2 + 2rurD du dv + r: dv2 

is called the first fundamental form, or surface linear element. We will 
employ the notation 

r~ = E, . rur D, = F'_, .r~ = G 

for its coefficients. It follows from the formulas (•) for the length of 
a curve, that, to measure it, the knowledge of its first fundamental 
form is sufficient, due to which the first fundamental form is said to 
determine a metric on the surface. 

Let u = u1 (t), v = v1 (t) and u = u2 ('t); v = v2 ('t) be the equa­
tions of two curves in a domain G, which pass through a point (u 0 , v0). 

A transformation of G into a surface $carries them into two curves "(1 

and "(2 on $. We call the angle a between the half-tangents to these 
curve's the angle between "(1 and "(2 at their common point P (u 0 , v0). 
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We have 

cos a = rir~ - (t·uu: +rvvl) (ruu2-rvv;) 

Y r? V ~~ V (ruu: +ruV;}2 V (ruu~+rvv;r• 

(Eu:•+ 2Fu{vl +Gv(2)1J2 (Eu2•+2Fu2v2+Gv?)IJ2 

If we denote by d and () differentiation with respect to u and v 
along y1 and y2, then the formula can be written as 

a E du llu+F (du llv+dvllu)+G dvllv 
COS = (E du•+2F du dv+G dP2)1/ 2 (E l>u1 -t2F llu llv+G 6v2)1 / 2 

It is seen from (**) that the angles between curves on a surface are 
also determined by the first fundamental form. 

We now clarify on what condition the u-, v-curves on the surface 
are orthogonal, i.e.; intersect at right angles. Along the u-curves, 
du =1= 0, dv = 0, whereas along the v-curves l)v -=1= 0, (;u == 0. There­
fore, cos a = 0, or u-, v-eun•es are orthogonal if and only if F du 
6v = 0, i.e. tf F = 0. 

A length-preserving, or, as we eall it, metric-preserving trans-­
formation, is called a deformation of the surface. A deformation is 
also called an isometric transformation. Surfaces transformed into 
each other by an isometric transformation are said to be isometric. 
Under a suitable parametrization, isometric surfaces possess the 
same first fundamental form. A surface "in the small" is usually de­
formable. A surface "in the large", e.g., a sphere, tnay not be de­
formable. Any regular (twice differentiable) surface which is isometric 
to a sphere is a congruent sphere. 

A transformation of a surface is said t6 be conformal if it is angle­
preserving. Conformal transformations play an important part in 
cartography. Maps are actually conformal representations of do­
mains on the earth's surface. The expedience of a map conformal 
representation is due to its similarity "in the small", and a faithful 
teprodnction of the form of small domains. 

2. Area of a Surface 

Let <1> be a smooth surface. Partition it into small domains g, 
and take a point P as a base point in each, projecting one domain g 
onto the tangent plane at this point. Denote the projection area by 
cr {g). By the area of <1>, we understand 

S = lim ~ o (g), 
g 

provided that the domains g of the surface partition decrease in size 
without limit. 
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We now find the formula for the area of a surface given by a vector 
equation r = r (u, v), for which we first derive an expression for 
a (g). Introduce Cartesian coordinates x, y, z by taking P as the 
origin, and the tangent plane at this point as the :ry-plane. Let the 
surface be then given in g by equations 

x = x (u, v). y = y (u1 v), z = z (u, v). 

For sufficiently small g, their projections onto the tangent plane1 

i.e., the xy plane, are unique; therefore, u, v can be regarded as cur­
vilinear coordinates on the projection. As is known from analysis, 
the area of a plane domain is found by the formula 

a=~ J II:: ~: lldudv, 

with respect to curvilinear coordinates. 
The integrand can be represented in the form 

II :: ~: II== l(ruf\ro) nplt 

where np is the unit normal vector to the surface at P, and we can 
write 

~a (g)= J J l(ru/\r0 \ n*l du dv, 
g Cll 

where n* is a vector function on the surface, constant in each of 
the domains g, and equal to the unit vector of the normal at the base 
point P of the domain. 

Now, passing to the limit, provided that g decrease in size without 
limits, we obtain the formula for the area 

8= J J l(ruf\r0)nl.dudv. 
(I) 

Since the vectors ru 1\ r., and n are-collinear, 

Noticing that 

we obtain 

8':!::::: J .~ lru/\ro I dudv. 
ol> 

8= J J V EG--F2 dudv. 
ell 

We see that the area of a surface, too, ts determined by its first fun­
damental form. 
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If a surface is given by an equation of the form z = z (x, y), then 
E= 1+z~, F=zxzy, G= 1+z~. 

Therefore, 

3. Normal Curvature of a Surface 

Given a curve y on a surface specified by a vector equation r = 
r (u, v), we introduce the natural parameter (s) of this curve. 
Then u and v are functions of s, and the curve is given by an equation 
r = r (u (s), v (s)). As we know, 

r~. = k1v, 
where v is the principal ul).it normal vector, and k1 the curvature. 
Multiplying throughout by the unit surface normal vector n, we 
obtain 

r~.n = kl cos e, 
6 being the angle between v and n. 

To transform the left-hand side, we see that 

r~. = ruu" + rvv" + ruuu' 2 + 2ruvU1V 1 + rvvv'2• 

Therefore, 

r';,n = (ruun) u'2 + 2 (ruvn) u'v' + (r11 vn) v'2 

_ (ruun) du1 +2 (ru11D) du dv+(r1111n) dv2 
- E du•+2F du dv+Gdv2 

(*) 

The quadratic form in the numerator is called the second funda­
mental form of the surface. We will always use the notations 

ruun = L, ruvll = M, rvvn = N 
for its coefficients. 

Now, we derive from (*) that 

e L du2+2M du av+N dvs 
kt COS = E du 2 + 2F du dv+G dv2 • 

Hence, k1 cos e depends only on the direction of y, i.e., the value 
du/dv. Therefore, k1 cos e is the same for all curves with a common 
tangent. If we take as the curve the surface section by a plane perpen­
dicular to the tangent plane (normal section), then 1 cos e I . 1; con­
sequently, 

k 1 I cos e I = ko, 
where k 0 is the normal section curvature. If we ascribe a suitable 
§ign to normal curvature, then the formula- can be simply written as 

kl cos e = ko. (u) 
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k _ L du2 +2M du dv+N dv2 
o- Edu2+2Fdudv+Gdv2 

The relation (*•) between curvature on a surface and normal cur­
vature is the subject matter of the Meusnier theorem. 

We now obtain expressions for the first and second fundamental 
form coefficients if the surface is given by parametric equations 

x = x (u, v), y = y (u, v), z = z (u, v). 
We have 

E = r~ = x~ + y! + z!, 
F = rurv = XuXv + YuYII + ZuZII! 

and 
G = r~ = x~ + yi, + z;, 

Xuu Yuu Zuu 

Xu Yu Zu 

XII Y11 z" L (ruAr") 
=ruun=ruu I A I ru 1\ rv 

(ruurur11) 

lru/\r"( YEG-F2 

Similarly, we find 

Xuv Yuv Zu11 XIIII Y"" z"" 
Xu Yu Zu Xu Yu Zu 

M =- x" Y11 z" N = x" Y11 z" 

YEG-F2 yEG-F1 

To determine the coefficients of fundamental forms of the surface 
if it is given by an equation such as z = z (x, y), it suffices to notice 
that the specification is equivalent to parametric equations 

x = u, y = v, z = z (u, v), 

in which case we obtain for the coefficients, 

E = 1 + p 2 , F = pq, G = 1 + q2, 

where p, q, r, s, t are the first and second derivatives of the function 
z (x, y), viz., p = Zx, q = Zy, r = Zxx• s = Zxy• t = z,,. 

4. Indicatrix of the Normal Curvature 

Take a point 0 on a surface as the origin of coordinates, and the 
tangent plane in it as the xy-plane. As we know, the surface in the 
neighbourhood of 0 is then given by the equation 

z = ~ (rx2 + 2sxy+ ty2) + e (x, y) (x2 + y2), 

where e (x, y) -+ 0 as x, y -+ 0. 



166 Part Two. Differential Geometry 

The osr.ulating paraboloid at 0 is 

z = ~ (r:c2 + 2s:cy + ty2), 

whereas the Dupin indicatrix at the same point is 

rx2 + 2sxy + ty2 = ±1. 
It is easy to see that the first and second fundamental forms of the 

surface, and those of the osculating paraboloid at 0, are the same. 
Viz., the first and second fundamental forms are 

dJ:2 + dy2 
and 

r dJ:2 + 2s d:c dy + t dy2• 

Hence, the normal curvature of a surface and its osculating parabo­
loid is the same in the same direction. Viz., 

k _rdx111+2sdzdy+t dyll 
n- dx2+dy1 

We now turn to the Dupin indicatrix at 0 (Fig. 101), and find 
the expression for the normal curvature in a direction OQ in terms 

)' 
Q(x,y) 

Fig. 101 

X 

of the coordinates x andy of the point Q in 
the indicatrix. We have d:c : dy = x : y. 
Therefore, 

k _ rx2+2sxy+ty2 
n- x•+ya 

Since Q is in the indicatrix, the numerator 
equals ±1, and the denominator OQ2• 

Hence, 

which reveals the relation of the Dupin indicatrix to the normal 
curvature, and, therefore, the origin of its second name, "the in­
dicatrix of the normal curvature". 

From the formula (•), we derive that 
(i) the normal curvature of a surface in an asymptotic direction is 

zero, and 
(ii) the normal curvature of a surface along principal directions at­

tains extreme values. 
We now take the principal directions as those of the coordinate 

axes x and y. Then s = 0, and 

k ( dx ) 2 { dy ) 2 
n=r Yelx•+dyl +t Ydx'+dyl 

Putting dy = 0, we obtain k;,. = r, while setting d:c = 0, k; = t, 
where k;, and k;,. are the normal curvatures along the principal di­
rections. 
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Denoting 

dxtV dx2 + dy2 =cos a, dytV dx2 +dy2 = sin a, 
we obtain the Euler formula 

kn = k~ cos2 e + ~ sin2 e, 
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e being the angle made by a given direction with the principal which 
is associated with k~. 

5. Conjugate Coordinate Lines on a Surface 

The above concept of conjugate directions of a surface is related 
to the Dupin indicatrix, due to which we find the equations of the 
osculating paraboloid and Dupin indicatrix in an oblique coordinate 
system x, y, z closely related to a parametrization of u, v. Viz., we 
take ru, r" and n as the basis vectors along the coordinate axes. Let 
a point 0 on the surface be associated with coordinates u = u0 , 

v = v0• The surface equation in the neighbourhood of 0 can be writ­
ten as 

1 
r= ru (u-u0) +r" (v-v0) +2 (ruu (u-u0) 2 +2ruo (u-u0) (v-vo) 

+ f 110 (v -v0) 2) + e (u, v) [(u-u0)~+ (v-v0) 2]. 

We assert that the paraboloid given by the equation 

1 z= 2 (Lx2 +2Mxy+Ny2) (•) 

is osculating at 0. In fact, it can be given by parametric equations 

X=u-u0, y=v-v0, 
1 

z= 2 (£ (u-u0) 2 +2M (u-u0) (v-vo) +N (v-v0) 2). 

It can be easily verified by computation that the paraboloid and 
surface at 0 have the same first and second fundamental forms and, 
therefore, the same normal curvature, which already fully deter­
mines an <'sculating paraboloid. 

From the osculating paraboloid equation (•), we obtain that of the 
indicatrix of the normal curvature, 

Lx2 + 2Mxy + Ny2 = ±1. 

As we know, for two directions dx/dy and IJx!By to be conjugate 
with respect to this curve, it is sufficient that 

L dx Bx + 2M (dx IJy + dv Bx) + N dy IJy = 0. 
Since dx == du, dy = dv, 6z = 6u, 6y """6v at 0, 
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the condition for conjugacy of the directions d and cS of the surface is 

L du l>u +2M (du l>v + dv l>u) + N dv l>v = 0. 

We call u- and v-curves conjugate if the coordinate line directions 
at each point are conjugate. In the case of conjugate lines, M = 0. 
ConversP-ly, if M = 0, then the coordinate lines are conjugate. In­
deed, dv = 0 in the direction of the u-curves, and cSu = 0 in that 
of the v-curves. Therefore, 2Mdu ()v = 0, with the consequence that 
M = 0. Conversely, if M = 0, then 2Mdu ()v = 0. 

A line in a surface is said to be asymptotic if its direction at each 
point is asymptotic. Since the normal curvature along an asymptotic 
direction is zero, 

L du2 + 2M du dv + N dv2 = 0, 

which is just the asymptotic line equation. 
If the coordinate lines on a surface are asymptotic, then L = 0, and 

N = 0. Conversely, if L = 0, and N = 0, then the coordinate lines 
are asymptotic. 

In fact, if a u-curve is asymptotic, then L du2 = 0, and L = 0. 
If a v-curve is asymptotic, then Ndv2 = 0, and N = 0. Conversely; 
if L = 0, and N = 0, then Ldu2 = 0, and Ndv2 = 0, i.e., the coor­
dinate lines are asymptotic. 

Due to the second fundamental form simplicity in the case of 
asymptotic coordinate lines, it seems expedient to make use of the 
latter in general considerations. However, it should be borne in 
mind that asymptotic coordinate lines can be introduced only in 
the neighbourhood of a hyperbolic point, whereas conjugate ones 
in the neighbourhood of an elliptic or a hyperbolic point, and an ar­
bitrary family of coordinate lines can l:e taken, provided they have 
no asymptotic directions. 

Remark. The concept of asymptotic direction has been defined by 
us in terms of the Dupin indicatrix, and related only to the case of 
a hyperbolic point. Meanwhile, it is completely characterized by 
the fact that the normal curvature along this direction was zero, due 
to which we can extend the notion of asymptotic direction to the cases 
of parabolic and planar points, assuming a direction asymptotic if 
the normal curvature is zero. With this definition, we still have two 
asymptotic directions at a hyperbolic point, and one at a parabolic 
point, whereas, at a planar point, any direction is asymptotic. 

6. Lines of Curvature 
The principal directions of a surface have been defined by us as 

those of the Dupin indicatrix axes. We then proved (see Sec. 4) that 
principal directions are characterized by the normal c;-urvature having 
extreme values along them. Therefore, principal directions can be 
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specified just by this property, and the concept of principal direction 
is then extendable to planar points with no Dupin indicatrix. Since­
the normal curvature is zero at a planar point in any direction, each 
direction is principal. 

Generally speaking, there are two principal directions at each 
point of a surface, with the exception of planar and special elliptic 
points with a circle as the Dupin indicatrix (spherical points), where­
any direction is principal. 

We now find a condition on which a direction du/dv of a surface­
should be principal. 

We have 
k _ _!!._ _ L du2+2M du dv+N dv2 
n- I - Edu2 +2Fdudv+Gdn1 

Since the right-hand side has an extreme value for a principal direc-­
tion as a functionofdu, dv, its derivatives with respect to these 
variables are zeros. · 

Hence, 
2(Ldu+Mdv) 

I 
2(Mdu+N dv) 

I 

2 (E du+F dv) 
II 

2 (F du+Gdv) 
II 

II =0, 

where I and II denote the first and second fundamental forms. 
We derive 

Ldu+Mdv =]!_=k 
E du+F dv I n• 

Mdu+Ndv _ II_ k 
Fdu+Gdv -T- n• 

Consequently, the principal 

Ldu+Mdv 
Edu+Fdv 

direction equation is 

Mdu+Ndv =O 
Fdu+Gdv ' 

which can be written in a form more convenient to be committed 
to memory, viz., 

dv2 -dudv 
E F 
L M 

du2 

G =0. 
N 

A line on a surface is called a line of curvature if its direction is 
principal at each point. Therefore, (*) is the curvature line 
differential equation. 

If the coordinate lines on a surface are those of curvature in a do­
main containing no planar or spherical points, then F = 0, and 
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.M = 0. Indeed, there are two principal, orthogonal and conjugate 

.directions at each point. Therefore, F = 0, and M = 0. 
In conclusion, we prove the following Rodrigues theorem. 
In differentiating along a principal direction, 

dn = -kn dr, 
:where kn is the normal curvature. 

Proof. Introduce coordinate lines u, v so that the direction of the 
.u-curve at a given point is principal, and the coordinate lines are 
-orthogonal. Since n2 = 1, we have nun = 0, i.e., the vector nu is 
_perpendicular to n, and, therefore, admits a resolution in terms of 
-the vectors ru and r", viz., 

nu = A.ru + flr "" 
Multiplying scalarly throughout by r"' and noticing that rurv = 0 

·(orthogonality), nur" = -M = 0 (conjugacy), we obtain fl = 0. 
Now, multiplying throughout by ru, we get 

Hence, 
nuru = A.r~, i.e., -L = A.E. 

L 
-A.=E' 

,but this is the normal curvature kn along the direction of u. 
Thus, 

Q.E.D. 
7. Mean and Gaussian Curvatul'e of a Surface 

The mean curvature of a surface is half the sum of the principal 
-curvatures. The total, or Gaussian, curvature of a surface is the product 
-of the principal curvatures. 

At an elliptic point, the principal curvatures have like signs; 
therefore, the Gaussian curvature is positive. At a hyperbolic point, 
the principal curvatures have unlike signs; therefore, the Gaussian 
-curvature is negative. At a parabolic or planar point, the Gaussian 
-curvature is zero. 

We now find the expression for the mean and Gaussian curvature 
-of a surface in terms of the first and second fundamental form coef­
ficients. In the previous section, we have derived two formulas for 
·the normal curvature along a principal direction du/dv, viz., 

k L~+M• k M~+N• 
n= Edu+Fdv ' n= Fdu+Gdv ' 

-which can be rewritten as 
Ldu+M dv-kn (Edu+F dv) =0, 
M du+N dv-kn (Fdu+Gdv) =0. 
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Eliminating du and dv, we obtain 

I L-Ek" M-Fk.,. l=o, 
M-Fk.,. N-Gk.,. 1 
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(EG - F2) ~ - (LG - 2F M + N E) k.,. + (LN - M2) - 0. 

This quadratic equation has two roots, ~and k~, the principal 
curvatures of the surface. 

By the property of the roots of a quadratic equation. 
~+kti LG-2FM+NE 

2 2 (EG-FI) 

LN-M• 
EG-F2 • 

Such are the expressions for mean and Gaussian curvature. 
The concept of total curvatuxe was introduced by f. Gauss who 

gave another definition. Viz., let P be an arbitrary point of a surface, 
and 11 its small neighbourhood, Translate the unit normal vectors at 
different points of the domain g, so that they have a common origin. 
Then their ends are on the unit sphere, and form a certain set g (spher­
ical image of g). According to F. Gauss, the total curvature of the 
surface at Pis the limit of the ratio of the area of g to that of gas g 
is contracted to P. We show that this definition leads to the same 
expression, i.e., the principal curvature product. For simplicity, 
we confine ourselves to the case of an elliptic point P. 

We introduce coordinate lines u, v in the neighbourhood of P, 
so that their directions are principal at the point. 

The domain a.rea is 

8 (g)= J J lruJ\r11 1 du dv, 

whereas that of i 
8 (g)= J) lnuJ\n11 1 dudv. 

Since the domain of integration with respect to the variables u, 
v is the same in both formulas, 

lim S (g) = lnuAnpl 
g-.P S {g) lruArDI 

By the Rodrigues theorem, Du = - ~ru, n 11 = - k;r11 • Therefore, 

1. s (g) k'k· 
liD-S()= n n• 

g ... p g 

Q.E.D. 
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8. Example of a Surface 
of Constant Negative Gaussian Curvature 

An example of a surface of zero Gaussian curvature is the plane. 
Its normal curvature along any direction is zero. Therefore, the 
Gaussian curvature is also zero. 

An example of a surface of constant positive curvature is a sphere 
with radius R. Its normal curvature along any direction is 1/R. 

Therefore, the Gaussian curvature is 1/R2• 

We now construct an example of a surface 
of constant negative Gaussian curvature. We 
'shall seek it among surfaces of revolution. 

A surface of revolution is obtained by rotat­
ing a plane curve about an axis in the plane. 
Sections ofasurfaceofrevolution by planes pas­
sing through the axis are called meridians, and 
those by planes perpendicular to the axis par­
allels. 

Since a surface of revolution is symmetric 
about the plane of any meridian, its directions 
along meridians are principal. Therefore, di­
rections along parallels are also principal. 

Fig. 102 It is obvious that the normal curvature of 
a surface along the direction of a meridial'l 
is the curvature of the latter. The normal cur­

vature along the direction of a parallel is expressed in terms of its 
curvature by the Meusnier formula. 

Take as the z-axis that of the surface, and consider a meridian 
in the xz-plane. Let its equation be x = x (z). The normal curvature 
along its direction is then 

II 

k' X 
n= (1+x'2)3fl 

whereas that along the parallel 

k" 1 
n = - x (1 +x'2)1f2 ' 

1/x being curvature, and 11(1 + x'2) 112 the cosine of the angle between 
the tangent to the meridian and the axis of the surface (z-axis). Hence, 
the Gaussian curvature is 

K = k~k~ = - x (1 :x'2)2 

Multiplying throughout by xx', we obtain 

, x'x" 
Kxx =- (1+x'2)1 



Ch. XI. Surface Curvature 173 

integrating, we get 
K 2 - 1 

X +c- i+x'll ' 

where c is a constant. To make further integration in terms of ele­
mentary functions possible, we put c = 1. 

Then 
x'l 

Kx2=- 1+x'l 

Set x' =tan 0. We have 

Kx2 = - sin2 a, 1 . 0 
X= ~f Sin • 

v -K 

Further, 

;; , cotO, dz= V ~K :~~986 dO= y~K ( si!e-sin9)de. 

Hence, 

Z= V ~K (cosO+lntan ~) +c1• 

The constant c1 can be assumed to be equal to zero. 
Thus, the meridian can be given parametrically as 

_ x= V~K sinO, z= V~K {cosO+lntan ~). 

The curve is called a tractrix, and the surface of constant negative 
curvature obtained by rotation around the z-axis a pseudosphere 
(Fig. 102). 

EXERCISES TO CHAPTER XI 

1. Find the first fundamental form of the surface of revolution 
x = q> (u) cos v, y = q> (u) sin v, z = '¢ (u). 

2. Show that a surface of revolution can be parametrized so that 
its first fundamental form is du2 + G (u) dv2. 

3. Find the length of the curve given by u = v on the surface 
whose first fundamental form is du2 + sinh2 u dv2. 

4. Find the angle at which the coordinate lines x = x 0 , y = y0 
intersect on the surface z = axy. 

5. Show that the coordinate lines u, v are orthogonal on the helicoid 
x = au cos v, y = au sin v, z = bv. 

6. Find the curves (called loxodromes) making equal angles with 
the meridians on a sphere. 

7. Find the area of th~ quadrilateral bounded by u = 0, u = 1, 
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v = 0, v = 1 on the helicoid 
x = u cos v, y = u sin ZJ, z = 11. 

8. Show that the areas of domains on the paraboloids z = ; (x2 + 
y2}, z = axy, projected onto the same domain of the xy-plane, 
are equal. 

9. Show that if a surface admits a parametrization such that the 
first fundamental form coefficients are independent of u and v, then 
the surface is locally isometric to the plane. 

10. Prove that there exists a conformal mapping of a surface of 
revolution onto a plane, so that the surface meridians are carried 
into straight lines passing through the origin, and the parallels into 
circles centred at the origin. Consider the particular case of 

x = cos u cos v, y = cos u sin v, z = sin u (sphere). 

11. Prove that there exists a conformal mapping of a sphere onto 
a plane such that tho meridians and parallels are sent into straight 
lines x = const and y = const. 

12. Show that there is an isometric mapping of a helicoid x = 
u cos v, y = u sin v, z = mv onto a catenoid x = a cos ~. y = 
a sin ~. z = m cosh-1 : , so that the rectilinear generators of the 

former correspond to the meridians of the ]atter. 
13. Find the second fundamental form of the helix x = u cos v, 

y = u sin v, z = v. 
14. Find the normal curvature of a paraboloid z = ~ (ax2 + by2) 

at the point (0, 0) along the direction dx:dy. 
15. Show that, for any parametrization, the second fundamental 

form of the plane is identically zero and directly proportional to 
the first fundamental form under any parametrization of a sphere. 

16. Find asymptotic lines on th& surfA.C$ z = .=.._ + JL . 
y X 

17. Find asymptotic lines on the catenoid 

x = cosh u cos v, y = cosh u sin v, z = u. 

18. Show that one family of asymptotics on a helicoid consists of 
straight lines, and the other of helices. 

19. Prove that the coordinate u-, v-curves on a translation surface 
r = U (u) + V (v) are conjugate. 

20. Show that meridians and parallels of a surface of revolution 
are its lines of curvature. 

21. Determine the principal curvatures of a paraboloid z = axy 
at the point (0, 0, 0). 

22. Find the lines of curvature on the helicoid 

x = u cos v, y = u sin v, z == cv. 
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· 23. Find the mean and Gaussian curvatures of a paraboloid ~ = 
axy at the point (0, 0, 0). 

24. Prove that Gaussian curvature is positive at elliptic points 
of a surface, negative at hyperbolic, and zero at parabolic and planar. 

25. Show that the mean curvature of a helicoid and catenoid is 
zero. 

26. Prove that the Gaussian curvature of a cylindrical or conical 
surface is zero. 

27. Prove that the Gaussian curvature of the surface formed by 
the tangents to a curve is zero. 

28. Show that if the mPan curvature of a surface is zero everywhere~ 
then the asymptotic lines are orthogonal. 

29. Show that if each point on a surface is spherical, i.e., the­
normal curvature along any direction is unaltered, then the surface­
is either a sphere or part of a sphere. 

30. A surface <D is said to be parallel to a surface F if it is the locus 
of the ends of line segments of constant length, cut off on the nor­
mals to F~ Their ends are regarded as corresponding points of the­
surfaces. 

Show that 
(a) the tangent planes at the corresponding points of F and <D are-

parallel, 
and 
(b) the lines of curvature of F correspMd to tho.f!e of <D. 
31. Express the mean and Gaussian curvature of a surface in 

terms of those of a parallel surface. 
32. Prove that a spherical mapping of a surface of zero mean cur-

vature is conformal. · 

Chapter XII 

INTRINSIC GEOMETRY OF SURFACE 

t. Gaussian Curvature as an Object 
of the Intrinsic Geometry of Surfaces 

By the intrinsic geometry of a surface, we understand the branch 
of geometry, which studies the properties of the surface and its 
figures in relation only to the length of curves. 

As to regular surfaces, we ~an say that their intrinsic geometry 
studies properties determined by the first fundamental form. Thus, 
the length of curves on a surface; angles between them and areas of 
domains are objects of the intrinsic geometry. We shall now prove 
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that Gaussian curvature is also an object of intrinsic geometry, since 
it admits en expression in terms of the first fundamental form coeffi­
dents only. 

We have 

K= 
LN-Mt. 
EG-F1 t 

Xuu Yuu Zuu x,,." Yvv ~DD 
1 

LN= EG-F" Xu Yu Zu Xu Yu Zu . 
Xv Yv Zv Xv Yv Zv 

Multiplying the determinants together according to the familiar 
rules, we obtain 

Differentiating 
r~ = E, rurv = F, r~ = G 

with respect to u and v, we obtain 
1 1 

fuufu=2Eu, fuvrv=2Gu, 

1 1 
fuvfu=yEv, fuur0 =Fu-2E0 , 

1 1 
rvvrt,'=TGv, rvvru=Fv- 2 Gu. 

Now, differentiating the fifth equality with respect to v, the fourth 
with respect to u, and subtracting termwise, we obtain 

ruufvv~r~"=-; Guu+Fuv-+Evv• 



Ch. XII. Intrinsic Geometry of Surface 177 

Substituting the values found in the expression for Gaussian cur­
vature, we derive 

r {- ~ Guu+Full-! E1111) 
1 

(Fu- ~ E~~) 
I 

2Eu 

K= 1 
~ (F 11 - ~ Gu) E F EG-F2 
I 1 
l 2Gu F G 

0 1 1 

l. 2E~~ 2Gu 
1 E F -;;:Ev 

1 F G I 
2Gu J 

It was F. Gausswhoforthefi.rst time expressed total curvature only 
in terms of the fi.rst fundamental form coeffi.cients and their deriva­
tives. 

Note that if a surface is parametrized so that its fi.rst fundamental 
form is 

ds2 = du2 + G dzr, 

then the Gaussian curvature is 

K 1 (1/-
=- yG Y G)uut 

to see which, it suffi.ces to make use of the above (Gauss) formula. 
The expression of Gaussian curvature only in terms of the fi.rst 

fundamental form coeffi.cients and their derivatives demonstrates 
that the fi.rst and second fundamental forms of a surface are not in­
dependent. The question arises naturally whether there are other 
relations between the coefficients. Another two formulas obtained 
by K. M. Peterson and D. Codazzi turn out to be valid, viz., 

2(EG-F2) (L 11 -Mu) E Eu L 

+ F Fu M =0, 
-(EN-2FM+GL) (E11 -Fu) G Gu N 

2(EG-F2) (M11 -Nu) E E, L 

+ F F~~ M =0. 
-(EN-2FM+GL) (F,-Gu) G G~~ N 

The following Bonnet theorem states that there are no other re­
lations between the fi.rst and second fundamental form coeffi.cients. 
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Let 

E du2 + 2F du dv + G dv2 and L du2 + 2M du dv + N dv2 

be any two quadratic forms, of which the former is positive definite. 
If the Gauss-Peterson-Codazzi relations hold for their coefficients, then 
there exists, and is unique up to disposition in space, a surface for which 
these are the first and second fundamentals forms, respectively. 

2. Geodesic Lines on a Surface 

A line on a surface is said to be geodesic if its principal normal 
at each point where the curvature is other than zero coincides with 
the normal to the surface. 

We now make up the differential equation for geodesics. Let r = 
r (t) be any parametrization of a geodesic. Since the vectors r' 
and r" lie in the osculating plane, 

(r"r'n) = 0. (*) 

We can always locally take u or vas a parameter of the line. If we 
take u, then 

r' = ru + r 11v' 
and 

r" = ruu + 2ru 0 V' + r110 V' 2 + r 11v". 
Substituting these expressions in (*), and solving the equation 

for v", we get 

" 1 ( + 2 , .+ '2 + ' ) V = ( ) ruu ruvV f 00V ru f 0 V n rur11n 

which is seen to be a second-order differential equation. It follows 
from the unique existence theorem for solutions to such an 
equation that, along any direction, one, and only one, geodesic passes 
through each point of the surface. 

It is obvious that straight lines on a plane are geodesics. Since a 
straight line can be drawn through any point in a plane and along 
any direction, they exhaust all the plane geodesics. Similarly, great 
circles, and they only, are geodesics on a sphere. 

A parametrization of a surface is said to be· semi-geodesic if the 
coordinate lines of one family are geodesics, and those of the other 
are orthogonal to the former. We now clarify whi).t is the form of the 
surface linear element with respect to such a ·semi-geodesic para­
metrization. E.g., let a family of u-curves consist of geodesic lines. 
Then 

(**) 

Resolve ruu in terms of non-coplanar vectors ru, r 11 and n. 
We have 

ruu = aru + ~r 11 + yn. 
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Substituting this in (**), we obtain ~ (rurvn) = 0, i.e., ~ = 0. 
Multiplying (***) scalarly by r", and noticing that rur., = F = 

0 (net being orthogonal), we obtain 

ruurv = ~r: = 0, 
whereas 

ruurv=(rurv)u-+(r~) 0 =-; E0 =0. 

Therefore, E depends only on u. 
We introduce a new parameter u by putting 

du = v E du. 
The linear element 

ds2 = E du2 + G dv2 

then takes the form 
ds2 = du2 + G dv2. 

In turns out that a semi-geodesic parametrization of a surface 
can be introduced always, and very much at random. Viz., if y is a 
curve on a surface, then u:e can introduce such a semi-geodesic para­
metrization in its neighbourhood that one family of coordinate lines 
consists of geodesics orthogonal toy. However, we do not give the proof. 

3. Extremal Property of Geodesics 

Here, we prove the following extremal property of geodesics. 
A geodesic on a sufficiently small line segment is shorter than any 

curve near to it, which passes through the same points. 
Proof. Let y be a geodesic, P a point in it, and A, B two of its 

points near to P. We prove that any curve joining A and B, which 
is near to y, will be longer than the line segment AB on y. 

Draw through P a geodesic y perpendicular to y, and introduce 
a semi-geodesic parametrization in the neighbourhood of the point. 
by tak!_ng geodesics orthogonal t9 y as the family of u-curves. 

Let y be any curve joining A and B in the parametrized neigh­
bourhood. Then its length is 

(B) (B) 

s= jVdu2 +Ggv2 > j ldul;;;::.lu(B)-u(A)I, 
(A) (A) 

where A I u (B) - u (A) I is that of the line segment AB of y. 
Q.E.D. 

The geodesics' extremal property permits us to obtain their. equa-:, 
tions as those of the variational problem for the functional 

s=) V Eu'2 +.2Fu'v' +Gv'2.dt, 
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containing only the first fundamental form coefficients E, F, G 
and their derivatives, which means that geodesics are an object of 
the intrinsic geometry of the surface. 

4. Surfaces of Constant Gaussian Curvature 

Let d> be a surface of constant Gaussian curvature K/and P a 
point on it. Draw an arbitrary geodesic i through P, and introduce 
a semi-geodesic parametrization in its neighbourhood by taking the 
geodesics orthogonal toy as the family of u-curves. The surface linear 
element then assumes the form 

ds2 = du2 + G du2• 

We take arc length along y as the parameter v. Therefore, G (0, v)= 
1 along it, i.e., when u = 0. 

WeshowthatthenGu = Oony. Sinceyisageodesic, (r1111r 11n) = 0. 
Resolve the vector r1111 in terms of ru, r 11 , n. We obtain 

rvv = aru + ~r 11 + yn. (•) 

Substituting this for f 1111 in~(r1111f 11n) = 0, we get a (rur 11n) = 0, 
i.e., a= 0. 

Multiplying (•) throughout by ru, we see that r 011ru = 0. How-

ever, rvvru • (r,Lro)v -~ (r:)u = -~Gu. Therefore, Gu = 0 along 

I'~ when u = 0. 
The Gaussian curvature of a surface with the linear element du2 + 

G dv2 is known to be given by 

K= _ (yG)uu 
VG . 

Hence, for a surface of constant Gaussian curvature K,. G satisfies 
the differential equation 

<V G)uu +K V G=O. 

Consider the following three cases, viz., 

(1) K > O, (2) K < 0, (3) K = 0. 

In the first, the general form of VG satisfying (**) is 

V G= A (v) cos V Ku+B (v) sin V Ku. 

Since G (0, v) = 1 and Gu (0, v) = 0, we have A (v) = 1 and 
B (v) = 0. Thus, if K > 0, then there exists a parametrization of the 
surface, for which the first fundamental form is 

ds2 = du2 + cos2 VKu dv2. 
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Similarly, in the second case, 

ds2=du2 +cosh2 V -Kudv2• 

Finally, in the third, 

ds2 = du2 + dv2. 
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Hence, surfaces of the same constant Gaussian curvature are locally 
isometric. In particular, surfaces of constant positive Gaussian cur-
vature K are locally isometric to a sphere:of radius itV K, those 
of zero Gaussian curvature are locally isometric to the plane, and 
those of constant negative curvature to the pseudosphere. 

5. Gauss-Bonnet Theorem 

Consider a curve y and its point P. The curvature of its projection 
onto the tangent plane at P is said to be geodesic. For the geodesic 
curvature of r = r (t), we obtain 

1 ( II 1 ) K=J?TS rrn. 

We can see that the geodesic curvature of a geo­
desic is zero. It turns out that geodesic curvature 
is also an object of the surface intrinsic geo-
metry. Fig. 103 

The following Gauss-Bonnet theorem is valid. 
Let G be a domain on a surface, homeomorphic to a circle; and bound,. 

ed by a regular curve '\'· Then · 

J xds= 2n- J J K do. 
"I' G 

Here, integration with respect to arc length s of y is meant on the 
left-hand side, and with respect to the area of G on the right, geo­
desic curvature x assumed positive, where y is convex outwards, and 
negative, where it is convex inwards. 

If'\' is piecewise smooth with interior angles at the break points a,. 
then 

J xds+ ~ (n-a1)=2n- J J Kdo, 
Y i G 

with no smoothness violations in integrating along y (Fig. 103). 
In the case of a geodetic triangle (where the sides are geodesics), 

n-a1 -a2 -a3=- J J K do. 
G 
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In particular, 
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0 
at+aa+aa-n= R* 

for a spherical triangle1 where R is the radius of the sphere, and a 
the triangle area. 

6. Closed Surfaces 

A simple surface is said to be closed if it is finite and without bound­
ary. 

Let F be a simple closed surface. Partition it into polygonal do­
mains gk homeomorphic to a circle, so that any two domains of the 
decomposition either have no common points, or have a common ver­
tex, or a common side. Applying the Gauss-Bonnet formula to each 
gk, we obtain 

~ x"ds + ~ (n-a~)=2n-) ~ Kda, 
i gk 

and see that 

on the right-hand side if we add all these equalities together term­
wise, where /1 is the number of gk. The first addends on the left are 
eliminated, since a side of g" is that of another g~~.·. and x" = -x"'. 
Summing up the angles a~ for all i and k, we obtain the angle-sum for 
all the domains, which can be odne simply if we first find that of 
the angles with a common vertex (equal to 2n:). Therefore, the sum 
of all a~ is 2nf 0 , I 0 being the number of vertices in the surface par­
tition into polygonal domains. 

There are as many addends n in 

~ (n-a~) 
i 

as there are vertices in the polygonal domain gk, or, which is equiv­
alent. as there are sides in it. Hence, on adding these sums to­
'gether, n is counted as many times as there are sides in the decom­
position of F into g", and then taken twice, since each belongs to 
two domains of the partition. Thus, the res.ult can be represented as 

and 

2nl1 -21f.l0 =2nl2-)) Kda, 
F 

'l~ ) ) K da = I 2- I 1 + I o· 
F 

(*) 
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The integer 

X (F) = fs- f1 + fo 
is called the Euler characteristic of the surface. It follows from (u) 
that the Euler characteristic does not depend on the partition of a sur­
face into polygonal domains. 

Defined according to (u), the concept of Euler characteristic 
makes sense for any sim pie surface, not necessarily regular. It can be 
proved that, in the general case, too, it does not depend on the method 
for partitioning the surface. Since, under a topological transforma­
tion of a surface F into a surface F', the partition of the former into 

,,-... , 
l ,,-... , \ 
I \ 

Fig. 104 Fig. 105 

polygonal domains is carried into that of the latter, f2, f~t fo remain­
ing unchanged, the Euler characteristic is unaltered under a topological 
transformation of a surface. 

We now find the Euler characteristic of a convex polyhedron 
(meaning its total area). Any convex polyhedron can be obtained 
by a topological transformation of a sphere, for which it suffices 
to project the latter with centre inside the former onto its surface. 
Hence, the Euler characteristic of a convex polyhedron is two, and 
if the number of vertices of a convex polyhedron is a 0, that of edges a 17 

and that of faces a.z, then 

a 0 - a 1 + a 2 = 2 

(Euler theorem). 
Since a topological transformation does not alter the Euler char­

acteristic, the question naturally arises as to how well a simple sur­
face can be specified by it. It turns out that simple surfaces with the 
same Euler characteristic are topologically transformable into each 
other. 

We illustrate by examples of different topological types of simple 
surfaces. Imagine an elastic sphere with two circular holes. Pull at 
their edges, and join them as shown in Fig. 104. The closed surface 
obtained is called a sphere with a handle. A sphere with two or more 
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handles can be obtained similarly. The Euler characteristic of a 
sphere with p handles is 2 - 2p. In particular, that of the torus is 
zero. It turns out that any simple closed surface can be obtained by 
a topological transformation of a sphere with handles. 

A handle can be attached to a sphere differently, viz.t by pulling 
the edge of one opening outwards, drawing it inside, and then joining 
it to the edge of another hole as in Fig. 105. The obtained figure can­
not be regarded as a surface in the sense of our definition, since, as 
it turns out, there is no simple surface from which the figure could be 
locally obtained by a topological transformation. However, such 
surfaces do exist in four-dimensional space. Therefore, taking a some­
what generalized notion of surface, we can also regard such figures 
as general surfaces. 

We speak of the surface constructed that it is obtained by attach­
ing to the sphere a handle of the second kind, and is unilateral, i.e., 
we can go from inside the sphere outside, and vice versa. Unilateral 
surfaces are also said to be non-orientable. 

EXERCISES TO CHAPTER XII 

1. Given the linear element ds2 = A (du2 + dv2) of a surface, show 
that its Gaussian curvature is 

K = __ 1_ ( 82 ln A. + iJ2ln A. ) 
2A. 8u• 8v2 

2. Given the linear element ds2 = du2 + 2 cos ro du dv + dvi of 
a surface, show that its Gaussian curvature is 

K=- ~UII • 
smro 

3. Prove that if coordinate lines are those of curvature, then the 
Peterson-Codazzi equations are 

L 11 = HE 1, Nu = HGu. 

4. Prove that a surface of zero mean curvature can be parametrized 
so that its first and second fundamental forms are 

I = A (du2 + d~?,, 
II = du2 - dvi. 

5. Show that an asymptotic geodesic line is straight. 
6. Show that if a geodesic line is that of curvature, then it lies in 

a plane. 
7. Prove that cylindrical surface geodesics meet the rectilinear gen­

erators at the same angle. 
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8. Find the geodesic lines on a surface with the linear element 
d 2 _ du1+dv2 

s - vs • 
9. Prove that cylindrical and conical surfaces as well as those· 

formed by the tangents to space curves are locally isometric to & 

plane. 
10. A sphere of unit radius is described from the vertex of a con-­

vex polyhedral angle. Find the area of the contained sphere if the· 
sum of the dihedral angles is a. 

