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PREFACE.

THE first edition of this treatise has been for
several years out of print, and I had for sometime
given up the idea of reprinting it. The work, having
been written at a time when the Modern Higher
Algebra was still in its infancy, required extensive
alterations in order to bring it up to the present
state of the science; and, as I had failed to bring out
a new edition before my appointment to the office
which I now hold, I judged it impossible to do so,
now that other engagements left me no leisure to
make acquaintance with recent mathematical dis-
coveries, or even to keep up my memory of what
I had previously known. When, however, years
passed and mine still remained the only work in
English professing to give a systematic account of
the modern theory of curves, I began to consider
whether republication might not be possible, if I -
could obtain the assistance of some younger mathe-
matician competent to contribute additional sections
representing the later progress of the science.

b



vi PREFACE.

Consulting Professor Cayley on this subject I was
much and agreeably surprised by his offering himself
to give me the help I required. It is needless to
say how gladly I embraced a proposal calculated
to add so much to the value of my book; and the
only scruple I have felt in profiting by it is lest
the time and labour which Professor Cayley has
devoted to the work of another may, for a time
at least, have deprived the mathematical world
of a better work on the same subject by himself.
My original plan for the division of the labour was
that Professor Cayley should contribute certain new
sections or chapters, of which he should take the
entire responsibility, while I should content myself
with revising the older part of the book; and
accordingly the first chapter is entirely Professor
Cayley’s. But I found it would be impossible in
this method to give the book the unity it ought to
possess; and actually our work has been combined
in a manner that makes it not easy to separate
our respective shares. Professor Cayley has carefully
gone over the whole, and there is scarcely a page
that has not in some way been influenced by his
suggestions; on the other hand, ¥ have completely
re-written many of his contributions either for the
purpose of making them fit in better with the rest
of the book, or if I thought I could make some
simplification in his processes or some addition to
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his results. I have in fact dealt in the same
manner with some of the manuscript materials which
he was so good as to place at my disposal, as I
have done with published memoirs of his, the results
of which I have incorporated in the work. On
looking through the pages the parts which I re-
cognize as taken from Professor Cayley, with but
slight or with no alteration, are Chap. I.; the account
of the forms of triple points, Art. 40; Art. 47,
the view taken in which I have not myself in
other places fully accepted; Ex. 6, p. 43; and Arts.
56—58, 87—89, 138, 139, 151, 198, 243, 270,
282—291, 407, 408. Besides these I have worked
into Chap. III. a manuscript of his on envelopes,
including the theory of evolutes and quasi-evolutes
and of parallel curves; from another manuseript
of his I obtained my knowledge of Sylvester’s
theory of residuation; and I have used one on
the classification of quartics and one on the bi-
tangents of (iuartics. The additions made to the
Chapter in the former edition on the transformation
of curves are almost entirely derived from a manu-
script of Professor Cayley’s, from which Arts. 370
to the end are taken mnearly without alteration;
Arts. 401—406 are founded on a manuscript of his
on Steiner’s theory of polar curves.

The former edition of this work contained a
chapter on the application of the Integral Calculus
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to the theory of curves; this I have now omitted
principally on account of the extension which this
subject has since received. Such a chapter now,
in order to have any pretensions to completeness,
ought to contain an account of the applications
which the lamented Clebsch, in continuation of
Riemann’s researches, made of elliptic and Abelian
integrals to the theory of curves. But it seems
impossible that those subjects could be done justice
to, except in a work having the Integral Calculus
as its main object, and as such works ordinarily
contain chapters on the theory of curves, I have
thought that this branch of the theory might
safely be omitted from the present treatise.

I found at the last moment that I had also
inadvertently omitted to fulfit a promise made in
the course of the work, of adding a section on
the application of symbolical methods to the theory
of ternary quantics. I have not thought it expe-
dient to delay the publication of this volume by
attempting now to prepare such a section, more
especially as I shall have an opportunity of sup-
plying the omission, in perhaps a more suitable
place, whenever a “new edition of my Higher
Algebra is called for.

This work having been carried on at intervals,
as I could find leisure, has been some three years
in going through the press. The sheets have been



PREFACE. 1x

read over hy my friends Dr. Hart, Dr. Fiedler, and
Mr. Cathcart; but, unfortunately, in most cascs
not until after they had been printed off. I am
able, therefore, to give a tolerably complete, but a
very long list of errata.

TRINTTY COLLEGE, DUBLIN,
January, 1878,
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ERRATA.

Page 6, line 8 from bottom, for case read cases.
» 217, line 2 of note, for n — 2 read np — 2.
» 388, last line, for }h read }h2.
» 45, line 6 from bottom, for expression read expansion.
» 48, line 9, for yz, 2z, xy, read y'2', 2'x', 'y,
»w 3 line 14, for Uy, read Uy,
» 3 line 4 from bottom, for AU’ read APU”,
s 94, line 6, dele differential.
» » line 12 from bottom, for There read These,
» » line 10 from bottom, for fgl read fgh.
. line 4 from bottom, for B read A.
5 61, line 12, for the origin read z'y'z’.
» 14, line 2 of note, insert ¢ before z*-2y2,
5 79, line 13 from bottom, for centre read circle.
» 80, line 18 from bottom, for ¢ read a.
» 86, line 5 from bottom, for Art. 96 read Art. 99,
» 87, Ex. 2, Envelope is 64Y3 + 27a*XZ2 = 0.
» » EX.2, line 2 from end, for 22X + ¥ read ?Y + X.
» 3 Ex. 8, line 1, for J read 1J.
5 88, line 9 from end of Ex. 4, for A? read A.
5 90, line 8, for p. 86 read p. 88.
» 97, line 17, for surface read line.
5 98, Art. 117 is twice repeated.
» 99, line 5, for ¢ read «.
5 100, Ex. 2, for 42 read 1642,
» 101, line 17, for aef read aaf.
y» 102, line 7, dele that of.

104, line 10, for p} costw=m readp*cos ©=md

” ’

» 107, line 11, for n read k. 3

4 111, line 4 from bottom, for = (y) read = (y,).

» 114, line 10, for SRR’ read = (RR,).

4 122, line 23, for points read foci.

s» 136, line 3 from bottom, for coresidual read residual.

y» 189, line 21, for gz read y2.

» 176, line 7 from bottom, for g3 read y2.

» 208, in last column of determinant, for ¢, ¢ read m, m.

s 208, line 15 from bottom, for bx3y read bx?y.

» 213, line 15, for tangents read bitangents.

s 287, line 4, for C read V.

y» 245, line 21, for bz’ read b2'.

5 39 lines 4 and 2 from bottom, references to figures are interchanged.

y» 247, line 4, for Bz, B’z read Bz, B'z.

» 9 line b, read the sides z = 0, =0, y == 0 respectively.

» 3 lines 18, 21, for binodal read trinodal.

s 3 last line, for a J(bc) read z J(bc).

4 253, line 3 from bottom, for — read +.

4y 205, line 2, for a,fn read a,fm.

» 206, line 15, for b,b,2 read byb,?.

» 1y last line of Art. 296, for c,? read ¢

» 267, line 12, for y read x.

s 296, last line of Art. 348, after z, y, z, insert w.

4 805, end of Art. 355, the statement here made needs correction, Wec¢ may have
=6, ap =8,

» 809, ﬁne 8, jgr functions read function.

» ' g line 21, for a, read a,.

» . line 25, for ink (nk — 1) read } (nk — 1) (nk — 2).

5 310, line 15'from bottom, for ggg read 346.

4 811, end of line 18, for a,” read a;"".

» 9 line 19, for b, read %,'".

s 3 line 21, for quantities read quintics.

s 812, for Ex. 10, second time read Ex. 11.

» 314, line 8 of note, for I. after Annalen read 111,



HIGHER PLANE CURVES.

CHAPTER I

COORDINATES.

POINT-COORDINATES.

1. WE have in the plane a special line, the line infinity;
and on this line two special (imaginary) points, the circular
points at infinity. A geometrical theorem has either no re-
lation to the special line and points, and it is then descriptive ;
or it has a relation to them, and it is then metrical.

2. The coordinates used for determining the position of
a point in the plane are Cartesian (rectangular or oblique)
or else trilinear; the latter however including as a particular
case the former. Speaking generally we may say that the
Cartesian (rectangular) coordinates are best adapted for the
discussion of metrical properties; trilinear coordinates for that
of descriptive properties; but for metrical properties there is
often great convenience in using the notation of trilinear
coordinates, the equation of a curve being presented as a
homogeneous equation in (z, y, z), where z, y are ordinary
rectangular coordinates, and z is =1.

It is proper to consider in some detail the theory of the
foregoing kinds of coordinates.

3. As defined Conics, p. 60, the trilinear coordinates of a
point are its perpendicular distances (p, ¢, 7) from three given
lines: it is assumed that the lines form a triangle (viz. that
no two of them are parallel) and then if (a, 5, c) are the sides

B
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of this triangle, and A its area, and if moreover the co-
ordinates (p, ¢, r) are taken to be positive for a point within
the triangle, the coordinates p, g, r satisfy the relation (Conics,

p- 61)
ap +bq +cr=2A.

By means of this relation, an equation not originally homo-
geneous, can be made homogeneous; and it is always assumed
that this has been done, and in fact the equations made use of
are always homogeneous.

4. But a more general definition of trilinear coordinates
is advantageous; viz., without in anywise fixing the absolute
magnitudes of the coordinates (z, y, z), we may take them to
be proportional to given multiples (ap, Bg, yr) of the original
trilinear coordinates (p, g, r).

Observing that the distance measured in a given direction
is a given multiple of the perpendicular distance of a point from
a line, the definition may be stated with equivalent generality
in several forms as follows: the trilinear coordinates (z, y, 2)
of a point in the plane are proportional to

given multiples of the perpendicular distances—

given multiples of the distances measured in given direc-
tions— :

given multiples of the distances measured in one and the
same given direction—

the distances measured in given directions—

of the point from three given lines.

The three given lines, say the lines =0, y=0, 2=0, are
said to be the axes of coordinates, or simply the axes; and the
triangle formed by them, the fundamental triangle, or simply the
triangle.

Observe that while the quantities (x, 7, z) remain indeter-
minate as regards absolute magnitude, there can be no identical
relation connecting them; and the equations which we use,
being necessarily homogeneous, express relations between the
mutual ratios of the coordinates.

5. It is not in general desirable to do so, but we may,
if we please, fix the absolute magnitudes of the coordinates,



POINT-COORDINATES. 3

and say (z, y, z) are equal to (ap, Bg, yr) respectively: the
co-ordinates are in this case connected by the relation
ar by
.8 + " —2A
which relation serves to determine the absolute magnitudes of
the coordinates (x, y, 2z} of any particular point when their
ratios are known.

6. It is scarcely necessary to remark that the distance of a
point from a line is considered to change its sign as the point
passes from one to the other side of the line. The selection
of the positive and negative sides might be made at pleasure
for each of the three lines, but it is in general convenient to
fix them in suchwise that for a point within the triangle
the ratios (z : y : z), or (when these arc determinate in absolute
magnitude) the coordinates (x, y, 2), shall be positive.

7. Taking the lines =0, y=0,2=0 to be given lines, the
values of the ratios & :y: z depend upon those of the implicit
constants a, 3, y: and arc thus not as yet completely defined;
but we can fix them so that for a given point the ratios (z : y : 2)
shall have given values. Thus, if for the given point whose
perpendicular distances are p,, g,, r,, the ratios are to have the
given values z, :y, : 2,; this completes the determination of
the coordinates, viz., we have

= _1 yl zl
v y # .plp g( q rl n
Again, what is nearly the same thing, we can choose our co-
ordinates so that a given linear equation Az+ By+ Cz=0
shall represent a given line. In fact, if the equation of the
given line in terms of the co-ordinates (p, g, r) is ap+bg+cr=0,

then we have thus the determination

. . a . b . c
@iyiz=_pipgiGr
It is not in general desirable to make any use of the equations
Jjust written down: the convenient course is to consider the
coordinates to have been fixed in suchwise that the point

(1:1:1) shall be a given point of the figure; or that the line
+ y+2=0 shall be a given line of the figure.
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8. It is to observed that we may properly speak of the point
(ay B, ), meaning thereby the point, the coordinates of which
have the mutual ratios :y: 2z equal to a: 8:v. And when
we speak of the coordinates of a point as being (a, B, ), or
of (x, y, z) as being equal to (a, 8, ), we mean the same thing;
that is to say, we only assert the equality of ratios, for the very
reason that the absolute magnitudes are indeterminate. Thus
in the last paragraph, instead of the point (1:1: 1), we might
have spoken of the point (1, 1, 1). .

9. The point (1,1,1) and line z+y+2=0 (or generally
the point (a2, B, v) and line 2+ LA z';=0) stand in a well-

B
known geometrical relation to the fundamental triangle: viz.
if the point be O, the line M
will be LZMN which joins
the intersections with the L /
sides of the fundamental
triangle ABC, of the cor- E

responding sides of the
triangle DEF formed by
the points where the lines N A F B
joining O to the vertices of the fundamental triangle meet the
opposite sides; or conversely, if the line LMN is given, we
geometrically construct the point O by joining the points L,
M, N where the line intersects the sides of the fundamental
triangle, to the opposite vertices of that triangle; the joining
lines form a new triangle, and the lines joining its vertices to
the corresponding vertices of the fundamental triangle meet in
the point O. The line and point are in fact * harmonics,” or,
as will be hereafter explained, they are “pole and polar” in
regard to the triangle considered as a cubic curve, or we may
say simply in regard to the triangle. Thus if either the point
or the line be given, the other is known, and it is the same
thing whether we assume the point (1, 1, 1) to be a given point,
or the line  +y+2 =0 to be a given line.

10. Considering the line 4+ y+2=0 as a given line, we
have in all four given lines, and writing for convenience
2+y+2+w=0 (that is considering w as standing for —x—y—2)
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the determination of the coordinates is such that z=0, y=0,
z2=0, w=0 are given lines.

11. The coordinates may be such that the point (1, 1, 1)
shall be the centre of gravity of the triangle, or what is the
same thing, that the line + y + z=0 shall be the line infinity.
Reverting to the equation ap+bg+cr=2A, this comes to
assuming z:y:z=ap:bg: cr; viz. if we join the point to
the three vertices, so dividing the fundamental triangle into
three triangles, then the coordinates x, y, z are proportional to
the three component triangles (or what is the same thing, each
coordinate is proportional to the perpendicular distance from
a side, divided by the perpendicular distance of the opposite
vertex from the same side). And it may be noticed that if,
fixing the absolute magnitudes of the coordinates, we assume

" ap b r
:v,y,z=2—'-‘z, 2_1_’ %);
that is, take z, y, z to be equal to the component triangles, each
divided by the fundamental triangle; then the relation satisfied
by the coordinates will be z +y +2z=1.

12. A particular case is when the fundamental triangle is
equilateral ; hLere if a, y, z be proportional to the perpendicular
distances from the sides, (1, 1, 1) is the centre of the figure,
and z+y+2=0 is the line infinity; if, fixing the absolute
magnitudes, we take (x, y, z) to be equal to the perpendicular
distances, and moreover take as unity the perpendicular distance
of a vertex from the opposite side, then the coordinates of the
centre of the figure are (§, , ); and the relation between the
coordinates is z+ y+2=1.

13. In the case just referred to, where the fundamental tri-
angle is equilateral and «+y+2=0 the line infinity, the co-
ordinates of the circular points at infinity are z: y:2=1: »: *
and 1: o' : ®; where o is an imaginary cube root of unity; in
fact, taking X, Y as Cartesian (rectangular) coordinates, the
origin being at the vertex (x=0, y=0) of the triangle, and
the coordinate X being along the side x =0, we have
XV3-Y 2-X43-Y

2 ! 2

x,y,2=Y, respectively.
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_But for the circular points at infinity X and Y are infinite and
X+ 7Y =0 (where ¢=4/(— 1), as usual) ; wherefore

—1%4 1L
xiyiz=1: 12z~/3, 112u/3’

—1-74/38
2
thisisz:y:z=1l:w:w'or=1:0": 0.

—1+¢ 43

or taking  to be = g

, and therefore o=

14. Let one of the axes, say that of 2, be the line infinity :
the distance » has here the value oo, which must be regarded
as an infinite constant; ¢r is therefore a constant, which may
be made finite, and without loss of generality put =1; we
have therefore 2 : y : z=ap : B¢ : 1; where the coefficients a, B
may be so determined that ap, Bg shall represent the dis-
tances from the line =0 and from the line y=0, each
measured in the direction parallel to the other of these lines;
that is, if X, Y are the Cartesian coordinates of the point,
then z:y:2=Y:X:1; or what is the same thing, fixing
the absolute magnitudes of the coordinates, x, y and z=1, will
be the Cartesian coordinates of the point referred to any two
axes of coordinates.

15. In what just precedes we have used only the line
infinity, not the circular points at infinity; and the resulting
Cartesian coordinates are in general oblique: but they may
be rectangular; viz. taking the lines =0, y=0 as any two
lines harmonically related to the circular points at infinity, or
what is the same thing at right angles to each other, then the
coordinates will be rectangular., The harmonic relation re-
ferred to is that the two lines meet the line infinity in a pair
of points forming with the circular points at infinity a range
of four harmonic points; or, what is the same thing, the two
lines and the lines from their intersection to the circular points
at infinity form a harmonic pencil. (See Conics, p. 309).

16. It is in some case convenient to use the imaginary
coordinates £=z+1y, n=x—1y, and z=1: these may be
called circular coordinates.
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LINE-COORDINATES.

17. The coordinates above considered are coordinates for
determining the position of a point; say they are point-co-
ordinates. We have also line-coordinates (tangential coordi-
nates, see Conics, p. 65, et seq.) for determining the position
of a line; viz. if with any given system of trilinear coordinates
(x, , 2), the equation of the line is £x+ny+{z=0, then
we have a corresponding system of line-coordinates, wherein
(&, m, £) are said to be the coordinates (line-coordinates) of
the line in question. Observe that according to this definition
(&, », &) are given as to their ratios only, their absolute magni-
tudes are indeterminate; herein resembling point-coordinates
according to their most general definition.

18. The coordinates (£, n, {) belong to a line; a linear
equation af+bn+cf=0 between these coordinates refers to
the whole series of lines, the coordinates of any one of which
satisfy this equation; but all these lines pass through a point,
viz. the point whose coordinates in the corresponding system
of point-coordinates (z, y, z) are (a, b, ¢); the linear equation
af+bn+ct=90 in fact expresses that the equation in point-
coordinates Ex+ny+ {z=0 is satisfied on writing therein (g, b, c)
for (z, y, 2). The conclusion is that in the line-coordinates
(& m, £), the equation af+ dn+c{=0 represents a point, viz.
the point whose trilinear co-ordinates in the corresponding
system are (a, b, ¢c). And generally any homogeneous equa-
tion in the line-coordinates (£, n, {) represents the curve which
is the envelope of all the lines £x+ ny+ {z=0, which are such
that the coefficients (£, 7, {) satisfy the relation in question;
and this relation is said to be the line- or tangential equation
of this envelope. In other words, the line-equation of a curve
is the equation between (£, 7, {) which expresses that the line
Ex+ny+ &z =0 is a tangent to the curve.

19. In what precedes the line-coordinates (£, #, {) are
defined by means of a corresponding system of trilinear co-
ordinates (z, ¥, z), the signification of the ratios £ : n: { being
thereby in effect completely determined : ‘this is the most con-
venient course; but, not so much for any application therect,
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as in order to more fully establish the analogy between the
two kinds of coordinates, it is proper to give an independent
quantitative definition of line coordinates. We may say that
the trilinear coordinates (£, 7, {) of a line are proportional
to given multiples of the distances measured in given directions
of the line from three given points. Suppose, to fix the ideas,
we take them proportional to the perpendicular distances of
the line from the three given points. If referring the figure
to Cartesian coordinates, the coordinates of the points are
(a, B), (' B), (a”y B"), and the equation of the line is

AX+BY+C=0,
then we have

£:n:t=Aa+BB+C: Ad'+BB +C: A"+ B3"+C,
or what is the same thing the equation of the line is
X, Y, 1|=0;
£ a B1
n o« 81
c’ al" B'l, 1
the coefficients of &, 5, ¢ are here given linear functions of
(X, Y, 1), and denoting these coefficients by (=, 7, 2) we shall
have (z, y, 2) a system of trilinear coordinates, and the equation
will be £z + 7y + {z=0; the definition thus agrees with the one
given above.
‘We may in like manner as in No. 7 determine the line
coordinates (£, , &), so that the line (1 : 1 : 1) shall be a given

line of the figure: or that the point £+ +&=0 shall be a
given point of the figure.

20. Some particular systems may be mentioned. Let a, 8,y
denote respectively the distances c
in a given direction of the vari-
able line from the points 4, B, -
C, viz. (a = Aa, B=Bb, y=Cc);
then the coordinates £, 9, { may
be taken proportional to these
distances, £E:79:&=a:B:9. P 1 c
Imagine the point C to move off to infinity in the given
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direction ; «y has an infinite value which must be regarded as

a constant; and writing £:19: 5 =aq:8:1, we may, instead

of the original coordinates, £, 5, ¢ take as coordinates £, 1, 5 ;

that is, a, B, 1. We have here a system of two coordinates
a, B, which are respectively equal to the distances in a given
direction of the line from two fixed points.

21. Again, in the annexed figure we have
a_4dp B_ B . 7
Yy O’y Cg’
or what is the same thing

« B, 1.1 .
rrib AR Al R ¢

Imagine 4, B to go off to infinity

in the given directions pC, ¢C re-

spectively; Ap, Bg have infinite s -

values which must be regarded as

constants ; and instead of coordinates proportional te a, B, v,

we may take coordinates proportxonal to A Bg’ «; that is,

we may take as coordinates - 1; we have thus a

C ! C !
system of two coordinates, Whlcb are respectively the re-
ciprocals of the distances in two given directions of the line
from a fixed point.

22. There is little occasion for any explicit use of line-
coordinates: but the theory is very impertant; it serves in
fact to show that in demonstrating by point-coordinates any
descriptive theorem whatever, we demonstrate the correlative
theorem deducible from it by the theory of reciprocal polars
(or that of geometrical duality): viz. we do not demonstrate
the first theorem and deduce |from it the other, but we do
at one and the same time demonstrate the two theorems:
our (z, y, 2) instead of meaning point-coordinates may mean
line-coordinates, and the demonstration is in every step thereof
a demonstration of the correlative theorem.

M
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23. And in like manner when any theorem is demonstrated
by line-coordinates, this is also a demonstration of the correla-
tive theorem; the only difference is that we here pass from the
somewhat less familiar theory of line-coordinates to the more
familiar one of point-coordinates; the transition is rendered
clearer if we consider the original line-coordinates (&, 7, &) as
being the point-coordinates of the point which is the pole of
the line in regard to the conic * +y* +2*=0.
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CHAPTER IL

ON THE GENERAL PROPERTIES OF CURVES OF THE n'® DEGREE.

SECT. I.—ON THE NUMBER OF TERMS IN THE GENERAL EQUATION,

24. THE first step towards obtaining a knowledge of the
general properties of curves of the n™ degree is the ascertaining
the number of terms in the general equation. 'We should there-
by be enabled, on being given any equation of the n™ degree,
by simply counting the number of independent constants in the
equation, to know whether or not the given form were one to
which all equations of the n™ degree could be reduced. For
example, the general equation of the second degree contains
five independent constants. If) then, we were given any other
equation of the second degree, containing five constants, for

instance,
(—a)'+(y—B) = (az + by +2)’,

or  {@-a+(@y-BP+{z-al+(y-B) =0

we could expand, and comparing the equation (as at Conics,
p- 73) with the general equation of the second degree, should
obtain a sufficient number of equations to determine a, 8, &c.,
in terms of the coefficients of the general equation. We sce
then that any equation of the second degree may, in general,
be reduced to either of the above forms, and we might thus

obtain a proof of the properties of the foci and of the directrix.
The equation

(ax +by+c)=(a'z+by+c)(a"c+b"y+c")

contains seven independent constants. The problem, therefore,
to express these in terms of the coefficients in the general
equation, is indeterminate; as is also geometrically evident,
since the equation may be thrown into this form by taking

alx+ b'y+cl’ allx+b"y+cll
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to represent any two tangents, and ax+ by + ¢, their chord of
contact. The equations
(az+ by)'=cxz+dy+e,
(az+ by + 1) (a'z+ by +1) =0,
contain each but four independent constants, and must, therefore,
implicitly involve one other condition; or, in other words, the
general equation cannot be thrown into either of these forms,
unless one other condition be fulfilled. This is geometrically
evident, since the first equation denotes a parabola, and the
second, two right lines. The general equation of a circle,
(®—a)*+(y—B) =7,
containing but three expressed constants, must implicitly in-
volve two conditions; or the general equation cannot be thrown
into this form unless two conditions be fulfilled. And so, again,
the equation '
S-k8' =0,
(where S, 8’ are given quadric functions of the coordinates)
containing but one expressed constant, must imply four con-
ditions; as we otherwise know, since the conic expressed by
this equation passes through four fixed points.

25. Some caution must be used in the application of these
principles. Thus the equation
(@—a)+(y—B)'=ax+by +e,
appears to contain five constants, and, therefore, to be a form to
which every equation of the second degree is reducible. But
if we expand, we shall see that the constants do not enter into
the highest terms of the equation, and that there afe but three
equations available to determine a, B, &c. The equation can,
therefore, not be thrown into this form unless two other con-
ditions be fulfilled. In like manner the equation
al, +b8,+c8,+dS,+ S, + f8,=0,
where 8, &c., are six conics, is a form to which the equation
of any conic may be reduced ; but suppose three of the equations
of these conics to be connected by the relation S,=%S, +18S,;
substituting this value, the equation would be found to contain
but four independent constants, and the general equation could
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not be reduced to this form unless some one condition were
fulfilled.

26. Having thus endeavoured to give the reader an idea of
the nature of the advantage to be gained by a knowledge of
the mumber of terms in the general equation of the n degree,
we proceed to an investigation of this problem. The general
equation of the n™ degree between two variables may be written,

A
+ Bz + Cy
.+ D'+ Exy + Fy*

+ Pr*+ Qz*'y +...+ Ray™ + Sy" =0.
And the number of terms in this equation is plainly the sum
of the series 1+2+3+...+(n+1), and is therefore equal to
% (n+1) (n+2), as has been already proved (Conics, p. 74).

We shall sometimes write the general equation in the

abbreviated form,

u,+u, +u,+...4u, =0,
where u, denotes the absolute term, and u, u, u,, &c., denote
the terms of the first, second, n", &c., degrees in  and y.

We shall also sometimes employ the equation in trilincar
coordinates, which only differs from that just written in having
a third variable z introduced, so as to make the equation homo-
geneous, Viz.,

uz"+uz" tu" . ty,_z4u,=0.

The number of terms is evidently the same as in the preceding
case (Conics, p. 253).

27. The number of conditions necessary to determine a
curve of the n™ degree is one less than the number of terms
in the general equation; or is equal to 4n(n+3). For the
equation represents the same curve if it be multiplied or divided
by any constant; we may therefore divide by 4, and the curve
is completely determined if we can determine the 4n (n +3)

0 &e.

quantities a4 3
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Thus a carve of the n™ degree is in general determined when
we are given 4= (n + 3) points en it; for the coordinates of each
point through which the curve passes, substituted in the general
equation, give a linear relation between the coefficients. We
have therefore }n(n+3) equations of the first degree to
determine the same number of unknown quantities, a problem
which admits in general of but one solution. We learn then
that a eurve of the third degree can be described through nine
points, one of the fourth degree through fourteen points, and
in general through in(n+ 3) points can be described one, and
but one, curve of the n'® degree.

28. When we say that 4n (r + 3) points determine a curve
of the n™ degree, we would not be understood to mean that
they always determine a proper curve of that degree. All
that we have proved is, that there exists an equation of the 2™
degree satisfied for the given points; but this equation may be
the product of two or more others of lower dimensions. Thus,
five points in general determine a conic, but if three of them
lie on a right line, the conic is the improper quadric curve
formed by this right line and the line joining the other two
points. And, in general, it is evident that, if of the 3= (n + 3)
points more than np lie on a curve of the p" degree (p being
less than z), a proper curve of the 2™ degree cannot be described
through the points, for we should then have the absurdity of
two curves of the »™ and p™ degrees intersecting in more than
np points (Conics, p. 214). The system of the »™ degree through
such a set of points is the curve of the p™ degree, together with
a curve of the (n — p)™ through the remaining points.

We may even fix a lower limit to the number of points
determining a proper curve of the n™ degree which can lie on
a curve of the p" degree, and can show that this number
cannot be greater than np— 4 (p—1) (p—2). For if we suppose
that one more of the points (viz., np—3%(p—1) (p—2)+1) lie
on a curve of the p™ degree, subtracting this number front
dn(n+3), it will be found that the number of remaining
points is 4 (v — p) (n— p+3), and that therefore a curve of the
(n—p)™ degree can be described through them. This with the
curve of the p" degree forms a system of the n™ degree through
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the points; and it follows from the last Article that it is in
general impossible to describe through them any other.

29. There are cases, however, in which the solution of Art.
27 fails: a very simple instance will show that this is so. The
number of points required for the determination of a cubic
curve i3 =9: but nine points do not in every case determine
a single cubic, for any two cubics intersect in nine points; and
through these nine points there pass the two cubics: as will
presently appear there are in fact through the nine points an
infinity of cubics. The explanation is as follows: when we
solve m linear equations between m unknown quantities, the
solution in general comes out in the form of a fraction. We
should have, for instance, a solution of the form

B B C C,
v b il b s

Now it may so happen that the given values of the coordi-
nates of the n (n+ 3) points cause both numerator and denomi-
nator of every one of these fractions to vanish. In this case,
then, the given points will plainly be insufficient to determine
the curve, and through them can be described an infinity of
curves of the »™ degree. The geometrical reason why such
cases occur, requires to be further explained.

Let us, for simplicity, commence with the example of curves
of the third degree. Let U=0, V=0, be the equations of two
such curves, both passing through eight given points; then the
equation of any curve of the third degree passing through these
points must be of the form U—%V=0. For this equation,
from its form, denotes a curve of the third degree passing
through the eight given points, and it contains an arbitrary
constant & which can be so determined that the curve shall pass
through any ninth point. We should, in fact, have Ic=% ,
where U, V" are the result of substituting the coordinates of the
ninth point in Uand V. This gives a determinate value for &
in every case but one, viz., when the ninth point lies on both U
and V; for since two curves of the m™ and n** degrees intersect
in mn points, U and V intersect not only in the eight given
points, but also in one other. For the coordinates of this point
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k takes the value g; and indeed the form of the equation suffi-

ciently shows that every curve represented by the equation
U—-kV=0 passes through all the intersections of U and V.
Hence we have the important theorem, All curves of the third
degree which pass through eight fixed points pass also through
a minth., And we perceive that nine points are not always
sufficient to determine a curve of the third degree; for we can
describe a curve of the third degreé through the intersections of
two such curves, and through any tenth point.

30. The same reasoning applies to curves of any degree. If
there be given a number of points one less than that which will
determine the curve {{n (n+3)—1}, then U~ kV =0 (where U
and V are any two particular curves of the system) is the most
general equation of a curve of the n'* degree passing through
these points. For the equation contains one arbitrary constant,
to which we can assign such a value that the curve shall pass
through any remaining point, and be therefore completely de-
termined. But the form of the equation shows that the curve
must pass through all the »* points common to U and V, and
therefore not only through the }n (n+3)- 1 given points, but
also through as many more as will make up the entire number
to n’. Hence, AUl curves of the n™ degree which pass through
In(n+8)—1 fixzed points pass also through % (n—1)(n—2)
other fixed points.

31. The following is a useful deduction from the preceding
theorem: If of the n* points of intersection of two curves of the
n'® degree, np lie on a curve of the p' degree (p being less than n),
the remaining n(n—p) will lie on a curve of the (n—p)
degree. For describe a curve of the (n—p)® degree through
3 (n—p) (n—p +3) of these remaining points, and this, together
with the curve of the p* degree, form a curve of the n'* degree
passing through % (rn —p) (» —p + 8) + np points; and since this
number {being equal to 4n (n+3) —1+4 4 (p—1)(p—2)} cannot
be less than 4n (n+3)— 1, this curve will pass through all the
remaining points: but obviously the remaining points do not any
of them lie on the curve of the p™ degree, and therefore they lie
all of them ou the curve of the (n — p)® degree.
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It is to be understood in these theorems concerning the in-
tersections of curves of the n'® degree, that the curves need not be
proper curves of that degree, for the demonstration in Art. 30
holds equally even though U or ¥ be resolvable into factors.
As an illustration of the theorem of this Article, we add the
following : If a polygon of 2n sides be tnscribed in a conic, the
n (n—2) points where each odd side intersects the non-adjacent even
sides will lie on a curve of the (n—2)® degree. For the product
of all the odd sides forms one system of the n*® degree, and the
product of all the even sides another; these systems intersect
in n* points, viz., since each odd side has two adjacent and n—2
non-adjacent even sides, in the 2n vertices of the polygon, and
the n (n — 2) points, which are the subject of the present theorem.
But since, by hypothesis, the 2n vertiees lie on a conic, the
remaining 7 (n—2) points, by this Article, lie on a curve of
the (n —2) degree.

32. Pascal’s theorem is a particalar case of the theorem just
given, but on account of the importance that the learner should
clearly understand the principle of the foregoing demonstrations,
we think it advisable to repeat in other words the proof already
given.

Denote the sides of the hexagon by the first six letters of
the alphabet 4 =0, &c.; then ACE—kBDF=0 is the equa-
tion of a system of curves of the third degree passing through
AB, BC, CD, DE, EF, FA, and also through 4D, BE, CF.
If the first six points lie on a conic 8, then the curve of the
system determined by the condition that it shall pass through
any seventh point of the conic S must give ACE —¥'BDF= SL.
For it cannot be a proper curve of the third degree, since no
such curve can have more than six points common with 8,
The right line L will therefore contain the three points 4D,
BE, CF. '

‘We may add, that it is this proof of Paseal’s theorem which
leads most readily to Steiner’s and Kirkman’s theorems ( Conics,
p. 361). Thus, let

12.34.56 —45.61.23= 8L,

where 12 denotes the line joining the vertices 1, 2, &c.; and
D
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where L consequently denotes the line through the intersections
of the opposite sides, 12, 45; 34, 61; 56, 23 ; and let

12.34.56 — 36.25.14 = SM;

then obviously
45.61.23—36.25.14=8 (M - L);

or the Pascal line indicated by the latter equation passes
through the intersection of the other two.

It may however be remarked that the theorem of Art. 31,
in the case in question n =3, is a particular case of the theorem
of Art. 30; viz., the system of the three odd sides is one of the
cubics, and the system of the three even sides the other of the
cubics U=0, V=0 of Art. 30. And we may deduce Pascal’s
theorem directly from that theorem: viz., considering the conic
through the six vertices, and the line joining two of the three
points of intersection of the opposite sides, the conic and line
form a cubic through eight of these nine points, and therefore
through the ninth point; that is, the line passes through the
remaining one of the three points of intersection of the opposite
sides: viz., these three points lie in a line.

33. It has been proved that, although two curves of the
n't degree intersect in n* points, yet »* points, taken arbitrarily,
will not be the intersections of two such curves; but that
n'— 4 (n—1)(n—2) of them being giver, the rest will be deter-
mined. A similar theorem holds with regard to the np points
of intersection of two curves of the n'® and p* degrees. Thus
though a curve of the third degree intersects one of the fourth
in twelve points, yet through twelve points taken arbitrarily
on a curve of the third degree, it will, in general, be impossible
to describe a proper curve of the fourth degree. For the
system of the fourth degree through these twelve and any
other two points will in general be no other than the curve
of the third degree and the line joining the two points. And,
generally, Every curve of the n'® degree which is drawn through
np—4(p—1) (p—2) points on a curve of the p' degree (p being
less than n) meets this curve in § (p —1) (p —2) other fixed points.
For we had occasion in Art. 31 to see that

np—%(p-1)(p-2+4(n—p)(n—p+3)=4n(n+3)-1;
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therefore, by Art. 30, every system of the n'® degree described
through the given points, and } (n —p) (n — p + 8) others, passes
through § (n —1) (n — 2) other fixed points. But one system of
the ntt degree which can be described through the points is
the given curve of the p' degree and one of the (n-—p)®
through the additional assumed points. The }(n—1)(n—2)
new points must therefore lie, some on one, some on the other
of these two curves. And it is evident that these points must
be so distributed between them as to make up the total number
of points, in the first case, to np, in the second to = (n—p).
Hence the truth of the theorem enunciated is manifest.

34. A further extension of this theorem has been given by
Mr. Cayley: “ Any curve of the r'® degree (r being greater than
m or n, but not greater than m + n— 3), which passes through all
but y (m+n—r—1) (m+n—1r—2) of the mn intersections of two
curves of the m® and n'® degree, will pass also through the
‘remaining intersections.”

The reader will more easily understand the spirit of the
general proof we are about to give, by applying it first to a
particular example. “Any curve of the fifth degree which
passes through fifteen of the intersections of two curves of the
fourth degree will also pass through the remaining intersection.”
For take two arbitrary points on each of the curves of the
fourth degree. These four, with the fifteen .given points, make
nineteen points, through which, if several curves of the fifth
degree pass, they will (by Art. 30) pass through six other fixed
points. But each curve of the fourth degree, together with
the line joining the twe arbitrary points on the other curve,
forms a system of the fifth degree through the nineteen points.
Hence all the intersections of the given curves of the fourth
degree lie on every curve of the fifth degree through the
points. Q. E. D.

So, in general, take } (r —m) (r—m + 3) arbitrary points on
the curve of the n'® degree, and through them draw a curve of
the (r—m)® degree; and take }(r—n)(r-n+3) points on
the curve of the m' degree, and through them draw a curve of
the (r—n)® degree; take as many of the mn points of inter-
section as with the arbitrary points make up §r (r+3) —1: then
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since the curves of the (r —m)® and m®™ degree make one system
of the »® degree through the points, and the curves of the
(r—n)® and n** make another, the intersection of these two
systems will be common to every curve of the ** degree through
the points. But
Y(r+8)—1-§(r—m)(r-m+38)—3(r—n)(r—n+3)

=mn—}(m+n—r-1)(m+n—r-2),
as the reader may verify without difficulty. Hence the truth
of the theorem appears. To make the proof applicable » must
be at least equal to the greatest of m or n; and also » —m must
be less than n, since otherwise it would not be possible to de-
scribe, through the assumed points on the curve of the n'® degree,
a curve of the (r —m)® degree, distinct from or not including as
part of itself the carve of the n** degree: and since the theorem
is nugatory for »=m+n—1 or m+n—2, the condition is » not
greater than m + n — 3.*

SECT. IIL.—ON THE NATURE OF THE MULTIPLE POINTS8 AND
TANGENTS OF CURVES.

35. The simplest method of introducing to the reader the
subject of the singular points and lines connected with curves
seems to be, first, to illustrate by particular examples the nature
of these points and lines, and afterwards to lay down rules
by which their existence may be detected in general.

* Euler appears first to have noticed the paradox, that two curves of the n'® degree
may intersect in a greater number of points than are safficient to determine such a
curve (see & memoir in the Berlin Transactions for 1748, “On an apparent Contra-
diction in the Theory of Curves”). The same difficulty is pointed out by Cramer,
in his “Introduction & I’Analyse des Lignes courbes algébriques,” published in the
year 1750, It was only comparatively recently, however, that the important geo-
metrical theorems were observed, which are derived from this prineiple. In the year
1827 M. Gergonne gave the theorem of Art. 81 (Annales, vol. xvii. p. 220). The
general theorem of Art. 30 was given about the same time by M. Pliicker (Entwicke-
lungen, vol. i. p. 228; and Gergonne’s Annales, vol. xix. pp. 97, 129). It was some
years afterwards that the cases were discussed of the relation which exists between
the points of intersection of curves and surfaces of different degrees (as in Art. 33).
These cases were discussed in two papers sent at the same time for publication in
Crelle’s Journal, one by M. Jacobi (vol. xv. p. 285), the other by M. Pliicker
(vol. xvi. p. 47). Besides the papers just mentioned, the reader may also consult
a memoir by Mr. Cayley (Cambridge Math. Journal, vol. iii. p. 211). The historical
sketch given in the present note is taken from Pliicker’s Theorie der Algebraischen
Curven, p. 18.
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We shall employ the Cartesian equation given in Art 26.
If we transform this equation to polar coordinates, by sub-
stituting p cosd, psin@ for = and y (or if the axes be not
rectangular, mp, np, as at Conics, p. 134), we get an equation
of the n* degree in p, whose roots are the distances from the
origin of the n points, where the curve is met by a line drawn
through the origin, making an angle @ with the axis of .

36. If in the general equation the absolute term 4 =0,
then the origin is a point on the curve; for the equation is
evidently satisfied by the values =0, y=0, that is, by the
coordinates of the origin.

The same thing appears from the equation expressed in polar
coordinates,

(Bcos@+Csinb)p +(D cos'@ + E cos  sin 0+ Fsin’6) p"+ &e.=0;

for this equation being divisible by p, one of its roots must be
p=0, whatever be the value of 6, and therefore one of the
n points, in which every line drawn through the origin meets
the curve, will, in this case, coincide with the origin itself.

The other (»—1) points will in general be distinct from the
origin; there is, however, one value of 6, for which a second
point will coincide with the origin, viz., if § be such that

B cosf+ Csind=0.
The equation then becoming '
(D cos*@ + E 8inf cosd + F sin*8) p* + &c. =0,

is divisible by p*, and has, therefore, for two of its roots, p=0.
The line, therefore, answering to this value of 6, meets the
curve in two coincident points, or is the tangent at the origin.

Since we have a simple equation to determine tand, we see
that at a given point on a curve there can, in general, be drawn
but one tangent. Its equation is evidently

p(Bcosf+ Csinf)=0, or Br+ Cy=0.
Hence if the equation of a curve be u, +u, + &c.=0 (the origin
being a point on the curve), then u, =0 13 the equation of the

tangent.
1f B=0, the axis of = is a tangent ; if C=0, the axis of .
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87. Let us now, however, suppose that 4, B, C are all =0
the coefficients of p will then =0, whatever be the value of 6;
in this case, therefore, every right line drawn through the origin
meets the curve in two points which coincide with the origin.
The origin is then said to be a double point.

We may see now, exactly as in the last Article, that it is in
this case possible to draw through the origin lines which meet the
curve in three coincident points. For let 8 be such as to render
the coefficient of p*=0, or D cos’d + E sin6 cosf + F sin’d =0,
then the equation becomes divisible by p°, and three values of p
are =0. Since we have a quadratic to determine tand, it
follows that there can be drawn through a double point two right
lines, each of which meets the curve in three coincident points ;
their equation is
p" (D cos'd + E sinf cosf + F sin®0) =0, or Dx*+ Exy+ Fy*=0.

We learn hence that although every line through a double
point may, in one sense, be said to be a tangent (since every
such line meets the curve in two coincident points), yet that
there are two of these lines whose contact is closer than that
of the rest: so that it is usual to say that at a double point on
a curve there can be drawn two tangents. If ‘the equation
of the curve (the origin being a double point) be written
u,+u, + &c.=0, then u,=0 is the equation of the pair of
tangents at the origin.

38. It is necessary to distinguish three species of double
points, according as the lines represented by u,=0 are real,
imaginary, or co-incident.

I. In the first case the tangents are both real; the double
point or node is such as that represented in the second figure
(Art. 39); an inspection of the curve shows that there are at the
node two branches each with its own proper tangent; and the
foregoing quadratic equation in fact determines the directions of
these two tangents: such a point is termed a crunode.

A simple illustration of such double points occurs when the
given equation is the product of two equations of lower dimen-
sions, or U=PQ. The equation U=0 then represents the two
curves denoted by P=0 and Q=0. But if these two be con-
sidered as making up a complex curve of the n'® degree, this
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curve must be said to have pg double points (the points, namely,
where P intersects Q); and at each of these points there are
evidently two tangents (viz., the tangents to P and Q).

II. The equation u,=0 may have both its roots imaginary.

In this case no real point is consecutive to the origin, which
is then called a conjugate point or acnode. Its coordinates satisfy
the equation of the curve, but it does not appear to lie on the
curve, and, in fact, the existence of such points can only be
made manifest geometrically by showing that there are points,
no line through which can meet the curve in more than n—2
points.

III. The equation u, may be a perfect square; in this case
the tangents at the double point coincide, and the curve takes
the form represented in the fourth figure (Art. 39). Such
points are called cusps or spinodes. They are also sometimes
called stationary points; for if we imagine the curve to be
geperated by the motion of a point, at every such cusp the
motion in one direction is brought to a stop, and is exchanged
for a motion in the opposite direction.

The reader might suppose that we could illustrate these
points, as in the last paragraph, by supposing the curve U to
break up into two, P and @, which touch; for >_<
every point of contact will be a double point, the )
tangents at which coincide. But such a point
must be classed among singularities of a higher
order than those which we are now considering ; v
for the tangent at it mects the complex curve in
four consecutive points, viz., two on each of the simple curves,
while at the cusps we are considering we have seen that the
tangent generally meets the curve in only three consecutive
points. In order that the tangent at a cusp should meet the
curve in four consecutive points, it is necessary not merely that
u, should be a perfect square, but further, that its square root

should be a factor in u,: that is to say, that the equation should

be of the form
v’ +ovu,+u +&e=0.

Sach points arise from the union of two double points, as
the reader will readily perceive from the example which we
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have already given: for when the curves P and @ touch, the
point of contact takes the place of two points of intersection.

It is proper to remark that the crunode and the acnode are
varieties of the node, and varieties of the same generality, the
difference being that of real and imaginary: the cusp has in
the investigation presented itself as a particular case of the
node. But it is really a distinct singularity ; the force of this
remark will appear in the sequel.

39. As the learner may probably find some difficulty in
conceiving the relation of conjugate points to the curve, we
shall illustrate the subject by the following example. Let us
take the curve,

y'=(e—a)(z-b)(z—o)
where a is less, and ¢ greater than 4. This curve is evidently
symmetrical on both sides of the axis of «, since every value of =
gives equal and opposite values to y. The curve meets the axis
of « at the three points =a, =0, 2=c. When  is less than
a, ¥ i8 negative, and therefore y imaginary: y* becomes positive
for values of a between a and ; negative again for values
between & and c¢; and, finally, positive for all values of 2
exceeding ¢. The curve therefore consists of an oval lying be-

tween A4 and B, and a branch com-
mencing at C, and extending in-
definitely beyond it. A B C

N
Let us now suppose 5=c,and the \__~

equation will become

y'=(z-a)(=-b),
where b is greater than a. The point B has now closed up to C;
as B approaches to C, the oval and infinite branch sharpen out

towards each other, and when ulti-

mately the two points are united M
together the oval has joined the in- , B

finite branch, and the point B has

become a double point, with branches V\
cutting at an angle.

But, on the other hand, let 6=a. Then the equation
becomes

y'=(@—a) (z-0),
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where a is less than 4; the oval has shrunk into a point (4),
and the curve is of the annexed form.
This example sufficiently shows the /
analogy between conjugate points, and A C\
double points, the tangents at which are
real. If we suppose a = b =c, the equation becomes y* = (x — a)*
the point 4 becomes a cusp, as in IIL. of
last Article, and the tangent at the cusp A —

meets the curve in three coincident points ~—
4, B, C.

40. If in the general equation 4, B, C, D, E, F were all =0,
then the origin would be a triple point, every line through the
origin meeting the curve in three coincident points; and it is easy
to see, as before, that at a triple point there are three tangents,
which are the three lines represented by the equation u,=0.

‘We may also, as before, distinguish four species of triple
points, according as the three tangents are (a) all three real
and (1) all three distinct, (2) two coincident, (3) all three co-
incident, or (b) one real and two imaginary. A triple point
may be regarded as arising from the union of three double
points: viz. in the cases (a) these are (1) three crunodes, (2) two
crunodes and a cusp, (3) a crunode and two cusps; as illustrated
in the annexed figures, which exhibit the three double points
as they are about to unite

into a triple point. The a @ @
case (3) scarcely differs
visibly from an ordinary

point on the curve, but

when the figure is drawn accurately there is a certain sharpness
of bend at the singular point. In the case (5), there is in like
manner a real branch which comes to pass through an acnode:
to the eye the singular point does not appear to differ from any
other point on the curve.

We may, in like manner, investigate the conditions that the
origin should be a multiple point of any higher degree (k).
The coeficients of all terms of a degree below % will vanish,
and the equation will be of the form

u+u,, +&c.=0.
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At the multiple point there can be drawn k tangents, represented
by the equation u,=0; and the nature of the multiple point
varies according as the roots of this equaﬁon are all real and
unequal, or two or more of them equal or imaginary.

A multiple pomt of the order k may be considered as
resulting from the union of {k (k- 1) double points. This may
be illustrated by the case of % right lines, which must be
regarded as a system having }k(k—1) double points, namely,
the mutual intersections of the lines. Baut if all the lines pass
through the same point, this is in the system a multiple point
of the order %, and takes the place of all the double points.
And the principle is the same whether the lines which intersect
be straight or curved. A carve by the mutual crossing of
k branches may have }k(k— 1) double points, but if all the
branches pass through the same point, these double points are
replaced by a multiple point of the order k.

41. To be given that a particular point is a double point
of a curve is equivalent to three conditions. For if we take it
for the origin, three terms of the equation vanish (Art. 37),
and the constants at our disposal are three less than in the
general case. If we are further given the tangents at the
double point, this is equivalent to two conditions more; for in
addition to 4 =0, B=0, C=0, we are now also given the ratios
D:E, D:F.

Being given a triple point is equivalent to six conditions;
for, making it the origin, the six lowest terms of the equation
vanish: and so in general if it is given that a certain point is
a multiple point of the order k this is equivalent to 34 (k+ 1)
conditiona.