11. Prove that the sum of the angles of a geodetic triangle on a, 
surface of positive Gaussian curvature is greater thann, and less than 
n on a surface of negative curvature. 

12. Prove that the area of any geodetic triangle is not greater than 
nla2 if it lies on a surface of negative Gaussian curvature K ~ -a2• 

13. Find the Euler characteristic of a torus. 
14. What is the Euler characteristic of a closed surface, given that. 

it is topologically equivalent to a sphere with n handles of the first. 
kind? 



Part Three 

FOUNDATIONS OF GEOMETRY 

Chapter XIII 

HISTORICAL SURVEY 

1. Euclid's Elements 

Geometry began as an empirical science, and became especially 
much developed with the Egyptians who applied it to earth measure­
ment and irrigation work. 

In the first millennium B.C., the Egyptians' geometric knowledge 
was adopted by the Greeks, thus starting a new stage. The Greek 
:geometers of the 7th-3rd cc.B.C. not only enriched the science 
with new facts, but also took important steps towards the formula­
tion of a rigorous logical sequence. 

The many-century work was summarized and systematized by 
Euclid (330-275 B. C.) in his famous Elements. Euclid for the first time 
introduced a strictly logical account of geometry. Its treatment was 
:So immaculate for his epoch that, during two thousand years since 
the Elements appeared, the book has remained a unique geometry 
manual. Books I-IV and VI of the whole number of thirteen were 
devoted to geometry proper, and accounted for its plane chapters, 
as well as Books XI-XIII embracing solid geometry. The others 
contained arithmetic in geometric treatment. Each opened with a 
definition of new concepts. E.g., Book 1 contained 23 definitions. 

In particular, 
DEFINITION 1. A point is that which has no part. 
DEFINITION 2. A line is breadthless length. 
DEFINITION 3. A straight line is a line which lies evenly with the 

points on itself. 
The definitions were followed by postulates and axioms (common 

notions). 
,E.g., 
Postulate 1. It is postulated to draw a straight line from any point 

to any point. 
Postulate 5. It is postulated that, if a straight line falling on two 

straight lines makes interior angles on the same side less than two right 
angles, the two straight lines, if produced indefinitely, meet on that 
side on which are the angles less than the two right angles. 

Axiom 1. Things which are equal to the same thing are also equal 
to one another. 
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Axiom 2. If equals be added to equals, the wholes are equal. 
Both postulates and axioms were assumed without proof, it re­

maining unknown by which principle some statements were taken 
as postulates, and others as axioms. 

Axioms were followed in a strict sequence by theorems and con­
struction problems under the general title Propositions, so that the 
proof or solution of each subsequent statement was based on the 
previous. Here is one of them. 

If two triangles have the two sides equal to two sides respectively, 
and have the angles contained by the equal straight lines equal, they 
will also have the base equal to the base, the triangle will be equal 
to the triangle, and the remaining angles will be equal to the remain­
ing angles respectively, namely those which the equal sides subtend. 

Though the Elements have been a paragon for a very long time, 
they did not at all attain the modern level of rigor. The definitions 
of geometric objects in the first book were given in a manner of de­
scriptions, and not at all perfect at that. E.g., Definition 4 of a 
straight line did not make it different from a circumference, whereas 
Definition 2 of an arbitrary line mentioned length and breadth which 
should have been defined themselves. 

We must not think, however, that all the definitions preceding 
the first book were defective. On the contrary, part of those, includ­
ing a circumference, triangle, right, acute and obtuse angles, were 
either flawless or insignificantly imprecise, which can be easily rec­
tified. Meanwhile, if we remember that the properties of geometric 
objects, described by the inaccurate definitions were never used in 
proof, then they can be omitted without any detriment to the ac­
count. 

As to the postulates and axioms, their formulations were irre­
proachable, the statements essential, and formed the basis for the 
subsequent proofs. 

Finally, we turn just to them. The proofs of all the propositions, 
as conceived by the author of the Elements, had to be eventually 
based on the geometric object properties determined by the postu­
lates and axioms. However, even cursory familiarity with Euclid's 
proofs shows that a number of such properties and relations among 
geometric objects could not be clarified either by postulates or axi­
oms. E.g., in the proof for the above-mentioned proposition on the 
eongruence of triangles, Euclid made use of a motion, and referred 
in some others to the properties of mutual disposition of points on a 
straight line, expressed by the term "between". 

The question naturally arises if we can free the Euclidean proofs 
of this defect by possibly replacing them with others based only 
on postulates and axioms. The answer has been obtained comparative­
ly not long ago. It turned out that this could be done only by a suit­
able completion of the Euclidean postulates and axioms. 
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2. Attempts to Prove the Fifth Postulate 

Certain of the above defects of the Elements have already been 
noticed by the ancient Greeks, due to which attempts to improve 
the treatment were made. The principal goal was to reduce the Eu­
clidean postulate and axiom system to minimum. 

The natural way to solve the problem is in deducing some of the­
postulates and axioms from the others. The Elements were just in 

13 this way stripped of the fourth postu­
late (where the equality of all right angles 
was meant). 

However, all the efforts to get rid of 
g' ..... , the fifth postulate were of no avail, 
:....j---1-------~,c though geometers have tried to do it for­

more than two thousand years. The typi-
Fig. 106 cal mistake of most of its proofs was either 

purposeful or accidental use of some or 
other statement not explicitly contained in the remaining postu­
lates and axioms, and not following from them. 

E.g., here is the proof of Proclus. 
Given a + ~ < 2d (Fig. 106), prcve that the straight lines g' 

and g" meet at a certain point C. 
Draw through the point A a straight line g"' parallel to g'. Take 

a point Bong", and drop the perpendicular tog"' from it. Since the 
distance from g"' increases without limit as that between B and A 
grows, and the distance between g' and g"' is -constant, there is a 
point C on g" belonging to g'. This is just where g' and g" meet. 

The property of parallel straight lines, to which we have resorted 
in the proof, is not explicitly contained in the other postulates or 
axioms. Moreover, it cannot be deduced from them. 

The fifth postulate can be proved on the basis of a great many 
other statements. 

E.g., 
(i) All perpendiculars to one side of an acute angle cut its other side. 
(ii) There exist similar triangles which are not congruent. 
(iii) There exist triangles of arbitrarily large area. 
(iv) There exist triangles whose angle-sum is equal to two right angles. 
(v) Through a point outside a given straight line, not more than 

one parallel line can be drawn. 
Though the attempts to prove the fifth postulate did not lead 

to the desired result, they undoubtedly played a positive part in 
the development of geometry, often enriching it with new interesting 
theorems whose proofs were not based on the fifth postulate. One 
of them proved by A. Legendre states that the sum of the angles of 
any triangle is not greater than two right angles. 
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3. Discovery of Non-Euclidean Geometry 

·one of the methods to which many geometers of the 18th c. 
~nd the first half of the 19th c. resorted in hope to prove the fifth 
postulate consisted in replacing it by its negation or some other 
:Statement equivalent to the negation. All possible propositions logi­
.cally following from the postulate and axiom system so altered were 
then proved similarly to the method used in the Elements. If the 
.fifth postulate does, in fact, follow from the other postulates and 
.axioms, then the postulate and axiom system so formed is self-con­
tradictory. Therefore, we shall sooner or later come to two mutually 
-exclusive results, thus proving the fifth postulate. 

G. Saccheri, J. Lambert and A. Legendre tried to prove it exactly 
in this manner. 

The first one considered a rectangle with two right base angles and 
equal non-adjacent sides (Fig. 107). There can be three hypotheses 

Fig:. [107 Fig. 108 

regarding the other two :angles which are obviously equal, viz., 
that they are right, obtuse or acute. He proved that the right-angle 
-hypothesis and fifth postulate were equivalent, i.e., the latter could 
be proved on postulating the former and vice versa. Having postu­
~ated the obtuse-angle hypothesis, G. Saccheri came to a contradic­
tion, and, finally, postulated that of acute angles, deriving various 
~orollaries which are absurd from the point of view of customary 
geometric ideas. E.g., parallel lines either possess only one common 
perpendicular, on both sides of which they diverge without limit, or 
have none, and, approaching each other asymptotically in one direction, 
~liverge in the other without limit. 

G. Saccheri made no conclusion that a contradiction was obtained 
~nly because of the derived results being contrary to the usual ideas 
.about straight line disposition, and was stubbornly looking for a 
logical absurdity. Such a contradiction was eventually "found" by 
him-however, d11e to a computational error. 

A similar coDstruction was considered by J. Lambert who took a 
<IUadrilateral with three right angles (Fig. 108), and, similarly to 
G. Saccheri, investigated the three hypotheses for the angle at th& 
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fourth vertex. Proving that the right-angle hypothesis is equivalent. 
to the fi.fth postulate, that of an obtuse angle is impossible, and, having 
postulated the acute-angle conjecture similarly to G. Saccheri, he­
obtained numerous corollaries which reveal paradoxical properties 
of straight line disposition. 

Nevertheless, as well as G. Saccheri, J. Lambert did not see any 
contradiction. He could not fi.nd any logical contradiction either;. 
still, the acute-angle hypothesis was not rejected. 

Developing corollaries to the acute-angle hypothesis, J. Lambert 
discovered that they were analogous to the geometry on the sphere~ 
and expressed the correct conjecture for this hypothesis "to be valid 
on some imaginary sphere". Among the 17th c. geometers, it was 
J. Lambert who stood nearest to the correct solution of the fifth­
postulate problem. 

In his "proof' of the fi.fth postulate, A. Legendre considered the­
following three hypotheses regarding the angle-sum of a triangle, viz.,. 

(i) The sum of the angles of a triangle is equal to two right angles~ 
(ii) The sum of the angles of a triangle is greater than two right. 

angles. · 
(iii) The sum of the angles of a triangle is less than two right angles. 
He proved that the fi.rst hyp~thesis is equivalent to the fi.fth postu­

late, and that the second one is impossible. Finally, accepting the­
third hypothesis, he also came to a contradiction by implicitly mak­
ing use of the fi.fth postulate through one of its equivalents. 

The great Russian mathematician N.l. Lobachevsky (1792-1856) 
who is honoured for the discovery of a new geometry, Lobachevskian 
geometry, also began with an attempt to prove the fi.fth postulate. 

As is shown above (Sec. 2), one of the fi.fth postulate equivalent& 
is in the statement that not more than one straight line parallel to­
a given one passes through an outside point. N.J. Lobachevsky 
replaced the fi.fth postulate by the following. 

At least two siraight lines not intersecting a given one pass through:. 
an outside point. 

Similarly to his predecessors, N.J. Lobachevsky hoped to find 
a contradiction in the Euclidean corollary system so altered. How­
ever, having developed his theory to make it on par with the Elements 
in contents, N.J. Lobachevsky saw that the system was non-contra­
dictory, and draw a remarkable conclusion regarding the existence­
of a geometry different from Euclidean, with the fi.fth postulate­
not holding. It all happened in 1826. 

At fi.rst glance, N.I. Lobachevsky's conclusion may seem insuffi­
ciently well-founded. In fact, how can it be guaranteed that there­
would be no contradiction if we developed his theory further? Never­
theless, the same can be also applied to Euclidean geometry, so that, 
from the standpoint of logical consistency, both geometries are­
equiv_alent. Moreover, subsequent investigations have .shown that 
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they are closely related, with the logical consistency of one depending 
on that of the other. 

Thus, both Euclidean and Lobachevskian geometries are equiva­
lent as logical systems. Which of them reflects space relations in the­
surrounding world better can be found only by experience. N.I. Lo­
bachevsky understood this himself, and measured the angle-sum of 
an astronomical triangle to the purpose. 

N.I. Lobachevsky was the first, but not the only geometer, wh01 
discovered the existence of a geometry different from Euclidean. 

The new geometry was also discovered by F. Gauss who wrote> 
about it in his letters. 

Three years after N.I. Lobachevsky's work had seen the light .. 
the Hungarian mathematician J. Bolyai (1822-1860), being unaware­
of his predecessor's research, published a paper with an account of 
the same theory, but in a less developed form. 

4. Works on the Foundations of Geometry 
in the Second Half of the 19th Century 

Not many of N.I. Lobachevsky's contemporaries understood him,. 
and agreed with his discovery. The majority, among whom there­
were many great mathematicians, treated it sceptically. 

The universal recognition of Lobachevskian geometry was con­
siderably assisted by the after-Lobachevsky geometers, and, first of 
all, by E. Beltrami (1862) who proved that the Lobachevsky plane 
geometry is valid on a surface of constant negative curvature if hyper­
bolic lines are thought of as geodesics, while a motion is understood 
in the sense of isometric mapping of the surface onto itself. 

This was a proof that Lobachevskian geometry is non-contradic­
tory. Indeed, a contradiction in it would correspond in the above­
interpretation to that in the theory of Euclidean surfaces, i.e., tO< 
one in Euclidean geometry. 

A vulnerable point in the proof of Lobachevskian geometry con­
sistency, if it is based on the Beltrami interpretation is, as D. Hil­
bert had demonstrated, that there exists no complete Euclidean 
surface of constant negative curvature without singularities, and .. 
therefore, the geometry of only part of the Lobachevsky plane can 
be interpreted on it. The drawback was eliminated in the later­
models by H. Poincare and F. Klein. 

F. Klein interpreted hyperbolic plane geometry inside a circle­
in the Euclidean plane, where its chords are understood as straight. 
lines, and motions as collineations preserving the circumference. 
The proof on the b~sis of this interpretation that Lobachevskian 
geometry is consistent will be seen to be irreproachable. We reproduce­
it in Ch. XV. 
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At the same time, it is the substantiation of the fifth postulate 
independence from the other Euclidean postulates and axioms. In 
fact, if the fifth postulate were a corollary to the other postulates or 
axioms, then Lobachevskian geometry would be contradictory as 
containing two mutually exclusive statements, the Lobachevskian 

.and Euclidean fifth postulates. 
The general tendency to mathematical rigor, which marked all 

works in the second half of the 19th c., and the solution to the 
·fifth postulate problem made geometers subject the geometric axiom 
.system to a thorough investigation. The researches showed that 
the Euclidean axioms are not at all perfect, first of all because they 
are incomplete. As we shall see later, they omit a number of axiom 
groups absolutely necessary for strict proofs, and the Euclidean 
axiom system was then completed with lacking axioms. Thus, 
M. Pasch (1882) supplied the Euclidean axiomatics with the axioms 
<Of order. One of th3m now bears his name. 

The Euclidean axiom study was completed by D. Hilbert in 1899. 
The axiom system given by D. Hilbert consists of five groups, viz., 
axioms of incidence, axioms of order, congruence axioms, axioms of 
.continuity and the parallel axiom, all referring to objects of three 
kinds, i.e., points, straight lines, planes, and the three relations 
among them, expressed by the terms "incident", "between" and 
·"congruent". What is a point, straight line or plane, and what is the 
true meaning of the above relations, was not made precise. Every-
thing assumed as known is expressed by the axioms, and the geo­
metry constructed thus admits concrete realizations which can go 
very far from the usual ideas. 

D. Hilbert subjected this system of axioms to a very profound 
.and comprehensive investigation. In particular, he proved that it 
is non-contradictory if arithmetic is non-contradictory. Further, 
besides that of parallelism, he showed the independence of certain 

-other axioms, and, finally, investigated the problem of how far a 
~geometry can be developed if some or other axiom groups into which 
the whole system is divided are taken as its basis. 

D. Hilbert almost completed the many-century work on the found­
ations of elementary geometry. It was very highly assessed by the 
.-contemporaries, and awarded the Lobachevsky prize in 1903. 

5. System of Axioms for Euclidean Geometry 
according to D. Hilbert 

The system of axioms for Euclidean geometry according to D. Hil­
bert consists of five groups, viz., axioms of incidence, axioms of 
.order, axioms o_f congruence, the parallel axiom and axioms of con­
:tinuity. 
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Axioms of incidence determine the properties of mutual disposition 
of points, straight lines and planes, expressed by the term "incident" 
or some equivalent ones. 

11 • For any two points A and B, there is a straight line incident 
with each of these points. 

12 • For any two points A and B, there exists not more than one 
straight line incident with each. 

13 • There exist at least two points in a straight line. There exist 
at least three points not in the same straight line. 

14 • For any three points A, B and C not in the same straight line, 
there exists a plane incident with each. For any plane, there always 
exists a point incident with it. 

15• For any three points A, B, C not in the same straight line, 
there exists not more than one plane incident with these points. 

16 • If two points A and B of a straight line a are in a plane a, 
then every point of a is in that plane. 

17• If a point A is in two planes a and ~. then there exists at least 
one other point B in a and ~· 

18• There exist at least four points not in a plane. 
Axioms of order express the properties of mutual disposition of 

points in a straight line or plane, determining the concept "between". 
111• If a point B is between points A and C, then A, B and C 

are distinct points, and B is also between C and A. 
11 2• For any two points A and C, there exists at least one point 

B in the straight line AC, so that C is between A and B. 
11 3• Of any three points in a straight line, not more than one is 

between the other two. 
The term "between" for points in a straight line permits us to 

define the concept of line segment in the usual manner. 
114 • Let A, B and C be three non-collinear points, and a a line 

in the plane ABC, which does not contain A, B or C. Then if a con­
tains a point of the segment AB, a will also contain a point of the 
segment AC or a point of the segment BC (Pasch axiom). 

The axioms of congruence determine the concept of "congruence", 
or equality, for line segments and angles. 

1111 • If A and B are two distinct points in a straight line a, and 
A' a point in the same or another line a', then there exists a point 
B' on the same side of a' as A', so that the line segment AB is con­
gruent to the line segment A' B'. 

111 2 • If two line segments are congruent to a third, then they are 
congruent to each other. 

111 3 • Let AB and BC be two segments on a line a such that AB 
and BC share only the point B in common. Furthermore, let A' B' 
and B' C' be segments on line a' such that A' B' and B' C' share only 
B' in common. Then if AB is congruent to A' B' and BC is congruent 
to B'C', we have AC congruent to A'C'. 
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An angle is defined as a figure consisting of two different rays 
emanating from the same point. 

III 4 • One, and only one, angle congruent to a given angle can be 
marked off a given half line into a given half-plane determined by 
this half line and its extension. 

Ill;;". If AB = A 1B11 AC = A 1C1 andLA == LA 1 in two triangles 
ABC and A 1B1C11 then LB = LB1, LC == LC1• 

·IV. Parallel axiom. Let a be an arbitrary straight line, and A 
an outside point; then there exists not more than one straight line 
through A, not intersecting a in the plane determined by a and A . 

. The axioms of continuity. 
V1 (Archimedes' axiom). Let AB and CD be two line segments. 

Then there exist a finite number of points A 11 A 2, ••• , An in the 
straight line AB, so that the line segments AA1 , A 1A 2 , ••• , An_1An 
are congruent to CD, and the point B is between A and An. 

V 2 (Axiom of linear completeness). The set of points in a straight 
line, satisfying axioms of order, the first axiom of congruence and 
Archimedes' axiom, does not admit any extension, i.e., no points 
can be added to this set, so that all the axioms hold. 

Chapter XIV 

SYSTEM OF AXIOMS FOR EUCLIDEAN GEOMETRY 
AND THEIR IMMEDIATE COROLLARIES 

t. Basic Concepts 

It is rather complicated to give Euclidean geometry deductive 
structure on the basis of the Euclid-Hilbert axioms. Difficulties 
arise almost at once, in introducing the concept of measure of line 
segments and angles; accordingly, we resort to another axiom system 
where these problems are eliminated. 

In our treatment, the basic concepts are a point, straight line 
and plane, the relation of incidence for points, straight lines and 
planes, expressed by the term "incident", that of order for points 
in a straight line, expressed by the terms "between", "length" for 
line segments and "measure of angles in degrees". These concepts 
are not defined, and everything assumed known about them is given 
axiomatically. 

The ~xiom system which we shall employ mostly coincides with 
the axiomatics of the school geometry course; however, it is some­
what weakened. In particular, the axiom of marking off a line 
segment :of given length on a half-line from its origin is replaced 
by the weaker axiom of existence of a line segment of given length, 
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and the axiom of constructing an angle is omitted at all. Their 
introduction at school is due to purely methodological reasons, and 
aimed at the simplicity of the treatment at the beginning of the 
course. 

For convenience, we first formulate axioms for the plane, and 
then introduce the group of axioms C for space. The axioms for the 
plane are naturally divided into groups in accordance with the basic 
concepts of incidence, order and measure. 

2. Axioms of Incidence 

The axioms of incidence determine the properties of mutual 
disposition of points and straight lines, given by the term "incident". 
Meanwhile, the expression "a point is incident with a straight line", 
"a point lies in a straight line" and "a straight line passes through a 
point" are assumed to be equivalent. 

If a point is incident with two straight lines, then we will say 
that they intersect at the point, or that it is the point of their 
intersection. 

The group of the axioms of incidence includes the following two. 
Axiom 11 • For any two points, there exists one, and only one~ 

straight line passing through them. 
Axiom 12 • In each straight line, there are at least two points. There 

exist three points not in the same straight line. 
It follows from Axiom I1 that two straight lines either do not inter­

sect or intersect only at one point. In fact, if they had at least two 
intersection points, the straight lines would pass through these 
points, which is contrary to Axiom Il' According to the latter, only 
one straight line passes through any two points. It follows that a 
straight line is completely determined by specifying two of its 
points, thus making it possible to denote a straight line by two points 
(e.g., a straight line AB). · 

It follows from Axiom I 2 that, for any straight line, there exists 
a point not in this line. Indeed, of the three points whose existence 
is stated by Axiom I 2 , at least one is outside the given straight line. 

The axiom corresponding to Axiom I2 , and given in the school 
treatment of the subject, requires that there should be points (there­
fore, at least two) in each straight line, and that there should be 
points outside it. In this form, the axiom is taken by the student 
as something that goes without saying. The statement in the form 
of I 2 with two points in a straight line may cause confusion, since 
the visual image of a straight line assumes the existence of an infinite 
set of points in it and outside. 
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3. Axioms of Order 

The axioms of order express the properties of mutual disposition 
of points in straight lines and planes. Meanwhile, the relation of 
mutual disposition of points in a straight line is used and expressed 
by the term "between". 

Axiom lip Of any three points in a straight line, one, and only 
one, is between the other two. 

The expression "a point B is between points A and C" is equivalent 
to "a point B separates the points A and C", or "the points A and C 
are on opposite sides of the point B". If B separates A and C, then 
according to Axiom 111, A does not separate B and C. Instead, B 
and C can be said to lie on the same side of A. 

The concept of straight line segment is introduced by means of 
that of "between" for points in a straight line. Viz., part of the straight 
line between two points A and B, i.e., the set of its points between 
A and B, is called the line segment AB. 

Axiom 112• A straight line separates the set of points in a plane, 
which are not incident with it, into two subsets (half-planes), so 
that the line segment joining two points in one half-plane does not 
meet the straight line, whereas the line segment joining two points in 
different half-planes does meet it. 

We call part of a straight line AB consisting of all those points 
which are on the same side of the point A along with the point B, 
the half-line, or ray, AB. A is called the origin of the half-line. 

Draw through the origin A of the half-line "AB any straight line a 
different from the straight line AB. Then the half-line AB consists 
of those, and only those, points of the straight line AB, which are in the 
same half-plane as the point B with respect to a. In fact, for any straight 
line a, any line segment of the straight line AB can intersect a 
only at A. It follows that if X is a point in the half-line AB, then 
the segment BX does not intersect a, i.e., X and B are in the same 
half-plane. If X is a point in the straight line AB in the same half­
plane with B, then the segment BX does not intersect a; therefore, 
X and B are on the same side of A, i.e., X belongs to the half-line 
AB, and the statement is thus proved. 

A point A in a straight line a divides this straight line into two half­
lines, and is the origin of each. The points in one half-line are not 
separated by A, whereas those in different half-lines are separated by it. 
For proof, it suffices to draw through A a straight line b different 
from a. Then parts of a in different half-planes with respect to b 
are just the half-lines in question. The half-lines of one straight 
line with the common origin are said to be complementary. 

A half-line is completely determined by specifying its origin 
and some other point, which justifies the notation of a half-line by 
two points (e.g., a half-line AB}, the origin placed first. 
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A triangle is a figure consisting of three points not in one straight 
line, and three line segments joining the points pairwise. The points 
are called the vertices of the triangle, and the line segments joining 
them its sides. 

It follows from Axiom II 2 that if a straight line not passing through 
any vertex of a triangle intersects one of its sides, then it intersects one, 
and only one, of the other two sides. 

In fact, let ABC be a triangle, and a a straight line intersecting 
its side AB. The points A and B are in different half-planes with 
respect to a. The point C is in one of them. If C is in the same half­
plane with A, then a does not intersect the line segUJ.ent AC, but does 
intersect the line segment BC. If C is in the same half-plane with B, 
then a does not intersect BC, but does intersect AC. In both cases, 
a intersects one, and only one, of the sides AC or BC of the triangle. 
This theorem is taken in the Hilbert axiomatics as an axiom, and 
called the Pasch axiom. 

4. Axioms of Measure for Line Segments 
and Angles 

Axiom Hlp Each line segment is of length greater than zero. If 
a point Cis in a line segment AB, then its length is equal to the sum 
of those of the line segments A C and BC. 

Introducing this axiom into the school course, we rely on the 
student's understanding how a line segment is measured by means 
of some known tool, e.g., a ruler with scale marks. However, it 
should be borne in mind that Axiom 1111 does not at all assume 
any measurement. It only states the possibility to a~sociate any 
line segment with a number (its length), so that the conditions of 
the axiom are fulfilled. 

On the other hand, we should not think that the length of a line 
segment whose existence is stated by Axiom 1111 is something differ­
ent from what we obtain by making measurements in the usual way. 
Nevertheless, this requires proof (see Ch. XVIII, Sec. 1). 

Axiom 1111 permits us to introduce coordinates on a straight line, 
i.e., associate each point in the line with a real number, so that if 
x (A) and x (B) are the coordinates of two points A and B, then the 
length of the line segment AB equals I x (B) - x (A) 1. 

In fact, let 0 be a point in the straight line. We associate it with 
zero as its coordinate. 0 divides the straight line into two half-lines. 
We agree to call one of them the positive side of 0, and the other 
the negative side of 0. Now, if a point A is on the positive side, then 
its coordinate x (A) is the length of the line segment OA; if A is 
on the negative side, then its coordinate is a negative number whose 
absolute value is the length of OA. 
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We show that the length of the line segment AB equals 
I x (B) - x (A) 1. If the points A and B are in different half-lines, 
then the length of AB equals the sum of those of OA and OB. There­
fore, AB = 1 x (B) - x (A) 1. Assume that A and B are on the 
same side, e.g., positive. Of. the three points 0, A and B, one lies 
between the other two. It cannot be 0, since A and Bare in one half· 
line. Hence, this is either A or B, e.g., B. Then the length of OA 
equals the sum of those of OB and BA. Therefore, the length of AB 

equals x (A} - x (B) = I x (B)- x (A) 1. 

/ 
/ 

a The other cases of mutual disposition of 
0, A and B are considered similarly. 

An angle is a figure formed by two dif­
ferent half-lines called its sides, with a 
common origin called its vertex. If the 

. sides of an angle are complementary half­
lines of one straight line, then the angle 
is said to be straight. 

Fig. 109 
We will say that a rayc is between the 

sides of an angle (ab) if it emanates from 
its ·yer'tex~ ,and intersects some line seg­

ment with the end-points on the angle sides. In the case of a 
straight angle, we assume that any ray emanating from its vertex, 
and different from its sides, .is between the sides of the angle. 

It is easy to see that if a ray is between the sides of an angle, then 
it intersects any line segment with the ends on the sides of the angle 
(Fig. 109). In fact, .by definition, a ray c intersects some line segment 
AB whose ends are on the angle sides. Let CD be another such line 
segment. Applying the Pasch theorem to the triangle ABC, straight 
line containing c, triangle BCD and the straight line again, we con­
clude consecutively that C meets BC and CD. 

Axiom 1112 • Each angle has a certain measure in degrees greater 
than zero. A straight angle has 180°. If a ray c is between the sides 
of an angle (ab), then the measure in degrees equals the sum of those 
of the angles (ac) and (be). 

We note the following theorem. 
If we mark off on a half-line a and its extension two angles (ab) 

and (ac) lying in the same half-plane, then either the ray c is between 
the sides of (ab), or the ray b is between the sides of (ac). In any case, 
(be) = I (ac) - (ab) 1. 

Proof. Take a point A in the ray a, a point A 1 in its complement, 
and a point C in the ray c. The straight line containing the ray b 
intersects the side AA 1 of the triangle ACA1; therefore, by the Pasch 
theorem, it intersects either the side AC or the side A1C just with b, 
since the complementary ray is in the other half-plane. If b 
intersects the line segment AC (Fig. 110a), then it is between the sides 
of the angle (ac), with (ac) = (ab) + (be). Hence, (be) = (ac) - (ab). 
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Assume that b intersects A 1C at a point D (Fig. 110b). Applying 
the Pasch theorem to the triangle ADA1 and straight line containing 
c, we conclude that c intersects the line segment AD, and, therefore, 

& _Zfl 
_, 

A1 A a A1 A a 
(a) {b) 

Fig. 110 

is between the sides of (ab). Meanwhile,· (ab) = (ac) + (be); hence, 
(be) = I (ac) - (ab) I, and the theorem is thus proved completely. 

5. Axiom of Existence 
of a Triangle Congruent to ~ Given One 

Two lines are called equal (or congruent) if they are of equal length. 
Two angles are called equal· (or congruent) if they have the same mea­
sure in degrees. Two triangles ABC and A 1B1C1 are called congruent if 
LA == LA1 , LB = LB1 , LC = LC1 , AB = A 1B1 , BC == B1C1 , 

AC = A 1C1• Briefly, it is expressed by saying that two triangles are 
congruent if the corresponding sides and corresponding angles are equal. 
The correspondence between the vertices .and sides of congruent 
triangles is reflected in the notation of their vertic.es. If we say that 
a triangle ABC is congruent to a triangle A1B1C1 ,'then the correspond­
ing vertices are A and A 1 , Band B1 , C and Cb and the corresponding 
sides AB and A 1B1 , AC and A 1C1 , BC and B1C1• To designate the 
congruence of triangles, the usual symbol will be used (e.g., 
!!ABC== !!A1B1C1). Meanwhile, it is important in what .order 
the vertices are written. !!ABC== !!A 1B1C1 means that LA == 
LA1 , LB == LB1 , ••• , whereas !!ABC= !!B1A 1C1 quite a 
different fact, viz., LA= LB1 , LB = LA1 , .... 

Axiom IV. Let ABC be a triangle, and a a half-line. Then there 
exists a triangle A 1B1C1 congruent to the triangle ABC, in which 
the vertex A 1 coincides with the origin of the ray a, the vertex B1 

is in a, and the vertex cl is in the given half-line with respect to the 
straight line containing a. 

It follows that we can mark off one, and only one, line segment equal 
to a given one from the origin of a given half-line. 

In fact, let a be a given half-line, and AB a given line segment. 
Take a point C outside the straight line AB. By Axiom IV, there 
exists a triangle A 1B1C1 congruent to the triangle ABC, in which 
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A1 is the origin of the ray a, and the vertex B1 is in the ray. The 
line segment A1B1 equals the line segment AB, since ~ABC== 
~A1B1C1 • 

We now prove the uniqueness of the line segment. Assume that 
we can mark off two line segments OX· an,!l OY equal to a given 
one, and, therefore, equal to each other, on a half-line with the 
origin 0. Of the three points 0, X and Y, one lies between the other 
two. This cannot be 0, since X and Yare not separated by the origin 
of the half-line. If this is X, then OY = OX+ XY, which is impossi­
ble, since OX= OY, and XY > 0. It is proved similarly that Y 
cannot lie between 0 and X; a contradiction, and the statement is 
thus proved. 

It follows from Axiom IV that one, and only one, angle equal to a 
given one can be marked off on a given half-line into the half-plane 
determined by this half-line and its extension. 

In fact, let ABC be the given angle. By Axiom IV, there exists 
a triangle A1B1C1 congruent to the triangle ABC, in which A1 coin­
cides with the origin of the ray, the vertex B1 is in the ray, and the 
vertex C1 is in the given half-plane. The angle A 1B 1C1 equals the 
angle ABC, since ~ABC= ~A 1B1C1 • 

To prove the uniqueness, we assume that two angles (ab) and 
(ac) equal to the given angle can be marked off on the half-line a. 
We know that then (be) = I (ac) - (ab) I = 0, which is contrary 
to the positiveness of the angle (be) measured in degrees, and the 
uniqueness is thus proved. 

6. Axiom of Existence 
of a Line Segment of Given Length 

Axiom V. For any real number d > 0, there exists a line segment 
of length d. 

It follows from Axiom V that one, and only one, line segment of 
any prescribed length can be marked off on any half-line from its origin. 

In fact, by Axiom V, there exists some line segment AB of given 
length. It was shown in the previous section that one, and only one, 
line segment equal to AB can be marked off from the origin of a 
given half-line. 

It also follows that the introduction of coordinates on a straight 
line establishes a one-to-one correspondence between its points and 
real numbers. Indeed, since a line segment of any prescribed length 
can be marked off on the positive and negative sides of the origin 0, 
then a mapping of the set of points in the straight line onto the set of 
real numbers, under which the points in the straight line are associated 
with their coordinates, is one-to-one. 

We now prove the following theorem: 
For any real number 6< 180°, one, and only one, angle (ab) whose 
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measure in degrees is e can be marked off un a given half-line a into a 
given half-plane. 

Proof. First of all, we notice that there are angles whose measures 
in degrees may be arbitrarily small. In fact, let ABC be any angle 
other than straight, and a its measure in degrees. Take a point D 
in the line segment AC. Then LABC = LABD + LCBD. There­
fore, the measure of at least one of 
LABD and LCBD is in degrees not 
greater than a/2. The existence of an 
angle whose measure in degrees is not 
greater than a./4, etc., is proved similar­
ly. Thus, there exist angles whose 
measure in degrees may be arbitrarily 
small. 

Now, let a1 be the ray complemen­
tary to a ray a (Fig. 111). 

a1 0 A a 

Fig. 111 

Mark off an angle (a1 b1) less than 180° - e on a1 into the given 
half-plane. By the property of supplementary angles, the angle 
(abl) is greater than e. 

Take a point A on a, and a point B 1 on the ray b1 • Let X be an 
arbitrary point of the segment AB1 • Denote by M (e) the set of 
those points X of AB1 , for which the angle AOX is not greater than e. 
Let d be the supremum of the lengths of the segments AX if X c 
M (e), and X0 such a point of the segment trat AX0 =d (Fig. 111). 
We state that the angle AOX 0 equals e. 

Assume that LAOX0 = a< e. Mark off on the half-line OX 0 

into the half-plane with the point B1 a sufficiently small angle X 00X' 
less than the angle X 00Btt and less than e -a. Then the angle 
AOX' is less than e, which is impossible, since AX' >AX 0 = d, 
and the point X'is incident with M (e). 

Assume now thatLAOX 0 = a> e. Mark off a sufficiently small 
angle X 00X' on the half-line OX 0 into the half-plane with A, less 
than the angle X 00A, and less than a- e. Then the angle AOX' 
is greater than e. By definition of X 0 , there exist points X" arbitrar­
ily near to it so that the angle AOX" is not greater than e. The point 
X' is in the line segment X"A. Therefore, the angle AOX' is less 
than e; a contradiction. Thus, the angle AOX 0 is equal to e. Its 
uniqueness has been proved earlier. 

The complexity of the above proof, and it can hardly be made 
essentially simpler, accounts for the fact that, in the school treat­
ment, this statement is taken as an axiom. 

Accordingly, the question naturally arises, can the axiom of 
marking off on a half-line a line segment of given length be omitted 
in the school axiomatics, too, and not replaced by a weaker axiom 
of the existence of a line segment of given length? It turns out that 
this cannot be done (see the proof in Ch. XV). 
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7. Parallel Axiom 

Two straight lines on a plane are said to be parallel if they do 
not meet. 

Axiom VI, Through a point not in a given straight line, not more 
than one straight line parallel to the given passes in the plane. 

It follows that the property of parallelism of straight lines is tran­
sitive. Viz., if a straight-line a is parallel to a straight line b, and b 
is parallel to a straig!J.t line c, then a is parallel to c. In fact, if a 
and c met, then two straight lines parallel to b, viz., a and c, would 
pass through the point of their intersection, which is contrary to 
Axiom VI. 

It also follows from Axiom VI, that if a straight line intersects 
one of two parallel straight lines, then it also intersects the other. In 
fact, let a straight line c intersect one of two parallel straight lines a 
and b, say, b, but not intersect the other, i.e., a. Then two straight 
lines parallel to a, viz., b and c, pass through the point where b 
and c meet, which is contrary to ·Axiom· VI. 

8. Axioms for Space : 

Axiom C~" For any· plane, there exist points incident with it, 
and points not incident with it. · 

Axiom c2. If two distinct planes have a ·point in common, then 
they intersect in a straight line. 

Axiom C3 • If two distinct straight-lines have a point in common, 
then there is one, and only one, plane through them. 

Note several corollaries to the axioms· for space. 
There is one, and only one, plane through a straight line and an 

outside point. 
Proof. Let a be the given straight line, and B a point ·not in it 

(Fig. 112). Take a point A in a. Such a point exists by Axiom I 2• 

Draw a straight line b through A and B (Axiom I1). The lines a and b 
are different, since B of b does not lie in a. The lines a and b also 
have a common point, A. Draw a plane a through a and b (Axiom C3). 

It passes through a and B. 
We now show that, passing through a and B, a is unique. Assume 

that there exists another plane a' passing through a and B, and 
different from a. By Axiom C2 , a and a' intersect in a straight line. 
Therefore, any three points common to a and a' are in a straight 
line. But Band any two points in a are sure not to·be in one straight 
line. The contradiction completely proves the theorem. 

If two points in a straight line lie in a plane, then the whole 
line lies in the plane. 

Proof. Let a be a given straight line, and a a given plane (Fig. 113). 
By Axiom I 2 , there exists a point A not in a. Draw a plane a' through 



Ch. XV. Investigation of Euclidean Geometry Axioms 203 

a and A. If a' coincides with a, then a contains a, which is just 
what is stated by the theorem. If a' is different from a, then they 
intersect in a straight line a' containing two points of a. By Axiom I1, 

Fig. 112 Fig. 113 

;::::]7/ 
LL!:JJ' 

Fig. 114 

a' coincides with a; therefore, a is in a, thus completing the proof. 
One, and only one, plane can be drawn through three points not in 

the same straight line. 
Proof. Let A, B, C be the three given points not in the same 

straight line (Fig. 114). Draw the straight lines AB and AC. They 
are different, since A, B and C are not in· the same straight line. 
By Axiom Ca, a plane containing A, B, C can ~e drawn through AB 
and AC. 

Prove that the plane a passing through A, B and C is unique. In 
fact, the plane passing through A, B and C contains AB and AC, 
and is unique by Axiom Ca. 

Chapter XV 

INVESTIGATION OF EUCLIDEAN GEOMETRY AXIOMS 

1. Preliminaries 

In connection with the axiomatic construction of Euclidean 
geometry, three questions naturally arise, viz.' 

1. Is the axiom system adopted consistent, i.e., can two mutually 
exclusive corollaries not be derived by logical argument? 

2. Is the axiom system complete, i.e., can it not be completed 
with new axioms consistent with, and not following from the already 
adopted? · 

3. Are the adopted axioms independent, i.e., do certain axioms 
not follow from the others? 

The solution to these problems, given in the present chapter, is 
closely related to the construction· of concrete models of an axiom 
system. A model consists in the indication of quantities of three 
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kinds of arbitrary nature, symbolically named "points", "straight 
lines" and "planes", and relations among them symbolically expressed 
by the terms "incident", "between" and "measure", for which the 
axioms are fulfi.lled due to their concrete character. 

As a matter of fact. the basic notions of geometry are not defi.ned, 
and everything we know of them is expreEsed in axioms. Therefore, 
all our conclusions regard quantities of arbitrary nature, provided 
the axioms are fulfi.lled for them and for the relations among them 
(which can also be very much different from the visual imagery). 

To prove the axiom system consistency is to show that at least 
one of its models exists. To prove that a given axiom is in­
dependent means to indicate a model in which all the other 
axioms except the given one hold. Finally, the proof that some or 
other axiom system is complete can be performed by showing the 
isomorphism of all models, i.e., establishing such a one-to-one 
correspondence between their points, straight lines and planes that 
the corresponding elements are in similar relations. 

2. Cartesian Model of Euclidean Geometry 

We now indicate one of the Euclidean geometry models called 
Cartesian. For simplicity, we will construct this model on the plane. 
It can be easily seen, however, that a similar construction is also 
valid for a system in space. 

We call any pair of real numbers x, y taken in order (x, y) a point, 
and the numbers themselves its coordinates. The set of all points 
whose coordinates satisfy a linear equation 

ax + by + c = 0, a 2 + b2 =1= 0 

is called a straight line. The equation is called the equation of the 
straight line. The straight lines x = 0 and y = 0 are called the 
coordinate axes, whereas the point (0, 0) the origin. 

We will say that a point belongs to a straight line if it is one of its 
points, i.e., its coordinates satisfy the equation of the straight line. 

We show that, with such a concrete understanding of basic con­
cepts, the axioms of incidence hold for Euclidean geometry. 