42. There is a limit to the number of double points which
a curve of the n® degree can possess, when it does not break-
up into others of lower dimensions.
. For example, a curve of the third degree cannot have two
double points; for if it had, the line joining them must be con-
sidered as meeting the curve in four points; but more than three
points of a curve of the third degree cannot lie on a right line,
unless the curve consist of this right line and a conic.
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Again, a curve of the fourth degree cannot have four double
points; for if it had, the conic determined by these and any
fifth point of the curve must be considered as meeting the curve
in nine* points; whereas no conic, distinct from the curve, can
meet it in more than 2 x 4 points. And, in general, a curve of
the n*® degree cannot have more than } (n—1)(n—2) double
points; for if it had one more, through these § (r—1) (n-2) +1
and n — 3 other points of the curve, we could describe a curve
of the degree n—2 (Art. 27), which must be considered as
meeting the given curvein 2 {} (n — 1) (o —2) + 1} + n — 3 points,
orin n(n —2)+1 points, which is impossible if the given curve
be a proper curve. Of course, the demonstration given only
shows that curves cannot have more than a certain number of
double points, and does not show (what in fact is the case)
that they can always have so many.

43. If the curve have multiple points of higher order, the
same criterion applies, each multiple point of order % being
counted as equivalent to }%(k—1) double points. But there
are limitations to the possibility of substituting for a certain
number of double points a multiple point of higher order.
Thus a curve of the fifth degree may have six double points,
and three of these may be replaced by a triple point: but
in this case the other three cannot be replaced by a second

* If a point of intersection of two curves be a double point on one of them, that
intersection must be reckoned as two, and the curves can only intersect in s —2 other
points. If it be a double point on both, the intersection must be reckoned as four.
And in general if it be on the one curve a mnitiple point of the degree £, and on the
other of the degree /, that intersection must be counted as £I. Thus, for example, a
system of % right lines meets a system of I right lines in k! points ; but if all the lines
of the first system pass through a point on a line of the second rystem, that point
clearly counts as k intersections, and the lines intersect only in & (I—1) other points.
And if every line of both systems pass through the same point, that point counts as
k! intersections, and the lines meet nowhere else.

If two curves touch at their point of intersection, the point of contact will, of
course, count as two intersections, since they have two coincident points common.
If the point of intersection be a multiple point on one or both curves, and if one
of the tangents at the multiple point be common to both curves, we must add one
to the number of interseetions to which it has been already shown that the multiple
point is equivalent; for, besides the points just proved to be common, they have a
consecutive point in common on one of the branches through the multiple point.

The reader will have no difficulty in seeing the effect of any combination of
tangents and multiple points.
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triple point, since the line joining the two would meet the
curve in more points than five. Or, generally, if a curve have
a maltiple point of the order » — 2, it can have no other higher
than a double point, and of these according to the criterion not
more than n —2.*

44. We call the deficiercy of a curve the mumber D, by
which its number of double points is short of the maximum;
this number playing a very important part in the theory of curves.
If D=0, that is, if a curve have its maximum number of double
points, the coordinates of any point on the curve can be expressed
as rational algebraic functions of a variable parameter. For
the § (n — 1)(n — 2) double points, and = — 3 other assumed points
on the curve, making together § (n + 1) (r —2) — 1 points, or one
less than enough to determine a curve of degree n— 2, we can
describe through these points a system of such curves included
in the equation U=AV. Now if we eliminate either variable
between this equation and that of the given curve, we get
to determine the other coordinate for their points of intersection,
an equation of the n(n —2) degree in which A enters in the
n'® degree. But of this equation all the roots but one are
known ; for the intersections of the curves consist of the double
points counted twice, of the n— 3 assumed points, and only of
one other point, since

(r=1)(n—2)+(n—-3)+1=n(n-2).
Dividing out, then, the known factors of the equation, the only

* In the first edition of this work I assigned here too high a limit, viz.,
3 (n—2)(n—38). Instead of applying the general criterion, I investigated the question
independently as follows. Through the given multiple point, and 4n (n—8)—1 other
points on the curve, we can describe a curve of degree n—8; the multiple point
(counted as n—2) and the assumed points make up 4 (n+2) (n—3) intersections of
this new curve with the original : subtracting this number from s (n —3) there remain
only }(n—2)(n—38) other intersections, and this therefore is a limit to the number
of the assumed points which can be double points. But we obtain the lower limit
given by the general criterion if we describe a curve of degree n—38 having the given
multiple point as a multiple point of order n—4; this is (Art. 41) equivalent to
3(n—38) (n—4) conditions, and there will remain but 2 (n—8) points, which we can
assume for the determination of the curve n—8. But in the intersections of this
curve with the original, the common multiple point counts as (n—2)(n—4), and
adding the number of assumed points, it will be found that there remain but n»—2
other intersections,
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unknown root remains determined as an algebraic function of
the n*® degree in A.

It is true, conversely, that if the coordinates can be expressed
as rational functions of a parameter, the curve has the maximum
number of double points. Curves of this sort are called unicursal
curves. When we are given z, y, z respectively proportional
to a\”+ &c., a'\*+ &c., a"\"+ &c., the actual elimination of
A is easily performed dialytically. Writing down the three
equations

Ox=a\" + &e., Oy=a'\"+&ec., 0z=a"\"+ &c.,

and multiplying each successively by A, A%,...A™", we shall have
3n equations, exactly enough to eliminate linearly all the
quantities 6, O\, &c., A, X", &c. The equation of the curve,
then, appears in the form of a determinant of the order 3n,
but only » rows will contain the variables; the curve therefore
will be of the n® order, and its equation will involve the co-
efficients @, b, &c., in the 2n*™® degree. All this will be more
clearly understood if we actually write down the result for the
case n=2. We have, then, the three equations

Oz=a\'+bAh+c¢, Oy=aN'+ 0N+, Oz=a"N'+ 0"\ +C".
Multiplying each by A, and then eliminating linearly from the
six equations the quantities 6, O\, A%, A’y A, the result appears
as the determinant
z, a,b,c,
y a,¥,c,
z, a'b"c"

x, a,b,c
’ ’ ’
¥ a,b,c =0
" bu w | T Ve
2, a,0,c¢

45. Tt appears from Art. 41 that any three points taken
arbitrarily may be double points on a curve of the fourth
degree; for the three are equivalent to but nine conditions.
But the tangents at all these double points cannot also be
assumed arbitrarily; for being given the three double points
and these three pairs of tangents is equivalent to fifteen con-
ditions, one more than enough to determine the curve. There
must then be some relation connecting these tangents; and,
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in fact, we shall prove afterwards that these six tangents all
touch the same conic section, so that, given five, the sixth is
determined.

Twenty conditions determine a curve of the fifth degree.
We may then assume arbitrarily its six double points, and also
the pair of tangents at any one of them; but the curve is then
completely determined, and therefore also the pairs of tangents
at the other five.

Twenty-seven conditions determine a curve of the sixth
degree. It would therefore, at first sight, appear that such
a curve might be described, having for double points nine points
assumed arbitrarily. But this is not so, for there is through
the nine points a determinate cubic curve U=0; and then
a carve of the sixth order having the nine points for double
points, and in general the only such eurveis U =0, viz. the cubic
twice repeated. It is not even possible in this case to assume
arbitrarily eight of the nine double points.

And so in like manner for curves of higher degrees, when
they have their maximum, or even some number less than their
maximum, number of double points there must be relations
connecting them. Except in the case of curves of the fourth
degree, we are not aware that any attempt has been made to
express these relations geometrically, but there must remain an
extensive class of theorems of this nature still to be discovered.

46. What has been said is sufficient to enable the reader to
form a conception of the nature of multiple points on curves.
‘We shall now proceed to show that a curve may in like manner
have multiple tangents; or, in other words, that there may be
lines which touch the curve in two or more points, or which
have with the curve a contact of the second or higher order.
What are commonly called the ¢ singular points” of curves may
be reduced to the two classes, either of multiple points, or of
points of contact of multiple tangents. As we introduced multiple
points to the reader by an examination of the particular case
where the origin was a multiple point, so it will be more
simple to commence our discussion of multiple tangents by
examining the condition that the axis (y=0) should be a
multiple tangent.
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We find in general the points where this line meets the curve

by making y =0 in the general equation, whence we get
A+ Bx + Do’ + G&* +...Px" =0,
an equation which can be reduced to the form
Px—a)(xz—b)(x~c)(z- d) &e.=0,

where a, b, &c., are the values of x for the points where the
axis meets the curve.

The axis will be a tangent when two of these points coincide,

that is, when there is between the roots a single equality a=25.
The equation here is
P{x—a)(z-c)&e.=0.

The axis then touches the curve at the point y=0, x=a. If
A=0, B=0, the axis touches the curve at the origin. We
consider only the case a real, because the equation being
real, an equality a=>5 between two imaginary roots would
imply another equality ¢ =d between two other imaginary roots.

The axis is a double tangent if we have between the roots
two equalities c=a, d=5; the equation here is

P(x—a) (x—10)" (z—¢) &ec.=0.

And we have here the two cases

I. a and b each of them real, when the axis is a tangent

at the two real points, x=a, 2=5. It is evident that such a
tangent, meeting the curve in two pairs

of coincident points, cannot occur in any {\ /\b/\\
a [

curve of a degree lower than the fourth.

I1. a and b imaginary, viz., the equation is here
P’ +px+q)' (x—e) &e.=0,
and we have a double tangent with two imaginary points of
contact.

Again we may have between the roots an equality a=b=c.
Here the equation is of the form

P(z—a)’(x—d) &c.=0,
where a is taken to be real.

The axis then meets the curve in three consecutive points,
In general, taking three consecutive points on a curve, the lne
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joining the first and second of these is a tangent,.and the line
joining the second and third is the consecutive tangent. In
the present case, therefore, two consecutive tangents coincide.
Hence 400, in such a case, the axis may be called a stationary
tangent ; for if we consider the curve as the envelope of a move-
able line, in this case two consecutive positions of the moveable
line coincide. The point of contact of a stationary tangent is
called a point of inflexion.

If A=0, B=0, D=0, the origin is a
point of inflexion, and y =0 the tangent at it;
since then the equation is of the form

- Pr*(z—c)&e. =0.

47, The crunode and acnode (Art. 38) correspond precisely
to the double tangent with real contacts and the double tangent
with imaginary contacts; the cusp or stationary point also
corresponds precisely with the stationary tangent. But there
is no correspondence in the analytical theories; for the cusp we
have an equality a =5, which is a particular case of the unequal
values (a, b) which belong to the crunode and to the acnode;
for the inflexion we have a double equality a=5=c¢, which is
a relation distinct in kind from the equalities e =5, ¢=d which
belong to the double tangent with real or imaginary contacts.
The double point was discussed with point-coordinates; to make
the analytical theories agree the double tangent should have
been discussed with line-coordinates—the stationary tangent
would then have presented itself as a particular case of the
double tangent. But in what precedes the stationary tangent
presents itself as a distinct singularity from the double tangent:
so with line-coordinates the cusp would have presented itself as a
distinct singularity from the double point; and in reference
hereto the remark was made Art. 38, that the cusp was really
a distinct singularity. The singularities then mutually corre-
spond as follows:

correspond to
double point or node (crunode | double tangent (contacts, real
or acnode), or imaginary),
cusp, spinode, or stationary | stationary tangent, or tangent
point, at inflexion ;
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and it is only in a certain point of view that the cusp is a
particular case of the double point, and in a different point of
view (the reciprocal one) that the stationary tangent is a parti-
cular case of the double tangent.

Considering the curve as described by a point which moves
_ along a line at the same time that the line revolves round the
point : there is at the cusp a real peculiarity in the motion, the
point first becomes stationary, and then reverses the sense of
its motion; and so at the inflexion, the line first becomes
stationary and then reverses the sense of its motion. At a
double point there is mo peculiarity in the mation, all that
happens is that the point in its course comes twice into the
same position; and so, for the double tangent, there is no
peculiarity in the motion; all that happens is, that the line in
its course comes twice into the same position. The cusp and
stationary tangent are singularities in a more precise sense than
are the double point and the double tangent.

48. In ordinary cases the curve lies altogether at the same
side of the tangent, but at a point of inflexion the curve crosses
the tangent, and lies part on one side, and part on the other.

This is a particular case of the following more general
theorem: Two curves which have common an even number of
consecutive points touch without cutting ; those which have common
an odd number of consecutive points cross one another at their
point of meeting.

Let the equations of the two curves be y=dz, y=yx; let
them intersect at the point #=a; then, by Taylor’s theorem,
the values of the ordinates of the two curves, for the point

z=a+h, are
dtbh d"qb B d¢ B

= ¢+ it et & T2
d«p» h LY Ry B
"'+ + o 1at a TestEe

where ¢, ¥, d-;’ &c., are the values of ¢z, VY, -‘—z,d;—x , &e.,

when z=a. Now, by hypothesis, ¢ =+, since the curves inter-
sect at the point « = a, therefore
dp dy d'¢ d¥ d’¢_dy\ ¥
Y= Y= (d.c'?ili) +(dx" d.c) (d—w” %’)123+&°‘
F
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Now, by the principles of the differential calculus, when % is in-
definitely small, the sign of the sum of this series is the same as
the sign of its first term, but the sign of this term is changed
when the.sign of % is changed; therefore if, at the infinitely
near point (z=a+*%), the ordinate of the curve ¢ be greater
than that of the curve v, it will be less at the point (z=a—%).
Hence if two curves have one point common, in general, that
which is uppermost at one side of the point will be undermost
at the other.

But now suppose that Z—d’ = %, the first term of the series
. d'¢ d*
will then be (d?d,_ Ex—\f) 132? which does not change sign

when % changes sign. The same curve, therefore, which is
uppermost on one side of the given point, will be uppermost also

on the other. But when j—f = 3% , the curves are manifestly
closer to each other than in the previous case, since the difference
of the ordinates no longer involves the first power of %; which
is equivalent to what is expressed geometrically, by saying that
the curves have two consecutive points common. Or the same

. n

thing may be shown thus: 2y, #"y" being the coordinates to

rectangular axes of any two points on a curve, ¥ : v 5 is plainly

the tangent of the angle which the chord joining them makes
with the axis of #: but if the points coincide, we learn that

the value of Z—‘Z Jor the given point expresses the tangent of the

angle which the line joining 1t to the conmsecutive point (i.e. the

tangent) makes with the axis of x; consequently, if two curves
. d: .

have a point common, and E—Z for that point the same for both

curves, it follows that the consecutive point is also common.

49. When the curves have three consecutive points common,
a3 2 .
we shall have dwd: = (fi;l:’ the first term of the series for y, -y,
8 3 3
o (Z2-0%)

v o) 950 which does change its sign with %, and
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therefore, as before, the curves cross at the given point. And
8o, in general, if the expansion of y,—y, commence with an
even power of &, it will not change sign with %, and therefore
the curves touch without crossing; but if it commence with an
odd power of %, the sign will change with %, and therefore the
curves cross at the given point.

The reader has already had an illustration of this, in the case
of the circle which osculates a conic at any point, and which, in
general, having three points common with the curve, touches
and crosses the curve (Conics, p. 214); but at the extremities
of the axes the osculating circle passes through four consecutive
points, and touches without crossing.

The same investigation applies when one of the curves
becomes a right line. A tangent, therefore, at a point of in-
flexion, or any line meeting the curve in an odd number of
consecutive points, is crossed by the curve: but a tangent which
meets the curve in an even number of consecutive points has
the neighbouring part of the carve all at the same side of it.

50. The axis y =0 will be a triple tangent when the equa-
tion which determines the points where it meets the curve is
of the form

P(x—a) (z-b)' (x—c)'(x—d) &c.=0.
It is evident such a tangent cannot occur in a curve of any
degree lower than the sixth. We may, as in Art. 40, dis-
tinguish four species of triple tangents according as the points
of contact are real and distinct, one real and two imaginary,
one real and two coincident, or all three coincident. The last
will be the case when the equation is of the form

P(z- a)'(x—b) &c.=0;

and the axis meets the curve in four coincident points : the point
of contact of such a tangent is called a point of undulation. In
like manner there may be multiple tangents of still higher
orders, or again, points of undulation of higher orders, arising
when a line meets the curve in more than four coincident points.
Cramer calls those points at which the tangent meets the curve
in an odd number of consecutive points, points of vistble inflexion,
to distinguish them from those points de serpentement, or points



36 MULTIPLE POINTS AND TANGENTS OF CURVES.

of undulation, which do not, to the eye, differ from ordinary
points on the curve.

51. We have hitherto only illustrated the case where the
origin is a multiple point, or one of the axes a multiple tangent ;
it is evident, however, that the form of the equation might, in
like manner, show the existence of multiple points and tangents
situated anywhere.

I. For instance, if the equation be of the form
ap+BY =0,
where a, 3 are linear functions of the coordinates, and ¢,

are any functions of the coordinates, then a3 is one point on the
curve. The equation of the tangent at this point is

ad' + By’ =0,
where ¢, Y~ are the values which ¢ and +r assume when we
introduce the conditions a=0, 8=0. For if we seek the n — 1
points, in which any line through a3, (a —%8) meets the curve,
we get an equation of the form

Bik(¢'+MB+ NB*'+&c.) + (V' + M'B+ N8+ &e.)} =0;
and in order that a second root of this should be 3= 0, we must
have k¢’ + ' =0; whence, substituting for %, %, we get for
the equation of the tangent,

ag’+ By’ =0.
II. In general the curve represented by
aByd &e.=aBy,8, &e.
passes through the points
aa, a8, ay, &c., BB, By, &c., vy, &e.
III. If the equation be of the form
ad + B =0,
we see (as at Conics, p. 223), that a is the tangent at the point

aB, for two of the points in which this line meets the curve

coincide.
Or again, if the curve be

t b, bt +B'$=0,
t,, &c., are the tangents at the n points, where 8 meets the curve.
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The form of the equation shows that f the points of contact of
n tangents lie on a right line B, the remaining points where these
tangents meet the curve lie on the curve of the (n—2)" degree .

IV. If the equation be of the form
a'p+aBy+B'x=0,
and if we seek the points where any line (a=%/3) through a3 meets
the curve, we find that two of these alwaya coincide with aB,
and therefore that this is a double point. It appears precisely as
in I, and in Art. 37, that the tangents at this double point are
a’¢l+ algil’,'l'ﬁ’x':(),
where ¢', ¥, x' are the values which these functions take for
the coordinates of the point a=0, 8=0.
V. So again, if the equation be of the form
a’'¢+a'By+af'x+Lw=0,
the point a3 is a triple point ; the three tangents being given by

the equation
o’ +a'BY’ + oS’y + B’ =0.
VI. If the equation be of the form
' ad + By =0,
a is a double tangent at the points a3, ay.
VII. If the equation be of the form
ad + B8y =0,

ap is a point of inflexion, and « the tangent at it.

52. We shall first illustrate the last Article, by showing how
the equation enables us to discern the nature of the points of
the curve at an infinite distance. The trilinear equation is

(Art. 26)
2t u, 2"+ &e.=0.

The directions of the n points at infinity are found (by making
2=0 in the equation) from the equation u, =0, which solved for
y : a, is of the form

(y —m‘w) (.1/_ mnz) (y - maw) (&0.) (y_ m“z) =0.
A curve of the n™ degree has, in general, n asymptotes, namely,
the tangents at the n points, where 2, the line at infinity, meets

u +u
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the curve. 'We can find their equations readily as follows, when
the equation » =0 has been solved for y : z. It appears from
II1. of the last Article that if the equation were reduced to
the form
tlyennnt, +2°0 =0,
t,, &c., would be the » asymptotes. But the given equation
(y —mz) (y —muz) &e. + zu,_ + 2°u,_ + &c.=0

n-1,
may always be reduced to the form

(y —mx + A'12) (y —mx + k:z) &e. = z,¢ y
for the terms of the »™ degree in « and y are obviously the same
for both equations, and the n arbitraries, A, &c., in the second,
can be so determined as to make the n terms of the (n — 1) degree
the same for both equations.

The reader will have no difficulty in anderstanding this method,
if he tries to apply it te a paiticular example ; for instance,
(x+9) (2z+ y) Bz +y) + 172" + 11zy + 25" + 122 + 10y + 36 = 0,
which it is desired to throw into the form

(x+y+7) @z+y+2) (Bz+y+2,)+ Az+ By+ C=0.
To determine A, A, A, we should then have the three equations

6N, + 3N, + 2N, =17, BN+ 4N+ 3N, =11, A + X, +A,=2;

and the equation may be reduced to the form

(x+y+4)(2z+y—3)(Bz+y+1)+43z+21y+48=0.
Observe that the values A, A, A, are such that we have
identically

172+ 1lzy +2y° A + A, + A,
(x+y)2x+y)(Bz+y) =+y 2x+y 3Bz+y’

and so in general the values X, A,... are determined by decom-

posing u,_ < u, into its simple fractions.

53. If two roots of the equation u,=0 be equal (m,=m,),
the general equation takes the form (y —mz)*¢ +2¢y=0; two
of the points where z meets the curve coincide, and the line at
infinity is therefore a tangent to the curve.

Should three roots of this equation be equal, the line at
infinity meets the curve in three coincident points, and therefore
touches at a point of inflexion.
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If in the general equation the coefficient of 3" =0, the axis of
v would pass through a point at infinity, and we have evidently
only an equation of the (n— 1)" degree to determine the re-
maining points where it meets the curve.

Should the coefficient of 3™ also vanish, the axis of y will be
an asymptote.

If two factors of u_ be equal, and one of them also a factor in
%,_,, then the curve has a double point at infinity ; for the equa-
tion is of the form

(y—mz)* ¢+2(y—mz) ¥ +2"x=0.

54. We shall in a future section show how the singular
points of a curve may, in general, be found. But the application
of the general methods being usually a work of some difficulty,
the examples given in works on the differential calculus are, for
the most part, cases where the existence of the singular points
more readily appears from mere inspection of the equations; a
selection, including all the most difficult of these examples,
will therefore serve to illustrate the preceding Articles. (See
Gregory’s Examples, p. 170, &c.)

Ex. 1. oA —ayz?+ by* = 0.

Ex. 2. o* — 2az% + 22%* +ay* + y* = 0.

In both cases the origin is a triple point. The tangents of the first are given by
the equation az?y = by*; and of the second by the equation 222y =g3. By Art. 43,
neither curve can have any other multiple point.,

Ex. 8. a? — 23+ b2 =0.

The origin is a double point, whose tangents are given by the equation ay? + b22=0.

If the sign be given positive, the origin is a conjugate point.

Ex. 4. (2 - a?)? = ay? (2y + 8a), or (z — a)? (z + a)? = ay? (2y + 8a).

Here evidently (z — a, y) and (z + a, y) are double points. To get the tangents
at the first, we are to make z=a, y =0 in the parts which multiply (z — a)?, g7,

and we get
4 (z—a)?=38y%

In like manner for the tangents at the other double point,
4 (z+a)? =38y
The curve has a third double point, whose existence can be shown by throwing the

equation into the form
2 (2% — 20%) = a (2y — a) (y + a)2.

Hence (z, y + a) is.a double point, and the tangents at it are
2:2=8 (y +a)

Having found these three, we know, by Art 42, that the curve can have no other
multiple point.
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Ex. 6. (by — cz)? = (z — a)s.
The point (by — ¢z, z — a) is & cusp of such a nature that the tangent at it meets
the curve in five consecutive points.

Ex. 6. o* (z + ) = a¥2

The origin is a double point, the tangent at which meets the curve in four
consecutive points. There is a triple point at infinity, to which the line at infinity is
the only tangent. The line = + & touches the curve where it meets the axis of z,
and also at a point of inflexion at infinity.

Ex.7. S +g+2d =0

This equation cleared of radicals becomes

(=% + 4% + 2°)% = 2Ta%y%?;

and in this form the existence of six cusps is manifesf, for each of the points where
« meets y2+ 22 is a double point, and z the only tangent at it. Similarly for
(, =® + 2%) and (2, 22 + y%). But the cusps are all imaginary.

The curve has also four double points, viz., (z + g, z + 2).

This can be proved by putting y ¥ z = %, z F = v; and therefore

y=utxz z2=vta
Substituting these values in the given equation, it is of the form
©2P + ur + vy,
The tangents at any of the double points will be found to be given by the equation
wturtor=0,

and therefore the double points in question are conjugate points; and, in fact, these
are the only real points of the curve.

TRACING OF CURVES.

55. It is proper to give some examples of the method of
tracing the figure of a curve from its equation. If we give any
value (a) to either of the variables x, the resulting numerical
equation can be solved (at least approximately) for y, and will
determine the points in which the line 2 =a meets the curve.
By repeating this process for different values of x, as at Conics,
p- 13, we can obtain a number of points on the curve; and
by drawing a line freely through them, can obtain a good idea
of its figure. By taking notice what values of z render any
of the values of y imaginary, we can perceive the existence of
ovals, or can observe whether the curve is limited in any di-
rection; and we have already shown (Art. 52) how to find
whether the curve has infinite branches, and how to determine
its asymptotes. It will be shown in the next chapter how to find
dy

its multiple points and points of inflexion. The value of e
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at any point gives the direction of the tangent at that point
(Art. 48); and if we examine for what points %=0, or =ox,
we shall have the points at which the course of the curve is
parallel or perpendicular to the axis of .

In practice we must, of course, take advantage of any
simplifications which the equation of the curve suggests. Thus,
if we consider a series of lines parallel to one of the asymptotes
(or a series of lines passing through a point on the curve), the
equation which determines the other points in which each of
them meets the carve is of a degree one lower than the degree
of the curve. If the equation shows that the curve has a double
or other multiple point, it is advantageous to consider a series
of lines drawn through this point, since then the equation in
question will lose two or more dimensions.

There is scarcely any exercise more instructive for a student
than the tracing of curves, and more particularly those in which
the equation contains one or more parameters which assume a
succession of different values. In the case of a single parameter,
this may be conceived of as an ordinate z in the third dimension
of space, and the problem thus, in effect, is to find the form of
the several parallel sections of a surface.

It will suffice to add a few examples to those which will
incidentally occur in the course of these pages. We refer
the reader who may wish for further illustration to Gregory's
Examples, Chap. XI.; or, if still unsatisfied, to the source
whence all later writers on the subject have drawn largely.
Cramer’s Introduction to the Analysis of Curves.

Ex. 1. 2% — azty + by? = 0 (see Ex. 1, p. 89).

Here, the origin being a triple point, -it is advan-
tageous to consider a series of lines drawn through it.
Bubstituting y = mz, we find z =m (a — bm?), & funo-
tion which, as m passes from 0 to + e, increases from 0,
when m =0, to & maximum value when a — 8m? =0;
then decreases, and vanishes when @ — m? =0 and has
an indefinitely increasing negative value as m increases
further. The curve is manifestly symmetrical in re- /

gard to the axis of y. Hence the figure is that here
represented.

Ex. 2. (' — a)? = ay? (3a + 2), (see Ex. 4, p. 39).

Hence 2* = a? + J{ay® (3a + 2y)}. The curve is plainly symmetrical in Tegard to
the axis of y. It has on each side two branches, corresponding to the two signs

(63
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which may be given to the radical. The two branches intersect when y = 0, and ac-
cordingly we have seen that there are on the axis of = two double points at the distance
z=+a. As yincreases positively, the radical increases indefinitely ; hence the value
of z, corresponding to the one branch, increases
indefinitely ; that corresponding to the other de-
creases, until we come to the value of y corre- '
sponding to the single positive root of the equa- \/\ /
tion 2ay® + 3a%? = a*, (2y = a), beyond which this
branch can extend no higher. For negative values
of y, the radical increases to a maximum value
when y +a=0; the one pair of branches then
intersect in a double point on the axis of y, and
the other pair is at its furthest distance from that
axis, Evidently neither branch can proceed lower
than the value 8a + 2y =0. Hence the shape of the curve is that represented in
the figure,

Ex. 8. Given base of a triangle 2¢ and rectangle under sides m?, the locus of vertex

is Cassini's oval, whose equation is, the origin
being the middle point of base,
(2 + 32— B — A3 = mt,

The accompanying diagram represents the
figure for different values of m. The dark
curve represents the figure for m = ¢, the curve

. being then known as the lemmiscate of Ber-
nouilli, When m is less than ¢, Cassini’s curve
consists of two conjugate ovals within the parts of this figure: when m is greater
than ¢, of one continuous oval outside it.

Ex. 4. On the radius vector from a fixed point O to a fixed line MN a portion
RP of given length is taken on either side of the right line. The locus of P is a
curve called the hoid of Nicomedes, invented by that geometer for the solution
of the problem of finding two mean proportionals.

If OA =p, RP =m, the polar equation is (p 4 m) cosw = p, and the rectang'ular
equation

my? = (p —9)* (@* + 4.
The line MN (p =y) touches at a singular point at infinity, and there meets the *
curve in four consecutive points.
The point O is also a double point, the tangents at which are given by the equation

P+ (P —m?) 2 =0,

It will therefore be a node, conjugate point, or cusp, according as m is greater, less
than, or equal to p. The continuous line represents the case whenm:sgre&terthm
?; thedotbedhnethatwhenmlslessthanp.
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Ex. 5. In like manner on the radius vector to a fixed circle from a fixed point on it
a portion of fixed length is taken on either side of the circle. The curve is called
Pascals limacon. The polar equation is p =pcosw +m; and the rectangular
(z® + y* — pz)* =m? (z* + y%). The origin is evidently a double point and is a node
or conjugate point according as p is greater or less than m. When p = m, the origin
is a cusp, and the eurve is ef the form of a heart, and is called the cardioide. This

eeemestea,
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is represented byJthe dark curve in the figure, the inner and outer curves repre-
senting the forms with a node and with a conjugate point respectively.

Ex. 6. (z® - a®)? + (y* — 3%)% = o4, where b is supposed less than a. When ¢ =0
the curve consists of the four conjugate points + a, + 8. The figures represent the
cases, (1) ¢ less than 3, (2) ¢=3J, (8) c intermediate between b and a, (4) c=a,
(5) ¢> a, <4j(a*+ %), (6) c=4/(a*+ b%). When c has a greater value the curve
is of similar form, but without the conjugate point at the origin. Whenc=a =35,
the curve breaks up into two ellipses a8 in (7 .
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56. Reverting now to the case of a singular point at the
origin, it is for determining the nature of it, frequently con-
venient to develope y in a series of ascending powers of x;
for if we throw the equation into the form y =A™+ Ba® + &ec.;
where B and all the indices which follow are greater than g,
we know that in the neighbourhood of the origin the figure
resembles that of the curve y=.4a” which can easily be con-
structed. In order to effect such a development, we can employ
the process given by Newton¥*, which is most conveniently
used in the following form. Write in the equation y = 42, and
determine the positive quantity a by the condition that the
indices of two or more terms shall be equal, and less than the
index of any other of the terms. This can always be done

* See Methodus Fluxionum et Serierum infinitarum, &c., under the heading
De reductione affectarum equationum (Opusc. ed. Castillon, Vol. 1., p. 87). See also
a paper by Professor De Morgan, Quarterly Journal, Vol. 1., p. 1, and Transactions
of the Cambridge Philosophical Society, Vol. IX., p. 608. Newton gives the rule,
by means of a diagram of squares, in a form different from that given above,
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by trial, by equating the indices of each pair of terms, and
observing whether the resulting value of a is positive, and
the equal indices not greater than the indices of some other
term. Having thus found @, we determine 4 by equating to
zero the quantity multiplying the terms with equal index.
‘We can then, if need be, carry on the expansion by substituting
y=Aa* + Ba#f, where A and a have the values already found;
and 8 and B are determined by a similar process. Thus for
example, let the eurve be z*+ 3*—3axzy=0, where the origin
is a double point having the two axes for tangents: then,
writing y = Aa= the equation becomes

’ + A°2* — 3adx"" = 0.

‘We are now to make two indices equal. Trying first 3 = 3a,
or a=1, we reject this value because it makes the equal indices
greater than the index a+ 1 of the other term. Trying next
3=a+1, or a=2, we find that this value will make the equal
indices less than that of the third term. The equation will be-
come (1—3ad)a’+ A%°=0, and determining 4 so as to make
the coeffieient of 2* vanish, we sce that the equation may be

expressed in the form y=3la a* + &c., where the indices of the

remaining terms are greater than 2; and. we learn that the
form of one branch of the curve at the origin resembles that
of the parabola 3ay=a". And in the third place equat-
ing the indices 3a, a+1, we find a=4. Here again, the
equal indices are the lowest and the coefficients of the two
terms are A4°, —3ad4, whence 4=4/(3a), and the branch is
y=+/(3a)xt+&e., wherefore near the origin the form approaches
to that of the parabola y*=3ax. It is not necessary for our
present purpose, but if we desire to continue the expression

we should substitute y= 31“ a*+ Bxf. The lowest terms would

then be
L2t Do saBap =0
27a° 3a’
We can then make the indices of two terms equal, and lower
1

than the remaining one, by making 8=25, whence B=§]?,
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We have shown, then, that if we trace in the
neighbourhood of the origin the two parabolas

3ay=2", y'=3ax, we have approximately the

figure in that neighbourhood of the curve we wish N
to construct.

57. The same process will lead to a determination ef the
infinite branches of the curve. We must then expand y in
descending powers of z, and the only dif-
ference in the process is that we now make \\\
the equal indices greater than that of amy O
other term. Thus in the example already
given, equating the indices 3, 3a, we have
a=1, and their coefficient 4°+1. Attending \
only to the real value for 4 (=—1) we sub-
stitute y=—x + Bz#, and find in like manner 8=0, B=—a.
We thus get the expression y=-2x—a+&c., and we see that
the line © + y+a=0 is an asymptote. The ﬁg'ure is as in the
diagram.

58. In the case of the simple cusp of which we have had an
example, see p. 24, the two branches which meet at the cusp
lie on opposite sides of the common tangent, and have their
convexities opposed to each other; but there is a cusp (which
is a singularity of higher order) in which the branches lie on
the same side of the tangent. Thus, in the curve m(ay — 2*)*'=4",
it is plain that any positive values of z give real values for y;

at
and if we write the equation in the form ay =4 o) then since

the last term is less than the preceding when x is small, we see
that, whether we use the upper
or lower sign, the value of y will
be positive for small values of .
The axis of z, then, is a tangent
and both branches lie on the
upper side of it. The figure is
as here represented. These two kinds of cusps have been
called keratoid and ramphoid from a fancied resemblance to the
forms of a horn and a beak. We have seen (p. 26) that




POLES AND POLARS. 47

ordinary multiple points of higher order may be regarded as
resulting from the union of a number of double points. Professor
Cayley has shewn (Quarterly Journal, Vol. viL, p. 212) that
any higher singularity whatever may be considered as
equivalent to a certain
number of the simple
singularities, the node,
the ordinary cusp, the
double tangent, and the
inflexion. Thus, a cusp
of the kind described in this article is equivalent to one node,
eme cusp, one double tangent, and one inflexion, as will appear
from the annexed figure which exhibits the node-and cusp on
the point of uniting themselves into the higher singularity in
question.

S8ECT. IV.—POLES AND POLARS,

59. The method that we shall presently use in investigating
the conditions that a curve should have multiple points or
tangents, and in ascertaining their position, is the same as that
already employed in the case of the origin. We shall consider
a series of radius vectors drawn through a given point: we
shall form the equation which determines the coordinates of
the n points where any such radius vector meets the curve, and
we shall examine the conditions that ome or more of these
points may coincide with the given point itself. In order to
determine the coordinates of these » points we shall use
Joachimsthal’s method explained Conics, p. 253. Since the
trilinear coordinates of any point on the line joining two points
a'y'z, x"y"z" are of the form Az'+ ux”, Ay + uy", A2’ + p2",
the points where the joiping line meets any curve are found
by substituting these values for z, y, 2, and then determining the
ratio A : u by the resulting equation, And jt will be a necessary
preliminary to the following investigation to discuss carefully the
functions which present themselves in this substitution.

If then in U, which is a homogeneous fuhtetion of the nt* order
in x, y, 2, we substitute Az + ux’, Ay + py’, A&+ ps’ for z, 3, 2,
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it is evident by Taylor’s theorem that the coefficient of A" will
be U, and that of A" will be

z ig +y ‘fi—U-j-z ‘flg’ orcU+y'U+7U, ora’d+y'B+2C,
using the abbreviations U,, U, U, or 4, B, C (as the case may
be) for the differential coefficients. 'We shall use the symbol A
to denote the operation ' i = Yy di +2' g-z , and the coefficient
of N 'u may thus be wntten AU In like manner the coeffi-
cient of A"™x* will be half

d’U wd'U ,d'U au aUu ;U

il ~ S TR "Rl Ll v rbidr v b o
which may be written

d d d .
( da:+yd+z )Uor aA'l.

The second differential coefficients are often written with double
suffixes U, U,, U, U, U,, U,), but we find it more con-
venient to use the letters, a, b, ¢, £, 9, k, and so to write A*Uin

the form we have used in expressing the general equation of

a conic ax’ + by* + c2* + 2fyz + 2gzx + 2hxy.
In like manner the coeflicient of A""x* in the expansion is
1

8
123 AU, and so onj; the last coefficient being 1 2 A U.

It is evident however from the symmetry of the substltution
that this coefficient will be U’, and in general, that the co-
efficients of any two corresponding terms A°u’, A’u?; only differ
by an interchange of accented and wunaccented letters. We
see thus that A"*U enly differs by a numerical factor from
zU,+yU,+2U,, and generally that

yd o d,d\e, d d , dy,
only differ by a numerical factor. We may write the last

function AU, the accent on the U serving to mark the inter-
change of accented and unaccented letters.

60. The curve of the (n—1)® degree AU=0 is called the
first polar of the point «'y'2’, with respect to U. In like
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manner A'U=0 is called the second polar, and so om, the
degree of the successive polar curves regularly diminishing by
one, the (n—2)® polar being a conic, and the (n— 1) a right
line. And from the remark just made, it is plain that the
equations of the polar line and conic are respectively

]
N

Since A*U is obtained by performing the operation A upon
AU, it is plain that the second polar of z'y'2’, with respect to U,
is the first polar of the same point with respect to AU; and
generally that the polar curve of any rauk is also a polar of the
same point with respect to all polar curves of a rank lower than
its own; as is evident from the equation A* (A'U) = AU

For the origin, for which «' and y' vanish, the operation
A reduces to differentiating with respect to z. If the ordinary
Cartesian equation be made homogencous by the introduction
of the linear unit z (Conics, p. 65) it may be written

u2"+u2"™ +uz"" + &e.=0,
and we find without difficulty, by differentiating with respect to z,
that the equations of the polar line, conic, &c., of the origin are

nuz+u,=0, n(n-1)uz'+ (n—1)uz+ =0, &ec.

61. The loous of all the points whese polar lines pass through
& given point 13 the first polar of that point.

The equatien zU+yU, +2U,; =0 expresses a relation be-
tween «yz the coordinates of any poiat on the polar line, and
«'y'2’ those of the pole. And, as in Conics, p. 83, we in-
dicate that the former coordinates are known and the latter
variable, by accentuating the former and removing the ac-
cent from the latter coordinates, when the equation becomes
@ U, +y' U,+2U,=0. There are (n—1)" points, whose polar
lines with respect to U will coincide with any given line, or
more briefly, every right line has (n—1)' poles. For take any
two points onm it, the poles of the right line must lie on the
first polar of each of these points; thercfore they are the inter-
_sections of these curves. Also the first polara of all the points
-of a right line have (n— 1) common points, viz. the (n— 1)* poles
of the right line.

H
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In like manner, the locus of points whose polar conics
‘pass through a given point is the second polar of the point;
and so on.

If the polar line (or any other polar) of a point pass through
the point, that point will be on the curve. For if we sub-
stitute a'y’2’ for ayz in the equation of the polar, it becomes
identical with the equation of the curve, since the operation

d d d .
z—+y & +2z 5 performed on a homogeneous function only

affects it with a numerical factor.

62. If a curve have a multiple point of the order k, that point
will be a multiple point of the order k—1 on every first polar,
of the order k— 2 on every second polar, and so on. For if the
origin be at the multiple point, the lowest terms in = and y
will be of the degree %; in the first polar, which involves only
first differentials of U, the lowest terms in z and y will be of
the degree £—1, and therefore the origin will be a multiple
point of that order: the equatien of the second polar, involving
second differentials of U, will contain x and y at lowest in the
degree % — 2, and so on. '

If two tangents at the multiple point in the curve coincide,
the coincident tangent will be a tangent to the first polar.
For the lowest term u, is of the form a’cd, &c., and hence
its differentials will contain a as a factor, and therefore the
lowest terms in the equation of the polar contain a as a factor.
And, in general, if [ tangents to the multiple point on the curve
_coincide, /—1 of them will be coincident tangents at the mul-

.tiple point on the first polar, /—2 at the multiple point on the

second polar, and so on. For if u, have any factor in the
I degree, that factor will be one of (I—1)t degree in all the
first differentials of u,; of ‘the ({—2)® in all the second diffe-
_rentials, &c.

SECT. V.—GENERAL THEORY OF MULTIPLE POINTS AND
TANGENTS.

63. We proceed now to apply the method indicated in
"Art. 59 to the investigation of the multiple points and tangents
of curves. In order to find where the line joining the points
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"on_n

&'y'z', «"y"s" meets the curve, we substitute in the equation
Az’ + pa' for @, &c., and we get in order to determine the ratio
A : u, an equation which we may refer to as A =0, and which
may be written
MU + A pwA U + PV p* AU + &e. =0,

it being supposed that in AU, &c., as previously written, z"y"z"
have been substituted for zyz. In order that one of the points
Az + pa’y Ay + py”y, A2'+ pz" should coincide with z'y’z" it is
obviously necessary that one of the roots of the equation A=0
ghould be 4 =0. But this clearly will not be the case unless
U'=0; and it is otherwise evident that the condition that
«'y'z' should be on the curve is, that its coordinates substituted
in the equation of the curve should satisfy it.

64. Two of the points in which the line meets the curve
will coincide with a'y’2", if the above equation be divisible by
p#*; that is, if not only U'=0 but also AU'=0: now it is plain

" n_n

that if the line joining 'y’ a point on the curve to ="y"z" meet
the curve in two points which coincide with z'y'z', then z"'y"2"
must lie on the tangent (or tangents if possible) which can be
drawn te the curve at a'y'z": but we have now proved that in
this case @"y"2" must satisfy the equation 2U;'+yU,' +2U,=0.
Hence, in general, at a given point on the curve there is but
one tangent, whose equation is that just written. It appears
thus that the polar line of a point on the curve s the tangent.

All the other polar curves of the point a'y'z' will touch the
curve at that point. Fer it was proved (Art. 61) that the polar
line with respect to the curve U will also be the polar line
with respect to each of the polar curves; and (Art. 61) the
coordinates x'y'z' satisfy the equation of each of the polar
curves; and therefore by which has been just proved, the polar
line with respect to any of them will coincide with the tangent.

65. The points of contact of tangents drawn to a curve from
any point lie on the first polar of that point. This is a particular
case of what was proved in Art. 61, or it may be established
directly in the same way. The equation of the tangent at the
point 2'y'2’ having been shewn to be U, +y U, +2U, =0, then
by an interchange of accented and unaccented letters we in-
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dicate that the coordinates of a point on the tangent are sup-
posed to be known, and those of the point of contact unknown ;
and we see that the latter coordinates must satisfy the equation
U +yU+2U,=0. The curve and its first polar clearly
intersect in n(n—1) points, and since at each of these inter-
sections U=0, AU=0 will be_ satisfied, we see that from a
given point there can be drawn n(n—1) tangents to a curve of
the n™ degree. Or, again, (Conics, p. 267) the degree of the re-
ciprocal of a curve of the n™ degree is in general n (n —1).

66. If, however, the curve have a double point, it was
proved (Art. 61) that the first polar of any given point must
pass through that double point. The double point, therefore
(see note, p. 27), counts for two among the intersections of the
curve with its first polar. But the line joining the point z"y"z"
to the double point is not a tangent in the ordinary sense of
the word, though it is indeed included among the solutions to
the problem we have been discussing (viz., to draw a line
through 2"y"z", so as to meet the curve in two coincident
points) ; for we have shewn that every line through the double
point must be considered as.there meeting the curve in two
coincident points. Now the entire number of solutions to this
problem being always n (r— 1) (viz., the intersections of U and
AU), the number of tangents, properly so called, which can be
drawn to the curve is diminished by two for every double point
on the curve; or the degree of the reciprocal of a curve of the
n™ degree having & double points is n(n—1)—28.

67. If the curve have a cusp, we have proved (Art. 62) that
the first polar not only passes through the cusp, but also has its
tangent the same with the tangent at the cusp. Hence (see
note, p. 27) this cusp counts as three among the intersections
of the curve with its first polar, and the remaining intersections
are consequently diminished by three for every cusp on the
curve. Hence the degree of the reciprocal of a curve having &
ordinary double points and k cusps, is

n(n—1)-28—3x.*

* According to M. Poncelet, Waring was the first who investigated the problem
of the number of tangents which can be drawn from a given point to a curve of the
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68. The same principles would shew the effect of any higher
multiple point on the degree of the reciprocal. A multiple point
of the order £ would (Art. 62) be a multiple point of the order
% —1 on the first polar, and therefore the number of remaining
intersections, and consequently the degree of the reciprocal,
would be diminished by & (k- 1).

We have shewn (p. 26) that a multiple point of the order
% is equivalent to 4% (k- 1) double points, each of which would
diminish the degree of the reciprocal by two. And the result
we have now obtained may be stated; the effect of a multiple
point on the degree of the reciprocal s the same as that of the
equivalent number of double points. And so generally, see
Art. 58, for a multiple point equivalent to & deuble points, &
cusps, 7' double tangents, and ¢ inflexions, the effect on the
degree of the reciprocal is =28+ 3«

69. We have already seen that the line joining 2'y’2' and
«"y"z" will meet the curve in two points which coincide with
z'y'z if U'=0, and if z"y"2" be so taken as to satisfy the
equation 2"U,'+y"U+2'U/=0. But if it should happen
that the coordinates z"'z' satisfy the three equations U, =0,
U, =0, U,=0, then the second cendition z"U,'+y" U, + 2" U,’=0
is satisfied no matter what 2"y"z" may be. The point z'y'z' is
then a double point, and every lme drawn through it meets the
curve in two coincident points.

‘We see then that the curve expressed by the general equa-
tion in Cartesian or trilinear coordinates will not have any
double point unless the coefficients be connected by a certain
relation. For the three curves U, =0, U,=0, U, =0 will not in
general have any point common to all three, and therefore the
functions U, U,, U, cannot all be made to vanish together. If

between these three equations we eliminate ayz, we shall have

nt® degree. (Miscellanea Analytica, p. 100). This number he fixed as at most n?.
M. Poncelet shewed (Gergonne's Annales, Vol. VIiL., p. 218) that this limit was fixed
too high ; that the points of contact He on a curve of the (n — 1)* degree, and that
their number cannot exceed n (» — 1). Finally, M. Pliicker pointed out the cases in
which the number of these tangents is less than n (n — 1), and thereby fully explained
(as we shall do farther on) why it is that only n tangents can be drawn to the
reciprocal of a curve of the n'® degree, thongh that reciprocal is, in general, of the:
degree n (n— 1),
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a relation between the coefficients, which will be the condition
that these three polars should intersect, or that the curve U
should have a double point. This condition is called the dis-
criminant of the equation of the curve. Thus (Conics, p. 254)
we found the discriminant of a conic by eliminating xyz between,
the three differential equations :

ar+hy+gz=0, hx+by+fz=0, go+fy+cz=0,

each of which must be satisfied by the coordinates of the double.
point if the curve have one, and we found
abe +2fgl — af* — bg* — ch’ =0.

In general the discriminant will be of the degree 3 (rn—1)*
in the coefficients of the given equation; for (see Higher
Algebra, p. 61) since the three derived equations are each of
the degree n — 1, their resultant eontains the coefficients of each
in the degree (n—1)? but the coefficients of the derived equa-
tions are each of the first degree in the coefficients of the original
equation. See also Higher Algebra, p. 84.

70. We may apply these principles to examine the con-
ditions which must be satisfied when the first polar of any point
A, z'y'7, has a double point. Differentiating the equation
2 U +y U,+2 U, =0, and using for the-second differentials the
notation of Art. 59, we see that if there be a double point B,
its coordinates must satisfy the three equations

ax' +hy' + g2’ =0, hx' +by' +f2' =0, gz’ +fy +c2' =0.
There are three relations. connecting «'y'z', the cooxdinates of
the point 4 with xyz, the coordinates of the double point B,
of which coordinates a, b, &c., are functions each of the (n - 2)"
degree. But on comparing these equations’ with those cited
in the last article, we see that if we write the polar conic of
the point B
az’ + by* + c2’ + 2fyz + 29z + 2hxy = 0,

the three relations are cxactly the conditions that must be
fulfilled when B or 2'y'z’ is a double point on the polar conic.
Hence we infer, if the first polar of any point A has a double
point B, then the polar conic of B has a double point A ; and
vice versd. ‘ :
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Between the three equations we can eliminate z'y's', and

obtain as a relation which must be satisfied by xyz,

abe + 2fgh—af* — by’ — ch*=0. )

This equation then is the equation of the locus of points B, and
it appears from what has been said, that it may be described
either as the locus of points which are double points on first
polar curves, or as the locus of points whose polar conics break
up into two right lines. Since the second differentials a, 5, &ec.
are each of the order n— 2 in ayz, the equation just written is
of the order 3 (n—2). The curve which it represents has im-
portant relations to the given curve, of which it is a covariant
(Higher Algebra, p. 98). On account of its having been first
studied by Hesse, it is called the Hessian of U.

If between the three equations we eliminated zyz, the re-
sulting equation in z'y'z’ would give the locus of points 4,
which may be described either as the locus of points whose
first polar has a double point, or of points which are double
points on polar conics. This locus we shall call after the
geometer Steiner, the Steinerian of U. In order actually to
perform the elimination in any case, it would be necessary to
write out a, b, &c., explicitly; but we can easily see that the
degree of the resulting equation is 3 (n —2)°, since it is the
resultant of three equations each of the degree n—2, and each
containing z, y, z in the first degree.