Axiom 11 which is valid here states that one, and only one, straight 
line can be drawn through two points. In fact, let (xto y1) and (x2 , y 2 ) 

be the two given points. 
The straight line determined by the equation 

(x - x1) (y 2 - Y1) - (y - Y1) (x2 - x1) = 0 

passes through them, since their coordinates satisfy it. To prove 
its uniqueness, we assume that two straight lines 

ax + by + c = 0, a1x + b1y + c1 = 0 
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pass through (xtt y1) and (x2 , y 2). Since these two simultaneous 
equations have two solutions x1 , y1 and x2 , y2 , they are dependent, 
i.e., different only by a multiplier, and the straight lines coincide. 

Axiom 12 which also holds here states that at least two points are 
in each straight line, and that there exist three points not in one 
straight line. 

In fact, let 
ax+ by+ c = 0 

be the equation of a straight line. Then at least one of the coefficients 
a, b, say, b, is other than zero. We take two arbitrary numbers x1 
and x 2 (x1 =fo x2), and find y1 and y2 by the formulas 

ax1 +c ax2+c 
Y1 =- b , Y2 =- b 

The points (x17 y1) and (x2 , y 2 ) lie in our straight line. 
To prove the existence of three points not lying in the same 

straight line, we take (0, 0), (0, 1) and (1, 0). In fact, assume that 
they are in a certain line ax + by + c = 0. Substituting their 
coordinates in the equation, we obtain consecutively that c = 0, 
b = 0 and a= 0. However, a2 + b2 must be other than zero, and 
the contradiction proves the thorem. 

3. "Betweenness" Relation 
for Points in a Straight Line. 

Verification of the Axioms of Order 

We now define the term "between" for the points in a straight 
line. Let ax + by + c = 0 be the equation of a straight line, and 
(x1 , y1), (x2 , y2) and (x3 , y3 ) three points in it. In the case where b =fo 0, 
we will say that (x3 , y3) is between (x1 , y1) and (x2 , y 2 ) if the differ­
ences x1 - x3 and x3 - x2 have the same signs, i.e., the number x3 
is between x1 and x2. For a =I= 0, we will say that (x3, y3) is between 
(x1 , y1) and (x2 , y2) when the differences y1 - y3 and y3 - y 2 have 
the same signs. To make the given definition correct, it is required 
that both defining methods should be equivalent if a =fo 0 and b =1= 0. 

We now prove this equivalence. 
If b =I= 0, then 

ax1+c ax2+c ax8+c 
Y1 =- b , Yz =- b ' Ys =- b 

a ( a ( Yt-Ys= --;; x1-xa), Ya-Yz= --;; Xa-Xz)· 

We see that if x1 - x3 and x 3 - x 2 have the same signs, then 
y1 - Ya and Ya - y 2 also have the same signs, and definition equiv­
alence is thus proved. 
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We now verify that the axioms of order hold. Axiom 111 states 
that one, and only one, point of three in a straight line is between 
the other two. Let ax + by + c = 0 be the equation of the straight 
line, and (x1 , y1), (x2 , y2), (x3 , y3) three points in it. Assume that 
b =I= 0 in the equation. It follows that x1 , x2 , x3 are all different. 
Indeed, if x1 = x 2 , then 

ax1 +c ax2 +c 
Yt = - b - b = Yz, 

i.e., (xH y1) and (x2 , y2) coincide, whereas we mean three different 
points. Thus, all x1 , x2 , x3 are different. Place them in. ascending 
order. For definiteness, let x1 < x2 < x3 • Then the differences 
x2 - x1 and x3 - x2 have the same signs; therefore, (x2 , y2} is be­
tween (x1 , y1 ) and (x3 , y3). The differences x3 - x2 and x1 - x3 have 
different signs. Hence, (x3, y3) does not lie between (x1 , y1) and (x2 , y,.). 
The differences x1 - x3 and x2 - x1 also have different signs. There­
fore, (x1 , y1) does not lie between (x2 , y 2) and (x3 , y 3) either. Thus, 
of three points in a straight line, one, and only one, lies between the 
other two. 

We now verify that plane-separation Axiom 11 2 ll.lso holds. Let 
ax + by + c = 0 be the equation of the straight line in question. 
We will say that a point (x, y) in the plane, not incident with ax + 
by + c = 0, is in the first half-plane if ax + by + c > 0, and 
in the second if ax + by + c < 0. The. axiom states that if two 
points A 1 (x1 , y1) and A 2 (x2 , y2) lie in the same half-plane, then the 
line segment A 1A 2 does not meet the straight line. If they are in 
different half-planes, then the line segment does intersect the straight 
line. 

We show that our plane separation into two half-planes possesses 
this property. In fact, let ax + ~y + y = 0 be the equation of the 
straight line joining A1 to A 2• Suppose, for definitiness, that ~ =1= 0. 
Then x1 < x < x2 or x 2 < x < x1 for all points (x, y) of the line 

segment A1A 2• Substitute their coordinates x andy = - ~ (ax + y) 

in ax + by + c. We obtain a linear function of x: f (x) = c1x + c2 • 

If A1 and A 2 are in the same half-plane, then f (x1) and f (x2) have 
the same signs; therefore, f (x) preserves sign in the whole interval 
(xH x2), which means that A1A 2 does not intersect ax + by + c = 
0. However, if A1 and A 2 are in different half-planes, then f (x1) 

and f (x2) have different signs; therefore, f (x) vanishes in (x1 , x2), 

and A1A 2 intersects the straight line. The case ~ = 0 (then a =1= 0) 
is considered similarly. Thus, the axioms of order do hold in the 
Cartesian model. 
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4. Length of a Segment. V erifieation 
of the Axiom of Measure for Line Segments 

The number 

d = V (x2- Xt)-2 + (y2- Yt)2 

is called the distance between two points (xto y1) and (x2 , y 2) in the 
Cartesian model. 

The length of a line segment is the distance between its ends. 
To verify that the axiom of measure for line segments (Axiom 1111) 

holds in the Cartesian model, we notice, first of all, that each seg­
ment has certain length greater than zero. Let A (x1 , y1) and B (x1h y2) 

be two points in a straight line, and C (x3 , y3) a point between them 
and in the same straight line. We prove that the length of the line 
segment AB equals the sum of those of the segments AC and BC. 
Let y = px + q be the straight line equation. Since C is between 
A and B, either x1 < x3 < x2 or x1 > x3 > x2 • E.g., let x1 < 
Xa < x2. 

We have 

Yt = PXt + q, Yz =·px2 + q, Ya = PXs + q. 

The length of ab equals 

V (xz - Xt) 2 + tY2- Y t) 2 = V.,...(x-2 -x---,t)'""'2--:+-(.,-p_x_2 -p-x-:-t)-=-2 

= (x2 -x1) V 1 + p 2• 

Similarly, that of AC is (X3 - x1) V 1 + p 2, and (x2 - x3) V 1 + p2 

of BC. We see that the length of AB equals the sum of those of AC 
and BC; thus, Axiom 1111 holds in the Cartesian model. 

For the distances between points in the Cartesian model, the 
triangle inequality is valid. Viz., the distance between two points is 
not greater than the sum of their distances from a third point, and is 
necessarily less if these three points are not in the same straight line. 

Proof. Let a, b, c and d be any four non-negative numbers. 
We have 

a2d2 + b2c2 > 2abcd, 

equality occurring only if ad = be. Add a2c2 + b2d2 to both sides, 
and take the square root. 

We obtain 
V (a2 + b2) (cz + dZ) ~ac + bd. 

Doubling, we then add a1 + b" + c" + d2 to both sides, and 
again take the square root. 

We get 
V a2+ b2+ V c2+d2~ V(a +c)2+ (b+d)2. 
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Now, we put a = x3 - x1 , b = y3 - y1 , c = x 2 - x3 , d = 
y 2 - y3 • Then the distance between (x1 , y1 ) and (x 2, y2 ) is on the 
right, whereas the sum of their distances from (x8 , y8) on the left. 
Inequality turns into equality only if ad = be, or if 

(xs - Xt) (y2 - Ys) = (x2 - Xa) (ys - Yt), 

i.e., our points are in the same straight line 

(xs - x) (y2 - Ys) = (x2 - Xs) (Ya - y), 

the coordinates of any of them satisfying the equation. 
A motion in the Cartesian model is a transformation given by 

formulas of the form 
x' = ax + by + c, 

y' = -bx + ay + d, 

where the constants a and b are such that a2 + b2 = 1. We see by 
straightforward verification that motions form a group, which means 
that a transformation inverse to a motion is a motion, two motions 
performed one after the other also yield a motion, and the identity 
transformation (x' = x, y' = y) is again a motion. 

It is verified immediately that a motion preserves distances between 
points. 

It follows from the triangle inequality that a motion transforms 
straight lines into straight lines, half-lines into half-lines, and 
line segments into line segments. 

5. Measure of Angles in Degrees. Verification of Axiom Ill2 

We define the measure of angles in degrees in the Cartesian model. 
First of all, we assume that the measure of a straight angle is 180°. 
Consider an angle at the origin with sides in the half-plane x > 0 
and the equations 

Then 
y = k1x, y = k2x (x > 0). 

k2 

e=~lf_d_t I* 
n J 1+t2 

kl 

is the measure of our angle in degrees. 
We now define the measure of an angle in degrees if it is in general 

position. Let ABC be an angle other than straight. Let ax + by + 
c = 0 be the equation of the straight line AC. Without loss of 

00 r dt 
*Here, we understand J 1 + t 2 by n. 

-oo 
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generality, we can assume that a2 + b2 = 1. The motion given by 
the formulas 

x' =ax+ by+ c 

y' = -bx + ay 

transforms AC into the y-axis. Then, applying the motion given by 
±x' = x +a, y' = y + ~. we can send the vertex of the angle B 
into the origin by carrying out these two motions one after the 
other with a convenient choice of a and ~· Meanwhile, AC will be 
transformed into a straight line x = const. We can shift AC into 
the half-plane x > 0 by the choice of sign in the second motion for­
mula. Thus, the angle ABC is transformed by a motion into an 
angle with vertex at the origin and sides in the half-plane x > 0. 
It is the measure of this angle in degrees that we take for the angle 
ABC. 

To see that the above defi.nition of the measure of an angle ABC 
in degrees is correct, we have to prove its independence of a motion 
transforming ABC into an angle in the indicated position. To show 
that this is really so, we suppose the angle ABC is transformed into 
an angle A 10Ch and into an angle A 20C2 by another niotion. Since 
all motions form a group, the angle A 10C1 is transformed by a motion 
into the angle A20C2• 

Let y = k1x, y = k 2x (x > 0) be the equations of the sides of the 
angle A 10C1, and x' =ax+ ~y, y' = -~x + ay the motion 
transforming it into the angle A 20C2 • To fi.nd the equations of the 
sides of the latter angle, we solve the formulas specifying the motion 
for x and y, and obtain x = ax' - ~y', y = ~x' + ay', substituting 
which in the side equations for the angle A 10C1o we obtain those 
for the angle A 20~2 , viz., 

y' = k~x', 

The measure of the angle A 10C1 in degrees is 

"• 
~,f~l 

1t J f+ tZ ' 
kl 

and that of the angle A 20C2 

II' 

1.~ I~ 1.~~~1· 
k; 

It is easy to see that they ~e equal. . In . fact, it suffi.ces to notice 
· at-P 

that a change of the variable by the_fo_rmula 't' = Pt+a trans-
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forms one expression into the other, and the definition correctness 
for the measure of an angle in degrees is thus proved. 

Now, suppose we have an angle (ab) and a ray c between its sides, 
intersecting some line segment with ends on them. Perform a motion 
under which the angle is transformed in to an angle (a1 b1) with vertex 
at the origin and sides in the half-plane x > 0. The ray cis then 
transformed into a ray c1 between the sides of (a1b1). Therefore, 
the verification of Axiom III 2 is reduced to the case where the vertex 
of the angle is at the origin, and the sides are in the half-plane 
x>O. 

For check, we suppose that y = kx (x > 0) is a half-line between 
the sides of the angle y = k1x, y = k2x (x > 0), which intersect the 
straight line x = 1 at the points (1, k1) and (1, k2). The half-line 
meets the line segment with the ends at these points; therefore, k is 
between k1 and k2• 

We have 
k ka hs 

180 r dt . 180 r dt 180 r dt 
1t J 1+t2 +--;:t J 1+t• ="'--;:t J 1+t2 • 

~ k ~ 

Since both addends on the left-hand side have the same signs, 
k ks ka 

180 I r dt 1 180 I J dt I 181 I r dt I 
""""it J 1+t2 +--;:t 1+t2 =""""it J 1+t2 ' 

k1 11. h1 

which means that the measure of the angle in degrees is equal to the 
sum of those of the angles formed by y = kx (x > 0) and its sides. 
Thus, Axiom III 2 holds in the Cartesian model. 

6. Validity of the Other Axioms 
in the Cartesian Model 

We now verify that Axiom IV of existence of a triangle congruent 
to a given one holds for a given disposition with respect to a half­
line. Let ABC be the given triangle, and PQ the half-line. It is 
required to prove the existence of a triangle A1B1C1 congruent to 
the triangle ABC, so that the vertex A1 coincides with the origin 
of PQ, the vertex ,B1 is in this half-line, and the vertex C1 in the 
given half-plane with respect to PQ. 

Let ax + by + c = 0 be the equation of the straight line AB. 
Without loss of generality, we can assume that a2 + b2 = 1. The 
motion specified by the formulas 

±x' = ax + by + c 
+y' = -bx + ay + A. 
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transforms AB into they-axis. We cansend thepointA intotbeorigin, 
the point B onto the half-axis y > 0, and transform the half-plano 
containing the point C into the half-plane x > 0 with respect to 
AB by a convenient choice of A. and the signs of x' and y'. We denote 
the obtained motion by S. 

Now, let a1x + b1y + c1 = 0- be the equation of the straight 
line PQ. The motion given by the formulas 

±.x' = a1x + b1y + c1 

±y' = -b1x + a1y + J.1. 

transfotms PQ into the y-axis. By a convenient choice of 1.1. and the 
signs of x' andy', we can send the point Pinto the origin, the point Q 
onto the half-axis y > 0, and transform the given half-plane with 
respect to PQ into the half-plane x > 0. We denote the obtained 
motion by H, and the inverse by H-1• 

Perform the motions S and H-1.,one after the other. The triangle 
ABC is then transformed into a triangle A1B1C1 with the given 
disposition relative, t~ the half-line PQ. It remains to prove that 
they are congruent. Since the motion preserves distances, their 
correspo:t;1ding sides are congruent. We now show that the correspond­
ing angles are congruent. To find the measure of the angle A1B1C, 
in degrees, we transform it by a motion into an angle A 20C2 with 
vertex at the origin and sides in the half-plane x > 0. 

We take as the measure of the angle A1B1C1 in degrees that of 
the angle A 20C2 , for which we have a formula (see Sec. 5). Since 
the angle ABC is transformed by a motion into the angle A1B1C1, 

and the latter into the angle A 20C2 , the angle ABC is transformed 
by a motion into the angle A 20C2 , and, therefore, has the same 
measure as the angle A1B1 C1 . Thus, tl:iey are congruent. 'i'he con~ 
gruence of the other corresponding angles of the triangles ABC and 
A1B1C1 is proved similarly. The validity of Axiom IV in the Car .. 
tesian mod'el is proved. 

That Axiom V of the existence of a line segment of any given 
length d holds in the Cartesian model is sUfficiently obvious. In 
fact, the line segment with ends at the points (0, 0) and (d, 0) has 
length V (d ~ 0)2 + (0 - 0)2 = d. 

To verify that the parallel axiom holds, we prove that, in tho 
Cartesian model, not more than one straight line can be drawn p~allel 
to a straight line ax + by + c = 0 through an outside point {x0 , y0). 

Assume that there are two such lines a1.x + b1y + c1 = 0, az.x + 
b2y + c2 = 0 passing through {.x0 , y0), and parallel to the given line, 
i.e., never meeting it. Then both pairs of simultaneous equations 

a1x + b1y + c1 = 0 a2x + b2y + c2 = 0 
ax + by + c = 0 ax + by + c = 0 
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are inconsistent, or have no solutions. Therefore, 

I :t :t I= 0, I :2 :21 = 0. 

Hence, I a1 b1 1-
b -0. aa 2 

Since the simultaneous equations 
a1x + b1y + c1 = 0 

aaX + bsY + Ca = 0 
have a solution x = x0 , y = y0 , they are dependent, and differ only 
by a multiplier, which means that the straight lines are coincident 
contrary to the assumption. Thus, the validity of this axiom in the 
Cartesian model is proved. 

7. Consistency and Completeness 
of the Euclidean Geometry Axiom System 

The system of axioms for any theory T, and, in particular, for 
Euclidean geometry, is consistent if it admits at least one model R. 

In fact, if two mutually exclusive corollaries could be derived 
from the system of axioms for T, then this would be also possible 
for R. Since the validity of each statement in R, corresponding to 
an axiom in T, seems doubtless due to the nature of the objects in R 
and the relations among them, to obtain two such corollaries in R 
is impossible. Hence the impossibility to come to a contradiction 
in T. 

We have already constructed one model of Euclidean geometry, 
viz., Cartesian. The method was to indicate a system of objects 
called points and straight lines, and a system of relations among 
them, so that all the statements contained in the Euclidean geometry 
axiom system were valid. The conclusion that they are, in fact, 
true was made on the basis of the corresponding theorems related 
to the theory of real numbers. Since they are, eventually, deducible 
from the axioms for arithmetic, we can warrant the Cartesian model 
construction, provided that the arithmetic axiom system is consis­
tent. Thus, we obtain a solution to the problem of the Euclidean 
geometry axiom system consistency in the following form. 

The Euclidean geometry axiom system is consistent if the arithmetic 
axiom system is. 

We now turn to the problem of an axiom system completeness. 
Consider two models R' and R" of a certain theory T. We call them 
isomorphic if their elements can be put into a one-to-one correspond­
ence preserving the axiomatically determined relations. 

An axiom system T is said to be complete if no new axioms can be 
added, which do not follow from those of T, and are consistent 
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with them. We certainly assume that the new axioms do not in­
troduce any new relations, and that the new system so formed admits 
a model. The problem of an axiom system completeness is inti­
mately related to that of an isomorphism of all its models. Viz., if 
all models of an axiom system T are isomorphic, then it is complete. 

Indeed, let an axiom system T be incomplete, which means that 
there is a certain statement a not deducible from the axioms of T ~ 
and consistent with them. Meanwhile, two consistent axiom systems 
T' and T" can be formed by adding to T the axiom a or its negation a. 

Let R' and R" be two models of T' and T", each of which is, at 
the same time, that of T. Sinee a is valid in T', and a in T", these 
models of T are not isomorphic, and the statement is thus proved. 

The Euclidean geometry axiom system is complete, i.e., no new 
axioms regarding points, straight lines or planes and the relations 
among them, determined by the axioms, can be added, so that they do 
not follow from the already adopted axioms, and are consistent with 
them.· · · 

For proof, it suffices to establish that all models of Euclidean 
geometry are isomorphic. Since it is obvious that two models iso­
morphic to a third are isomorphic to each other, it suffices to prove 
the isomorphism of all models of the Cartesian one. 

We now establish such an isomorphism. Let R be any model of 
Euclidean plane geometry. Introduce rectangular Cartesian coordi­
nates on the plane as is done in analytic geometry (Part One). Each 
straight line on the plane is known to be given by a linear equation 
ax + by + c = 0, and each such equation to be that of a certain 
straight line. 

It is also known that the mutual disposition of three points in 
a straight line, expressed by the term "between", leads to a certain 
relation among the point coordinates. Viz., if a point (x, y) is between 
(x1 , y1) and (x9 , y 2), then either xis between x1 and x2 , or y is between 
Yt and y 2 or both. 

For the distance between (x~o y1), (x2 , y 9) in rectangular Cartesian 
coordinates, the formula Y (x2 - x1) 2 + (y2 - y1) 2 is deduced, 
and the concept of motion introduced as of a distance-preserving 
transformation, for which the formulas 

x' =ax+ by+ c 

±y' = -bx + ay + c1 
(a2 + b9 = 1) 

are obtained. It is proved, meanwhile, that measures of angles in 
degrees are preserved under motions. 

All the above is well-known from analytic geometry (see Part One). 
Associate a point (x, y) in the Cartesian model with a point in 

the model R with coordinates x and y, while a straight line ax + 
by + c = 0 in the Cartesian model with that in R, given by 
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the same equation. We assert that this one-to-one correspondence 
between the Cartesian model points and straight lines and those in R 
is an isomorphism. In fact, if a point A is in a straight line a in the 
Cartesian model, and A', a' are the corresponding point and straight 
line in R, then A' is in a'. If three points A, B, C in the Cartesian 
model are on a straight line, and B is between A and C, then the 
corresponding points A', B', C' are positioned similarly in R, i.e., 
B' is between A' and C'. The corresponding line segments of the 
Cartesian model and R are equally long, as expressed by the same 
formula in terms of the end-point coordinates. 

We show that the corresponding angles in the Cartesian model and 
R are of the same measure in degrees. First of all, we notice that 
motions are given by the same formulas, and preserve measures in 
degrees. Transform by a motion the corresponding angles of our 
models into those with sides 

0 n n 
y=xtan 17 y=xtan02 , x>O, - 2 <01, 02 <2. 

Then the measure of the angle in degrees is 1 02 - 01 1 1~o in R, 
whereas that of the corresponding angle 

180° 
- tan-1 (tan 01) I= IOz-011-n-· 

We see that the measures of the corresponding angles in degrees 
are the same in both models. 

Thus, the established correspondence between points and straight 
lines of the Cartesian model and R is an isomorphism, whence all 
the Euclidean geometry axiom system models are isomorphic; there­
fore, the axiom system is complete. 

8. Independence of the Axiom of Existence 
of a Line Segment of Given Length 

An axiom a of a theory T with axiomatic construction is said to 
be independent if it cannot be derived as a corollary to the other 
axioms. The usual method for the proof of independence of some 
or other axiom a is in the construction of a model R of the system 
of axioms for T without a, in which a would not be valid. If such 
a model is constructed, then a is independent. 

Indeed, if a were obtained as a corollary to the remaining axioms, 
then the statement a would also hold in R, which is contrary to its 
construction. 
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It is just in this way that we prove the independence of the axiom 
of existence of a line segment of given length from the remaining 
Euclidean geometry axioms. We prove the following theorem. 

The axiom of existen!:e of a line segment of given length is indepen­
dent, i.e., it cannot be obtained as a corollary to the other Euclidean 
geometry axioms. 

Proof. Let G be a set of real numbers, containing all rational, 
and also all those obtained from the rational by a finite number of 
additions, subtractions, multiplications, divisions and square-root 
operations. It is evident that the sum, difference, product, quotient 
of two numbers from G, and also the square root of any non-negative 
number, are again in G. It is known also that the numbers from G 
do not exhaust all real numbers. Moreover, G is at most countable, 
whereas the set of all real numbers is uncountable. 

We now construct the Cartesian modPl of Euclidean geometry as 
before, but only with the elements from G. 

Thus, we call a pair of numbers (x, y) from G a point, and the set 
of points satisfying any linear equation ax + by + c = 0 with 
coefficients in G a straight line. The relation of order for points in a 
straight line is, as before, defined in terms of the point coordinates. 
A motion is a transformation given by formulas of the form 

x' = ax + by + c, ±y' = -bx + ay + d (a2 + b2 = 1) 

with coefficients in G. The length of a line segment and the measure 
of an angle in degrees are defined as before verbatim. 

We can now start verifying the axioms. All the proofs given in 
connection with the Cartesian model of Euclidean geometry (see 
Sees. 2-8) are repeated verbatim except that for the axiom of exist­
ence of a line segment of given length, since it does not hold at all. 

Indeed, the length of any segment is the distance between its end­
points, and is determined by the formula 

Since the values x10 y1 , x2, y2 are in G, the length of the segment 
is also in G. The axiom of existence of a line segment of given length 
states that, for any real number d, there is a line segment of length d. 
Since the numbers from G do not exhaust all real numbers, there is 
a value d that cannot be the length of any segment. Therefore, the 
axiom of existence of a line segment of given length does not hold 
in the model constructed, and, hence, this axiom does not depend 
on the others in Euclidean geometry. 
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9. Independence of the Parallel Axiom 

The parallel axiom for Euclidean geometry is independent, i.e., 
cannot be deduced from the other axioms. 

Proof. According to the general method for the axiom independ­
ence proof, it suffices to construct such a model of the Euclidean 
geometry axiom system without the parallel axiom that it does not 
hold. We shall now construct such a model, for simplicity confining 
ourselves to the system of axioms for the plane. 

By a point, we understand any point in the Euclidean plane 
inside the unit circle 

x2 + y2 < 1, 

and by a straight line any chord of the circle. The incidence and 
order relations are understood to be the same as in Euclidean geo­
metry. 

By a motion, we mean a transformation of the forms 

X 1 =ax+ by 
(a2 + b2 = 1) (*) 

±Y1 = -bx+ay 
or 

, xY~ 
X = i+~Y ' (**) 

and also any transformation obtained by performing two in(*) and 
(**) one after the other. 

It is obvious that the motions form a group. The transformations 
(*) and (**) send the circle x2 + y2 < 1 into itself, it being 
obvious for (*), and easily verifiable for (**), since X 12 + y12 < 1. 
Hence, any motion transforms the circle x2 + y2 < 1 into itself. 

It is seen by straightforward check that any motion can be given 
by formulas of the form 

1 a1x+bty+c1 1 a2x+b2y+c2 (***) 
X = ax+by+c ' Y = ax+by+c 

(denominators being the same). 
Hence, by a motion, straight lines are transformed into straight 

lines. In fact, let a straight line h be given by an equation Ax + 
By + C = 0. Solving (***) for x, y, and substituting them in 
Ax+ By+ C = 0, we obtain a linear equation A 1X 1 + B 1Y1 + 
C1 = 0 in X 1 and Y1 , which means that his transformed into a straight 
line h1 with this equation. 

A motion preserves the order of points in a straight line. In fact, 
for definiteness, let B =1= 0 and B' =I= 0 in the equations of two 
straight lines h and h'. Substituting 

Ax+C 
y=- B 
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in the first formula of (***), we obtain 
, ax+~ 

X = yx+6 ' 

which establishes the relation between the coordinate x of a point 
in h and the coordinate x' of the corresponding point in h', viz.,. 

dx' _ a6-~y 
dX-- (yx+ 6)• • 

We see that dx' /dx preserves sign. Therefore, x' is a monotonic func-­
tion of x, which means that if, for three points x1 < x2 < x 8 in h,. 
then either x~ < x; < x~ or x~ > x~ > x; in h' for the corresponding· 
points, and motions preserve the order of points in straight lines. 

Since, under a motion, straight lines are transformed into straight. 
lines, and the order of points is preserved, line segments are trans­
formed into line segments, and rays into rays. 

We defi.ne the distance between two points A (xtt y1) and B (x2 , y2} 

as follows. The straight line AB meets the circumference x2 + y2 = 
1 at two points C (x3 , y3) and D (x4 , y4). We call the value 

lin ( xa-Xt -;.... x,-xl )I 
x3 -x2 x4 -x2 

the distanCe between A and B if x1 ::::/= x2, or a similar expression,. 
replacing x by y, if y1 ::::/= y 2• In the case where x1 ::::/= x2 , and y1 =I= y 2 ,. 

we can use any formula with the same result. As a matter of fact, 
for x1 =I= x2 , y1 =I= y2 , a =I= 0 and b =I= 0 in the equation ax + by + 
c = 0 of AB. Hence, x = - by+c. If we substitute y for r 

a 
by means of the latter expression, then we obtain 

lin ( Ys- Yt -;.... y,-Yt ) I· 
Ys-Ys y,-y. 

Motions preserve distances. Indeed, let a motion send two points 
A (xto y1) and B (x2 , y2) into A' (x~, YD and B' (x~, y~). The distance-
between A and B is · 

d=lln ( xa-xt -;.... x,-xl )j' 
x3 -x1 x4 -x2 

whereas that between A' and B' 

d' = jin ( x8 -x~ -=- x4 -x1 )I 
xS-xi · xf-xS · 

The relation between the coordinate x of a point in AB and the­
coordinate x' of the corresponding point in A' B' is known to be­
established by the formula 

x'= ax+fi 
yx+6 
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Substituting it in the formula for d', we obtain after a simple 
-calculation that d' = d, i.e., the distance between two points is 
preserved under a motion. 

The measure of an angle in degrees is defined as for the Cartesian 
model (see Sec. 5), with the only difference that a motion is under­
stood here in the sense of the above definition. 

The measure of an angle in degrees is preserved under a motion. 
We should now verify that the axioms hold in the model construct­

-ed. That the axioms of incidence and order are valid is quite 
()bvious. That the axiom of measure for line segments holds follows 
from the law of logarithms 

In ab = In a + In b. 

That the axiom of measure is true for angles is verified verbatim 
.as in the Cartesian model, the motion understood in the sense of the 
.above definition. 

The verification of the axiom of existence of a triangle congruent 
to a given one is done as for the Cartesian model. 

To verify the axiom of existence of a line segment of given length, 

-consider a segment with ends at points (0, 0) and (x, 0), jln / xI 
in length. It is evident that any number d can be thus obtained by 
.a convenient choice of x. 

In a word, all the axioms for Euclidean geometry hold in the 
-constructed model except the parallel axiom. In fact, through a 
given point in a circle, we can draw an infinite number of chords 
not intersecting a given one. It is the construction of this model that 
proves the independence of the parallel axiom from the other Euclid­
-ean geometry axioms. 

10. Lobachevskian Geometry 

We have proved that the parallel axiom does not depend on the 
()ther Euclidean geometry axioms. It follows that the former can be 
replaced by its negation in the Euclidean geometry axiom system. 
The axiom system so formed is also consistent, since it does admit 
a model (see Sec. 9). The corresponding geometry is said to be Loba­
-chevskian. Thus, Lobachevskian geometry axiom system consists 
()f that for Euclidean geometry, the parallel axiom replaced by 
the Lobachevskian. Viz., through every point not in a straight line, 
there are at least two straight lines not intersecting it. 

It turns out that the system of axioms for Lobachevskian geometry 
is complete; therefore, the latter can be studied in any of its models. 
The one obtained in the previous section is due to F. Klein, and 
()ften called the Klein model of Lobachevskian geometry. 
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In Lobachevskian geometry, a whole pencil of straight lines 
not intersecting a given straight line passes through a given outside 
point. Its extreme lines are said to be parallel to the given in the 
sense of Lobachevsky. Straight lines parallel in the sense of Loba­
chevsky are represented in the Klein model as chords with a common 
end. 

We now clarify how perpendicular straight lines are represented 
in the Klein model. If they intersect at the centre of the circle, then 
their perpendicularity in the 
sense of Lobachevsky implies the 
usual perpendicularity in the 
.sense of Euclidean geometry 
(Fig. 115a). In the case where 
.straight lines do not meet at the 
centre, their perpendicularity in 
the sense of Lobachevsky means 
that the tangents at the ends of 
one chord intersect at the exten­
sion of the other (Fig. 115b). We 
give the proof later. 

{a) {b) 

Fig. H5 

Knowing how to find the distance between points in the Klein 
model, we can find the distance ds between two arbitrarily near points 
(x, y) and (x + dx, y + dy), or the linear element of the Lobachevsky 
plane. Omitting the necessary argumentation, we only give the 
final result, viz., 

where c is a positive constant. 
Considering the linear element ds2 as that of a surface in Euclidean 

space, we clarify what is characteristic of the surface. Accordingly, 
we find its Gaussian curvature. By the Gauss formula (Ch. XI, 
Sec. 7) for Gaussian curvature in terms of the linear element coef­
ficients, we get K = -c. Thus, the Lobachevsky plane is locally iso­
metric to a surface of constant negative curvature, and we obtain another 
model of Lobachevskian geometry. This was constructed by 
E. Beltrami. 

We now establish what straight lines are in the Beltrami model. 
Their characteristic property is that they are the shortest. Since 
a mapping of the Lobachevsky plane onto a surface of constant 
negative curvature is isometric, the Lobachevsky straight lines on a 
surface of constant negative curvature in the Beltrami model 
are geodesic lines. The distance between points in the Beltrami model 
is the length of the geodesic segment joining them. 

What is a motion in the Beltrami model? It is a distance-preserving, 
or isometric, transformation of the surface. 
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A good number of the Euclidean geometry theorems also hold in 
Lobachevskian geometry, e.g., on the sum of supplementary angles 
and congruence of vertically opposite angles, tests of congruence of 
triangles, etc. Still, there are certain theorems in Lobachevskian 
geometry, not being true for Euclidean geometry. We illustrate by 
several examples. 

In Lobachevskian geometry, the sum of the angles of a triangle is 
less than 180°. 

In Lobachevskian geometry, there exist no triangles of arbitrarily 
large area. 

In Lobachevskian geometry, there are no similar or congruent tri­
angles. 

We now prove them by means of the Beltrami model. 
By the Gauss-Bonnet theorem, 

a + ~ + y - n = Kcr, (*) 
where a, ~. y are the angles of a triangle (in radians), cr is its area, 
and K a negative constant. Since K < 0, we have a + ~ + y < n, 
and the first theorem is thus proved. 

To prove the second statement, we remember that 
ct+P+y-n 

cr= K 

Since a, ~. y > 0, we have cr < n/1 K I. i.e., the area of any 
triangle is bounded by n/1 K 1. and the second theorem is also 
proved. 

For the proof of the third theorem, we assume that 

LA = LA11 LB = LB1 , LC = LC1 

A1B1 = kAB, A1C1 = kAC, B1C1 = kBC, k < 1 

for two triangles ABC and A1B1C1. Move the triangle A 1B1C1 so 
that its vertex A1 coincides with A, the vertex B1 is on the side AB,, 
and the vertex C1 is on the side AC. The triangle A1B1C1 is then 
inside the triangle ABC, and, therefore, is of less area. But the 
area of a triangle is expressed in terms of its angle-sum by the for­
mula (* ), whereas the corresponding angles of our triangles are 
congruent; a contradiction, and the third theorem is proved as well. 

We now give another model of Lobachevskian geometry, the 
Poincare model. Project the Klein circle x2 + y2 < 1 onto the 
hemisphere x2 + y2 + z2 = 1, z > 0 by straight lines parallel to 
the z-axis, and, in turn, the hemisphere onto the yz-plane from the 
point (1, 0, 0). We then obtain a mapping of the circle x2 + y2 < 1 
onto the half-plane of the yz-plane (z > 0). 

We now clarify into what the circle chords, i.e., Lobachevsky 
straight lines, will be transformed. A point (x, y) in the circle is 
under the first projection sent into the point. (x, y, y 1 - x2 - y2) 
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on the hemisphere. To find the trace of (x, y) on the yz-plane ·under 
the second projection, consider the projecting line given by the 
equations 

i-1 ii ; 
x-1 =-y= Y1-xz-yz ' 

and intersecting the yz-plane at the point 
-- y- 1-v x=O, y=- x-1 ' z=- x-1 1-x2-y2. 

We have 

Hence, 
-t+ii2 +z• 2ii 

X= y = --==--=-
1+y2+z2 1+y2+z2 • 

Let a chord be given by the equation 

ax+ by+ c = 0. 

Substituting the expression for x and y, we obtain the equation 
of the curve into which the chord is sent under the mapping in 
question, viz., 

a (-1+y2+z2) +2by+c (1+y2 +z2) = 0, 
or 

If c + a =fo 0, then it is the equation of a semi-circle with centre 
on the y-axis. If c +a = 0, then it is that of a straight line per­
pendicular to they-axis (Fig. 116). Thus, 
the Lobachevsky straight lines are re­
presented in the Poincare model by semi­
circles with centres on the half-plane 
boundary and by straight lines perpendic­
ular to it. 

If, according to (••), the vari-
ables y and z are introduced into the 

Fig. 116 

linear element ds2 of the Lobachevsky plane instead of x and y, 
then, as computations show, it can be reduced to the form 

as2 = dii2+dz2 
z2 

Since dy2 + dZ2 is the linear element of the yz-plane, a mapping 
of the Lobachevsky plane onto the Poincare half-plane is conformal. 
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In conclusion, we notice that Lobachevsky motions correspond 
in the Poincare model to inversions with respect to circles with 
centres on the boundary of the half-plane, translations parallel ro 
the half-plane boundary, and similarities with respect to centre$ 
on the half-plane boundary. 

Chapter XVI 

PROJECTIVE GEOMETRY 

1. Axioms of Incidence for Projective Geometry 

Projective geometry originated in the first half of the 19th c .• 
and is related to the name of the French geometer V. Poncelet 
(1788-1867) who delineated the subject matter of projective geometry, 
i.e., the properties of figures and of related quantities invariant 
under any projection. 

Projective geometry was also much developed by M. Chasles 
(1793-1880) and J. Steiner (1769-1863). Thanks to the works of 
K. Staudt (1798-1867), the science was freed of the concept of metric, 
foreign to it, and was turned into a discipline only studying the 
properties of. geometric figure disposition. 

Projective geometry is constructed on the basis of a system of 
axioms of incidence, order, and also the axiom of continuity. 

Axioms of incidence speak of mutual disposition of points, straight 
lines and planes, expressed by the term "to be incident". Meanwhile, 
the agreement remains valid regarding the equivalent expressions 
indicated in the Euclidean geometry axioms of incidence. 

Axiom 11• ·For any two points A and B, there is a straight line 
incident with each of these points. 

Axiom 12 • For any two points A and B, ·there exists not more 
than one straight line incident with each. 

Axiom 13 • There exist at least three points in each straight line. 
There are at least three points not in one straight line. 

Axiom 14 • There is a certain plane a passing through any three 
non-collinear points A, B and C. There is at least one point in each 
plane. . 

Axiom 15 • Not more than' one plane passes through any three 
points not in one straight line. 

Axiom 16 • If two points A and B of a straight line a are in a plane 
a, then each point of the line is in a. 

Axiom 17 • If tw.o planes have a point in common, then they have 
at least one more point in common. 
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Axiom 18 • There are at least four points not in one plane. 
Axiom 19 • Any two straight lines in one plane have a common 

point. 
We see that the axioms of incidence for projective geometry con­

tain those of Euclidean geometry, and differ from the latter only in 
Axiom Is requiring the existence of at least three points in a straight 
line, and Axiom 19 stating that any two straight lines in one plane 
should meet. 

Hence, all the corollaries to the axioms of incidence for Euclidean 
geometry also hold in projective geometry. Axioms Is and 19 permit 
us to extend the set of the corollaries; in particular, it can be easily 
proved that 

(i) a straight line and a plane always have a point in common, 
(ii) two planes have a straight line in common, and 
(iii) three planes have a point in common. 

2. Desargues Theorem 

The most important of the corollaries to the axioms of incidence 
for projective geometry is the Desargues theorem on two sets of three 
points in perspective. _ 

A set of three points is a figure made up of three points not in one 
straight line, its vertices, and th~:ee lines joining them pairwise, its 
sides. Two sets of three points 
ABC and A 1 B 1 C1_ are said to pos~ 
sess a centre of perspective S if the 
vertices A and A 1 , B and B', C 
and C1 are in straight lines pas­
sing through S. ABC and A 1 B 1 C1 

are said to possess an axis of per­
spective s if the sides AB and 
A 1B 1 , BC and B 1 C1 , AC and A 1 C' 
meet at its points. 

If two sets of three points ABC 
and A 1 B 1 C1 possess an axis of per- Fig. 117 
spective, then they also have a cen-
tre of perspective. Conversely, if they have a centre of perspective, 
then they also have an axis of perspective (see Fig. 117). 

Proof. First, we notice that if two corresponding vertices or sides 
of two sets of three points coincide, then the statement of the theorem 
is quite obvious. Therefore, we can confine ourselves to the case 
where the corresponding vertices. and sides are different. 

To begin with, we. assume that the planes· cr and C11 of these sets 
are different. Then the planes intersect in a straight line s, its points 
exhausting all points common to cr and C11 • 
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Let the sets have an axis of perspective. Since the sides AB and 
A' B' meet, but are different, there is one, and only one, plane yin­
-cident with them. The planes a and ~ incident with the sides BC 
and B' C', AC and A' C', respectively, are determined similarly. 
Since o and o' are different, a, ~ and y are also different, the first 
two intersecting in CC', ~ and y in AA', whereas y and a in BB'. 
It follows that the point S common to all the planes is the centre 
·of perspective of the sets. 

Let the sets have a centre of perspective. Since AA' and BB' 
meet, the points A, A', B, B' are in one plane. Therefore, the straight 
Hnes AB and A' B' intersect, and, since the planes o and o' of these 
:Sets are different, the point, where the straight lines meet, is incident 
with the straight line s in which o and o' intersect. It is shown simi­
larly that the sides AC and A'C', BC and B'C' also intersect at s. 
'Therefore, the sets have the axis of perspective s. 

Now, let both sets be in one plane o, and s their axis of perspective. 
Draw through sa plane o' other than o. Such a plane exists, for, by 
Axiom I8 , there is a point P not in o, and,' by Axiom 11 , there are 
two points Q and R ins. o' is incident with P, Q, R, and different 
from o by Axiom 15• 

We now take a point 0 outside o and o'. Such a point does exist. 
1n fact, there are four points K, L, M, N not in one plane. At least 
.one of the points is outside o. Let it beN. Project K, L and M onto 
·O from N as a centre. The points K, L, M obtained are not in one 
:straight line. Therefore, in o, there is a point not ins. The existence 
-of such a point in o' is proved similarly. By Axiom 13 , the straight 
!line joining these two points possesses at least one more point 0 
lying outside o and o'. 