-

71. Returning now to the equation A =0, we see that it will
have three roots u =0, or that the line in question will meet
the curve in three points concident with x'y'z’, if the three
conditions are satisfied U"' =0, AU’ =0, A'U’'=0. Let us con-
sider first the case when z'y'2’ is a double point ; then, as we have

" n_n

seen, U’ and AU vanish independently of z"y"z", and the third

"1 _n

condition expresses that &"y"z” must be on the polar conic of
Z'y'z. But clearly the point z"y"2" may be any point on either
of the two tangents at the double point since each of these
meets the curve in three coincident points. Hence the polar
conic of x'y’z’ must be identical with these two lines; or, in
other words, the equation of the pair of tangents at the double
point is AU’ =0, or

a'z’ + by + c'2 + 2fyz + 29'2x + 2h'zy = 0.
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The double point, being one whose polar conic has thus been
proved to break up into two right lines, is a point on 'the
Hessian ; and we shew directly that it satisfies its equatron.
For, by Euler’s theorem of homogeneous functions, the three
equations U,/=0, U, =0, U, =0, which are satisfied for the
double point, may be written
a,x'+hlyl+ylzl=0’ h’ml+ b'y' +fz'=o, g'xl+fyl+clzl=o,

whence eliminating z'y'2’ we see that the equation of the
Hessian is satisfied for the double point.

72. The double point will be a cusp if the equation which
represents the two tangents be a perfect squarej that is, if
be=f% ca=g', ab="~". These three are only equivalent to
one new condition, for if any one of these be satisfied, and the
coordinates x'y'z’ of the double point have any finite magnitude,
the others must also be satisfied. For solving for the ratios
o : 2y y': 2, successively from each pair of the equations at
the end of the last article, we have

& _hf-bg be—f'_ fy—ch

? ab—k hf—bg gh—af!?

Y _gh—of fyg—ch _ca—g*' .

? ab—k*  kf-bg gh—af’

Hence if ab=4#% and neither of the ratios is infinite, both
numerator and. denominator of every one of these fractions
must vanish,

'~

73. The origin will be a triple point if all the second dif-
ferential coefficients a, b, &c., vanish; for then A*U" vanishes
independently of 2'y"2", and if the second differential coefficients
vanish, the theorem of homogeneous functions shews that the
first differential coefficients vanish likewise, and therefore A U"
also vanishes. Hence every line through 2'y'z’ meets the curve
in three coincident points; and it is obvious that the three
tangents at the point are given by the equation A*U’=0.

There is no difficulty in extending the same considerations
to higher multiple points. The point 'y'z' is a multiple point
of the order %, if all the differential coefficients of the order
k—1 vanish for that point; and the tangents at the multiple
point are given by the equation A*T =0,
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74. Let us now examine in what case a line can be drawn
through a point «'y'z’ on the curve but not a double point,
80 as to meet the curve in three points coincident with x'y'z’:
to fix the ideas we may in the first instance assume that
the curve has no multiple points. We have seen, Art. 71,
that every point on such a line must fulfil the conditions
AU =0, A'U' =0.

The first condition expresses that the line must coincide with
the tangent at a'y’2', as is geometrically evident: the second
condition expresses that every point on it satisfies the equation
of the polar conic. The polar conic A*U’ must therefore, in
this case, contain the line AU’ as a factor; and therefore the
point z'y'z' must be one of the peints whose polar conics break
up into factors; that is to say, it must be a point on the
Hessian (Art. 70). And, conversely, every point where the
Hessian meets U is a point at which a line can be drawn to
meet the curve in three coincident points: in other words, is
a point of inflexion. For (Art. 64) the polar conic of every
point on U touches U at that point; and if the point be also
on the Hessian H, and the polar conic consequently break up
into factors, one of these factors must be the tangent at x'y'z'.
Any point on that tangent will then satiefy both the conditions
AU'=0, A'U'=0. It follows then that every one of the in-
tersections of the curves U, H will be a point ef inflexion on
U, and since H is of the degree 3 (n —2), that a curve of the
n™ degree has in general 3n (n— 2) points of inflexion.

75. If the curve however have nrultiple points, the number
of points of inflexion will be reduced. 'We have already shewn
(Art. 71) that every double point on the curve is a point on
the Hessian, but we shall now shew that it is a double point
on that curve, and more generally that every multiple point
on the curve of the order % is a multiple point of the order
8k—4 on the Hessian. The easiest way to shew this is to
suppose that the multiple point has been taken for the origin,
and consequently that the equation contains no terms in z and
¥ below the degree 2. Let us examine then the degree of the
lowest terms in = and y in the second differential coefficients:
then evidently where there have been two differentiations with

I
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respect to = or y, the order of the lowest terms will be £—2;
when there has been one differentiation with respect to = or y
and one with respect to 2z, the order will be £—1, and when
both have been with respect to 2, the order will be %: that is
to say, the order of the lowest terms will be

k-2, k-2, k, k-1, k—1, k-2
in a , b ,¢ f , g, h respectively.

And combining these, we see that the order of the lowest
terms in z and y, in every term of

abe + 2fgh — af* - bg" — ck’,
will be 3% — 4. :

But further, we say that every tangent at a multiple point
on U will be also a tangent at the multiple point on H. For
suppose the line « to be a tangent at the origin, and therefore
(Art. 40), that the lowest terms in = and y all contain a3 a
factor; then evidently z will also be a factor in the lowest
terms of each of the second differential coefficients in which
there has been no differentiation with respect to z; that is to
say, it will be a factor in b, ¢, and £ But on inspection it
appears that every term of

abc + 2fgh — af™* — bg*~ ci*
contains either b, ¢, or f.

76. We are now in a position to calculate the amount of
reduction in the number of points of inflexion which occurs
when U has multiple points. If U has a double point, this
will also be a double point on H, and the two tangents will
‘be common to both curves; but (see note, p. 27) when two
curves have a common double point and the tangents at it also
common, this point counts for six in the number of their inter-
sections. The number of intersections therefore of U and H
distinct from the double point will be reduced by 6, and we .
infer that if a curve have & double points, the number of its
points of inflexion will be 3z (r— 2) —68.

Similarly, if U have a multiple point of order %, we have
seen that it is a multiple of the order 34—4 on H, and that
there are % tangents common to the two curves. The multiple
point therefore counts among the intersections as

E(3k—4)+k=6xLk(k—1)
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But we have seen (Art. 40) that the multiple point is equi-
valent to 4 (k — 1) double points; hence our present result may
be stated, the multiple point has exactly the same effect in re-
ducing the number of points of inflexion as the equivalent number
of double potnts.

77. The case of a cusp requires special consideration. Let
it be taken for origin and let z=0 be the tangent at it, so that
the equation is of the form a'2"+ u2"" + &c.=0; then it will
be seen that the orders of the lowest terms in the sccond dif-
ferential coefficients are 0, 1, 2, 2, 1, 1 respectively; the terms
in fact being

a=22"" b= 0_‘11;': 2% c¢=(n-2)(n-3)a""",
d - d'u, -
f=(”-3)"7u;zH’ g=2(n_2)xz s’ d.tdy °.

It will be found then that the order of the lowest terms in
abe + 2fgh — af™ — bg* — ch*

is three, and that only in the terms adc and b¢" is the order so
low; but each of these terms contains ' as a factor. Hence
if there be a cusp on U, it will be a triple point on H, and two
of the tangents at that triple point will coincide wnth the tan-
gent at the cusp. Now when two curves have a common point
which is double on one and triple on the other, that point counts
for six intersections; and if, morcover, two tangents at the
double point are also tangents at the triple point, the curves
have two more consecutive points common, and therefore this
point counts for eight intersections. IIence if a curve have &
double points and x cusps, the number of its inflexions will
be =3n (n—2)— 68 — 8«.

78. We shall hereafter shew how to use the equation A=0
to discuss the conditions for double tangents; but the investi-
gation being a little difficult, we postpone it for the present.
We shall show presently that the results already obtained,
combined with the theory of reciprocal curves, are sufficient
to determine indirectly the number of double tangents of a
curve of the 2™ order.

The equation of the system of tangents which can be drawn
to the curve from any point 2'y’z', may be derived from the
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equation A=0 by the method used Conics, pp. 85, 257. Any
point on one of these tangents is obviously such that the line
joining it to a’y’z’ meets the curve in two consecutive points,
and in such a case the equation A =0 will have two equal roots.
We obtain then the equation of the system of tangents, by
equating to zero the discriminant of A considered as a binary
quantic in \, u.
Thus, for example, let U be of the third order. Then A is

MU'+ Npd' + A+ p*U=0,
where, for brevity, we have written A' and A for AU’ and AT.
The discriminant of A equated to zero is
@1UU" 444" - 18AA'U") U= (A" —4AT") A",

Now U, A, A’ are respectively of the third, second, and first
degrees in zyz; the preceding equation then, being of the sixth
degree, shews that six tangents can be drawn from z'y'z' to U,
as we know already.

The form of the equation shews that it represents a locus
touching U in the points where U meets A. The other points
where U meets the locus lie on the curve A”—-4AU'=0,
Hence, if from any point siz tangents be drawn to a curve of the
third order, their six points of contact lie on a conic A =0, and
the six remaining points where these tangents meet the curve lie
on another conic A™ —4AU' =0, which two conics have evidently
double contact with each other in the points A =0, A'=0.

If «'y’2’ be on the curve U'=0, then A reduces itself to
MA'+AuA + p*U: equating the discriminant to zero, we have
A'=4A'U, an cquation of the fourth degree in ayz. Hence
through a point on a curve of the third order can be drawn

in general only four tangents. The tangent at the point in
fact counts for two.

79. And #o in like manner in general. The discriminant of
Aorof p'U+ pu"'AA + p"*N'A* + &e. is of the degree n (n—1)
in xyz, and (Iligher Algebra, p. 86) is of the form LU+ (A)* ¢,
where ¢ is the discriminant of A deprived of the first term.
Hence the locus touches U at its point of intersection with A,
as it plainly ought to do.

Each of the n(n-1) tangents meets the curve again in
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n — 2 points, and the form of the discriminant shews that these
n(n—1)(n—2) points lie on a curve ¢ of the order (n—1) (n—2).
Moreover ¢ is itself of the form 4'A + (A*)'y. Hence the two
curves ¢ and 4 touch each other at the points where the first
and second polars of z'y'z’ intersect.

Writing A, AU’ +A"'uA' + &c. we see that the discrimi-
nant may also be written in the form kU’ + (A')*¢; hence if
Zy'z' is om the curve, and therefore U'=0, the discriminant
contains the double factor A™, or the system of tangents con-
sists of the tangent at z'y'z’ counted twice, and n* —n — 2 other
tangents represented by ¢ =0. In the same way ¢ is itself of
the form kA'+ (A”)*4. If then the origin be a double point,
and therefore not only U’ but A'=0, ¢ which was already of
the degree n*—n—2 contains the double factor (A™)*; that is
to say, among the n*—n—2 tangents are included the two tan-
gents at the double point, each counted twice, and therefore only
n* — n — 6 other tangents represented by 4=0. And so, in like
manner, we can prove that the number of tangents which can
be drawn from a multiple point of the order k& is n* —n—k (k+1).

The theory already given of the effect of multiple points
upon the number of tangents which can be drawn from any
point to a curve, shews that the discriminant of A, which in
general represents the n (n — 1) tangents, will include as factors
the square of the line joining x'y'z’ to every double point of the
curve, the cube of the line joining it to every cusp, the sixth
power of the line joining it to every triple point, and so on.

SECT. VI.—RECIPROCAL CURVES.,

80. We have scen (Conies, p. 267) that the degree of the
reciprocal curve is always the same as the class of the given
curve, and vice versd. It is evident also, that to a double point
on either curve will correspond a double tangent on the other;
that to a stationary point on one curve corresponds a stationary
tangent on the other; and in general, that to a multiple point
of the & order corresponds a multiple tangent of the same
order; that the % points of contact of the multiple tangent
correspond to the % tangents at the multiple point; and that if
two or more of these last coincide with the other, so will the
corresponding points of contact.
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81. We have seen that the general equation in Cartesian
or trilinear coordinates represents a curve which has no double
or other multiple point, unless certain conditions be fulfilled.
But the general equation represents a curve which ordinarily
must have double and stationary tangents. For the absciss®
of the points where the curve is met by any line y =az +, are
found by substituting the value for y in the equation of the
curve; and since we have two arbitrary constants a and & at
our disposal, we can determine them so that the resulting equa-
tion shall fulfil any two conditions we please. With one
constant at our disposal, we could make the equation fulfil any
one condition: for instance, have a pair of equal roots. The
problem “given a to determine b, so that the resulting equation
should have a pair of equal roots,” is no other than the problem
to draw a tangent parallel to y=ax. With the two constants
at our disposal, we can either cause the resulting equation to
have two distinct pairs of equal roots, or three roots all equal to
each other. The first is the problem of double tangents, the
second that of stationary tangents and points of inflexion,
Thus the double and stationary tangents may be counted as the
ordinary singularities of a curve whose equation is expressed in
point coordinates ; all higher multiple tangents and all multiple
points being extraordinary singularities which a curve will not
possess except for special values of the coefficients of its equa-
tion. But this is reversed if the equation be expressed in tan-
gential coordinates. Then the curve represented by the general
equation ordinarily has double and stationary points and cusps,
but no singular tangents. Hence double and stationary points,
on the one hand, and double and stationary tangents on the
other hand, are equally entitled to be ranked among the ordinary
singularities of curves; they are such, that if any curve possess
the one its reciprocal will possess the other.

'82. We shall now denote

the degree of a curve by m,
its class » My
the number of its double points » O
..................... double tangents " T
..................... stationary points  ,, «,

..................... stationary tangents ,, ¢,



RECIPROCAL CURVES. 63

and the corresponding numbers for the reciprocal curve are
found by interchanging m and n, 8 and 7, ¢« and x. 'We have
already obtained (see pp. 52 and 59) the values of » and ¢ in
terms of m, 8, x; hence from the reciprocal curve we have the
values of m and_ « in terms of n, 7, ¢: and from these four
equations (equivalent, as will presently be seen, to three equa-
tions only) we can obtain the value of 7in terms of m, §, «,
and that of 8 in terms of n, 7,.. We have thus Plicker’s six
equations, viz. these are
(1) n=m"-m—28-3e.
(2) ¢=3m"—6m—65— 8.
(3) 2r=m (m-2)(m'—9)—2(m"'- m—6)(23+3«)
+48(8—1) + 128+ 9x (¢ - 1),
() m=n"—-n-27-3
(5) x=38n"—6n-67—8s
(6) 20=n(n—2)(n"—9)— 2 (n"—n—6)(27+ &)
+47(r=1)+ 127¢+ 9¢ (4. —1).
If from (1) and (2) we eliminate 3, or from (3) and (4) we
eliminate 7, the result is in each case
(7) ¢e—«=3(n-m),
shewing that the four equations are equivalent to three only.
This may also be written in the forms
3m—«k=3n—, and 3m+ ¢=3n+«.
By taking the difference of the equations (1) and (1) we obtain
m'—28 — 3k =n"—27 -3¢
Whence, replacing ¢ — & by itsvalue from (7), we obtain
8) 2(r—8)=(n—m)(n+m=-9).
The last preceding equation, substituting therein for n and ¢,

orfor m and « their values, gives the foregoing equations (3)
and (6). From (7) and (8) we obtain also

9) dm(m+3)—8—2¢=}n(n+3)—7—21
(10) 4 (m-1)(m—-2)-8-k=(n=-1)(n-2)—T—0
The entire system of equations is of course equivalent to
three equations only, and by means of it given any three of
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the six quantities m, n, 8, «, 7, ¢, we can determine the remain-
ing three; thus m, 5, « being given, n is given by (1), ¢ by (2)
or more easily by (7), and = by (3) or more easily by (8).
Ex. Suppose we were given m=6, =4, x=6; then, by (1), n=4; therefore
m-n=2 n—-m=-32.
Hence (5) t—k=6, or:=0;
n+4+m—9=1; therefore r—3=—1; therefore r=38.

83. Since when a curve is given its reciprocal is determined,
it is evident that the same number of conditions must suffice
to determine each. Now to be given that a curve has & double
points is equivalent to 8 conditions. Thus, for example, a conic
is determined by five conditions; but if it have a double point,
that is, if it reduce to a system of two right lines, it is deter-
mined by four conditions; by two points for instance on each
of the right lines. So, again, to be given that a curve has a
cusp is equivalent to two conditions. Hence (and Art. 27)
a curve of the m™ degree with & double points and « cusps is
determined by §m (m + 3) — 8 — 2« conditions, and its reciprocal
by 4n(n+3)— 1 —2¢ conditions. And the foregoing equation
(9) shews that these two numbers are in fact equal.

The foregoing equation (10) shews that the deficiency (Art.
44) is the same for a curve and its reciprocal.

If (with Prof. Cayley) we write 3m + ¢, =3n + &, =a, then
every thing may be expressed in terms of (m, n, a), viz. we have

k=a—23n,
t=a—3m,

28=m'—m + 8n - 3a,

2r=n"—n+8m - 3a.



CHAPTER IIL

ENVELOPES,

84. TIF a curve depend in any manner upon a single variable
parameter, so that giving to the parameter a series of values,
we have a series of curves; these all touch a certain curve
which is called the envelope of the system. Each curve is
intersected by the consecutive curve in a set of points depend-
ing on the parameter, and the locus of these points is the
envelope. See Conics, pp. 246, 249, where the problem of
envelopes is considered in the case where the variable curve
is a right line.

Analytically, the equation of the curve may contain a single
variable parameter, or it may contain two or more variable
parameters connected by an equation or equations, so as to
represent a single variable parameter. The two cases are
essentially equivalent, but it is often convenient to treat the
second in a different manner, by a method of indeterminate
multipliers which we shall presently explain. The form of the
second case which is of most frequent occurrence, is when
the equation of a curve contains the coordinates of a variable
point limited however to a fixed curve; or, as we may say,
when the variable curve depends on a parametric point moving
on a given parametric curve. For example, it was shewn
(Conics, p. 281) that the problem to find the reciprocal, with
respect to &' + y*+ 2%, of a given curve, is the same as to find
the envelope of ax+ By + vz, where a, 8, v satisfy the equation
of the given curve. Here the equation of the variable line
contains the two variable parameters a:¢, B¢, these two
ratios being connected by the equation of the given curve.

85. Suppose first that the equation of the curve, say 7'=0,
contains a single variable parameter ¢. The curves belonging
K
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to the consecutive values ¢, ¢+ df, may be represented by the
equations 7'=0, 7,=0. These equations, or the equivalent
equations T'=0, 7T, — T'=0, determine therefore the coordinates
of the points of intersection of the two consecutive curves. We
have T,=T+d,T.dt+&e, or T,— T'=d,T.dt+ &c., where dt
being infinitesimal, the terms after the first are to be neglected.
The equations become therefore 7'=0, d,7'= 0, which equations
determine a set of points depending on the parameter ¢; and
eliminating ¢ from these equations we get the equation of the
locus of all points of intersection of consecutive curves of .the
system ; that is to say, the equation of the envelope.

An important case is where the equation contains tratlonally :
we may then without loss of generality take T to be an integral
as well as rational function of ¢, and the process described for
finding the equation of the envelope is equivalent to forming
. the discriminant of 7" considered as a function of ¢, and equating
it to zero. Thus if a, b, ¢, &c. be any functions of the
coordinates, and if 7" be

at® + nbt" ™ + in (n— 1) ct™* + &e.,

the equations of the envelope for the cases of most common
occurrence, viz. n=2, 3, and 4, are respectively (see Higher
Algebra, pp. 159, 160, 171),

) ac-8"=0,
(8) a*d*+4ac’+ 4b°d — 6abed — 8b°¢* =0,
(4) (ae—4bd+3c")"—217 (ace+2bcd—ad’—_b’ -c*)=0,

and in using the last of these equations, when we desire to infer
its order in the coordinates from knowing the order in which
they enter into a, b, &c., it is useful to remember that when
the equation is developed the terms containing ¢® and c'bd
respectively cancel each other, so that the order of the envelope
may happen to be lower than that of either of the two members
of which the equation, as written above, consists.

If we substitute in 7" the coordinates of any point, and solve
for ¢t the resulting equation a't*+nb't"* + &e.=0, there will
cvidently be n solutions: that is to say, the system of curves
represented by 7' is such that » of them' can be drawn to pass
through any fixed point: and from what has been just said it

A
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appears that if the fixed point be on the epvelope two of these n
turves will coincide.

The case where 7' depends on a parametric point may be
reduced to that just considered if the parametric curve be a line,
conic, or any other unicursal curve; for then (Art. 44) the
coordinates of the parametric point can be expressed as rational
functions of a parameter. :

Ex.1. To ﬂndthemvelopeofat'+b¢’+c=0, where, as well as in the other
examples, a, b, &c. are supposed to be any functions of the coordinates. Combining
the given equation with its differential with respect to ¢, we have

nat? + pb=0, (n—p) bt? +nc=0,
whence eliminating ¢, we have
n%aPc*P + pP (n — p)P b = 0,
where the sign + is to be used when n is odd, and ~ when it is even.

Ex. 2. To find the envelope of a cos®0 + b 8in* = ¢, where 0 is the parameter.

‘We have dyT =—a cos*'08in0 + b sin*10 cos0=0;
a 1 2
whence tanf =2 a*? eosﬂ:—’b'-—”—, ginf = ;,..z —
' = S + 55 J(@™3 4+ B7)

Subetituting these values, and reducing, we find the equation of the envelope
2 2 ’ 2
aF 4 B8 = o,

In particular (as we saw, Conics, p. 247), the envelope of a cosf+ bsinf=c is
a? + b2 =% Conversely, any tangent to the curve 2™ + y™ = ¢™ may be expressed by
2m-1) 2m-1
zcos ™ O0+ysin = O=c¢,

2 2
the coordinates of the point of contact being « = ¢ cos™6, y = ¢ sin™f.

This example might have been stated as an example of an envelope depending
on a parametric point lying on a unicursal carve. For if we write cos6 =q,
sin 6 = B, then a, B are the coordinates of a point lying on the circle a2+ g% =1,
and the circle being a unicursal curve, these coordinates can be expressed rationally
in terms of a parameter. Thus if ¢ be cos.+ i sinf, we may write for @ or cos®t,

% (t + %) , and for B or sin®, El; (t - -}) , and the equation, for example, aa + 88 =,

becomes
(a — bi) 8 — 2t + (a + b)) = 0,
whose envelope, as before, is
(@+bi)(@a—bi)=c? ora®+ b =c?
If we desired to avoid the introduction of imaginaries we might write tan30 = ¢,
and (a8 at Conics, p. 247) express cos 6, sin 0 rationally in terms of ¢.
Ex. 8. Let the curve be
@ cos20 + b8in20 + ¢ cos6 + d einf + e = 0.
Putting ¢ = cos 0 + 4 sin 6, this becomes

. a(ﬂ+t1,)—bi(t"-:;)+c(t+-:-)—di(¢—%)+29_=0,
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or (@a—bi) d+ (c—di) 3+ 2e2 + (c + di) t + (@ + 43) = 0.

And applying to this the form already given for the discriminant of a gnartic written
with binomial coefficients, we have

@+ 5~} (P + d) + 36?2 =27 { (a® + B%) e + oy (* + ) € —Ja (¢t — &%) — Joed — )7,
or clearing of fractions

{12 (a?+8%) -8 (¢ + d%) + 46} = (72 (a? + ) e + 9 (* + d%) e — 27w (c* — d¥)'— b4Bed — 8%},
and again, it is useful to remark that the expanded result will contain neither of
the terms €%, (c* + d?) et.

Ex. 4. To find the eqnation of the.curve parallel to a conic; thas ie to say, the
curve obtained by measuring from the conic. on each normal a distance eqpal to 7.
This problem has been already solved (Conics, p. 825) by considering the parallel
curve as the locus of the centre of a circle of constant radius touching the given conic.
But it is easy to see that the parallel curve may also be considered as the envelope
of a circle of constant radius whose centre is on the given conic: that is to say, we
are to seek the envelope of (z — a)% + (y — B)? — 2, where the parametric point a8
lies on the conic; and: the conic being a unicursal curve this may be reduced to the
case already discussed. Thus, let theeonicbe-:—-:+"-’-'=l,wdwﬁtefor a,- a cos 0,

&2
for B, bsin6, when
a?+ 2 — 2az — Py + 2F + 4 — 12

becomes (a? — %) co820 — 4ax cos0 — 45y sm O + 2 (22 + y?) + a® + B2 — 2r2,

a form included under the last example, by the help of which we should obtain a
result which, when expanded, is identical with that given, Conics, p. 825.

86. A little further notice may fitly be given to the case
where 7' is algebraic in #, and of the first degree in the co-
ordinates, so as to denote a right line; that is to say, to the
envelope of af®+nbt"” + &c. where a, b, &c. are all linear in
the coordinates. In this case the envelope is clearly a curve
of the n™ class, being such that n tangents can be drawn
through any assumed point (Art. 85); and since the discri-
minant of at”+ &ec. is of the order 2 (n—1) i the coefficients
a, b, &c. (Higher Algebra, p. 84), which each contain the coor-
dinates in the first degree, the order of the envelope is 2 (n — 1).
Two other characteristics of the envelope can easily be obtained.
It has ordinarily no points of inflexion. At a point of inflexion
two consecutive tangents coincide; and therefore 7' and d,T
represent the same right line; but in order that two linear
equations should represent the same right line, two conditions
must be fulfilled, and it will generally not be possible to de-
termine the single parameter ¢ at our disposal, so as to satisfy
both conditions.

The number of cusps on the envelope is 3 (n—2). As the
tangent at a point of inflexion on a curve contains three con-
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secutive points, so reciprocally a cusp is the point of intersection
of three consecutive tangents. At a cusp, therefore, on the
envelope the three equations will be satisfied T'=0, &,T=0,
d'T=0; which may easily be reduced to -

T,=at"4+ (n-2)bt""+%(n—-2) (n—38) ct™* + &ec.=0,
T,=b"+(n-2) ct™°+4(n—2) (n—38)d™* + &e. = 0,
T,=ct™+(n—2)dt""+} (n—2) (n—3) et"™* + &c. =0,

T, T, T, being the three second differential coefficients if 7"

) Tig)
considered as a binary quantic had been made homogeneous by
the introduction of a second variable. Now if from these
equations we eliminate « and y which enter in the first degree
into each, the resulting equation in ¢ will be of the degree
3 (n—2). If in fact we write T, U+ yV+2W, where U, V, W
contain only ¢ and constants, we have obviously the determinant

Um Vu’ .I’V"
lfn) I’u) vVn
Un’ Vn’ Wn =0,

which gives the values of ¢ corresponding to the 3 (n —2) cusps.
The problem of finding the number of double points on the
envelope is the same as that of finding the order of the system
of conditions that 7' should have two distinct pairs of equal
roots (Higher Algebra, p. 222), and the problem of finding the
number of double tangents is the same as that of finding the
order of the system of conditions that 7' should represent the
same line for different values of ¢; er, in other words, the
number of ways in which it is possible to find a pair of values
¢, t", for which we shall have the equality of ratios
U:V'eW=U0":V"u:W"
It is not necessary for us, however, to deal with these problems
directly, since we have already more than enough of conditions
to determine 8 and 7, by Pliicker’s equations, Art. 82. Sub-
stituting in these equations 2 (n—1) and n for the order and
class of the curve, and putting (=0, we find

k=3(n—2), 8=2(n—-2)(n-38), r=%(n—1)(n-2).

87. Let us now consider the case where the equation con-
tains & parameters connected by % -1 equations. To fix the
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ideas, suppose that we have the equation U=0 containing the
three parameters a, 8, o connected by the two equations V=0,
W=0. We may, if we please, regard B, v, as functions of a,
determined by the two equations V=0, W=0. The process,
in its original form, would then consist in the elimination of «
from the given equations, and

w s s _,

dB da " dy da

are functlons of a determined by

d V dV dB  dV dy
W TB ety &
d W aw dB dW dy _ = 0;
d;:! da dly da
and from these three equations we have v =0, where

_|dU dU dU
V= da 9B 2y
dv.dv dv
da ' dB ' dy
dW dwW dW
o’ dB’ dy
and the final result is got by eliminating «, 8, ¥ between
U=0, V=0, W=0, v=0.

But v =0 is obviously the result of eliminating A, u between
the equations

a8 dy

Here — 7’ da

=0,

= 0,

dU dV dw

PR il Pl
aUu av aw

R +xd/5‘+“d/3 =0,
AU T,
dy dy F’d'y‘

so that the result may be got by eliminating a, 8, 9, A
between the last three equations and those originally given.

This is the method of indeterminate multipliers referred to
(Art. 84).

88. An important case is where U is homogeneons in £+ 1
parameters connected by %—1 other homogeneous equations.
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This is really equivalent to the foregoing, since the %+ 1
parameters may be replaced by the ratios which any % of them
bear to the remaining one. But it is more symmetrical to retain
all the Z+1 equations given by the method of indeterminate
multipliers, which in virtue of the theorem of homogeneous
equations are connected by a relation making them really equi-
valent to only % equations. Thus, let U contain homogeneously
a, B, v the coordinates of a parametric point moving on the
parametric curve V=0; the method of indeterminate multi-
pliers gives us, in addition to the two original equations,
%]+7\. %’=0, %g-l-l%=0, ?13*7‘ %;o.

But these three are really equivalent to two, since if we mul-
tiply them by a, B, v respectively, we get mU+AnV=0,
which is included in the equations U=0, V'=0. We have then
four equations from which on account of the homogeneity we
can eliminate the four quantities a, 8, , A, and so obtain the
_equation of the envelope.

Ex. To find the envelope of U= (4a)™ + (BA)™ + (Cy)™ =0, where a, B, y are

connected by the relation V= (aa)* + (58)* + (cy)*.
The method of indeterminate multipliers gives us

mA™a™1 + Anana*! = 0, mB=g™-1 4 And*g+-1 =0, mC™y™! 4 Anchy*! =0;
whence, writing for shortness %‘ = — u™*, we have

e=n (G m8=n G ov=n (5

and substituting these values in U, we have the envelope required, viz.
L) ) -
B (e

89. Prof. Cayley has considered the case of a curve U=0,
the equation of which contains two or more ¢ndependent para-
meters. If, for instance, there are the two parameters a, 8,
then from the equations

U< au dU

0, 'd—a-=0’ d—B =
eliminating a, B, we have the equation of an envelope. But
observe that we can from these same equations eliminate the
coordinates (x, ), and that the cquations thus imply a relation

0,
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¢ (2, B) =0 between the parameters. This gives in the double
system of curves U=0, a single system wherein the parameters
satisfy this relation. Taking any curve of the double system
and the consecutive curve belonging to the values a+da,
B+dpB of the parameters, the two curves intersect in a set of
points depending in general on the value of the ratio dB : da of
the increments. But if the curve belong to the single system,
then the set of points will be independent of the ratio in
question ; the coordinates of the points of intersection satisfy

. d U au
the equations U=0, =0 B

au a8 dB 0, whatever be the value of the

equation U +% da+

ratio d3+ da. And we thus see that a curve of the single
sories is intersected by every consecutive curve of the double
series in one and the same set of points, and that the locus of
theso points is the envelope. In the case of a single parameter,
the envelope is the locus of a set of points on every curve of
the system, and it may be termed a  gencral envelope”; in the.
case of the two parameters, the envelope is the locus of a set of
points not on every curve of the system, but only on the curves
of the single system, wherein the parameters satisfy the equation
¢ (2, 8) =0, and it may be termed a “special envelope.” And
the like theory applies to the case of any number whatever of
parameters: there is always a resulting single system of curves.

=0, and consequently the

RECIPROCAL CURVES.

90. Let it be required to find the envelope of a line
ar + 3y + 9z, being given that a, 3, v are connected by a re-
lation X=0. In other words, let there be given ==0 the
tangential equation of a curve, or its equation in line coor-
dinates, and let it be required to pass to the equation in point-
coondinates.  Here then we have the two equations =0,
u+;3y+7::=0 and the method of Art. 8%, shews that the
result & to be obtained by climinating 2, 3, 4, A from the two
given equations combined with

AN

éz

'.!

) ¢ ), 2
—-\E—\ E‘P\y—l “.71-. z=0.
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The solution of the reciprocal problem, given the point-equa-
tion §=0, to pass to the tangential equation, depends on a
precisely similar elimination; namely, to eliminate z, y, 2z, A
between 8=0, az+ By +yz=0, and

ds ds ds
%+)~a=0, ‘@ +Xﬁ=0, a;-l- M=0,

a system of equations which would also present itself naturally
from the consideration that if ax+8y+9z be identical with
the tangent at the point zyz, then the well known form of
the equation of the tangent (Art. 64) shews that a, 8, vy must
dS dS dS
& B &

It has been mentioned (Art. 84, and Conics, p. 281) that the
problem of passing from the point equation of a curve to its
tangential equation, is the same as that of finding its polar
reciprocal with regard to z*+y*+ 2*=0.

be respectively proportional to

Ex. To find the tangential equation of (ax)™ + (by)™ + (c2)» =0 We have here

a1+ 2220, G+ 280, (@mie XY=,

A+ @7+ @) -

91. The method just indicated, however, is not that which
is usually practically the most convenient for finding the
equation of the reciprocal. Let the equation of the curve be
u,+u,_z+u_z2"+ & =0, then we eliminate z by the equation

az+ By +yz=0, and get
Yu, — " (ax + By) u,_,+ 9" (ax 4 By)* u, ,— &e. =0,

whence immediately

which is now homogeneous in = and y; and the discriminant
of this considered as a binary quantic, equated to nothing
gives the equation of the reciprocal curve, multiplied however
by the irrelevant factor "™,

Thus, for example, if it were required to find the reciprocal of

L +y+ 2+ bmxyz=0,
eliminating z, it becomes

(az + BY)® + 6mayy’ (az + By) —7* («*+ ¥) =0,
L
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or (o8—9 a'B+ 2may’, a8 +2mBy’, B — oYz, y)’=0,*
the discriminant of which is divisible by +°, the quotient being
a® + B+ 0" — (2 + 32m°) (B + o’ + o*F?)

4 —24m"aBy (&’ + B° + o°) — (24m + 48m*) «’By* = 0.
In precisely the same way may be found the reciprocals of the

cubic or quartic given by the general equation, the results of
which are given at full length in subsequent chapters.

#92. One chief advantage of the foregoing method of
obtaining the equation of the reciprocal, is that it enables us
immediately to write down the equation of the reciprocal in
the symbolical form explained, Higher Algebra, Chap. X1v.
If a ternary quantic be reduced to a binary by eliminating
z by the help of the equation ax+ By+ 4z, we have imme-
diately the following rules for the differentials of the binary
quantic with respect to z and y,

d _d ad d _d Bd

it becomes

elwww) o 2 8

(i, e )}

or in other words, the symbol applied to the binary quantic
differs only by the factor ¢ from the contravariant symbol (a12)
applied to the ternary. Hence, if a line ax+ By +9z cut a
curve so that the points of section satisfy any invariant relation
whose symbolical form is known, we can at once write down
in the same form the tangential equation of its envelope. For
instance, the symbolical form of the discriminant of a binary

* We use the notation (a, b, ¢, Iz, y)* for the binary quantic written with
binomial coefficients az® + nbz™ly + 3n (n — 1) 222 + &c.; using the notation
(a, b, ¢, j[z, y)* when the quantic is written without binomial coefficients (see
Higher Algebra, p. 83).
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cubic is known to be (12)*(34)*(13)(24); hence, if a line
ax + By + yz cut a cubic curve in three points whose discrimi-
nant vanishes, that is to say, if it touch the curve, we must
have (a12)* (a34)" («18) (x24) =0. In like manner the discrimi-
nant of a binary quartic is known to be of the form 8°=277",
where S and 7 are two invariants, whose symbolical form is
(12)', and (12)*(23)*(31)" respectively. It follows that the
equation of the reciprocal of a quartic is of the form §°=27T",
where S is («12)!, and T'is (x12)" («23)" (@31)", where S=0 de-
notes the curve of the fourth class which is the envelope of lines
cutting the quartic in four points for which the invariant §
vanishes, and 7'=0 denotes the curve of the sixth class which is
the envelope of lines cut harmonically by the curve, and for
‘which therefore the invariant 7 vanishes.

93. We have already (Art. 78) given one method of forming
the equation of tangents drawn from any point a'y'z’ to the
curve, but the problem is in effect solved when we are in
possession of the equation of the reciprocal, or in other words,
of the condition that ax + By + oz should touch the curve. For
we have only to substitute in that condition for @, 8, v respec-
tively yz’'—zy', 2a'— 2, xy' —ya', when we shall have the
condition that the line joining the points xyz, 2'y'z’ shall touch
the curve, a condition which obviously must be satisfied when
xyz is a point on any tangent through a'y'z’ (see Conics,
Art. 294). : :

*94. We have then immediately a theorem corresponding
to that of Art. 92, that when we are in posseasion of the tan-
gential equation of a curve, we can at once write down
“symbolically the equation of the locus of a point, whence the
. system of tangents to the curve shall satisfy any given invariant
relation. If we make 2=0 in the equation of the system ot
-tangents, we have the equation of a system of parallel lines
through the point xy, which will satisfy the same invariant
relation. But from the method just given for forming the
equation of the system of tangents, we have

d d d d d .,d

-d—w-=y E_z (TB’ t-i‘—y-=—.‘l: Ey—+z 2z’
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whence, as before,
L4 44 (i 44 )
dwx dyx dza dyl— dﬁ d'y dﬁ d'yl
(d d d d d d d d
+y (3;, da, " dy, de,) +e (EEF_E«_,JB)
so that we have at once the rule, for every factor (12) in the
invariant symbol required to be satisfied by the system of
tangents to substitute («'12) and operate on the equation of the
reciprocal curve.

95. When the equation of a curve is given in polar co-
ordinates, that of its reciprocal with regard to a circle whose
centre is the pole may be found directly. If on any radius
vector OP there be taken a portion OF equal to the con-
secutive radius vector 0@, then obviously PP’ =dp, P’ @=pdw,

tanOPQ:Pd—m, and psinOPQ is the perpendicular on the

tangent. Thus let the curve be p™ =a” cosmw ; take the loga-
rithmic differential, and we have :
‘%’=—tanmwdw; -‘%" = — cotmw,
and if 0 be the acute angle made by the radius vector with the
tangent 6 =90"—mw, and the perpendicular on the tangent
=p sinf=p cosmw. The angle between the perpendicular and
the radius vector =mw, and between the perpendicular and the
line from which @ is measuredis (m +1)w. But the radius
vector of the reciprocal curve is the reciprocal of the perpen-
dicular on the tangent ; hence it is easy to see that the equation
of the reciprocal curve is also of the form p"=a" cosmw, the
new m being equal to — —+i This family of curves in-
cludes several important species ; for instance, the circle (m =1),
the right line (m=—1), the common lemniscate (m=2), the
equilateral hyperbola (m =— 2), the cardioide (m =), the para-
bola (m=— %) &e.

THE CONDITION OF CONTACT BETWEEN TWO CURVES.

96. It was remarked (Art. 90) that the problem of finding
the equation of the reciprocal curve is the same as that of find-
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ing the condition that a right line should touch the given curve,
both being solved by finding the envelope of ax+ By + vz,
where a, B, v are parameters satisfying the equation of the
curve. More generally the problem of finding the condition
that two curves U, V should touch is the same as that of find-
ing the envelope of either, the coordinates being regarded as
variable parameters satisfying also the equation of the other.
For if the two curves touch, the coordinates of the point of
contact aSy, satisfy the equation of both; and also since the
tangents are the same, we must have at that point the dif-
ferential coefficients of U, respectively proportional to those of V.
The condition of contact is then found by eliminating a, 8, ¥, A,
between U=0, V=0, and

dy_, 4V dU_ v aU_ av.

de " da’ dB3 T dB' dy " dy’
but these are the equations given (Art. 88) for solving the
problem of the envelope.

97. Let the degrees of U and V be m, m' respectively, and
let it be required to determine the order in which the coeffi-
cients of either curve, say V, enter into the condition of contact.
Let the coefficients in V be a', ¥', ¢, &c., and let us take another
curve W of the same order whose coefficients are a”, 8", ¢”, &e.
Then if in the condition of contact we substitute for each coeffi-
cient @', @' + ka", &c., we shall have the condition that V+ikW
should touch U; which will plainly contain % in the same de-
gree as the order in which the coefficients of V enter into the
condition of contact. This latter order, therefore, is the same
as the number of curves of the form V+ZW, which can be
drawn so as to touch U. But, as before, the point of contact
must satisfy the equations

Vi+kW, =AU, V,+kW, =AU, V,+kW, =20,
whence eliminating %, X,

v=|0, 7V, W,

Up Vo W,
Uy Vo W,

=0,
and the intersections of v with U determine the points on U
which can be points of contact with curves of the form V4 kW.
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Since the orders of U,, V,, W, are respectively m—1, m'—1,
m'— 1, the order of v is m+2m’—3, and the number of inter-
sections is m (m +2m'— 3). This then is the order in which the
coefficients of V enter into the condition of contact, and in like
manner the coefficients of U enter in the order m’' (2m + m'—3).
By making m'=1 we have the result already obtained that the
condition that ax + By + 2 should touch a curve contains a, 8,
in the degree m (m —1), and the coefficients of the curve in the
degree 2 (m —1). See also Conics, Art. 372.

If U have a double point, then since we have already seen
that U,, U, U, pass through that point, and that if that point be
a cusp they have there the same tangent, the same things are
true for v ; and we see that the order of the condition of contact
in the coefficients of ¥ must be diminished by two for every
double point, and by three for every cusp on U. The order is
therefore m (m + 2m’ — 8) — 28 — 3« or n+ 2m (m' —1).

98. These results might have been otherwise obtained thus.
Take any arbitrary line ax+ by + cz, and equate to nothing
the determinant

v=|a b ¢
U, U, G,
Vo Vo Vs .
This equation represents the locus of a point, such that its polars
with respect to U7 and V intersect on the assumed line. Now
at a point common to U and V, the polars are the two tangents
intersecting in the common point; there are, therefore, plainly
only two cases in which a point common to U and V can lie
also on v ; viz. either the assumed line passes through an in-
tersection of U, V, or at that point the two curves have a
common tangent. If then we eliminate between v, U, V, the
resultant will. contain as factors the condition that az+ by + cz
should pass through an intersection of U, V, and the condition
that U and V should touch. But since in the resultant of three
equations, the order in which the coefficients of each enter is
the product of the orders of the other two equations, and since
the orders of v, U, V are respectively m +m' —2, m, m', the
order of a, b, ¢ in the resultant is mm’, of the coefficients of U,
-is mm' + m' (m + m' — 2) =m'(2m + m' — 2), and of the coefficients
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of V, m(2m'+m—2). Similarly the orders of the resultant of
ax+by+cz, U, V, in the several coefficients are respectively
mm', m', m. Subtracting these numbers from the preceding,
we find, as before, that the orders of the condition of contact
are m' (2m+ m'— 3), and m (2m’'+m— 3) in the coefficients of
U and V.

EVOLUTES.

99. We have hitherto only dealt with descriptive theorems,
and have postponed the consideration of any questions belonging
to the class described as metrical (Art. 1). The relation of
perpendicularity belongs to the latter class, since, as explained
(Conics, p. 209), two perpendicular lines may be considered
as lines which cut barmonically the line joining the two imaginary
circular points at infinity. It is convenient not to exclude from
this chapter the discussion of some important cases of envelopes
which involve the relation of perpendicularity, and the theorems
may be made descriptive if we substitute for the two circular
points at infinity any assumed points 7, J, and wherever in our
theorems lines at right angles occur, substitute lines cutting
1, J harmonically.

One of the most important and the earliest investigated
class of envelopes is that of the evolutes of curves. We have
defined the evolute of a curve (Conics, p. 220) as the locus
of the centres of curvature of the curve; but the evolute may
also be defined as the envelope of all the mormals of the curve.
For the centre of curvature is that which passes through three
consecutive points of the curve, and its centre is the intersection
of perpendiculars at the middle points of the sides of the
triangle formed by the points. But the lines joining the first
and second, and the second and third points are two con-
secutive tangents to the curve; and the perpendiculars to them
just mentioned are two consecutive normals; the centre of
curvature is therefore the intersection of two consecutive
normals; and the locus of all the centres of curvature must
be the same as the envelope of all the normals.

Ex. 1. To find the evolute of —+4 =1
The normal is (Conics, p. 168)
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or, writing 2 = s o, y =S sEnp.
o by —

—_— ez,

cEp =1
an esquation of the class considered Art. 35, Ex. 2, whose envelope is therefore
c*:i +5§,§=e’.
Ex. 2. The normal to a parabola is / Comics. p. 191)
PyI-—yi+H z-2)=0,
or P+ PP -2pz, ¥ —py=0,
an equation of the class considered Art. 85, Ex. 1, whoee envelope, y’ being the
parameter, is .
’ 2 (p—27+ Zipy=0.
Ex. 3. To find the evolute of the semicubical parabola py* — 23,
‘The equation of the normal is
32 (y—y)+2py (z—2") =0.

Substitute for y in terms of 2’ from the equation of the curve, divide by z'3, and-
(pntﬁngz"-t)theequhunheeoma .
3 + 26 — 3plyt — 2pr = 0,

P (p - 182)* = (54px + PPy* + P

Ex. 4. To find the evolute of the cubical parabola p%y = 2°.
The equation of the normal is .
327 (y—y) +p* (z - ) =0,
or 82’5 — 8pPyxt + p'z’ — p'z = 0.
Now the envelope of
at® + 10de® + bet + f = 0 .
is (cf? — 12d%)? + 128 (2¢2 — 3df) (ae® — adef — 9d%) = 0.
Therefore the envelope in the present case is .
8p? («® — rhxy®)* + 1% (39 — xy) (3p* — $p%2y — H88y") =0.
Ex. 5. To find the evolute of the cissoid (22 + y?) = = ay®.
This is a unicursal curve, and writing the equation in the form (a x) y? —a:',
it is at once seen that this is satisfied by the values z =-—— The,

whose envelope is

1 + T+0' Y= gy (1 Fe°
equation of the tangent at the point in question is easily seen to be

20% — 86%c +a— 2 =0,
the equation of the normal is therefore

26% + (1+86%) y "(1”"')

or 264z + 36% — 26%a + 6y — a = 0.
Forming the discriminant of this it will be found to contain as a factor (z + 3a)? + g2,
the remaining factor giving the equation of the evolute proper, viz.

Y+ Ya%y? + Ppadx =0,

Ex. 6. To find the evolute of o8 + y = aa For any point of this curve we may
write (sec Art. 85, Ex, 2) o' =a cos’¢p, y' =asin®¢p. The tangent at that point
will be
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and the normal zeo§¢—ysin¢=aeos2¢,
or (z+3) (co8gp —sing) + (z — y) (c08 ¢ + sinp) = 2a (cos*p — sin’¢),
or zty . -y _2*a,

sin(¢ +406°) ~ ecoe(¢p + 45°)
whose envelope is (Art. 85, Ex. 2)

@+nt+e-pl=ad

100. The following investigation leads to the expressions for
the coordinates of the centre of curvature, and for the radius
of curvature ordinarily given in books on the Differential
Calculus. In this and the next article we use Cartesian rect-
angular coordinates. If a, 8 be the coordinates of any point .
on the tangent,  and y those of its point of contact, the equa~
tion of the tangent is B—y= dy (a x); where %, which
we shall call for shortness p, is to be found from the equation of
the curve. For the tangent passes through the pomt xy, and *
makes with the axis of = an angle whose tangent is p (Art. 38).
The normal then being a perpendicular to this at the point zy,
has for its equation

(@a=2)+p(B—9) =90 ceeverrrenrrennen. 1).
‘We have now to find the envelope of this line which contains
the parameters z, and y which is given in terms of x by the
equation of the curve. Differentiuting then with respect to z,

and writing %= ¢, we see that the point of contact of the line

with ite envelope is found by combining the equation with its

differential
—1-"+(B=%)g=0.ucerrrrreunnn.e. (2).
Solving for a —z and 8—y frem these equations, we have
—p(14p" 1+
- _P(q_z’) . B-y= —f :
and the radius of curvature is given by the equation
™

a—

R=v{(a-2'+(8-9)) = (“’f )

The values which have been obtained for the intersection of
two consecutive normals might have been found for the same
point considered as the centre of curvature.

M
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Take the equation of any circle
=)'+ (g~ B)'=

and differentiate it twice, when we have

d
(w—a)+(y-/3)2-1= )
dy\" a

+(B) +u-mF=
But if the circle osculate a curve at any point, then (Art. 48)
at that point ZZ ’ Z;,, have the same values for both. We
may therefore in these equations write for the differential coeffi-
cients, the values p and ¢ obtained from the equation of the
curve, when they become identical with equations (1) and (2)

already obtained from other considerations.

101. Since in practice y is not given explicitly in terms of z,
but both are connected by an equation U=0, it is convenient
to substitute for these expressions in terms of p and g, expres-
sions in terms of the differential coefficients of U. Let us write
a8 before

au au au a@Uu au

&=L =t =9 F=b g =h
then since the coefficients of = and y in the equation of the
tangent are L and M respectively, the equation of the normal is

Ma—z)—L(B—y)=0.cccoeeues cosvees (1),

whence differentiating
dy
(h+b D) (@-2)- (a+7¢ ) 8—9)- M+ 15 =o0.
But from the equation of the curve, L 4 M dy_ 0, whence sub-

d
stituting for Z—Z we have

(Lb- MR) (a—)— (Lk— Ma) (B- y) + L* + M*=0...(2).

* We find it convenient to use the abbreviations L, M, N instead of A, B, C
written inadvertently at p. 48, because we shall afberwa.rdsuse 4, B, &c., in the same
manner as in the Conics, to denote bc — f?, ca — g2, &c.
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Solving, then, between equations (1) and (2) we have
- L(L'+ M) - M(L*+ M)

O = ok LML P Y= il 2k LML
s+
whence B=3r ok LM+ 5T

102. This expression can be made to assume a more symme-
trical form by introducing the linear unit 2, so as to give
the equation the trilinear form. For by the theorem of homo-
geneous fanctions

(n—1)L=az+by+gz, (n—1)M=he+by+fz,
(n—1) N=gz +fy+cz,
whence (n —1) (3L - AM)=(ab—1") z + (bg —fh) 2,

(n—1) (aM— AL) = (ab—A") y + (af — gk) =.
Multiplying the first equation by Z, the second by M, and adding
(n—1) (BL* - 2hLM + aM") = (ab— 1) (zL + y M)

+2{(bg—7%) L+ (af —gh) M},
or since, by the equation of the curve 2L + yM + zN=0,
~— & {(fh—bg) L+ (gh—af) M+ (ab—F) N).
Substitute for L, M, N, their values given above, and we have
(n-1)*(0L*~2k LM+ aM*) =—2"(abc+ 2fgh— af *~ bg"—ch*)=—Hz",
and the expression for the radius of curvature becomes

") ]
R=:|:("_l) z(’LH-i-M') )

For any point whose coordinates satisfy the equation H=0,
the radius of curvature becomes infinite, and the centre of
curvature at an infinite distance. This will take place when
three consecutive points of the curve are on a right line, for
then the circle through them becomes a right line, and its
centre becomes at an infinite distance. We might then, from
this value of the radius of curvature, arrive, independently of
Art. 74, at the conclusion that the intersections of U and H are
points of inflexion.

The double sign in the value of the radius of curvature is
analogous to that in the value of the perpendicular on a right
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line (Conics, p. 28) ; and, of course, if we agree to use: the sign +
when the radius of curvature, and therefore the concavity of the
curve, is turned in one direction, we must use the sign — when it
is turned in the opposite direction. Since every algebraic func-
tion changes sign in passing through zero, we see that at a
point of inflexion the radius of curvature changes sign, and
that as we pass such a point the concavity of the curve changes
to convexity, and vice versd (see fig. p. 32). At a double point

the radius of curvature assumes the form g, and its valee must

be determined by the ordinary rules in such cases. In fact,
each branch of the curve has its own curvature at the point.
At a cusp it will be found that the radius of curvature vanishes.

103. The length of any arc of the evolute is egual to the difference
of the radit of curvature at its extremities.

For, draw any three consecutive nor-
mals to the original curve: let € be the
point of intersection of the first and
second, C"' of the second and third; then
since, ultimately, CR=CS, C'S=C'T; .
C(C’, which is the increment of the arc \c*
of the evolute, is also the increment of J
the radius of curvature.

Hence, if a flexible thread be supposed rolled round the evo-
lute, and wound off, any point of it will describe an snwvolute of
the curve CC'; that is, a curve of which CC’ is the evolute.
It was from thls point of view that Huyghens, the inventor of
evolutes, first considered them, and it was hence that the name
evolute was given.

g T

104. We add here a formula which is sometimes useful
for finding the radius of curvature of a curve given by polar
coordinates. The polar equation p=f(w) can be transformed
into one of the form p =f (p), where p is the perpendicular
from the pole on the tangent, and is given by the equations
(Art. 95),

. do
p=p sinb, tanﬂ:p-{z)-.
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Let the distance from the pole to the centre of curvature be p,,
-and the radius of curvature R, then (Euclid 11. 13)

p=p"+ R'—2Rp.
"If we pass to the consecutive point of the given curve, p, and B
remain constant, and differentiating, we have R= PZ—;’ which

18 the required expression for the radius of curvature.
When B has been thus expressed in terms of p, p, if we
eliminate p, p between the equations

p=S(p) p)=p'+F'—2Ep, p’=p'-p!
the last of which is obviously true, we shall have the relation
which subsists between the p, and p, of the evolute: but it is
not always easy to pass hence to the relation between the p,
and the o, of the evolute.
As an example take the curve p" =a™ cosmw, we find here
p=p cosmw, and hence p™"' =a"p, for the relation between p

v _ P _ a
and p. And we then have R_(m+l)p’ “mr e for

the radius of curvature.
The equations
p)=p'+ R'- 2Ry,
pi=p'-p A
give at once p*, p* each as a function of p, and thus virtually
the equation of the evolute in the form p,=¢(p,), but the
elimination cannet be actually performed.

It is however easy to find the equation of the reciprocal of
the evolute in regard to a circle described about the pole as its
centre. Taking for convenience the radius of the circle to be
=aj then if p, is the radius vector for the reciprocal curve, and
o, the inclination to a line at right angles to that from which
@ is measured, we have p =p sinmo, and then

p=% ¢

2 coshmo sinme
Moreover (Art. 95), w,=(m+ 1) @ ; wherefore the relation be-
tween p,, o,, or equation of the reciprocal of the evolute is

Da_ gin" on =
m+1 m+1

p, co8
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It will readily appear that the locus of the extremity of the
polar subtangent (see Conics, Art. 192) of any curve is the reci-
procal of the evolute of the reciprocal curve. Thus this locus is
a right line for the focal conics, since the evolute of the reci-
procal then reduces to a point.

105. When we are given the tangential equation of a curve
=0, we can obtain directly the line coordinates of the normal and

the tangentnal equation of the evolu;e For if aﬁ(}y be the line
!
coordinates of any tangent, then & —; o +B 5 dﬁ"” p =0 is the
equation of the point of contact ; and if v=0 be the tangential
equation of any pairs of points 1J, then ad ,+Bdﬁ,+q?_0
is the equation of the pole of the given tangent with respect to Z.J;
or, in other words, of the harmonic conjugate in respect to these
points of the point where ZJ is met by the given tangent. When
1J are the circular points at infinity, the second equation repre-
sents the point at infinity on the normal; the two together de-
termine the line coordinates of the normal; and if between them
and the equation of the curve we eliminate «'8'y’, we shall have the
equation of the evolute. In the system of tangential coordinates
which answers to ordinary rectangular coordinates, the equation
" which represents the circular points L/ is a* + B’ 0, (see Conics,
v’ v’
Art. 385), and the second equation a 7 Z+B dB’+ > is the
well-known condition of perpendicularity aa’'+ 88’ =0.
Ex. To find the equation of the evolute of a central conic given by its tangential

equation (see Conics, p. 161) a%a® + 5?62 =1. Here the two equations which deter-
mine the eoordmates of the normal are a?aa’+ 0*GBB’ =1, aa’+ BB’ =0, whence

aa’ =—ﬂﬂ'-—. Subshtutmg for «' and B’ in a%a’? + $?B2 =1, we get the tan-

gential equation of the evolute + L =ct

&

106. We give next some examples of the more general
problem in which that of evolutes is included, viz. (see Art. 96)
to find the envelope of the harmonic conjugate of the tangent
to a curve with respect to the lines joining its point of contact
to two fixed points 1, J. This line may be called the quasi-
normal and its envelope the quasi-evolute.
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Ex. 1. Let the curve be a conic. Take the line JJ as the base of the triangle of
reference, and let its vertex be the pole of this line with respect to the conic, then
the equation of the conic will be of the form (az + y) (z + dy) = 2%, and that of any
tangent will be

0 (ax+y) ~ 28+ (x + by) =0.

The equation then of any line which together with this and the lines z, y, divides

2 harmonically will be of the form
6 (az — y) + (z — by) = Mz,

‘We determine M from the consideration that the line is to pass through the point

of contact, for which we have 0 (az + y) = 2, 6z = = + by, whence

_2(—0) _e(aB-1)
@) Y@’

25— ab¥)
(@—-1)0"
If we write then ax —y =Y, z — by = X, 82 = (ab — 1) Z, the equation of the quasi-
normal becomes
a'Z + 40°Y + 46X — bZ =0,
and the envelope is a curve of the fourth class whose equation is
(adZ% 4+ 4XY)3 + 2722 (aX2 - bY?2 =0,

which represents a curve of the sixth degree having the points XZ, YZ for cusps,
Z being their common tangent, and besides four other cuspe at the intersections of
abZ? 4 4XY, aX? - bY3,

and we find M=

Ex. 2. Let the conic pass through one of the points 7, J; or, as we may say,
let it be semicircular. Then we have say b =0, and zz is on the curve, z being the
tangent, The equation of the quasi-normal then becomes

aZ + 42F + 4X =0,

and the envelope is only of the third class, its equation being 4¥3 4 27aXZ3 =0,
which represents a cubic having ¥Z for a cusp and XY for a point of inflexion.

If the curve pass through both I and J; making a and & both = 0, we see that
the equation of the quasi-normal reduces to 62X + ¥, and that the line therefore
passes through a fixed point ; namely, the intersection of X, Y, the tangents at I, J.

‘Ex. 8. Let the conic touch the line J. The most convenient lines of reference
then to choose are this line together with the two other tangents through 7, J, and
the equation of the conic is :

4y +23 22— 2x—22y=0,
or z2(2c+2y—2)=(z-y)%
The equation of the tangent then is
2242 —2-20(z—y)+0%2=0,
and we have for the point of contact
z-y=0z, 20 +2y—2z=0%.
The equation of the quasi-normal then is
z—y—-0(z+y)=2{0-40 1 +67)},
or 02—-0(2z+2y+2)+2(x—y)=0,
and the envelope is also of the third class, viz. the cuspidal cubic whose equation is
27z (x — y)? = (22 + 2y + 2)°.
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Ex. 4. The three preceding examples might also have been investigated by sup-
posing the conic to have been given by its general equation, The tangent then at
any point afy being

(@a+hf+gy)z+ (ha+bB+fy)y+(ga+/B+ey)2=0,
the quasi-normal is
v {(aa + A8 + gy) = — (ha + BB +fy) 4} = (aa? — b + gay — fBy) 2.
‘We have then to find the envelope of
aza? — b2f* + (fy — 92) v* + (by —fz — hz) By + (hy + gz — az) ye,
where a, 8, v are parameters also satisfying the condition

aa? + b + cy? + 2fBy + 29ya + 2hef = 0.

And (Art. 96) the envelope is formed by the process given (Conics, Art. 872) for
finding the condition of contact of two conics, Wee must form then the invariants.
of this system of quadratic functions, and the discriminant of the first is 228,
where 8§ is .

(ab — #7) (aa® — by") + (bg® — af'?) 2* + 2b (gh — af ) yz — 2a (Af — bg) 2.
‘We have
© = — (ab — h?) (ax? — 2hxy + by?) + (3af? + Bbg? — 4abc — 2fgh) 2*

+ (4bgh — 2abf — 2fh?) yz + (4abf — 2abg — 2gA*) z2.
©’ vanishes and the envelope is therefore 27A%,29% = 6%, which, as before, is of the
sixth degree having six cusps, two of which lie on z, But first let z touch the conic,
then ab~%?=0, and 8 and © take the form Lz, Mz where L and M are linear
and the envelope takes the form zL? = M3, and is a cuspidal cubic having ¢ as a
stationary tangent. Becondly, let the conic pass, say through I or gz, then a =0,
8 becomes b (ky + g2)?, and © takes the form (hy+ gz) M. The equation then be-
comes divisible by (hy + g2)?, and the envelope is of the form 2? (hy + gz) = M3,
It will be observed that hy + gz is the tangent to the conic at the point 7, and that

it is an inflexional tangent of the envelope,

107. In general, as Professor Cayley has remarked, if
Lx+ My+ Nz be the tangent at any point «'y'2', and aBy,
a'8'y' the coordinates of I, J, the equation of the quasi-normal is

z, Y % z Y %
(Lo’ + MB' + Ny') | &, ¥/, 2' |+ (La+MB+Ny) | &, ¥/, 2 |=0.
a By a, 8, 9

For the two determinants, which we shall call for the moment
A, A', severally represent the lines joining «'y'z' to I and J,
and since the tangent passes through their intersection we must
have an identity of the form Lz + My+ Nz=AA — BA'. Sub-
stitute successively in this identity «'8'y' and aBy for xyz, and
we determine 4 and B as proportional to La'+ MB'+ Ny' and
La+ MB + Nry, and therefore the equation of the harmonic con-.
jugate of the tangent with respect to A, A’ is of the form
writlen above.
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108. Let us examine more particularly the case where one
of the points aBy is in the curve, and, for simplicity, we take
its coordinates 1, 0, 0; that is to say, we suppose the point to
be yz; and we take the line z to be the tangent at it; and we
shall prove that the envelope contains z as a factor. Making
B and y=0 in the preceding equation, it becomes
(Lo’ + MB' + Nyy') (y2' — zy')

+ Lo (y2'— zy) + B (22 — 22) + o (29’ — y2)} =0.
Let us suppose now that ', 3/, 2’ are expressed in terms of a
parameter ¢, the point a, B, v answering to the value =0, and
we must have ¢ as a factor in the expression for 3, and ¢ in
that for 2', in order that the equation of the tangent may
reduce to z=0. In general, since the tangent is the line joining
the point z'y’2’ to the consecutive z'+da', y'+dy, 7'+ dz,
its equation is

z (ydz' - 2'dy’) + y (2'da’ — 2'd2’) + z ('dy’ — y'dx) = 0.

L, M, N are the coefficients of z, ¥, z in this equation, and ¢ is
a factor in M, and ¢' in L. If then the equation of the quasi-
normal be arranged according to the powers of ¢, it will be
found that there is no term independent of ¢, and that z is
a factor in the coefficients both of ¢ and of #. Now the
discriminant of a function A+ Bt+ Ct'+ &c. is of the form
A¢ + B>y (Higher Algebra, Art. 107), and therefore a factor
which enters inte both 4 and B will be a factor in the dis-
<criminant. Also if in the discriminant we make B=0, the
remainder will be of the form A4 (A¢+ C*): thus it appears
that the envelope will have z for an inflexional tangent (com-
pare Art. 99, Ex. 4).

109. It has been remarked (Conics, Art. 385) that the
relation of perpendicularity may be further extended by sub-
stituting for the points I, J a fixed conic, and by regarding two
lines as perpendicular if each pass through the pole of the
other with regard to that conic. In this extension then, what
answers to the normal, is the line joining any point on a curve
to the pole of its tangent with respect to the fixed conic; or, in
other words, the line joining the point to the corresponding
point on the reciprocal curve with regard to the fixed conic.

N
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Thus the curve and its reciprocal have the same normals. For
example, taking the fixed conic as z'+ 3"+ 2%, the coordinates
of the pole of any tangent to a curve are L, M, N, and the
equation of the line answering to the normal is

x(Mz' — Ny')+y (No' — Lz') + 2 (Ly' — Mx')=0.
If the curve were a conic, this equation would be of the second

degree in z2'y'z, and the envelope would be found as in Ex. 4,
p. 86.

110. The following remarks are a useful preliminary to the
investigation of the characteristics of the evolute of any curve.
The normal at any point of a curve at infinity coincides with the
line at infinity itself. It has been already remarked (Art. 105)
that we may generalize the conception of a mormal by sub-
stituting for the two circular points at infinity two finite points
1, J, and that then if the tangent at any point P meet 1J in M,
and if M’ be the harmonic conjugate of M with respect to 1, J,
the line PM' may be regarded as the normal. From this econ-
struction it appears at once, that if the point P be on the line
1J, then PM’ will coincide with that line. An exception occurs
where the point P coincides with either 7 or J; then the points
M, M’ coincide, and the normal coincides with the tangent (see
Conics, p. 338). 'Thus then, if the curve pass through eitker of
the circular points at infinity, the mormal at that point will
coincide with the tangent.

111. We proceed now to determine the class of the evolute
of a given curve; or in other words, the number of normals to
the curve (tangents to the evolute) which can be drawn through
any point. By the law of continuity, the number of normals
is the same, whatever be the point through which they pass.
It is enough, therefore, to examine the case when the point is at
infinity. But the number of normals, distinct from the line at
infinity itself, which can be drawn parallel to a given line, is
equal to the number of tangents which can be drawn parallel to
a given line, that is, te the class of the curve. And we have
seen in the last article that the m normals corresponding to
the m points of the curve at infinity, coincide with the line
at infinity, and therefore also pass through the assumed point
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Thus then the number of normals whick can be drawn to the curve
Jrom any point, 1s equal to the sum of the order and class of
the curve—or, what is the same thing, the sum of the orders of the
curve and 1ts reciprocal. If the line at infinity be a tangent to
the curve, then the number of finite tangents which can be
drawn through a point at infinity,is plainly one less than in
the general case, and therefore the number of normals is also
one less. Thus four normals can be drawn from a given point
to a conic in general, but only three to a parabola.

Again, if the curve pass through either circular point, we
saw (Art. 110) that the normal at that point does not coincide
with the line at infinity, and therefore, that for every passage
through a circular point, the number of normals is one less
than in general. Thus in the case of the circle which passes
through the two points I, J, the number of normals through
a point is reduced by two, and is two instead of four. Thus
then if m and = be the degree and class of a curve which passes
f times through a circular point, and touches the line at infinity
g times, the class of the evolute is

n'=m+n-f-gq.

These results might equally have been obtained from the consi-
deration that if in the equation of the normal M(a—=z) = L(8—y)
we suppose a, 8 given and z, y variable, we shall have the
equation of a curve of the m™ degree, whose intersection with
the given curve determines the points the normals at which
pass through a, 8. If the curve have no multiple points, the
number of intersections will be evidently m® or m + n: and there
is no difficulty in showing, that in the general case of & double
points and « cusps, the order is m* — 28 — 3«, that is m + n.

112. We next examine the degree of the evolute, and again
it suffices to examine the number of points in which the line at
infinity meets the evolute. Now if two consecutive normals
to the original curve be parallel, the corresponding tangents
will coincide; the points at infinity therefore on the evolute
arise in gencral from the points of inflexion on the given curve.
But to these must be added those arising from points at infinity
on the given curve, which points (Art. 111) also give rise to
points at infinity on the evolute. But we say, moreover, that,
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these will be cusps on the evolute having the line at infinity for
their tangent. Let M be any point on the line L, and M’ its
harmonic conjugate, then we saw that the line answering to the
normal at M is the line IJ: but if the consecutive points of the
curve, antecedent and subsequent te M be L and N, their
normals are LM, NM'. Hence M’ is a point through which
three consecutive tangents to the evolute pass, and is therefore
a cusp having ZIJ for its tangent. Since then the tangent at a
cusp meets the curve in three consecutive points, the m points
at infinity of the given curve, give rise to the same number
of cusps on the evolute which are met by the line at infinity in
3m points. If we add these to those already obtained, we find
the degree of the evolute =+ 3m, or the number which we
have called a (p. 64).

If the curve pass through either point I, J, we have seen
that these give rise to no points at infinity on the evolute, and
therefore the degree will be less by three.

If the line ZJ touch the curve, the normals for the two econ-
secutive points in which it meets the curve coincide with 1J;
we have therefore two consecutive tangents to the evolute
coincident, or a point of inflexion on the evolute having 1J for
its tangent. As this takes the place of two cusps which we
have when ZJ meets the curve in distinct points, the degree of
the evolute is reduced by three; and if we use fand g in the -
same sense as in the last article, we have for the degree of the
evolute

m'=a—3(f+g).*
The values given show that the degree and class are the same
of the evolute of a curve and of its reciprocal as Art. 109
might lead us to expect.

118. There will in general be no points of inflexion on the
evolute. For if there be such a point, two consecutive tangents
to the evolute (normals to the curve) coincide; but it is plain,
on considering the figure, that two consecutive normals cannot
coincide unless the corresponding tangents coincide with their

* Some particular examples show that these formuls must be modified when 7 or
J is a multiple point at which two or more tangents coincide. Thus if either be a
cusp, the diminution of degree is 4 not 6.
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normals and with each other, which could only happen in the
exceptional case where the original curve had an inflexional
tangent passing through I or J.

If, however, the curve touch IJ, we have seen (Art. 112)
that there is a point of inflexion at infinity, and if the curve
pass through I or J (Art. 108), that the evolute has an in-
flexional tangent passing through the same point. We have
thus conditions enough to determine all the characteristics of
the evolute, viz.

m=a-3(f+g), n"=min—(f+g), /=(f+g);

whence by Pliicker’s formula &'=3a—3 (m+n)-5(f+g),
a=3a—8(f+g);and we can in like manner write down the
number of double points of the evolute, and of its double
tangents; these double tangents are, it is clear, double normals
of the original curve.

The *deficiency” (Art. 44) of the evolute is the same as
that of the original curve, as may be verified by using the ex-
pression for the deficiency } {a — 2 (m + n)} + 1.*

114. The number of cusps on the evolute may also be in-
vestigated directly. We shall have a cusp on the evolute, when
three of its consecutive tangents (normals to the curve) meet in
a point; or, in other words, when four consecutive points of
the curve lie on a circle. To find the condition that this may
happen, we must join to the equations of Art. 101, viz.

M(a-z)=L(B~y),
(a—z)(AM -BL)—M*=(B—-y) (aM—*hL) + L',
that obtained by differentiating again; or, writing the four third
differential coefficignts a,, a,, b, b,,
(a—z) {a, M* —2b LM + b L — (ab - &*) M}
. -(B-y){a,M*-2a, LM+b L'~ (ab- F*) L}
=3L (aM—*RL)+3M (hM—bL).

* In general the deficiency of two curves is the same, if one is derived from the
other by such a process that to one point on either curve answers one point on the
other.
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Substituting in this equation the values of a—«, 8—y found
from the first two, we obtain for the required condition

(L*+ M?) (b,L* — 3, L*M + 3a,LM* — a M?)
+3H (aM*—2hLM+bI*) {(a- b) LM+ h (M* - L)} =

This may be written in a simpler form by observing that we
have, Art. 102,

(n—1) (aM* — 2K LM+ L) = — Hz';

whence differentiating

(n= 1) {(@ M~ 2a, LM +B L") +2 (@b— k) L } =—2* 2 |
(n—1){(a,M*— 2b LM + b L*) + 2 (ab — k*) M} = - 2* %g

- whence i s
8 2 2 3 hetent
(n—1)" {a, M*~3a, LM*+ 35 L*M—b L} = (de Ldy),
and substituting, the preceding equation becomes

(4 30y (2 _ 1, ‘fg) 3H {(a—b) LM+h (M*— I7).

Since H is of the order 3 (m—2), L and M of the order m -1,
and a, b, 2 of order m -2, this equation represents a curve of
the order 6m — 10, whose intersections with the given curve are
the points where the osculating circle has contact of the third
order.* If the curve have no multiple points, these m (6m — 10}
points together with m points at infinity give rise to m (6m —9)
cusps on the evolute, a number in accordance with the pre-
ceding formulz.

We might, in like manner, investigate the characteristics of
the evolute in the more general sense of the word indicated
Art. 109, and we should find that the formule we have already
obtained will apply, f being now the number of contacts of
the curve with the fixed conic, and there being no singularity
answering to g.

* In a subsequent part of the work the question of conics having with the curve
contact of a higher order than the second is more fully considered, and a formula
given for the aberrancy of curvature or deviation of the curve from the circular
form.
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CAUSTICS.

115. As a further illustration of envelopes, we add some
mention of caustica, the investigation of which, though sug-
gested to mathematicians by the science of optics, belongs
purely to the theory of curves. The subject has some historical
interest, caustics being among the earliest questions, involving
the problem of envelopes, actually discussed.*

If light be incident on a curve from any point, the reflected
ray is found by drawing a line, making with the normal the
same angle which is made with it by the incident ray: the
envelope of all these reflected rays is the caustic by reflection.

It is easy to form the general equation of the reflected ray.
Let the equations of the tangent and normal at the point of
incidence be T'=0, N=0: then the equation of the incident
ray i8 "N-TN'=0, where T"N' are the results of substi-
tuting the coordinates of the radiant point in 7' and N: the
reflected ray, then, which is the fourth harmonic to these three
lines, will have for its equation

T'N+TN'=0,
and the envelope can then be found by the preceding rules.

Ex. To find the caustic by reflexion of a circle.

The reflected ray is, by the preceding (af being the coordinates of the radiant
point, and the tangent and normal being x cosf + y sin® — r, and z sin6 — y cos ),
(e cosB + B sin® — r) (x8in6 — y cos) + (z cosd + y sin® — r) (a sin® — B cosb) =0,
or (ay + Bz) cos20 + (By — ax) 8in20 + r (z + a) sin6 — 7 (y + B) cos6 =0,
whose envelope is (Ex. 3, p. 68)

[ (a4 ) (@ + ) = 72 (& + @) + g+ PP = 27 (B2 — ay)? (a7 + 97 — ? — .

116. Instead of finding directly the envelope of the reflected
ray, M. Quetelet has given a method, which is more convenient
in practice, of reducing the problem to that of evolutes; since
the caustic would be sufficiently determined if we knew the curve
of which it was the evolute.

“If with each point successively of the reflecting curve as
centre, and its distance from the radiant point as radius, we de-
scribe a series of circles, the envelope of all these circles will

* The subject of caustics was introduced by Tschirnhausen, Acta Eruditorum,
1682, referred to by Gregory, Examples, p. 224,
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be a curve, the evolute of which will be the caustic required.”
The following (due to M. Dandelin) is a more convenient form
of stating the same theorem: If we let fall from the radiant
point O the perpendicular OP on the tangent, and produce it,
so that PR=OPF, then the caustic is the evolute of the locus
of R.

For BT is evidently the di- RXE
rection of the reflected ray, and
if we draw' the consecutive ray,
then, since OT, TV; OT", T'V, P T’
make equal angles with 7'7T",
OT+ TV=0T + T'V ( Conics, v
p- 352) ; therefore VR = VR',and o

therefore VR is normal to the locus of RB.

_ The locus of P, the foot of the perpendicular on the tangent,
we call the pedal of the given curve. The locus of R is plainly
a similar curve, and its equation can always be written down
when the equation of the reciprocal of the given curve, with

regard to O, is known ; by substituting ;2; for p in the polar

equation of that reciprocal. Thus the caustic by reflexion, of a
circle, is the evolute of the limagon, (see Ex. 5, p. 43), since its
equation (the radiant point being pole) as found by the rule
just given, is of the form

p=p(l+ecosw).

117. If light be incident from any point on a curve, the
refracted ray is found by drawing a line, making with the normal
an angle whose sine is in a constant ratio to that of the angle
made with the normal by the incident ray, and the envelope of
all these rays is the caustic by refraction.

M. Quetelet has reduced in like manner these caustics to
evolutes by the following theorem, the truth of which it is easy
to see. ‘If with each point successively of the refracting curve
as centre, and a length n a constant ratio to its distance from
the radiant point as radius, we describe a series of circles, the
envelope of all these circles will be a curve whose evolute is the
caustic by refraction.” In fact, the method of infinitesimals
readily shows that, in consequence of the law of refraction, the
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increments of the incident and refracted rays are connected by
the relation mdp+ dp'=0, it follows, then, that if on the
refracted ray produced, TR be taken =mOT, T'"R'=mOT",
then VE=VR/, and therefore the refracted ray is normal to
the locus of R.

We add geometrical investigations in relation to two interest-
ing cases of caustics by refraction.

(1) To find the caustic by refraction of a right line.
Let fall a perpendicular on the line, and produce it so that
AP=PBj; and let a circle be described L
through 4, B, and the point of incidence A
B; let LE be the refracted ray; then
obviously the angle ALB is bisected, and

AL+ LB: AB:: AL: AO £
::8ind0L : 8inALO;
but AOL is the angle which the re- £

fracted ray makes with the perpendicular to the surface, and
ALO=BLO = BAR is the angle which the incident ray makes
with the perpendicular: the ratio of AL+ LB to AB is there-
fore given ; the locus of L is an ellipse, of which 4 and B are
the foci, to which LR is normal, and of which, therefore, the
caustic is the evolute.

(2) Tb find the caustic by refraction of a circle.
Let a circle be described through A4, the radiant point, and
R, the point of incidence, to touch OR; then

the point B is given, since O4. OB= OR". 2

The ratio RA : BB is by similar triangles ™

equal to the given ratio O4 : OR. The ratio A
RA: RM is equal to sin RBA : sin RBM;

but RBA =PRA, the angle which the in- A

cident ray makes with the normal to the
curve, and RBM = PRM, the angle which 0
the refracted ray makes with the same
normal ; hence the ratio B4 : RM is also

given. Now since

AM.RB+ MB.AR=RM.AB,
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if we denote the distances of M from 4 and B by p, p', these
distances are connected by the relation

—II;TS pt %:Aﬂ—[ p'=AB.

Now, a Cartesian is defined as the locus of a point whose
distances from two given foci are connected by the relation
mp +np' =c; and it is proved precisely as at Conics, p. 352, that
the normal to such a curve divides the angle hetween the focal
radii into parts whose sines are in the ratio m : n. Hence the
locus of M is a Cartesian, of which 4 and B are foci, and
it is obvious that MR is normal to the locus, and therefore the
caustic is the evolute of this curve.®

The ellipse in (1) and the Cartesian in (2) are curves cutting
at right angles the refracted rays: the curve cutting at right
angles the reflected or refracted rays is termed the secondary
caustic.

- PARALLEL CURVES AND NEGATIVE PEDALS.

117. Tt remains briefly to notice one or two other classes of
envelopes. We have already mentioned the problem of finding
the curve parallel to a given one. This may either be treated
as that of finding the envelope of a tangent parallel to each
tangent of the given curve, and at a fixed distance from it,
and so of finding the envelope of

Lx+ My+ Nz=kz /(L* + M*),

or else, as we have already seen, it may be regarded as
that of finding the envelope of the circle of given radius
(x—a)’+ (y— B)* =", whose centre af satisfies the equation of
the curve: or, what is the same thing, of finding the condition
that this circle should touch the given curve. The result will
evidently be a function of %*. In some exceptional cases to be
mentioned presently, the result ean be resolved into factors, as
for instance, the parallel at a distance % to a circle of radius a
consists of a pair of circles of radii a+%. But ordinarily such a
resolution is not possible, and the two tangents at the distance
+% from any tangent will touch the same parallel curve.

* This proof was communicated to me by Dr, Atkins,
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Hence, the number of tangents which can be drawn parallel
to any given line is double that which can be so drawn to the
original curve, or n'=2n. In like manner, to each inflexional
tangent on the original correspond two on the parallel curve,
or ¢ =2¢, To find the order of the parallel it suffices to make
k=0 in its equation, which will not affect the terms of highest
dimensions in the equation: but what was proved for the conic
(Conics, p. 325) is true in general, that the result of writing
k=0 in the equation of the parallel, is the original curve
counted twice, together with the two sets of n tangents drawn
from the points 1, J to the curve. The order then is 2 (m +n).
There is no difficulty in seeing how these numbers are modified
if the original curve touch the line at infinity or pass through
the points 7, J. We arrive in this way at Professor Cayley’s
formule

m'=2(m+n)-2(f+g), n'=2n, ¢ =20=- 6m +2q,

€ =2a—6(f+g):f =2(n—yg), g'=2.
The parallel curve and the original have the same normals and
the same evolute, but every normal to the parallel curve is so
generally in two places, answering to the values + .

Ex. 1. To find the parallel to the ellipse or parabola. See Conics, Art. 872,

Ex. 2. To find the parallel to z* + ya = a*. The equation of any tangent is
(see p. 80) . .
zcosgp + ysing = asing cosg.
Hence, that of a parallel at the distance % is
zcosp +ysing =k + a sing cos ¢,
whose envelope is (see p. 68)
{8 (22 + y* — a?) — 447 + (27axy — 9k (z? + y?) — 18a% + 8R*)2 = 0.
This is one of the cases where the parallels answering to the values + & are different
curves and not different branches of the same curve.

The curve whose equation has been just obtained is the envelope of a line on
which a constant intercept is made by two fixed lines. If the lines are at right
angles, taking them for axes it is seen immediately that the equation of a line whose
length is @ inclined at an angle ¢ to the axis of z is z sin¢ + y cosp = a cos ¢ sing,

whose envelope is 2 + yi =a}. But consider for a moment a diameter and a parallel
chord of a circle, and it is evident that if a line whose length is a subtend a right
angle at any point, a parallel line at a distance }a cos¢ will make an intercept
a sin¢ on a pair of lines including an angle ¢, and equally inclined to the rectangular
lines. Hence, obviously the envelope of a line whose length -is @ sin¢ intercepted
between the oblique lines is a parallel (answering to the value £ = ja cos¢) to the

envelope for the rectangular lines, :c* + y§ = ag.
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118. If ax+ By+ o be a tangent to a curve (the equa-
tion being expressed in ordinary rectangular coordinates), then
evidently ax+ B8y +v+k 4/(a® + 8°) is a tangent to the parallel
curve; and it follows at once, that if we have the tangential
equation of the given curve, we obtain that of the parallel by
writing in it for v, oy +kp where p is 4/(a*+ 8%). Hence the
tangential equation of the parallel to a curve whose tangential
equation is V=0, is

2
V+Ap‘§—V+ RTR ‘2—V+&c ~o0.
The equation is cleared of radicals by transposing to one side
the terms containing the odd powers of p and squaring, when
we obtain an equation the order of which is double that of the
original tangential equation, in conformity with what was proved
in the last article.

Ex. 1. To find the tangential equation of the parallel to xz "/2 =1. The tau-

gential equation of the ellipse is (see Conics, p. 161) a?a? + I;’;B2 'y*, whence that ot .
the parallel is
@ + 1 = (y + I,

or {(a® — ) a2 + (8% — 22) B2 — 9?2 = 402 (a® + B7) o2
Ex. 2. To find the tangential equation of the parallel to the parabola yZ = pz.
The corresponding tangential equation is pp? = 4ay; hence that of the parallel is
(p@® — 4ay)? = 442a? (a? + 7).
' Ex. 3. To find the tangential equation of the parallel to a circle. The tangential

equation to the circle whose centre is the point @, b, and radius c, is (Conics, p. 81)
(aa + B + y)? = ¢* (a® + B?) ; therefore that of the parallel is

(aa + B + v + kp)? = c*p?,
which breaks up into factors, and gives
ae+bB+y+kp=tcp;
whence, clearing of radicals,
(¢a + 28 + y) = (c £ R (a® + F7),

representing a pair of concentric circles whose radii are ¢ + 4, as is geometricaliy
evident.

119. In precisely the same manner as in the last example,
it is proved that if the tangential equation of a curve be of the
form * (a® + B*) =%, the parallel will break up into two factors
of like form with the original, the parallels answering to the
values +% being distinct curves, and not different branches of
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the same curve. For suppose that by the substitution of ¢ + kp
for ¢y, u becomes u+ukp+u”k’p + &ec., and similarly for v;
then u’p® = v* becomes

(u+u'kp + u'kp" + &e.)' p* = (v + v'kp + v"'Ip" + &e.)',

which is at once resolvable into factors which can be rationalized
separately, giving the result

{u+ u"Fp" + &e. + (v + 0" Hp* + &e.)}* p*
={v+0"Fp* + &ec. + (Wkp* + u"kp* + &e.)}*.

Thus the equation given for the parallel of a conic is of the
form considered in this article, and it can be now easily verified
that the parallel to that parallel at the distance %', consists of
the two parallels to the conic at the distances & + k", as manifestly
ought to be the case. Take again the curve already mentioned,

2+ y§=a§, whose tangential equation is (a'+ £%) ¥*=a""S",
which being of the form here considered, shows that the parallel
breaks up into factors. The tangential equation of the parallel
is in fact (o’ + 8%) o' = {aaB + k (a* + B*)’}.

If we take for u and v respectively the most general func-
tions of the first and second degrees in a, 8, vy, u'p" =v* denotes
a curve of the fourth class having two double tangents, and
which is therefore of the eighth order. But these functions may
be so taken that the double tangents shall become stationary
tangents, and that the curve may have another double or
stationary tangent, and in this way we can form the equation
of a curve of the third or fourth order whose parallels break
up into factors. Of this kind is the reciprocal of a Cartesian as
will afterwards be shown.

120. If we had been using trilinear instead of rectangular
equations it follows from Conics, p. 60, that the equation of a
parallel to ax + By +2, at a constant distance from it, is of
the form

ax+ By +yz+m(x sind + y sin B+ 2 sinC) +/(8) =0,
where S is
o+ B + o' — 28y cos A — 2ya cos B—2af cosC,



102 PARALLEL CURVES AND NEGATIVE PEDALS.

and we see that if in the tangential equation of a curve we
write for @, B, v;

a+msind «/(S), B+m sinB y(8S), v4-m sinC /(8),

we shall have the tangential equation of a parallel curve. We
saw, Conics, p. 338, that S=0 is the tangential equation of the
points IJ; and it is at once suggested, that if S=0 be the tan-
gential equation of any two points, and ax+ by + cz =0 that of
‘the line joining tlem, then considering the circular points at
infinity as replaced by the two points in question, the envelope
of ax+ By+qz, and of ax+ By +vz+ (ax + by + c2) ¥/(8S) are
parallel curves.

121. We called (Art. 114) the locus of the foot of the
perpendicular on the tangent from a given pole or centre, the
pedal of the given curve. Having found the pedal we may
find its pedal again, &c., and so have a series of second, third,
&c. pedals of the given curve. Or we may continue the series
the other way, the curve of which the given curve is the pedal
being the first negative pedal, and so on. The problem of
finding the negative pedal is that of finding the envelope of a
line drawn perpendicular to the radius vector through its ex-
tremity ; or, in other words, it is that of finding the envelope of

ax+ By =o'+,
where a, B satisfy the equation of the curve. We have just

seen that the problem of finding the parallel curve is that of
finding the envelope of

20x+ 2By + & - o' -y =a* + B,
subject to the same conditions; and accordingly Mr. Roberts
has remarked that the two geometrical problems are both re-

ducible to the same analytical problem, viz. that of finding an
envelope of the form

Aa+ BB +C=a'+ 8,
and that if we had the equation of the parallel curve we could
deduce that of the negative pedal, by writing in it £’=a"+ 3*,
and then writing iz, {y for « and y. Ordinarily, indeed, the
problem of finding the parallel curve is the more difficult of the
two: but this method gives immediately the negative pedal of
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the right line or circle. For the parallel to a right line is a
pair of equidistant parallel lines, and the parallel to a circle
of radius a is two concentric circles of radii a+%. In either of
these cases, then, the equation of the parallel curve can be
written down without calculation, and the negative pedal thence
derived by the process just indicated.

122. If for any curve there is taken on each radius vector
OP from an arbitrary origin or centre of inversion a portion
OF’ equal to the reciprocal of OF, the locus of P' is said
to be the inverse of the given curve. From this definition it
is easily inferred that the pedal of a curve is the inverse of
its polar reciprocal, and that the first negative pedal is the
polar reciprocal of its inverse: the reciprocation being per-
formed in regard to a circle describod about the origin or centre
of inversion as its centre.

There is no difficulty in deducing, by reasoning similar to
that used in other similar cases, the characteristics of the curve
inverse to a given one, and hence those of the pedal and the
negative pedal respectively, and it is sufficient to give the re-
sults. We use f and g in the same sense as before to denote
the number of times that the curve passes through a point 7 or
J, or that it touches the line IJ; £’ and g’ denote the reciprocal
singularities, viz. the number of times the curve touches a line
OI or OJ, or that it passes through the origin: p and ¢ denote
the number of coincidences of tangents when the origin or when
a point I or J is a multiple point [for example, we should have
p=1,if the origin were a cusp], and p', ¢' denote the reciprocal
singularities: then for the inverse curve we have

M=2m-f-g, N=n+2m-2(f+g)-(f'+9)+(p+9),
F=2m—-f-2¢, G=p, F'=q, F=m—f, P=g, Q=f".
Hence we must have for the pedal
M=tn—f'~g, N=m+2m=2(g+f)~ (g +1)+p'+ 3,
F=2n-29-f, Géply F'=q, &=n-f, P=g, Q=f,
and for the negative pedal
M=n+2m-2{(f+g)- (f+9)+p+g, N=2m—f-g,
F=q, @Q=m—f, F'=2m-f-2¢', G=p, P'=g, ¢=f"
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Ex. 1. To find the negative pedal of the parabola, the pole being at the focus.*

Let the equation be y?=4 (mx + m?). We may then express any point on the
curve by z +m = \?m, y = 2Xm, and the equation ax + By = a? + 32 becomes

- z+22y=A2+1)m,
Themvmmntsofthmqnartxcmkare
8 =38 (z+4m)?, T=(x+4m)?— bdm (22 + y?).
The discriminant therefore 8% — 2772 becomes divisible by 2%+ ? and gives the
equation
(= + 4m)? = 27m (22 + 3?).

This is equivalent to the polar equation p} cos}w = m, which might have been other-
wise obtained, since it immediately follows from Art. 95 that if the equation of any
curve can be expressed in the form p™ = a™ cosmw, the equations of its pedal and

negative pedal are of the same form, the new m being %—» and %. respectively.

It may be remarked that the equation of the tangent to a parallel to this curve is
D2+ D=+ 1w+ W+ 1) F,
the envelope of which is of the fifth order, the curves answering to the values + &
being distinct. And so in general the parallels will be unicursal of ocurves, the
equation of whose tangent is
Q=D z+2y =90,

If we take ¢ (\) = mA® we get a curve of the third class and fourth order touched
by the line at infinity and passing th.rough the points 1, J,

Ex. 2. To find the negative pedal of =1, the pole being at the centre.
Writing as usual for the coordinates of any pomt acos¢ and bsing, we have to
find the envelope of

az cos P + by sin¢ = a? cos? ¢ + % sin = § (a® + %) + 3 (a? — §?) c082¢p.
Hence, writing for the moment $ (a®+ %) =m, } (a?—b?) =n, the envelope is (see p. 68)
{8 (a%? + b%y?) — 4 (m? + 3n2)}8 + {9 (m — 3n) a%2®+9 (m + 8n) %2 — 8m (m? — 9n?)}2 =0,
For Professor Cayley’s solution of the same problem, see Geometry of Three Dimen-
sions, (Art., 481).

Ex. 8. To find the negative pedal of the ellipse, the pole being at the focus.
The = measured from the focus is ¢ + a cos¢ and the focal radius vector @ + ¢ cos¢.
‘We have therefore to find the envelope of

z (c+acosg)+ ybsing = (a + c cos¢)?,
or c? co8 29 + a (4c — 2x) cos¢p — 2by sin + (262 + % — 2x) 5
and the envelope is
{382 (22 + y2) — (262 + cx)?}3 + {902 (a2 — oz + 2¢?) (22 + 3?) — (2% + cx)’j2 =
which, when expanded, will plainly be divisible by x? + 32 and will represent a curve
of the fourth degree, having the lines «? + 32 as stationary tangents.

* It may easily be seen that this is the same problem as to find the caustic by
reflexion, the rays being perpendicular to the axis,
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CHAPTER 1IV.

METRICAL PROPERTIES OF CURVES.

123. I~ this chapter we shall give some of the more im-
portant of the metrical properties of curves. In the investigation
of such properties Cartesian rectangular coordinates are most
advantageously employed: then, as we saw in Art. 35, by sub-
stituting p cosd and p sin@ for = and y, we obtain the lengths
of the segments made by the curve on any line through the
origin; and so on any line whatever, since by transformation
of coordinates any point may be taken for origin.

The theorem given (Conics, p. 145) may be generalized as
follows: If through any point O two chords be drawn, meeting
a curve of the n™ degree in the points R R,...R,, 8,8,...8,, then
OR .OR....OR,
08,.08,...08,.
ever be the position of the point O, provided that the directions of
the lines OR, O8 be constant.*

And the proof is the same as that already given in the case of
conic sections. From the polar equation of the curve, Art. 26,
we see that the product of all the values of the radius vector on a
line through the origin making an angle @ with the axis of x, is

_ A
"~ Pcos"0+Q cos" 6 sinf + &e.’
and the same product for any other line is
_ 4
= P cos6, @ c0s"6, sind, 4 &o. "
The ratio is therefore
Pcos" 8 +Q cos™" 0 sin 0 + &ec.
Pcos*0,+@Q cos" 0, sinf, + &e.

* This theorem was first given by Newton, in his Enumeratio Linearum Tertii
Ordinis. ’

the ratio of the products will be constant, what-

4
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But we have seen (Conics, p. 132) that by a transformation to
any parallel axes, the coeflicients of the highest powers of the
variables, and therefore this ratio, will be unaltered.

We may (as at Conics, p. 145) express the same theorem
thus: If through two fixed points, O and o, any two parallel lines
. be drawn, then the ratio of the products OR .OR, .OR,...dc.
: or,.or,.or,, dc. will be constant, whatever be the common direction
of these lines.

. A
For the value of the second product is Poor 01 &’ where

1

A’ is the absolute term when o is made the origin ; and the ratio
of the products is 4 : 4, and independent of §. We have seen
(Conics, p. 132) that the new absolute term will be the result of
substituting the coordinates of o in the given equation. We see,
therefore, that the result of such a substitution is always propor-
tional to the product of the segments intercepted between o and
the curve on a line whose direction is given (Conics, p. 230).

124. From the preceding theorem is deduced at once
Carnot’s theorem, of- which we have given a particular case
(Conics, p. 277). ' Let each of the sides of a polygon ABC &ec.
meet a curve of the n™ degree in = real points. We shall de-
note by (B)'. the continued product of the » segments made on
the side BC between B and the curve: by '(B) the product of
the segments made on the side BA. Then

(4) (B) (C) (D) &e.="(4) (B) '(C) (D) &e.
For through any point draw radii vectores parallel to the sides
of the polygon, and denote the continued product of the seg-

ments on each of these lines by (a), (8), (¢), &c., then, dis-
regarding signs,

(B) = (B) ::(a) : (B)

10): (0) 11 () : (9

(D) (D) 21 (0) : (),
&e.,

and compounding all these ratios, the truth .of the theorem
is evident.
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125. Some ambiguity will be avoided by attention to the
sign +. Considering the segments on the line 4B, we have
(4)' the product of » segments measured from 4 to B; and
'(B) the product of » segments measured from B to 4, and
therefore according to the rule of signs (Conics, p. 5), each term
in the latter product is to be regarded as of an opposite sign
from each term in the former, so that if we give to (4)’
the sign +, we must give to '(B) the sign (—)"; that is to
say, + when n is even, and — when it is odd. And if & be the
number of sides of the polygon, then since each side of the
equation of the last article consists of n factors such as (4)’, that
equation must be written

(4) (B) (C) &e.=(-)" "(4) '(B) {C) &e.;

that is to say, the right hand side will have the sign + when
either the degree of the curve or the number of sides of the
polygon is even; but when both are odd, the sign — is to be
used.*

Ex. 1. Let a right line meet the sides of a triangle AB, BC, C4, in the points
¢,a,b. Then
Ac.Ba.Ch = — Ab.RBc.Ca, (Conics, p. 85),

and the sign shows that, if it cut two sides internally, it must cut the third externally.
‘The equation
Ac,.Ba.Cb =+ Ab.Bc,.Ca, (Conics, p. 86)

will be fulfilled if the three lines Aa, Bb, Cc,, meet in a point; and the line 4B is
cnt harmonically in the points ¢ and c,.

Ex. 2. Let each side of the triangle touch a conic in the points a, b, c. Camot's

theorem gives us
Ac?. Ba?.Cb? = + Ab?. Bc?.Cat;

nnd, therefore, Ac.Ba.Cb =+ Ab.Bc.Ca.

The lower sign cannot be used, since no line can meet a conic in three points: we
learn then that if a conic be inscribed in a triangle, the lines joining each vertex to
the opposite point of contact meet in a point.

Ex. 8. Let a, b, ¢ be points of inflexion on a curve of the third degree, at which
BC, CA, AB are tangents; then, by Carnot’s theorem, ’
Ac®. Ba?.Ch?® = — Ab3,Bc2.Ca?,
the only real root of which is
Ac.Ba.Ch =~ 4b.Bc.Ca.

Hence, if a curve of the third degree have three real points of inflexion, they must lis
on one right line. Hence, too, a curve of the third degree can have only three

* See Pliicker’s System der Analytischen Geometrie, p, 44,
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real points of inflexion; for this argument would show that all the real points of
inflexion must lie on a right line; and a right line can only meet the curve in three '
points.

The same reasoning proves that if any curve of an odd degree n have three real
points, at each of which the tangent meets the curve in = points, these three points
must lie on one right lirte.

Ex. 4. Let a curve of the fourth degree have three double tangents; we have
Ac?, Ac2.Ba?.Ba2.Ct2.Cb,2 = Ab?,Ab2. Bc?. Bc,?.Ca?.Ca 2,
whence Ac.Ac,.Ba.Ba,.Cb.Cb, = + Ab. Ab,.Bc.Bc,.Ca.Ca,;

but on account of the double sign we can only infer that “if a curve of the fourth
degree have three double tangents, the conic through five of the points of contact
will either pass through the sixth, or through the point which, with the sixth, divides
harmonically the side of the triangle on which the sixth lies.” There are thus two
distinct kinds of triads of double tangents, according as one or the other of these
geometrical relations holds good.

126. There are some particular cases for which Carnot’s
theorem requires to be modified. First, if one of the angles
(4) of the polygon were at infinity, that is to say, if two
adjacent sides be parallel, then (4)' ultimately ='(4), and we
still have the equation

(BY (C) &e.='(B)"(C) &.

Secondly, if one of the angles (4) were on the curve; then

one of the » terms vanishes in each of the products (4)' and '(4) ;
. . . AR sinRREA

but now, since the ratio of any two lines IR “smB R4’ "¢

may substitute for the ratio of these two vanishing sides, the

ratio of the sines of the angles which the sides of the polygon at

A make with the tangent at 4, and the theorem becomes

(4) (B) (C) &e. _ '(4)'(B)'(C) &e. ’

sina sina’

where (4),'(4) have each but » —1 factors, and where a, o' are
the angles which the sides on which (4), '(4) are measured
make with the tangent at 4. In this manner we can deduce
that, “if any polygon be inscribed in a conic, the continued
product of the sines of the angles which each side makes with
the tangent at its right hand extremity, is equal to the similar
product of the sines of the angles made with the tangent at the
other extremity.” .
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DIAMETERS.

127. If there be n points in a right line, a point on the line
such that the algebraic sum of its distances from these points
shall vanish, is called the centre of mean distances of the given
points. Let the distance of the centre from any assumed point
on the line be y, let that of the other points be y,, ¥,, y,, &c.,
then the distances of the centre from the given points are y —y,,
¥ — Y,y &c., and the condition given by the definition is

2@ —y)=0, or ny—2(y,)=0;

whence we learn that the distance of any assumed point from the
centre is equal to the sum of the distances of the assumed point
from the given points, divided by the number of these points ;
or is equal to the mean distance of the assumed point from the
given points. Thus, if there be only two given points, the
centre of mean distances is the middle point of the line join-
ing them, and the distance of any point on the line from the
middle point is half the sum of its distances from the two
given points.

The well-known properties of the diameters of conics have
been generalized by Newton into the following theorem, true for
all algebraic curves: If on eack of a system of parallel chords
of a curve of the n'™ degree there be taken the centre of mean
distances of the n points where the chord meets the curve, the locus
of this centre 13 a right line, which may be called the diameter
corresponding to the given system of parallel chords.