Project the set of three points A' B' C' onto o' from 0, obtaining 
.a set of three points A "B"C". The straight line s is the axis of per­
:Spective for the sets ABC and A"B"C". Therefore, they have a centre 
.of perspective S (proved). Let S be the projection of S onto o: from 0 
.as a centre. We assert that Sis the centre of perspective for ABC 
.and A' B' C'. 

Indeed, the straight lines AA •, BB", CC" meet at S. Consequently 
- ' their projections AA', BB', CC' onto o meet at S. 

Now, let these sets be in one plane o, and possess a centre of 
:perspective S. Take a point 0 outside o. In the straight line OA, 
there is a point A different from A and 0. Join it to S with a straight 
line g, and project A' onto it from 0. Denote the projection by A'. 
The pointS is the centre of perspective for the sets ABC and A' B'C' 
possessing an axis of perspective s (proved), whose projection onto o 
is the axis of perspective for ABC and A' B' C'. 

Q .. E.D. 
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3. Completion of Euclidean Space with 
the Elements at Infinity 
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The system of axioms for projective geometry is complete. It can be, 
therefore, studied in any of its models, the simplest and most visual 
obtained by completing Euclidean space with the elements at infinity, 
i.e., points, straight lines and planes at infinity, as follows. 

First, homogeneous coordinates are introduced. Any four numbers 
x1, x 2 , x3 , x4 , x4 =1= 0, related to the Cartesian coordinates of a point 
by 

are called its homogeneous coordinates in Euclidean space. 
Thus, the homogeneous coordinates of a point are not determined 

uniquely. If x1 , x2, x3, x 4 are the homogeneous coordinates of a point, 
then the values px1 , px2 , px3, px4 , p =I= 0, are also those of the same 
point. 

With respect to Cartesian coordinates, a plane is given by a linear 
equation 

ax +-by+ cz + d = 0. 

Substituting x, y and z expressed in terms of homogeneous coordi­
nates, and noticing that x4 =1= 0, we obtain an equation 

ax1 + bx2 + cx3 + dx4 = 0, 

now with respect to homogeneous coordinates. 
Thus, with respect to homogeneous coordinates, a plane is given by 

a homogeneous linear equation. 
Similarly, we conclude that, with respect to homogeneous coordinates, 

a straight line is given by two independent, homogeneous simultaneous 
linear equations. 

Each set of four numbers x1 , x 2 , x3 , x4 , x4 =I= 0, is associated with 
a certain point in space with Cartesian coordinates x, y, z which 
can be found by the formulas (•). A set of four numbers with x 4 = 0 
does not correspond to any point. We will say that they are associated 
with a point at infinity, provided not each is:zel'.O. Euclidean space 
completed with points at infinity is said to be projective. A plane 
in a projective space is a set of points whose homogeneous coordi­
nates satisfy a homogeneous linear equation, and a straight line a 
set of points satisfying two independent simultaneous linear equa­
tions. With such an agreement, the passage from Euclidean-to a pro­
jective space is accompanied by completing each Euclidean straight 
line with a point at infinity, each plane with a straight line at infinity, 
and space with a plane at infinity. 
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In fact, the set of the points at infinity in space satisfies the 
equation x4 = 0. It is linear, and, by definition, that of a plane. The 
points at infinity in a plane satisfy the two simultaneous equations 

ax1 + bx2 + cx3 + dx4 = 0, x4 = 0, 

by definition, specifying a projective line. 
The points at infinity in a straight line are given by the simul­

taneous equations 

ax1 + b.x2 + cx3 + dx4 = 0 
a'x1 + b'x2 + c'x3 + d'x4 = 0, x4 = 0 

having a non-trivial solution which is unique up to a constant 
multiplier. Hence, the passage from a Euclidean straight line to 
a projecti'Ve one is accompanied by adding one point at infinity to 
the former. 

If plane problems are considered, then three homogeneous coordi­
nates x17 x2 and x3 are used. Meanwhile, those points for which x3 = 0 
are at infinity. In a projective plane, a straight line is given by a 
homogeneous linear equation 

ax1 + bx2 + cx3 = 0; 

in particular, that at infinity by x3 = 0. 

4. Topological Stmcture 
of a Projective Straight Line and Plane 

We now find certain simple forms topologically equivalent to a pro­
jective straight line and plane, defining nearness in a projective space. 
We call the set of all points y (y1 , y2 , y3 , y4) for which I X1 - Y1 I< 
e, I x2 - Y2 I < e, I x3 - Y3 I < e, I X 4 - Y4 I < e a neighbourhood 
of a point x (x1, x2 , x3 , x4 ) in a projective space. We assume 

y 

0 

Fig. 118 

that a point y is near to x if e is sufficiently 
small. 

Take the semi-circle x2 + (JI - 1 )2 = 1, 
y < 1, in the xy-plane. The projection of the 
x-axis as a Euclidean straight line onto the 

x x semi-circle from its centre is a topological 
transformation of a straight line into a semi­
circle (Fig. 118). As a projective straight line, 
the x-axis has the point at infinity (1, 0, 0). 

The sufficiently distant points of the x-axis, when I x I is large, 
are' near to the point at infinity, since the coordinates 1, 0, !. are 

X 

homogeneous1 which makes it possible to regard the semi-circle ends 
as identical, and associate them with the point at infinity in the 
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x-axis. We then obtain a topological mapping of the projective line 
onto a closed curve, a semi-circle with coincident ends. Thus, a pro­
jective straight line is topologically equivalent to a closed curve, e.g., 
circle. 

To find a topologically equivalent form of a projective plane, we 
take the hemisphere x2 + y2 + (z- 1)2 = 1, z < 1 (Fig. 119a). 
Repeating the same argument as for a projective straight line, we 
conclude that the projective xy-plane can be topologically mapped 
onto the hemisphere if diametricallyopposite points of its boundary 
are regarded as identical. However, in contrast to a projective 
straight line, it is rather hard to imagine the form obtained, and we 

B A 
(a) {b) (c) 

Fig. 119 

remove a segment consisting of two half-segments cut off by the 
planes x = e and x = -e for small e (Fig. 119a). Since their ends 
in the hemisphere boundary are assumed to be identical, they all 
make up a complete segment when taken together. 

We now investigate the remaining part of the hemisphere, which 
is between the planes x = ±e. It is not complicated to imagine 
its topological transformation into a narrow rectangle (Fig. 119b) 
whose sides AB and A 1 B 1 are coincident, the point A falling on A 1 , 

and Bon B 1
• The obtained surface is called a Mobius strip (Fig. 119c). 

Its boundary is made up of the sides AB 1 and BA' extending each 
other if the rectangle is glued into a Mobius strip. A Mobius strip 
is a unilateral surface. If, specifying a direction of the normal to the 
surface at a point C, we take a non-stop walk along the dotted line, 
then we come to C again, reversing the normal direction. These 
properties may be better illustrated by a narrow slip of paper with 
its narrower sides glued together. 

Returning to the problem of a topologically equivalent form for 
a projective plane, we glue its segment (or a topologically equivalent 
circle) to a Mobius strip. We then obtain a closed surface topologi­
cally equivalent to the projective plane. 
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5. Projective Coordinates 
and Projective Transformations 

Investigating Euclidean space, we first introduce rectangular 
Cartesian coordinates, and then affine coordinates expressed in 
terms of the former according to 

x' = a11x + a12y + a13z + a1 

y' = a21X + a22Y + a2aZ + a2 

z' = aalX + aa2Y + aaaZ + aa 

with a non-zero determinant of the matrix (ai1). Similarly, proceed­
ing from homogeneous coordinates xi for a projective space, we 
introduce projective coordinates xi by the equations 

x~ = a11x1 + a12x2 + a13x3 + a14x4 

x~ = ~1X1 + a22X2 + a2aXa + a24X4 

x; = aa1X1 + aa2X2 + aaaXa + aa4X4 

:i~ = a41x1 + a42x2 + a43x 3 + a44x4 

with a non-zero determinant of the matrix (ai1). Notice that, as 
well as the homogeneous coordinates of a point, those projective are 
not simultaneously zeros, for if all xi vanish, then (•) have only the 
zero solution for Xi, the determinant being different from zero. 
Since homogeneous coordinates are not determined uniquely, those 
projective are not unique either. Viz., if xi are the projective coordin­
ates of a point, then pxi are also those of the same point for p =1= 0. 

It is obvious that, with respect to projective coordinates, a plane is 
given by a linear equation, whereas a straight line by two independent 
linear equations. In fact, the equation of a plane is linear with respect 
to homogeneous coordinates. If we express xi in terms of x'i from the 
formulas (•), and substitute the result in the plane equation, then 
we obtain a linear equation for xi. 

The four planes specified by the equations xi = 0 with respect 
to projective coordinates are said to be coordinate planes. The tetra­
hedron whose faces are in these planes is also said to be coordinate. 
Its vertices are 

(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1). 

The point with projective coordinates (1, 1, 1, 1) is said to be 
unit. 

We show that any four planes not passing through one point can be 
taken to be coordinate, and each point not in any of them as unit. 

In fact, let 
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be the plane equations. 
We introduce new coordinates xi by the formulas 

xi = J. 1 (aitx1 + a 12x 2 + a13x 8 + a14x 4 ), i = 1, 2, 3, 4. 

In the new coordinate system, the given planes are coordinate, 
since xi = 0. In the new coordinate system, we can make a given 
point (x1 , x 2 , x 3 , x 4 ) unit (i.e., so that xi = 1) by choosing the fac­
tors J.1• 

It is obvious that the passage from one projective coordinate sys­
tem to another is of the form (•). Indeed, if the equations (•) specify­
ing the passage from homogeneous coordinates x1 to projective xi 
are solved for xio and the obtained expressions substituted in the 
formulas for the passage from x1 to projective coordinates xi, then 
we obtain formulas for the passage from xi to x'i of the form (• ). 

The formulas (•) can be interpreted as specifying a transformation 
of space, under which a point (xto x2, x3 , x4) is carried into a point 
(x~, x~, x;, x~) with respect to the sam~ projective coordinate system. 
This transformation is said to be projective. It is evident that the 
inverse of a projective transformation is also projective. Two projilc­
tive transformations performed one after the other yield a projectiv-e 
transformation. The identity transformation is projective. In short, 
projective transformations form a group. It is obvious that a projective 
transformation sends planes into planes, and straight lines into straight 
lines. As in the case of space, three projective coordinates expressed 
in terms of homogeneous are introduced on the plane by the formulas 

x~ = auxt + aux2 + ataXa 

x; = a 21Xt + a22x 2 + a23x 3 

x~ = aatXl + aa2X2 + aaaXa 

with a non-zero determinant of the matrix (a 11 ). 
With respect to projective coordinates for the plane, any straight 

line is given by a homogeneous linear equation 

Instead of coordinate tetrahedron, the concept of coordinate 
triangle is introduced on the plane. 

A transformation of a plane with respect to the same projective 
coordinate system, given by the formulas (**), is said to be projec­
tive. It is obvious that a projective transformation carries planes into 
planes, and straight lines into straight lines. 
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For brevity, the equations (•) specifying coordinate and projective 
transformations will be written from now on as x' = Ax, and the 
plane equation a1x1 + a 2x2 + aaX3 + a4x 4 = 0 as ax= 0. Besides, 
we will use the superscripts xl, x2 , XJ, x~ for coordinates, and not 
xl, x2, Xs, x4. 

6. Cross Ratio 

Let P 1 (x!), P 2 (xJ), P 3 (xn and P 4 (xl) be points in a straight 
line. 

The number calculated by the formula 

I X~ X~ I I X~ X~ I x' X~ x' X~ 
(P,P,P,P.) ~I ' 3 (i =I= j) 

x' X~ I 
. 
I X~ X~ I 1 

. xl xi XI x' 4 4 

in terms of projective coordinates is called the cross, or double, ratio 
of the points taken in given order. 

If we want the above definition to be correct, then we have to 
require that the value of any cross ratio should not depend on the 
superscripts i, j of the coordinates, in whose terms it is found. 

Let 
ax= d, bx = 0 

be the equations of the straight line with the points Pi whose coordi­
nates are solutions to the homogeneous system (•) of rank 2. There­
fore, any of its solutions can be represented as a linear combination 
of two independent ones. It follows that the coordinates of P 3 and 
P 4 are representable in terms of those of P 1 and P 2 by the equations 

X~= xi+ AX~, xj =xi+ fLX:, 

substituting which in the cross ratio formula, we obtain 
. M 

(PtP2P3P,.) =-. 
J.t 

Therefore, in fact, cross ratio is independent of the choice of coordi­
nate superscripts i and j. 

We prove that cross ratio is independent of the choice of a coordinate 
system. Indeed, let the passage to a new coordinate system be carried 
out by the formula 

x' =Ax. 
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Then 
x~ = Axh x~ = Ax2 

x~ = A (x1 + Ax2 ) = Ax1 + AAx2 = x~ + AX~. 
x~ = A (x1 + f.I.X 2 ) = Ax1 + f.I.AX 2 = x~ + f.I.X; 

We see that the coordinates of P 3 and P 4 are expressed in terms 
of those of P 1 and P 2 with respect to the new coordinate system by 
the same formulas as with respect to the old. Therefore, the cross 
ratio of the points with respect to the new coordina~e system is the 
same, viz., Alf.l.. Thus cross ratio does not depend on the choice of 
a coordinate system. 

Cross ratio is unaltered under a projective transformation, which 
means that if Pto P 2, P 3 and P 4 are sent into four points Q1, Q2 , Q3 
and Q4 , respectively, then 

(P1P~PaP4) = (QtQ2QaQ4). 

Formally, proof is identical to the above of the cross ratio inde­
pendence from the choice of a coordinate system, 

Cross ratio does not change in projecting, which means that if four 
pJ>ints in a straight Jine are projected from a certain point 8 onto 
another line, then they have the same cross ratio. Indeed, take 8 
as the vertex of the coordinate triangle (0, 0, 1}, and the straight 
line onto which the points are projected as the coordinate line 
x3 = 0. Let a1x1 + a 2x2 + asr = 0 be the equation of the straight 
line with the points in question. The projective transformation 
given by 

preserves the straight lines passing through S, and, therefore, sends 
the given points into their projections on x3 = 0. Since a projective 
transformation is cross-ratio preserving, cross ratio remains unaltered 
under a projection, too, and the statement is thus proved. 

The cross ratio of four concurrent straight lines in a plane is that 
of four points obtained in intersecting an arbitrary straight line 
with the four given. Since a projection leaves cross ratio unaltered, 
the cross ratio of straight lines so defined does not depend on a 
transversal. 

The cross ratio of four planes passing through a straight line is 
defined similarly. We take an arbitrary line intersecting the planes, 
and the cross ratio of the four intersection points as that of the 
planes. The cross ratio of planes so defined does not depend on the 
choice of a transversal. 

In conclusion, we give formulas to compute the cross ratio 
of four points in terms of their Cartesian coordinates. If we assume 
that the coordinates in the cross-ratio formula are homogeneous, take 
i = 1, j = 4, and pass from homogeneous coordinates to Cartesian, 
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then 

(P1P2PaP~o) = Xt-Xa -7- x2-xa . 
x1-x4 x2-x4 

If we assume i = 2 or i = 3, then we obtain a similar formula, 
with x replaced by y or z, respectively. 

7. Harmonic Separation of Pairs of Points 

We say that two points C and D in a straight line separate har­
monically two points A and B if (ABCD) = -1, with the immediate 
consequence that if C and D separate harmonically A and B, then 
A and B do the same for C and D. R 

A complete quadrangle is a set of four 
points in a plane, each three of them non­
collinear, together with the six straight lines 
joining them. The points are termed vertices, 
and. the straight lines joining them edges. The 
edges of a complete quadrangle without 
co min on vertices are said to be opposite. The A c. B D 
points where the opposite edges meet are Fig. 120 
said to be diagonal. In Fig. 120, the vertices 
of the complete quadrangle are P, Q, R and S, whereas the dia­
gonal points A, B and T. 

Let A and B be two diagonal points of the complete quadrangle 
PQRS, and C and D those where the straight line AB cuts the edges 
concurrent at the third diagonal point. Then C and D separate har­
monically A and B. 

Proof. Let A, B and R be the vertices of the coordinate triangle, 
and S the unit point, viz., 

A (1, 0, 0), B (0, 1, 0), R (0, 0, 1), S (1, 1, 1). 

To find the coordinates of C, we remember that they are expressed 
in terms of those of S and R. We have x1 = 1 + A.·O, x2 = 1 + 
A.·O, x3 = 1 + J....f. Since x3 = 0 on the straight line AB, the coor­
dinates of C are 1, 1, 0. The coordinates 1, 0, 1 and 0, 1, 1 of P and 
Q are found similarly. Those of D are expressed in terms of the coor­
dinates of P and Q, viz., x1 = 1 + A.·O, x2 = 0 + A.·1, x3 = 1 + 
J.,.f. Since x3 = 0, A.= -1. Therefore, the coordinates of D are 
1, -1, 0. Knowing those of A, B, C and D, we find easily that 
(ABCD) = -1. 

A, B, C and D are projected from R into P, Q, T and D. Hence, 
P and Q separate harmonically T and D. P, Q, T and Dare projected 
from A into R, S, T and C. Therefore, RandS separate harmonically 
T and C. 
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We now clarify what is the mutual disposition of A, B and C 
in a Euclidean straight line if D is at infinity. Take AB as the x-axis. 
Let D approach infinity, remaining finite. 

We have 

Xt-X3 ....!.... Xt-X4 = _f. 
.x2-.x3 .x2-.x4 

As x 4 -+ oo, the ratio (x1 - x4)/(x2 - x4) -+ 1. Therefore, 
(x1 - x3)/(x2 - x3) -+ -1, i.e., C approaches the mid-point of 
AB without limit. When D is at infinity, i.e., the straight lines 
AB and PQ are parallel, C will be the mid-point of the segment AB. 

This property permits us to solve the following problem of elemen­
tary geometry. 

Given a line segment AB and its mid-point C. Only by means of a 
ruler, draw a straight line PQ parallel to the straight line AB through 
an arbitrary point P. 

Solution. Draw the straight line AP. Take any point R in it, 
other than A and P. Draw the straight lines RC, PB, and find a 
point S where they meet. Draw the straight line AS until it meets 
the straight line RB at a point Q. The straight line PQ is parallel 
to AB. 

The following problem is solved similarly. . 
Given two parallel straight lines and a line segment on one of them. 

Using only a ruler, bisect the line segment (i.e., find its mid-point). 

8. Curves of the Second Degree 
and Quadric Surfaces 

A locus of points in a plane, satisfying an equation of the form 

auxt2 + 2atzxtxz + ... + aaax32 = 0 (*) 

is called a curve of the second degree (or conic). The definition is 
invariant with respect to the choice of a projective coordinate system, 
since the passage to another one is related to a linear transformation 
of the variables, and, therefore, does not affect the form of the 
equation. 

It is known from algebra that the quadratic form on the left-hand 
side of (•) can be reduced to one of the canonical forms 

xt• + x22 + xas, xts + x2•_ x3s, xt2 + xz2' 

x's -xz2 xls 
' 

by a linear transformation. 
From the projective geometry standpoint, this algebraic result 

can be interpreted as the existence of a projective coordinate system, 
with respect to which the equation of the given second-degree curve 
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takes one of the forms 

12 2 2 0 2 2 2 x +x2 +x3 = , xi +x2 -x3 =0, 

2 20 2 20 2 xi - x2 = , xi + x2 = , x1 = 0. (**) 

In the first case, the curve is said to be imaginary. No point in the 
plane satisfies it, since projective coordinates cannot be zero simul­
taneously. In the second case, the curve is called an oval. In the third 
case, it splits into two straight lines xi- x2 = 0, xi + x2 = 0, and 
in the fourth, into two imaginary lines x1 - ix2 = 0, x1 + ix2 = 0. 
Finally, the curve decomposes into two coincident lines x1 = 0. 

The algebraic result that the left member of the equation (•) 
is reducible to canonical form can be interpreted differently, viz., 
as the possibility to convert by a projective transformation the given 
curve (•) into one of those given by (**) with respect to the same 
projective coordinate system. 

Quadric surfaces are defined similarly, viz., as loci of points in 
space, satisfying an equation of the form 

4 

~ aiJx;xJ =0 
i, i=i 

with respect to projective coordinates xi. The existence of a projec­
tive coordinate system, with respect to which the surface equation 
takes one of the canonical forms 

2 2 2 2 0 xi + x2 -t- x3 + x4 = , 2 2 2 2 0 xi +x2 +x3 -x4 = , 
2 2 2 2 0 xi +x2 -x3 -x4 = , xi2 +x22 +xa2 = 0, 

2 2 2 2 2 0 xi + xz - xa = 0' xt + x2 = ' 

is proved as for curves of the second degree. This can be also regarded 
as the possibility to reduce a given surface by a projective transfor­
mation into that given by one of the above equations. 

The tangent to a curve of the second degree at a point A 0 (xi) is 
the limiting position of the secant passing through A 0 and a point 
of the curve A (xi) near to it as A-Ao, i.e., as xi -+X~, i = 1, 2, 3. 

Make up the equation of a tangent to a curve of the second degree, 
given by the equation ~ ailxixi = 0. Let ro be a small neighbour-
hood of A 0 , and A (xi) an outside point in the secant A 0A. We normal­
ize its coordinates, so that ~ (xi)2 = 1. Those of A can be express­
ed in terms of Ao and A. Viz., xi = X~ + f..xi, substituting which 
in the curve equation, we get 

J..2 ~ auxixi + 2A. ~ aiixix~+ ~ aux~x~= 0. 
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The third addend on the left-hand side is zero, since A 0 is on the 
curve. Cancelling A., and passing to the limit as A -+A 0 , or as A. -+0, 
we obtain an equation which the limiting line, i.e., the tangent, 
does satisfy, viz., 

~ aiJxix~ = 0. 

Remark. We considered the neighbourhood ro and normalization 
of coordinates xi· in order to conclude from A -+A 0 that A. -+ 0, 
and A. ~ a11xixi -+ 0. 

The locus of plane section tangents passing through a given point 
is called the tangent plane to the surface at the point. The deriv­
ation of the equation for a plane tangent to a quadric surface is in 
no way different from that of a tangent to a curve of the second 
degree, and we obtain the following tangent plane equation, viz., 

4 

~ ai1xix~ =0. 
i, i=1 

9. Steiner Theorem 

The totality of all straight lines passing through one point is 
called a pencil of lines. The point is termed its centre. The correspon­
dence between the lines of two pencils is called projective if there 
is a projective. transformation sending the lines of one into the cor­
responding lines of the other. If the cor­
responding lines of two pencils intersect on 
one straight line, then such a corresponden­
ce is called a perspectivity. Obviously, it 
is a projective transformation. 

The following Steiner theorem is valid. 
The locus of points where the correspond-

ing straight lines of two projective, but not 121 
perspective, pencils meet, is a non-singular 
conic. Conversely, two pencils with centres on a curve of the second 
degree and the corresponding straight lines intersecting on the curve, 
are projective. 

Proof. Take the centres of the pencils as those of the coordinate 
triangles sl (1, 0, 0), s2 (0, 1, 0), and any point p (0, 0, 1) as the 
third centre (Fig. 121). Let X (xi) be the point where the correspond­
ing straight lines of the pencils meet. Find the coordinates of the 
point xl (x1) where the straight line slx cuts the straight line 
S2P, expressing them in terms of those of sl and X as X~ = x1 + 
A.-1, x~ = x2 + A.·O, x: = x3 + A.·O. Similarly, we ftnd the coordi­
natesofthepoint X2 (x~) where the straight lines S 2X and S1P inter­
sect, viz., x! = x2, x: = xB. 
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Now, let Ai (a{), i = 1, 2, 3, be the points where the straight 
lines of the pencil with centre S1 meet S 2P, and let Bi (b{), i= 
1, 2, 3, be the points where the corresponding straight lines of the 
second pencil meet S1P. Since the pencils are projective, (A 1A 2A 3X 1)= 
(B1B 2B 3X 2), and the locus equation is 

I ai af I I a~ a8 1 I b} b~ I a~ aB a~ ai b~ bB 

I ar af I I a~ a~ I 1 bl bf 1 1 b~ b~ 1 xs xs z2 z3 zl x3 zl xs 

For the coordinates of X, we obtain a homogeneous equation of the 
second degree. Therefore, the locus of X is a curve of the second 
degree. 

We now prove the second statement of the theorem. 
Let S1, Att A 2 , A 3 and S2 be five points on a non-singular conic. 

There exists a projective transformation sending Stt Alt A 2 , A 3 
into S2 , A 1 , A 2 , A 3 , and establishing a projectivity between the 
pencils with vertices S1 and S 2• The corresponding straight lines 
intersect on a certain curve of the second degree (proved), S1, Ah A2, 

A3, S2 belonging to the curve. To complete the proof, we have to 
show that two non-singular conics with five points in common are 
coincident. 

Carry out a projective transformation under which one curve is 
given by the equation y = x2 with respect to Cartesian coordinates 
and the other by an equation of general form F (x, y) = 0. Sub­
stituting y = x2 in the second, we obtain a fourth-degree polynomial 
F (x, x2) = 0. Since the curves have five points in common, the 
polynomial is equal to zero for five values of x, and, therefore, is 
zero·identically. Hence, y = x2 is wholly on the curve F (x, y) = 0. 
Interchanging them, we conclude that the second curve lies on the 
first, and they are coincident. 

10. Pascal Theorem 

We now prove the following Pascal theorem. 
Let y be a non-singular curve of the second degree, and Att A 2 , ••• 

. . . , A 6 six points in it. Then the three points where the straight lines 
A 1A 6 and A 2A 4 , A 3A 4 and A 1A 6 , A 2A 6 and A 3A 5 meet are in the same 
straight line (Fig. 122). 

Usually, the Pascal theorem is stated rather simply, viz., the 
opposite sides of a hexagon inscribed in a curve of the second degree 
intersect on one straight line, understanding by the hexagon any closed 
broken line of six segments, and by its sides the straight lines contain­
ing the segments. 

Obviously, it suffices to prove the Pascal theorem for any non­
singular conic, since any two non-singular conics are reduced into 
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each other by a projective transformation, while any projective 
transformation sends straight lines into straight lines, and, in par­
ticular, points in a straight line into those in another straight line. 

Let y be the parabola x = y2 , and aii (x, y) = 0 the equation of 
a straight line AtA 1. We form the expression 

P (x, Y) = a24a16a35 - A.as4a2sa1s (•) 

which is a polynomial of the third degree with respect to x, y. The 
coordinates of A1, A 2 , ••• , A 6 satisfy the equation P (x, y) = 0, 
for the first and second addends of 
P (x, y) vanish. 

Take any point A in y,. other than 
A" and choose A., so that the coor­
dinates of A also satisfy P (x, y) = ...t4 ~---ll---""~-l--......,o~:~As 
0. Seven points of y will then 
satisfy P (x, y) = 0. 

If we substitute y2 for x in 
P (x, y) = 0, then we obtain the 
equation P (y2 , y) = 0 of the sixth 
degree, but satisfied by seven differ­
ent values of y, or seven points. It is 

Fig. 122 

known that it must be an identity, and, therefore, satisfied by any y, 
which means that each point on the parabola y satisfies P (x, y)=O. 

Regarding P (x, y) as a polynomial in x with coefficients as those 
in y, we divide it by x- y2 , and obtain 

P (x, y) = (x - y2) Q (x, y) + R (y), 

where Q (x, y) is the quotient, and R (y) the remainder polynomials. 
Since each point on the parabola x - y2 = 0 satisfies P (x, y) = 

0, R (y) is zero for all y, i.e., R (y) = 0. Thus, 

P (x, y) = (x - y2) Q (x, y), 

where Q (x, y) is a polynomial. Since P (x, y) is a polynomial of the 
third degree, Q (x, y) is that of the first degree, and 

P (x, y) = (x - y2) (ax + by + c). 

It follows from (*) that the points mentioned in the statement of 
the Pascal theorem satisfy P (x, y) = 0. Since they are not on y, 
i.e., the parabola x = y2 , they belong to the straight line ax + by + 
c = 0. 

Q.E.D. 
We prove the Pappus theorem as a corollary. 
Given two straight lines with three points A1 , A 2 , A 3 in one of them, 

and another three A 4 , As, A 6 in the other. Then the three points where 
the straight lines A1As and A 2A 4 , A 1A 6 and A2As, A 2A 6 and A 3A 5 

meet are in one straight line. 
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Proof. Let 

be the equation of our pair of straight lines. We can make it that 
of a non-singular conic 

a~1X2 + 2a~2xy + ... + a~3 = 0 (••*) 

by an arbitrarily small change of the coefficients in (••). 
Mark points B17 B 2 , ••• , B6 in it, nearest to A17 A 2 , ••• , A 6 • 

By the Pascal theorem, the three points where the straight lines 
B 1B 5 , and B 2B 4 , ••• meet are in one straight line. Now, let the 
coefficients in (***) tend to the corresponding ones in (**)· Then 
B 1 approach Ai indefinitely. Hence, the three points where A 1Ar. 
and A 2A 4 , • • • meet are in one straight line. 

Q.E.D. 
11. Pole and Polar 

Let y be a non-singular conic, and A 0 (x~) an outside point. Draw 
a straight line through A 0 , intersecting y at two points which we 
denote by A 1 (xD and A 2 (x~). Let X (xi) be a point in this straight 
line, along with A 0 separating A 1 and A 2 harmonically. We show 
that all the points X so determined are in one straight line called the 
polar of A 0 , and A 0 its pole. 

We now find the equation of the polar. 
Let 

~ a11xixi-= 0 

be that of y. Express the coordinates of A1 and A 2 in terms of those 
of X 0 and X. We have 

xi= xi+ l..xJ, x~ =xi+ f..tXJ. 

Since (A 1A 2A0X) = 'A./f..t = -1, f..t = -'A. Because A 1 and A2 
are on y, 

~ au (xi+ 'Ax!) (xi+ .Ax~) = 0, 

~ atJ (xi- 'Ax!) (xi -l,x!J = 0. 

Subtracting termwise, we obtain an equation 

~ aflxix~ = 0 (•) 

satisfied by the coordinates of X. Being linear, it is, therefore, that 
of a straight line, just the polar of A 0• 

If A 0 is on the curve, our construction does not make sense, and 
we then define the polar formally as the straight line given by (•). 

It easily follows from the polar equation that if the polar of (xA) 
passes through (xD, then that of (xD passes through (xJ). 
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In fact, the polar of (x~) has the equation 

~ aiixixt = 0, 
whereas that of (xD 

~ aiixix{ = 0. 

If the polar of (x~) passes through (xD, then 

~ a;1xtxt = 0. 
And if aii = aih then 

~ a;ix~x{ = 0, 
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i.e., the polar of (xD passes through (x~), thus completing the proof. 
Hence, if a point moves along a straight line, then its polar always 

D 

R 

Fig. 123 

passes through the pole of this line. Conversely, if a straight line passes 
through a given point and rotates, then its pole moves along the polar 
of the point. 

Two straight lines are said to be conjugate if each of them passes 
through the pole of the other. The conjugate diameters of a central 
curve of the second degree are conjugate. The pole of each is the 
point at infinity of the other. (Recall that the point half-way between 
two points in a straight line is the harmonic conjugate of the point 
at infinity.) 

The polar of a point admits a simple geometric construction 
(Fig. 123). Viz., draw through a given point D two straight lines, 
each intersecting the curve at two points. The polar of D passes 
through the diagonal points R and S of the complete quadrangle 
ABPQ. In fact, by the property of a complete quadrangle, C, D 
separate harmonically A, B, whereas D, T the points P, Q. There­
fore, C and Tare on the polar of D. 

The solution of the following elementary geometry problem is based 
just on the property of a pole and polar. 

Given a circle and an outside point, construct the tangents from the 
point to the circle by means of a ruler only. 
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Solution (Fig. 124). Construct the polar a of A. The points where 
it meets the circle are the points of tangency. In fact, the tangents 
are the polars of the points of contact, and, therefore, pass through 
the pole of a, or A. 

We now turn to the Klein model of Lobachevskian geometry and 
clarify how perpendicular straight lines are represented the;e. If 

Fig. 124 Fig. 125 

two straight lines intersect at the centre of a circle, then to be per­
pendicular in the sense of Lobachevsky means the usual perpendicul­
arity according to Euclid. Perpendicular diameter~;~ are conjugate. 
Since Lobachevsky motions in the Klein model are circle-preserving 
projective transformations, to be. perpendicular for two straight 
lines in general position is to be conjugate with respect to the cir­
cumference of the Klein circle. Thus, those straight lines, or chords 
of the circle, are perpendicular to a given straight line, which pass 
through the pole. · ' 

It should be noted in connection with the above that one, and 
one only, perpendicular can be drawn to two non-intersecting and 
non-parallel (in the sense of Lobachevsky) straight lines in the 
Lobachevsky plane. (How such a perpendicular is constructed in the 
Klein model is shown in Fig. 125.) 

12. Polar Reciprocation. Brianchon Theorem 

Let y be a non-degenerate conic. Map the set of points and straight 
lines in a projective plane onto itself, associating an arbitrary point 
with its polar relative to y, and an arbitrary straight line with its 
pole. We call this mapping polar reciprocation. 

Polar reciprocation possesses an important property following 
from those of a pole and the polar. Viz., if two points A and B are 
associated with two straight lines a and b, then the line AB is associ at­
ed with the point where they meet. If a and b are associated with 
A and B, then the point of their intersection is associated with the 
straight line AB. 
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Apply- polar reciprocation to the proof of the following Brianchon 
theorem. 

The straight lines joining the opposite vertices of a hexagon circum­
scribed about a non-degenerate conic are concurrent (Fig. 126). 

By the hexagon, we understand any closed broken line of six 
segments, and by its sides the straight lines 
containing the segments. 

Polarreciprocation with respect to the curve 
with the circumscribed hexagon sends the 
sides into their points of tangency with the 
curve, while the vertices into the straight 
lines joining the corresponding points ·of 
contact. We obtain an inscribed hexagon. 
By the Pascal theorem, its opposite sides 
intersect on a straight line associated with Fig. 126 
the point through which the straight lines 
pass, joining the opposite vertices of the circumscribed hexagon. 

Q.E.D. 
The concept of the polar of a point relative to a non-degenerate 

quadric surface is introduced similarly to a plane. Here, however, 
the polar is a plane. 

If a surface is given by an equation 
4 

~ aiJxix; = 0, 
i, j=1 

then the polar of the point (xj) by 

lJ aiixix' = 0. 

The concept of polarity in space is introduced in terms of a pole 
and the polar. This is a mapping of the set of points, straight lines 
and planes in space, under which an arbitrary point is associated 
with its polar, an arbitrary plane with its pole, and an arbitrary 
straight line with that on which the polars of any two of its points 
meet. 

13. Duality Principle 

We now dwell on one of the basic facts of projective geometry, 
viz., the duality principle. 

If, in the axioms of incidence, we replace the expression "a point 
is in a straight line" by "a point is incident with a straight line", 
and "a straight line passes through a point" by "a straight line is 
incident with a point", then, on replacing in each axiom the term 
"point" by "straight line", and "straight line" by "point", we obtain 
statements which hold due to the corresponding axioms. 
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In fact, the new version of Axiom I1 states that, for two points A 
and B, there exists a straight line incident with them. The correspond­
ing statement that, for two straight lines, there exists a point incident 
with them follows from Axiom I 2• 

Axiom I 2 • For two distinct points A and B, there is not more than 
one straight line incident with them. The corresponding statement 
follows. Viz,, for two distinct straight lines a and b, there exists 
not more than one point incident with them. 

Axiom Is. For a given straight line, there exist three points incident 
with it. There are three points not incident with one straight line. 

b 

A 

Fig. t27 Fig. t28 

The corresponding statement is that, for a given point A, there 
exist three straight lines incident with it, and that there are three 
straight lines not incident with one point. In fact, due to Axiom Is, 
there exist two points B and C not in one straight line with A. By 
the same axiom, there are three points on the straight line BC. The 
straight lines in question join the three points to A. The second 
statement also follows from Axiom Is. In fact, join three non-collinear 
points pairwise. The three straight lines obtained are not concurrent. 

In the independent construction of plane projective geometry, 
i.e., not in space, D. Hilbert showed that the Desargues theorem 
should be regarded as an axiom of incidence. However, its self­
duality is obvious. 

Duality also turns out to occur in the other axioms for plane 
projective geometry, and not only in the axioms of incidence. We 
then have the principle of duality for the plane. 

If a certain statement A holds for points and straight lines, and is 
expressed in terms of incidence and order, then a statement A' is also 
valid, when the term "point" is replaced by "straight line", and "straight 
line" by "point". 

E.g., let three points A1 , A 2 and A 3 be incident with a straight 
line a, Bt. B2 and Bs three points incident with a straight line b, 
and Ci1, i =I= j, the points incident with the straight lines AiB; and 
A1B 1• Then C11 are incident with one straight line c (Fig. 127). 
This is the Pappus theorem. 
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Now, the dual statement. Let three straight lines ah a8 and a1 
be incident with a point A, b1 , b1 and b3 three straight lines incident 
with a point B, and c1;, i =1= j, the straight lines incident with the 
points a1b1 and a1b,. etc. Then cu are incident with one point C 
(Fig. 128). 

The duality principle is also valid in projective space, i.e., the 
validity of any proposition A for points, straight lines and planes 
entails a statement A', where the term "point" is replaced by "plane", 
and "plane" by "point". 

In projective geometry, duality naturally receives analytic 
expression. Below, we illustrate this fact. 

We call the coefficients of the equation of a straight line its tan. 
gential coordinates, (as well as those of a point) obviously defined 
only up to an arbitrary nonzero multiplier. 

For fixed u1 , u 2 and u3 , the equation 

· u1x1 + u2x2 + UaX3 = 0 

is known to be that of a straight line with ult u1, u3 as coordinates, 
and that of a pencil of straight lines with centre (xlt z 2, x3) for fixed 
x1 , x2 and x3 • 

It is also known that, for any two points (y1) and (z1) on a straight 
line, the coordinates of an arbitrary point on it can be represented 
in the form x 1 = i.y1 + ~z1 • Similarly, for any two straight lines (v1) 

and (w1) of a pencil, the coordinates of an arbitrary straight line 
in it can be represented as u 1 = i.v1 + ~w1 • 

Finally, we can show that the cross ratio of four straight lines 
in a pencil is determined by the same formula, with the coordinates 
of points replaced by the coordinates of the lines. 

In space, the tangential coordinates of planes are introduced simi~ 
larly, and analogous facts established. 

A curve of the second class is a figure formed by all straight linea 
whose coordinates satisfy an equation 

b11u~ + 2b111u1u11 + ... + b33u: = 0. 

It is formed either by the tangents to a curve of the second degree or 
consists of two pencils of possibly coinciding straight lines. 

14. Various Geometries in Projective Outlook 

In his work Vorlesungen uber nicht-Euklidische Geometrie, F. Klein 
has established a remarkable relation between Euclidean, Lobachev· 
skian and Riemannian geometries, the latter in the narrow sense. 

InCh. XV, we considered a model of Lobachevskian geometry on 
the Euclidean plane in the circle x2 + y11 < 1. It is evident that 
this model can be regarded as valid for a projective plane in the 
domain x~ + x; - X: < 0 bounded by a curve of the second degree. 
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The question arises, can a similar model be obtained on a projective 
plane for Euclidean geometry, too? 

It is easily seen not to be very hard to do, and that the Cartesian 
tnodel considered in Ch. XV is the one. In fact, we call the points 
on a projective plane with x3 =1= 0 points of a Euclidean plane, and pro­
jective transformations of the form 

x; = xl cos 8 - ex2 sin 8 + alx3 

X~ = X1 sin 8 + ex2 COS 8 + a 2x3, e = +1 

x; = x3 

we call motions. 
If the straight line x3 = 0 is said to be at infinity, and Cartesian 

coordinates are referred to, then the transformations become 

x' = X COS 8 - ey sin 8 + al 

y' = X sin 8 + ey COS 8 + a2 

In the Cartesian model of Euclidean geometry, motions are given 
by precisely the same formulas. 

The projective transformations (*) can also be characterized 
geometrically. They preserve the singular curve of the second class 
u~ + u: = 0. Indeed, it consists of two pencils of straight lines 
u1 + iu2 = 0, u1 - iu2 = 0 with centres at the points (1, i, 0), 
(1, -i, 0). 

It is easy to see that (*) either leaves the points fixed (e = 1) 
or interchanges them (e = -1), thus preserving u~ + u: = 0. 
It should be noted, however, that the projective transformations 
determined by the above geometric property do not include the trans­
formations (*) solely, and have a more general form 

X~ = p (xl COS 8 - 8X2 Sin 8) + a1X3 

x; = p (xl sin 8 + ex2 cos 8) + a2x3 • 

x; = x3 

containing similitudes, and not exclusively motions. 
The axiom system for Riemannian geometry in the narrow sense 

consists of the axioms of incidence, order, continuity axiom for 
l'rojective geometry and axioms of congruence for Euclidean geometry, 
admitting a model similar to the above. Viz., all the axioms hold 
on the plane if by a point we understand a point on a projective 
plane, by a straight line a projective line, relations of incidence and 
order in the sense of projective geometry, and, finally, by motions 
projective transformations preserving the imaginary non-degenerate 
conic x~ + x: + x~ = 0. 

A similar model is valid in the axioms for space. 
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The curves of the second class u~ + u: ± u; = 0 are formed by 
fhe tangents to the second-degree curves x~ + x: ± ~ = 0. Any 
projective transformation preserving x~ + x: + x: = 0 then also 
preserves u~ + u: + u; = 0. Hence, projective transformations 
preserving a curve of the second class u~ + u! + eu; = 0 correspond 
to motions in Riemannian geometry if 8 = +1, to those in Loba. 
chevskian geometry if 8 = -1, and, finally, to Euclidean motions 
and similitudes if 8 = 0. 