To prove this theorem, we adopt the same method of inves-
tigation as in the case of conic sections. (Conics, Art. 141). The
origin would be the centre of mean distances for a chord making
an angle @ with the axis of z, if, when we transform to polar
coordinates by substituting p cosé, p sin@ (or, in case of oblique
axes, mp, np), for z and y, 6 be such as to cause the coefficient
of p"™ to vanish. If we seek then the condition that any other
point «'y’ should be the centre of mean distances for a parallel
chord, we must examine what relation should exist between
@y y', in order that when we transform the axes to this point
the new coefficient of p"” should vanish for the same value
of 6. But when the given equation U=0 is transformed to
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parallel axes by substituting z+', y+y, for z and z, it
becomes
d U

=t + 1=
only the three ﬁrst terms can contain powers of the variables as
high as the (n —1)", and since these involve z'y’ only in the first
degree, the required locus must be a right line. Its equation is,
in fact,

au L AU - ,d'U

U+ +y d )+&c.=0;

a’u_ du,
+y d +ut-l 0

where, in u_, u cosa and sin@ (or, if the axes be oblique, m

) T m=1)

and n) have been substituted for z and z.

128. Newton has also remarked that if any chord cut the
curve and its asymptotes, the same point will be the centre of
mean distances for both, and that therefore the algebraic'sum of
the intercepts between the curve and its asymptotes =0. This
is the extension of the well-known theorem (Conics, p. 181).
The truth of it follows at once from the equation of a diameter
given in the last Article, and from what was proved (Art. 52)
that the terms u , u,_, are the same in the equation of the curve
and in that of its » asymptotes.

129. We may in like manner seek the locus of a point such
that the sum of the products in pairs of the intercepts, measured
in a given direction between it and the curve, shall vanish.
The origin would be such a point if the coefficient of p**
vanished for the given value of 6, and the locus is found, as in
Art. 127, by examining what relation must exist between ' and
¥ in order that the coefficient of p"™ in the transformed equa-
tion should vanish. But since the terms of the (n—2)™ degree
in z and y involve no powers higher than the second of z' and g/,
the locus will be a conic section, which we shall call the
diametral conic.

Its equation is readily seen to be

du,, du,_ + T, d'u, o du
u._'-l'-.'c dx +y -a‘y.‘.i.. ( d‘fv -I-nydr + —d7’~)=0’

where, in u,_, &c., cosd and sind have been substituted for
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x and y. The distance of any point from either point on the
diametral conic being y, and from the curve y,, ., &c., we have
by the definition
2y-9)y-9)=

The number of terms in this sum is the same as the number
of combinations in pairs of n things, and is therefore = }n (n - 1).
"This, therefore, will be the coefficient of * when we multiply out
each of these products, and add them together. In the same
case the cofficient of y will consist of n(n— 1) terms, each of
the form — (y, +y,), and since it must involve the » quantities
Y1y Yy &ec., symmetrically, it must be — (n—1) 2 (y). Hence

2@-9) (y-g)=dn(-1) "= (n—1) y= () + = (y,,) =0.
This quadratic gives the distances of any point from the diame-
tral conic when we know its distances from the curve. 4n(n—1)
times the product of these two distances = = (y,,), or the product
of the distances from the diametral conic is equal to the mean
product in pairs of the distances from the curve, since there
are in(n—1) such products. The sum of the distances from

the diametral conic=1-212(y). The mean distance is then the

same for both curves, since there are two such distances in
the one case, and n in the other; and the two curves have
the same diameter.

130. There is no difficulty in seeing that a curve of the 2™
degree may have other curvilincar diameters of any degree up
to the (n —1)". Thus the locus of a point such that the sum
of the products in threes of its distances from the curve should
vanish, is found by putting the coefficient of p" in the trans-
formed equation=0; and since this coefficient involves no
higher than the third powers of the variables, the locus will
be of the third degree. 'We may see too, in like manner, that

2@-5)-2) G-y =tn(n-1)(n-2)y’

-1 (n - 1) (n - 2) 3/23 (Z/) + (n - 2) y= (ytye) -3 (.’ll.%i’/s),
and we can readily infer hence that the curve and its cubical
diameter will have the same mean distance, mean product in

pairs, and mean product in threes of the distances. So in like
manner for diameters of higher dimensions. More light will
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be thrown on the subject of these curvilinear diameters by con-
siderations which we shall explain presently.

131. To the mention we have made of diameters, we may
add some notice of centres. If all the terms of the degree n — 1
were wanting in the equation, then the algebraic sum of all the
radii vectores through the origin would vanish, and the origin
might in one sense be called a centre.

The name centre, however, is ordinarily only applied to the
case where every value of the radius vector is accompanied by
an equal and opposite one. In this case, if the equation be
transformed to polar coordinates, it must be a function of p*
only. If the curve then be of an even degree, its equation
in  and y, referred to the centre, can contain none of the odd
powers of the variables, and must be of the form

uy+ u, + u, + &e. =0.

If the curve be of an odd degree, its polar equation must be
reducible to a function of p* by dividing by p; and the = and ¥
equation can contain none of the even powers of the variables,
but must be of the form

u, + u, + u, + &c. =0.

This form shows that if a curve of an odd degree have a
centre, that centre must be a point of inflesien. It is also
evident that it is only in exceptional cases that a curve of any
degree above the second will have a centre; since it is not
generally possible, by transformation of coordinates, to remove
so many terms from the cquation as to bring it to either of
the forms given above.

POLES AND POLARS.

132. We pass now to an important theorem, first given by
Cotes in his Harmonia Mensurarum : If on each radius vector,
through a fixed point O, there be taken a point R, such that

n 1 1 + 1
OR~ OR,™ OR,™ OR,
then the locus of B will be a right line.

+ &e.,
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For, making O the origin, the equation which determines
OR,, &c., is of the form

AP—1.+(Beoso+oaino);L,

+(D cos’0+Ecososin0+Fsin"0)P—}—,,+&c.=0

n _ (Bcosf+ Csinf)
Hence OR=" A )
or, returning to = and y coordinates,

Bx+ Cy+nd=0.

This is the equation found (Art. 60) for the polar line of the
origin, and the property just proved is the extension of the
well known harmonic property of poles and polars of conic
sections (see Contcs, Art. 146).

133. The preceding property may also be established with-
out taking the point O as the origin, by a method corresponding
to that used, Conics, Art. 92. We have seen (Art. 63) that
given two points O, 2'y’2', and R, xyz, then the equation
A=0,or

NU + M pAT + N0 A U + &e. =0,
determines the ratios R, : OR,, &c., in which the line joining
these two points is cut by the curve. It follows then from
the theoxnof equations, that AU'=0 expresses the condition

that the of the roots  of the equation A =0 should vanish:
that is to say, AU =0 is\the locus of a point R, such that

RR, RR _

O—.RI + UR:—!—&C.—O.

But writing for BR,, OR, — OR, &c., this equation is at once

seen to be
1

n 1
OR= ﬁ; + —07’4- &e.
134. It can be seen in like manner, that the polar conic
A'U’=0 is the locus of a point, such that

RR, RR) 1 1\/1 1
b} (-OTI.O—R)—O, or E(UR - O—R-l) (UR— aﬁ;)=0,
and similarly for polar curves of higher order. The polar curve
Q
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of the £ order possesses the property (if OR demote & radius
vector to the curve, and Or to the polar curve)

1 1

-

2 0R=E 30
12 o 1 _ 12 o 1
n@m—1) 2 OF,.OF, " k(k—1) > Or,.0r,
1.2.3 1 1.2.3 1 ’
#ln—1)(n=2) > OF.OR,OF, ~ k(i—1)(i=3) > Or.0r,Or, &

135. If the point O be at infinity, then the distances OR,,
OR,, &c. may be regarded as having to each other the ratio of
RR, RRB,
OR,’ OR !
&c. may be considered as equal. The property then of the

! =0, reduces, when O is at infinity, to S (RR')=0;

equality, and the denominators in all the fractions ——!

BE
OR,
or the sum vanishes of the intercepts between the polar and the
curve on the parallel chords which meet at 0. Thus then tke
polar line of a point at an infinite distance 43 the diameter of the
system of parallel chords which are directed to that infinstely
distant point.
RR

So again for the polar conic. The equation 3 (Ioi% W’) 0

reduces when O is infinitely distant-*wo~2{RER, R )_0 or
3 (OR-OR,) (OB — OR) =0, the equation (Art. 129) which de-
termines the diametral conic. And so in general, rotlinear
diameter of any order is identical with the polar curve of the
same order, of the infinitely distant point on the system of parallel
chords to which the given diametral curve corresponds.

136. MacLaurin has given a theorem, which is the extension
of Newton’s theorem (Art. 128): “If through any point O a
line be drawn meeting the curve in n points, and at these points
tangents be drawn, and <f any other line tkrough O cut the curve
mn B, B, &c and the system of n tangents in r 19 Tyy dC.y then

1

z0E =30r Or

It is evident that two points determine the polar line; that,
therefore, if two lines through O meet two curves in the same
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points, B, B, &c., 8, 8, &c., the polar of O, with regard
to both curves, must be the same, since two points of it,
R and 8, are the same for both. This will be equally true
if the two lines OR, OS coincide, that is to say:—“If two
curves of the n“ degree touch each other at » points in a right
line, then the polar of any point on that right line will be the’
same for both curves; and therefore if any radius vector through

”
such a point meet both curves, we must have = OR-E—O—r

137. We know that the centre of a conic may be regarded
as the pole of the line at infinity with respect to the curve.
‘With respect [to curves of higher order, however, every right
line has (n—1)' poles (Art. 61), and there is therefore no
unique point for a curve of higher order answering to the centre
of a conic section. But it is different if we consider curves of
higher class. The preceding investigations are evidently appli-
cable also to tangential coordinates; and thus every right line
has a pole, a polar curve of the second, third, &c. class, and
finally, a polar curve of the (n—1)" class, touched by the =
tangents at the points where the right line meets the curve.
And if we thus by tangential coordinates seek the pole of the
line at infinity, we find a unique point.

Let us examine what metrical property is possessed by the
pole of a line expressed in tangential coordinates, and in par-
ticular, by the pole of the line at infinity. We take the system
of Art. 19, in which the coordinates of a line are proportional
" to the perpendiculars let fall on it from three fixed points; and
then it may be seen without difficulty, that 7: m denotes the
ratio of the sines of the angles, into which the angle between
two lines aBy, a'8'y’ is divided by the line la + ma', I8+ m8',
ly+my. The equation then which answers to A =0, deter-
mines the ratio of the sines of the parts into which the angle
between any two lines is divided by each of the tangents which
can be drawn through their intersection to a curve of the »n™
class. And, asin Art. 133, the pole R of any line possesses the
property 3 (smgl;li’o) 0, where P is a variable point on the

given line; B, B, &c. the points of contact of tangents from
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the point P, O any fixed point on the given line. Thus for a
curve of the second class the relation is

sin RPR, sinRBPR,

s, PO * sin BP0~
that is to say, ““if from any point P, on a fixed line OP, we
draw tangents PR, PR, to a conic, and draw PR so that
{P.OR RR} shall be a harmonic pencil, then OR passes through
a fixed point.” This is the fundamental definition of pole and
polar with regard to a conic considered as a curve of the second
class.

‘We may write the relation
sin RPR, .
(s—ianPO) =0 in the form = (E—O—l) =0,

where M, is the foot of the perpendicular from R, on the line
RP, and O, the foot of the perpendicular from the same point
on the line OP. Now let the line OP go off to infinity, then
all the denominators in this latter sum tend to equality, and we
have simply = (M,R)=0; or the sum vanishes of the perpen-
diculars let fall from the points of contact of any system of
parallel tangents on a parallel line through B. In other words
then, the centre of mean distances of the points of contact of any
system of parallel tangents to a given curve is a fixed point, which
may be regarded as a centre of the curve. 'Thusin a conic the
middle point of the line joining the points of contact of parallel
tangents is a fixed point; in a curve of the third class, the
centre of gravity of the triangle formed by them, &c. This
theorem is due to M. Chasles ( Quetelet, V1. 8).

0,

I‘Rl

FOCI.

138. It was shown (Conics, p. 228) that the foci of conics
possess the property that the lines joining them to the circular
points at infinity touch the curve. Hence we are led to the
following definition of foci in general: A point F is said to
be a focus of a curve, if the lines FI, F.J both touch the curve,
or as we may say, when it is the intersection of an I-tangent
with a J-tangent.* A curve ot the »™ class has in general n*

* This conception is Pliicker’s, Crelle, Vol, X, p. 84.
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foci, namely the points of intersection of the n I-tangents with
the n J-tangents. But the curve being real, n and only n of
these foci are real : in fact the equation of one of the I-tangents
being A+ iB=0, (where 4 and B are linear functions of the
coordinates) that of one of the J-tangents will be 4 —¢B=0, and
these intersect in the real point 4 =0, B=0, and there is not on
either of these tangents any other real point. Thus a conic
(n=2) has 4 foci, two of them real.

In the above it is assumed, that the points I, J have no
special position with respect to the curve. Let us now suppose
that the line 1J is an ordinary, or singular, tangent at one or
more points 4, B, &c., which for the present we suppose to be
distinct from the points I, J; say that IJ reckons g times
among the tangents from 7 or J to the curve; then the
I-tangents are made up of the line 1J counting g times, and
of n—g other tangents; and similarly for the J-tangents.
Then the only foci which do not lie at infinity, evidently consist
of the intersections of the n — g I-tangents with the n —g J-tan-
gents, and there are (n — ¢)* finite foci, of which as before only
n - g are real. The total number of »* foci is made up of these
(n - g)* foci, together with the point I counting g (n— g) times,
(namely, as the intersection of each of the n — g I-tangents with
each of the g J-tangents which coincide with 1J) ; similarly, of
the point J counting g (n—g) times, and lastly of the g" inter-
sections of the g J-tangents coincident with ZJ with the g J-tan-
gents coincident with 1J. In this last case any J-tangent 14
must be regarded as intersecting the corresponding J-tangent
JA4 at the point of contact A4, but its intersection with any
other J tangent JB will be indeterminate. Thus, if the line at
infinity touch the curve in g real points, there will still be n
real foci, viz. n— g finite foci, and the g points of contact of 1J"
with the carve.* For instance, the parabola (n=2, g=1) has
one finite focus, the other real focus being infinitely distant in
the direction of the axis.

Again, let the point I be on the curve; then assuming the
curve to be real, the point J is also on the curve, and if 7
be a singular point, J will have the same kind of singularity.

* Prof. Cayley thinks that the preferable view is that the only foci are the
(n ~ g)? foci, and consequently that the only real foci are the (n — g) foci.
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Confining our attention for the moment to the case where both
are ordinary points, the n — g I-tangents consist of the tangent
at I counted twice together with n—g —2 other tangents; and
similarly for the J-tangents. Then the (rn—g)' foci are made
up as follows: the real intersection of the tangents at Zand J
counting as four; the n —g—2 imaginary intersections of the
tangent at I with the n—g—2 J-tangents, each counting for
two; the n—g — 2 imaginary intersections of the tangent at J
with the » — g — 2 I-tangents, each counting for two ; and lastly,
the (n — g — 2)* intersections of the two sets of n —g — 2 tangents.
Of these last, as before, n —g — 2 and only n—g—2 are real,
and the intersection of the tangents at /and J takes the place of
two of the n—g real foci. Paying attention then only to real
foci, this point is commonly called a double focus; and we find
it convenient to use this language, though, as we have just seen,
if we considered imaginary as well as real foci, it ought to
be called a quadruple focus. Thus, in the case of the circle,
the only focus is the centre, which must be regarded as a
quadruple focus, if we consider that it takes the place of the four
foci which conics in general possess, but which may be spoken
of as a double focus if we only pay attention to the two real foci.

Similarly, if each of the points I, J is an f~tuple point on the
curve, it is seen in the same way that there are f* foci, which
each count for four and of which f are real: 2f(n—g— 2f)
imaginary foci which each count as two, and (n — g —2f)* single
foci of which n—g—2f are real. Considering then both real
and imaginary foci, we should say that there are f* quadruple,
2f(n —g—2f) double, and (n—g—2f)" single foci: but con-
sidering real foci only, we may say that there are f double,
n — g — 2f single foci, and g foci at infinity.

If I and J be each of them an inflexion, or each a cusp, then
the tangent at J or J counts three times among the I or J-tan-
gents ; and there are from each point n—g— 3 other tangents.
The (n —g)* foci are then as before seen to be made up of one
which counts as nine, of (n~g-38)+ (n— g—3) which each
count as three, and (n—g-38)* single foci. Of these last .
n —g— 8 are real, and the only other real focus is the intersec~
tion of the tangents at I and J, which is commonly called a
triple focus as counting for three -among the real foci, though
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if we took into account imaginary as well as real foci, it ought
to be regarded as a 9-tuple focus. There is no difficulty in
extending the theory to the cases where I and J are mnltiple
points of higher order at which several tangents coincide, or
where they are points at which the tangent has contact with the
curve of a higher order than the second, or where they are
ordinary or singular points having ZJ for their common tangent,

139. Given any two real foci 4, 4’ of a curve, the lines
Al AJ; A'I A'J, meet in two imaginary points B, B’ which
are also foci of the curve: and the relation between the two
pairs of points is, that the lines 44, BB’ bisect each other at
right angles in a point O, such that 04 (= 04') is equal to
t0B(=¢0B’). The points 4, A' and B, B’ have been termed
¢ anti-points.” The relation is one of frequent occurrence in
plane geometry: thus a conic has two pairs of foci, which
are anti-points of each other; any circle through 4, A4’ cuts
at right angles any circle through B, B', &c. It is to be added,
that being given the n real foci, we form with these n (n —1)
pairs, each giving rise to a pair of anti-points, and thus obtain
the remaining ' — = foci.

140. The coordinates of the foci of a curve are obtained by
forming the equation of the tangents which can be drawn from
the point I to the curve. This will be of the form P+:Q =0,
the corresponding equation for the point J will be P—:Q=0,
and the intersection of the two systems of tangents are given by
the equations P=0, Q=0. Thus denoting the first differential
coefficients with respect to z and y by U, U,; the second by
U, U, U, &c., then by Art. 78, the equation of the system
of tangents from 1, 7, 0 is got by forming the discriminant of
AT+ NU, +10) + (U, + 20U, — U,) + &c. =0. Thus,
if the curve be a conic, the discriminant is

{U- U -2U(U, - U} +2(U,0,-2U0),
and the foci are got by equating the real and imaginary parts
separately to zero. By combining these equations, we get the
equation of the two right lines, the axes, on which the foci
lie, viz.

U, (G} -07) = (U, - Uy) U, =0.
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The very same equations determine the foci of a cubic passing
through the points I, J; of a quartic having these points for
double points, &c., for in any of these cases it is easy to see that
all the terms but those written above vanish of the equation
whose discriminant is to be found.

141. We can also determine the foci, as at Conics, p. 228,
by expressing the condition that - ' +¢(y — ') should touch
the curve; or in other words, by substituting in the tangential
equation, 1, 7, — (2’ +1y') for a, B,. The real and imaginary
parts of the equation then separately equated to zero determine
the coordinates of the foci. It is not difficult to find a real
geometric interpretation of each of these equations. Let the
condition that z — ' + p (y — ') should touch the curve be written,

ap”+bp™" + p"* + &e. =0,
where a, b, &c. are functions of &/, ¥'; then by the theory of

equations — ‘_I; , ;; , &c. are the sum, sum of products in pairs,

&ec. of the tangents of the angles, which the tangents to the
curve through z'y’ make with the axis of x. If now we write
p=1, and equate to zero the real and imaginary parts of the
equation, we get the two equations
a-c+e—&c.=0, b—d+f~—&ec.=0;
the second of which, by the well-known formula for the tangent
of the sum of several angles, expresses that the sum of the
angles made with the axis of « by the tangents through z'y'
is ecither zero, or is some multiple of =7; and the first of
the equations expresses that the sum of the angles is some odd
multiple of 7. Hence the locus of a point such that the sum
of the angles made with a fixed line by the tangents through it
to a curve of the n" class shall be given, is a curve of the
n™ degree, whose equation, the fixed line being taken for axis
of , 1s easily seen to be
(a—c+e—&e.) tanf=>0—d+f— &e.

Whatever be the fixed line or the angle, the locus will pass
through the foci of the curve. This may appear paradoxical,
since it follows hence, that the sum of the angles made with
any line by the tangents from a focus, may be equal to any
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given quantity. The reason of this is, that the tangents of two of
these angles are + 1, and the tangent of their difference assumes the

form g, and may be any assignable quantity. In fact, if

tan¢ =1, ¢ may be regarded as an infinite angle, since it pos-
sesses the properties, singp=cos¢p =0, and tan(¢ +a)=tane;
and the difference of two infinites is indeterminate.

‘We have seen (Art. 110) that a tangent through one of the
points I, J coincides with the normal; and hence every focus of
a curve is also a focus of its involutes and evolute.

142. An important property of the perpendiculars let fall
from the foci on any tangent is at once derived from the
equation expressed in that system of line-coordinates (Art. 19
and Conics, p. 364) in which the variables are the perpendi-
culars let fall from three fixed points on any line. Let a, B, v, &,
&c. be the n foci; let ww' denote the points I, J; then, since .
the lines aw, aw’, &c. are to be tangents to the curve, the

_tangential equation must be of the form aByd &c.=wo'¢,
where ¢ is a function of the order »—2 in the line-coordinates.
For curves of the second class, this at once gives the property
that the product of the perpendiculars from the two foci on any
tangent is constant, since it was proved ( Conics, p. 363) that for
o' we may substitute a constant.

Similarly replacing ww’ by a constant, the general equation
of curves of the third class is a8y =%8, where a, 8, v denote the
three foci, and & a certain fourth point: viz. we may from
each focus draw to the curve (besides the two tangents through
I, J respectively) a single tangent; and the form of the
equation shows that the three tangents from the points a, B, v
respectively meet in a point 8.* We learn then that the
product of: the three focal perpendiculars on any tangent to
a curve of the third class, is in a constant ratio to the per-
pendicular on the same tangent from the point 8. If the
curve pass through the points I, J, there is a double focus,

* The reciprocal theorem for curves of the third order cut by any two lines
is given post, Art. 148,

R
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and the equation takes the form o'8=*#%3, the interpretation of
which is obvious. If a focus 4 is at infinity, we can see how
the formula is to be modified, by first using for the coordinate a
the perpendicular distance of 4 from any tangent divided by
ABj; and then when A goes to infinity in the direction 4B,
it is easy to see that a will be cosf where @ is the angle made
by AB with the direction of the perpendiculars on the tangent.
Thus the formula for a conic, a8 =~", becomes in the case of
the parabola where A passes to infinity, 8 cosd =%, showing
that the locus of the foot of the perpendicular from the focus 8
on a tangent is a right line. In like manner for a curve of the
third class the formula aBy=/%8 becomes By cosf =48, which
may be written By==%%, if we understand by &' the intercept
made by the variable tangent on a line drawn through D
parallel to 4B.

For curves of the fourth class the equation is aByd=~%"¢p
where ¢ is the conic section which, as the equation shows, is
touched by the eight focal tangents which do not pass through
I, J. But if the foci of this conic be ¢, {, the equation may be
put into the form aByd=~"¢+ 1, the geometrical interpreta-
tion of which is obvious. This equation includes the form
aByd=10 or =w'0”, which represents a curve on which the
foci a, B, v, & are double points; the form a’8 = w'®w™ in which
1, J are points of inflexion, &ec.

And so in general the tangential equation of a curve of the
2™ class gives a relation of the first degree connecting the product
of the » focal perpendiculars, of n—2 other perpendiculars, of
n — 4 other perpendiculars, &c., and so on until we come either
to a single perpendicular or a constant term.

143. From relations connecting the focal perpendiculars on
the tangent can be deduced relations connecting. the angles
between the focal radii and the tangent. For if AP be the
perpendicular a on the tangent at any point B of the curve,
and if d¢p be the angle between two consecutive tangents,
we have da=RPd¢$. Similarly dB8=RP'dp, &c. So that
if we differentiate the relation connecting the perpendi-
culars, we may substitute for each da, EP the corresponding
intercept on the tangent between the foot of the focal per-
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pendicular and the point of contact. Thus from aBy=~7#'5
we deduce s
da, 48 dy_d

_—=0’

a B ¢y 8
RP RP RP' RP"_
aptBp T 0P~ DR ="
or cotf + cot @' + cot 6" — cot 8" =0,

where 0 is ARP, the angle of inclination of the tangent to the
focal radius vector 4R, &c.

whence

144. The example of conics would lead us to expect to find
simple relations connecting the distances of any point on the
curve from the foci. There does not appear to be any general
theory of such relations, but we can without difficulty find
particular curves for which they exist, for we have only to
write down any relation connecting the distances of a variable
point from fixed points, and find the locus for which it is
satisfied. Each distance if expressed in terms of the coor-
dinates involves a square root; and if, as will commonly
happen, the equation when cleared of radicals is of the form
up"=wv’, the two imaginary lines denoted by p*=0 are tan-
gents to the curve, and the fixed point F' is a focus. In
this way we might study the relations p+mp'=d, for which
the locus is an ellipse or hyperbola when m=11, a circle
when d=0, and in other cases a Cartesian: Ilp+mp'+np"=0
for which the locus is in general a quartic having the points ZJ
for double points, or as we may say, a bicircular quartic; but
when ltm+n=0, the curve is a cubic passing through the
points 1J, or, as we may say, a circular cubic: pp'=d? for
which the locus is a Cassinian (see p. 42); or more generally
ap®+ bpp’ + cp™ =d’, which is in general a quartic, but is.a cubic
if a+b+c =0, that is to say, if the left-hand side of the equa-
tion is divisible by p+p', &. We postpone the further dis-
cussion of this subject until we come to treat of the curves
referred to.

From a relation connecting the focal distances, we can infer
a relation connecting the angles which the focal radii make with.
the tangent; for it is proved, as in Conics, p. 352, that each
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dp = cos0ds, where @ is the angle between the focal radius and
the tangent. Thus from p +mp'=d, we infer cos 6 + m cosé' =0,
&c. From the value given in the last article for da, &c. we
may infer Rda = pdp, &c., where R is the radius of curvature.
Thus for example, if we are given that la+mpB+ &c. is con-
stant, we can infer that Jp* + mp” + &c. is constant.

145. Denoting by N the number of conditions (Art. 27)
necessary to determine a curve of the n™ order, then if we
are given that such a curve is circular, that is to say, that it
passes through the points 1, J; and if we are given N— 3 other
points on the curve, the locus of the double focus (or inter-
section of the tangents at I, J) is a circle. For since but one
curve of the n'* order can be described to pass through N
points, if in addition to the above conditions we are given
a consecutive point at I, that is to say, if we are given FI
the tangent at I, the curve will be completely determined,
and therefore FUJ the tangent at J is determined. The point
Fis then the intersection of corresponding lines of two homo-
graphic pencils (Conics, Art. 331), that is to say, two pencils
such that to any line of one answers one and only one line of
the other. The locus of F'is therefore a conic passing through
the vertices of the pencils 1, J, that is to say, it is a circle.
This conic breaks up into the line ZJ and another line, when to
the line ZJ of one pencil answers the line JI of the other. This
will be the case in the present example when n =2, since IJ
cannot be a tangent to a conic passing through the points 7, J,
unless the conic break up into two right lines, and the theorem
then is that for the circles which pass through two fixed points,
the locus of the centres is a line; but when = is greater than 2,
the locus will in general be a circle.

146. In like manner if we are given N—1 tangentsto a
curve of the n™ class, the curve is completely determined if one
more tangent FI be given. The reasoning of the last article
will apply, and the locus of the focus will be a circle, if the con-
ditions are such that when the curve is determined, only one
tangent can be drawn to it from the point J. This will be the
case, if among the given conditions is, that the line [/ is a
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tangent of the multiplicity » — 1, since then but one more tangent
can be drawn to the curve from any point on that line. We
have seen, Art. 41, that to be given that a point is a multiple point
of the order %, is the same as if }% (k- 1) points were given.
Similarly to be given that IJ is an (n-— 1)-tuple tangent, is
equivalent to being given 4n(n—1) tangents. Observing then
that N—in(n —1)=2n, we infer that if we are given 2n—1
tangents of a curve of the ' class, and also that the line at
infinity is an (n—1)-tuple tangent, the locus of the focus (in
this case there being but one focus) is a circle. Thus being
given three tangents to a parabola, the locus of the focus
is a circle. Again, the locus of the focus is a circle if we
are given five tangents to a curve of the third class, among
whose tangents the line at infinity counts for two. A particular
curve of this system is the complex made up of the point at
infinity on any of the five tangents, and the parabola touching
the other four; the focus of the parabola being the focus of the
complex. Hence we have Miquel's theorem (Conics, p. 235),
that the foci of the five parabolas which touch any four of five
given lines lie on a circle.*

* This proof of Miquel’s theorem is Mr. Clifford’s, for whose other inferences from
the same principle, see Messenger of Mathematics, Vol. v, p, 187,
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CHAPTER V.

CURVES OF THE THIRD ORDER.

147. It has been proved (Art. 42) that a curve of the third
order, or, as we shall for shortness call it, a cubic, may have one
double point, but cannot have any other multiple point. Hence
is suggested the fundamental division of cubics into non-singular,
having no double point ; nodal, having a double point at which
the tangents are distinct, and cuspidal, having a double point
at which the tangents coincide. Pliicker's numbers (Art. 82)
for the three cases respectively are:

m & «

3

3

3
It thus appears that the curves are of the sixth, fourth, and
third class respectively, or are such that six, four, or three
tangents respectively can be drawn to the curve from an
arbitrary point. If the point be on the curve, the tangent at
the point counts for two among these tangents (Art. 79), and
the number of tangents distinct from the tangent at the point
is, four, two, or one. If the point be a point of inflexion, the
stationary tangent counts for three, and the number of other
tangents which can be drawn through the point of inflexion
is further reduced by one.

Nodal cubics may obviously be subdivided (Art. 38) into
crunodaly and acrodal, according as the tangents at the double
point are real or imaginary. We shall hereafter see that there
is a parallel subdivision of non-singular cubics. But for the
present we postpone the further discussion of the classification
of cubics, as the reader will be able to follow it with more
intelligence when he has first been put in possession of some
of the general properties of these curves. We likewise post-

(=B =R~}
-0 O

n
6
4
3

S = O

0
0
1
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pone the discussion of the general equation, and the examination
of its invariants, and we commence by applying to the case
of cubics, theorems we have already obtained for curves of any
degree, beginning with the theorems on the intersection of
curves established in the first Section of Chapter II.

SECT. I.—INTERSECTION OF A GIVEN CUBIC WITH OTHER CURVES.

148. It has been proved (Art. 29) that all cubics which pass
through eight fixed points on a given cubic, also pass through
a ninth fixed point on the curve. This is a fundamental
theorem leading to the greater part of the properties of cubic
curves. In particular we infer that if two right lines whose
equations are 4 =0, B=0, meet a cubic in points a, a', ",
b, b, b" respectively, and if the lines ab, a'd', a"d", (whose
equations we write D=0, E=0, F=0), meet the cubic in
points ¢, ¢, ¢”, then the line ¢¢' (C=0) joining two of those
points will pass through the third. For the lines D, E, F
make up a cubic passing through the nine points; the lines
A, B, C make up a cubic passing through eight of these points,
therefore it will pass through the ninth c¢", and since this point
cannot lie on either of the lines 4, B which already meet the
curve each in three points, it must lie on C. Since the given cubic
passes through the intersection of the cubics ABC'=0, DEF=0,
its equation must be capable of being written in the form
DEF—-kABC=0.

149. Let us suppose that the lines 4, B coincide, then we
deduce as a particular case of the preceding theorem, that if a
right line, 4 =0, meet the curve in three points a, a', a", the
tangents at these points, D=0, E=0, F=0, meet the curve in
points ¢, ¢, ¢” respectively which lie on a right line C=0,
and the equation of the curve may in that case be written
DEF—£kA*C=0. The point ¢, in which the tangent at any
point a meets the curve again is called the tangential of the point
a; and the line C on which lie the tangentials of the three
points « is called the satellite of the line 4. We shall hereafter
show how when the equation of 4 is given, ax+B8y+yz=0,
the equation of C can be formed. The line A will have a real
satellite, even though instead of meeting the curve in three real
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points, it meets it in one real and two imaginary points. The
equations of the tangents at the imaginary points will be of the
form P+¢Q=0; their product will be real; and the equation of
the curve can be written in the form D (P* + @) =kA*C.

Two cases of the theorem of this article deserve to be
noticed. First, let the line 4 be at infinity, then the tangents
D, E, F at the points where it meets the curve are the three
asymptotes : each asymptote meets the curve in one finite point,
and we learn that these three points lie on a right line C, the
satellite of the line at infinity. In this case the equation of the
curve is reducible to the form DEF=FkC, and we have the
theorem that the product of the perpendiculars from any point
of the curve on the three asymptotes is in a constant ratio
to the perpendicular from the same point on the line C.

Secondly, let the points @, o' be points of inflexion: then
evidently the tangentials of these points coincide with the
points themselves : the satellite line C therefore coincides with
A, and consequently the third point a"” in which it meets the
curve is also a point of inflexion (see Art. 125, Ex.3). The equa-
tion of the curve is thus reducible to the form DEF=kA® where
A =0 is the equation of the line through the three inflexions,
and D=0, E=0, F=0 are the equations of the tangents at
these three points respectively.

150. The theorem of Art. 149 may be otherwise stated,
starting with the line C instead of with A4; viz. given three
collinear points ¢, ¢, ¢" of a cubic, the line joining a the point
of contact of any of the tangents from c,.to a' the point of
contact of any of the tangents from ¢’ will pass through the
point of contact of one of the tangents from c¢". Only one
tangent can be drawn at a point of a curve, and therefore to
any position of A4 corresponds but one position of C; but in
the case of a non-singular cubic four tangents can be drawn
Jrom any point on the curve, and therefore to any position of
C correspond sixteen positions of 4. The twelve points of con-
tact lie on the sixteen lines A, viz. each line A4 contains three
points of contact, and through each point of contact there pass
four lines 4.

Let us consider more particularly the case where C touches
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the curve, and let us suppose the points ¢, ¢ to coincide.
Then we see that the line joining a,", one of the points of
contact of tangents drawn from c”, to a,, one of the points
of contact of tangents from ¢, must pass through one of the
other points of contact from ¢, say a,. In like manner, the line
joining a,"a, passes through a,. We have then the following
theorem.  The four points aga@e, which are the points of
contact of tangents from any point ¢ of the curve are the vertices
of a quadrangle, the three centres of which are also points on
the curve; and are such that the tangents at these points, and
the tangent at c all meet the curve in the same point c”.

151. Returning to the case where C does not touch the
curve, we have the tangents from c touching at the points
a, a, a, a, and the tangents from ¢’ touching at the points
a/,a/,a/,a'. Attending only to two points, say a, a, of the
first tetrad, it appears that separating the points of the second
tetrad into pairs 7n a definite manner, say these are ¢, a,' and
a/, a/, then combining the pair a,, @, first with the pair o', o,

the lines a,a,, a0, meet in a point on the curve, and also the

lines a,a’,, a,a’, meet in a point on the curve; and secondly with
the pair a/a,, the lines a,a’,, a2, meet in a point on the curve,
and also the lines ¢,0,, a,a meet in a point on the curve: viz.
the four new points are the points of contact of the tangents
from c” to the curve. Any two points such that the tangents
at these points respectively meet on the curve may be said to be
“ corresponding points;” thus any two of the points a,, a,, a,, @,
are corresponding points; and so any two of the points a,, a,
a,, a, are corresponding points. But starting with the two
points a, a,, the points a, a, (as also the points a, a) may be
said to be corresponding points of the same kind with a,, a,: viz.
the property is that, given two pairs of the same kind, if we
form a quadrilateral by joining each point of the one pair with
each point of the other pair, the two new vertices of the quad-
rilateral are points on the curve (and are themselves correspond-
ing points of the same kind with the original two pairs respec-
tively). It is obvious that there are three kinds of corresponding
points, viz. those of the kind a,a, or ag,, the kind ea, or aga,
and the kind a@, or a@a, And, moreover, starting with the
8
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pair a,a,, to obtain the whole system of corresponding points of the
same kind, we have only to take on the curve a variable point K|
and joining it with the two points a, @, respectively, these
lines again meet the curve in a pair of corresponding points of
the kind ¢,@. It may be mentioned that the envelope of the
line joining two corresponding points of a given kind is a curve
of the third class. The theory is, for the most part, due to
Maclaurin (see the “De Linearum Geometricarum Proprieta-
tibus Generalibus Tractatus,” published with the 5th edition
of his Algebra), and it may appropriately be called Maclaurin’s
Theory of corresponding points on a cubic curve.

152. In further consideration of the case where C' does not
touch the curve; let D, E, F, be tangents through the points
¢, ¢, ¢” respectively, and we have seen that the equation of the
curve may be written in the form D E,F, — A*C=0. LetD,F,
be another pair of tangents through ¢, ¢, such that their
chord of contact passes through the point of contact of F,
and the equation of the curve may also be written in the
form D,EF,—A'C=0. Hence we can deduce an identity
(D.E,-DE)F,=(A'—A}) C. The right-hand side of the
equation denotes threc right lines, therefore the left-hand side
must denote the same three lines. One of the factors therefore
of D.E —D,E, must be C which passes through the points
DD, EE, The other factor which joins the points D E,
D.E must be 4, + 4, F, being 4, FA4,, We see then that
the latter two lines and the two chords 4,, 4, form a harmonic
pencil, whose vertex is the point of contact of #. We shall
afterwards apply this theorem to the case where the points ¢, ¢
are the imaginary points at infinity Z, J: the points D, E, D E
are then foci, and ¥, is a tangent parallel to the single real
agymptote of the curve.

If the points ¢, ¢’ coincide, the line joining ¢ to the point
of contact of F,, F, itself, and the two chords 4,, 4, form a
harmonic pencil.

153. Hence can be deduced another theorem of Maclaurin’s.
Any line drawn through a point 4 on a cubic is cut harmonically
in the two points 3, ¢, where it meets the cubic again, and the



WITH OTHER CURVES, 131

two points 8, &', where it meets a pair of chords joining the
points of contact of tangents from A. Let the line meet the
tangent C, in the point ¢, then, since it meets 4, and B, at 4,
by Art. 136,

1 1 1 2 1
SATBTH T

1 1 1 1
Baut, by the last Article, 85’ is a harmonic mean between 84
and e, therefore also between 88 and &y. Q.E.D.

When the curve has a double point, only two tangents can
be drawn to the curve; but the theorem of this Article will be
still true, if for the chord D’ we substitute the line joining the
double point to the point where the chord D meets the curve
again,

or

154. We add one more application of the theorem, that
all cubics which pass through eight fixed points on a cubic
pass also through a ninth fixed point. If any conic be described
through four fixed points on a cubic, the chord joining the two
remaining ntersections of the comic with the cubic will pass
through a fixed point on the cubic. Consider any conic through
the four points («) and meeting the curve in two other points
(B), and a second conic through the points (a) and two other
points (8'), then the conic through @, B, and the right line
joining the two points 8, make up a cubic system through the
eight points a, B8, 8'; the conic through a, &, and the right
line joining B make up a second system through the same
eight points; hence the ninth point of intersection with the
curve must be common to both systems; that is to say, the
lines joining the points 8, 3’ meet the curve in the same point,
Q.E.D. This point was in the former edition called the opposite
of the system of four given points; but now, in conformity
with the nomenclature of Prof. Sylvester's remarkable theory
of residuation, which will be presently explained, is called the
coresidual of the system of four points. This point is easily
constructed by taking for the conic through the four points
a pair of lines. Let the line joining the points 1, 2, and
the line joining the points 3, 4 meet the cubic in points 5 and 6
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respectively, then the linc joining 5, 6 meets the curve in the
coresidual required. And since the grouping of the four points
is arbitrary, the comstruction can, it is clear, be performed in
three different ways.

Hence, for example, we infer that through four points on
a cubic four conics can be drawn to touch the curve elsewhere,
viz. the conics passing through the points of contact of the four
tangents which can be drawn from the coresidual.

155. Let us apply the rule just given to construct the point
coresidual to four consecutive points on the curve. The line
joining the points 1, 2 is then a tangent, and the point 5 in
which it meets the curve is the tangential of the point 1:
similarly, the line 34 meets the curve in a point 6, which is
consecutive to the point 5; it follows that the coresidual re-
quired is the point where the tangent at the tangential point 5
meets the curve again ; that is to say, it is the tangential of
the tangential, or, as we shall say, the second tangential.

If then, for example, it be required to draw a conic passing
through the four consecutive points, or, as we may say, having
a four-point contact with the curve, and elsewhere touching
the curve, the point of contact is, as we have seen, a point
of contact of tangents from the second tangential to the curve.
One of these is the tangential of the point (1), and the corre-
sponding conic degenerates into two right lines: the remaining
three give solutions of the problem.

Again, if it be required to describe a conic passing through
five consecutive points of the curve (or having a five-point
contact with the curve), this is done by constructing the sixth
point in which the conic meets the cubic, viz. this is the point
where the line joining the point (1) to its second tangential
meets the curve again.

In order that this point should coincide with the point (1),
it is necessary that the line last named should touch the curve
at (1); or, what is the same thing, it is necessary that the first
and second tangential should coincide. Now a point which
coincides with its tangential is a point of inflexion: hence,
on a non-singular cubic there are twenty-seven points at each of
which a conic can be drawn, having a six~point contact with
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the curve ; viz. these are the points of contact of the three tangents
which can be drawn from the nine points of inflexion.

156. The theorem (Art. 29) as to the intersection of two
cubics was generalized in Art. 33. The theorem there given
is applied to the case of the cubic by writing p =3, and it then
becomes every curve of the n™ degree which passes through 3n — 1
Jixed points on a cubic passes through ome other fixed point on
the cubic. 1t is to be observed, that for n=1, or n =2, one and
only one curve of the n™ degree can be described passing
through 3n—1 points on a cubic, and the theorem asserts
nothing; when n is greater than 2, more than one such
curve can be described, and the curves all pass through one
other fixed point on the curve, as has been just stated. And,
as was explained in Art. 33, if it were attempted to describe a
curve of the n™ order through 3z points taken arbitrarily on
a cubic, n being greater than 2, the curve so described would
in general not be a proper curve, but would be a complex
consisting of the cubic itself, and a curve of the order n—3.

157. 1If of the 3 (m + n) intersections of a curve of the (m + n)t
order with a cubic, 3m lie on a curve of the m™ order U, the
remaining 3n lie on a curve of the n'® order. For as, has been
just remarked, through 3n- 1 of these 3n points, a curve of
the n'* order U, can always be described; and this, together
with U, makes up a system of the order m +n which (Art. 156)
passes through the remaining point, and since this point cannot
lie on U, which already meets the cubic in 3m points, it must
lie on U,

158. We shall now explain the nomenclature introduced by
Prof. Sylvester, and in conformity with it, restate and extend
some of the preceding propositions. If two systems of points
a, B, together make up the complete intersection with the cubic
of a curve of any order, one of these systems is said to be
the residual of the other. Since the total number of intersec-
tions of a cubic with any curve must be a multiple of three,
it is evident that if the number of points in the system a be
of the form 3p + 1, that in the system 8 must be of the form
8¢ -1, and vice versa. We may call these positive and negative
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gystems respectively, and say that the residual of a positive
system is a negative system, and vice versa. The simplest
positive system consists of a single point, answering to p=0;
the simplest negative system of a pair of points, answering to
g=1. In this case, evidently the one is the residual of the
other when the three points are on a right line. Since through
a given system of points a, an infinity of curtes of different
orders may be described, it is evident that a given system of
points a has an infinity of residuals B, B, 8", & Two
systems of points B, 8' are said to be coresidual if both are
residuals of the same system a. For example, in Art. 154,
through four points a on a cubic we supposed conics to be
described meeting the curve again in pairs of points 8, 8, &e.;
then any one of these pairs is a residual of ¢, and any two of
them are coresidual. Again, if the line joining the pair 8
meet the curve again in a point ', this point, as well as the
four original points, is a residual of the group 8, and this point
o' is therefore, as we already called it, coresidual with the four
points . It is obvious that two coresidual systems of points
must either be both positive or both negative.

The theorem of Art. 156 may be stated thus: two poinis
which are coresidual must coincide. In fact, we there saw that
if through 8p — 1 points a we describe a curve U, meeting the
cubic in the residual point 8, and if through the same points
a we describe ‘a second curve of the p™ order meeting the
cubic again in a point B, the coresidual points B, 8’ arrived
at by the two processes, are one and the same point.

159. If two systems B, B' be coresidual, any system o' whick
s a residual of one will be a residual of the other. Say that
through any system a two curves U,, U, are described meeting
the cubic again in systems 3, B’y then these two systems are
by definition coresidual; and what is now asserted is that if
through B’ be drawn any curve U, meeting the cubic again in
a system of points o, then the points 8 and o' also make up
the complete intersection of a curve with the cubic. For since
the systems a and 3 together make up the intersection of a
curve U,, with the cubic, and o' and 8’ make up its intersection
with a curve U, the four together make up the intersection
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with the cubic of a curve whose order is p+ »: but the systems
o and B’ together make up the intersection with the curve U,
of the order ¢, therefore (Art. 157) the systems a’ and 8 together
make up the complete intersection of the cubic with a curve
whose order is p+7- ¢.

Hence also two systems whickh are coresidual to the same are
coresidual to each other. If B and B’ are coresidual as having
a common residual a, and if 8’ and 8" have a common residual
o'y then by what has been just proved « is a residual also of
B’y and o’ of B: that is, if 8, 8" are eaeh of them coresidual with
8, then B, 8" are coresidual with each other, for a, a' are each
of them a common residual of 3, 8".

160. We can now give for the theorem of Art. 154 a proof
which will at once suggest Prof. Sylvester’s generalization of
that theorem. The conic through four points @ on a cubic
meets the curve in two points B, which are a residual of the
system a. The line through the two points 8 meets the curve
in a point &' which is residual to B, and therefore coresidual
to a. If the same process were repeated with a different conic
we should arrive at a point a" also coresidual to the system
a, and therefore to the point «'; and the two points «', a" being
coresidual must coincide (Art. 158).

Now, in the first place, it is evident that the same proof
would hold good, if instead of four points we started with any
positive system of 3p+1 points P. A curve through them of
order p+ 1 meets the cubic again in two other points, and the
line joining these meets the curve in a point coresidual to P,
and which is the same point whatever be the curve of order p + 1.
But, in the second place, instead of proceeding from the group
P to the coresidual point by two stages, we might employ any
even number of stages. Thus through the 3p+ 1 points P de-
scribe a curve U, , and the residual is the negative system N
of 3r—1 points. Through N describe a curve U,,, and we get
a residual P’ of 3s+1 points. In like manner, from P’ we
can derive a residual of 3¢—1 points, and so on. And at
this or any subsequent stage where we have a negative
system of 3t— 1 points, by describing through them a curve
U, we can obtain a residual of a single point. Prof. Sylvester’s
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theorem is, that this point is in all cases the same, no matter
what the process of residuation by which it is arrived at.
In fact, the system N is a residual of P; P’ is a residual
of N, and is coresidual with P; N’ is a residual of P, coresidual
therefore with N, and therefore residual also to P, and so on.
Any positive system in the series is residual to every negative
system, and coresidual to every positive system. The point
therefore at which we ultimately arrive, is coresidual to the
original positive system, and must be identical with the point
coresidual of the same system obtained by any other process.
For example, if through four points we describe a cubic meeting
the curve in five other points; through these five another cubic
giving a residual of four other points, through these four a
quartic giving a residual of eight points; finally, through these
eight a cubic meeting the curve in one other point, this point is
the same as that obtained from the original four by the process
of Art. 154, And similarly, starting with any negative system
of 3¢—1 points N, we may after any odd number of stages
arrive at a single point, which will be the residual of the original
system, and as such, independent of the particular process of
residuation.

161, The principles just established, enable us to find by
linear constructions, the point residual or coresidual to a given
negative or positive system. For example, if it were required
to find the point residual to eight given points, join them any
way in pairs, and the joining lines form a quartic system meet-
ing the curve in four new points residual to the given eight;
join these again in pairs, and we obtain a system of two points
coresidual to the given cight; the point where the line joining
these meets the curve is the residual point required. Or,
again, we may replace any four of the given points by their
coresidual point, constructed as in Art. 154, and the problem
is reduced to finding the residual of a system of five points;
and similarly replacing any four of these by their coresidual,
reduce the problem to finding the residual of a system of two.
Tt is in any of these ways easily seen, that the corcsidual of a
system of cight consccutive points at a given point of the cubic,
is the third tangential of the given point.
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In this method of finding by linear construction the ninth
point common to all cubics which pass through eight given
points, it is assumed that one cubic through the eight points
is given : and thus the question is not the same as that of find-
ing the ninth point when only the eight points are given. Dr.
Hart has shown, that in the latter question the ninth point can
also be found by linear construction, though by a more difficult
process. ¥

162. We conclude this section with a few remarks as to
gystems of cubics having several points common. If we are given
eight points on a cubic, or eight linear relations between the
coefficients in the general equation, we can eliminate all the
coefficients but one, so as to bring the equation to the form
U+%kV=0. Similarly,if we are given seven points, or seven
linear relations, the general form of the equation can be reduced
to U+kV+IW=0, U, V, W being three cubics fulfilling the
seven given conditions, and the two constants %, ! still at our
disposal, enabling us to fulfil any two other conditions. And so
again if we are given six points, the general form of the equa-
tion is U+AV+IW+mS=0. We may take for U, ¥V, &c.
gystems of three lines passing each through two of the given
points. Thus, the six points being a, b, c, d, ¢, f, and ab=0
denoting the equation of the line joining a, b, one form of the
equation of the required cubic is

ab.cd.ef + k.ac.be.df + L.ad.bf .o+ m.ae.bd.cf =.