A curve of the second degree or second class is called the absolute 
if it is invariant with respect to projective transformations associated 
with some or other geometry. 

In considering the Klein model of Lobachevskian geometry, we 
have noted thflt the distance between two points A and B in the 
Lobachevsky plane is equal to the logarithm of the cross ratio of 
four points, the two given and two points where the straight line AB 
meets the absolute. A similar result also holds for Riemannian 
geometry. In all the geometries, the angle between two straight lines 
a and b is measured by the logarithm of the cross ratio of four straight 
lines, of which two are a and b, and the other two belong to the 
pencil ab and the absolute (as a curve of the second class). 

EXERCISES TO CHAPTER XVI 

1. Given that AB II A 1Bt. BC II B1C1 and AC II A 1C1 in two tri~ 
angles ABC and A 1B1C1, prove that the straight lines AA1 , BBt. CC1 
are either concurrent or parallel. 

2. Given that AA 1 II BB1 II CC~o AB II A 1B1 and AC II A 1C1 in 
two triangles ABC and A 1B1C1 , prove that BC II B1C1• 

3. Find the homogeneous coordinates of the point at infinity on 
. h 1. x-a y-b z-c 

a stra1g t me -k- = -z- = ----;n-· 
4. Given that three points (a1 , a 2 , a3 , a4), (b1 , b2 , b3 , b4) and 

(c1 , c2 , x3 , x4 ) are in the same straight line, find x3 and x4• 

5. Given three points on a straight line, prove that there exists 
a projective transformation sending them into (-1, 0, 0, 1), 
(0, 0, 0, 1), (1, 0, 0, 1). 

6. Given cross ratio (ABCD) = ~. find that of the same points 
taken in any other order, e.g., (CBAD). 

7. Find the cross ratio of four straight lines y = x tan a, y = 
x tan ~, y = x tan y, y = x tan l). 

8. Find the Euler characteristic of a projective plane. 
9. Account for the following method of constructing an ellipse 

(Fig. 129). Divide two line segments AC and CD into an equal num~ 
her of parts, and join to B and A the corresponding division points, 
starting from A and C, the intersection point lying on the arc AE 
of the ellipse with semi-axes OA and OE. 
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10. We know how to construct the polar of a point with respect 
to a given curve of the second degree. Now, how can we find a pole 
if the polar is given? 

11. How will the general equation to a non-degenerate conic be 
simplified if the straight line x 3 = 0 is the polar of the point (0, 0, 1)? 

12. How will the equation of a non-degenerate conic be simplified 
if the coordinate triangle vertices are the poles of its opposite sides? 

13. State the proposition dual to the Steiner theorem. 
14. Show that polar reciprocation with respect to a sphere carries 

a regular polyhedron with centre at that of the sphere into a regular 

A 0 B 

Fig. 129' 

polyhedron, too, viz., a tetrahedron into!a tetrahedron, a cube into 
an octahedron, an octahedron into a cube, a dodecahedron into an 
icosahedron, and an icosahedron into a· dodecahedron. 

15. A perpendicular PQ is dropped to a straight line a from an 
outside point P on the Lobachevsky plane, and a parallel straight 
line b (in the sense of Lobachevsky) drawn. Find the dependence of 
the angle between PQ and b (parallel angle) on the distance from 
P to a. 

16. Prove that Lobachevsky parallel lines approach each other 
indefinitely in the parallelism direction, and diverge without 
limit in the opposite direction. 



Part Four 

CERTAIN PROBLEMS OF. ELEMENTARY 
GEOMETRY 

Chapter XVII 

METHODS FOR SOLUTION OF CONSTRUCTION PROBLEMS 

1. Preliminaries 

To pose a construction problem means to require the construction 
of a geometric figure by means of some prescribed drawing instru­
ments. The school course of geometry usually considers construction 
problems by means of compasses and ruler. 

It is assumed that, by means of a ruler as an instrument for geo­
metric constructions, we can draw an arbitrary straight line through 
one or two given points. No other operations can be performed; in 
particular, no line segments can be marked off even if the ruler 
has scale marks, both of its edges cannot be used, etc. 

As to compasses as an instrument for geometric constructions, 
we can describe a circle of a given radius from a given centre. In 
particular, a given line segment can be cut off on a given straight 
line from a given point. 

A solution of a given construction problem usually includes the 
following, viz., (i) analysis, (ii) construction, (iii} proof that the 
solution is correct and (iv) investigation of the solution. 

The search for a solution starts with assuming that the problem 
has been solved, or the figure constructed. The figure is then studied 
(as well as its relation to the data) until the sequence of constructions 
leading to a solution becomes clear. To carry out the actual construc­
tion is, as a rule, not necessary, and only the proof of the solution 
correctness is, i.e., that we shall, in fact, obtain a figure with the 
required properties. By investigation, we decide whether or not 
the problem will always have a solution for some or other concrete 
data, and how many solutions it may have. 

Analysis is the most difficult point. No definite recipe can be 
given; however, there are several methods for making it easier. 

We illustrate by example. 
Construct a triangle, given a side, an adjacent angle and the sum 

of the other two sides. 
Analysis. Assume that the problem has been solved, and a triangle 

ABC in which AB = c, LABC = e, AC + BC = l constructed 
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(Fig. 130). We see that if the line segment CA is cut off on the exten­
sion of thelinesegment BC, then we can find the position of a point D, 
since AC + BC = l. Meanwhile, the unknown vertex C is equidist­
ant from A and D. Hence the construction outline. Take a line 
segment AB equal to c, construct an angle equal toe on the half-line 

8 A 

Fig. 130 Fig. 131 

BA, and mark off on the side of the angle a line segment BD equal 
to l, after which draw the perpendicular bisector g of AD. It meets 
BD in C, the vertex of the triangle. 

Proof. Since g is the perpendicular bisector, AC = CD; therefore, 
AC + BC = CD + BC = l. Thus, AB = c, LABC = e, BC + 
AC = l, and the constructed triangle, in fact, satisfies the conditions 
of the problem. 

Analysis. First of all, we notice that the problem has no solution 
if l =:::;;; c, since any two sides of a triangle are together greater than 
the third. Let l > c. Show that the problem has one, and only one, 
solution. Indeed, g intersects the side AD of the triangle ABD, and, 
therefore, one of the other two sides AB or BD (not passing through 
B, since AB =I= BD). If it intersected AB, we would then have AB = 
AO + OB = BO + OD > BD (Fig. 131). But AB < BD, c < l. 
Consequently, g cuts BD, and the problem does have a solution. It 
is obvious that the solution is unique, for a straight line can intersect 
a line segment only at one point. 

2. Locus Method 

It consists in the following. Assume that we have decided during 
the analysis of a solution to a construction problem that it will be 
solved if a certain point X satisfying two conditions is found. The 
locus of points satisfying the first condition is a certain figure Fh 
and the locus satisfying the second is a certain figure F 2• The required 
point X belongs both to F1 and F 2, and is the point of their inter­
section. 

In order that X could be found as the intersection of F1 and F 2, 

it is required that the figures should admit a construction by means 
of our drawing instruments, i.e., compasses and a ruler, for which 
the figures should consist of straight lines and circles only. In this 
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connection, of special interest are loci of points, which are straight 
lines and circles. 

We now list some of the most important of them. 
1. Locus of points equidistant from a given point is a circle with 

centre at the point. 
2. Locus of points equidistant from a given straight line consists: 

of two lines parallel to the given one, and at the given distance­
from it. 

3. Locus of points equidistant from two given points is the straight 
line perpendicular to the line segment with ends at these points: 
and passing through its mid-point (perpendicular bisector). 

4. Locus of points equidistant from two given intersecting straight 
lines consists of the bisectors of the angles formed by the lines. 

5. Locus of points, from which a line segment AB is visible at 
a given angle 9, and which are on one side of the straight line AB~ 
is an arc with ends at A and B. 

6. Locus of points, whose distances from two given points are in 
a given ratio m : n (min =1= 1), is a circle (Apollonius' circle; see· 
Ch. I, Sec. 4). 

7. Locus of points whose distances from two given straight lines: 
are in a given ratio 'A. consists of two straight lines. (If the line 
equations are normal, 

ax + by + c = 0, a1x + b1y + c1 = 0, 

then the straight lines of the locus are given by 

(ax + by + c) + 'A. (a1x + b1y + c1) = 0, 

(ax + by + c) - A. (a1x + b1y + c1) = 0.) 

8. Locus of points such that the difference of squares of their 
distances from two given points is constant is a straight line per­
pendicular to that joining the points (see Ch. III, Sec. 1). 

9. Locus of points such that the tangents drawn from them to two­
given circles are equal is a straight line if the circles are disjoint, 
or part of the straight line passing through the points where the­
circles meet, without the line segment joining the points. 

We now give an example of a solution by the locus method. 
Given four points A, B, C, D, find a point X such thatLAXB = 

LBXC = LCXD. 
Solution. Assume that the problem has been solved (Fig. 132)~ 

Then the line segment XB is an angle bisector in the triangle AXC~ 
As we know, an internal bisector divides the opposite side in the 
ratio of the sides containing the angle bisected. Therefore, 

AX : CX = AB : BC, 
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which means that X belongs to the locus of points, the ratio of whose 
distances from A and C is AB : BC, i.e., a circle. Similarly, we 
.conclude that X belongs to the locus of points, also a circle, such 
that the ratio of the distances from Band Dis BC: CD. The required 
-point is where the circles meet. 

3. Similarity Method 

Certain problems become ill-posed if one of their conditions is 
-dropped, admitting infinitely many solutions, and yielding figures 
similar to the required. If we construct one of such figures, then 
the required may be obtained by a similitude. 

We illustrate by two examples. 
Construct a triangle, given two angles and the perimeter. 
Solution. If we omit the condition that the triangle should have 

the given perimeter, then the problem is reduced to the c<mstruction 

X 

~ 
A B C D A. B D E 

Fig.132 Fig. 133 

-of a triangle with two given angles. It is rather easy. Take an arbit­
l'ary line segment AB, and construct the given angles on the half­
lines AB and BA. We obtain a triangle ABC with the given angles 
{Fig. 133). It is similar to the required. To obtain the desired tri­
.angle, the triangle constructed should be subjected to a suitable 
similitude. 

Cut off on the side AB produced, line segments BD and DE equal 
to the sides BC and AC, and also on the half-line AC a line segment 
AF equal to the perimeter. Draw through B and D two straight 
lines parallel to EF. The line segments AH, HG and GF form the 
required triangle. They and the sides of the constructed triangle are 
proportional to the perimeters of the required and constructed triangles. 

Construct a circle touching the sides of an angle, and passing through 
.a given point. 

Solution. Neglect the requirement that the circle should pass 
through a given point. It is easy to construct an auxiliary circle 
tangent to the sides of the angle, for which we make equal intercepts 
()n the sides, and draw perpendicular straight lines through their 
-ends. The centre of this circle is just where they meet. To obtain 
the required circle, the circle constructed should be subjected to 
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a homothety with respec.t to the vertex of the angle, and with ratio 
AS/BS. The centre of the sought-for circle is at the intersection of 
the straight lines SO and AO' parallel to OB, where A is the point 
through which the circle should paf.s, S the vertex of the angle, B 
~:me of the points of intersection of the ray SA and the auxiliary 
eircle, 0 the centre of the auxiliary, and 0' that of the required 
eircle. 

4. Reflection Method 

It may happen so that a fi.gure to be constructed possesses points 
symmetric about a certain straight line or point, in which case it 
will be found useful to carry out a similitude with respect to the 
.straight line or point, respectively. 

We illustrate by two examples. 
Construct a line segment AB with the given mid-point 0 and ends on 

two given straight lines a and b. 
Solution. Assume that the problem has been solved. Then the 

ends of the segment are symmetric about 0. If one of the lines, say, 
a, is reflected in 0, then we obtain a straight line a' passing through 
the other end-point B. Thus, B is obtained by intersecting b with a' 
which is symmetric to a with respect to 0. It then suffi.ces to extend 
the straight line BO until it meets a, and we obtain the second 
end-point, A. 

Given three straight lines a, b and c, construct a line segment AB 
perpendicular to c, with the mid-point on it, and ends on a and b. 

Solution. Assume that the problem has been solved. Then the 
ends of the required line segment are symmetric about c. Therefore, 
if a is reflected in c, then it will turn into a straight line a' passing 
through B. Thus, B is where b meets a'. We then draw through B 
a straight line perpendicular to c, and thereby fi.nd the required 
line segment. 

Note that, as well as in the previous problem, we can give here 
any fi.gure instead of the straight lines a or b, and any fi.gure admitting 
a construction with compasses and ruler instead of the third straight 
line, i.e., consisting of straight lines and circles. 

5. Translation Method 

It consists in translating some parts of ,a required fi.gure with the 
purpose of obtaining a new one admitting a known construction. 

We illustrate by two examples. 
Construct a trapezium, given the bases and diagonals. 
Solution. Assume that the problem has been solved, and a trapezium 

ABCD constructed (Fig. 134). Translate the diagonal BD, so that 
its vertex B coincides with the vertex C. We now kn{)W all the sides 
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of the triangle ACD1 , two equal to the trapezium diagonals, and 
the third to the sum of the bases. Hence the following solution. We 
first construct the triangle ACD1 , find the point D (AD being 
the known base of the trapezium), then draw through C a straight 
line parallel to AD, and another through D parallel to CD1• They 
meet at B, and the trapezium ABCD possesses the given bases 
and diagonals. 

Given two circles k1 , k2 , and a straight line a. Construct a line segment 
AB = d parallel to a with ends on k1 , k2 • 

Solution. Assume that the problem has been solved, and the line 
segment AB constructed (Fig. 135). If one of the circles, e.g., kh 

8 c 

P<t~-:-:...__ 
4 D D1 

Fig. 134 Fig. 135 

is translated through d so that it remains parallel to a, then it turns 
into a circle passing through the other end, B. Thus, B is at the 
intersection of k2 with the circle obtained by translating k1 • We 
then find the line segment itself by drawing through B a straight 
line parallel to a. 

6. Rotation Method 

It consists in rotating some parts of a figure with the purpose of 
obtaining a new one with known construction. 

We illustrate by two examples. 
Given two circles k1 and k2 , and a point A. Construct an isosceles 

triangle with vertex A, and angle e at A, and base vertices on k1 and k2 • 

Solution. Assume that the problem has been solved, and the 
triangle ABC constructed (Fig. 136). The vertex B is made coincident 
with the vertex C on rotating the side A C about A through e. Hence 
the solution. Viz., rotate k1 about A through e. The obtained circle 
intersects k2 at the vertex B of the required triangle. To find C, draw 
a circle with centre at A and radius AB until it meets k1 • 

Construct a square whose sides pass through four given points A, B, 
C and D. 

Solution. Assume that the square has been constructed (Fig. 137). 
Turn the line segment DB about D through 90°, and then translate 
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it so that D coincides with A. Meanwhile, B' falls on the point B" 
in the side passing through C (or in this side produced), which 
follows from the congruence of the right triangles BED and AFB". 

B 
If 

A ~---/_J __ F 
.......... I I 

c \ ...,. .... I 
\ I I ........ B" 
\ I I \ 

.__\.01_.--.o.;;. IE__. \ 
D ........... \ 

Fig. 136 

............... \ 
'-tfB' 

Fig. 137 

We then draw the linil CB" containing this side, another line 
parallel to CB" through A, and two straight lines perpendicular to 
the latter through B and D. The constructed square is the required. 

7. Inversion Method 

The inversion concept was introduced in Ch. III, Sec. 8, wher.e 
we proved that a circle inverts into a circle (or a straight line 
if the given circle passes through the centre of inversion). A straight 
line which does not pass through the centre in­
verts into a circle, and into itself if it does. 

Inversion can be represented geometrically 
as follows. Let 0 be its centre. Describe a cir­
cle, centre 0, with radius of inversion (Fig. 138). 
Then an outside point A inverts into A', the 
intersection of OA with the chord joining the 
ends of the tangents from A. The proof is sim­
ple, viz., by the property of right triangles, 
OA-OA' =0B2 =r. A' invertsinto A, and it 
becomes clear how to find A if A' is given. 

B 

Fig. 138 

Besides the above properties of transforming straight lines and 
drcles, inversion possesses another remarkable one. It preserves angles 
between curves. This means that if two curves intersect at some angle, 
then they invert into two curves intersecting at the same angle. For 
proof, we notice first of all that inversion preserves tangency, 
i.e., if two curves touch at a certain point, or possess a common 
tangent, then they invert into two curves tangent at the correspond­
ing point. 

Now, let two curves y1 and y 2 meet at a point A (Fig. 139). Draw 
through the point two tangent straight lines. A inverts into a certain 
point A'. Draw two circles k1 and k2 touching the straight lines at 
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A, and passing through A'. (If either y1 or "\' 2 is tangent to 0 A, then 
we shall have just this line instead of the circle.) The circles meet at 
A and A' at the same angle. 

Both k1 and k2 invert into themselves. In fact, by the property of 
secants, OB · OB' = OA · OA' = r2 • 1'1 and I' a invert into two curve~ 

B ,---, 
I "\ 

I ~A• 
\ I 

--'.... £ 

Fig. i39 Fig. i40 

y~ and "\'~ touching k1 and k2 at A'. Since the circles intersect at th~ 
same angle, "\'~ and"\'~ meet at A' at the same angle as "\'1 , 1'2 at A,. 

"~~~ 
' , ...... ...... , 

...... ' 
Fig. i41 

and the statement is thus proved. 
We now illustrate by an exampl~ 

how to apply inversion to the solution 
of a construction problem. 

Given two intersecting circles and a 
point A. Describe a circle passing through 
A, and tangent to the two given circles. 

Solution. Assume that the circle has 
been constructed (Fig. 140). Apply in­
version with respect to the point wher~ 
the given circles meet. A then in­
verts into a certain point A', the given 
circles invert into straight lines, while 
the required circle into a circle tan­
gent to these straight lines, passing 

through A', and whose construction is known (see Sec. 3). We then 
carry out the inverse transformation, and the constructed circle in­
verts into the required. 

Given three circles, two of which intersecting. Construct a circle 
touching all the three. 

Solution. As in the previous problem, we use inversion relative 
to the point where the two given circles meet. Two circles of the 
three then invert into straight lines, and the problem is reduced to 
the construction of a circle tangent to two straight lines and a circle 
(Fig. 141). A circle k1 of radius 0 10, concentric with the required, 
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passes through the point 0, and touches two straight lines parallel 
to the given, which are from the latter at a distance of the radius 
of the given circle. Thus, the problem is again reduced to the con­
struction of a circle passing through a given point 0, and touching 
the two given straight lines. We then find its centre 0 1 and the circle 
itself. Having carried out the inverse transformation, we find the 
required circle. 

Note that inversion and the passage to concentric circles, which 
we have just used, permit us to solve the general problem of con­
structing a circle touching three given ones (Apollonius' problem). 

8. On Solvability of Construction Problems 

It is sometimes very difficult to solve a construction problem with 
the aid of compasses and a ruler, e.g., the Malfatti problem of the con­
struction of three circles touching the sides of a triangle, and each 
other. There are also impossible construction problems such as dupli­
cation of the cube when it is required to find the,edge of a cube with 
volume twice greater than that of a given one. 

The answer to the question whether or not a given problem is 
solvable by means of compasses and ruler is supplied by the follow­
ing theorem. 

A problem whose analytic solution leads to an equation unsolvable 
by radicals is a construction which is impossible with compasses and 
ruler. Conversely, if the analytic solution of a problem leads to an 
answer involving only rational operations and taking square roots, 
then the construction is possible. 

In fact, suppose that the construction is possible. Let the base 
plane be the xy-plane. Drawing straight lines and circles, and per­
forming simultaneous computations related to the determination of 
intersection points, we then come to expressions involving only 
rational operations and taking square roots, which proves the first 
part of the theorem. 

Conversely, if the analytic solution of a problem leads to an 
answer only involving rational operations and taking square roots, 
then the answer can be found by construction by compasses and 
ruler. For proof, it suffices to recall that expressions of the form 

a + b, a -~b, ~, V ab, V a2 + b2 , where a, b and c are three 
c 

given line segments, can be constructed by compasses and ruler. 
We illustrate by two examples. 
Construct the side of a regular decagon inscribed in a circle of radius R. 
Solution. The side of a regular decagon is the base of an isosceles 

triangle whose sides are equal to R, and the vertex angle is 36° 
(Fig. 142). Its bisector drawn from a base vertex separates it into 
two isosceles triangles AOC and ABC. Therefore, AB = AC = OC. 
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By the property of an angle bisector, 
BC OC 
AB = OA · 

Hence, denoting AB by x, we obtain 
R-x x 
-x--R, x2 +Rx-R2 =0. 

Its positive root is 

-R+V5R2 V5R·R-R 
X=--~--

2 2 
To construct a line segment of length x is easy. Take a semi­

circle with diameter 6R, and drop the perpendicular SN to the 
0 

Fig. 142 

diameter (Fig. 143). Cut off SM = R. Therefore, half the line 
.segment MN is of the required length x. 

The problem of duplication of a cube leads to the equation 
.x3 - 2 = 0, where x is the side of the cube whose volume is twice 
the unit one. It has been proved that the roots cannot be solvable 
by radicals. Therefore, the problem of duplication of a cube is 
unsolvable by means of compasses and ruler. 

Another impossible construction problem unsolvable is that of 
trisecting an angle when it is required to divide an arbitrary angle 
into three equal parts. Analytically, it also leads to an equation of 
the third degree, which is generally unsolvable by radicals. 

EXERCISES TO CHAPTER XVII * 
1. Construct a circle of given radius, touching two given ones. 
2. Find a point from which two given line segments are visible 

at given angles. 

* Borrowed from A. Adler's Theory of Geometric Constructions (Uchpedgiz, 
Moscow, 1940). 
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3. Inscribe a right triangle in a given circle, so that the sides 
containing the right angle pass through two given points. 

4. Given three circles of the same radius, construct a circle touch­
ing them externally. 

5. Find a point from which the sides of a given triangle are visible 
at 120°. 

6. Construct a circle intersecting three given ones at right angles. 
7. Find a point from which three given circles are visible at the 

same angle. 
8. Given a straight line AC and an outside point B, find such a 

point X on AC that AX + XB equals a given line segment ~· 
9. Given two concentric circles and a point P, draw a straight 

line through P so that the line segment contained by the circles 
is visible from their centre at a given angle a. 

10. Given two pairs .of parallel straight lines and a point P, 
draw a straight line through P so that both pairs make equal inter­
cepts on it. 

11. Given two circles and a point, draw a straight line through it 
so that the circles cut off chords of given length. 

12. Inscribe a parallelogram with given directions of the sides into 
a given quadrilateral. 

13. Construct a square, given the sum of its side and diagonal. _ 
14. Inscribe a square in a given triangle. 
15. Given a circle with two radii, construct a chord trisected by 

them. 
16. Inscribe in a given quadrilateral a rhombus so' that its sides 

are parallel to the diagonals of the quadrilateral. 
17. Describe a circle touching a given straight line, and passing 

through two given points. 
18. Construct a triangle, given its altitudes. 
19. Construct a triangle, given an angle, the altitude and bisector 

drawn from the vertex of the angle. _ 
20. Construct a triangle, given a median and.altitude drawn from 

the same vertex and the circumradius. 
21. Construct a triangle, given a side, the sum of the other two sides 

and the altitude drawn on one of them. 
22. Construct a triangle, given a side, the opposite angle and the 

sum of the other two sides. 
23. Draw a straight line through the point where two given circles 

meet so that the sum of the chords cut off is greatest (when the chords 
do not overlap). 

24. Construct a triangle, given the perimeter, circumradius and 
one of the angles. 

25. Construct a triangle, given the three medians. 
26. Construct a parallelogram, given the diagonals and angle 

between them. 
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27. Given a triangle, circumscribe an equilateral triangle of great­
est area. 

28. Construct a quadrilateral, given its sides and the line segment 
joining the mid-points of the diagonals. 

29. Given a triangle ABC and a straight line g passing through 
C, find a point X on g, from which AC and BC are visible at equal 
angles. 

30. Given a triangle ABC and a point D on the straight line AB, 
find a point X on the straight line AC, from which AD and DB are 
visible at the same angle. 

31. Given a straight line g and two .Points A and B on opposite 
sides of it, find a point X on g, so that AX + XB is the least. 

32. Inscribe in a square an equilateral triangle, given one of its 
vertices. 

33. Describe a circle touching a given one, and passing through 
two given points. 

Chapter XVIII 

MEASURING LENGTHS, AREAS AND VOLUMES 

1. Measuring Line Segments 

By the "measure axiom" for line segments, each segment is of certain 
positive length. If a point Con a straight line AB is between A and B, 
then the length of the line segment AB equals the sum of those of 
the line segments AC and BC. Thus, the axiom requires that each 
line segment should be associated with a certain value, the 
above additive property being valid. No measurements of the line 
segment are assumed. The question naturally arises as to the rela­
tion of the results of a practical measurement which we normally 
make to the segment length whose existence is stated by the axiom. 

Recall how a measurement is performed practically. Let AB be 
a given line segment. We take a standard of length, e.g., of one 
meter, make one of its ends coincident by a motion with that of the 
line segment, say, A, and mark the point A1 where the other end of 
the standard goes. Similarly, we mark points A 2 , A 3 , •••• If one 
of the points An so marked coincides with B, then we will say that 
the length of the line segment is n metres. This is the practical result 
of the measurement. Does it coincide with the number associated with 
the line segment by the measure axiom? 

To prove that it does, we see that the length of AA 2 is equal, by 
the measure axiom, to the sum of those of AA1 and A1A 2 • Since a 
motion preserves the lengths of line segments, A1A 2 = AA1 =1. 
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Therefore, the length of AA 2 = 2, which corresponds to the results 
of the practical measurement if B =A 2• It is proved similarly that 
if B =An, the practical measurement result coincides with the 
length of AB, prescribed by the measure axiom. 

It may happen that B does not coincide with any of An· Then there 
are such neighbouring points A n-l and An that B is in A n-1A n· 
In practical measurement, we say that the length of AB is between 
n - 1 and n metres. If we speak of the length determined by the 
measure axiom, then the result is the same. In fact, by the measure 
axiom, the length of AB equals the sum [of those of AAn-t and 
An-1B. Hence, it is greater than n- 1. Similarly, we conclude that 
it is less than n. 

For more precise measurement of the length of a line segment in 
practice, we divide the standard into 10, or some other number, equal 
parts, and perform the measurement by one of the known methods. 
Analysis which we omit here shows that the result of the practical 
measurement coincides with the one following from the measur~ 
axiom. 

In connection with the practical measurement of the length of a 
line segment by cutting off a standard of length, the natural ques~ 
tion arises as to what entails the existence of such a point A" 
that the point B belongs to the line segment AA n? It is not hard to 
give an answer. AAn is of length n. And when n is sufficiently large, 
the length of AB is less than n (meaning the length of the line seg~ 
ment, determined by the measure axiom). Hence, B belongs to AAn, 
Thus, that B belongs to AAn for sufficiently large n (and, therefore, 
the possibility to measure line segments in practice) follows from the 
properties of real numbers, viz., for any number d > 0, there exist~t 
a natural number n such that d~ n. 

We have drawn the reader's attention to this circumstance, be. 
cause, with another axiomatic construction of geometry, e.g., duo 
to H. Hilbert, where the concept of the length of a line segment is 
not basic, and obtained in the measurement process, the existence of 
the point An is introduced as an axiom (Archimedes' axiom). 

Note another circumstance in connection with the practical mea. 
surement of a line segment. If the measurement process does not stop 
after a finite number of steps, then we obtain two sequences of points 
Pn and Qn possessing the following properties, (i) the point B is 
between P n and Qn, (ii) the lengths of the line segments AP n form a 
nondecreasing sequence, whereas those of , the line segments AQn a 
nonincreasing one, (iii) the length of the line segment P nQn is 1110n. By 
the property of real numbers, both sequences have the same limit.­
Since the length of AB is greater than that of AP n• and less than that 
of AQn, this common limit is the length of AB. Thus, the practical 
measurement method always yields the length of the line segment~ 
prescribed by the measure axiom. 
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2. Length of a Circumference 

At school, the discussion of the length of a circumference starts 
with visual imagery. The student is asked to imagine a thread in 
circular form, cut it, and pull at its ends. Then the length of the 
obtained line segment is that of the circumference. Furtlfer, it be­
comes clear from the visual imagery that the length of a circum­
ference can be made as little different as we please from the perimeter 
of the inscribed convex polygon with sufficiently small sides. On 
the basis of this proposition, it can be then proved in a perfectly 
strict manner that the ratio of the length of a circumference to 
its diameter is independent of the circumference, i.e., is the same 
for any two circumferences. 

The defect of this treatment is that we do not give a definition of 
the concept of the length of a circumference, and then introduce a 

D 
proposition requiring proof, which is caused 
by purely methodical argument. The con­
cept of the length of a circumference as­
sumes.familiarity with that of the limit or 
supremum of a sequence. They seem com­
plicated to the intermediate school student, 
and the proofs cannot be grasped at all. 

The rigorous treatment of the problem of 
the length of a circumference is in the fol­
lowing. First, we define the concept. 

Fig. i44 Viz., the length of a circumference is the 
supremum of the perimeters of convex 

polygons inscribed in a circumference, or the least number greater 
than the perimeter of any of them. To make the definition correct, 
or to define the length of a circumference, it is required that the pe­
rimeters of the inscribed polygons should be all bounded. The latter 
is proved by the following theorem. 

If a convex polygon P1 lies inside a convex polygon P 2 , then the pe­
rimeter of P1 is not greater than that of P 2 • If P1 is not coincident with 
P 2 , then its perimeter is less than that of P 2• 

Proof. Draw a straight line a containing one side of P 1 (Fig. 144). 
P 1 is on one side of this line, whereas P 2 either on the same side of 
a or there are points on P 2 , lying on opposite sides, in which case a 
breaks P 2 into two polygons. Let Q2 be the one in the same half­
plane with P 1 relative to a. It contains P 1 , and has perimeter less 
than that of P 2• In fact, the passage from P 2 to Q2 is related to the 
replacement of the broken line by the line segmentAB joining its ends. 

Performing the same construction with each side of P 1 , we finally 
obtain P 1 • Hence, if P 1 does not coincide with P 21 then its perimeter 
is less than that of P 2 • 

Q.E.D. 
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We now prove another proposition from the school textbook. Viz., 
the length of a circumference is as little different as we please from the 
perimeter of the inscribed convex polygon with sufficiently small sides. 

Proof. First, we see that, for any e > 0, a convex polygon can 
be inscribed in a given circle so that its perimeter is different from the 
length of the circumference by not more than e. In fact, assume that the 
statement is false. Then the perimeter of any inscribed polygon is 
not greater than l - e, l being the length of the circumference. 
Therefore, the number l is not the least value greater than the pe-

rimeter of any inscribed polygon. l- ~ is less than l, and also greater 

than the perimeter of any inscribed polygon; a contradiction, and 
the statement is thus proved. 

Now, let P be a polygon inscribed in the circle, with perimeter 
different from the length of the circumference by not more than 
e > 0, and P' an inscribed polygon with sides less than lL Complete 
P' with the vertices of P. The polygon P" so formed has perimeter 
not less than P'. On the other hand, it is not greater than l. If we 
omit in P" the segments of the broken line, meeting at the vertices 
of P, then its perimeter decreases, but not more than by 2oo, where 
n is the number of vertices of P. Hence, the perimeter of P' is not 
less than l - e - 2n<>. Since after the choice of e, n is fixed, l - e -
2oo can be made as little different from l as we please for suffi­
ciently small e and 6. 

Q.E.D. 
With the given definition of the length of a circumference, the 

question arises how it is related to that of the length of a curve, viz., 
as the limit of the lengths of broken lines inscribed in the curve, 
which we made use of inCh. IX. It turns out that the above defini­
tion leads to the same result. In fact, we have proved that the pe­
rimeters of convex polygons inscribed in a circumference can be made 
as little different from its length as we please if their sides are suf­
ficiently small. This means that the length of a circumference is 
the limit of the perimeters of inscribed convex polygons if the lengths 
of their sides decrease arbitrarily. 

3. Areas of Figures 

The school treatment of the topic of area starts with the discussion 
of crops on two plots, one in the form of a square, and the other of 
arbitrary form. This argument is followed by the conclusion regard­
ing the existence of area and its properties, viz., additivity and equal­
ity for congruent figures. Further, proceeding from the existence of 
area and on the basis of its properties, we can rigorously deduce 
formulas for the areas of simple figures such as a rectangle, paral­
lelogram or triangle. 
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The strict theory of area should be started with the proof of the 
following theorem. 

On a set of simple figures admitting partition into a finite number 
of non-overlapping triangles, i.e., without common interior points, a 
function S called area can be defined so that it possesses the following 
properties, viz., 

(i) for figures with interior points, S > 0, 
(ii) if a figure G is made up of two figures G1 and G2 having no in-

terior points in common, then S (G) = S (G1) + S (G2), 

(iii) congruent figures have equal areas, and 
(iv) for a square with unit side, S = 1. 
The function S satisfying conditions (i)-(iv) is unique. 

1 Proof. We define the area S as follows. Put S = 2 ah for a 

triangle, where a is its side, and h the altitude on it. For any figure 

B 

A 

Fig. 145 

G, the quantity S is determined as the 
sum of the areas of triangles in any of 
its partition. To make the above defini­
tion correct, it is required that the area 
of a triangle sltould not depend on the 
side taken or the altitude drawn, and that 
the area of a figure, defined in terms of 
the addition of areas of the component 

c triangles, should not depend on a parti-
tion into them. 

First, we prove that the area of a 
triangle does not depend on the side 

taken and corresponding altitude. Let ABC be a given triangle 
(Fig. 145). Draw its altitudes CC1 and BB1 • The right triangles 
AC1C and AB1B are similar, since the angle A is common. Hence, 

Ae ee1 c 
AB = 881 , A ·BB1 = AB.CC1• 

Therefore, we obtain the same result not depending on the side 
AC and altitude BB17 or the side AB and altitude CC1 • 

We now prove that, in partitioning a triangle into smaller ones, 
its area equals the sum of those of the component triangles irrespec­
tive of the partitioning method. 

First, we consider the partition in Fig. 146, where the triangle 
ABC is broken into triangles CAD17 CD1D 2 , CD 2D 3 , ••• , all of 
them with the same altitude h from their common vertex C. It is 
also that of the triangle ABC. 

The sum of the areas of the triangles is 

AD1 ·h + D1D2 ·h ·+ D2D3 ·h + = (AD 1 +D1D1+D1Ds+···>·h 
2 2 2 . . • 2 
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Since AD1 + D 1D 2 + D 2D 3 + ... = AB, the sum of the areas 
is ~· h , or the area of the triangle ABC. 

We now consider an arbitrary partition of the triangle ABC into 
smaller ones. Assume that any two triangles in the partition either 

c 
c 

Fig. 146 Fig. 147 

have no common points, or have a common vertex, or a common side. 
E.g., such a partition is shown in Fig. 147. 

In Fig. 148, another partition triangle PQR is shown. Its area can 
be represented as the algebraic sum of 
those of the three triangles APQ, 
AQR, ARP obtained from the triangle 
PQR by replacing one of the vertices 
with A. The sign of the areas in the sum 
is determined by the following rule. 
If a vertex to replace A is on one side 
with it relative to the straight line 
joining the other two vertices, then the A dliio,.;;;;;;;... _____ -bC 

area of the triangle is taken with 
a plus; if it is on the other side, 

Fig. 148 

then with a minus. If, replacing with A, three points are in one 
straight line, then the addend is omitted, i.e., the area is assumed 
to be zero. 

E.g., consider the position of the triangle PQR in Fig. 148. 
As we have proved, 

Hence, 

S (PQR) = S (PQO) + S (QRO), 
S (APQ) = S (APO) + S (PQO), 
S (ARQ) = S (ARO) + S (QRO), 
S (APR) = S (APO) + S (ARO). 

S (PQR) = S (APQ) + S (ARQ) - S (ARP). 

The correctness of our statement regarding the representation of 
the area of the triangle PQR as the algebraic sum of those of the 
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triangles APQ, AQR and ARP has been verified by a concrete exam­
ple of the position of the triangle PQR. We could also consider other 
possibilities for its position, and see that our statement is always valid. 

Representing the area of each partition triangle as the algebraic 
sum of those of triangles with A as a vertex, we add together the 
areas of all the triangles in the partition, and obtain the sum of 
those of triangles AXY, where XY is a side of a partition triangle. 
If XY is inside the triangle ABC, then the area of the triangle AXY 
is involved in the sum twice, because XY is the side of two triangles 
in the partition. Since they are on opposite sides of the straight line 
XY, the area of the triangle AXY is once with a plus, and once with 
a minus, thus eliminating each other. 

If the line segment XY is on the side BC of the triangle ABC, 
then the area of the triangle AXY is only once involved in the sum, 

with a plus. However, if the side XY is on 
AB or AC, then the area of AXY simply is 
zero. Eventually, the sum of the areas of the 

t:f.' triangles in our partition is that of the 
triangles AXY with sides XY on the side 
BC of the triangle ABC. It has been proved 
earlier that it is equal to the area of the 
latter, and thus equals the sum of the areas 
of the triangles in any partition. 

Now, let a simple figure F be in one 
case partitioned into triangles A~, A~, 

Fig. 149 A~, ... , and, in another case, into triangles 
A~, A;, A;, .... We prove that the sums of 

the areas of the triangles in the first and second partitions are 
equal. 

The triangles in the first and second partition, taken together, 
divide F into convex polygons, viz., triangles, quadrilaterals, 
pentagons and hexagons, each of which is the part common to one 
triangle in the first partition and another in the second. (One such 
pentagon is shown in Fig. 149.) Break them into triangles A~", 
A;", A;", ... , and do it so that every two either have no common 
points at all, or have a common vertex, or a c.ommon side. 

It has been proved that each Ah_ of the first partition ofF equals 
the sum of the areas of the triangles AI.'' involved. Similarly, each 
triangle Aft' of the second partition is represented as the sum of A/.". 
Therefore, the sums of the areas of the triangles both of the first 
and second partitions ofF equal that of the areas of A/.". Hence, the 
sums of the areas of the first and second partition triangles are equal, 
i.e., the area of F is independent of the way it is partitioned into 
triangles. 

We now prove that the area so defined, in fact, possesses proper­
ties (i)-(iv). The first of them is obvious. To prove the second, sup-
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pose that the figure G is partitioned into two figures G1 and G2 with­
out common interior points. Let G1 be partitioned into triangles 
Ai., and G2 into triangles Ak· We then obtain a partition of G into 
AI. and Ak. The area of G1 equals the sum of the areas of AI., whereas 
that of G2 is the sum of the areas of Ak. The area of G is the sum of 
the areas of A;. and Ak. Therefore, it equals that of the areas of G1 

and G2 , and the second property is thus proved. 
The third property of area follows from the equality of the areas. 

of congruent triangles (the corresponding sides are equal, and the­
altitudes on them are also equal). 

We now prove the fourth property. A square with unit side is. 
divided by a diagonal into two right triangles with unit sides con­
taining the right angles, the area of each being 1·112. Therefore, the­
area of the square is 1. 

Finally, we prove that area is determined uniquely by properties. 
(i)-(iv), which has been actually proved in the school textbook, where· 
it was shown on the basis of these properties that the area of a rec­
tangle with sides a and b equals ab and that the area of a triangle· 
is one-half the product of its base and altitude. The uniqueness in 
the definition of the area of a triangle implies that in the definition 
of the area of any simple figure, and the theorem is thus proved com­
pletely. 

We now define the concept of area for any figure. We will say that 
a figure G possesses certain area if, for any 8 > 0, there exists a 
simple figure G1 containing G, and a simple G2 contained in G, whose· 
areas differ by not more than 8. For figures with area in the sense of 
the above definition, the value of the area S (G) can be defined as the 
infimum of those of simple figures containing G or as the supremum 
of the areas of simple figures contained in G. The area so defined for 
figures having area possesses properties (i)-(iv). However, we do not 
give the proof here. 

A simple sufficient test of the existence of area for a figure is that 
its boundary should have zero area; in particular, if the boundary 
of the figure consists of rectifiable curves. 

In the school course of geometry, they usually consider figures 
which are bounded by straight line segments or circles. 
They all possess area in the sense of the above definition. 

4. Volumes of Solids 

The school treatment of the topic of the volume of solids also­
starts similarly, viz., with a clear proof of the existence of volume, 
and its properties of additivity and equality for congruent solids. 
A strict treatment of the topic assumes the proof of the following 
theorem. 
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On a set of simple solids admitting partition into a finite number of 
disjoint triangular pyramids, a functtrm V called volume can be defined 
to possess the following properties, viz., 

(i) for solids with interior points, V > 0, 
(ii) if a solid T is made up of two solids T1 and T2 without interior 

points in common, then 

(iii) congruent solids have equal volumes, 
and 

(iv) for a cube with unit edge, V = 1. 
The function V satisfying conditions (i)-(iv) is unique. 
In principle, proof is not different from that of the corresponding 

theorem for the areas of simple figures. Viz., the volume of a simple 
solid is defined as the sum of those of triangular pyramids compos-
ing it, whereas that o-f a pyramid is defined by the formula V = ~ Sh, 
where S is the area of its base, and h the altitude on it. The correct­
ness of the definition is then proved, or the independence of the vol­
ume of a triangular pyramid from the choice of its base, as well as 
that of the volume of a simple solid from its partition into triangular 
pyramids. 

The proof that the volume definition is correct is followed by 
the verification of (i)-(iv}, and, finally, by that of the uniqueness of 
volume. 