Since this equation contains three indeterminates, every other
cubic through the six points (for example, af.bc.de) must be
capable of being expressed in the above form, and the pre-
ceding equation would gain no generality if we were to add to
it a term 7.af.bc.de, since this itself must be the sum of the
preceding four terms multiplied each by some factor.

In precisely the same manner as (Conics, p. 229) we derived
the anharmonic property of the points of a conic from the equa-
tion ab.cd=k.ac.bd, we can derive from the equation just
written the following, which is the extension of the anharmonic
theorem to curves of the third degree: “If six given points on

* Cambridge and Dublin Mathematical Journal, Vol. vi. p. 181,
T
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such a curve be joined to any seventh, and if any transversal
meet this pencil in points a, b, ¢, d, ¢, f, then the relation holds

ab.cd.ef + k.ac.be.df + .ad.bf .6+ m .ae.bd.cf =0,

where k, [, m are constants, whose value is the same for each
particular curve through the six points.” The reader can easily
conceive the number of particular theorems which may be
derived from this (as in Conics, Art. 326), by examining the
cases where some of the points are at an infinite distance.

163. We saw (Art. 41) that to be given a double point was
equivalent to three conditions. If then we have a double point
and five other points, one more condition will determine the
curve, which may, therefore, be expressed by an equation of
the form S—%8'=0, where S, 8’ are two particular curves of
the system. We may write it in the form

(oabed) oe — k (oabee) od =0,
where (oabed) denotes the conic through the double point o and
the four points abed.

In like manner we may write the equation of the cublc
through the double point and four other points

oa.ob.cd+k.ob.oc.ad+ l.oc.oa.bd =0;

and, as in the last Article, the same relation holds between the
intercepts on any transversal by the line joining these points to
any point of the curve.

164. By the help of the same method ( Conics, p. 229) of ex-
pressing the anharmonic ratio of a pencil in terms of the perpen-
diculars let fall from its vertex on the sides of any quadrilateral
whose vertices lie each on a leg of the pencil, we can find the
locus of the common vertex of two pencils, whose anharmonic
ratio is the same, and whose legs pass through fixed points,
two of the fixed points being common to both pencils. For if
ab =0 denote the equation of the line joining the points ab, we
get an equation of the form

ao.bp _ co. dp
ab.po ~ cd.op’

or ao.bp.cd=ab.co.dp.
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When o, p, are the two circular points at infinity, this gives us
(Conics, p. 311) the locus of the common vertex of two triangles
whose bases are given and vertical angles are equal, and we
see that it is a curve of the third degree passing through those
circular points.

If the difference of the vertical angles were given, this would
be equivalent (Conics, p. 311) to the ratio of two anharmonic
fanctions, and we should be led to an equation of the form

a0.bp _, co.dp

ap.bo " cp.do’
which represents a curve of the fourth degree, having the two
circular points for double points.

SECT. II.—POLES AND POLARS.

165. We next recapitulate and apply to the cubic the
theorems about poles and polars which we have already
obtained. Every point O has, with respect to a cubic, a polar
line and a polar conic, whose equations respectively are

22 480 0T o, 22Uy U, 40,
= i ViR ~ B il "R i A T
The equation of the polar conic may also be arranged according
to the powers of @, y, 2, and will then be
a'z' + b'y' + 2" + 2f gz + 29’2 4 2Ry = 0,
where a', ', &c. represent the second differential coefficients
written with the accented letters.

The polar conic is the locus of the poles of all right lines
which can be drawn through O, and thus every right line has,
with respect to a non-singular cubic, four poles, namely the
intersections of the polar conics of any two points on the line.
The polar conic passes through the points of contact of the six
tangents which can in general be drawn from O. In the case
of a nodal cubic, the polar conic passes through the double
point and meets the curve elsewhere only in four points; and
every line has but three poles; since the two polar conics (each
passing through the double point) intersect in only three other
points. In the case of a cuspidal cubic, the polar conic passes
through the cusp, touches the cuspidal tangent and meets the
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curve elsewhere only in three points; and every line has but
two poles. If the cubic break up into a conic and a right line,
the polar conic of a point O passes through their intersections,
and every line has but two poles. The polar conic also passes
through the intersection of the conic with the polar of O with
respect to it; for it is easily seen that if we perform on L&,

dx
If the cubic reduce to three right lines, zyz=0, every polar
conic passes through the vertices of the triangle formed by
them, and every right line has but one pole. In this case the
equations of the polar line and polar conic are respectively
xy'7 + y2'a + 22’y =0, 2yz+ysx+2xy=0,

! ’ !

the operation A or ' 4 +y % +2' é—iz, the result is L'S+LAS.

z , y, z2_ &« y 2 _
or ;}-,+37+5,—0,;+§+;—0.
The equation just given affords at once a geometrical con-
struction for the polar line, M
since it appears from Concs,
p- 58, that if the point Oin - L~

the figure be &y's', the line - //%
LMN will be that whose G a7
equation has been just %//\@
written. The tangent to
N A F

the polar conic at any ver-

B
tex xy is (Conics, p. 120) —2’7 + g, =0, and is therefore constructed

by joining the vertex xy to the point where the polar line meets
the opposite side z.

166. If any line through O meet the cubic in points 4, B, C,
the point P in which it meets the polar line is determined, since

(Art. 132) we have 03—P= %4 + OLB'}' —01—0 If a second line

through O meet the cubic in points 4', B’, (', the point P’ in
which the polar meets this line is also determined, and therefore
the polar line itself, which must be the same for all cubics pass-
ing through the six points 4, B, C; 4’y B, C'. Thus then we
can by the ruler alone construct the polar line of O with respect
to the cubic; for we have only to draw two radii through O,
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and construct, by Art. 165, the polar of O with respect to the
triangle formed by 44', BB', CC'.

The metrical relations, given Art. 134, shew also that when
the points 4, B, C are given the two points in which the line
OA meets the polar conic are likewise given. We sce then,
as before, that if we draw three radii through the origin meet-
ing the curve in 4, B, C, 4', B, C', A", B", C", the polar
conic of O is the same with regard to all cubics passing through
these nine points. The points 4, 4'y; 4" may be taken as
the points in which any transversal meets the curve, and the
problem of constructing the polar conic of O with respect to
a cubic may be reduced to constructing it with regard to the
system made up of the line 44'A", and the conic through the
8ix remaining points.

We consider now in more detail the cases (1) where O is a
point on the curve, (2) where it is a point on the Hessian.

167. If from two consecutive points 0, O’ of the curve we
draw the two sets of tangents 04, OB, 0C, OD; 0’4, O'B,
0'C, O'D, any tangent OA intersects the consecutive tangent
O'A in its point of contact. Now the four points of contact
4, B, C, D lie on the polar conic of O, which also touches the
cubic at the point O (Art. 64); hence the six points 00'ABCD
lie on the same conic, and therefore the anharmonic ratio of
the pencil {0.ABCD} is the same as that of the pencil
{O'.ABCD}. Since then this ratio remains the same when we
pass from one point of the curve to the consecutive one, we learn
that the anharmonic ratio 18 constant of the pencil formed by the
Jour tangents whick can be drawn from any point of the curve.

We shall afterwards give an algebraical proof of this
theorem, by shewing that the anharmonic ratio of four lines
given by a homogeneous biquadratic in  and y, can be ex-
pressed in terms of the ratio of the invariants 8° and 7™ of the
biquadratic, and that when the four lines are tangents drawn
from a point on a cubic, this absolute invariant of the pencil can
be expressed in terms of an absolute invariant of the cubic, so
as to be the same, no matter where the point be taken. This
invariant is a numerical characteristic of the cubic unaltered by
projection or any other linear transformation. It was shown
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(Higher Algebra, Art. 209) that by the value of this invariant of
a biquadratic, we can discriminate those whose roots are two
real and two imaginary, from those whose roots are either
all real or all imaginary. Consequently, if from any point of a
cubic the four tangents which can be drawn to the curve are
two real and two imaginary, the same will be the case from
every point of the curve; and in like manuer, if the tangents
from any point are exther all real or all i 1magmary, the tangents
from every point are either all real or all imaginary. On this
is founded a fundamental division of non-singular cubics into
two classes, those to which from every point can be drawn
two and only two real tangents, and those to which the tangents
may be either all real or all imaginary. This remark will
be further developed in the section on the classification of cubics,
and it will there be shewn, that in the second case the cubic
consists of two distinct portions, from every point on one of
which portions the tangents are all real, and on the other
portion are all imaginary.

168. It follows from Art. 167, that if O, Pbe any two points
of the curve, through these points can be drawn a conic passing
through the four points where each of the tangents from the
first point meets the corresponding tangent from the second.
The anharmonic ratio of four points abcd is unaltered by writing
them in the order dadc or cdab or dcba; hence, by taking the
legs of the second pencil successively in each of these four
orders, we see that the sixteen points of intersection of the
first set of tangents with the second, lie on four conics, each
passing through the points OP.

Let the cubic be circular, that is to say, let it pass through
the imaginary points I, J at infinity; then by taking these
for the points O, P we see that the sixteen foci of a circular
cubic lie on four circles, four on each circle.*

169. When O is a point on the curve, every chord through it
8 cut harmonically by the curve and by the polar conic of O.

* This theorem was fitst otherwise obtained by Dr. Hart, and thence was
suggested to me the theorem of Art. 167.
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‘We saw (p. 60) that the intersections with the eurve of the line
joining any two points are determined by the equation
MU +NMpA' + Ap*A + p*U=0.

When 2'y’s’ is on the curve, U'=0, and the preceding equation
becomes divisible by u, and if further, the points zyz, 'y’ are
connected by the relation A =0, the remaining quadratic is of
the form A'A’+u'U=0, the roots of which being equal and
opposite, we see, as at Conics, Art. 91, that the line joining the
two points is cut harmonically by the curve. The same thing
may also be proved by taking the point O for the origin, and
finding the locus of harmonic means of all radii vectores through
O. We proceed exactly as in Art. 132, making first 4 =0,
and we find immediately

2(Bz + Cy) + Dz* + Exy + Fy* =0,
which is the equation of the polar conic of the origin.

It is proved (as in Art. 136) that the tangent to the polar
conic at the point where any chord meets it passes through
the intersection of the tangents to the cubic at the points where
it is met by the same chord, and is the harmonic conjugate to
the line joining their intersection to the point O.

*+ 170. Let us now consider more particularly the case where
O is a point of inflexion. It was shewn (Art.74) that the
polar conic of a point of inflexion breaks up into two right
lines, one of them being the tangent at the point. And the
same thing would appear from the equation of the polar conic
of the origin just given. For, in order that the origin should
be a point of inflexion and the axis of y the tangent at it, we
must have (see p. 32) 4 =0, B=0, D=0, when the equation
of the polar conic (Art. 169) reduces to

20y + Exy+ Fy'=0.
The factor y is evidently irrelevant to the problem of the locus
of harmonic means; we learn therefore that if radit vectores be
drawn through a point of inflexion, the locus of harmonic means
will be a right line.* And conversely, if the locus of harmonic

* This theorem is Maclaurin's; De Linearum Geometricarum Proprietatibus
Generalibus, Sect. 111, Prop. 9.
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means be a right line, the point O 13 a point of inflexion. For,
Art. 74, the only other case in which the polar conic can break
up into two right lines, is when O is a double point, and that
case does not apply to the present problem, since a line
through the double point must meet the curve only in one
other point,
We shall call the line just found the harmonic polar of the
point O, to distinguish it from the ordinary polar line which
is the tangent at O.

171. The point O possesses, with regard to the harmonic
polar, properties precisely analogous to those of poles and polars
in the conic sections. Thus if two lines be drawn through O,
and their extremities be joined directly and transversely, the
joining lines must intersect on the harmonic polar. This is an
immediate consequence of the harmonic properties of a quad-
rilateral. '

Hence again, as a particular case of the last, tangents at the
extremities of any radius vector through O must meet on the -
harmonic polar.

The harmonic polar must pass through the points of contact
of tangents which can be drawn through O, for, since OR'RR"
is cut harmonically, if R’ coincide with R", it must coincide
with B. Hence through a point of inflexion but three tan-
gents can be drawn, and their points of contact lie on a
right line. :

If the curve have a double point, it is proved, in precisely
the same way, that it must lie on the harmonic polar.

The first theorem of this Article may be otherwise stated
thus: if three points A'B'C’ lie on a right line, and the lines
joining O to them meet the curve again in 4"B"C", these will
also lie on a right line, and the two lines will meet the harmonic
polar in the same point. If now we suppose 4', B, C' to coincide,
we arrive again at the theorem that the line joining two points
of inflexion must pass through a third, and that the tangents at
any two meet on the harmonic polar of the remaining one.

172. If through any point of inflexion O, there be drawn
three right lines meeting the curve in A,, 4,5 B, B,; C, O,
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then every curve of the third degree through the seven points
OA A.BB,C,C, will have O for a point of inflexion. For let
the three lines meet the harmonic polar in A4, B, C, then these
points are also common to the loci of harmonic means of the
point O, with regard to all curves through the seven points.
This locus, then, which would in general be a conic, must,
since these three points of it are in a right line, be for all these
curves this same right line; and therefore (Art. 170) the point
O must be a point of inflexion.

173. 'We have seen (p. 57) that the points of inflexion of a
curve of the third degree are the intersections of the curve U
with the curve H, which is also a curve of the third degree.
Every curve of the third degree has therefore, in general, nine
points of inflexion, only three of which, however, are real (see
Art. 125, Ex. 3). Since, also, we have proved that the line
joining two points of inflexion must pass through a third,
through each point of inflexion can be drawn four lines, which
will contain the other eight points. It follows then, as a par-
ticular case of the last Article, that any curve of the third degree,
described through the nine points of infleaion, will have these

points for points of inflexion.®

174. Of the lines which each contain three points of in-
flexion, since four pass throngh -each point of inflexion, there
must be in all § (4 x9)=12.1

If we attempt to form a scheme of these lines, it will be found
that it can only differ in notation from the following :

123, 468, 579.
145, 269, 378,
167, 285, 349,
189, 365, 247,
Hence it will follow that any cubic passing through any seven

* This theorem is due to M. Hesse, who showed that if U be a cubic, H its
Hessian, aU + 6H =0 the equation of any cubic through their intersections, then
the equation of its Hessian is of the same form. The method of proof here
adopted is Dr. Hart's.

+ It is easy to see that we may have nine real points lying by threes in ten
lines, but not in a greater number of lincs: thus the nine points of inflexion cannot
be all real, which agrees with the remark Art. 178,

U
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of the points of inflexion will have one of these for a point of
inflexion ; for, take any seven (say the first seven), and it will
appear from the above table that they lie on three right lines
(128, 145, 167), intersecting in a common point on the curve,
and therefore, by the last Article, that common point (1) isa
point of inflexion on them all.

From the manner in which these lines have been written, it
appears that they may be divided into four sets of three lines,
each set passing through all the nine points; or that, if we form
the equation U+ AH =0, there are four values of A, for which
the equation reduces itself to a system of three right lines.
For a direct proof of this, see the last section of this Chapter.

175. Let us now consider the case where z'y’z’ is-on the
Hessian, and where its polar conic therefore breaks up into two
right lines. It was proved in general (Art. 70) that if the first
polar of any point 4 has a double point B, the polar conic of B
has a double point 4. But in the case of cubics, the first polar
is the polar conic, and this theorem becomes, If the polar conic
of A breaks up into two lines intersecting in B, -the polar conic of
B breaks up into two right lines intersecting in A, In fact, if the
polar conic of z'y's' breaks up into two right lines, the. coor-
dinates of their intersection xyz satisfy the three equations
got by differentiating the equation of the polar conic. But
(Art. 165) this last equation may be written in either of the
equivalent forms

Uz + Uy + Ug' =0,
or a's’ + by’ +c'2* + 2f yz + 29’220 + 2h'xy = 0,
and the differentials may therefore be written in either of the
equivalent forms

ax' +hy' +97' =0, ha'+by +f2' =0, g2’ +fy +c2'=0,

az+hy+gz2=0, Ke+by+f2=0, gz+fy+cz=0,
whence we see that these equations are symmetrical between
xyz and «'y'?', and therefore, that the relation between those
points is reciprocal. Both 4 and B are evidently points on the
Hessian, on which they are said to be corresponding points,

and it will presently be shewn that they are so also in the
sense explained Art. 151, that is, the tangents to the Hessian
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at the points 4, B respectively meet in a point of the Hessian,®
In the case of the cubic, therefore, the curve called the Steinerian
(Art. 70) is identical with the Hessian.

176. The equation of the polar conic of any point what-
ever afy being aU, + BU, + yU,=0, the whole system of polar
conics forms a system of conics such as that discussed, Conics,
Art. 388, viz. the equation of which involves linearly two in-
determinates. The equation of the polar of the point 4 with
-regard to any conic of the system is

a(ad/+ Ry +97)+ B (b + by +£4)+ (g5 +fy + o) =0,
which is satisfied by the coordinates of B, whence we see that
the polar of either point 4, B passes through the other, and
that therefore the Hessian of the cubic is the Jacobian (Conics,
Art. 388) of the system of polar conics. Since 4 and B are
conjugate with regard to any conic of the system, the line
joining them is cut harmonically by every one of these conics,
and the points in which the conics meet that line form a system
in involution of which 4 and B are the foci. The two points
in which any of these conics meets the line AB can only coin-
cide at either of the points 4, B; and consequently if any of
the conics break up into two right lines intersecting on 4B,
the point of intersection must be either 4 or B, unless 4B
be itself one of the lines. Now since the Hessian of a cubic
is itself a cubic, 4B meets it in three points; that is to say,
in a'third point C besides the points 4, B. Every point on
the Hessian is, as we have seen, the intersection of the two
lines into which some polar conic of the system* breaks up, and
it follows from what has been just proved, that of the two
lines which intersect in C one must be 4B. Thus, then, from
the system of points whose locus is the Hessian, we may derive
a system of lines, viz. by taking the pairs of lines which are
the polar conics of each point on the Hessian. Each line of
the system meets the Hessian in three points; two of them

f#* It will subsequently be shown, that there are three cubic curves having each
of them the same Hessian : the correspondence of the points 4, B on the Hessian is
of one or another of the three kinds of correspondence according as the cubic curve:
is one or another of the three cubics.
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A, B are corresponding points on the Hessian, and the third, C,
which we may call the complementary point, is the point in
which the line meets the conjugate line.

177. The curve which is the envelope of the system of
lines just mentioned has been studied by Prof. Cayley, and
has on that account been called by Cremona the Cayleyan of
the cubic.* It is of the third class, as we see by examining
how many of these lines can pass through an arbitrary point P.
Any point M whose polar conic passes through P must lie
on the polar line of P (Art. 61), and in order that the polar
conic should break up into lines, M must be on the Hessian.
There are then evidently three points M, whose polar conic
reduces to a pair of lines one of which passes through P. There
is not any double or stationary tangent, and the curve is there-
fore of the sixth order.

Every line of the system joins corresponding points on the
Hessian (Art. 176); therefore the Cayleyan may at pleasure
be considered as the envelope of the lines into which the polar
conics of the points of the Hessian break up, or as the envelope
of the lines joining corresponding points on the Hessian. In
the case, however, of curves of higher degree, the envelope of
the lines joining the corresponding points 4, B (Art. 70) is
distinct from the envelope of the lines into which polar conics
may break up.

The Cayleyan may also be regarded (Art. 176) as the
envelope of lines which are cut in involution by the system of .
polar conics. It was shewn Conics, p. 347, how the equation of
the envelope regarded from this point of view may be written
down, and that the curve is of the third class.

178. Let us now examine what are the four poles with
respect to the cubic of the tangent to the Hessian at any point 4.
The four poles in question are the intersections of the polar conic
of A with the polar conic of the consecutive point A4’ on the
Hessian. The polar conic of 4 isthe pair of lines BL, BN, (see
fig. p. 150) and the polar conic of 4’ is a pair of lines consecutive

* It was denoted by Prof. Cayley himself by the letter P, and called by him
the Pippian.
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to these. Now BL meets the line consecutive to BN in the
point B; BN meets the line consecutive to BL in the same
point; and BL, BN meet the lines respectively consecutive
to them in their points of contact with their envelope. The
four poles in question are thus the point B counted twice, and
the points of contact with the Cayleyan of the lines BL, BN.
Thus, in particular, the polar line with respect to the cubic of
any point on the Hessian 1s the tangent to the Hessian at the
corresponding pont. It may be directly inferred from what
has been said, that the Cayleyan is, as stated above, of the
sixth order. For the equation of the locus of the poles with
respect to the cubic of the tangents to the Hessian, is found
by expressing the condition that «U, + yU, + 2 U, should touch
the Hessian. This condition involves the quantities U,, U,, U,
in the sixth degree, and the locus is therefore of the twelfth
order. But, from what has been proved, the Hessian must
enter doubly as a factor into this equation; the remaining
factor, therefore, which is the Cayleyan, is of the sixth order.

179. The locus of points whose polar lines with regard to
one curve U touch another curve V, evidently meets U at its
points of contact with the common tangents to U and V'; for
the polar of any point on U is the tangent to U at the point,
and if it is also a point on the locus, the polar by hypothesis
touches V. We have just seen that when U is a cubic and
V its Hessian, the locus consists of the Cayleyan together with
the Hessian itself counted twice. The cubic and the Hessian
being each of the sixth class have thirty-six common tangents.
And we now see that these common tangents consist of the
tangents to U at the 18 points where it is met by the Cayleyan,
and of the tangents to U at the points where it is met by the
Hessian; (that is to say, of the nine stationary tangents) these
last tangents each counting for two; and in fact it was re-
marked (Art. 46, p. 32), that each stationary tangent to a curve
may be regarded as a double tangent, as joining both the first
to the second, and the second to the third of three consecutive
points.* '

* Reasons were given (Art. 47) for treating the cusp and the node, the stationary
and double tangent, as distinct singularities; but in counting the intersections of
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The polar conic of a point of inflexion 4 consists (Art. 17p)
of the inflexional tangent itself, together with the harmonic polar
of 4; and the point B corresponding to 4 is therefore the point
in which the inflexional tangent meets the harmonic polar.
And the tangent to the Hessian at B is the polar of 4 -with
respect to the cubic; that is to say, is the inflexional tangent
itself. Hence, then, the nine points where the stationary tan-
gents touch the Hessian, are the points where each stationary
tangent meets the corresponding harmonic polar.

It may be inferred from what has been just proved, and
it will afterwards be shown independently, that the problem to
find a cubic of which a given cubic shall be the Hessian, admits
of three solutions. For the points of inflexion being-common
to both curves (Art. 173), we are given nine points, (equivalent
to eight conditions), through which the required cubic is to pass,
and if we were given the tangent at any of these points 4,
the cubic would be completely determined. But what has
been just proved shews that this tangent may be any one of the
three tangents (Art. 171) which can be drawn from 4 to the curve.

180. The tangents to the Hessian at .corresponding points
A, B, meet on the
Hessian, Let the <
polar conic of 4
be BL, BN, and
of Bbe AR, AN;
then L, M, N, B
~are the four poles
of the line 4B,
and the polar conic
of every point of
AB passes through
these four points.
If, therefore, this
polar conic breaks
up into two right lines, these lines must be LR, MN; and

'

two curves, a cusp or node on one of them alike counts for two; and a stationary
or double tangent to one of them alike counts for two among their common
tangents.
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we see that D is a point on the Hessian, and that it cor-
responds to the point C in which AB meets the Hessian again.
But the tangent at B to the Hessian is the polar of 4 with
respect to the cubic, which must also be its polar (Art. 60) with
respect to the polar conic of 4 (BL, BN); therefore by the
harmonic properties of a quadrilateral, this tangent is the line
BD; and in like manner the tangent at A4 is the line 4.D.

If we are given the Hessian and a point on it 4, the
problem to find the corresponding point B admits of three
solutions (see Art. 151). For if we draw the tangent at A4
meeting the curve again in D, B may be the point of contact of
any of the three other tangents besides .4.D which can be drawn
from D to the curve. These three solutions answer to the
three different cubics, of which the given curve may be the
Hessian.

181. The points of contact with the Cayleyan of the four lines
BL, BN, AR, AN lic on a right line. 'The poles of AD with
respect to the cubic are the intersections of the polar comics
of A and D; the former is the pair of lines BL, BN ; the latter
consists of the line 4B and a conjugate line passing through C.
The four poles are therefore the point B counted twice, and the
two points where Ca meets BL, BM. But AD being a tangent
to the Hessian, it appears from Art. 178, that the latter two
poles are the points of contact of the lines BL, BM, with their
envelopes. In like manner the points of contact of AR, AN
with their envelope lie on the same right line. This right line
is itself a tangent to the Cayleyan, therefore the six points
where it meets the Cayleyan are completely accounted for. In
other words, any tangent to the Cayleyan is one of a pair of
lines into which some polar conic breaks up; the other line
of the pair joins two corresponding points on the Hessian;
the four lines which make up the polar conics of these two
points pass respectively through the four points where the
given tangent meets the Cayleyan again.

Again, to find the point of contact of any given tangent
with the Cayleyan, the rule we have arrived at is to take what
we have called the complementary point on the given tangent,
and join it to the corresponding point on the Hessian: the line
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conjugate to this meets the given tangent in the point required.
But we may hence deduce a simpler rule: for since the two
lines last mentioned make up a polar conic, and since every
polar conic divides harmonically the line joining two corre-
sponding points, the rule is to take the three points in which
the given tangent meets the Hessian, consisting of two corre-
sponding points and one complementary, and to take the har-
monic conjugate of the complementary point with respect to
the two corresponding points.

182. Let us apply the preceding rules to the case where
4 is a point of inflexion, and B, the corresponding point, is the
point in which the inflexional tangent meets the harmonic polar.
The polar conic of B is then a pair of lines through 4, and the
polar conic of 4 is the inflexional tangent together with the
harmonic polar. In order to find the points in which these
four lines touch the Cayleyan, we take the point in which the
line AB meets the Hessian again; but this is the point B, since
AB touches the Hessian; and the line through B conjugate to
AB, on which the four points of contact lie, is the harmonic
polar. Thus, then, the point of contact of the inflexional tangent
with the Cayleyan is the point where it meets the harmonic
polar; or (Art. 179) the Cayleyan and the Hessian touch each
other, having the nine inflexional tangents for their common
tangents. The Cayleyan as a non-singular curve of the third
class has nine cusps, and the construction just given shews
that the harmonic polars are the nine cuspidal tangents.

183. It has been shown that the tangent to the Hessian at
any point 4 meets the Hessian again in the point D, where it
meets the polar of 4 with respect to the cubic. Tt follows that
the tangent to a cubic at any point 4 meets the cubic again
in the point where it meets the polar of 4 with respect to a
cubic having the given cubic for its Hessian. Now such a cubic
passes through the inflexions of the given cubic, and therefore
its equation will be of the form a U+ bH=0, and the equation
of the polar of any point with respect to it will be of the form

( ‘fzz +y‘fﬂ 2 %U)+b ( ‘g +y%+z ‘%g—)-_-o.
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It follows, then, that the point where any tangent meets the
cubic again is found by combining the equations
du’'  dU'  dU’ dH' dH' _dH'
$W+y'd—!/,+zw=0, @ di +yd—y,+z—d-z,» =0,

In other words, the tangential of a point zy'z' on the cubic is
the intersection of the tangent to the cubic at that point with
the polar of the same point with regard to the Hessian; and
hence may immediately be derived expressions for the coor-
dinates x, y, z of the tangential in terms of &, 3/, 2/, viz. they
are proportional to U, H,—U,H, UH~UH, UH,-UH,

functions of the fourth degree in «', ', 2.

184. The polar lines of the points on a given line ax+By+ vz
envelope a conic, which we call the polar conic of the given line.
The equation of the polar of any point 'y'z’ may be written

ax” + by"™ + c2" + 2fy'? + 292’ + 2hx'y’' = 0,

and the problem of finding the envelope of this, subject to the
condition ax’'+ By’ +q2'=0, is the same (Art. 96) as that of
finding the condition that a line should touch a conic. The
equation of the envelope required is therefore

Aad*+ BB+ Cy* + 2FBy + 2 Goya + 2HafB = 0,

where 4, B, &c. have the same meaning as in the Conics,
viz. be —f?, ca—g', &c. They are therefore functions of the
second degree in the coordinates x, 7, z. It is obvious that the
polar conic of a line might have also been defined as the locus
of points whose polar conics touch the given line.

If the method of Art. 88 had been applied to find this
envelope, the solution would be found to depend on the
equations '

az' + hy' + g7’ =Ma, k' + by + [ =AB, gx'+fy' +cd'=N\y.

But these are the equations by which (Conics, Art. 293) we
should determine the pole of the given line with regard to
2 U +y U+2U, Hence, as might also be seen from geo-
metrical considerations, the polar conic of a line is also the locus
of the poles of the line with respect to the polar conics of all

the points of the line.
X
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185. Since the polar line of any point on a line is the same
as if taken with regard to the three tangents at the points
where that line meets the curve, the polar conic of a line is
the same as if taken with regard to those three tangents. Let
their equation be zyz=0. Then to find the polar conic of a
line is (Art. 165) to find the envelope of zy'z'+yz'z’ + 22y’ =0, .
subject to the condition ax’+ By +92z'=0; and this is (see
Conics, p. 120)

v(az) + V(By) + ¥(vz) =0.

It follows that if the giver line meet the cubic in the points
P, Q, R, the tangents at ot
these points forming the
triangle ABC, then the
polar conic of the line
touches the sides of this
triangle in the points D),
E, F, which are the har-
monics of the points P,
@, B in respect to the
point-pairs BC, C4, AB <
respectively. It is evident a prior{ that the polar conic is
touched by the tangents to the cubic at P, @, R, these being
particular positions of the line whose envelope is sought.

186. It follows from the definition that the tangents which
can be drawn from any point to the polar conic of a right line
arc the polars of the two points where the polar conic of the
point meets the right line. Hence the polar conic of a point
meets a right line in real or imaginary points according as the
point is outside or inside the polar conic of the line: a point
being said to be outside a conic when from it real tangents can
be drawn to the conic. It has been already remarked, that if
a point lic on the polar conic of a line, its polar conic touches
the line.

In particular, since the polar conic of a double point is the
pair of tangents at that double point, the polar conic of cvery
line with regard to a crunodal cubic has the node outside the
conic, and with regard to an acnodal cubic has the conjugate
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point within it. If the cubic be cuspidal, the polar conic of
every line passes through the cusp.

187. It follows from the foregoing definitions, and from
Art. 135, that if the given line be at infinity, its polar conic
may be defined either as the envelope of the diameters of the
cubic, or as the locus of the centres of the diametral comics
of the cubic, or as the locus of points whose polar conic is a
parabola. Its equation is found by making ¢ and 8=0 in
the formula of Art. 184, and is C=0, or ab—4'=0; that is
to say

a@U a'vU (d’U)’

& Ay " \dwdy

And 1t appears, from Art. 185, that this is the equation of the
ellipse touching at their middle points the threc sides of the
triangle formed by the asymptotes.

188. If the given line touch the cubic, then since the polar
of the point of contact is the line itself, that line coincides
with one of the positions of the enveloped line of Art. 184,
and therefore touches the polar conic. And in no other case
can a line be touched by its polar conic with regard to a non-
singular cubic. Accordingly this principle has been used to
form the tangential equation of a cubic. Since 4, B, &c. are
functions in the coordinates of the second degree, the equa-
tion of the polar conic, Ao+ &c.=0, may be written in
the form

Ax*+ By +C'2*+2F'yz 4+ 2G'zx + 2H'xy =0,
where A4', &c. are functions of the second degree in a, 8, v, and
then the condition that this should touch the given line is
(B'C'-F™ &'+ &c.=0, which is of the sixth degree in a,
B, v, and is the required condition that the given line should
touch the cubic.

If the given line touch the Cayleyan, then since it, together
with another line makes up the polar conic of a certain point,
the polar conic of every point on the line passes through that
point, and the envelope of Art. 184 accordingly reduces to a
point.
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189. We next consider two cubics U, ¥, and investigate the
problem to find a point whose polar with respect to each shall
be the same; or what is the same thing, whose polar with
regard to any cubic U+ AV =0 shall be the same. In order
that U, +yU,+2U, and =V, +yV,+2V, may represent the
same line, we must have

S
S|

_G_ G,
AN A
oo UV,-0GV,=0, [,V,- V=0, U,V,-U7V,=0.
From the first form in which the equations were written, it is
plain that the three equations are equivalent to two; and that
the curves of the fourth degree represented by the equations
written in the second form have common points. But all their
points of intersection are not common, for any values which make
the numerator and denominator of any of the three fractions to
vanish, satisfy two of the resulting equations but not the third.
Subtracting then from the sixteen points common to the quartics
represented by the first two equations, the four points common to
U,, V,, there remain twelve points common to all three quartics,*

and these are the points required.

N

190. Since the discriminant of a cubic is of the twelfth degree
in the coefficients (Art. 69), there are in general twelve values
of A, for which the discriminant of U+AV will vanish; for
if in the general expression for the discriminant we substitute
for each coefficient a, a +A\a’, we have evidently an equation of
the twelfth degree to determine A (see Conics, Art. 250). The
coordinates of the double point on any of these cubics satisfy
the three equations (Art. 69)

U,+AV,=0, U, +AV,=0, U, +1V,=0.
And the system of equations obtained by eliminating A between
each pair of these equations, is the same as that considered

* So generally if U, U’,, U; be functions of the m'® degree in the coordinates, and
Vi, Vy V; functions of the n'® degree, the system of equations
L _u_u
WV v,
represents three curves of the order m + n, having m? 4 mn + n? common points,
(see Higher Algebra, Art.248),
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in the last article. Hence, through the intersections of two cubics
U, V there can be drawn twelve nodal cubics, and the polar of
any of the twelve double points will be the same with regard to
all cubics of the system U+ AV. These points have been called
the critic centres of the system of cubics.

191. If we are given three cubics U, V, W, then the
coordinates of the double point of any cubic of the system,
AU+ uV+vW=0, satisfy the equations

AU A4V, +vW =0, AU +pV, +vW,=0, AU +pV,+vW,=0;

therefore climinating A, u, v we see that the locus of the double
points is the Jacobian

U(RW =V, W)+U,(V,W,-V, W)+ [,(V,W,-V, W, =0.

If the three cubics have a common point, this is a double point
on the Jacobian: for if the lowest terms in = and y be in
U, V, W respectively az + by, a'z+b'y, a"z+ "y, the terms in
the Jacobian below the second degree in = and y are easily
seen to be

a,b,ax+dy
a, b, dz+dy
a’, ¥’y a'z+b"y
which vanishes identically. Thus then the locus of double
points on all nodal cubics passing through seven fixed points
is a sextic having these seven points for double points, since
U, V, W may be taken for any three cubics through the seven
given points. So likewise the double points on the nodal cubics,
which can be drawn through eight points, are determined as the
intersections of the two sextic loci, which we get by leaving out
first one and then another of the eight given points. And since
these sextics have six double points common, the number of
their other intersections is 36 — 24 or 12, which agrees with the
result of the last article.

192. Of some of the twelve critic centres, the position can
in some cases be at once perceived. Thus in the system
Azyz + uvw = 0, where u, v, w represent right lines, it is obvious
that zyz is one cubic of the system, having for double points
@y, ¥z, 2z ; in like manner uv, vw, wu are double points; there
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are therefore but six other critic centres. We shall more par-
ticularly study the system Azyz+w'v=0, and will presently
show that this system has but three critic centres, exclusive of
the points 2y, ¥z, zx, uv. Pliicker’s classification of cubics was
derived from the study of this equation for the case where u
is the line at infinity, and consequently v its satellite, and
x, y, 2z the three asymptotes. We may then for any position
of the lines z, y, 2, v, study the forms which the curve assumes
as we give different values to the parameter A; and it will be
readily understood, that each nodal curve in the series corre-
sponds to a change from one form of the curve to another.
Thus we have seen (p. 24) that an acnodal cubic is the limiting
form of a cubic including an oval as part of the curve; and
again, if for onc value of the constant, a cubic has two real
branches intersecting in a node, the example of conics makes
it easily understood, that for a small increase in the value of the
constant, the cubic will have separated portions in two of the
vertically opposite angles formed by the intersecting branches,
while for a small decrease in the constant it will have portions
in the other pair of vertically opposite angles. Hence the
importance of the critic centres in this mode of studying the
form of the cubic.

193. Since the polar of any point with regard to «'v passes
through the point wv, any point which has the same polar with
regard to zyz must lic on the polar conic of uv with regard
to ayz, and it is therefore evident a priors, that this is a locus on
which the critic centres lie. Inorder completely to determine
them, let us suppose that we have u=z+y+2, v =ax+by+cs;
and we get our result in a more convenient form, if before=
differentiating Azyz +w’v we first divide all by «*. We then—
have, differentiating successively with respect to , y, 2

Ayz (—y - 2) Xyz(g/—z—x)_b ANyz(z—z—y)

@tyg+e® O T@ryrer 0 (@tyrer O
ax by cz

Whencc = = )
T—y—2 Y—z—-x 2—T—Y

and the form of the equations shows that the problemn has beerm
reduced to that of finding the critic centres of a system of two
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conics, and that the three points required are the vertices of
the common self-conjugate triangle of the conics
ax’ + by' +¢c2* =0, and o'+ ' + 2" — 2yz — 222 — 22y =0,

where it will be observed that the latter comic is the polar
conic of u with respect to xyz; that is to say, when u is at
infinity, it is the conic touching at their middle points the
sides of the triangle formed by the asymptotes. Two ecritic
centres will coincide when az®+ by®+ c2* = 0 touches this conic;
hence the locus of double critic centres is the polar conic -of
u with respect to xyz. The condition of contact of these two
conics is easily seen, by the ordinary rule, to be

(bc + ca + ab)’ =27a"b"c", or aty b'%+c-5=0,

which is the tangential equation of the envelope of the satellite
of » when two critic centres coincide. This answers (Ex. Art. 90)

1 1 1
to the equation in point coordinates &* + y* + 2* = 0.*

194. Any point on Axyz+ w'v may be determined as the
intersection of z = fv with OAxy + u’=0. When u is at infinity,
the latter equation denotes a system of hyperbolas having z, y
for their asymptotes, and by the property of the hyperbola, the
chords intercepted by these hyperbolas on any line z=6v have
a common middle point; namecly, the point of contact of this
line with one of the hyperbolas of the system. Evidently if z = 6v
either touch the cubic or pass through a double point on it, it
must touch the hyperbola, the critic centre being in the latter
case the point of contact. Hence if any of the critic centres
be joined to the finite points where the asymptotes meet the
curve, the critic centres arc the middle points of the chords
intercepted by the cubic on the joining lines.

SECT. IIT,—CLASSIFICATION OF CUBICS.

195. We shall shew in the first place that the equation of
every cubic may be brought to the form

zy* = ax’ + 3bx’z + ez’ + d7’.

* For a fuller discussion of this theory, see papers by Prof. Cayley, “On a case
of the involution of cubic curves,” and “On the classification of cubic curves.”
Transactions of Cambridge Philosophical Society, Vol, XI,, 1864,



160 CLASSIFICATION OF CUBICS.

Every real cubic has at least one real point of inflexion, for
imaginaries enter by pairs, and the total number of points of
inflexion is odd, viz. cither nine, three, or one (Art. 147). If
we take for the line z the tangent at the point of inflexion, and
for = any other line through that point, the equation of the
curve (Art. 51, viL.) will be of the form z¢ =aa’, where ¢ is
a function of the second degree, say
'+ 2lyz + 2myx + pa’ + 2qxz + r2’.

But now if we transform the lines of reference so as to take
y+lz+ mz for the new y, the terms in ¢ containing y only in
the first degree are made to disappear, and the equation takes
the form first written in this article. The geometric meaning
of the transformation we have made is that we take for z, as
above stated, the tangent at a real point of inflexion 2z, and for
y, the harmonic polar (Art. 170) of that point: for if we ex-
amine where any line through the point of inflexion meets the
curve represented by the above equation, we find on making
the substitution z =2\, that we obtain for y values of the form
+ px, shewing that the points where the line meets the curve
are harmonically conjugate with respect to the point where it
meets the line 3, and to the point of inflexion.

196. In classifying curves those distinctions may be re-
garded as fundamental which are unaffected by projection;
or, in other words, which separate not only curves, but cones,
of the same order. Among curves of the second order there
is no such distinction, for there is but onc species of cone.
In order to ascertain whether such distinctions exist among
cubics, it suffices to take the form to which, as shown in the
last article, the equation of every cubic may be reduced, and to
examine whether any and what varieties, unaffected by projec-
tion, exist among the curves capable of being represented by
it. And since we are mow only concerned with varieties
unaffected by projection, we may suppose the line z to be at
infinity, and discuss the form

y'=az’ + 3bx’ + Bcx + d,

as one capable of representing a projection of any given cubic.
It will be observed that when a point of inflexion is at infinity,
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a system of lines through it becomes a system of parallel ordi-
nates, and the harmonic polar becomes a diameter bisecting
them, and, in fact, for every value of , the above equation
gives equal and opposite values of y.

The preceding equation has already been partially discussed
(Art. 39), and from what was there said, it appears that the
curves represented by it may be divided into the five following
principal classes:

The right-hand side of the equation may be resolvable into
three unequal factors, and (I.) these factors are all real. The
curve then consists (Art. 39) of an oval and an infinite
branch. Or (IL.) the factors are one real and two ima-
ginary. The oval then disappears and the infinite branch
alone remains.

The right-hand side of the equation may be resolvable
into two equal, and one unequal, factors, being of the form
(x—a)*(z—B). Then we have the cases, (I1L.), a less than 8
when the curve is acnodal (Art. 39), the oval being reduced to
a conjugate point; or (IV.), « greater than 8, when the curve is
crunodal, the oval and ‘he infinite branch being each sharpened
out 80 as to form a continuous self-intersecting curve.

(V.) The factors of the right-hand side may be all equal, and
and the curve is cuspidal (Art. 39).

Newton has given the name “divergent parabolas™ to the
curves considered in this article; and his theorem, which we
have just established, is that every cubic may be prOJected
into one of the five dwergent parabolas.

197. Instead of, as in the last article, supposing the
stationary tangent to be projected to infinity, we may suppose
the harmonic polar to be so projected. The point of inflexion
will then become a centre and every chord through it will be
bisected. Interchanging z and y in the equation of Art. 195,
and then putting 2 =1, the equation for this case becomes

y=ax’ + 3ba’y + 3cxy® + dyf’,
which is the equation of a central curve (Art. 131). As in
Art. 196, there are five kinds of central curves according to
the nature of the factors of the right-hand side of the equation,

~ and in this way is established Chasles’s extension of Newton’s
X
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theorem, viz. that every cubic may be projected into one of the
five central cubics.

198. Corresponding to these five kinds of cubic, there are
five essentially distinct species of cubic cones. A cone of any
order may comprise two forms of sheet, viz. (1) a twin-
pair sheet, or sheet which meets a concentric sphere in a pair
of closed curves, such that each point of the one curve is
opposite to a point of the other curve (a cone of the second
order affords an example of such a sheet); and (2) a single
sheet, viz. one which meets a concentric sphere in a closed
curve, such that each point of the curve is opposite to another
point of the curve (the plane affords an example of such a
cone). Now corresponding to the parabola I. of Art. 196, we
have a cone consisting of a twin-pair sheet and a single sheet,
and corresponding to II., we have a cone consisting of a single
sheet only. It is evident that the crunodal, acnodal, and cus-
pidal singularities are reproduced in the corresponding cones.

"The classification of cubic cones just made might, if we pleased,
be carried further. Not only is there but one species of cone of
the second order, but, with some limitations, any two carves of
that order may be regarded as sections of one and the same
cone. This is not so as regards cubics; for it has been proved
(Art, 167) that every cubic curve has a certain numerical cha-
racteristic, expressing the anharmonic ratio of the four tangents
which can be drawn from any point on the curve, and represented
by the ratio of the invariants S°: 7™ of the biquadratic, which
determines those tangents. This characteristic being unaltered
by projection, two curves for which it is different, cannot be
cut from the same conc; and the parameter in question may
be regarded as a characteristic, not only of a cubic curve, but
also of cvery cone from which it can be cut. The five
kinds of cone we have enumerated might, therefore, be further
subdivided at pleasure, according to the values of this parameter.
Such subdivisions have in fact been made, but it is not thought
necessary to notice them here. In the last section of this
chapter, however, the cases §=0, 7=0 will be discussed ; and
it is now pointed out that these represent families not only of
curves but of cones.
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199. Let us now examine, more minutely than in Art. 39,
the figure of the cubic represented by the equation considered
in Art. 196, and it will be convenient to take the origin at
the middle point of the diameter of the oval, so that the
equation may be written

ay* = (2" ~m*) (z—n),
where n is greater than m. Differentiating, we find that the
values of & which correspond to maximum values of y, or to
points where the tangent is parallel to the axis of z, are given
by the equation

32" —2nz - m*=0; whence z=1} {nt/(n*+ 3m%)}.

If we give the negative value to the radical, we get the value
of & corresponding to the highest point of the oval, and since
this is negative, we see that the highest point on the oval
is on the side remote from the infinite branch, and that the
oval is therefore not, like the ellipse, symmetrical with regard
to two axes. This oval is symmetrical with regard to the axis
of z, and not with regard to the axis of y, but rises more
steeply on the one side and slopes more gradually on the other.
The greater n is for any given value of m, that is to say, the
greater in proportion the distance between the oval and the
infinite part the more nearly does the oval approach to the
elliptic form, while on the other hand, the difference is greatest
when the oval closes up to the infinite part, that is to say,
when the curve is crunodal. In this case the highest point of
the loop corresponds to the point of trisection of its axis. If
we give the positive value to the radical, the corresponding
value of  is intermediate between m and =, and the cor-
responding value of y is imaginary. The form of the
equation shews that the point of contact with the curve of
the line at infinity is on the line z=0, unlike the common
parabola y*=px which is touched by the line at infinity on
¥=0. The infinite branches of the cubic therefore tend to
become parallel to the axis of y, and not to the axis of z;
and there must be a finite point of inflexion on each side of
the diameter, where the curve changes from being concave
to being convex towards the axis of #. Hence the name
¢ divergent parabola.”
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The form of the curve is then represented by the oval, and

the right-hand infinite branch on the :

figure. If, however, we have in the : '
ocquation + m* instead of — m*, then there

will be no real oval, and the infinite £

branch will be either of the left hand

or right hand form, that is to say, there

will or will not be points for which y is
n maximum, and at which the tangent is parallel to the axis,
according as 3m® is less or greater than »°; and there is of
course the intermediate case 3m®=n’, where there is on each
sido of the axis of x a point of inflexion, the tangent at which
is parallel to this axis. .

Tho figures of the crunodal, acnodal, and cuspidal forms do
not scem to require farther discussion than was given in Art. 39.

200. Returning to the case where the curve has an oval,
it is plain, that in general every right line must meet any
closed figure in an even number of real points, and therefore
that overy line which meets the oval part of the cubic once,
must meet it once again and not oftener; since when a line
crosses to the inside of the oval, it must cross it again to come
out, and cannot meet the oval in four points. Every line
thereforo must meet the infinite part of the curve once. It
follows that no tangent to the curve can meet the oval again,
and thereforo that none of the points of inflexion can lie on
tho oval. ltis easy to see on inspection of the figure, that from
any point outside the oval two tangents can be drawn to it.

Phus then the oval is a continuous series of points from
wone of which can any real tangent, distinct from the tangent
at the poiut, be drawn to the curve. The cubic then, which
wcludes an oval, is of the class (Art. 167), the four tangents
{kowt every point of which are either all real or all imaginary.
''he tangents trow every point on the oval are all nnagmmy,
and from overy point on the infinite branch are all real; viz.
two cat be drawn to the oval, and two to the infiite branch
ment a¢ any point on the infinite branch

geim, since the third point in which
be an the oval

el
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201. What has been just said, may be used to illustrate
the ecssential property of unicursal curves (Art. 44). The co-
ordinates of any point on such a curve can be expressed
rationally as functions of a parameter, so that by giving to
this parameter values continuously increasing from negative
to positive infinity, we obtain all the points of the curve in
a continuous series, the coordinates being always real. In
the present example, on the contrary, it is geometrically
evident that if we commence with any point on the oval and
proceed on continuously, we return to the point whence
we set out, without passing through any point on the in-
finite branch; and it is algebraically impossible to express
the coordinates of any point in terms of a parameter without
including a radical in the expression. For instance, we might
take z=1, =0,y =+(al’ + 300° +3c0+d). We shall then
call the curve we have been considering a bipartite curve, as
consisting of two distinct continuous series of points.

A curve of the second kind considered, Art. 196, has no
oval, and is unipartite, all the real points of the curve being
included in one continuous series; but.the curve is not on
that account unicursal, for the coordinates of any point cannot
be rationally expressed in terms of a parameter, and a unipartite
curve is not necessarily unicursal, just as an equation having
only one real root is not necessarily a simple equation. A cru-
nodal cubic, on the other hand, is unicursal and unipartite: all
the points of the curve succeed each other in a definite order
forming a single series. The curve may however be regarded
as comprising a loop and an infinite branch consisting of two
parts separated by the loop. The argument used, Art. 200,
shews that no point of inflexion can lie on the loop, neither can
any tangent meet the loop. " The loop, therefore, includes a series
of points from none of which can any real tangent be drawn to
the curve, while from every other point on the curve, two real
tangents to it can be drawn, one of them to the loop, the other
to the infinite branch. So also an acnodal cubic and a cuspidal
cubic are each of them unicursal and unipartite.

202. Having thus divided cubics into five genera, we proceed
to subdivide these genera into species, according to the nature
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of their infinite branches. And obviously we must have
at least four species under each genus, according as the line
infinity meets the curve, (a) in three real and distinct points,
() in one real gnd two imaginary points, (c) in one real and
two coincident points, (d) in three coincident points. But in
the case of crunodal, acnodal, and cuspidal cubics, we must
distinguish under (c) whether the line infinity be properly a
tangent, or whether it pass through a double point; and in
the case of crunodal and cuspidal cubics we must distinguish
under (d) whether the line infinity be a tangent at a point of
inflexion or at the node or cusp. Further, in the case of
a bipartite or a crunodal cubic it is important to distinguish
under (a) and (c) whether the three points in which infinity
meets the curve all belong to the infinite branch or whether
two of them belong to the oval or loop and only the re-
maining one to the infinite branch. The differences thence
resulting in the figures of the curves are so great, that the two
cases may properly be classed as distinct species. These are the
only differences which are made in what follows, grounds of
distinction of species. The only other differences which would
seem to have equal claims to be put on the same level, are that
the points of the curve at infinity may either all be ordinary
. points, or else one or three of them may be points of inflexion.
But as the changes thus made in the figures of the curves are
slighter, and as it is desirable not to have more.species than can
be easily remembered, I have preferred to class curves differing
only in the respect last mentioned, not as distinct species, but as
different varieties of the same species. It is obviously a good
deal arbitrary how many varieties of cubics may be counted,
and much depends on the point of view from which these
curves are discussed.

203. The figures for the case where the line infinity is a
stationary tangent have already been discussed, and the figure
for any other case may be regarded as a projection of one of
the figurcs for this case. Let us commence with bipartite cubies,
and consider first the projection of the oval. And it will be
readily understood, that if the line projected to infinity do not
meet the oval, the projection of the oval will remain a closed
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curve, while if the line touch the oval, or if it meet it in two
real points, the projection will have the same kind of rough
resemblance to a parabola or a hyperbola respectively, that the
oval itself has to an ellipse: that is to say, while the figures
have not the symmetry of the conic sections, the projection is in
the former case, like the parabola, a single curve whose branches
proceed to infinity in a common direction without approaching
to contact with any finite asymptote, and in the latter case
consists of a pair of curves having two common asymptotes, and
lying in two of the vertically opposite angles formed by them.
Such a pair we shall briefly refer to as a hyperbolic pair.
It will be observed, that an ordinary asymptote to a curve has a
positive and negative branch at opposite sides of it. The
theory of projection teaches us to regard the extremities of a
line at positive and negative infinity as projections of the same
point, and similarly to regard the branches of a curve which
touch an asymptote at positive and negative infinity as con-
tinuous with each other. Thus, then, as when the oval is a closed
curve, its points form a continuous series, such that commencing
with any point we can proceed continuously round the curve till
we return to the point whence we set out; so this is equally true
of all projections of the oval, and the twin hyperbolic branches are
to be regarded as forming one continuous curve, the part where
one branch touches an asymptote at its positive extremity being
regarded as continuous with the part where the other branch
touches the same asymptote at its negative extremity.

204. Let us next consider the projection of the infinite part
of the curve (Art. 196) which must be met by every line either
in onc or three real points. First, let the
line projected to infinity meet it only in one,
and then the branches of the projected curve,
instead of spreading out indefinitely, will
approach to contact with a finite asymp-
tote as in the left-hand curve on the figure.
The curve, which will hereafter be briefly
referred to as the serpentine, must obviously
have three points of inflexion; for it is
convex towards the asymptote at positive infinity (since every
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curve is convex towards its tangent on both sides of the point of
contact) ; it must change this convexity into concavity in order
to cut the asymptote once again: having cut it, it must bend
again, else it would continually recede from the asymptote;
and it must bend once more in order to become convex towards
the asymptote at negative infinity. The points in the curve
represented in the figure form a continuous series, since it ap-
pears, from what was said in the last article, that the branches
of the curve in contact with the asymptote at its opposite
extremities arc to be regarded as continuouns with each other.

In the above it was assumed, that the point at infinity on
the serpentine is an ordinary point on the curve. If, however,
it be a point of inflexion, the difference is, that instead of the
positive and negative infinite branches lying as usual on opposite
sides of the asymptote, they lie on the same side, as in the right-
hand curve on the figure. It is obvious that the curve has
then but two finite points of inflexion. We refer to this
as the conchoidal form.

205. Next let tho lino projected to infinity meet the infinite
branch in three ordinary points. It may be seen, that it will
always divide the curve into three parts, one of which has no
points of intlexion, another
one, and the other two. "
"The projection will consist /
of three intinite branches; \ L
one, which we shall call a T
simple hyperbola, having
no point of intlexion, and ;
not intersecting its asymp- o
totes; the second, which
we shall call an inflected hy-
perbola, crossing one asymp-
tote, and consequently hav-
ing oue point of inflexion; and the last, which we shall call
a doubly inflected hyperbola crossing boeth  asymptotes, and
having therefore two inflexions®  No two of these parts form

» Nowton euils the frs of these sn inseribad, the thind 3 cicctmscribed. and the

sooomad an ambigeoows hyperteola
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a hyperbolic pair, but the three together form a continuous
series. Thus, in the figure, if we commence by descending
the vertical branch of the. doubly inflected hyperbola, the path,
after passing through negative infinity on the vertical asymp-
tote, is continued from positive infinity on the same asymp-
tote along the singly inflected branch, until having passed to
infinity on the other asymptote, it returns along the simple
hyperbola, and so back to the doubly inflected hyperbola.

If one of the points at infinity be a point of inflexion, either
the singly inflected hyperbola becomes simple, or the doubly
inflected becomes singly inflected. If all three inflexions be at
infinity, the curve consists of three simple hyperbolas.

Cubics having three hyperbolic branches, arc called by
Newton redundant hyperbolas, as having one more than the
conic sections; those having but one infinite branch, as in
the last ‘article, are called by him defective hyperbolas; and
those touched by the line at infinity, and having besides one
finite asymptote, are called parabolic hyperbolas.

206. We now enumerate the following species of bipartite
cubics. (1) The line projected
to infinity meets the oval twice,
and the qther part of the curve
once. If the last point of meet-
ing be (a) an ordinary point,
the curve consists of a serpen-
tine and a hyperbolic pair, as in
the figure. If it be (b) an in-
flexion, the only difference is,
that the serpentine is exchanged for the conchoidal form.

(2) The line infinity meets the curve in three real points,
none of which belong to the oval. If the points be: (a) all
ordinary points, the figure is that of Art. 205. If one of the
points be an inflexion, the curve consists either (5) of an oval
with two simple and one doubly inflected hyperbolas; or else
(c) of an oval with one simple and two singly inflected hyper-
bolas. (d) If the three inflexions be at infinity, the curve
consists of an oval with three simple hyperbolas. In all these

cases the oval lies within the triangle formed by the asymptotes,
Z




170 CLASSIFICATION OF CUBICS.*

and the curves may be further distinguished according as the
hyperbolas lie in the angles which contain the asymptotic
triangle, or, as in the figure, in the vertically opposite angles.

(3) Infinity meets the curve in two imaginary points; and
we have an oval (a) with a serpentine, or (5) with
a conchoidal branch (see Art. 204).

(4) Infinity touches the oval, which then as-
sumes the parabolic form, and is accompanied (a) ™~
with a serpentine, (5) with a conchoidal branch. /)

(5) Infinity touches the other part of. the curve.
The oval then remains a closed figure, while the
other part of the curve spreads into a parabolic
form. If (a) the remaining point at infinity be ordinary, one
branch crosses the asymptote and has two /

inflexions, while the other branch has only
one. If (3)it be a point of inflexion, the \
branches are both at the same side of the

asymptote, and each has only one in- .-

flexion.

(6) Infinity meets the curve in three (\—'

coincident points. This is the case with
which we set out (Art. 199).

207. We come next to the division of non-singular unipartite
cubics, and it is evident that we have now nothing corresponding
to the species (1) and (4) of the last article. We have, therefore,
only four species of such unipartite cubics, viz. redundant, de-
fective, and parabolic hyperbolas, and the divergent parabola;
according as the points of the curve at infinity are all real and
distinet, two imaginary, two coincident, or all three coincident.
The same varieties of each may be counted as in the last article,
and the figures of the last article will serve by omission of
the oval: but for further illustration we give a figure for a
case where the satellite cuts the sides of the asymptotic triangle,
and where two critic centres (Art. 192) lie within that
triangle. We have, then, a portion of the doubly inflected
hyperbola in a purse-shaped form within that triangle;
and it is easy to conceive that by a change in the value of
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the constant the mouth of the purse closes, and we have a
double point at one of the critic centrcs, while, by a further
change, we have a separatc oval, at last shrinking into a
conjugate point at the other critic centre.

In like manner,
we have the same
four species of ac-
nodal cubics, to-
gether with a
fifth, for which the
acnode is at in-
finity. The figures
for bipartite cubics
suffice to illustrate
this class if we
suppose the oval
to shrink into a
conjugate point.
The figures for the case where the acnode is at infinity do not
strikingly differ from those where infinity meets the curve in
one real and two imaginary points.

208. Of crunodal cubics we have the following species.
(1) Infinity cuts the loop in two real points. We have, then,
two simple and one inflected hyperbola as in the left-hand
figure. It will be observed by tracing the curve in its
. passages through infinity that the curve is unicursal. There

are two varieties according as the remaining point 1s ordinary
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or an inflexion. In the latter case, all the hyperbolas are
simple.

(2) There are three real points at infinity, none of which
are on the loop. There are an inscribed, ambigenous, and
circumscribing hyperbola, the last forming a loop within
the asymptotic triangle. There are two varieties, according
as there is, or is not, an inflexion at infinity.

(3) Infinity meets the curve in two imaginary
points, There are, as before, two varieties. e,

(4) Infinity touches the loop, and (5) infinity | /
touches the spreading part of the curve. The
-figures explain themselves, and in the former case,
here are two varieties, the curve lying all on
the same side of the asymptote when there is -
an inflection at infinity.

There is a double point at infinity, and consequently two
parallel asymptotes; and the remaining point at infinity is
(6) on the spreading part, (7) on the loop. In the former
case, the point of inflexion is outside the parallel asymptotes,
in the latter, between them. If the inflexion were also at
infinity, the two branches in the former case would lie on
the same side of the asymptote.

YR
N7

\
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(8) Infinity touches at an inflexion, and we have the diver-
gent parabola of Art. 199.

(9) Infinity is a tangent at a double /

point; and we have a curve called the

trident, whose figure is here given. ' k
209. Of cuspidal cubics there are

evidently no species answering to 1, 4, \

7 of the last article. The species, then, :

are (1) Three real points at infinity; two varieties. (2) One
real and two imaginary points at infinity; two varieties. (3)
Infinity an ordinary tangent; two varieties. (4) The cusp at in-
finity ; two varieties. (5) Infinity, a stationary tangent. (6)
Infinity, a cuspidal tangent. The figures for the cases 1, 2, 3
can easily be conceived with the help of the figures of the last
article, by[supposing the loop removed which is dotted in those
figures, and the double point replaced by a cusp. The figure for
case (4) is obtained from the left-hand figure (Art. 208) for
the case of two parallel asymptotes, by imagining those asymp-
totes united, and the branch between them suppressed. We
have, then, a single asymptote with two infinite branches on
opposite sides, but at the same end of it.

The figure for case 5, the semicubical para-

bola, my*=2’, is given, Art. 39. Finally,

the figure for case 6, the cubical parabola

m’y =4, is here represented.

210. Though we have here counted as many as thirty
species of cubics, it is not difficult to remember the classification,
if it is borne in mind that nothing has been done, but combine
the five-fold division of Art. 196 with the division of Art. 202,
depending on the nature of the points at infinity. It remains
to say something as to previous classifications of cubics. The
first was made by Newton, Enumeratio Linearum tertis ordinis,
whose classification is substantially the same as that here given,
except that what we have counted as varieties are made by
him distinct species; and that whereas in the case of a hyper-
bolic branch touched by two asymptotes, we do not regard in
which of the vertically opposite angles formed by them the
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branch lics, Newton discriminates the cases where it lies in the
angle crossed by the third asymptote, or in the opposite angle.
The cases where three real asymptotes mect in a point are
treated as distinct species. By attending to these distinctions,
the number of species is made up to seventy-eight. Also,
whereas we have made the five-fold division primary, and that
depending on the infinite branches secondary, Newton’s course
of proceeding is the reverse.

Newton’s method of reducing the general equation is as
follows : one of the axes being taken parallel to the real
asymptote, the coefficient say of z° vanishes, and the equation
of the curve is of the form

¥ (az+ b) +y (fi' + gz + k) + pa’ + g + rx+8=0.
Now the locus of middle points of chords parallel to the asymp-
tote is obviously
2axy + 2by +f' + gx + h=0;
and if we suppose the axes transformed to the asymptotes of

this hyperbola, the terms 3, £, g evidently vanish, shewing that the
same transformation will bring the equation of the cubic to

the form
oy + by =pa + g+ v,
or with Newton’s letters

xy' + ey = ax’ + b’ + cx + d.

This is Newton’s most general form. If, however, in the
cquation as we have written it, a and b vanish, the locus is not
a hyperbola but a right line, and according as this is (1)
the line =0, (2) an arbitrary line which may be taken
for y =0, or (3) the line at infinity, the equation of the cubic is
similarly brought to the forms '

xy = ax’ + bz’ + cx + d,
y'=az’ + ba’ + cx + d,
y=az’+bx*+cx+d.

The only apparently different case is when in the equation as
we have written it =0, and the locus a parabola; but in this
case there is another real asymptote, the locus of middle points
of chords parallel to which is a hyperbola, and the reduction
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proceeds as in the first case, only that the coefficient of z* vanishes
in the transformed equation. Newton’s results are obtained .
from a discussion of these four forms. If y=¢ () be the equa-
tion of any curve, Newton calls the curve zy=¢ (x) a hyper-
bolism of that curve. Thus, then, he calls cubics which have a
double point at infinity, and whose equation can therefore be
brought to the form
zy" +ey =cx+d,

hyperbolisms of the ellipse, hyperbola, or parabola, since the
equation just written is brought to that of a conic by writing

y for xy.

211. We have already noticed Pliicker’s discussion of cubic
curves, contained in his System der Analytischen Geometrie. In
this discussion the nature of the points at infinity is the primary
ground of classification. Commencing with the case of three
real asymptotes, when the equation is of the form ayz=ku'v,
the cases when the asymptotes meet in a point, or form a
triangle, are first distinguished: then all possible positions of
the satellite line v are examined ; whether for instance it cross
the triangle, pass through a vertex, or meet all the sides pro-
duced, whether two critic centres (Art. 192) coincide, and so
forth. All the curves capable of being represented by the
above equation for any given position of the lines z, g, 2, v, are
said to form a group, and by giving all possible values to %,
the different species included under the same group are dis-
tinguished. This will be more readily understood from the
figure of Pliicker’s first group, which we reproduce on the next
page, and which answers to the case where the satellite line meets
the sides produced of the asymptotic triangle, and where we have
three real critic centres, one inside, two outside the triangle.
Fig. 1 represents a bipartite curve of the species in this volume
-numbered L., 2. By a change in the value of % the oval shrinks
into a point, and we have (2) the acnodal curve IIL, 1. As
% is further changed, the curve becomes (3) unipartite II., 1; and
the branches recede further from their asymptotes. In (4) the
branches cross to the other asymptotes, and the curve becomes
crunodal, IV., 2. Fig. 5 is bipartite, I., 1. Fig. 6 is, in our
enumeration, of the same species as 5,7 as 4, and 8 as 3, but the
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position of the branches with regard to the asymptotic triangle

e ‘R
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is different. Pliicker’s division into groups has been carefully
re-examined by Prof. Cayley, Transactions of the Cambridge
Philosophical Society, 1864, who also gives a comparison of
Newton’s species with those of Pliicker, of which there are
two hundred and nincteen. It does not enter into the plan of
this treatise to give a more minute account of this classifica-
tion. It will suffice to mention, that in the case of the
parabolic curves an important part is played by the osculating
asymptotic parabola, or parabola which passes through five

consecutive points of the curve where it touches the line infinity.
The equation of the curve may be brought to the form

z(y* + 222 + 2°) = 2* (ay + b2),

where obviously the parabola 3°+ 2zx +2° meets the curve in
the point yz reckoned five times. The groups are then de-
termined by the position of the osculating parabola with respect
to the linear asymptote , and to the satellite line ay + b=.

SECT. IV.—UNICURSAL CUBICS.

212. We have seen (Conics, Art. 270) that computation is
facilitated when the coordinates of a point on a curve can be
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expressed in terms of a single parameter, and it has been
proved (Art. 44) that this is always possible in the case of
a unicursal curve. Of the application of this principle to cubics
we now give some examples. The equation of a cuspidal
cubic can always be reduced to the form 'z =3, where zy is
the cusp, « the cuspidal tangent, and z the stationary tangent.
Any point on the curve may then be expressed as the inter-
section of fz=y, Fy==z;* or, in other words, the coordinates
- of any point on the curve may be taken as 1, 6, 6°, where 6 is
a variable parameter. The line joining any two points on the
curve will then have for its equation, as may be easily verified,
00 (0+0)x— (6" +60'+ 6" y+2=0.
Let 6 and & coincide, and we have the equation of the tangent
26z - 36"y + z2=0.

If we seek the points where any line ax+ by +cz=0 meets the
curve, substitnting 1, 6, @ for z, y, 2, we have the equation
a+b0+c6 =0, and as this equation in 6 wants the second
term, the sum of its roots vanishes, and we learn that the para-
meters of three points on a right line are connected by the
relation 6 +6'+6"=0. Hence, in particular, the tangential
of the point 6 is —26, and the point of contact of the tangent
from 6 is — }6.

In like manner, if we make the substitution 1, 6, 6 for
@, y, z in the equation of a curve of the p™ order, the term
67 will be wanting in the equation, and the relation connect-
ing the parameters of the 3p points of intersection of the curve
with the cubic is that their sum vanishes. Thus, then, the 6
of the residual of a system of points is the negative sum, and
of the coresidual is the sum of the 6's of the several points;
and generally the theorems concerning residuation, Art. 158, &c.,
are thus intuitively evident for cuspidal cubics. For instance,
denoting the parameters of the points by a, , &c., the condition
that six points shall lie on a conic is ’

atb+ct+d+tetf=0,

* These equations considered as belonging to tangential coordinates give the
theorem “If 7 be the inflexion, C' the cusp, and T the intersection of tangents at
142 TB

these points, anytangentABcntstheaidesofthetriangleICT,sothatA—ﬁ= G’

and when the line at infinity is a tangent £ =1." Compare Conics, Art. 827.
: AA
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which at once gives the theorem (Art. 154), that given four
points on a cubic, the line joining the points e, f; where any
conic through them meets the curve again, passes through the
fixed point (a+b+c+d); and that this point may be con-
structed by joining ab, cd, and joining the points where these
.lines meet the curve again ; since
—(@+d)-(c+d)+(a+b+c+d)=0.

So again, various constructions for the ninth point where the

cubic through eight points meets the curve again are obtained
by inspection of the equation

(a+d+ct+d)+(e+f+g+h)+s=0,

213. The parameters of the points whose tangents pass
through a given point are found by substituting the coordi-
nates of that point in 26'z—36'y+2=0; and since in the re-
sulting cubic the coefficient of 6 vanishes, the sum of the
reciprocals of the roots vanishes; or, three points whose tangents
meet in a point are connected by the relation %+ %, + é, =0.
In like manner, since the condition that 26°xz—36'y+2=0
should touch a curve of the p™ class, is a relation of the p"
order between the coefficients 26°, 36", 1, and since such a
relation obviously does not contain the term 6, it follows that
the 3p points where tangents touch a curve of the p™ class
1
6
trations of the application of this method to examples.

are connected by the relation 2( )= 0. We give some illus-

Ex. 1. To find the locus of the intersection of tangents, whose chord of contact
passes through a fixed point on a cuspidal cubic.

This is to eliminate a and B between the three equations

2a% - 8a%y +2=0, 2% —8f% +2=0, a+B+y=0;
where y is known, We easily find y (2yzx + 3y)? + 22z =0, the equation of a conie,

Ex. 2. If a polygon of an even number of sides be inscribed in a cubic, and all
the sides but one pass through fixed points on the curve, the last side will also pass
through a fixed point on the curve.

Denote the parameters of the vertices by «,, a,, &c., and of the fixed points by
by, b, &c. We take the case of the quadrilateral for simplicity, but the proof
is general. We have then the equations

a,+b+a,=0, ay+b,+a;=0,
-G+ by +a;=0, ay+b,+a,=0,
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Adding, we have b, + b, = b, + b,, shewing that the lines joining ,, b,; by b, meet on
the curve, and that, when three of the points are known, the fourth is known also.
The theorem is true for all cubics, for the proof here given may easily be translated
into the language of the theory of residuation, shewing that the pairs of points &, &;;
b4, b, are coresidual, a common residual being the system of vertices a,, @y, a3 ¢

It follows, as a particular case of this theorem, that if the sides of a polygon of an
odd number of sides pass through fixed points on the curve, the tangent at any
vertex passes through a fixed point on the curve: and hence, that the problem to
construct such a polygon whose sides pass through fixed points on a non-singular
cubic admits of four solutions,

Ex. 8. To find the quasi-evolute, the two fixed points being on the curve (see also
Ex, 5, p. 80). The equation of the quasi-normal (Art, 107) is

(B + BO ~ 20%) {0 (0 + a) & — (6% + Oa + a?) y + 2}
+(a? + @B — 267 {68 (0 + ) = — (6 + 0 + ) y + 2} = 0.

I wo transform this by writing 0= %=5" , we get then, in conformity with
Art. 108, a biquadratic in A, in which the two extreme terms at each end respectively
differ only by a constant factor, and the discriminant, having as factors the equations
of the tangents at a and 8, represents besides a curve only of the 42 degree.

214, It remains to mention a few of the more remarkable
examples of cubics of the third class. We have already noticed
the semi-cubical parabola, which is the evolute of the parabola
of the second degree. In its equation, py* =2’ the cusp is at
the origin, and the point of inflexion at infinity. In the cubical
parabola, on the other hand, p'y=2’, the point of inflexion
is at the origin, and the cusp at infinity. In the cubical para-
bola the origin is a centre, and all the diameters of the curve
coincide with the axis of y; for if we draw any line y =mx + n,
the sum of the values of  is = 0.

To the cusped class also belongs the Cissoid of Diocles, a
curve imagined by that geometer for the solu- |
tion of the problem of finding two mean pro- / 4'3,
portionals. It may be defined as the locus of
a point M’, where the radius vector to the
circle AM is cut by an ordinate, such that , 3
AP =BP. We must have PoE

AM'= RM, and therefore p = AR - AM,
or p=2rseco—2r cosw=2r tanw sinw;
or, in rectangular coordinates,

x (& + ") =2ry’, or (2r—a)y*=2".
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The origin is therefore a cusp, and 2r —  an asymptote meeting
the curve at an infinitely distant point of inflexion.
Newton has given the following elegant construction for the
description of this curve by continuous
motion: A right angle has the side GF
of fixed length, the point F moves along
the fixed line CI, while the side GH
passes through the fixed point E; a
pencil at the middle point of GF will 3 c D
describe the cissoid. The proof we leave G
to the reader. (Lardner’s Algebraic Geometry, pp. 196, 472).
The cissoid is also the locus which‘we should find if we take
on each of the radii vectores from the vertex of a parabola a
portion equal to the reciprocal of its length. It is consequently
also the locus of the foot of a perpendicular let fall from the
vertex of a parabola on the tangent; or, in other words, if a
parabola roll on an equal one, the locus of the vertex of the -
moving parabola will be the cissoid.

215. We can in like manner express in terms of a single
parameter the coordinates of any point on a crunodal or acnodal
cubic. The double point being the origin, the equation is of
the form :

ax® + 3bx’y + Bcxy® + dy’ + 3fx’ + 6gxy + 3ky* =0,

and if we put y =0z, we have immediately rational expressions
for = and y in terms of §. The discussion will, however, be
simpler if we suppose the equation transformed, as it always
may be, to the form (z* +3*) 2=a’. Here 2z is the tangent at
the one real point of inflexion which the curve must have:
z 18 the line joining the point of inflexion to the double point,
and 2’ +7* are the tangents at the double point, the upper sign
belonging to the case of the acnodal, and the lower to that of
the crunodal cubic. The coordinates then of any point on the
curve may be taken proportional to (1+6"), 6(1+6*), 1. If
we substitute these values in the equation of an arbitrary
line Az + uy + vz =0, we get, in order to determine the pard-
meters of the points where this line meets the cubic,

AN+ v) +ubf £+ 00+ ub =0,
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and these parameters are connected by the relation
olo"+ 0”0" + o’"o’=i 1.

If the line touch at a point of inflexion ' =6"=6", and there-
fore #=1+1. Hence, an acnodal cubic has three real points of
wnflexion, and a crunodal cubic one real and two tmaginary.

The equation of the line joining two points will be found
to be

(+66+0*+1)z—-(0+60)y=+(1+6) (11672,
and therefore the equation of a tangent is
- {86 1)z-20y=1 (1162,

whence we see that if four tangents meet in a point, the sum of
the corresponding parameters vanishes, and if two of the points.
be given, we can at once form the quadratic which determines
the parameters of the other two. There is no difficulty in
applying this method to examples. At p. 104 we have noticed

.the crunodal cubic, whose polar equation is p* costw =m§, and

whose rectangular equation is 27 (¢* + y*) m = (4m — z)*; a curve
having three points of inflexion at infinity, one real, and the
others being the two circular points. The node is on the axis
of z at the point & =— 8m.

216. When a nodal cubic has three real points of infleccion, the
conjugate point 13 the pole of the line joining these three points,
with regard to the triangle formed by the three tangents. Let
the equation of a cubic be

(x+y+2)=mxyz;
then, if this has a double point, its coordinates must satisfy the
equations got by differentiation, viz.
3 (z + y + 2)' = myz = mex = mxy.
From these equations we get =y =2z, which (Art. 165) proves
the theorem enunciated, and we then have ‘for the nodal cubic
=27 ; and the equation of the curve may be written in the form

w’"+;1/i+zi=0.

In this case the coordinates of any point on the curve mdy be
taken proportional to 6 (1 —6)°, —1, and the equation of the
corresponding tangent is (1 — 6)’z+ &y + 6* (1—-6)*z=0.
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SECT. V.—INVARIANTS AND COVARIANTS OF CUBICS.

217. The equation of a non-singular cubic can always be

reduced to the canonical form
2+’ + 2 + 6mayz=0.

In this form z, y, z contain each implicitly three constants;
and these, together with the one expressed constant, make up
ten, the number of constants, which, according to the test of
Art. 24, a form must contain if it be general enough to represent
any cubic. We shall presently shew how the equation of any
cubic can be reduced to the form jnst given. We may write it
(2 +y - 2m2) (o + o'y —2mz2) (0'z+wy — 2me) + (1 + 8m*)2*=0,
where o is an imaginary cube root of unity. In this form it
is apparent that the line 2 joins three points of inflexion, and
the same thing is proved in like manner for the lines  and ¥.
Hence these three lines constitute one of the four systems of
three lines which we saw (Art. 174) can be drawn through.
the nine points of inflexion; and we can foresee that the
problem to reduce the equation of any cubic to the canonical
form admits of four solutions.

The form here given is that which we shall generally use
in our investigations concerning cubics; but it is necessary

first to obtain the invariants for the equation in its general.
form, which we write

*az’ + by’ + ¢z’ + a2’y + a2+ 3by'x + 3by'z
: + 8¢,2'z + 302"y + 6mayz =0.

* In Prof. Cayley’s Memoirs the coefficients of the terms g2z, 2%z, 2%y, y2?, 2a%, zy?,
are written respectively f; g, &, ¢,/, #. In modern German Memoirs the variables are
usually denoted by ), z,, ;, and the coefficients in question are written dpm;, @asy G112
Bzs3 311y Gz The first notation has greatly the advantage in compactness; the
advantage of the second is that each coefficient shews on the face of it to which
term it belongs. In formule which we have much occasion to work with, the use
of suffixes is less convenient than a notation in which each coefficient is denoted by
o single character; but since the general equation of the cubic is only used in the
articles immediately following, and there chiefly for purposes of reference, I have
thought the second advantage to be that which in this instance it was most important
tosecure. The notation used in the text agrees with the German, replacing ay,, Gap
83 bY 0, b, c; respectively. On the same principle the coefficients of z? g?, 2% might
be written a,, b, ¢, and Were so written in the former edition. I now omit the
sl}ﬁ:xojs In the case of these three coefficients, not only for brevity but also to
diminish the risk of confounding any of them with one of the group of six coeflicients.
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218. We form now first the equation of the Hessian. The
second differential coefficients of the cubic, omitting the factor
6 common to all, are

a=ar+ay+az; f=mo+by+ce;
b=bz+by+bz; g=ax+my+cz;
e=cx+cy+cz; h=ax+dy+me.
Forming then H=abc+ 2fgh - af* — bg* — ck*,
H is a cubic the coefficients of which are respectively,
a =abgc, —am'+2maga, - ba’—ca’

173
b =da.c, — bm*+ 2mbpd, —ab,’'—c}?,
¢ =capb, —cm* + 2mee, —ae’ — bt
8a, = abc, — 2amb, + ab,c, - ba,’ + m*a, - bc,a, + 2a0b, — ca’,
8a, = ach, —2ame, + abe, — cal + m'a,— b,ca, + 2a,a,c, - bat,
8b, =bac, —2bma, + bac, — ab,’ + m'b, —c,ab, +2bb,a,— cb?,
8b, = bea, — 2bmnc, + ba,c, — cb* + m'b, — cab, +2bb,c, —ab,’,
3c, = cab, — 2cma, + cab, — ac}! + m'c, — ab,c, + 2cca, - b,
3¢, =cba, — 2cmb, + cab, - be + m'c, —abe, + 2¢,0h, —ac’,
6m = abc — (ab,c, + be,a, + cad,) + 2m" — 2m (bc, + ca, + ab,)
+3 (ab,e, +abc,).
As a particular case of the preceding, the Hessian of
L+yP+2+bmaxyz=01i8 —m* (*+ 3"+ 2°) + (1 + 2m") zyz = 0.

219. We are also able to form the equation of the Cay-
leyan. This contravariant expresses the condition that the line
az + By + vz shall be cut in involution by the system of conics
U, U, U, where

U=aa'+ by +cz2' +2myz + 2a2x + 202y,
U,=a2'+by'+c2"+2byz + 2mzx + 2b.zy,
U,=aga"+ by +c 2" +2cyz + 2¢,2z + 2mxy.
The method of forming this contravariant is given Conics,
Art. 388a; and the result is there given in terms of the coeffi-
cients of the three conics. Applying the formule to the present
example we find -
P=Ad*+ BB+ Cy* +34,0'8+ 34,8y + 3B Sa+ 8BSy
. L +309%a+ 30,78 +6MaSy,
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where
A =bem - bee, ~ cbb, —mbge, + b’ +0b),
B=cam - caa,— acc, —mayc, +agc’+cal,
C=abm—abb, - baa, —mba,+ba’+apd’
34,=- bea,—cmb +be*+2cab,+2mc,— 3mbc + c,ab+bco—~2ac’,

283 1178
84,=—bea,~bme 4 cb'+2bac A+ 2m*b~ 3med +b,act b e b~2ab,
3B, =~ cab—cma tac +2cab +2m'c,—3mac,+cabtacc—2bet,
3B,=—cab,—amc+ca,'+2abc +2m’a,~3me,atadc taca,~2ba,
3C,=-abc,~bma,+ab,'+2bac+2m'b ~3ma b +bactabb,—2ch’,
8 C,=—abc,—amb,+ba,'+2ab,c,+2m’a~3mapd +ab c+aab—2ca’,
6M = abc — (ab,e, + be,a, + cab,) — 4m®* + 4m (b.c, + ca, +a,b,)

=3 (apbe, +abe,)
In particular, the Cayleyan of 2* + 3* + 2° + 6mayz is

m(a®+ B +9°) + (1 — 4m*) aBy=0.

220. If in the contravariant just found we substitute for
a, B, 7y, symbols of differentiation with respect to z, y, z respec-
tively, and then operate on the given cubic U, the result will
be an invariant (Higher Algebra, Art. 135).

This invariant, which we denote by &, is of the fourth degree
in the coefficients, and is

8= abem — (bea,a, + cab b, + abe,c,) — m (abye, + be,a, + cad))
+ (abxc:'*'aclba"*' baecl""bcna:'" Cbaa:'*' oaab 1’) -m‘+2m’(b,cl+c,a,+ a,b,)
_3m(asbscl+aablcu)- (bl’c:'l'c:as""a:b:) + <csaaasba+ azbabxcl"'bxcncsas) .
It amounts to the same thing to say that the equation of the
Cayleyan may be written
d d d d d d
s & 3 7 Bt 2 —_ 20, 2,
(¢ Z+8 B+7 + o8 =t Tt P g
d ., d ..d d
+Ba g0 gk '8 g ay 7n) 8=o0.

We have explained, Higher Algebra, p. 131, the symbolical
method by which Aronhold originally obtained this invariant
8; its symbolical notation being (123) (234) (341) (412), that of
its evectant, the Cayleyan, being (123)(a23)(a31) («12). For
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the canonical form § is m —m‘, and since S vanishes when
m=0; that is to say, when the cquation is of the form
2 +3y +2°=0, it follows that S vanishes when the equation
can be reduced to the sum of three cubes.

221. When we have a quantic U= ax"+ by" + ¢z + &c., and
a covariant V of the same degree az” + by" + cz" + &c., then if
we have any invariant of U, and if we form the corresponding
invariant of U+ AV, the coefficients of the several powers of
M will obviously be invariants. 'We learn hence that, in the
case supposed, from any invariant of U we can form a new in-

variant by performing on it the operation a (%1 +b %-l- cd%+ &e.

Applying this principle to the cubic and its Hessian we can
from the invariant S derive a new invariant 7' of the sixth order
in the coefficients; or, what amounts to the same thing, we can
obtain 7' by writing differential symbols for a, B, v in the equa-
tion of the Cayleyan, and then operating on the equation of the

Hessian. "We thus find for 7' the value

a'b’c’ - 6abe(ab,c,+ be,a,+cad,) — 20abem® + 12abem(b,c +c,a .+ ab,)
+ Babe (ab,c, +ab,c.)+ 4 (abe +a'ch +blea+bac, + cab*+c'ba,)
+ 36m" (bea,a, + cab,b, + abe,c,)

- 24m (bch,a? + bec,a + cach® + caad,’ + abagc.’ + abbe.’)

- 3(a';c,'+b% "aS'+ ca,’b,") + 18 (beb c,a,0,+caca b, + abab,c,c,)
— 12 (bec,a,a,*+ bebaa’ + cachd,+ caah b’ + abac.c’ + abbcc’)
—12m°® (abc, + be,a, + cab,)

+12m* (ab e} + ach,’ + bac’ + bea,’ +cha. + cad’)

— 60m (abb,c.c, + be,caa, + caahb b))

+ 12m (aad,c.’ + aa e b} + bbea,’ + bbac’ + cciab +cchal)

+ 6 (abc, + be,a, + cab,) (abc, +abc,)

+24 (ab b, + ace,’b* + beelal + baa'c! + caal’b + cb b a,
—12(aapb,c’+ aaed’ +bbea’ +bbac’ +ccab’ +ceha’)

— 8m®+ 24m* (b,c, + c,a, + ab,) — 36m® (ab,c, +abc,)

—12m* (be,ca, + c,a,a,b, + abbe) - 24m® (b} + ¢’ + a,'b )

+ 36m (a’bacl + aablcﬂ) (blcl + caas + asbs) + 8 (bls"la + clsa: + aasbsa») .
—27(a, b+ ab%c,’) — 6b.c,caab, '

—12(d % c,a, -blc ab,+clalab,+clabe,+a,''bc,+a'blca).
BB
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For the canonical form this invariant reduces to 1 — 20m® —8m".
Its symbolical form is (123)(124) (235) (316) (456)'. We can

derive from the invariant 7' an evectant a* %hﬁ’ %1 + &e.=0,

the coefficients of which it is needless to write at length. For
the canonical form, this contravariant, which we denote by @, is
(1=10m") (@® + B + ") — (30m" + 24m°) aBy =0.

Every invariant of the. cubic can be expressed as a rational
fanction of 8 and 7. This can be proved in the same way as
the corresponding theorem is proved (Higher Algebra, Art. 202)
for a binary quartic; there being much resemblance between
the theory of the binary quartic and that of the ternary cubic.

222. The method of finding the equation of the reciprocal
of a cubic has been explained Art. 91. We give the result
for the general equation, only writing at length however those
terms the form of which is really distinct. The other coefficients
may be obtained from those we give by symmetrical inter-
change of letters.

o’ {b%c" — 6beb.c, + 4bc.’ + 4ch® — 3b%c*},

60°B {— bc'd, + 2beme, + beb,c, — 4meb,;’ + 3ce,b b, — 2be,c,*

+ 2mbac: + bs’cxcs - 2bxc':})

3a'B* {2bc’a, — 4mbec, + 3¢'b* — 2beca, + 16m’ch, — 12mceb,c,
+ 4bc’c, + 4cab’ — 6cabc, - 6cbb,e, — 4m’e,! —8mbg,c,
=b'c—2apc’+4ac’+ 12b,cc’},

6a'Bry {be (— 4m® + 5b,c, — 2ab, — 2c,a.) +b (2me,c, + 4ae.? — 8bc,?)
+c¢ (2mb,b, +4ad,’ — 3¢,h”) - 8mbc, + 10m (ble, + ¢,',)
—2a,0b.}—2ab.c} - 110bcc,},

20°B° {— abc* — 9¢c’ab, + 8bec,a, + 3ach,c, — 2ac,’ — 2be,® — 16em®
+cm (18bc, + 18c,a,— 24a.b) + 9¢ (ab,c, + ad,c,) + 12m*c,c,
+6m (ac,’ + bc’) + 6adec, — 18 .c’c, — 18a.c,c,'},

6a® Yy {abccg + Gbcmaa - 460%01 = 2‘wbs2 + absc: + 2mbclu - Sbecga

1727
+ 4em’b, — 10cma.b, + 2cb,ab, — 6ch,’c, + caeh, + 8m’,
= 16m'b,c, + 12mapbc, — 8ma,c,’ — 2mb,c.c, — 4ab’c,
+10bbe’ +13ape.c,— 11ab,c.’},

2787172
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6a’By* {—4abem + (bea,a,+cab b, +abe,c,)— 8m (ab,c, + be,a, + cab,)

+5 (abe,’ +ach,’ +bea,’+ bagc + cha,’ +cabd,’)

—8m* +4m® (be, + ca,+apb,) + 18m (abc, +ab.c,)

+4 (% +ctal+ a5 — 19 (beca, +caab,+abbe)l
The contravariant just formed is the second evectant of T': that
is to say, the equation of the reciprocal may be written

gl e d D D
(s wtF gt o toBg tdv g +Br g

d d . .od dv,,
+B’a3‘:+q’a%‘+vﬁd—;’+aﬁ'v%) T=o.

It has been mentioned, Art. 91, that the equation for the
canonical form is

o'+ B+ - (2 4 32m°) (B’ + %’ + o’B")
- 24m'aBy (&’ + B° + o) — (24m + 48m*) a*B%* = 0.

223. The invariants of a cubic may also be calculated by
means of the differential equations which invariants must satisfy
(Higher Algebra, Art. 140). For this purpose it is convenient
to arrange the equation according to one of the variables, and
to write it
122+ 8 (agx +a,y) 2* +3 (b’ + 2bxy + by') 2

+ (c2® + 3¢c,@’y + Bcxy’ + cy”)=0.
If we desire then to form an invariant of any given order and
weight, the literal part may be written down without calcula-
tion. For instance, we can foresee that S is of the form

r (¢%) + (¢'a") + (cba) + (9,

where by (¢'b) we mean a function of the second degree in the
¢, and of the first in the & coefficients; and we know also that
it must be an invariant of that order of b2+ &e., ¢’ + &e.,
considered as a binary quadratic and cubic. The theory, there-
fore, of binary quantics enables us to foresee the form of this

term. Similarly for the others. And the invariant must
further satisfy the differential equation

d d d d d d
rd;;+ (2a°%°+a,d—b—1) 4 (3b°3¢?‘,+2b'd_c,+b’d7 = 0.
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In this way we find S to be
- r (cB) + (c’a®) + (cb’a) - (3")",
where (c'b) = (c,c, —¢,5) b, — (c,c,—¢,e) b, + (cc,— 6.0 b,
(c’a’) = (coc: - 01!) a1’ - (cocl - clcs) aa,+ (clca - 0:) a:? .
(cb'a)=acht—{ca,+3ca)bb + (ac,+ac,) (20, +b0,)
=85, b, — (a,c,+3agc,) bb, +achyy
In like manner 7' is
(c*) —6r(c®ba)+ 4 (c’a’) +4r (%) - 3(c'a”)— 12 (") (cb®a) + 8 (B°)',
where {c') =¢'e, + 4¢c,6,” +4c,6” — 3¢, 'c.} — bee,cc,
(cba) =a, (cc,' +2¢,’ - Be,c0,)
+ (albo + 2aobx) (2cscl’ - clcs' - cocscs)
+ (aobe + 2a1b1) (2600: - cscl’ - cocica)
+abd, (c,c’+2¢’—3ccec,),
(¢’ =a;’ (c,e" + 26, — 3ecc,)
+ 3a’a, (2¢,c* —c0.' — cec,
+ 3aa,” (2¢c —cc'—ceoc)
+a.°(c,et +2¢2 - 3e,c,c,),
(c0°)—-3(b")(c"0)'=c,'B,’ — 6c,c,b,b." + 6e,c,b, (26,7 - b.b,)
+ ¢,c, (65,0,0,— 8b°) + 9¢,"b b, — 18¢,c,0,5.b,
+ 6¢,c,, (20," — b,,) + 9¢,°b,"b,— 6c,c,0,0." + ¢, D%,
(cV’a®)=c b a —2¢c, (b)a,a,+ 2bD,0)
—2¢., (b0’ +2b%— 100,00 +4b'a’)
+ 2c,c, (4b,0,0,° + 4b b0’ — 60, a0, — 3b b aa,)
+¢," (80%a’ +9b’a’— 12bbaa +4b b0 ")
+ 2¢,c, (b b,a,a, +2b aa, ~ 6bba’—6bb,a)
—2¢c.c,(bb,a, +2b’a’— 105 b .aa, + 4b'a’)
+¢,' (8b%a + 95 a* — 12b b a0, + 4bDa’
- 20303 (bogaoal + 2bobla02) + c82b0’a0"
or, we may write,
(") = (cba)f + 4 () (5) - 8 (69) (a'),
where (cba) = csaobo —C (albo + 2aobl) +¢ (aobs + 2a1b1) - coaxbs
(a’t) =ba,’ - 2b,aa, +b,a"
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224. If the curve have a double point, this point may be made
the origin; when we shall have r, a, a, all =0; 8 reduces to
—(2")" and T to 8(8%)°; or, in the notation of Art. 217, § reduces to
— (ab,—m")* and T to 8 (a,p,—m")". We see then that 7™+ 648"
vanishes when the curve has a double point. This, therefore, is
the discriminant, as will afterwards be proved in other ways.
If the curve have a cusp (3*) vanishes, and therefore so do
both S and 7. For the canonical form, the discriminant
T + 648° = (1 + 8m’)".

225. In the articles next following we use the canonical
form. It has been proved, Art. 218, that the equation of the
Hessian of 2’ +3°+2°+ 6mayz=0 is of the same form with
a different value of m, and hence that the system of three lines
ayz passes through the intersection of the curve and its Hessian,
as was otherwise shown, Art. 217. It appears also that the
equation of the Hessian of the Hessian, is also of the same
form, and hence that the points of inflexion of a cubic are
inflexions also on its Hessian, as was otherwise proved, Art. 173.
Any equation of the form a«(z’+3°+2%)+ Bxyz =0 can obvi-
ously be reduced to the form AU+ uH=0. In fact we have
P+y*+2°+bmayz=U, -m'(2"+y*+2°)+ (1+2m") ayz=H.
Solving, (1+8m®)(2*+3*+2*)=(1+2m’) U—-6mH,

(1+8m°)xyz=m*U+ H;
whence (1 +8m*) A =a (1 + 2m®) + Bm*, (1+8m®) p=— 6ma+ B,

Let us now form the equation of the Hessian of AU+ 6uH ]

that is to say, of

(A—6um") (2 + 3°+ 2°) + 6 (AN + u (1 + 2m°)} Yz =0,
tnd the result is ‘
= (A= 6um®) (Mm + p (1 +2m°)}* (2° + 5° + 2°)

+ ({0 — 6 + 2 (o + o (1+ 29} g = 0,
and by what has been just proved this is of the form
MU+ w'H=0, whence
(1+48m%) N =— (1 + 2m%) (A — 6pm®) (A + o1 (1 + 200 }?

+m* [(M — 6pm®)* +2 {(Am + p (1 4 2m%)}],
(A +8m") p'= 6m (A — 6pum’) {(Mm + p (1 + 2m”)}*
+  [(A=6um")’+ 2 (A + u (1+2m%))°].
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Expanding, and remembering that we have
S8=m—-m', T'=1-20m’- 8m’,

these values may be written

N=—28Nu— Taut+88%° u'=N+1280" +2Tp"
The values of A' and p' being expressed in terms of the in-
variants, the expressions just given will hold good, no matter
how the equation be transformed, and therefore the Hessian
of AU +6uH, where U and H have the general values of
Arts. 217,218 is A’ U+ p'H, N’ and p' having the values just given.*

Thus when A': p' is given, we have a cubic to determine
the ratio A : u; that is to say, there are, as has been already
stated, three cabics which have a given cubic as their Hessian.

Since, as a particular case of the foregoing, the second
Hessian

H(HU)=88'U+2TH,

it follows that T'=0 expresses the condition that the second
Hessian shall be the original curve. If S=0; that is to say,
(Art. 220) if the equation is reducible to the sum of three
cubes, the Hessian coincides with its own Hessian, and there-
fore consists of three right lines, as the next article will show.

226. The Hessian meets a curve in the points of inflexion;
that is to say, in the places where three consecutive points of
the curve are on a right line. If, then, the curve be not a
proper curve, but a complex, including a right line as part of
it, every point on that line is a point on the Hessian; and
therefore when the curve consists of three right lines, these lines
constitute the Hessian. This may be verified by forming the
Hessian of zyz=0. Thus, then, the system of conditions that
the general equation shall represent three right lines is written
down by expressing that the coefficients in the equation of
the Hessian (Art. 218) are proportional to the corresponding
coefficients in the equation of the cubic, viz.

a_ b ¢ a a b b ¢

—_—me=mme=m st el = =2

e b ¢ a a b b ¢ c¢ m’

* This was proved by direct calculation in the former edition, and it was thus
that the values of S and T were there obtained,
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a system of forty-five equations, on the face of them equivalent
to nine, but which can be really equivalent only to three in-
dependent equations. For (Conics, Art. 78) only three con-
ditions are necessary in order that an equation of the third
degree, containing nine independent constants, should represent
a system of three lines involving only six constants. It may
be verified, by means of the values (Art. 218) of a, b, &c., that
the forty-five equations actually are equivalent to three, as has
been stated.

227. The Hessian of AU+ 6pH being N'U+ u'H, the former

r

" will represent three right lines if GT”' = ;—:,; which, introducing

the values (Art. 225) for N, ', gives us the equation

A+ 248N + 8TAp® — 488%u* = 0.
This being a biquadratic, we see that, as has been already more
than once stated, four systems of three right lines can be drawn
through the intersections of U and H. This biquadratic, solved

by the ordinary methods (see Todhunter’s Theory of Equations,
Chap. x111.), gives

T =)+ +VR),

where ¢, ¢, ¢, are the roots of the equation
41286 + 485 ~T"=0, or (t+48)°=T"+64S"

Thus, then, being given the equation of any cubic, we can form
the equation of its Hessian (Art. 218), and calculate the values
ot the invariants S and 7' (Arts. 220, 221). The present article
then shows how we can form an equation AU+ 6uH =0, which
shall be resolvable into three linear factors. By solving a
cubic equation we can find these factors X, ¥, Z. And then
comparing the given equation with the form

aX*+bY*+ cZ°+ 6mXYZ=0,
we can determine a, ), ¢, m, by equations of the first degree.

In this way the reduction of the cquation of any non-singular
cubic to the canonical form can be cffected.

228. Of the four tangents which can be drawn from any
point of a cubic to the curve, two can coincide only when the
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curve has a double point, since a cubic has no double tangents.
The cquation of the four tangents is (Art. 78) A*=4A"U, where
if U=2"+ 3"+ 2°+ 6mayz,
A =3{z' (2" + 2myz) +y' (y' + 2mzz) +2'(2* + 2may)),
A'=3{z (" +2my'2)+y (y* + 2m2'?) + z (2" + 2mz'y')}.
Making z=0 in A*=4A'U, we get the quartic, which determines
the four points in which the tangents meet the line z, viz.
3 (@2'+yy"+ 2me'xy) =4 (2" +3) (& (&” +2my'2") + y (y"+2mz2'z)},
or (z”+8my'z") x' + 4 (y* — mz'x) 2’y
— 6('y’ +2m'2") 2%y + 4 (2" — my'?) 2y’ + (y* + 8m2'z’) y* =0.
From what has been said it appears that the discriminant of
this quartic must contain as a factor the discriminant of the
cubic. Now, remembering that z® +y* + 2" + 6ma'y'z’ =0, we
find for the invariants s and ¢ of the quartic
8§=12 (m' — m) 2" = —122"8,
t=—(1—20m"- 8m®) 2" =—2"T.
Hence the discriminant of the quartic, 27¢'5°, is 272" ( 77+ 6457);

and it is easy thence to sce that the discriminant of the cubic is
T*+648°

229. The anharmonic function of the four points determined
by the quartic of the last article evidently is the same as the
anharmonic function of the pencil of four tangents. Now if the
roots be a, B, v, 8, the anharmonic function of these roots is
any one of the mutual ratios of the quantities (a —B) (y—8),
(a=v)(B=38), (a-8)(B-—7). We can form by the method
of symmetric functions the equation which determines these
quantitics ; and if the coefficients of the quartic be a, 45, 6,
4d, e, we find @’y’—12asy+16 4/(s"—27¢*)=0. The mutoal
ratios of the roots arc not altercd if we increase them all in the
same proportion, by substituting, say ay=2zs}, when we see
that the anharmonic ratios aro the mutual ratios of the roots of

o7/ T
3 2 —_ ) = 3_. R
z—3~+2,\/(1 83) 0, or z 3z+2«/(1+64ss).