The concept of volume is defined for any solids as follows. We 
will say that a solid T has certain volume if, for any e > 0, there 
exists a simple solid T1 containing T and a solid T 2 contained in 
T, whose volumes differ by not more than e. For a solid T with vol­
ume in the sense of this definition, its volume V (T) is defined either 
as the infimum of the volumes of simple solids containing T or as 
the supremum of the volumes of simple solids contained in it. The 
volume so defined of solids (which have volume) satisfies conditions 
(i}-(iv). 

A simple sufficient test for the existence of volume of a solid is 
that its boundary should have zero volume. In the school course of 
geometry, they consider solids bounded by pieces of planes, and of 
~ylindric, conic or spherical surfaces. It is easy to see that each of 
them can be contained by a simple solid of arbitrarily small volume. 
Therefore, solids bounded by such surfaces do have certain volume. 
In school treatment, the existence of volume in the sense of the above 
definition is usually implied in deducing the formula for volume. 
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5. Area of a Surface 

The school textbook supplies the following definition of the area 
~f a surface. Let F be a surface, and F 6 the set of points in space, 
which are from the surface at a distance not greater than 
~. We call the limit of the ratio V (F6)/2fJ as 6 -+0 the area of the 
surface F. This definition is explicitly clear, especially after the 
example of the amount of paint necessary for a surface to be coated 
.and a square lamina. It also possesses the advantage that it makes 
very simple the deduction of formulas for the areas of surfaces studied 
at school, viz., of a sphere, spherical cap, spherical zone, cylinder 
and cone. 

However, the question arises as to the definition relation to that 
<>f the area of a surface, given in higher school, and, in particular, 
to the one from Ch. XI. We now show that both lead to the same 
formula for the area of a surface. 

We now introduce curvilinear coordinates u, v, w in the neigh­
bourhood of a surface F as follows. Cut off a line segment of length 
1 w I on the normal to F at a point (u, v), and take the values u, v, w 
as the coordinates of its end, w being positive on one side of the sur­
face, and negative on the other. The Cartesian coordinates of the 
point (x, y, z) are certain functions of u, v, w. To make the passagt:"l 
from coordinates x, y, z to u, v, w possible, it is required that the 
Jacobian J should not vanish, viz., 

Xu Yu Zu 

J = X, y, Zv =F 0. 
Xw Yw Zw 

We show that this holds in a su{ficiently small neighbourhood 
of the surface, or for sufficiently small w. We will assume the .. sur­
face regular and, at least, twice differentiable. 

If we denote the position vector of a point on the surface by 
r (u, v), and the unit normal vector by n (u, v), then 

J = ((r + wn)u (r + wn), (r + wn)w)· 

For w = 0, J = (rur,n) = I ru 1\ r, I =F 0. Therefore, J =F 0 
also in a certain neighbourhood of the surface, i.e., for sufficiently 
small I w 1. 

Now, let the curve y bounding the surface be rectifiable, and of 
length Z. Divide it into l/6 equal parts (without loss of generality, 
we assume l/6 integral). Construct cubes with centres at each divi­
sion point, and edges 46. Their total volume is not greater than 
~ (4ll)3 • Let F6 be that part of the solid F6 , which is filled with the 
normals of length 6 to the surface F. Its volume is different from 
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l that of Fa by not more than 6 t46)3 • Therefore, for certain e~ 

0~ e~ 1, we have 

V (Fa)= V (F6) +8 T (46) 3 , 

;6 V (Fa)= ;6 V (Fo) + 832l6. 

Passing to the limit as 6-+ 0, we obtain 

S (F)= lim ;6 V (Fa)= lim ~ V (F(,). 
a~o a~o 

We now calculate the limit on the right-hand side, viz., 

lim ;6 V (F(,) = lim ;6 J J J J du dv dw 
a~o a~o F, IWI~a 

a 
= J J [ l~ ;6 J (ru + wnuro + wnvn) dw J du dv = J ~ (rurvn) du dv. 

F a 0 -a F 

Thus, 

S (F)= J J (rurvn) du dv= J J lru 1\ rvl dudv, 
F F 

and we obtain the same formula for the area of a surface, which was 
derived in Ch. XI with another definition of area. 

Chapter XIX 

ELEMENTS OF PROJECTION DRAWING 

1. Representation of a Point on an Epure 

A solid is represented on the plane by means of projection with 
parallel straight lines. Usually, its projection onto one plane does not 
lead to a full image. Therefore, two or even three projections onto 
two or three planes, respectively, are used. We consider the repre­
sentation of a solid by means of orthogonal projection onto two 
planes. 

Let H and V be two planes meeting at right angles in a straight 
line x (Fig. 150). For convenience, we will assume H horizontal, 
and V vertical. A solid is orthogonally projected onto H and V. 
The projection of a solid onto the horizontal plane is said to be hor­
izontal, whereas that on the vertical vertical. H and V are called the 
projection planes, and x the axis of projection. On projecting the figure 
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o0nto H and V, we turn H through 90° about x until it coincides with 
V. Both projections will then be in one plane. The drawing so ob­
tained with the representation of both projections is called an epure. 

Consider the position of the horizontal and vertical projections 
-of an arbitrary point on the epure. The following property is valid. 

The vertical and horizontal projections of a point on the epure are 
represented as points in the straight line perpendicular to the axis of 
projection. 

v 

+-~--t--x 

H 

Fig. 150 Fig. 151 

Proof. Draw a plane a perpendicular to the axis of projection x 
through the given point A to cut the planes Hand V in two straight 
lines a1 and a2 (Fig. 151). The horizontal projection A1 of A is in 
a 1 , since the perpendicular from A to H is in a. Similarly, the ver­
tical projection A 2 of A is in a2 • The straight lines a1 and a 2 are per­
pendicular to x. Like any motion, a rotation is angle-preserving, and 
a 1 , a2 are made coincident when Hand V coincide after the rotation. 
Thus, the projections of A are represented as points of a2 on the 
epure. 

2. Problems Leading to a Straight Line 

Given a straight line a by its projections on the epure, and the hori­
zontal projection of a point A in a, find the vertical projection of A. 

Solution. Let a1 and a 2 be the horizontal and vertical projections 
of a, and A1 the horizontal projection of A (Fig. 152). The vertical 
projection of A is in the straight line perpendicular to· the axis 
of projection passing through A1; it is also on the vertical pro­
jection a 2 of a. Therefore, it is the point where the straight lines meet. 

Given a straight line a and an outside point A by its projections on 
the epure, construct the projections of the straight line passing through 
A, and parallel to a. 
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Solution. Since parallel straight lines have parallel projections~ 
the projections of the required straight line are obtained if we draw 

---1----x 
....... 

. ' A 

··~ 
Fig. 152 Fig. 153 

through the projections of A straight lines parallel to the correspond­
ing projections of a (Fig. 153). 

3. Determination of the Length 
of a Line Segment 

Find the length of a line segment AB, given its projections on the 
epure. 

Solution. If AB is parallel to one of the projection planes, e.g., 
the vertical plane, then its length equals that of the projection onto 

it. We shall learn whether or not AB is par­
allel to the vertical plane from its horizon­
tal projection which should be pantllel to 

..... ---1 
...- 1 the axis of projection. 

1 Assume that AB is not parallel to any 
-1r-----,,---+---x· of the projection planes. Rotate AB about 

---1--if--bi the straight line projecting A onto the hor-
1 I B, izontal plane. The projections of B will 
: / then vary. Viz., the horizontal projection 

of B moves along a circle with centre at a 
point A 1 , and the vertical projection along 

Fig. 154 
a straight line b2 parallel to the axis of pro-
jection passing through a point B 2 

(Fig. 154). 
When the line segment is parallel to the vertical plane, the pro­

jection of B1 falls on a straight line parallel to the axis of projection, 
passing through A1 • Denote B1 in this position by B1 • The line 
segment A 1B1 is the horizontal projection of a line segment equal to 
AB, and parallel to the vertical plane. Its vertical projection A 2B2 
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is not hard to find. The vertical projection of the end B of the line­
segment rotated is in the intersection of the straight line passing­
through B1 , and perpendicular to the axis of projection and b2 • As 
indicated above, AB is equal to A 2B2 • 

4. Problems Leading to a Straight Line 
and a Plane 

Let H and V be two projection planes, and a. an arbitrary plane­
intersecting the planes in two straight lines h and v, respectively 
(Fig. 155), called the traces of a. on the projection planes. Viz., h 
is called the horizontal trace, and v the vertical trace. 

X 

Fig. i55 Fig. i56 

The traces of a plane intersect on the axis of projection or are­
parallel to it if the plane is parallel to the axis. If the plane is par­
allel to one of the projection planes, then it possesses one trace. It 
is vertical if the plane is parallel to the horizontal, and horizontal 
if it is parallel to the vertical plane. Planes are represented as their­
traces on the epure. 

Find the straight line where two planes meet, given by their traces on 
the epure, i.e., determine the projections of the straight line. 

Solution. Let a. and ~ be the given planes, a1 and a2 the traces of 
a., and b1 and b2 those of ~ (Fig. 156). The straight line c, in which a. 
and ~ intersect, cuts the vertical plane at a certain point P. Its ver­
tical projection P is the point where the plane vertical traces meet. 
i.e., a2 and b2 , while the horizontal projection P 1 is on the axis. 
of projection. 

Similarly, c cuts the horizontal plane at a point Q whose hori­
zontal projection Q1 is the point where a1 and b1 meet, while the­
vertical projection is on the axis of projection. The required pro­
jections of c are obtained if we join the point Q2 to P 2 (vertical pro­
jection) and P 1 to Q1 (horizontal projection). 
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Given a str:Iight lin!! by its proje::tion<; on the epure, find the traces of 
.the pl'ln<! p:I~sing through the line perpendicular to the given projec­
.tion plane, e.g., H. 

Solution. Since the plane is perpendicular to H, its horizontal 
trace coincides with the horizontal projection of the given line, 
whereas the vertical trace is perpendicular to the axis of projection. 
"To obtain the vertical trace, a straight line should be drawn perpendi­
-cular to the axis of projection through the point where the line 
horizontal projection meets the axis (Fig. 157). 

Given the projections of a straight line and the traces of a plane, find 
the point where the line meets the plane, i.e., the projections of the point. 

Solution. Draw through the given straight line a plane perpendic­
mlar to H, and find a straight line h in which the plane intersects 

Fig. 157 Fig. 158 

the given one. Similarly, we find the straight line v in which the given 
plane intersects the one passing through the given straight line per­
pendicular to the vertical plane. The projections of the required 
point are the points where the corresponding projections of h and v 
meet. 

Given the projections of two intersecting straight lines and the hori­
:zontal projection of a point, find the vertical projection of the point if 
.it i~ known to be in the plane determined by the given straight lines. 

Solution. Draw an arbitrary straight line through the horizontal 
projection Ct of the given point, intersecting the horizontal pro­
jections at and bt of the given lines (Fig. 158). Denote the intersec­
tion points by At and Bt, and draw through them straight lines per­
pendicular to the axis of projection. Denote by A 2 and B2 respect­
ively, the points where they meet the vertical projections of the given 
:straight lines. The line segments AtBt and A2B2 are the horizontal 
and vertical projections of the line segment with ends on the given 
-straight lines. Hence, the vertical projection C2 of the required point 
is where the straight line passing through Ct perpendicular to 
the axis of projection meets A 2B 2 • 
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5. Representation of a Prism 
and a Pyramid 

273 

Solving solid geometry problems, we often have to represent sol­
ids by their parallel projections onto a plane. The general theory used 
in this case is known from the school course of geometry. 

Viz., 
(i) Straight line segments are represented on the projection plane 

as straight line segments. 
(ii) Parallel line segments of a figure are represented as parallel 

line segments. 
(iii) The ratio of line segments on one straight line or parallel 

straight lines is preserved in parallel projection. In particular, the 

Fig. 159 Fig. 160 

mid-point of a line segment is represented as that of its projection. 
These rules are necessary, because their violation is always cons­

picuous. 
We now consider the representation by parallel projection of the 

most frequently represented solids, prisms and pyramids. The later­
al edges of a prism are parallel and equal; therefore, they are repre­
sented as parallel line segments equal in length. In the case of a 
right prism, its lateral edges are usually represented as vertical line 
segments. Since the lateral faces of a prism are parallelograms, and 
parallelism is preserved in parallel projection, they are represented 
as parallelograms in the projection plane. Thus, to represent a right 
prism with a given polygon as the base, we have to draw parallel 
straight lines through its vertices, cut off equal line segments on them, 
and join their ends in the same sequence as on the base (Fig. 159). 

To represent an oblique prism, we do the same, with the only 
difference that the lateral edges are drawn to be parallel to each 
other, but not vertical (Fig. 160). Anyway, we have to see to it 
that the edge projections should not overlap. Otherwise, the repre­
sentation is not convincing. For better impression, the edge projec­
tions not visible by the observer can be represented in dotted lines. 
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The base of a triangular prism is represented on the projection 
plane as an arbitrary triangle, whereas that of a parallelepiped must, 
naturally, be a parallelogram. In representing the base of a prism, 

we should generally resort to the above rules. 
In particular, the parallel sides of a base should 
be represented as parallel line segments, while 
the projection of a point-symmetric base should 
also be point-symmetric. 

In representing the base of a pyramid, we 
should follow the same rules as for the base 
of a prism. The height of a regular pyramid is 
represented as a vertical line segment, where-

Fig. 161 as its foot as the base circumcentre. If the 
pyramid is triangular, then the circumcentre 

of its base is at the point of intersection of the three medians 
(Fig. 161). 

6. Representation of a Cylinder, a Cone 
and a Sphere 

In representing a cylinder and a cone, it is most difficult to draw 
their basis. As the projections of circles, they are represent­
ed as ellipses. To construct an ellipse with a given -major axis, we 
can first construct a circle on the major axis as on diameter 

(Fig. 162), decrease proportionally the 
vertical half-chords, e.g., twice, and join 
the obtained points with smooth curves. If 
we take sufficiently many points, then the 
ellipse representation is quite accurate. 
Normally, in solving problems, we confine 
ourselves to four points, the ends of the 
semi-axes. Drawing an ellipse through them 
is simplified by knowing the directions of 
tangents. 

Fig. 162 To construct a cylinder with the 
obtained base, we draw several gener­

ators through the base points, cut off equal intercepts on them, 
and join their ends with a smooth curve. The extreme generators on 
the cylinder projection touch the bases. 

To inscribe a regular polygon in the base of a cylinder, it is first 
inscribed in the circle from which the ellipse is obtained, and. then 
vertical straight lines are drawn through the vertices to meet the 
ellipse (Fig. 163). · 

The obtained points are the vertices of the required polygon. We 
then easily construct the prism inscribed in the cylinder with this 
base. 
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In constructing a prism circumscribed about a cylinder, we should 
remember that the sides of the prism bases are tangent to the c_ylin­
der bases, and the corresponding points of tangency on the upper and 
lower bases are the ends of a generator. 

Fig. 163 Fig. 164 

To represent a cone, we first construct its base as of a cylinder, 
viz., draw the cone height from the centre of the ellipse as a vertical 
line segment, and then, from the cone vertex, extreme generators so 
that they touch the base (Fig. 164). 

In the case of a sphere, parallel projection is assumed orthogonal 
to the projection plane. The sphere, therefore, is represented as a. 
circle. 

7. Construction of Sections 

Solving solid geometry problems, it is often necessary to con­
struct a section of a solid on its representation. Here, we give cer­
tain hints which can be used in such a construction. First of all, note 
that the section of a prism by a plane· parallel to its lateral edges is 
a parallelogram whose sides in the lateral faces are parallel to lateral 
edges. The section of a cylinder by a plane parallel to its axis is a 
rectangle represented as a parallelogram whose opposite sides are 
two generators of the cylinder. A section 'Of a pyramid (or cone) 
with a plane passing through the vertex is a triangle whose one 
vertex is that of the pyramid (resp. cone), and the other two are 
on the base contour. 

The section of a prism or a cylinder by a plane parallel to the bases 
is congruent to the base, and obtained from it by a translation. The 
section of a pyramid or a cone with a plane parallel to the base is 
homothetic .to the base .with respect to the vertex. This permits us 
to construct sections with such planes easily. 

To const111ct a solid with a plane in general position is more dif­
ficult. Consider the principal case, given a straight line gin which the 
secant plane meets that of the prism base. E.g., a section passes 
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through a side of the base (Fig. 165). Let a point A be given on the 
prism edge, and a secant plane pass through it. 

We draw the plane of the face with A. It intersects the base in a 
straight line. Let B be the point where the straight line meets g. 
The straight line AB is in the secant plane and the plane of the face. 

D 

B 

Fig. 165 Fig. 166 

Therefore, the line segment AC of this line, which is in the prism 
face,. is a side of the required section. 

We then find a point D in the next face, upper base. The line 
segment CD should be parallel to g. Proceeding further, we find all 
the vertices of the polygonal section, and thus construct the section 
itself. For convenience, the section is sometimes shaded. 

The section of a pyramid with a plane in general position is con­
structed similarly. First, the intersection of the secant plane with 

· the base is found, and then the procedure is 
--- the same as for a prism. 

Consider the section of a cone with a plane 
in general position, intersecting the plane 
of the base in a given straight line g. Suppose 
a point A is given on the lateral surface, and 
a secant plane passes through it (Fig. 166). 
Draw some plane through the vertex and A. It 
intersects the lateral surface in two generators. 
Let B be the intersection with g of this plane 

Fig. 167 trace on the base plane. The intersection of AB 
with the generator is then a point C of the sec­

tion. Any number of points in the section can be constructed thus. 1 oin­
ing them with a smooth· curve, we obtain the section by the given plane. 

The section of a cylinder by a plane is constructed similarly. 
The section of a sphere by a plane is a circle, and its parallel pro­

jection an ellipse (Fig. 167). 
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EXERCISES TO CHAPTER XIX 

1. Account for the following method of constructing the parallel 
projection of a regular hexagon. Viz., take the projections of every 
other vertex arbitrarily; find the point 0 where the medians of the 
triangle meet these projections, and then find the projections of the 
remaining three vertices symmetrically to the constructed with 
respect to 0. 

2. Given the parallel projection of a circle (ellipse) and the pro­
jection of one of its diameters, how can the projection of the perpen­
dicular diameter be constructed? 

3. Given the parallel projection of a circle, construct the pro­
jection of an inscribed square if one of its vertices is known. 

4. Given the projection of a circle, how can that of a circumscribed 
square be constructed? 

5. Given the parallel projection of a circle, construct the pro­
jection of the inscribed equilateral triangle if the projection of one 
of its vertices is known. 

6. Given the projection of a circle, how can that of a circumscribed 
equilateral triangle be constructed? 

7. Given the projection of a prism, construct its section passing 
through the lateral edge and a point in one of the faces if the pro­
jection of the point is known. 

8. Given the parallel projection of a prism, construct its section 
passing through a base side and a point in one of the faces if the_ pro­
jection of the point is known. 

9. Given the parallel projection of a prism, construct a section 
passing through two points on the sides of one of the bases and 
through a given point on one of the lateral edges. 

10. Given the parallel projection of a prism, construct a section 
parallel to the bases, and passing through a given point in a lateral 
face. 

11. Given the parallel projection of a regular triangular pyramid, 
construct the section passing through a lateral edge and the height. 

12. Given the parallel projection of a triangular pyramid, con­
struct the section passing through a base side, and dividing the height 
in a given ratio. 

13. Given the parallel projection of a pyramid, how can the sec­
tion passing through the vertex and two points on the base be con­
structed if their projections are known? 

14. Given the parallel projection of a pyramid, how can the sec­
tion parallel to the base, and passing through a point given in a later­
al face, be constructed if the projection of the point is known? 

15. Given the parallel projection of a pyramid, how can the sec­
tion passing through three points on lateral edges be constructed? 
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16. Given the parallel projection of a cylinder, how can the pro­
jection of an inscribed (resp. circumscribed) regular quadrangular 
prism be constructed? 

17. Given the parallel projection of a cylinder, how can the pro­
jection of an inscribed triangular (resp. hexagonal) prism be con­
structed? The same question for a circumscribed prism. 

18. Given the parallel projection of a cone, how can the pro­
jection of an inscribed triangular (resp. hexagonal) pyramid ·be 
constructed? The same question for a circumscribed pyramid. 

19. Given the parallel projection of a cone, how can an inscribed 
(resp. circumscribed) regular quadrangular pyramid be constructed? 

20. Given the parallel projection of a cylinder (resp. cone), how 
can the section parallel to the base, and passing through a given 
point of the height, be constructed? · 

Chapter XX 

POLYHEDRAL ANGLES AND POLYHEDRA 

1. Cosine Law for a Trihedral Angle 

Theorem. Let a., ~ andy be the face angles of a trihedral angle, and 
C the dihedral angle opposite to y. Then 

cosy = cos a. cos ~ + sin a. sin~ cos C. 

Proof. Let S be the vertex of the trihedral angle, a, b, c its edges, 
a., ~. y the face angles made by the edges 
b and c, c and a, a and b, respectively, and 
C the dihedral angle at the edge c, i.e., op­
posite to y (Fig. 168). 

First, we assume that a. and ~ are acute. 
Cut off on c segment SC of unit length, 

S and draw perpendiculars from C until they 
meet a and b at points A and B, respective-

Fig. i68 ly. Apply the cosine law to the triangles 
ABC and ABS. · 

We have 

or 

ACa + BC2 - 2AC-BC·cos C = AB2 , 

SA 2 + SB2 - 2SA-SB·cos y = AB2 , 

tanz a.+ tan2 P- 2 tan a. tan ~cos C 
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1 1 1 1 
= cos2 a. + cos2 ~ - 2 ~· cos~ • cos 'V· (*) 

Noticing that 
1 1 

--2 --tan2 a= 1, --2 1l--tan2 ~=1, 
cos a. cos t' 

we obtain from (*) that 

cos y = cos a cos ~ + sin a sin ~ cos C. 

If a is obtuse, and ~ acute, then we have to take the intersection 
of the perpendicular to c with a produced. The relation(*) from which 
to express cos y still holds, since a is replaced by 180° - a, C by 
180° - C, and y by 180° - y. Similarly, (•) is valid also if ~ is ob­
tuse. 

Q.E.D. 
2. Trihedral Angle Conjugate to a Given One 

Let a, b and c be the edges of a trihedral angle with vertex S. The 
plane of the angle (be) separates the space into two half-spaces with 
the half-line a in one of them. Draw the half-line a' from S perpendic­
ular to the plane of the angle (be}, di­
rected into the half-space complemen­
tary to that with a. Similarly, con­
struct the half-lines b' and c' perpen­
dicular to the planes of the angles (ac) 
and (ab), respectively. The trihedral 
angle whose edges are the half-lines 
a', b' and c' is said to be conjugate 
to the original angle (abc) (Fig. 169). 
It is easy to see that the faces of a con­
jugate angle are perpendicular to the 
edges of the given one. The conjuga-
cy property is commutative, i. e., if Fig. 169. 
a trihedral angle (a'b' c') is conjugate 
to a trihedral angle (abc), then (abc) is conjugate to (a'b' c'). We conclude 
from the property of angles whose sides are perpendicular each to each 
that the face angles of a conjugate angle and the corresponding dihedral 
angles of the given trihedral angle are supplementary. Viz., the 
face angle (b'c') and the dihedral angle at the edge a are supplemen­
tary, etc. Similarly, dihedral angles of a conjugate trihedral angle and 
the corresponding face angles of the given one are supplementary. 
In particular, the dihedral angle with the edge a' and the plane angle 
(be) are supplementary. 

Theorem. Let A, B, C be the dihedral angles of a trihedral angle, 
andy the face angle opposite to C. 

Then 
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cos C = - cos A cos B + sin A sin B cos y. 

It is a simple corollary to the cosine law for a trihedral angle con­
jugate to a given one. 

3. Sine Law for a Trihedral Angle 

Theorem. Let a, ~ andy be the face angles of a trihedral angle, and 
A, B, C the opposite dihedral angles. Then 

sin et sin ~ sin y 
sin A = sin B = sin C • 

Proof. Cut off on the edge c a unit line segment SC (Fig. 170). 
Drop from C the perpendicular on the plane of the angle (ab ). De-

s 

Fig. i 70 

c 
note its foot by 7:, and draw from C planes 
perpendicular to the edges a and b. Denote 
by A and B the points where they meet a 
and b or their extensions. 

_ £?- We now find the length of the perpen-
dicular CC. From the right triangle SCB 
with the right angle at B, we obtain 

CB = 1·sin a. 
Now, from the right triangle CBC with 

the right angle at C, we find the length of 
CC. Viz., 

CC = CB sin B = sin a sin B. 
The length of CC can be found differently, from the right triangle 

ACS and CAC, viz., 

CC = sin ~ sin A. 

Comparing the expressions for CC, we find 

sin a sin B = sin ~ sin A. 

Hence, 

sin et sin~ 
sinA = sinB • 

Similarly, we obtain the relation 

sin~ sin y 
sinB = sine • Q.E.D. 
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4. Relation Between the Face Angles 
of a Polyhedral Angle 

28f 

Theorem. Any two face angles of a convex trihedral angle are together 
greater than the third. 

Proof. Let a, ~ and y be the face angles of a trihedral angle. 
Show that y <a + ~· If a + ~;;;a: 180°, then the statement is 
obvious, since y < 180°. Let a + ~ ~ 180°. Applying the Cosine Law 
to the trihedral angle, we get 

cos y = cos a cos ~ + sin a sin ~ cos C. 

Since cos C > - 1, and sin a and sin ~ are positive, 

cos y > cos a cos ~ - sin a sin ~, 

its right-hand side being nothing but cos (a + ~). 
s 

A :a 

Fig. 171 Fig. 172. 

cos 'Y > 

cos (a + ~). We know that the cosine decreases as the angle 
increases from 0° to 180°. Hence, y <a + ~-

Q.E.D. 
Theorem. The sum of the face angles of a convex polyhedral angle 

is less than 360°. 
Proof. Let au a2, ••• , an be the edges of a convex polyhedral 

angle with vertex S. Mark two points A1 and A2 on the sides a1 and 
a 2 • Now, take a point As on the side as, sufficiently near to S, and 
draw a plane a through At> A 2 and As (Fig. 171). If As is sufficiently 
near to S, a intersects all a1 , a 2 , as, ... , an. Let At> A 2 , ••• , 

An be the points where a meets the edges of the angle, vertex 
S. It follows from the convexity of the polyhedral angle that the 
polygon P with vertices Au A2 , A 3 , ••• , An is convex, too 
(Fig. 172). 

Consider the polyhedral angle, vertex S, and trihedral angles with 
vertices Au A2 , ••• , An. The sum of all its face angles consists 
of that of the angles of P, i.e., 180°n - 360°, and the arigle-sums of 
the triangles A1A2S, A 2A 3S, ... , AnA1S, or 180°n. Thus, the sum 
of all face angles is 2 ·180°n - 360°. 
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The angle of P is less than the sum of the other two angles for each 
trihedral angle, vertex A~t. Therefore, the above sum is greater than 
(180°n - 360°) 2 + e' where e is the sum of the face angles at s' 
i.e., · 

Q.E.D. 

5. Area of a Spherical Polygon 

Let V be a convex polyhedral angle. Take the unit sphere with 
centre at the vertex. The figure P obtained when the sphere intersects 
V is called a convex spherical polygon. The points where the edges 
of the angle meet the sphere are called vertices, and the arcs of the 
great circles obtained by the intersection of the faces with the sphere 
are called sides. The angles of the polygon ak equal the dihedral 

Fig. 173 

angles of V. 
The area of a spherical polygon P can be 

found by the Gauss-Bonnet theorem. 
We have 

~ (n-a~t) = 2n-1 ~ K dS. 
k p 

Since K = 1, 

S (P) = ~ ak-n (n-2), 
where n is the number of sides. In particular, 

S = at + a2 + aa - n 
for a spherical triangle. 

We now give the elementary deduction of the formula for the area 
of a spherical polygon. We start with a triangle. Let V be a trihedral 
angle whose faces break the sphere into eight triangles symmetric 
about the centre of the spheres (Fig. 173). Let L1 be the spherical 
triangle in the intersection of V with the sphere, and at, a 2 , aa its 
angles. The figure formed by the triangles L1 and L1t is part of the 
sphere contained inside a dihedral angle equal to at. 

Therefore, its area is 

S (L\) + S (L11) = ( ~~ } 4n = 2a1• 

Similarly, we obtain 

S (L1) + S (L1 2) = 2a2 , 

S (L\) + S (L1 3) = 2a3 • 
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The sum of the areas of the triangles .1~, .1 2 , .13 and .1 equals the 
area of the hemisphere, 2n, whereas .1~ is symmetric to .110 and is, 
therefore, equal to it in area. 

We obtain 

S (.1) + S (.11) + S (.1 2 ) + S (.1 3) = 2n. 

Adding the fi.rst three equalities together termwise, and subtract­
ing the fourth one, we get 

2S (.1) = 2a1 + 2a2 + 2a3 - 2n. 
Hence, 

Q.E.D. 
Now, let V be a polyhedral angle. Draw planes through one edge 

and each of the others, intersecting the sphere in great circles which 
break P into triangles similarly to a plane polygon triangulated by 
diagonals emanating from one vertex. If we write the obtained formu­
las for the area of each triangle, and add them termwise, then we get 
the area of the polygon S (P) on one side, and the sum of its angles 
and -n (n- 2) on the other. 

Thus, 

S (P) = ~ ak -n (n-2). 

Q.E.D. 

6. Convex Polyhedra. Concept of Convex Body 

According to the defi.nition given at school, a polyhedron is a solid 
bounded by a fi.nite number of planes. This should be understood in 
the sense that the whole boundary of the polyhedron, or its surface, 
is in these planes. A polyhedron is said to be convex if it is on one 
side of each of the bounding planes, i.e., in one of the half-spaces 
determined by the plane. The following theorem gives a clear idea 
of the structure of a convex polyhedron. 

A convex polyhedron is made by the intersection of a finite number of 
half-spaces with a common interior point. Conversely, the intersection 
of a finite number of half-spaces, if bounded and having an interior point, 
is a convex polyhedron. 

Proof. Let P be a solid bounded by a fi.nite number of planes ak, 
i.e., a convex polyhedron, and A its interior point. Each ak sepa­
rates space into two half-spaces. Suppose that Ek is the half-space 
with A, Ek being closed, i.e., ak c: Ek. 

We state that the intersection P' of Ek is P. In fact, let X E P. 
It also belongs to each Ek, and to their intersection; therefore, 
p c: P'. 
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Now, let X E P'. Show that X E P. Since A is an interior point 
of P, points of the line segment AX, which are near to A, also be­
long to P. If X is not in P, then AX intersects its surface at a cer­
tain point Y belonging to one of ak. Therefore, A and X are on op­
posite sides of ak, which is contrary to the definition of P', and the 
first statement of the theorem is thus proved. 

Proof of the second statement is quite simple. The intersection of 
a finite number of half-spaces, if bounded and having interior points, 
is a solid bounded by a finite number of planes; therefore, it is a con­
vex polyhedron, and the theorem is thus proved completely. 

A bounded closed set with interior points, which contains, along 
with any two of its points, the line segment joining them, is called a 
convex body. It is obvious that a convex polyhedron is a convex body. 
An example of a convex body which is not a convex polyhedron may 
be given by a sphere. In general, any solid bounded by a closed reg­
ular surface with non-negative Gaussian curvature is convex. It 
can be proved that any convex body is representable as the inter­
section of a number of half-spaces. Generally speaking, the set of 
these half-spaces is infinite. 

Similarly, the concept of plane convex domain is defined as the set 
of points, which contains, along with any two of its points, the line 
segment joining them. Any plane convex domain is the intersection 
of a number of half-planes. For a convex polygon, their 
number is finite. 

7. Euler Theorem for Convex Polyhedra 

The Euler theorem in question has been proved in Sec. 6, Ch. XII, 
by the Gauss-Bonnet theorem. Viz., we have proved that, for any 
convex polyhedron, 

ao - al + a2 = 2, 

where a 0 is the number of vertices, a 1 the number of edges, and a 2 the 
number of faces. 

We now give a simple elementary proof. 
Let P be a convex polyhedron, and F its face. Take an interior 

point in F, and shift it a little outside. Project the polyhedron onto 
the plane of the face from this point. F then transforms into itself, and 
the remaining part of P is projected inside. The projections F11. 
of the faces break F into convex polygons (Fig. 174). 

The angle-sum of a polygon F k is 

where nk is the number of sides. To find the sum of the angles of all 
Fk, including F, we add all (•) together termwise. The second addend 
on the right-hand side is then repeated a 2 times, i.e., the number of 
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F k• including F. The sum of the first addends is 2:rtap The factor 2 
appears, because each side belongs to two polygons. 

Thus, 
o = 2:rta1 - 2:rta2• 

We now find the angle-sum o in another way, 
first adding the angles of the polygons at a 
common vertex. Meanwhile, if a vertex is 
inside F, then the sum of the angles at this 
vertex is 2:rt. However, if it is one of those of 
F, then tbe sum of the angles at this vertex is 
twice the corresponding angle of F. Therefore, 
<1 can be represented in the form Fig. 174 

o = 2:rta0 - ~ 2 (:rt - ~k}, 
where ~" are the angles ofF, aJ;ld summation is over the vertices of 
F. The value :rt - ~k is an exterior angle of F. Since the sum of the 
exterior angles of a convex polygon is 2:rt, 

a = 2:rta0 - 4:rt. 

Comparing the expressions obtained for o, we obtain the Euler 
formula 

Q.E.D. 

8. Cauchy Theorem 

Convex polyhedra equidecomposable into congruent faces are congruent. 
(By a convex polyhedron, we understand the surface, and not the 
solid.) 

Proof. Assume the contrary, that there exist two non-con­
gruent convex polyhedra P 1 and P 2 equidecomposable into congruent 
faces. It is then obvious that P 1 will have edges with dihedral 
angles different from the corresponding angles of P2 • We assign a 
plus or a minus to each of the edges according as the dihedral angle 
is greater or less than the corresponding one of P 2 • It is evident that 
if a distinguished edge emanates from a certain vertex, then at least 
another distinguished edge necessarily emanates from the same ver­
tex, too. Therefore, the distinguished edges have no free vertices, 
and break P 1 into domains g. If all g are homeomorphic to the circle, 
then the Euler characteristic is 

X = a 0 - a 1 + a 2 = 2, 

where a 0 is the number of the distinguished vertices (from which the 
distinguished edges emanate)s a 1 that of the distinguished edges1 

and a 2 that of g. 
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If there are domains g non-homeomorphic to the circle, then 
a.0 - a.1 + a.2 > 2, since our partition can be completed with 
new sides without altering the number of domains and vertices 
(Fig. 175). Their introduction only decreases a. 0 - a.1 + a.2, and when 
all the domains are homeomorphic to the circle, we have a. 0 - a.1 + 
a.2 = x = 2. Thus, for our partition of the polyhedron into domains, 

a.o- Gt1 + a2~ 2. 

The boundary of each domain g is a broken line whose segments are 
assigned either a plus or a minus. We assume an angle at the vertex 
of g distinguished if its sides have opposite signs. We now estimate 
the total number of the distinguished angles of the domains g. The 
number of the distinguished angles is not greater than n if n is even 

+ 

/ 

Fig. i75 

/ 
/ 

/ 

+ a 

Fig. 176 

for a domain with n sides, and not greater than n- 1 if n is odd. 
Therefore, the total number of the distinguished angles is 

ro::::;;;; 2a3 + 4a4 + 4a5 + 6a6 + ... , 
where a 3 , a4 , a 5 , ••• are the numbers of domains with three, four, 
five sides, etc. 

Since each distinguished edge belongs to two domains, 

~nan= 2a.1 , 

4a.1 - 4a.2 = ~ (2n- 4) an = 2a3 + 4a4 + 6a5 + 8a6 + ... 
Hence, 

(i)::::;;;; 4a.l - 4a.2. 

To obtain a lower estimate to ro, we show that the number of the 
distinguished angles at a given vertex is not less than 4: If it is 
less than 4, then the distinguished edges are either prescribed the 
same sign, or the edges prescribed opposite signs do not alternate, i.e., 
in walking around the vertex of an angle, we first meet the edges with 
one sign, and then with the other (Fig. 176, where the non-distin­
guished edges are shown in dotted lines). To prove that both of 
these possibilities are improbable, we suppose that a and b are the 
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extreme edges with a plus. It is clear intuitively that, in passing from 
a given polyhedral angle of the polyhedron PI to the corresponding 
angle of the polyhedron P 2 , the angle (ab) must decrease if we consider 
that part of polyhedral angle, to which the "positive" edges he­
long, and, vice versa, must increase if we consider the part with the 
"negative" edges. However, if there are no distinguished edges in 
the part under consideration, then th~ angle (ab) remains unaltered. 
Anyhow, if there are distinguished edges in the polyhedral angle, 
we then come to a contradiction. It remains to supply a strict proof. 

Thus, let a convex polyhedral angl.e V = (aia2 ... an) be trans­
formed into a convex polyhedral angle V' with an increase of dihe­
dral angles at the edges a2 , a 3 , ••• , an-I• and preserving the num-

Fig. 177. 

ber of the face angles (aia2), (a2a 3), ••• , (an-Ian). We show by 
induction that the face angle (~an) then increases, the statement 
for trihedral angles following from the Cosine Law. 

Consider the convex angles Vxy = (xa2 ••• an-IY) obtained from 
V if the number of dihedral angles at the edges a2 and an-I grows, 
hut not greater than in passing from V to V'. We choose Vx 11 such 
that the face angle (xy) is greatest. Show that the dihedral angle at 
least at one of its edges a2 or an-I is the same as in V'. In fa·ct, if 
both angles are less, then V xu can be slightly deformed, increasing 
the face angle (xy) (Fig. 177), which is contrary to the choice of Vxy• 

In passing from Vxy to V', the plane angle (xy) increases by the 
induction hypothesis, since the two corresponding dihedral angles 
are congruent, which permits us to reduce the problem to the case 
of (n- 1)-hedral angles. Finally, first passing from V to Vx 11 , and 
then from Vxy to V', we conclude that the face angle (a1an) increases 
in passing from V to V', which is just what was required to show. 

We now complete the proof of the Cauchy theorem. Since the num­
ber of the distinguished angles is not less than 4 at each distinguished 
vertex, 
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Comparing the inequality with the above ro ~ 4~ - 4a2 , we have 
4a0~ 4CXt- 4a2 , i.e., a 0 - CXt + a2 ~ 0, which is contrary to the 
above relation a 0 - a 1 + a 2 ~ 2. 

Q.E.D. 
A convex polyhedron can be cut into a finite number of convex 

polygons. The question naturally arises, given a finite number of 
convex polygons, can a convex polyhedron be glued together from 
them only by deformation? It turns out that it is always possible if 
the sides to be glued together are of the same length, and the angle­
sum of the polygons whose vertices coincide on gluing is not greater 
than 2:rt (A. D. A lexandrov theorem, in whose proof the Cauchy 
theorem is used essentially). 

9. Regular Polyhedra 

According to the school definition, a convex poiyhedron is said 
to be regular if its faces are regular-polygons with the same number 
of sides, and the same number of edges meet at each vertex. 

The faces of a regular polyhedron q:tay be either equilateral trian­
gles, or squares, or regular pentagons. Indeed, starting with a reg­
ular hexagon, the interior angles are not less than 120°, and, since 
not less than three edges meet at each vertex, the sum of the face 
angles would then be not greater than 3·120° = 360° at the vertex 
of a regular polyhedron, which is impossible, because we know that 
the sum of the face angles of any convex polyhedral angle is less 
than 360°. 

If the faces of a regular polyhedron are equilateral triangles, then 
the number of edges at a vertex must not be greater than 5. In fact, 
if it is greater than five, the sum of the face angles at the vertex of 
the polyhedron is not less than 360°, which is impossible. Thus, the 
number of edges meeting at a vertex of a regular polyhedron with 
triangular faces must only be three, or four, or five. That in a 
regular polyhedron with square or pentagonal faces can only be 
three. 

To find all regular convex polyhedra, we start with those with 
three edges meeting at each vertex. It follows from the Cosine Law 
for a trihedral angle that the dihedral angles are congruent in suc}l 
a polyhedron, and uniquely expressed in terms of face angles. There­
fore, proceeding from some vertex, and consecutively completing the 
faces, we come to three regular polyhedra, viz., a tetrahedron, cube 
and dodecahedron (Fig. 178). 

If more than three edges meet at a vertex of a regular polyhedron, 
in which case the faces are triangles, then the problem gets more 
complicated. Nevertheless, it is not hard to construct two of such 
polyhedra. In one, called an octahedron, the vertices are the centres 
of the faces of a cube, and, in the other called an icosahedron, the ver-
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tices are the centres of. the faces of a dodecahedron. Four edges meet 
at each vertex of an octahedron, and five of an icosahedron (Fig. 179). 

Tetrahedron Cube Dodecahedron 

Fig. i78 

Octahedron Icosahedron 

Fig. i79 

The question arises, can there be any other regular polyhedra 
with triangular faces, in which four edges meet at each vertex, si­
milarly to an octahedron, or five as in an icosahedron. It turns out that 
there are no other regular polyhedra of this form, which follows from 
the Cauchy theorem stating that convex polyhedra equidecomposable 
into congruent faces are congruent. 

EXERCISES TO CHAPTER XX 

1. Find the dihedral angles at the base of a regular n-sided pyra­
mid if the lateral face angles at the base are a. 

2. Find the angles of the lateral faces of a regular n-sided pyramid 
if the base dihedral angles are ~· 

3. Find· the dihedral angles at the base of a regular n-sided py­
ramid if the lateral faces make an angle 'l' with the base. 

4. Find the dihedral angles at the lateral faces of a regular n-sided 
pyramid if the base dihedral angles are ~· 
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5. Find the dihedral angles at the base of a regular n-sided pyra­
mid if the dihedral angles at the lateral edges are 6. 

6. Find the dihedral angles at the lateral edges of a regular n-sided 
pyramid if the vertex face angles are q>. 

7. Find the angle between the edge of trihedral angle and the 
plane of the opposite face, given the face (resp. dihedral) angles. 

8. Given the dihedral angles at one vertex of an oblique paral­
lelepiped, how can the dihedral angle at any other vertex be found? 

9. Given the base angles and those formed by a lateral edge with 
the base sides at the common vertex of an oblique triangular prism, 
how can the angles formed by the other lateral edges with the base 
sides be found? 

10. Find the dihedral angles of the regular convex polyhedra: 
a tetrahedron, an octahedron, a dodecahedron, and an icosahedron. 

11. Find the circumradii and inradii of the convex regular 
polyhedra: a tetrahedron, a cube, an octahedron, a dodecahedron 
and an icosahedron. 

12. How many different methods are there to make a regular 
polyhedron (tetrahedron, cube, octahedron, dodecahedron and 
icosahedron) coincident with itself? 



ANSWERS TO EXERCISES, 
HINTS AND SOLUTIONS 

Chapter I 

1. 2. 2. (2, 0). 3. (0, 3). 4. A straight line parallel to they-axis and separat­
ed from it by 3 units. 5. The ends of AB lie in different half-planes relative to 
they-axis, but in one half-plane relative to x. 6. Positive. 7. 4 (3). 8. 2. 9. -2. 
10. A straight line that contains the bisectors of the first and third quadrants. 
11. A straight line which contains the bisectors of the second and fourth qua­
drants. 12. (a) On straight lines parallel to the y-axis separated from it by a; 
(b) on the bisectors of the coordinate angles. 13. (a) In a strip bounded by straight 
lines parallel to they-axis and separated from it by a; (b) within a rectangle 
with centre at the origin of coordinates and sides 2a and 2b parallel to the coor­
dinate axes. 14. (x, -y); (-x, y); (-x, -y). 15. The coordinates of the point 
symmetric to A (x, y) about the bisector of the first (second) quadrant 
will bey and x (or, respectively, -y, -x). 16. If we interchange the coordinate 
axes, then A (x, y) will have the abscissa y, and the ordinate x. 17. AB = 5, 
A C = 10, BC = 5. 18. Compare the distances between the points. Point B 
lies between A and C. 19. (4, 0). 20. (3, 3) and (15, 15). 21. The third vertex C 

of the triangle lies at the distance A B from A and B: C ( 2 + [ 3 , 1 +; V3 ). 

( 2- V3 1-2 V3) or C 2 , 2 . 22. Make use of the fact that in a square the 

sides are equal and the diagonals are V2 times greater than the sides. 
Answer: (a) C (1, y2), D (y2, 1); (b) C (-1, 0), D (0, -1). 23. Make use of 
the Pythagoras theorem. If A (x1 , y1), B (x2, y2), C (x3 , y3) are the vertices of the 
triangle with a right angle (C), then (xa-xtr'+(Ys-Y1) 2+(xa-x2) 2+(Ya-y2)2= 
(x2 - x1) 2 + (y 2 - y1)2 • 24. If A (x~o Yl), B (x2, Y1), C (x3 , y3 ) are the verti­
ces of the triangle, then (x3 - x2) 2 + (Ya- y2)2 > (x3 - x1) 2 + (y3 - y1)2 • 

This follows from the fact that in a triangle a longer side is opposite a larger 
angle. 25. Find the centre 0 of the circle circumscribed about tlie triangle ABC, 
and compare the radius of this circle with the distance from the centre to the 
point D. 26. The coordinate notation of the "inequality of the triangle". The 
inequality means that the distance between (a, b) and (a1, b1) is not larger than 
the sum of their distances to (a2, b2). 27. Make use of the fact that the diagonals 
of a 11arallelogram bisect each other. Answer: D (2, -1), 0 (2, 1). 28. (0, -2). 
See the previous problem. 29. (3, 3). 30. Show that the quadrilateral is 
a parallelogram (Ex. 27). Compare the lengths of the sides and dia­
gonals. 31. Make use of the fact that the medians are divided at the 
intersection point in the ratio 2 : 1 counting from the vertices. Answer: (x1 + 
x2 + x3)/3. 32. The mid-points of the sides of the triangle and one of 
its vertices are the vertices of a parallelogram. Answer: A (x1 - x 2 + x3 , 

Y1 - Ys + Ya), B (xa- X1 + Xz, Ys- Yt + Y2), C (xs- Xa + x,p y2 - y8 + 
y1). 33. The vertices of the original triangle divide in the ratio A: (1 - A) the 
segments connecting (x0 , y0) with the vertices of the given triangle. Answer: 
((1 - A) x 0 + ~. (1 - A) Yo + Ay1), ((1 - A.) Xo + A.x2 , (1 - A.) y 0 + A.y 2), 

((1 - A) x 0 + A.x3 , (1 - A.) Yo + A.y3). 34. Make use of the geometric considera­
tions associated with the division of a line segment in a given ratio. 35. Let 
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(x1, y1) and (x2, y2) b~ the ends of one line segment, and (x3 , y3) and (x4 , y4) 

are those of the other. If the segments intersect, the point of intersection divides 
the first segment in the ratio '-: (1 - '-), and the second in the ratio J.l: (1 - f.L). 
The result is two representations for the coordinates of the intersection point: 
(1 - A.) x1 + '-x2 = (1 - J.l) Xs + J.1X4, and (1 - A.) Y1 + '-Y2 = (1 - J.l) Ys + 
J.ly4 • The segments intersect if the solutions to this system in terms of'- and J.1 
meet the conditions 0 <A., J.1 < 1. 36. Use the method of mathematical induc­
tion. 37. x1 = 4, x2 = -2. 38. (a) At a = 0, the centre of the circle lies on 
the axis of ordinates, (b) at b = 0, the centre lies on the axis of abscissas, (c) at 
c = 0, the circle passes through the origin of coordinates, (d) at a = 0, b = 0, 
the centre of the circle is at the origin of coordinates, (e) at a = 0, c = 0, the 
circne touches the axis of abscissas at the origin of coordinates. 39. Notice that 
(x - a)2 + (x - b)2 is the square of the distance from (x, y) to the centre of 
the circle and apply the Pythagoras theorem to a right-angled triangle whose one 
side is a line segment of a tangent, and the other is the radius of the circle. 
40. Use the fact that for external points the degree is the square of the tangent, 
and for the internal points it is the square (with a minus sign) of the half­
chord passing througli the given point perpendicular to the diameter connecting 
this point with the centre of the circle. 41. Let (x, y) be a point of the locus. Its 
distances from F1 and F 2 are y (x-c)2+y2 and V<x+c) 2+y2, respectively. 
The locus is described by the equation V (JJ - c)2 + y2 + V (x + c)2 + y2 = 

. 2 2 

2a. In order to reduce this equation to the form : 2 + :2 = 1, we will trans-

pose the first radical to the right-hand side of the equation and square both sides. 

We get (x + c)2 + y2 = 4a2- 4a Y(x- c) 2 + y2 + (x- c)2 + y2 • We leave 
the radical on the right-hand side of the equation and transpose the other terms 
to the left-hand side. Then after some simplifications we obtain ex - as = 
-a V (x - c)2 + y2• Squaring both sides we obtain, after simple transforma-

x2 y2 
tions a4 - a2c2 = a2y2 + (a2 - c2)x2 whence -+ ---=-1 a2 - c2 = b2 ' , as a2-c2 ' . 
42. The problem is solved similarly to the previous one. The original equation 

is V (x- c)2 + y2 - V (x+cl2+y2 = ±2a. 43. The equation of the locus is 

V (y - p)2 + x2 = y. Squared and simplified, the equation becomes -2py + 
p1 + x2 = 0. 44. The equation of a curve in implicit form is (x - a)Z + 
(y - b)2 = R 2 • . It is seen from this that a and b are the coordinates of the 

centre and R is the radius. 45. The equations of the curve are x = '-~ J.1 cos t, 

y= '-~J.l sin t. At'-= J.l, the curve is a circle. 46. The equation of the curve is 

x = a cost+ h sin t, y = b sin t + h cost, where a, b, hand the parameter t 
have values as shown in Fig. 13. To derive these equations, represent the abscissa 
x and the ordinate y of the point on the curve as the algebraic sum of lengths of 
projections of the segments of the broken line OABC. 47. The equations of the 

curve are x = R { ~ -sin ~) andy = R { 1-cos ~) (cycloid). The prob­

lem is solved as the previous one. Here the broken line is OTSA. 48. Solving 

the equations ax2 + bxy + cyz + dx + ey = 0 and t = .lL for x and y, we ob-
x 

tain the parametric equations of the curve. 49. (x- 1)2 + (y - 2)2 = 4. 50. 
(x + 3)2 + (y - 4)2 = 25. 51. .The simultaneous equations x2 + y2 + 2ax + 
1 = 0, x = 0 have no solutions. 52. The given circle and the y-axis are tan­
gent, since the simultaneous equations x2 + y2 + 2ax = 0, x = 0 have only 
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one solution: x = 0, y = 0. 53. The points of intersection of the circle with the 
.z-axis are obtained by solving the simultaneous equations .z8. + y2 + 2ax + 
2by + c = 0, y = 0. The circle does not intersect the .x-axis if the roots of 
the equation .z2 + 2ax + c = 0 are imaginary. The circle intersects the x-axis 
at two points, if the roots of this equation are real and different. The circle 
touches the axis if the roots coincide. 54. The circles intersect at two points if 
R1 + R 2 > d, where R1 and R 2 are radii of the circles, and d is the distance 
between their centres. R1 , R 2 and d can be expressed in terms of the coefficients 
of the equations of the circles. We can also find these conditions, solving the sys­
tem composed of the equations of these circles. 55. The points of intersection 

of the circles are ( +, ~g ) , ( ; , - ~3 J. 56. The point of intersection of 

the curves is (1, 0). 57. If (x, y) obeys the equations of the curve, then the 
points (-x,y) and (x, -y), symmetric about the axes of coordinates, also obey 
these equations. Therefore, the points of intersection are symmetric about 
the axes of coordinates. 

Chapter II 

1. (1, -1}, (2, -1}, (1, 1). 2. a= b = 2. 3. Does not exist. 4. Under the 
translation sending A into C, B is sent into B' of CD, with BB' II AC. Therefore, 
B and B' are in one half-plane relative to AC, and B' is in the half-line CD, --­while the ray CB' coincides with CD. 5. See the hint to Ex. 4. 6. AB, AC, BC -are co-directional vectors, whereas BA is opposite to each of them. 7. Apply the 

. - -triangle inequality toA, Band C. 8. See Ex. 7. 9. The vectors AB and CD have 
the corresponding coordinates equal. 10. ±12. 11. 25. 12. Under the rotatio1;1 of 
all the vectors through 2rrJn, the sum is turned through the same angle. But, 
.the vector system is transformed into itself. Therefore, their sum is zero. 13. 
First, use the formula for the coordinates of the point A 0 where the medians - - -meet, and prove that A 0A + A 0B + A-0C = 0. Then use the representation --------­for· the vectors OA = OA 0 + A 0A, OB = OB0 + B 0B, OC = OA 0 + A 0C. 
14. If the vectors have 0 (0, 0) as the origin, then their sum is zero. Then use 
the representation of the vector rmn = rfnn + r0 , where r0 is the vector from 
(x0 , y0) to 0, whereas rmn from.O to (m6, n6). Answer:~ rmn = -(2M +1) X 

m,n 
(2N + 1) r. 15. See the hint to Ex. 14. 1.6. b = 0.5a. Therefore, the vectors 
a and bare co-directional. d = -0.5c. Hence, the vectors c and d have opposite 

directions. 17. b (6, 8). 18. b (-6, -::-8). 19.10. 20. _A.1 = ; , i..2 = -+. 21. 

The collinear vectors are a and c, b and d. 22. The co-directional vectors are a 
and c, and those with opposite directions band d; lb I = I c I, I a I = I d (. 23. n = 
2. 24. (a I= (c( = Jdl = 1, the vectors a and d .are collin~ar. 25. e (0.6, 0.8). 

26. Compare the corresponding coordinates of the vectors .AfN and_!_ (ft+BD). . 2 
They are equal. 27. (2, _g). 28. i.. = -5, ,... = 4. 29. ab = Ia 1·1 b (·COS a. 
cos a:s:;;; 1. 30. 90°. 31. I a + b 12 = (a + b)2 • Answer: V3. 32. goo. 33. cos A = 
0.6, cos B = 0, cos C = 0.8. 34. LA =goo, LB = 60°, LC = 90°. 35. If 
m. = n = 0, then the vectors are zero. If m2 + n8 =f= 0, then the vectors are 

perpendicular, for ab = 0. 36. m =- ~ . 37. i..=-1. 38. i.. =- ~ . 39. Find 
the scalar product of the vectors. 40. See the hint to Ex. g9_ 41. Since (a + b) X 
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X (a- b)= a8 - b8 = I a 18 - I b 12 = 0, we have I a I = I b 1. 42. First 
show that the quadrilateral is a parallelogram, and then compare its diagonals: 
43. Prove that the quadrilateral is a parallelogram, and then compare its side 
with the diagonal. 44. Make use of the fact that J.2a2 + 2A.J.1ab + J.12b2 = (A.a + 
Jl.b}2. 

Chapter III 

f. X+ y -2= 0. 2. ( 0, - ~), (-3, 0). 3. (1, -2). 4. X+ 2y- 1 = 0. 

5. a = b = ~ . 6. c = -3. 7. Use the fact that a straight line touches a circle if 

and only if it has with it only one point in common. Answer: c = ±V2. 8. The 
point of intersection of the first two straight lines obeys the third equation. 
9. The equations of the straight lines are not consistent. Multiplying the first 
one by 2, we obtain 2x + 4y = 6, and from the second one 2x + 4y = 3. There 
are no x and y satisfying both equations. 10. y = 3. 11. 3x- 2y = 0. 12. Use 
the fact that the straight line bisects the segment with the ends (xto y1), (x2, y2). 
Answer: x (y1 + y2 - 2y0) - y (x1 + x 8 - 2x0 ) = x 0 (Yt + Ya) - Yo (:r1 + :r8). 

13. The equation I :a ~2 ! I= 0 is linear in x and y and hence this is the equa-
xs Ys 1 

tion of a straight line. The coordinates of all the three points (x1, y1), (x2 , y8), 
(:r3 , y3) obey this equation. 14. The equation admits of an equivalent 
form (ax + by- c) (ax + by + c) = 0. It is seen that this equation is satis­
fied by three points of the straight lines ax + by + c = 0, ax + by - c = 0, 
and only they. 15. Let A (b, d) be any point on the straight line and e (a, c) be a - -vector on the line; then for any point P (x, y) on the line OP = OA + te. Hence, 
x = b +at, y = d + ct, - oo < t < oo. 16. We will define the straight 
line by a parametric equation: x = at+ b, y = ct + d. The equation w (at+ b, 
ct + d) = 0 is satisfied for more than n various values of t. And since its degree 
is n, then it is an identity, i.e. it is satisfied for all t, and the line lies on the 
curve I'. 17. If the equations of the circles are :r2 + y8 + 2a1:r + 2b1y + c1 = 0 
and :r2 + y8 + 2a8x + 2b!y + c8 = 0, then the equation of the locus of points 
of equal degrees will be (x2 + y2 + 2atx + 2b1y + cJ) - (x2 + y2 + 2a2x + 
2b 8y + c8 ) = 0. This equation is linear, therefore it is the equation of a straight 
line. The points of intersection of the circles obey it, since both parentheses 

vanish. 18. - : > o( : > 0) . 19. : > 0 and T > 0. 20. If the point (:r, y) 

obeys the first equation, then the point symmetric to it about the :r-axis, i.e. point 
(x,-y), obeys the second equation. Therefore, the straight lines are symmetric 
about the x-axis. 21. If the point (x, y) obeys the first equation, then the point 
symmetric about the origin of coordinates, i.e. (-x, -y), obeys the second 
equation. Therefore, the straight lines are symmetric about the origin of coor­
dinates. 22. The straight line in the pencil is parallel to the :r-axis, if a + A.a1 = 
= 0 (the y-axis, if b + M 1 = 0). The straight line of the pencil passes through 
the origin of coordinates, if c + A.c1 = 0. 23. The sides of this triangle are the 
segments cut off by the straight line from the coordinate axes. The line produces 
an isosceles triangle if I a I= 1 b 1. 25. y= ± Y~ a8 - b8 - b, x= ± V a2 - b2 -

~ _ ___,. 
a. 26. The vectors (a, b) and (b, -a) are perpendicular to the straight lines 
andtoeachother,since theirscalar product is zero. 27. 0°. 28. ±V3x+y= 
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_ y3 _ _1 3 3 3 a 
--2- Y- 0. 29. cos V 10 'cos-1 V 10 ' n- 2 cos-1 V 10 30. b= 

-~ ---b1 • 31. The vector (a, c) is parallel to the straight line. 32. cos 8 = 

V la1c1 +;scsi • 3:S. The vertices of the quadrilateral are the points 
a~+a~· c~+c~ 

{ ± : , ± T) . 34. The straight lines are given by the equations ax ± ay = 

= b, ex ± cy = d. These straight lines are either parallel or perpendicular. 

-~ ---35. The vectors (a1 , ~1) and (a1 , ~2) are parallel to the straight lines. The paral-

lelism condition for the lines is ~ = ~1 • The perpendicularity condition 
a2 P2 

~ 

for the lines is a 1a 2 + ~1~ 2 = 0. 36. The vector (a, b) is perpendicular to 
~ 

the first straight line, and vector (a, y) to the second. Therefore, the paralle-

lism condition is aa + by= 0; the perpendicularity condition is : = r . 
37. Make use of the parallelism and perpendicularity conditions discussed in 
Sec. 3. 38. Make use of the fact that substituting the coordinates of two 
points into the left-hand side of the equation gives an expression of the 
same sign, if the points lie on one side of the straight line, and of different 
signs, if the points lie on either side of .the line. 39. Reduce the equa­
tion of one straight line to normal form and substitute into it the coordinates 
of any point of the other straight line. 40. See Ex. 39. 41. Make use of the equa­
tion for a pencil of lines. 42. Form the equation of the perpendicular bisector to 
the line segment with the ends (x1 , y1), (x2 , y 2) and compare it with the equation 

ax + by + c = 0. 43. x'y' = a; • 

Chapter IV 

2. Let A (p1, 81) and B (p2, 82) be the given points. From the Cosine Law in 
the triangle OAB: AB2 = p~ + p~ - 2p1p2 cos (82 - 81). 3. Po is the distance 
from the pole to the straight line, a is the angle formed by the straight line 
p cos (a - 8) = p0 with the polar axis. 4. p = R (1 - cos 8), where R is the 
radius of the circle. 5. p =a y2 cos 28. 6. Repeat the reasoning for a plane in­
tersecting a cone. The ellipse eccentricity is sin a. 7. The equation can be written 

in equivalent form p= V c a=tan-1 _£_ Rota-
1+ a2+b2 cos (Q-a) ' a • 

tion of the polar axis by the angle a gives p = V c • The curve 
1+ a2+b2 cos e 

will be an ellipse, if y a2 + b2 < 1, a hyperbola, if Vas + b2 > 1, a parabo­
la, if y a2 + b1 = 1. 8. From the conditions of the problem, find the constants a, 

c 
b, c in the equation p = 1+ 8+b . 8 (see Ex. 7). 9. Make use of the a cos sm 
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equation for the conic section in polar coordinates. 10. Inversion in polar coor­

dinates with respect to the pole has the form p'= _!_, 6' = 9. 11. Finding 
. p 

the points of intersection of the straight line with the conic section requires 
solving a quadratic equation. But it has not more than two roots. 12. If the 
focus of a conic lies at the origin of coordinates, the ~quation of the conic 
becomes x 11 + y11 = 1.. (ax + by + c)l (ax + by + c = 0 is the equation of the 

directrix). It follows that v x1 + y1 = v~ (ax+ by+ c) = az + ~y + y. 
13. See Sec. 7, Ch. IV. 14. See Sec. 7, Ch. IV. 15. Pay attention to the 
fact that for the locus under consideration either the sum or the difference 
of the distances from the centres of the Circles is constant. 16. Form 
the equation of the locus of points of intersection. 17. Form the equa­
tion of a curve obtained by the given construr.tion. 18. The normal form 

f h . f h . 1 (x+y)-o 0 t e equatiOn 0 t e asymptotes lS .. / 1 1 a T - ' 
v as+fjl 

V 1
1 

1 ( : -· ~ ) -= 0. For the points on the hyperbola with the abscis-

ar+v 
sa x y = ± b V ;: -1. The distance from this point to the asymptotes 

will 

V :: -1), or 

1 1 

v :~ + b12 ( : - v :: -1) ' v :~~ +is ( : + v :: -i) 
We see that the second expression decreases indefinitely as I x I -+ oo. 19. The 

equation of the hyperbola can be written as ~-v ~ _!_ ( : + : r1 X 

- . - all+ bl -

1-v ~ _!_ ( : - : r1 = ( !~ + :2 ) -
1

• The factors in square bra-

- all+ bl -
ckets are the ·distances. fr()m the points (x, y) to the asymptotes. We see that 

their product is- constant and equal to ( :~~ + b111 ) - 1 • 20. Form the equa­

tion of the projection of the circle, assuming that the plane passing through 
the centre of the circle is the plane of the projection, and the intersec­
tion of the :ry-plane with the plane inwhich_the circle_ lies is the x-axis. The equa-
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;el y2 
tion of the projection of the circle will be R• + Rll eosll 8 = 1, where a- is 

the angle between the circle's plane and the xy-plane. 21. Take the 
parabola arranged canonically relative to the coordinate system. 22. The 

x2 y2 
curves parallel to the asymptotes of the hyperbola (i2-"'"'bi" = 1 are given by 

h . X y 23 t e equations a± T --~c. • Make use of the result of Ex. 19. 

24. ( b2 ' - a2k } and ( b2 ' a2k 
V a2k2+b2 Va2k2+b2 V a2k2+b2 Va2k2+b2 • 

25. The abscissas of the points of intersection of the tangents with the 

asymptotes ( a b ) , ( a b ) (where. 
~-~ ~-.k. 2+!Q_ ~+!Q_ 
a b a b a b a b 

x 0 , y0 are the coordinates of the points of tangency) obey the conditions 

2
1 ( a + - a )=x0 .- For the ordinates holds a similar relation. 

~-.1!!.. 2+!Q_ . 
a b a b 

Hence follows the statement of the problem. 26. If x1 , x2 are the abscissas 
of the points of jnterseetion of the tangent with the asymptotes, and a is the 

angle formed by the asymptotes with the x-axis, then S = ~ ( e:S\1• ) • 

( x2 } . 2 1 a2 sin 2a 27 Th . f th d . d 1 . cos a • sm a= 2 eosz a . ; .• - _ e equatton o e estre ocus ts 

xl+ y2 = b2 + a2 • 28. See Exercise 27. 29. Find the coordinat,es of the foci 

constructed and see that c = V a2 - b2 • 30. See See. 7, Ch. IV. 31. ( ~ , 0}. 
32. The directrices of the ellipse and hyperbola are x= ± ~ , where a is the 

major (real) semi-axis, e is the eccentricity. 33. Find the coordinates of 
the foci. 34. Examine the behaviour of the left-hand side of the equation 

x2 y2 
a2 +1.. +b2+1.. = 1 for 1.. varying from -oo to +oo and x andy fixed, to 

show that the roots of th equation relative to ')., satisfy the inequali­
ties -b2 > 'J..1 > -a2 > 1. 2. At').,= 'J..1 we have a hyperbola. At').,= 'J..2 we 

have an ellipse. 35. The_ tangents to the conic sections are a2x~\1 + b2~~1 
xx0 + YYo 1, a 2 +1..2 b2+'J..z = 1. For them the orthogonality condition is 

x8 Y8 
(a2+'J..t) (a2+'J..z)+(b2 +1..t) (bli+'J..zl = 0. This condition really holds. We 

h xa + Ya x8 + yij b h l ave a2+1..1 bll+1..1 = 1, all+1..s . bll+1.s = 1. Su tracting t ese rea-
2 

tions term by term and cancelling ('J..2 - 'J..1), we obtain (a 2+A.1;(as+1..s) + 
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yg X b2 

(b•+i..t) (bZ+i..2) 0. This completes the proof. 36. Y: "(iF. 37. Corre-

sponding to the conjugate diameters of the ellipse are the values t1 and 
t1 of the parameter t, which differ by n/2. For a hyperbola the difference 
of the squares of conjugate diameters is constant. 38. Make use of the fact that 
the tangents at the points of intersection of the diameter with a conic section 
are parallel to the conjugate diameter. 39. See Exercise 38. 40. Make use of the 
fact that a parallelogram with its vertices at the ends of conjugate diameters is 
the projection of the square inscribed in the circle (see Exercise 38). 41. Make 
use of the fact that the ellipse is the projection of a circle. 42. Make use of the 
fact that the ellipse is the projection of a circle and of the properties of parallel 
projection. 43. Reduce the equations of the curves to canonic form (a) ellipse, 
(b) hyperbola, (c) parabola, (d) pair of various straight lines, (e) pair of coinci­
dent straight lines. 44. The equation can be written in equivalent form (ax + 
by + c + a).x + b1y + c1) (ax + by + c- a1x- b1y- c1) = 0. 45. The curve 
is within the parallelogram determined by the intersection of two strips 
I ax + by + c I ==::;; Vk, I ax + ~Y + y I ==::;; V'k. 46. Take as new axes of co0r­
dinates the bisectors of the angles formed by the straight lines ax + by + c = 0, 
ax + ~Y + y = 0. 47. The problem can be reduced to the previous one by ex­
panding the left-hand side of the equation into two linear factors. 48. See the 
hint to Exercise 49. 49. The second-degree curve ax2 + bxy + cy2 + dx + ey = 

0 admits of the parametric equation x=- +~+~t 2 y dt+et• 
a t ct ' =-a+bt+cts• 

It follows that two different second-degree curves have enly four points in com­

mon. 

Chapter V 

1. (a) In the XJl-plane lies the point D; (b) on the z-axis lies the point C; 
(c) in the yz-plane lies the point B. 2. Axy (1, 2, 0) •. Axz (1, 0, 3), Ayz (0, 2! 3), 
Ax (1, 0, 0), Ay (0, 2, 0), Az (0, 0, 3). 3. (a) The dtstance to the xy-plane tS~, 
to the xz-plane 2, and to the yz-plane 1; (b) the distance to the x-axis is V 13, 
to they-axis yfii, to the z-axis y5; (c) the distance to the origin of coordina-

tes is y14. 4. D ( ! , ! , 0) . 5. (2, 2, 2) and (-2, -2, -2). 6. (0, 0, 0). 

7. x+2y+3z=7. 8. See that the diagonals of a quadrilateralintersectandare 
bisected by the point of intersection. 9. Show at first that the given four points 
are the vertices of the parallelogram. 10. B (0, -1, 3). 11. D (6, 2, -2), 
E (3, 2, 1). 12. The points symmetric to (1, 2, 3) about the xy-, yz-, and 
xz-planes are respectively (1, 2, -3), (-1, 2, 3), (1, -2, 3). 13. (-1, -2, -3), 
(0, 1, -2), (-1, 0, 3). 14. a= 1, b = 1, c = -2. 15. (-1, -2, 1). 16. The - -- -equal vectors are AB and DC, BC and AD. 17. D (-2, 3, 0). 18. D (2, 1, -2). 

4 9 -(2 1 ) 1 19. n=3• m=2· 20. AB 3, 3'0 . 21. n= 3 . 22. c= 1. 

1 
23. V a2 + b2 + c2 + I a 1·1 b 1. 24. (a) cos q> = V3 ; (b) q> = 90°. 25. 

cos q> = ,21 _ . 26. cos C = ,;- • 27. The vectors aj\b and care collinear. 
3r 7 r ffi 

28. The vectors (aj\b)J\c and b (ac) are equal in magnitude and have the 
same direction. 29. Represent a as the sum of the vectors parallel and perpendicular 
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to, c. Next, make use of the results of Exercises 27 and 28. 30. Make use of 
the results of the three previous exercises. 31. If a, b, c are the vectors with 
the origin at the vertex of the pyramid and the ends at the vertices of its base, 

i 
then S=T [(a- b)J\(a- c)). Answer: 

S = V (sin T +sin {-+sin f) [ (1- V 2) sin f+sin {-+sin f J X 

y'"[sin ~+(t-V2)sin ~+sin~ ]-[sin~ +sin~ +(t-V2)sin ~ 
32. Make use of the identity (aJ\b) Ac = b (ac)- a (cd). 33. Take as a, b, c 
the vectors with the origin at the centre of the sphere and the termini at the ver­
tices of the spherical triangle. 34. Make use of the formula of Exercise 30. 35. 
Make use of the identity (a/\b)/\(c/\d) + (c/\d)/\(a/\b) = 0. 36. The vector 
r admits of the representation r = A.1e1 + A.~a + i..ae8 • Find ht• A.z, A.a by 
multiplying this relation scalarly by tlie vectors ~J\e8 , e 2 J\ea, e3 J\e1 • 37. 
Represent the solution as r = hta + A. 2b + A.ac. Multiplying this equality sea­
lady by af\b, b/\c, c/\a, find ht• i..2 , A.a. 38. The vectors ~J\e2, e2 J\ea, ea/\e,. 
are not coplanar. Therefore, r = i..1 (e1 f\e 2) + i..2 (e2J\ea) + A.a (e3 J\e1). Mul­
tiplying this relation scalarly by e1 , e 2, ea gives ht• i..1, A.a. 39. Represent the so­
lution in the form :z; = ht (b/\c) + i..1 (cf\a) + A.a (a/\b). Multiplying this 
relation scalarly by a, b, c gives i..1 , i..2, A.a. 40. Any three coplanar vectors are 
linearly related, i.e. there exist simultaneously nonzero numbers ht• i..2, i..3 
such that htr1 + i..8r2 + A.ara = 0. Multiplying this relation scalarly by r1 , r2, r3 
gives 

i..1 (r1r1) + i..2 (r1r2) + i..8 (r1r8) = 0, 
ht (rvtl + A.a (r2r2) + A.a (rsra) = 0, 
ht (rart) + ;..2 (rar2) + A.s (rara) = 0. 

This system of equations for ht• i..2, A.a has a nontrivial solution (not all A.'s are 
zero). Therefore, the determinant of the system is zero. 41. See hint to Exercise40. 
42. See hint to Exercise 41. 43. See hint to Exercise 36. 44. See hint to Exer­
cise 38. 46. Make use of the identity of Exercise 34. 47. Make use of the identity 
of Exercise 45. 48. d2 = (y1 - x1) 2 + (y2 - x2) 2 + (y.ll - xa)2 + 2 (Yt..- x1) X 
cos a+ 2 (y2 - x2) cos P + 2 (y8 - xa) cosy. 49. a/'l., b/2, c/2. 50. lf (x1 , y1 • 
11), (x2, y2, 1 2), (:xa, y8 , Ill), (x,, y~,_, 1i) are the vertices of a tetrahedron, then the 
point of intersection of the straight ines connecting the midpoints of the oppo-
site edges has the coordinates Xt + :z;2 + :xa + :x, Y1 + Y2 + Ya + y, 

4 4 
11 + 1 113 + 1 "' • 51. For each segment connecting the vertex of a tetrahedron 

with the centre of mass of the opposite face find the coordinates of the point 
that divides this line segment in the ratio 3:1 reckoning from the vertex. 52. The 
point with the coordinates :z;, y, 1 is the centre of mass for the masses ht• 1..2, l..a• 

:z; y I 1 

;.., at the vertices of the tetrahedron. 53. The equation 

:x, Y4 Z4 1 
linear in :x, y, z. Therefore, this is the equation of a plane. In this plane lie the 
points A i• since their coordinates obey this equation. 54. The equation 
admits of the equivalent representation (x - a)2 + (y - b)2 + (z - c)2 = 
(Va2 + b2 + c2 - d2) 2• 55. The equation htft+A.2f 8 = 0 is the equation of a 
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sphere. This sphere pa~>ses through the circle of intersection of these spheres, since 
for the points on that circle ft = 0, f = 0. By appropriately selecting ~ and 
~we can make this sphere pass through the given point. 56. If the coordinates 
of the point A (x, y, z) satisfy the equation q> (x, y) = 0, then the coordinates of 
any point on the straight line passing through A and parallel to the z-axis satisfy 
this equation. 57. Let A (x, y, z) be an arbitrary point on the cone. Then 
-+ -+ 
OA ·6z = I OA I cos ct .. Hence the equation of the cone is z2 = (x2 + y2 + z2)X 
cos2 ct. 5!:1. The curves can be given by parametric equations 

x= u, x= 0, 

'\'z: y = v, 
z = au2, z = bv2. 

The. coordinates of the points. on the surface are 

u+O u 
x=--2-=2• 

· O+v v 
y=-2-=2· 

au2+bv2 
Z= 2 • 

Substituting u and .v from the first two equations into the third, we obtain the 
equation of the surface in implicit form s = 2ax2 + 2by!. 59. We go over to 
the parametric equations of the curves 

X= t, x=t 
'\'1: Y =a, - yj: y = b ·· 

z == f (t) z = !p (t). 

The straight line in question connects the- points (t, a, f (t)), and (t, b, q> (t)): 
The coordinates o-f the points on this straight line_can be represented in the form . 

X = 'A.t + (1 - A) t, 

y = i.a + (1 - i.) b, 

s = 'A.f (t) + (1 - A) cp (t). 

This is the parametric equation of the desired surface (parameters t and i.). By 
expressing A and t from the first two equations and substituting into the third 

one, we find the equation for the surface in implicit form z = Y- bb f (x)+ a-

a-y cp (x). 60. We use as parameters the distance from a point on the surface to 
a-b 
the z-axis and the angle of rotation. Then X = r cos e, y = r sin e, z = I (r). 
61. The equation f (x) - q> (y) = 0 is the equation of a cylindrical surface (see 
Exercise 56). It can be written as (f (x) - z) - (!p (y) - z) = 0. It is seen 
that the points on the curve given by the equations z=f(x), z = !jl (x) satisfy 
this equation. 62. x' = a11x + a12y + a~o y' = a21x + a 22y + a2, z' = z. 63. 
The equation of the sphere can be written as (xex + yey + zez)2 = R2• Com­
parison of it with the given equation gives 
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eyez 
cos (X = ___,;:,~ 

')fe2e2 u z 

a23 

64. Make use of the results of Exercises 43 and 44. 

Chapter VI 

301 

' 1. I : 1·1 : 1·1 f I· 2. Pay attention to the fact that both equations do not 
contain z. Therefore, if the point (x, y, z) obeys these equations, then each point 
on the straight line passing through this point parallel to the z-axis obeys them. 
3. The simultaneous equations ax+ by+ cz + d = 0, ax+ by+ cz + d1 = 0 
are not consistent. Subtracting the equations termwise gives d - d1 = 0, which 
contradicts the condition of the problem. 4. See Exercise 3. By properly select­
ing d' we can make the plane ax + by + cz + d' = 0 pass through the given 

--~ ---+ 
point. 5. The vectors (a, b, c) and (k, l, m) must be collinear. Both are perpendic­
ular to the plane ax+ by+ cz + d = 0. 6. kx + ly + mz = 0. 7. (2, 1, ·-2). 
8. The simultaneous equations x + y + z = 1, 2x + y + 3z + 1 = 0, and 
x + 2z + 1 = 0 are not consistent. Adding together term by term the first and 
th.e third equations and subtracting the second one gives 1 = 0. 9. At c = 0. --- ' -10. Any vector (k, l, m), for which 2k + 3l + m = 0 is parallel to the plane, ___ __,. --~ --- . 
e.g. (1, -1, 1). 11. Take the vector-product of (2, 3, f) and (1, 1, 1}. 12. Make 
use of the fact that the desired plane is the locus of points equidistant from th"e 
given points. 13. The equation permits the equivalent representation (ax+ by+ 
cz+ d + !Xx + ~Y +vz+6) (ax+by+cz+d-!XX-~y-yz-6)=0. 
It is seen that the equation defines two planes: ax+ by+ cz + d ± (!XX+ 
~Y + yz + 6) = 0. 14. By subtracting the equations termwise we will obtain 
the equation of the plane a1x + b1y + c~,.z + d1 - (a 2x + b2y + c2z + d2) = 0. 
Satisfying this equation are the points ot the curve given by 

f (x, y, z) + a1x + b1y + c1z + ~ = 0, 

f (x, y, z) + a2x + b2y + c2z + d2 = 0. 
Hence, the curve is plane. 15. ax + by + cz + d - (!Xx + ~Y + yz + 6) = 0. 
See the hint to Exercise 14. 16. Inversion relative to the 'Origin of coordinates is 
given by 

R2x' _ R2y' R2z' 
x= x'2+y'2+z'2 • Y= x'2+y'2+z'2 ' z x'2+y'2+z'2 

18. The equation 

1 

1 = 0 is linear in x and y. Satisfying it are 
1 

Xs Ys Zs 1 
the coordinates of the given points (x1, y, z1). 19. The plane intersects the posi-

tive x-axis, if dla < 0. 20. The volume of the tetrahedron is V=! I !3c I· 
21. The set of points in space that meet the condition I x I + I y 1 + I z 1 <a 
is the intersection (general part) of half-spaces defined by the inequalities 
±x ± y ± z <a. This is an octahedron with vertices at the points (±a, 0, 0), 
(0, ±a, 0), (0, 0, ±a). 22. The plane symmetric to the plane about the xy-plane 
is given by the equation ax+ by - cz + d = -o. 23. The plane parallel to the 
z-axis does not contain z in its equation. Hence, the parameter ~ is determined 
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by the condition c +'\'A= 0. 24. The parameters A and Jl. are found from the 
conditions a1 + Aa2 + Jl.aa = 0 and b1 + A.b2 + Jl.ba = 0. 25. The distance 

ld-d'l ldl between the planes is 6 = V . 26. • 27. If the planes 
a2+b2+c2 yas+bl 

are given by the equations in normal form a1.x + b1y + c1z + dt = 0 and 
aa.x + bzy + CzZ + d2 = 0, then the locus is given by the equations a1x + 
bly + c1z + d1 ± 1.. (aa.x + bzy + c1z + d2) = 0. Hence it consists of two 
panes. 28. See Exercise 25. 29. Change to the normal form of the equation of 
planes. 30. See Exercise 38 in Chapter 3. 31. If the equations of planes are reduced 
to normal form, then 

--
±x' = a1x + b1y + c1z + d1, 

±y' = a2x + bsy + c2z + d2, 

±z' = a3x + bay + caz + da. 

32. The vector (a, b, c) is perpendicular to the plane. The angle a. formed by the 

plane with the .x-axis is found from the condition sin a. = V lal , 
a2+b2+c2 

a. E;; ; • 33. The angle formed by the given plane with the .xy-plane is found 

from the condition cos a. = 1 + \+ 2 . 34. See Exercise 33. 35. The plane 
. p q 
Intersects the x- and y-axes under equal angles if I a I= I b 1. 36. The parame­
ters f.. and Jl.mustmeet the condition (t..a1 + JJ.a2) a+ (l..b1 +JJ.b2) b+(t..c1 +JJ.cs}c=O. 
37. For any n (a, b, c) in the pencil of planes a plane with the normal n can be 
found. To this end, we must take f..t, 1..2 , l..a such that they meet the conditions 
l..1a1 + Asa2 + l..aaa f..tb1 + Azbs + l..aba A1C1 + l..acs + l..aca 38 Th t · ht a b c . • e s ra1g 

line intersects the .x-axis (or the y-, z-axes, respectively), if ~0 = ~ X 

{ ~ = ~ , ~ = ~0 ) • The straight line is parallel to the .xy-plane (yz-, z.x­

planes, respectively), if m=O (k=O, l=O, respectively). 39. Form the equation of 
the locus for the normal form of the equations of the planes. 40. The locus of 
points equidistant from two vertices of a triangle is a plane. The desired locus is 
the intersection of two planes, and hence, a straight line. 41. The straight line 
given by the intersection of the planes y = 1.., z = al..x lies on the surface, since 
the points of this curve obey the equation of the surface. The straight line given 
by the equations x = Jl., z = aJJ.y also lies on the surface. 42. When the deter­
minant is zero the following system of equations is consistent: 

a1x + b1y + c1z + d1 = 0, 
aa.x + b2y + c2z + d2 = 0, 

asX +baY+ c8z + d3 = 0, 
a,x + b4y + c,z.+ d4 = 0. 

But this system is consistent, since the straight lines intersect. 43. The vector 

of the parallel straight line has the coordinates I b1 c1 I , I c1 a1 I , I a1 bb1 I· 
bz Cs Cz as as 2 

44. See the hint to Exercise 43. 45. The equation of the conic surface is 
l(.x-.xo) a~1(~~:-i:2+(z-zo) cl 2 = [(.x-.xo)2 + (y-y0)2 + (z- z0raJ sin2 a.. 
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X-Xo y-y0 z-z0 46.
1

b 
1 1 1 1 

b 
1
.47.LetA(x,y,z)beapointoftheconicsur-

1 C1 c1 a1 a1 1 

bs Cs C2 Us Us bs 
face other than a vertex. We find the coordinates of the points of intersection of 
the generator passing through the point A with the plane ax + by + cz + d = 0. 
Substituting these coordinates into the equation of the sphere x2 + y2 + z2= 
2Rz, we obtain the equation of the desired conic surface. The intersection of a 
conic surface with the xy-plane is a circle. 48. See Exercise 47. 49. If the straight 

x-x' y-y' z-z' x-x" y-y" 
lines are given by the equations -k-,-=--z,-=-,;:- • --;;r-= -l,-= 
z z" 

---;;-- , then the plane that is equidistant from them passes through the point m 
x'+x" y' +u" with the coordinates 2 . , 2 

z'+z" 
2 ----parallel to (k', l', m'), ----(k", l", m"). 50. The plane given by 

a1x+b1y+c1z+d1 
a1xo+b1Yo+ c1zo+d1 

asx+bsu+csz+ds 
a.,..x0 +b.,.y0 +c2z0 +ds ' 

passes through the given point and a point (x0, y0 , z0) that does not lie on the -------------------·-straight line. 51. The vector (x' - x0 , y' - y 0 , z' - z0) A (k, l, m) is perpendic-
ular to the desired plane. 52. Any straight line which· meets the two given 
straight lines can he represented as an intersection of two planes, one of which 
passes through the first line, the other through the second. 53. The surface given 

by equations of the form q> ( ~ , ; } = 0 is formed by the straight lines passing 
through the origin of coordinates, since together with point (x, y, z) the equation 
is satisfied by any point (l.x, 'J..y, 'J..z). The surface intersects the plane z = 1 along 
the curve q> (x, y) = 0. 

Chapter VII 

I 1. The surface z = a11x2 + 2a.t?.XY + a22y2 + 2a1x + 2a2y + a is an ellip­
tical paraboloid (hyperbolic paraboloid, parabolic cylinder). 2. The left-hand 
side of the equation can he represented as the product of two linear factors. 3. 
The coordinates of points on the curve along which the plane intersect the sur­
face satisfy the equation which results. 4. See Exercise 3. 5. Form the equation 
of the conic surface. Take this point as the origin of coordinates, and the plane, 
in which curve lies as the plane z = const (see Exercise 57, Ch. V). 6. The quad-

ric surface x2 + y2 = ( z a b t + ( z. c d ) 2• 7. The foci are on the z-axis at the 

distance V c2-a2 from the origin of coordinates. 8. The intersection of the 
ellipsoid with the planes is at the same time the intersection of these planes 
with the sphere x2 + y2 + z2 + ~ = 0. 9. Eliminate the parameters u, v and 
ehange to the equation of the surface in implicit form. 10. Ellipsoid. To prove 
this use the hounded nature of the surface. 11. See Exercise 8. 12. See the hint 
to Exercise 34, Ch. IV. 13. Consider the projection of the line of intersection on 
the xy-plane. 14. The first family is x = ;.., z = a'J..y, the second family is y = fl• --- --- -z = afA.x. 16. To use the fact that (1.., fA., v) and (x, y, z) form the angle a.. 17. If A 

is the projection of the point A (x, y, s) on the straight line ~ =JL= ~ , 
"' ,... 'V - - __ _. 

then (OA)2+R2=(0A)2• Exp-ess lOA 1 in termsofthescalarproduct of ('J.., fl• v) 
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----. 
and (x, y, z). 18. See Exercise 16. 19. The diameters of the parabola are parallel 
to the straight line ax+ by + c = 0. The axis of the parabola is the straight 
. aa+b~ 

lmeax+by+c+ 2 (ai+bl) =0. 

Chapter VIII 

1 t . 2 . vt 
, X = a COS W , y = a Slll Wt, Z = ct. . X = Vt - a Sln a, y =a-

vt 3 3at 3at2 4 If h 'I f h . . I' a COS a · • X = 1 + tS , y = f + 13 • • t e penCl 0 t e proJeCting tneS 
is parallel to the yz-plane, then the equations of the projection arP x= a cos wt, 

y=ct tan fi+a sin wt. The projection has singular points if tan 8=-= ± a: . 
They are cusps of the first kind. 5. Singular points are cusps of the first kind. 
6. The singular points are (±a, 0), (0, ±a). They are cusps of the first kind. 7. 
The singular point (a, 0) is a cusp of the first kind. 8. The equation of the tan-

gent is x 0 
1 = ~ = ~ , of the osculating plane y -z = 0, ofthe normal plane 

y + z = 0, of.the princip~lnormal y = z = 0, and of the binormal x-1= Y1 = 
() 

z x y z-1 . =r. 9. o=T=-o-. 10. X= 0. 11: y = x2 ± 3x + 3. 12. Fmd the length 
of the tangent segment. 13. A helix. Find its equation, taking that from Ex. 1. 
1"4. At right angles. The tangents to the curves at their common point (x, y) are 
perpendicular. 15. See the hint to Ex. 34, Ch. IV. 16. The equation of the tan-

x-x (t) y- y (t) z-z (t) 
gent at an arbitrary point t of the curve is7(t)=7(t)=Z'(t). With-
out loss of generality, we can assume that the tangents pass through the origin. 
Th X (t) y (t) z (t) H ' ' ' 0 d ( y ) ' 0 . y en x' (t) = y' (t) = z' (t) . ence, ·y x-x y= , an ---;;- = , t.e., x-= 
c1 = const. Similarly, _:_=c2 = const. Thus;our curve is at the intersection of the . X 
1iwo planes, which means that it is either a straight line or its part. 17. Find 
the angle e between the tangent and the z-axis. Find the equation of the princi­
pal normal at an arbitrary point, and show that it is the equation of a straight 
line cutting the z-axis. 18. Let n (a, b, c) be a vector perpendicular to the plane. 
The tangent vector of the curve is perpendicular to n. Hence, ax' (t) + by' (t) + 
cz' (t) = 0, which means that ax (t) + by (t) + cz (t) = d = const., i.e., the 
curve is in the plane ax+ by + cz =-d. 19. The point of the curve (x (t), y (t), 
z (t)) satisfies the two pairs of simultaneous equations identically with respect 
to t: 

a1 (t) x (t) + b1 (t) y (t) + c1 (t) z (t) + d1 (t) = 0 

a2 (t) x (t) + b2 (t) y (t) + c2 (t) z (t) + d 2 (t) = 0 
a1 (t) x' (t) + b1 (t) y; (t) + c1 (t) z' (t) = 0 

a2 (t) x' (t) + b2 (t) y' (t) + c2 (t) z' (t) = 0 
(**) 

The first two mean that the point of the curve belongs to the tangent, and the 
other that the tangent vector is parallel to the planes whose intersection forms 
tile tangent. Differentiating the first two equations with respect to t, we obtain 
by means of the latter two that 
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a; (t) :e (t) + b; (t) y (t) + cl. (t) z (t) + di (t) = 0 
a2 (t) z (t) + b2 (t) y (t) + c; (t) z (t) + d~ (t) = 0 

305 

Thus, for the functions z(t), y (t), z (t), we have the four equations (•) and (**•) 
from which they can be found. Anyway, in order that they may he solved, it is 
necessary that 

llt (t) b1 (t) c1 (t) d1 (t) 

a2 (t) b2 (t) c2 (t) ds (t) 

a~ (t) bi (t) ci (t) dJ. (t) 

a2 (t) b~ (t) c2 (t) d2 (t) 

= 0. 

20. Let! q>y "i'u -,.=1= 0· at 'the point (x, y, z) in question. Then the curve is given 
. ~~ . 

by the equations y = y (z), z = z (x) in the neighbourhood of the point. Differ­
entia-ting the identities q> C.:• y (x), z (z)) = 0, 'ljl (z, y (x), z (z)) = 0, we consecu­
tively find y' (x), z' (x), 11 (x), z" (x), and then easily write down the osculating 
plane equation. 21. Apply· the argument used in the' hint to Ex. 19. 22. The 

. as 
family of the straight lines cutting off a triangle of· area 2 can he given by the 

equation ~ + A.y =a, A. being the parameter. The envelope of the family is the 
2 

branch of the hyperbola xy= ~ inside the angle Oxy. 23. Find the implicit 

equation of' the path of a point mass projected with velocity v0 at an angle a to 
gxs 

the horizontal, and then find the envelope of the paths. Answer: y=-2+ 
2 vo 

;; , g is the acceleration due to gravity. 

Chapter IX 

1 _ 2ab V 1+4a2b2+ln (2ab+ V 1+4a2b2) -
.s- 2b .2.s=aV2sinht. 3.s=ba. 

h . 

4. s =Sa. 5. s=) V p2+p'2d8. 6. k1 = i V 1+sin2 f. 7. The curve can be 
61 

given by equations of the form y =,.y.(x), z = z (x) in the neighbourhood of the 
point in question. Find the derivatives y'; y", z' and z" for x = 0. Curvature can 

then be found easily. Answer: k1 =~B. 8. Make use of the parametric equation 

of the circle x=R cost, y=R sin t. Answer- k 1 9 "k - 1 
• 1 =R · · 1 - 2a cosh2 t ' 

ka = 2a c!hs t. 10. The ellipse is given by the equation y = b V 1-:: in the 

neighbourhood of the vertex (0, b). We obtain k1=~ for the curvature at this­
.. as 

vertex, which is the same at (0, -b). The curvature is ic1 = b~ on the x-axis. 11. 

Find the curvature and torsion of the helix, and show that they do not de rend 
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.on parameter. 12. Apply the general formula for the curvature of a curve given 
·by equations x = p (6) cos 6, y = p (6) sin 6. 13. Let a he the direction vector 
-of the straight line, and\" the unit tangent vector of the curve. We have a't = 
const. Differentiating with respect to the arc of the curve, and noticing that 
't' = kv, we obtain av = 0, i.e., the principal normal is perpendicular to the 
straight line. 14. The osculating plane equation can he written in the form 
(r- r (s)) I}= 0, where 1\ is the unit binormal vector. Without loss of generali­
ty, we can assume that the osculating planes pass through the origin. Then 
'I' (s) j\ (s) = 0. Differentiating with respect to s, we obtain \"j\ + r (k2\") = 
k 2r\" a 0. If the tangent to the curve does not pass through the origin, then r\" =1= 
.Q. Therefore, k 2 = 0, and the curve is plane. (If, for any s, the tangent does 
pass through the origin, then the curve is either a straight line or its part.) 15. 
k 2 = 1. 16. From the data, a\" = const, where a is a constant vector, and '" the 
tangent unit vector. Differentiating with respect to the arcs, we obtain ak1v = 0. 
For k1 =I= 0, av = 0. Diffferentiating with respect to s again, we obtain -akl.\" -
.ak2j\ = 0. Since the vector\" makes a constant angle with a, and v is perpendicu­
lar to a, ~ also forms a constant angle with a. Therefore, aj\ = const, and it 

follows from k1 (a't)+ka (a~)=O that ~~ is constant. 17. A semicubical parabo­

la 27py2 = 8 (x- p)3• 19. X= R (cos 6 + (6- c) sin 6), y = R (sin a­
(6 - c) cos 6). 20. x= J sin a. (s) ds, y = ) cos a. (s) ds, where a. (s) -

5 k (s) ds. 21. Assume that the function '"(s) is given. We have '"(s) = r' (s). 

Hence, r (s) = ~ 't (s) ds. If either ~ (s) or v (s) is given, then we first find '" (s). 

' - - w - r 1\' (s) We have~ - k 8\". Hence, '"-m· Now, r (s)- J IB(s)l ds. Let v (s) be 
given. We have v' = -k1\" - ka!'· Multiplying vectorially by v, we obtain v' 1\ 
'V = -k1j\ + k 8\". We find 't (s) from the two equations, and express r (s) in 
terms of it. 22. Proof is based on the use of the Frenet formulas. E.g., if the 
first condition is fulfilled, then a\" = const, where a is a constant vector. It fol­
lows that av = 0 (see Ex. 13), and the principal normals are parallel to a plane 

perpendicular to the vector a. Further, we conclude that j\a=const, and ~~ = 
const (see the answer to Ex. 16). 23. The curvature and torsion of a helix are 
.constant, and may assume any values for a convenient choice of the curve para­
meters. Since a curve is uniquely determined by specifying its curvature and 
torsion, any curve with constant curvature and torsion is a helix. 

Chapter X 

1. z2 + CV xs + ya- a)8 = Ra. 2. The sphere x2 + y" + z2 = a8 • 3. x = 
-cp (u) cos v, y = cp (u) sin v, z = 'I!J (u). 4. x = v cos wu, y = 11 sin wu, z = au. 
5. In moving along a helix, the principal normal rotates unifoqnly about its 
.axis, and intersects it at right angles. Therefore, the surface formed by the prin­
cipal normals to a helix is a helicoid (see Ex. 4). 6. For u = const, the curve 
:r = cp (u) + ¢ (v) is obtained from the curve r = ¢ (v) by a translation through 
the vector cp (u). 7. If the curves are given by equations r = r1 (u), r = r2 (11), 
:then the locus of the mid-points of line segments with ends on the given curves 
is given by r= r1 (u) i rs (v). 8. The equation of the surface is r = r (u)+va 

with parameters u and v. 9. The equation of the surface is r = p- (r (u) - p) 11, 
---+ 

where pis the vector (a, b, c). 10. The equation of a curve intersecting the straight 
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lines is given by an equation r = f (u). If 4Jl (u) is the director vector, then the 
vector of any point on the surface can be specified by r = f (u) + v4p (u). 11. 
See the derivation of the equation of tangents to an ellipse and a hyperbola in 
·Ch. 4, Sec. 6. 12. x = a. 13. Find the equation of a tangent plane at an arbi­
trary point of the surface, and show that the point (0, 0, 0) satisfies it. 16. A hy­
perbolic paraboloid. 17. The equation of the ellipsoid in the neighbourhood 

f h .. /" xz ys 
-o t epoint (0, 0, c) can be represented in the form z=c V 1-f.ii-F. The 

-osculating paraboloid equation is z=c+c { 1-; { :: + :: ) ) . 18. The points 

are elliptic on the ellipsoid, hyperbolic on the hyperboloid, elliptic on the elliptic 
paraboloid, hyperbolic on the hyperbolic paraboloid, and parabolic on the cyl­
inders and cone. 19. Let the IJlane in question have the vector a as its normal, 
and the considered point as the origin. Since the surface and the plane have 
-only one point in common, the surface is on one side of the plane. Therefore, 
either ar (u, v) ~ 0 or ar (u, v) =:;;; 0, equality occurring only at one point. It 
follows that aru = 0, and ar0 = 0 at this point, i.e., the plane is tangent to the 
surface. 20. Take some point on the line as the origin, and the tangent plane to 
the surface at the point as the xy-plane. Represent the surface equation in the 

form z= ~ (rx2+2sxy+ty2)+e (x, y) (x2+y2). At the elliptic and hyper­

bolic points, rt - s =/= 0. Hence, deduce that zi + z~ > 0 for sufficiently small 
.x2 + yz if x2 + y2 =1= 0. It means that the xy-plane cannot be tangent at the 
points near the origin, which is contrary to the conditions of the problem. 
21. Take the tangent plane at P as the xy-plane, and represent the equation of 

the surface in the form z= i (rx2+2sxy+ty2)+e (x, y) (x2+y2). Mind that 

rx2 + 2sxy + ty2 has constant sign at an elliptic point P, and is alternating at a 
hyperbolic one. 22. Representing the surface equation in the form z = z (x, y), 
we notice that f12z = 0 at planar points. Therefore, d2z = 0 along y. It follows 
that z = ax+ by + c along y, where a, b, c are constant, i.e., y is planar. 
23. If we take a sphere containing a surface, and decrease its radius, then it 
will eventually touch the surface. The point of tangency is elliptic. 24. Let the 
intersections of the surface with the planes passing through the given straight 
line, and the planes perpendicular to the straight line, be coordinate lines. 25. 
If the point in question is the origin, then the vector of the point on the surface 
r (u, v) is a normal. Therefore, rru = 0, rr., = 0, i.e., r dr = 0; consequently, 
r2 = const (sphere). 

Chapter XI 

1. (4Jl'2+1Jl'2) du2 + 4p2dv2. 2. Use the result of Ex. 1. Introduce a new para­
meter u1 instead of u, setting du1 = V qJ' 2+1Jl'2 du. 3. s= I sinh u 2-sinh u1 1. 

asx y 
4. cos 9= V V . 5. Find the first fundamental form, and show 

1+a2xg t+asyg 
that F = 0. 6. Let x = R cos u cos v, y = R cos u sin v, z = R sin u be the 
parametric equation of the sphere, and the lines v = const, meridians. The 
linear element of the sphere is ds2 = R 2 (du2 + cos2u dv2). Let the loxodrome 

u = u (v) intersect the meridians at an angle 9. Find cos e = V 1 • 
1+cos2 u·u's 

Hence, cos u' = tan e, sin u = v tan+ const is the loxodrome equation. 

7. s=~ (V2+ln (1+V2)). 8. The tangent planes of the paraboloids make 
a 
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equal angles with the xy-plane at the corresponding points (with the same projec­
tion). 9. The fundamental form E duB + 2 Fdu dv + GdvB with constant coef­
ficients is transformed into du~ + du~. Hence, the surface is locally isometric to 
the plane. tO. The linear element of the plane with respect to polar coordinates 
p, e is of the form dpB + pBdOB (show!). Reduce the linear element of the surface 
of revolution duB + G (u) dvB to the form f (u1) (du~ + u~ dv2) by introducing 
u = cp (u1) instead of u. 11. Transform the linear element of the sphere du2 + 
cos2 u dvB to the form A. (u1) (du1 + dvB). 12. Show that the linear elements 

of the surfaces coincide with a convenient choice of parameters. 13. V2 du dv. 
1+uB 

adxB+b dyB 
14. kn = dxB+dyB • 15. The normal curvature of the surface is kn = 

LduB+2Mdudv+NdvB . . 
E duB+ 2F du dv+G dvB ; kn =0 for the plane. Put.tmg dv=O, we obtam 

E = 0 from the formula for kn; putting du = 0, we obtain G = 0. Now, setting 
du = dv =!= 0, we obtain F = 0. kn does not depend on the ratio du : dv for the 

sphere. Putting du=O we obtain kn = ~ ; putting dv=O, we obtain kn = : . 

S d d h L+2M+N L N H L M N . 
et u= v. Ten kn= E+ 2F+G E=G. ence, E=F=G' 1.e., 

the second fundamental form is proportional to the first. 16. x = c1y, 

~-~=c2 (c1 , c2 being constant). 17. x=coshucosv, y=coshusinv, 
:& y -
z=u. 18. Find the asymptotic lines on the helicoid. 19. M=(ruvn)=O, since 
ru 11 = 0. 20. Take meridians and parallels as coordinate lines, and show that 
F=O, M=O. 21. a and -a. 22. ln(u+Vu2 +c2)-v=const, ln(u+ 
V u2 +c2)+v=const. 23. Mean curvature is zero, whereas Gaussian curva­
ture -a2 • 24. Take the tangent plane to the surface as the xy-plane. 25. Find 
the mean curvatures of the helicoid and catenoid. 26. Find the Gaussian curva­
ture of the cylindric surface, using the result of Ex. 8, Ch.-X. 27. The equation 
of the surface formed by the tangents to the curve r = r (u) is r = r (u) + 
vr' (u). Find the Gaussian curvature of the surface. 28. If the asymptotic lines 
are taken as the coordinate ones, then the second quadratic form is 2M dudv 

and mean curvature H= (EG~~2)3/2 • If H=O, then F=O, i.e., the coor­

dinate lines are orthogonal. 29. By the Rodrigues theorem, nu = A.ru, nv = A.rv. 
Differentiating the first equality with respect to v, the second with respect to u, 
and subtracting termwise, we obtain A.vru- A.urv = 0. Hence A.u = 0, A.v = 0, 
and, therefore, A.= const. Integrating do= A.dr, we obtain n = A.r + c, 
(A.r + c) 2 = 1, which is a sphere. 30. Take the vector equation of the surface II> 
in the form r = r (u, v) + A.n (u, v), where r (u, v) is the vector of a point on the 
surface F, and n (u, v) the unit normal vector at the point. Prove by the Rodri­
gues theorem that the tangent planes to F and II> are parallel at the corresponding 
points, and also that the principal directions at the points are corresponding. 
31. Prove that, along the corresponding principal directions of the surfaces F 

and II>, their normal curvatures are related by kn\A.) =- k~ +A., and then ex­

press the mean and Gaussian curvature of II> in terms of those of F. 32. If the 
lines of curvature are taken as the coordinate lines, then, by the Rodrigues theo­
rem, nu = -k1ru, Dv = -k2rv. Since k1 + kf = 0, oft = k~r~, ~ = k~li· Be­
sides, since rurv = 0, and nunv = 0, dn2 = kf2dr2 , which just means that a 
spherical mapping of the surface is conforma . 
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Chapter XII 

1. Use the Gauss formula to express Gaussian curvature in terms of the first 
fundamental form coefficients. 4. Take the lines of curvature on the surface as 
the coordinate lines. Making use of the fact that L depends only on u, and N only 
()n v (see Ex. 3), reduce the second fundamental form to du2 - dv2 • The second 
fundamental form is then reduced to A. (du2 + dv2), since mean curvature is ze­
ro. 5. For an asymptotic line, the osculating plane coincides with the tangent 
plane to the surface, and, for a geodesic line, it is perpendicular to the tangent 
plane. Hence, the curvature is zero, and the curve a straight line. 6. Take as the 
parameter on the curve its arc. Since it is a line of curvature, r' = /..,n'. Because 
it is a geodesic, r"=J.lD. Hence, r'~=J..t'n+J..tn' (r"'r"r')=(J..t'n + J.lD'J..tnA.n')=O. 
Therefore, the torsion of the curve is zero, and the curve is plane. 7. Cyl­
indrical surface is locally isometric to the plane. The rectilinear generators on 
the plane correspond to parallel straight lines. But, a straight line meets the 
family of parallel straight lines at the same angle. 8. The given linear element 
is that of the Lobachevsky plane in the Poincare model. Therefore, geodesics 
are tbe curves u = const and (u - c1) 2 + v2 = c2 • 9. Prove that all these sur­
faces are of zero Gaussian curvature. 10-12. Make use of the Gauss-Bonnet theo­
rem. 13. It follows from the definition of total curvature in the sense of Gauss 
that if Gaussian curvature does not -change_ sign in a domain G, then ro (G) = I )' .\" Kds I , where ro (G) is the area of the spherical image of G. With this in 

mind, prove that the Euler characteristic of a torus is zero. 14. Take a solid in 
the form of a cylinder, and make n circular openings in it, parallel to the axis. 
Smooth the surface of the obtained solid, and apply the Gauss-Bonnent theo­
rem on the basis of the argument given in the hint to Ex. 13. Answer: 2 (1 - n). 

Chapter XVI 

1. Complete Euclidean space with the elements at infinity, and apply the 
Desargues theorem. 2. Complete Euclidean space with the elements at infinity, 
and make use of the Desargues theorem. 3. The homogeneous coordinates of the 
point at infinity on the straight line are k, l, m, 0. 4. The third point coordi­
nates are linearly expressed in terms of those of the first two as l.a1 + !Lb1 = Cto 

l.a2 + !Lb 2 = cs, l.a3 + J.lb 3 = x3, A.a4 + !Lb 4 = x4 • From the first two equa­
tions, we find A. and J.l, and then x3 and x 4 • 5. Malie use of two projections. 6. 
Transform the points A, B, C, D by a projective transformation into the points 
A1 (-1, 0, 0, 1), B1 (0, 0, 0, 1), C1 (1, 0, 0, 1), D1. (~. 0, 0, 1). 7. Take the cross 
ratio of the four points at which the given straight lines intersect the straight 
. sin(a-y) . sin(a-6) . ' 

hnex=i, . (~ ) .. (~ 6) .8. x=1.9.MakeuseoftheStemertheorem. sm -y sm -
10. Take two points on the polar, and construct their polars; the required pole 
is the intersection. 11. a13 = 0, a23 =0. 12. ail= 0 fori =I= j. 13. If a projectiv­
ity is set between the points of the two given straight lines, not reduced to 
simply projecting one straight line onto the other, then the straight lines join­
ing the points touch a curve of the second degree. 14. Under polar reciproca­
tion, the vertices are transformed into the face planes, and the face planes into 
the vertices. Therefore, the cube is transformed into the octahedron, and the do­
decahedron into the icosahedron. 15. Use the Klein model of Lobachevskian 
geometry. Take the point P as the centre of the circle. Then the parallel angle 
is simply Euclidean. Find the distance PQ in the sense of Lobachevsky, express­
ing it in terms of the parallel angle. Use the distance formula. 16. Use the dis­
tance formula in the Klein model of Lobachevskian geometry, and also the con-
dition for two straight lines to be perpendicular. ·- , __ 
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Chapter XVII 

1. Use Locus 1. 2. Use Locus 5. 3. Use Locus 5. 4. The circle passing through 
the centres of the given circle is concentric with the required. 5. See Ex. 2. 
6. The difference between the squares of the distances from the centre of the re­
quired circle to those of the two given circles equals the difference between their 
radii squared. Use Locus 8. 7. The ratio of the distances from the required point 
to the centres of the two given circles is equal to the ratio of the radii. Use Lo­
cus 6. 8. Cut off a line segment AD= l on the half-line AC. The required point 
X is equidistant from B and D. Use Locus 3. 9. First, construct a line segment 
with ends on the circles, visible at their centre at the angle a, for which take any 
equal angle with vertex at the centre. 10. The required straight line is parallel 
to the diagonal of the parallelogram obtained by the given intersecting straight 
lines. 11. If we take chords of given length in the given circles, and con­
struct concentric circles touching them, then the required straight line is the 
common tangent to the constructed circles. 12. Provided the three vertices of 
the parallelogram are on the sides of the quadrilateral, and the sides are of the 
given directions, find the locus of the fourth point (straight line). 13. Use the 
similarity method. 14. Use the similarity method, first constructing any sq1,1are 
whose two vertices are on one side of a triangle, and the third on the other. 15. 
Apply the similarity method, first constructing some line segment parallel to 
the chord joining the radii ends, which is trisected by them. 16. Apply the 
similarity method, first constructing some rhombus whose sides are parallel to 
the diagonals of the quadrilateral and two adjacent vertices are on the adjacent 
sides of the quadrilateral 17. Use the theorem on the segments of a secant and 
tangent to a circle, drawn from one point. 18. Apply the similarity method, the 
altitudes being inversely proportional to the sides. 19. First, construct a right 
triangle in which the given angle bisector is the hypotenuse, and the altitude 
one of the sides containing the right angle. 20. First, construct a right triangle 
in which the given median and altitude are the hypotenuse and one of the sides 
about the right angle, respectively: Then find the circumcentre. 21. First, con­
struct a right triangle in which the given side is the hypotenuse, and the given 
altitude one of the sides about the right angle. 22. Let ABC be the required 
triangle with the given angle a at the vertex C, side AB and the sum of the 
sides A C and BC. Cut off the line segment AD= A C + BC on the half-line A C. 

The triangle ADB can be constructed easily, because L. D= ~ . 23. Mind that 

the angles of the triangle whose two vertices are the ends of the chords, and the 
third is the second point where the circles meet, do not depend on the straight 
line which should be perpendicular to the common chord. 24. If the given 
angle is at a circumference of given radius, then we obtain the opposite side of 
the required triangle, and the problem is reduced to Ex. 22. 25. Apply the transla­
tion method. Form a triangle by translating the medians. 26. If ABCD is the 
required parallelogram, and E the point where its diagonals meet, then two sides 
AE and BE and the included angle of the triangle ABE are known. 27. The lo­
cus of the vertices of the required triangle is a circle, and the problem is reduced 
to Ex. 23. 28. Apply the translation method. 29. Apply reflection in g. 30.First, 
find the point D' on the straight line AC, symmetric to D about the straight 
line BX. 31. Find the point B' symmetric to B about g. The point X is at the 
intersection of the straight lines AB' and g. 32. Rotate the square about the 
given vertex of the triangle through 90°.33. Apply inversion to transform the given 
circle into a straight line. The problem is then reduced to Ex. 17. 

Chapter XIX 
1. The centroid is the projection of the circumcentre of the hexagon. 2. The 

projection is the conjugate diameter. 3. Construct the projections of the diago­
nals (see (Ex. 2)). 4. First, construct the projection of the inscribed square. 
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5. Let A be the given vertex, 0 projection of the centre of the circle, and A 1 

point symmetric to A with respect to 0. The opposite side of the triangle passes 
through the mid-point of the line segment OA , and is parallel to the diameter 
conjugate to AA 1 • 6. Construct the projection of the inscribed regular triangle~ 
and draw through its vertices straight lines parallel to the opposite sides. 

Chapter XX 

1 
f. cos-1 ---=---. 2. The vertex angle is n-2a, and the base angle 

tanatan~ 
n 

a-tan-1 1 • 3. tan-1 tan y • 4. n-cos-1 {coss ~+sinl ~cos 2n}. 
cos~tan~ cos~ n 

n n 

1 ( 1-cos~ ) 
5. sin-1y 1 +cos2~ . 6. n-cos-1 ( q> n n 2 +cos ~n • 7. If 

1-cos- cot -·tan-} 
n 2 n 

a, ~. y are the face angles of the trihedral angle, then the angle between the 
. . V cos2 a+cos2 ~+2 cos a cos~ cos I' plane of y and the oppostte edge ts cos-1 . • 

smy 
Given the dihedral angles A, B, C of given trihedral angle, the 
angle between the edge with C and the opposite face is 

1 V cos'A+cos2B+2cosAcosB cos C 8 B t 1 t" d th 
cos- sin C . • y a rans a mn, sen ~ 

vertex with the known angles into any other vertex at which the dihedral 
angles should be found. 9. Let ABC be the triangle in the prism base~ 
and AD a lateral edge. The required angles at the vertices B and C are 

-+-+ -+-+ 
found by means of the scalar products AD·BC and AD·CB. Make]use of the 

-+ -+ -+ 
decomposition BC- BA + AC. 10. The cosines of the dihedral angles equal 

1/3 for the tetrahedron, -1/3 for the octahedron, -cos 2; j2 sin2 ~ for the 

dodecaherdon, and - { 1 + 4 cos 2; } /3 for the icosahedron. t 1. If a is the 

edge of a regular polyhedron, 2y the dihedral angle at its edges, and n the 
number of the sides in one face, then the inradius and circumradius are 
atany a -./ n . ---'--, Jl 1+cos•- tan• y, respectively. 12. The tetrahedron 

2 tan~ 2 sin .:!.. n 
n n 

is made coincident with itself by 24 different motions, the cube and octahedron 
by 48, and the dodecahedron and icosahedron by 120. 



TO THE READER 

Mir Publishers would be grateful for 
your comments on the content, translation 
and design of this book. We would also be 
pleased to receive any other suggestions 
you may wish to make. 

Our address is: 
Mir Publishers 
2 Pervy RiZhs.ky Pereulok 
1-110, GSP, Moscow, 129820 
USSR 



-1-.9,0 
ABOUT THE AUTHOR 
Acad. A. V. Pogorelov, D.Sc. 
(Phys.-Math.), is a specialist in 
geometry, partial differential 
equations and mechanics. He is 
the author of a number of mo­
nographs, anrl a Lenin Prize 
(highest academic award in 
the USSR), State Prize, and 
International Lobachevsky Prize 
Recipient. Many of his works 
have been t1·anslated into for­
eign languages, including Ex­
trinsic Geometry of Convex Sur­
faces, Hilbert's Fourth Problem 
and The Minkowski Multidimen­
sional Problem. Prof. A. V. Po­
gorelov is also the author of the 
geometry textbook for Soviet 
secondary schools. 



ABOUT THE PUBLISHERS 
1\IIH. PUBLISHERS of Moscow publishes scientific and technical litera­
lure in twenty-three languages including all those most widely used. 
Titles include textbooks for higher, technical, and vocational schooh;, 
literature on the natural sciences and medicine (including textbooks for 
medical schools), popular science, and science fiction . The contributors 
to 1\liR PUBLISHERS' list are leading Soviet scientists and engineers 
from all fields of Heiencc and technology. 
1\11 B PI ' BLISHEHS' books in foreign languages can be purchased or 
orden•d through booksellers in your country dealing with V/0 "Mezhdu­
narodnaya Kniga", the authorised exporters. 

Mir Publisl1ers·Moscow 


	Front Cover
	Front Jacket
	Hard Cover
	Title Page
	CONTENTS
	PREFACE
	Part One ANALYTIC GEOMETRY
	Chapter I RECTANGULAR CARTESIAN COORDINATESIN THE PLANE
	1. Introducing Coordinates in the Plane
	2. Distance Between Two Points
	3. Dividing a Line Segment in a Given Ratio
	4. Equation of a Curve. Equation of a Circle
	5. Parametric Equations of a Curve
	6. Points of Intersection of Curves
	7. Relative Position of Two Circles
	EXERCISES TO CHAPTER I

	Chapter II VECTORS IN THE PLANE
	1. Translation
	2. Modulus and the Direction of a Vector
	3. Components of a Vector
	4. Addition of Vectors
	5. Multiplication of a Vector by a Number
	6. Collinear Vectors
	7. Resolution of a Vector into Two Non-Collinear Vectors
	8. Scalar Product
	EXERCISES TO CHAPTER II

	Chapter III STRAIGHT LINE IN THE PLANE
	1. Equation of a Straight Line.General Form
	2. Position of a Straight Line Relative to a Coordinate System
	3. Parallelism and Perpendicularity Condition for Straight Lines
	4. Equation of a Pencil of Straight Lines
	5. Normal Form of the Equation of a Straight Line
	6. Transformation of Coordinates
	7. Motions in the Plane
	8. Inversion
	EXERCISES TO CHAPTER III

	Chapter IV CONIC SECTIONS
	1. Polar Coordinates
	2. Conic Sections
	3. Equations of Conic Sections in Polar Coordinates
	4. Canonical Equations of Conic Sections in Rectangular Cartesian Coordinates
	5. Types of Conic Sections
	6. Tangent Line to a Conic Section
	7. Focal Properties of Conic Sections
	8. Diameters of a Conic Section
	9. Curves of the Second Degree
	EXERCISES TO CHAPTER IV

	Chapter V RECTANGULAR CARTESIAN COORDINATES AND VECTORS IN SPACE
	1. Cartesian Coordinates in Space. Introduction
	2. Translation in Space
	3. Vectors in Space
	4. Decomposition of a Vector into Three Non-coplanar Vectors
	5. Vector Product of Vectors
	6. Scalar Triple Product of Vectors
	7. Affine Cartesian Coordinates
	8. Transformation of Coordinates
	9. Equations of a Surface and a Curve in Space
	EXERCISES TO CHAPTER V

	Chapter VI PLANE AND A STRAIGHT LINE IN SPACE
	1. Equation of a Plane
	2. Position of a Plane Relative to a Coordinate System
	3. Normal Form of Equations of the Plane
	4. Parallelism and Perpendicularity of Planes
	5. Equations of a Straight Line
	6. Relative Position of a Straight Line and a Plane, of Two Straight Lines
	7. Basic Problems on Straight Lines and Planes
	EXERCISES TO CHAPTER VI

	Chapter VII QUADRIC SURFACES
	1. Special System of Coordinates
	2. Classification of Quadric Surfaces
	3. Ellipsoid
	4. Hyperboloids
	5. Paraboloids
	6. Cone and Cylinders
	7. Rectilinear Generators on Quadric Surfaces
	8. Diameters and Diametral Planes of a Quadric Surface
	9. Axes of Symmetry for a Curve. Planes of Symmetry for a Surface
	EXERCISES TO CHAPTER VII


	Part Two DIFFERENTIAL GEOMETRY
	Chapter VIII TANGENT AND OSCULATING PLANES OF CURVE
	1. Concept of Curve
	2. Regular Curve
	3. Singular Polnts Of a Curve
	4. Vector Function of Scalar Argument
	5. Tangent to a Curve
	6. Equations of Tangents for Various Methods of Specifying a Curve
	7. Osculating Plane of a Curve
	8. Envelope of a Family of Plane Curves
	EXERCISES TO CHAPTER VIII

	Chapter IX CURVATURE AND TORSION OF CURVE
	1. Length of a Curve
	2. Natural Parametrization of a Curve
	3. Curvature
	4. Torsion of a Curve
	5. Frenet Formulas
	6. Evolute and Evolvent of a Plane Curve
	EXERCISES TO CHAPTER IX

	Chapter X TANGENT PLANE AND OSCULATING, PARABOLOID OF SURFACE
	1. Concept of Surface
	2. Regular Surfaces
	3. Tangent Plane to a Surface
	4. Equation of a Tangent Plane
	5. Osculating Paraboloid of a Surface
	6. Classification of Surface Points
	EXERCISES TO CHAPTER X

	Chapter XI SURFACE CURVATURE
	1. Surface Linear Element
	2. Area of a Surface
	3. Normal Curvature of a Surface
	4. Indicatrix of the Normal Curvature
	5. Conjugate Coordinate Lines on a Surface
	6. Lines of Curvature
	7. Mean and Gaussian Curvatul'e of a Surface
	8. Example of a Surface of Constant Negative Gaussian Curvature
	EXERCISES TO CHAPTER XI

	Chapter XII INTRINSIC GEOMETRY OF SURFACE
	1. Gaussian Curvature as an Object of the Intrinsic Geometry of Surfaces
	2. Geodesic Lines on a Surface
	3. Extremal Property of Geodesics
	4. Surfaces of Constant Gaussian Curvature
	5. Gauss-Bonnet Theorem
	6. Closed Surfaces
	EXERCISES TO CHAPTER XII


	Part Three FOUNDATIONS OF GEOMETRY
	Chapter XIII HISTORICAL SURVEY
	1. Euclid's Elements
	2. Attempts to Prove the Fifth Postulate
	3. Discovery of Non-Euclidean Geometry
	4. Works on the Foundations of Geometry in the Second Half of the 19th Century
	5. System of Axioms for Euclidean Geometry according to D. Hilbert

	Chapter XIV SYSTEM OF AXIOMS FOR EUCLIDEAN GEOMETRY AND THEIR IMMEDIATE COROLLARIES
	1. Basic Concepts
	2. Axioms of Incidence
	3. Axioms of Order
	4. Axioms of Measure for Line Segmentsand Angles
	5. Axiom of Existence of a Triangle Congruent to ~ Given One
	6. Axiom of Existence of a Line Segment of Given Length
	7. Parallel Axiom
	8. Axioms for Space :

	Chapter XV INVESTIGATION OF EUCLIDEAN GEOMETRY AXIOMS
	1. Preliminaries
	2. Cartesian Model of Euclidean Geometry
	3. "Betweenness" Relation for Points in a Straight Line. Verification of the Axioms of Order
	4. Length of a Segment. V erifieation of the Axiom of Measure for Line Segments
	5. Measure of Angles in Degrees. Verification of Axiom Ill2
	6. Validity of the Other Axioms in the Cartesian Model
	7. Consistency and Completeness of the Euclidean Geometry Axiom System
	8. Independence of the Axiom of Existence of a Line Segment of Given Length
	9. Independence of the Parallel Axiom
	10. Lobachevskian Geometry

	Chapter XVI PROJECTIVE GEOMETRY
	1. Axioms of Incidence for Projective Geometry
	2. Desargues Theorem
	3. Completion of Euclidean Space with the Elements at Infinity
	4. Topological Structure of a Projective Straight Line and Plane
	5. Projective Coordinates and Projective Transformations
	6. Cross Ratio
	7. Harmonic Separation of Pairs of Points
	8. Curves of the Second Degree and Quadric Surfaces
	9. Steiner Theorem
	10. Pascal Theorem
	11. Pole and Polar
	12. Polar Reciprocation. Brianchon Theorem
	13. Duality Principle
	14. Various Geometries in Projective Outlook
	EXERCISES TO CHAPTER XVI


	Part Four CERTAIN PROBLEMS OF ELEMENTARY GEOMETRY
	Chapter XVII METHODS FOR SOLUTION OF CONSTRUCTION PROBLEMS
	1. Preliminaries
	2. Locus Method
	3. Similarity Method
	4. Reflection Method
	5. Translation Method
	6. Rotation Method
	7. Inversion Method
	8. On Solvability of Construction Problems
	EXERCISES TO CHAPTER XVII *

	Chapter XVIII MEASURING LENGTHS, AREAS AND VOLUMES
	1. Measuring Line Segments
	2. Length of a Circumference
	3. Areas of Figures
	4. Volumes of Solids
	5. Area of a Surface

	Chapter XIX ELEMENTS OF PROJECTION DRAWING
	1. Representation of a Point on an Epure
	2. Problems Leading to a Straight Line
	3. Determination of the Length of a Line Segment
	4. Problems Leading to a Straight Line and a Plane
	5. Representation of a Prism and a Pyramid
	6. Representation of a Cylinder, a Cone and a Sphere
	7. Construction of Sections
	EXERCISES TO CHAPTER XIX

	Chapter XX POLYHEDRAL ANGLES AND POLYHEDRA
	1. Cosine Law for a Trihedral Angle
	2. Trihedral Angle Conjugate to a Given One
	3. Sine Law for a Trihedral Angle
	4. Relation Between the Face Angles of a Polyhedral Angle
	5. Area of a Spherical Polygon
	6. Convex Polyhedra. Concept of Convex Body
	7. Euler Theorem for Convex Polyhedra
	8. Cauchy Theorem
	9. Regular Polyhedra
	EXERCISES TO CHAPTER XX


	ANSWERS TO EXERCISES, HINTS AND SOLUTIONS
	Chapter I
	Chapter II
	Chapter III
	Chapter IV
	Chapter V
	Chapter VI
	Chapter VII
	Chapter VIII
	Chapter IX
	Chapter X
	Chapter XI
	Chapter XII
	Chapter XII
	Chapter XVI
	Chapter XVII
	Chapter XIX
	Chapter XX

	Back Jacket
	Back Cover