"Thus, then, the anharmonic function depends solely on the ratio
T%: 8% and is independent of the point whence the tangents
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are drawn (Art. 167). If T'=0, the equation just given reduces
to 2z°— 32 + 2 =0, of which two roots are equal ; one, therefore, of
the ratios becomes unity, and the anharmonic becomes an
ordinary harmonic ratio.

230. By the help of the canonical form can be formed, as
in Art. 225, the invariants S and 7 of AU+ 6uH, or of

(A — 6um®)(2® + ¥+ 2°) + 6 {mA + u (1 + 2m”)} wyz,
and we find, without difficulty,
8 AU+ 6pH)= 8\ + T\'u—248"Np* -4 STAp*—( T +488%) ',
T(AU+6pH)=T\ - 965\u — 608T\'u* — 20 T°\'p’
+2408* TA\'u' — 48 (ST + 96.8*) Ay’ — 8 (128°T4- T°) p°.
And if, by the help of these, we form the discriminant B or
I™ + 64.8°) we find
R(ZU+6uH)=R (N + 248N + 8TAu" - 488°w")°,

where the factor multiplying R is the cube of the quartic function
of A, p, in Art. 227; as might have been foreseen, since if the
cubic U have not a double point, the only cubics with double
points which can be drawn through the points of inflexion are
the four systems of right lines. The values just given for the
Sand Tof A\U+6uH are covariants of this quartic function
of A, p; differing only by the numerical factors 4 and 2 respec-
tively from the Hessian, and the covariant called J, (Higher
Algebra, Art. 206) ; and the coefficients of U and H, in the value
of HAWU+ 6uH), differ only by numerical factors from the
differentials of the same quartic with respect to A and u.

All covariant cubics can be expressed in the form AU+ uH;
as is illustrated by the following examples:

Ex. 1. If a, b, ¢, &c., denote the second differential coefficients, and 4, B, &c.,
denote bc — f?, &c., as at p. 153, and if o', ¥, A’, B’, &c., denote the corresponding
quantities for the Hessian ; then

Aad' + BV + Cc' + 2Ff" + 2Gg' + 2[TK' =0

is a covariant cubic. We use the values

a=gz, f=mx; A=yz—m=? F=mlyz—ma?

b=y, g=my; B=zz—m¥? G=m%z —my,

c=z h=mz; C=ay—m%2? H=mzy—ms?,
a'=—6m?z, f'=(14+2m%)z; A'=36m'yz — (1+2m?)2 2% F'=(1+2m?)2yz+ 6m*(1+2m?)2?,
¥ =—6m%, ¢'=(1+2m%y; B =30mizz—(1+2m*)2y?, G'=(1+2m%)3zz + 6m3(1+2m3) 42,
£ =-6m%, I'=(14+2m%z; C'=80mizy—(142m*)*22, H'=(1+2m®xy+6m?(1+2m3) 23,

cC
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Hence the covariant in question is found to be — 28U, It might have been
foreseen that it could only differ by a numerical factor from SU;, for it is a covariant
of the fifth degree in the coefficients; and, therefore, if it be of the form aU + bH,
a must be of the fourth, and 4 of the second degree in the coefficients ; but there is
no invariant of the second degree, and S is the only one of the fourth,

Ex, 2, Calculate in like manner the covariant
Ad'a+ Bb4 C'c+2F'f+2G'g + 2H'h, A4ns. — TU + 128H,

231. The order in the variables of any covariant of a cubic
is a multiple of three; and, generally, if the order of any ternary
quantic is a multiple of three, so is that of every covariant.
This appears at once from the symbolical method explained,
Higher Algebra, Chap. X1v., for every symbol (128) diminishes
by three the order of the function on which it operates, and
in the symbolical method the order of the function operated on
is a multiple of that of the given quantic.

It is easy to see that the equation of every cubic covariant
to 2*+3°+ 2°+ 6mayz =0, is of the form a (2’ + 3°+2°) + Bxyz = 0,
which, as we have seen, is reducible to the form AU+ pH=0.
In order however to express covariants of higher order, it is
necessary to have a third fundamental covariant. That which
we select may be defined as follows: consider the polar conic of
a point, az’ + &c., and the polar conic of the same point with
regard to the Hessian a'z® + &c. ; then there is (Conics, Art. 378)
a conic covariant to these two, viz.

(BC'+ B'C—2FF")2* + &c. =0;

and the condition that this conic passes through the original
point gives a covariant of the cubic. Since B, C, &c. contain
the variables each in the second degree, this covariant is of the
sixth degree in these variables; and since B, C are of the
second, and B’, C' of the sixth degree in the coefficients, it is
of the eighth order in the coefficients. The actual value of this
covariant for the general equation has not been calculated, but
using the values for 4, B, &c. given in the last article, we
find that for the canonical form the covariant is 4@ where O is

3m® (14 2m°) (2 + 3° + 2°)* = m (1 — 20m° - 8m°) (2 + 3* + 2°) zyz
—3m* (1 —20m° — 8m°) 2"y"2" — (1 + 8m°)* (y°2° + 2°2° + "),

or m*(2+ ) U*—m (14 2m’) UIl
+3m*H® — (14 8m’)* (y°2° + 2°2° + °).
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There are two other covariants of the same order in the variables
and in the coefficients as ©, which had cqual claims to be
selected as the fundamental covariant of the sixth order. The
first represents the locus of a point whose polar line with regard
to the Hessian touches the polar conic of the same point with
regard to the cubic; or

AL"+ BM*+CN"+2FM'N'+ 2GN'L' + 2HL'M',

where L', M', N', arc the differential coefficients of the Hessian.
This covariant is expressed at once in terms of ©, by the help
of the formula (Conics, Art. 381, Ex. 1) 68'— F. We are
here to write for ©, - 28U; for 8', 6H; for F, 46 ; and thus the
covariant is found to be —4 (6 + 3SUH). In like manner there
is a covariant which represents the locus of a point, whose
polar with respect to the cubic touches the polar conmic of the
same point with regard to the Hessian, or

AL+ B'M*+C'N*+2F'MN+2G'NL +2H'LM=0.
Calculating this by the formula 6’8 — F ( Conics, Art. 381), and
writing for o', - TU+128H; for 8, U; and for F, 4o, the
covariant in question becomes

~(TU*- 128UH + 46).

232. Every covariant of 2 +y° + 2° + 6mayz will plainly be
a symmetric function of z, y, 2, and therefore capable of being
expressed in terms of 2°+3°+ 2°) wxyz, y’2° +2°2° + 2%°; and
therefore in terms of U, H, 6, together with the invariants.
But a covariant is not necessarily a rational function of U,
H, 6. In fact, we can, as at Higher Algebra, Art. 223, form
a covariant of which the square, but not the covariant itself,
is a rational function of these quantities. Let the coefficients
of the cubic

0= (148 (&4 '+ %) °

+ (1 +8m’) (32’ + 2’2" + 2°%°) p ~ (1 4+ 8m°)* &’y’2" = 0,
be p, ¢, r; then, by the theory of cubic equations, if J be
(1 +8m°) (3° - 2°) (¢° — &”) (2* — %), we have

J*=p'¢* + 18pqr — 27r* — 4¢° — 4rp’.
But p, ¢, » are each immediately expressible in terms of
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U, H, o, and substituting their values in the equation just
written, it becomes

J*=146'+TU’6*
+6 (—48*U* +28TUH- 128°UH* — 18 TUH® + 108 SH")
~168'U°H-118*TUH* - 4T*U°H® + 54STUH*
—4328°UH*-21TH".
The identity just given may be written in the form
40 (0+AU") 0+ uU") ="+ HD,

from which it appears that the system © (6 +AU?) (6 + u U”) is
touched by 77, that is to say, H either touches each of the curves
represented by the three factors, or passes through the inter-
sections of every two. But @, U and H have no point common
to all three, therefore © must be touched by H. The curve J
which passes through the points of contact consists of the
harmonic polars of the nine points of inflection. We add an
example or two to illustrate the possibility of expressing
all other covariants in terms of U, H, ©.

Ex. 1. To obtain the equation of the nine inflexional tangents, It was shown
(Art. 217) that the inflexional tangents are U— (L+8m%) 2% U— (1 +8md) ¢,
U — (1 + 8m?) 28, Multiplying together these three factors, we have
T3 — (14 8m3) (2 + 5 +23) U? + (1 + 8md)? (52 + 2°2° + 2®) U — (1 + 8m3) ady’3 = 0.
Substituting for (1 + 8m?) (z° + y*+ 22), (1+8m3)? (4%2° + 2% + 2%°) and (1 + 8m?) ayz
their values previously given, we find, for the required equation of the nine tangents,

5800 — H* - U9 =0,
the form of the equation showing that I and ©, which have been proved to touch
~ each other, have the nine tangents for their common tangents,

Ex. 2. To find the equation of the Cayleyan in point coordinates. We have to
form the reciprocal of the tangential equation of the Cayleyan, viz, (Art, 219)
m (a®+ B2+ ¥%) + (1 — 4m%) afy = 0.
The reciprocal of this is formed by Art. 222, and the quantities = + g3 + 23, &c.
then expressed in terms of U, 7, ©, The resulting equation of the Cayleyan is
486 — TH? - 1682UH = 0,

233. In like manner every contravariant of the cubic can be
expressed in terms of three fundamental contravariants; and for
these three we may employ the three already mentioned, viz.
the evectants of S and T (Arts. 219, 221) which we have called
Pand @, in terms of which every contravariant cubic can be
expressed ; and the reciprocal F (Axt. 222). We can, as in
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Art. 230, form the invariants of AP+ x @, which for the canonical
form is

{mA+(1=10m°) p} (a4 B+ 9°) + {(1 —4m®) A= 6m*w (5+ 4m°) } &Sy,
and we find
S(AP+ pQ)=(1928°— T*) A + 7688*T\’u
+216 (387" — 648%) N*u* + 216 (T — 64 T8%) A’
—1296 (587" + 648°) u',
T(ZNP+pQ)=(T*+5768°T) \*+288 (58°T* - 1928*) M'u
+540 (387 — 3208 T ) Mu® + 540 (T — 4488° T%) M’
— 19440 (78°T° - 648°T ) N°p*
— 11664 (38T — 32.8* T + 2048 8") Ap®
~ 5832 (T° + 408° T + 25608°T') u°,
B (AP+uQ) = {83+ TN +726"N'u* + 1088 Thp"
+27(T* 168 u'}° B
and as in Art 230, the quartic and sextic functions of A, p.

which occur in the va.lues of S and T are the covariants of the
quartic function whose cube occurs in the value of R.

Again HAP+uQ)
={TN+ 1448"°N'p + 324 8T\p* + 108 (T - 168°) u°’} P
— {48\ + 3T\ 'u + 1448 \'u + 108 8T’} Q,

the quantities multiplying P and Q respectively being the differ-
entials with respect to u and A of the same quartic function.

234. In like manner we can form the P and @ of AU+ 6uH,
and we find

P (ANU+6pH)=NP+NuQ—128P\u’ + 4 (8Q - TP) i°,
QAU+ 6pH)=2"Q—608SP\u— 30 TP\u* — 10TQN W’
+120 (28*Q - STP) Mu' + 24 {STQ— (T* + 248°) P} u°
Now if we denote by s and ¢, the Sand 7 of AU+ 6uH,

as given Art. 230, these values differ only by the factors
3(T*+648°% and (7" + 648") respectively from

(488°P+ T'Q) d_h, + (3TP-4SQ) d7 )

o dt dt
(488*'P+ TQ) 7y + (3TP-.- 48Q) -d—p.
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So again forming the P and @ of AP+ uQ, the results are
P (AP+puQ)=2 (88°U~ TH) + 18\u (STU + 88*H)
+9au* {(T7- 328°) U+128TH} - 54p° (A8* TU~-(T"+ 328°%) H},
QAP+ pQ)=N (168*TU+ (T* +1928°) H}
+30M'u {S(T* - 648°) U+ 168" TH}
+ 153 (T(T* - 3208°) U+ 4887 H)
- 2700 {16 8* T* U~ T(T" - 648°) H}
—1620Mu* {ST°U+ 48* (1" - 648°) H}
— 3244 {(T*+ 24 T°8°+5128°) U~ 68T(T* +1285°) H},

and it we now write s and ¢ for the Sand 7' of AP+ u@Q, as
given Art. 233, these values differ only by factors from

\ de ds
(188" U+ 18TH) 32 +(TU-48H) 22,

and (188'U+ 18TH) £ 4 (70— 248m) &
d\ dp

To these formule may be added the reciprocal of AU+ 6uH,
which is .
(N + 24807 * + 8 TAu’ — 488°u*) - 24u (A° + 2 T') P*
= 24p* (M — 48p") PQ - 8M
and of AP+ u @, which is
4 {8 + TNu + 128"\ + 1088 T’ + 27 (1" — 168°) u'} ©
— (TN +21687'\'u* + 108 (1" — 64.8°) A’ — 3888 T'S**} H*
- {168\ + 828T N p + 18 T*\'u* + 2168 (T* + 328°) u'} UH
+ {64 8°N° 4+ 1448 TAu* + 108 ST Ap’ + 21 T(T* +168°%) u'} U™,

235. We next mention a useful identical equation. Ifina
cubic U we substitute z+ Az, y + Ay, 2+ A2’ for z, g, 3, let
the result be written

U+8M8+ NP+ MU'

that is to say, let S and P denote the polar conic and polar line

U

of 'y'z' with respect to U; or, for the canonical form, let
S=(z*+ 2myz)x’ + (4 + 2mex)y + (2 + 2may) 2,
P=(2*42my'?)x + (y* + 2mz'x) y + (¢* + 2ma'y’) 2.
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Similarly, let the result of a similar substitation in H be written
H+3\Z + 3N+ VH,,

that is to say, let = and IT denote the polar conic and polar line
of z'y'z’ with regard to the Hessian; then, by the help of the
canonical form, we can verify the following identical equation

3(80—2P)=H'U- HU

It follows hence, that when z'y'z’ is on the curve and therefore
U’ =0, the equation U= 0 may be written in the form

S -=P=0.

From this form the following conscquences immediately
follow :

(a) The lines P, IT intersect on the cubic: that is to say,
the tangential of the point zy'z’, or the point where the tangent
P meets the cubic again, is the intersection of P with IT the
polar of z'y'z’ with respect to the Hessian (see Art. 183).

(6) The points of contact of tangents from z'y'z’ to the
cubic, which are known to be the intersections of S with U, are
also the intersections of S with £ the polar conic of x'y'z’ with
respect to the Hessian.

(c) The equation SII—ZP=0, is that which would be
obtained by eliminating an indeterminate 6 between S+ 62 =0,
P+61=0. The first denotes a conic through the intersections
of §, =; the second denotes the polar of zy'z’ with regard to
the same conic. Hence the given cubic may be generated as
the locus of the points of contact of tangents from a point z'y'z’
to a system of conics passing through four fixed points.

(@) If S+6= denote two right lines, P+ 6I1 obviously
passes through the intersection of these lines: this intersection
is therefore a point on the cubic, and P+ 0I1 the tangent at it.
Hence the four points of contact of tangents to the cubic from
«'y'’z' form a quadrangle, the three centres of which are on the
cubic and are the points cotangential with ='y'z’ (see Art. 150).

236. I have used this identical equation (Phil. Trans, 1858,
P- 535) to form the cquation of the comic through five con-
secutive points on the cubic. Since &S touches the cubic, and
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P is the common tangent, the general equation of a conic
touching U at z'y's’ is 8—LP=0 where L=az+ By +9z is
an arbitrary right line. Now by means of the identity estab-
lished, the equation of the cubic may be written in the form
(8- LP)=P(=- L)
Hence, the four points where S — LP meets the cubic again are
its intersections with £— LIT; and if the latter conic pass
through «'y'z', the former will pass through three consecutive
“ponts on the cubic. But on substituting 2'y'z' for zyz, we
have 3'=I1'=H', and the condition that S — LIT should pass
through «'y'2' is L' =1.

Next, in order that S— LP may pass through four consecutive
points, = — LIT must have P for a tangent at the point z'y'2".
Now the tangent to =—LIT (being the polar of z'y’z' with
respect to this function) is

2l — L'M - LIT,
~ or (since L'=1, and I1'=H") is I1 — H'L, and since this is to be
proportional to P, we have L=0P+ % I

The general equation therefore of a conic through four
consecutive points is

§- 0P'~ i, PIT=0;
and S - 0PI~ 5, =0,

passes through the two points where the former conic meets the
cubic again ; the cquation of the cubic being reducible to the
form
e_ 1 - R
1 (8-0P - 5 P1)= P(=- 0PI- 75 TT").

237. Since these two conics have P for a common tangent,
it will be possible by adding the equations multiplied by suitable
constants to obtain a result divisible by P, and the quotient
will represent the line joining the points where the conic meets
the cubic again. It is necessary then to determine w, so that

8 +2— 75 T1* may be divisible by P, which we do by equating
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to nothing the discriminant of this quantity. Now this discrimi-

!

nant when calculated will be found to be p*H' + 4u’ % . This

«quantity therefore will be divisible into factors if }6=—§?:’

and since one of the factors is P, if we denote the other.by A,
we have

1 .
By the help of this equation, the equation of the cubic given at
the end of the last article is transformed to
1 _p* p 1
(1+uP) (862"~ 3. PR)=P {M- £ -0 +uP)}.
The form of the equation shews that IT+ uP is the tangent at

the tangential of the given point on the cubic, and that M — f—”[" n
passes through the second tangential of the given point (see
Axt. 155).

238. In order that the conic may pass through five con-
secutive points, the coordinates &', 3/, 2’ must satisfy the equation

Mm-En- =0.
14 T M-6(I1+uP)=0
The only difficulty is to determine the result of substituting the
.coordinates ', 3, 2’ in M. Now if we differentiate with regard
to z, y, or 2, the equation
pS+3 -~ Iii = MP,

and substitute &, 3/, 2’ for =, y, z in the result, observing that
as’ dP' d3 drr ,

@—2 T E=27z_" we have M'=2p, and hence the

result of substituting 'y'z’ for zyz in

M- 7’} -6 (+pP)=0,

is u—60H =0, and since pu has been found to be =—

H'ﬁ
, 1%
we have § = — %3, , and the problem is completely solved.

DD
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curve has a double point, since a cubic has no double tangents.
The equation of the four tangents is (Art. 78) A*=4A'U, where
if U=2"+3°+2°+ 6mayz,
A =3{a' (2" + 2myz) +y' (' + 2mzx)+2' (2 + 2may)},
A'=3{x (2*+2my'z)+y (y*+ 2mz'T) + z (2" + 2mz'y')}.
Making z=0 in A*=4A'U, we get the quartic, which determines
the four points in which the tangents meet the line 2, viz.
3 (@'2"+y'y" + 2m2'xy) =4 (2" + ) {z (x” +2my'2") + y (y*+2mz'z)},
or (z” +8my'zs") x' + 4 (y* — m2'z’) 2"y
— 6(zy +2m’2") a*y* + 4 (2" — my'") xy® + (y* + 8ma'z) y* =0,
From what has been said it appears that the discriminant of
this quartic must contain as a factor the discriminant of the
cubic. Now, remembering that 2® + 3™+ 2"” + 6ma'y'z' =0, we
find for the invariants s and ¢ of the quartic
§=12 (m* —m) 2" = — 1228,
=—(1—20m" - 8m®) 2" = —2"T.
Hence the discriminant of the quartic, 27¢'~ 5%, is 272" ( 17+ 648°) ==
and it is easy thence to see that the discriminant of the cubic i=s
T*+648°

229. The anharmonic function of the four points determined
by the quartic of the last article evidently is the same as the
anharmonic function of the pencil of four tangents. Now if the
roots be a, B, v, 8, the anharmonic function of these roots is
any one of the mutual ratios of the quantities (a —B) (y—38),
(=) (B-38), (a-8)(B—7). We can form by the method
of symmetric functions the equation which determines these
quantities ; and if the coefficients of the quartic be a, 45, 6
4d, e, we find a’y’— 12asy+16 4/(s*—27¢")=0. The mutoal
ratios of the roots arc not altered if we increase them all in the
same proportion, by substituting, say ay=2zs%, when we see
that the anharmonic ratios are the mutual ratios of the roots of

274 . ™
3 ” Rl s_ ¢ N
z_3.,+2«/(1 8,,) 0, or z 3z+2\/(1+64;8’)

"T'hus, then, the anharmonic function depends solely on the ratio
7% : §° and is independent of the point whence the tangents
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are drawn (Art. 167). If 7'=0, the equation just given reduces
to 2°— 32 4+ 2 =0, of which two roots are equal ; one, therefore, of

the ratios becomes unity, and the anharmonic becomes an
ordinary harmonic ratio.

230. By the help of the canonical form can be formed, as
in Art. 225, the invariants 8 and 7 of AU+ 6uH, or of

(A = 6um’) (@ + 3 +2°) + 6 {mA + o (1 + 2m°)} 2y
and we find, without difficulty,
B AU+ 6pH)=8\ + TAN'u— 248N -4 ST’ ~(T™ +485°) p',
T(AU+6uH)=T\ — 968"\ — 608T\'p* - 20T°N'y’
+2408* TA%* — 48 (ST + 96 8%) Mu® — 8 (128°T'H- T*) .
And if, by the help of these, we form the discriminant B or
T™ + 648° we find '
B(ANU+6pH)=R (M +24S\'u’ + 8TApu’ - 488°u")’,

where the factor multiplying R is the cube of the quartic function
of A, u, in Art. 227; as might have been foreseen, since if the
cubic U have not a double point, the only cubics with double
points which can be drawn through the points of inflexion are
the four systems of right lines. The values just given for the
Sand T of AU+ 6uH are covariants of this quartic function
of A, u ; differing only by the numerical factors 4 and 2 respec-
tively from the Hessian, and the covariant called o, (Higher
Algebra, Art. 206) ; and the coefficients of U and H, in the value
of HAU+ 6uH), differ only by numerical factors from the
differentials of the same quartic with respect to A and u.

All covariant cubics can be expressed ‘in the form AU+ uH;
as is illustrated by the following examples:

Ex, 1. If a, b, ¢, &c., denote the second differential coefficients, and 4, B, &c.,
denote bc —f?, &c., as at p. 153, and if o/, &', 4, B’, &c., denote the corresponding
quantities for the Hessian ; then

Ad' + BY + Cc' + 2Ff" + 2Gg' + 2HRK =0

i8 a covariant cubic. We use the values

a=2, f=mx; A=yz—m%? F=myz—mz?

b=y, g=my; B=zzx—-m¥%? G=m%zr—my’

c=2z h=mz; C=axy—m%? H=miy—-m
a'=—6m?%, f'=(14+2m%) x; A'=86m'yz —(14+2m3)?2? F'=(142m?)2yz+ 6m?(1+2m3) 22,
¥ =—6m?%, ¢'=(14+2mdy; B =36mizx—(1+2ms)?y? G'=(1+2m?)?2z + 6m?(1+2m3) 2,
£ ==6m?%, h'=(14+2m%z; C'=86mizy—(1+2m®)?2?% H'=(1+2m?2xy+6m?(1+2m3) 22,

ccC-
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There are two other covariants of the same order in the variables
and in the coefficients as ©, which had equal claims to be
selected as the fundamental covariant of the sixth order. The
first represents the locus of a point whose polar line with regard
to the Hessian touches the polar conic of the same point with
regard to the cubic; or
AL"+ BM*+ CN"+2FM'N' + 2GN'L' + 2HL'M',

where L', M'; N', are the differential coefficients of the Hessian,
This covariant is expressed at once in terms of ©, by the help
of the formula (Conics, Art. 381, Ex. 1) 68'— F. We are
here to write for ©, - 28U; for §', 6H; for F, 46 ; and thus the
covariant is found to be — 4 (6 + 3SUH). In like manner there
is a covariant which represents the locus of a point, whose
polar with respect to the cubic touches the polar conic of the
same point with regard to the Hessian, or

AL+ B'M*+C'N*+2F'MN+2G'NL 4+ 2H'LM =0.
Calculating this by the formula 'S — F (Conics, Art. 381), and
writing for ©', — TU+128H; for 8, U; and for F, 4o, the
covariant in question becomes

—(TU* - 128UH + 40).

232. Every covariant of 2* 4y’ + 2° + 6mayz will plainly be
a symmetric function of w, y, 2, and therefore capable of being
expressed in terms of a’+y°+ 2% wyz, 3’2’ +2°2° +2°; and
therefore in terms of U, H, ©, together with the invariants.
But a covariant is not necessarily a rational function of U,
H, 6. In fact, we can, as at Higher Algebra, Art. 223, form
a covariant of which the square, but not the covariant itself,
is a rational function of these quantities. Let the coefficients
of the cubic

p'= (1+8m’) (@' + 5 +2°) p*

+ (1 + 8m3)2 (yszs + z!lwﬂ + wSyS) P _ (1 + 8m3 8m3y3z3= O’
be p, g, r; then, by the theory of cubic equations, if J be
(1 + 8m°) (¢° — 2°) (2° — 2°) (2° — ), we have

S =p'¢* + 18pgr — 27r* — 4¢° ~ 4rp®.
But p, g, r are each immediately expressible in terms of
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CHAPTER VI

CURYES OF THE FOURTH ORDER.

243. Ir will be remembered that we have classified eurves
of the third order by combining a division founded on
characteristics unaltered by projection, with a division founded
on the nature of their infinite branches. The same principles
of classification are applicable to curves of the fourth order,
or, as we shall call them, quartics; but the number of
species is so great, and the labour of discussing their figures
8o enormous, that it seems useless to undertake the task of
an enmmeration. It will be sufficient here generally to direct
attention to the principal points that must be taken into
account in a complete enumeration. A quartic may be non-
singular having no multiple point; or it may have one,
two, or three double points, any or all of which may be
cusps. In this way we have ten genera, of which the
Pliickerian characteristics and the deficiency (Art. 32) are

m &8 x« m» T ¢ D

I. 4 0O 0 12 28 24 3
II. 4 1 0 10 16 18 2
111 4 0 1 9 10 16 2
IV. 4 2 0 8 8 12 1
V. 4 1 1 7 4 10 1
VI. 4 0 2 6 1 8 1
VII. 4 3 0 6 4 6 0
VIII. 4 2 1 5 2 4 0
IX. 4 1 2 4 1 2 0
X. 4 0 3 3 1 0o 0

viz. in each of the last four cases the curve is unicursal.
Every quartic curve whatever may be considered as coming
under one or other of these genera. But there are special forms,
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Art. 230, form the invariants of AP+ u Q, which for the canonical
form is

{mA+ (1 ~10m®) p} (a*+ B+ o) + {(1 = 4m®) A= 6m*w (54 4m°)} 0By,
and we find
S AP+ puQ)=(1928° — T*)\* + 7688* T\’
+216 (387" — 648%) N*u* + 216 (T — 64 T'S°) Ap°
— 1296 (58°T"* + 64.8°) p',
TP+ uQ)=(T°+5768°T) A° + 288 (58° T — 192.8°) N
+ 540 (387" — 3208 T") Mp® + 540 (T* — 448 8° 1) Ny’
— 19440 (78°T° - 648°T) Nu*
— 11664 (38T — 32.8* T* + 2048 87) A’
— 5832 (T° + 408”1"’ +25608°T) u’,
EA\P+uQ)= {Sx‘ o+ T28°N? 4 108 8TAu’-
+27(T*-168°) p'}° B*
and as in Art 230, the quartic and sextic functions of A, ,u,

which occur in the values of S and 7 are the covariants of the
quartic function whose cube occurs in the value of E.

Again HAP+ pQ)
={TN + 1448°N'p + 324 8T\p* + 108 (T — 16 8°) u'} P
— (48N° + 8T'N'p + 1448"\'u + 1088 Tw*} Q,

the quantities multiplying P and @ respectively being the differ-
entials with respect to 4 and A of the same quartic function.

234. In like manner we can form the Pand Q of AU+ 6uH,
and we find

P AU+ 6uH)=NP+Nu@Q—~128P\u* +4 (8Q - TP) i’
Q AU+ 6pH) =7 Q—608PNu — 30 TPNp? — 10 TQAu®
+120 28°Q - STP) Mu* + 24 {STQ — (T + 245°) P} .
Now if we denote by s and ¢, the Sand T of AU+ 6uk,

as given Art. 230, these values differ only by the factors
3(T"+648°) and (T’ + 648’3) respectively from

(488°P+ T'Q) d—x + (sTP-4SQ) d7 )

- dt dt
(488°P+ T'Q) o (3TP.— 48Q) e
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So again forming the P and Q of AP+ uQ, the results are
P (AP+uQ)=N (88U~ TH) + 18\*u (8TU + 8S*H)
+ 9’ {(T*- 328°) U+128TH} - 54p° {48* TU—-(T"+ 828°) H},
QNP+ pQ)=N {168*TU + (T* +1928°) H}

+30\'u {8(T*-648°) U+ 168*TH}

+ 15N {T'(T* - 3208°) U+ 488T H}

— 270N {168* T* U~ T'(T* — 64.8°) H}

—1620Mu* {8T°U + 48" (T* - 648°) H}

- 324p° {(T*+247°8°+5128°) U- 68T(T* +1288°) H},
and if we now write s and ¢ for the Sand 7' of AP+ 1@, as
given Art. 233, these values differ only by factors from

(488°U+ 187H) &

ds
7¢Z—7\+(TU-24SH) W’

and (488*U+18TH) & + (T~ 2480) g’-i .

To these formule may be addéd the reciprocal of AU+ 6utd,
which is :
(A 4 2480%u* 4 8 TAp® — 488%u) F - 24p (N* + 2 Tw®) P*
— 244 (M = 454") PQ — 84
and of AP+ p @, which is :
4 (8N + TN +7282%? + 1088TAp’ + 27 (T* — 168°) '} ©
— [T\ +2168T'\u* + 108 ( T* — 648°) \u® — 3888 18"} H*
- {1682 + 828 T\u + 18 T*N*u* + 2168 (T + 32.8°) pu'} UH
+{648°A %+ 1448 TN + 108 ST *Ap® + 27 T( T + 16 8%) u'} U™

235. We next mention a useful identical equation. Ifina
cubic U we substitute z+Az', y +Ay', 2+ A2’ for o, y, 3, let
the result be written

U+3AS+ 3\ P+ U
that is to say, let S and P denotc the polar conic and polar line
of 'y'z' with respect to U or, for the canonical form, let
8= (2 + 2myz)x + (¥ + 2mex) y' + (2° + 2may) '
P=(2"+2my'?)x + (y* + 2me'c’) y + (2" +2ma’y’) 2.
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Similarly, let the result of a similar substitution in H be written
H4 3\ + 3\ + MH,

that is to say, let = and IT denote the polar conic and polar line
of a'y'2' with regard to the Hessian; then, by the help of the
canonical form, we can verify the following identical equation

3(S0-3P)=H'U- HU'.

It follows hence, that when «'y'z' is on the curve and therefore
U’ =0, the equation U=0 may be written in the form

S -=P=0.

From this form the following consequences immediately
follow :

(a) The lines P, IT intersect on the cubic: that is to say,
the tangential of the point z'y'z', or the point where the tangent
P meets the cubic again, is the intersection of P with IT the
polar of z'y'z" with respect to the Hessian (see Art. 183).

() The points of contact of tangents from xy'2' to the
cubic, which are known to be the intersections of § with U, are
also the intersections of S with = the polar conic of z'y'2" with
respect to the Hessian.

(c) The equation SIT—2P=0, is that which would be
obtained by eliminating an indeterminate 6 between S+ 62 =0,
P+ 011=0. The first denotes a conic through the intersections
of S, Z; the second denotes the polar of a'y'z" with regard to
the same conic. Hence the given cubic may be generated as
the locus of the points of contact of tangents from a point «'y'z’
to a system of conics passing through four fixed points.

() If §+6= denote two right lines, P+ 6IT obviously
passes through the intersection of these lines: this intersection
is therefore a point on the cubic, and P+ 6T the tangent at it.
Hence the four points of contact of tangents to the cubic from
«'y'z’ form a quadrangle, the three centres of which are on the
cubic and are the points cotangential with z'y'z’ (see Art. 150).

236. I have used this identical equation (PAil. Trans, 1858,
p- 535) to form the cquation of the conic through five con-
secutive points on the cubic. Since S touches the cubic, and
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P is the ecommon tangent, the general equation of a conic
touching U at Zy'z 8 S—LP=9 where L=2z+By+vyz is
an arbitrary right kne. Now by of the identity estab-
lished, the equation of the cabic may be written in the form
n(S—-LP)=P(2-L0).

Hence, the four points where S— LP meets the cobic again are
its intersections with 2—LII; and if the latter conic pass
through z'y’z, the former will pass through three comsecutive
ponts on the cubic. Bat on substituting z'y's’ for zyz, we
bave &' =II'= H', and the condition that =— LII should pass
through Zy'2 is L'=1.

Next, in order that S— LP may pass through four consecutive
points, = — LI1 must have P for a tangent at the point z'y'z'_
Now the tangent to = — LIl (being the polar of z'y'z’ withm
respect to this function) is

20 - L'N - LT,
or (since L' =1, and II'=H') is 1 - H'L, and since this is to be
proportional to P, we have L=0P+—l—ﬂ.

The general equatlon therefore of a conic thmugh foar
consecutive points is

§-0P*— '17' PTI=0;

and S -6PI1—- —H,
passes through the two points where the former conic meets the
cubic again; the cquation of the cubic being reducible to the
form

=0,

1 (80P~ ; P) = P(2- 0PI- 7, ).

237. Since these two conics have P for a common tangent,
it will be possible by adding the equations multiplied by suitable
constants to obtain a result divisible by P, and the quotient
will represent the line joining the points where the conic meets
the cubic again It is necessary then to determine u, so that

ul +E_ZT' I1* may be divisible by P, which we do by equating
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to nothing the discriminant of this quantity. Now this discrimi-

!

nant when calculated will be found to be p*H' 4 44° 1% . This

«quantity therefore will be divisible into factors if p=—i41-§?,,
and since one of the factors is P, if we denote the other.by M,
we have : '
1 .
uS+3— 7 1 =MP.
By the help of this equation, the equation of the cubic given at
the end of the last article is transformed to

1 __ p3 [ad 1
(1 +P) (S0P~ 3 Pr)=P {M— L n-om +p,P)}.
The form of the equation shews that Tl1+ uP is the tangent at

the tangential of the given point on the cubic, and that 3/~ I%’ n
passes through the second tangential of the given point (see
Art. 155).

238. In order that the conic may pass throngh five con-
'secutive points, the coordinates z', 3/, 2’ must satisfy the equation
M- Hi - 6 (1+ puP)=0.

"The only difficulty is to determine the result of substituting the

-coordinates z', 3/, 2’ in M. Now if we differentiate with regard
Tto @, y, or 2, the equation

1,
puS+=— T n*=MP,

and substitute ', ', 2’ for z, y, z in the result, observing that
a8’ __dP' dz _dIl ,
%=2 T E=2% , we have M'=2u, and hence the

result of substituting «'y'z’ for zy2 in

M- £, 0-0(+pP)=0,
"
is p—6H =0, and since pu has been found to be = — i—i@—,,
we have § = — ;4]—1(3, , and the problem is completely solved.

vH
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239. We next mention another general form to which the
equation of a cubic may be brought, viz.
ax® + by’ +c2* + du’ =0, where x+y+2+u=0.
The polar conic of any point 2'y’z'v’ being
ax'x’ + by'y" + c2'2" + du'v’* =0,
the polar conic of the point for which «'=0, =0, is a pair of
lines passing through the point u =0, =0, &c.; and hence it
appears, that the points xy, zu; a2, yu; xu, ye are pairs of cor-
responding points on the Hessian. The form just written
contains implicitly eleven conatants, and is eme to which the
general equation of a cubic may be reduced in an infinity of
ways. The values of the invariants for this form are S=— abed,
T=b"d"+ c'd*a*+ d*a’b’+ b'c*d"—2abed(ab + ac+ ad+be+ cd + db).
The discriminant is formed from the three equations got by
differentiating with respect to @, y, z respectively, viz.
ax’ =du’y by’ =du’, cz'=du’,
whence we have =, y, 2z, u respectively proportiemal to the
reciprocals of /(a), 4/(8), ¥/(c), ¥/(d). Substituting these values
inz+y+2+u=0, we have the discriminant in the form

VN (bed) + / (cda) + 4/ (dabd) + A/ (acd) =0,
which cleared of radicals is as before R = T* 4 648°=0.#

240. We conclude this chapter with a few remarks on the
case where the cubic breaks up into a conic and a right line.
Ifa curve have either two double points, or a cusp, not only
does its discriminant vanish, but also the functions obtained by
differentiating, with respect to any of the coefficients of the
original equation, the general expression for the discriminant
in terms of these coefficients. See Higher Algebra, Arts. 99, 109.
Now the expression for the discriminant of a cubic being of
the form 7™+ 64.8° =0, its differentials are of the form

aT ,dS dT o dT
a7 2 +1928° =, 2T So +1928"

M’ &c.

* For the other covariants and contravariants when the equation is written in this
form ; see Phil. Trans. 1860, p. 252, and for some remarks on the method of forming
invariants, &e., when the equation has been written with an additional variable con-
nected by a linear relation with the original variables, see Geometry of Threé
Dimensions, Art. 501,
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If the curve have a cusp, we have S=0, T'=0 (Art. 224), and
all these differentials vanish in conformity with the theory. If
the curve bhave two double points, that is to say, if the cubic
break up. into a conic and right line, we have the equality

of ratios
aT dS _dT dS _dT _dS

dada " db db” de dc’

These equations if written at length would form a system of
equations, each of the eighth order in the coefficients, which are
the system of conditions that the general equation of the
third degree should be resolvable into factors.

&e.

241. There is another form in which the foregoing conditions
may be written.. In the first place we remark, that since a double
point on a curve is also a double point on its Hessian, the
coordinates of such a point satisfy the equations got by differen-
tiating with respect to x, y, z, the equations both of the
curve and of the Hessian. In the case of the cubic, these six

- differential equations are all of the second degree, and we
can linearly eliminate from them the six quantities 2', y', 2*,
Y2, 2z, ay, so as to obtain the discriminant in the form of
the determinant

oal

ay 0y €,y My ay, a,
¢,y by, m, b
39 € Cy €y C
1) cn m1 a’s-’ a,
y €y by my b,

9 G €y Cy e |=0.
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‘We have seen also (Art. 226) that the conditions that the curve
should have three double points, are expressed by taking any
of the first three rows, and the corresponding one of the second
three rows, and then equating to zero tbe determinant
formed with any two columns from. these rows. So now in
like manner, the conditions that the curve should have two
double points, are expressed by taking any two of the first
three rows, and the two corresponding rows of the second
set, and equating to zero the determinant formed with any
four columns from these rows. In order to prove this, it is
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enough to observe that, as we shall show in the next article, if
U= PV, where V represents a conic, and P is az + By +1vz,
then the Hessian of U is of the form AU+ uP®. Conse-
quently we have

dH_ . dU dH__ dU
=N g el = h o SuBEY

dH dH aU aUu
whence Ba-atig—ﬁh%+ﬁ.@=0,
shewing that the differentials of H and U, with respect to =
and y, are connected by a linear identical relation, and there-
fore that the determinant formed with the coefficients of four
corresponding terms in these equations, vanishes.

242, The Hessian of PU, where P denotes the right line
ax+ By + vz, and U is a function of any degree, may be found
in various ways. The second differential coefficients of PU are,
Pa+2aL, Pb+2BM, Pc+2yN, Bf+BN+yM, Pg+ yL+aN,
Ph+aM+ BL, where L, M, N, as before, denote the first, and
a, b, &c. the second differential coefficients of U. Using these
values in forming the equation of the Hessian, and reducing by
means of the equations of homogeneous functions

(n—=1) L=ax+ky+ gz, &c.,
we get, for the Hessian of PU,

n? n

(n—1)" PH- n—1
where F denotes the quantity (bc —f*) «* + &c., Art. 184, which
‘geometrically represents the locus of points whose polar conics
touch the given line.

More generally the Hessian of UV is found by the same

process to be

FPU,

n4+n'=1)" ., (4n'-1)7 _
Ty THA Ty T

(n+n'—1) . srran . (RFn'=1)(n+n'—2)
ey (VOO Ty 9T
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where ©, @, as at Conics, Art. 370, denote (bc—f*)a’+ &ec.,
(0¢ —f") a+ &c., and W denotes the covariant

(b’ +b'c—2ff) LL' + &e.
The form just written shews that the intersections of U, V are

double points on the Hessian, the tangents at amy sach peint
being the tangents to U and V¥ respectively.*

.

* On the general theory of ternary cubic forms, see Aromhold's Memoirs, Crelle,
vol. XXXIX., p. 140, 1850, and vol. Lv., p. 97, 1858; Professor Cayley’s ¢ Third
‘and Seventh Memoirs on Quantics,” in the Philosophical Transactions, 1856 and
1861, and Clebsch and Gordan’s Memoix in the Mathematische Annalen, vol. 1.,
p- 56, 1869.
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CHAPTER VL

CURYVES OF THE FOURTH ORDER.

243. It will be remembered that we have classified’ eurves
of the third order by combining a division founded on
characteristics unaltered by projection, with a division founded
on the nature of their infinite branches. The same principles
of classification are applicable to curves- of the fourth order,
or, a3 we shall call them, quartics; but the number of
species is so great, and the labour of discussing their figures
so enormous, that it seems useless to undertake the task of
an enmmeration. It will be sufficient here generally to direct
attention to the principal points that must be taken into
account in a complete enumeration. A quartic may be non-
singular having no multiple point; or it may have one,
two, or three double points, any or all of which may be
cusps. In this way we have ten genera, of which the
Pliickerian characteristics and the deficiency (Art. 32) are

8 « =»n T ¢ D

n
I. 4 0 0 12 28 24 3
1I1. 4 1 0 10 16 18 2
I1I. 4 0 1 9 10 16 2
IVv. 4 2 0 8 8 12 1
V. 4 1 1 7 4 10 1
VI 4 0 2 6 1 8 1
VII. 4 3 0 6 4 6 0
VIIIL. 4 2 1 5 2 4 0
IX. 4 1 2 4+ 1 2 0
X. 4 0 8 3 1 0 O

viz. in each of the last four cases the curve is unicursal.
Every quartic curve whatever may be considered as coming
under one or other of these genera. But there are special forms,
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arising from the coincidence of nodes and cusps, which have to
be considered.

1°. Two nodes may coincide, giving rise to the singularity
called a tacnode: this is, in fact, an ordinary (two-pointic)
contact of two branches of the curve (sec p. 23). It is to be
noticed that the common tangent counts twice as a double
tangent of the curve; thus, supposing that there is not (besides
the tacnode) any node or ousp, the curve belongs te the
genus IV, and its characteriatics are as stated above; but =2
means the tacnode, and 7=8 means that the double tangents
are the tangent at the tacnode counting twice, and 6 other
-double tangents.

2°. A node and cusp may coincide, giving rise to the sin-
gularity on that account called node-cusp, and called ramphoid-
cusp, Art. 58. It is to be noticed that the tangent counts once as
& double tangent, and once as a stationary tangent; thus, sup-
posing that there is not any other node or cusp, the curve
belongs to the genus V, and the characteristics are as above ; but
8=1, k=1 means the nede-cusp; 7=4 means the tangent
at the cusp and 3 other double tangents; ¢=10 the tangents
at the cusp and 9 other stationary tangents.

8°. Three nodes may coincide as consecutive points of a
curve of finite curvature, giving rise, not to a triple point, but
to the singularity called an oscnode ; this is, in fact, an osculation
or three-pointic contact of two branches of the curve. The
tangent at the oscnode counts 3 times as a double tangent
of the curve; the genus is VII, and the characteristics are
as above, but 8 =3 means here the escnode; and 7=4 means
the tangent at the oscnode counting 3 times, and 1 other
double tangent.

4°. Two nodes and a cusp, or a tacnode and a cusp, may
coincide as consecutive points of a curve of finite curvature
giving rise, not to a triple point, but to the singularity called
a tacnode-cusp; this is, i fact, an .osculation or four-pointic
intersection of the two quasi-branches at a cusp. The genus i
VIII, and the characteristics are as above, §=2, x=1 mean-
ing the cusp; =2 the tangent at the cusp counting twice
as a double tangent; ¢ =4 the tangent at the cusp, counting
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once as a stationary tangent and three other stationary
tangents.

5°. Three nodes may coincide, as vertices of an infinitesimal
triangle, giving rise to a triple point (ordinary triple point with
three distinct tangents). The curve belongs to the genus VII,
and the characteristics are as above, § =3 meaning the triple
point.

6°. Two nodes and a cusp may coincide, giving rise to a
special triple point, at which an ordinary branch of the curve
passes through a cusp. Theé curve belongs to the gemus VIII,
and the characteristics are as above, =2, x=1 here meaning
the special triple point.

7°. A node and two cusps may coincide, giving rise to a
special triple point not visibly different from an ordinary point
of the curve. The curve belongs to the genus IX, and the
characteristics are as above, =1, x=2, here meaning the
special triple point.

244. In order to illustrate the distinction between the
different kinds of double points which we have enumerated,
let us suppose the origin to be a double point at which the
two tangents coincide with the line y=0, then the equa-
tion of the quartic will be of the form ¢*+ u,+u,=0, where
u,=ax’ + b’y + cxy’ + dy’, u,=ex' + fx'y + &e.

We proceed now as in Art. 36: In order to determine the
form of the curve in the neighbourhood of the origin, we sub-
stitute y =maP, we determine B, so that two or more ef the
indices of z shall be equal and less than the index of any other
term; and we attend only to the terms of lowest dimersion
in @. Then let @ be not =0. We find'8=3$; the form of the
curve near the origin is the same as that of the curve 3* + az®=0,
and the origin is an ordinary cusp.

(1) Leta=0. We then have 8=2, and m is determined
by the quadratic m*+ bm +e=0. There are then two branches
whose forms near the origin are respectively the same as those
of the curves y =m 2’ y=ma*, where m, m, are the roots of
the above equation. The branches touch each other, and the
origin is a tacnode.
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(2) Let this quadratic have equal roots, the form of the

equation then is
(y — ma*) + cxy® + dy’ + fr'y + &e. =0,

and to the degree of approximation to which we have as yet
proceeded, the two branches in the neighbourhood of the
origin coincide. In order te discriminate them, we substitute
y =mz" + nz” and determine n and <y as before. We find then
v=5 and "=~ (cm"+fm). The form then of the curve near

the origin approaches to that of the curve y=ma"+ m:&, which

has been considered Art.58. The origin is then a ramphoid
cusp or node-cusp.

(3) If, however, in addition to the preceding conditions, we
have f= — cm, the equation of the curve is of the form

(y—m)" + cay (y— ma’) + Ay’ + g’y + &e. =0,

and on substituting y =ma®+nz", we find y=3, and n is de-
termined by the quadratic

'+ cemn+m* (dm+ g)=0;

and if n, n, be the roots of the quadratic, the ourve in the
neighbourheod of the origin consists of two osculating branches,
whose forms are represented by the equations y=smz"+n 2",
y=mz'+n2’. Since the difference of these values of y com-
mences with an odd power of z, the branches cross as well as
touch at the origin. The origin is now an oscnode.

(4) If, however, in addition to the former conditions, we
bhave the roots of the last-mentioned quadratic equal, or
dm + g = }c", the equation of the curveis of the form

(y —ma* — cxy — dy')}' = Azy’ + By,
-and as before, we find that its form near the origin is given by

the equation y=ma"+ cma®+ pa:z. The origin is then a tac-

node-cusp. The node can have no higher singularity in a
proper quartic, for the next step would be to suppose 4 to
wanish, in which case the equation would break up into two
of -the second degree. The case where the origin is a triple
point does not seem to require illustration.

EE
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245. We have thus far not attended to the distinction of
real and imaginary. Assuming that the quartic curve is real,
then imaginary nodes or cusps can present themselves only in
pairs, and we may distinguish the cases accordingly; thus we
may have one real node, two real or twoe imaginary nodes,
three real or one real and two imaginary nodes; and the like
for cusps. Again, any real node may be a crunode or an
acnode. The distinctions as to real and imaginary scarcely
present themselves in regard to the special singularities above
referred to (the condition that imaginaries must present them-
selves in pairs, implying for the most part that these singu-
larities are real): the only distinction seems to be in regard
to the ordinary triple point, which may be a point with three
real tangents; or, with one real and two imaginary tangents,
viz. in the former case the point is the common intersection of
three real branches of the curve; in the latter case it is the
common intersection of one real and two imaginary branches
of the curve; or, what is the same thing, we have a real
branch passing through an acnode; the point does not visibly
differ from an ordinary point of the curve, resembling in this
respect the special triple point 7° above referred to; the diffe-
rence is, that in the case of an ordinary branch through an
acnode, the tangents are onc real and two imaginary; in the
case of the special triple point they are all real and coincident.

246. There are yet other specialties which may be taken
account of. A node may be in regard to one of the branches
through it a point of inflexion; that is, the tangent to the
branch at the node may meet the branch in three consecutive
points (or the curve in four coincident points); or again, the
node may be in regard to eack of the branches through it a
point of inflexion. Such a node may be considered as the
union of an ordinary node with (in the first case) a point of
inflexion, and with (in the second case) two points of inflexion;
and the node may be termed a flecnode or a biflecnode in the
two cases respectively. The point or points of inflexion thus
coinciding with the node must be reckoned among the inflexions
of the curve, and the number of the remaining inflexions
diminished accordingly. A biflecnode has properties analogous
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to those established (Art. 170, et seq.) for the inflexions of cubics.
In general, if we look for the locus of harmonic means on
radii-vectores drawn through the origin, which is supposed
to be a double point on the quartic u,+u,+u,=0, we find
u,+2u,=0. When therefore u, is a factor in u, the locus
becomes a right line, and the double point, having a harmonic
polar, has the properties established Art. 170. The points
of contact of tangents from it lie on a right line, and the
curve may be projected so that this point shall become a
centre, or else so that all chords parallel to a given line
shall be bisected by a fixed diameter. In the latter case,
the form of the equation is in general

¥ (z—a)(z-b) =14 (z—0c)(z-d)(z-¢) (—f).
There is no difficulty in discussing, as in Arts. 39, 199, the
different possible forms of curves included in this equation,
according to the reality, and to the relative magnitude
of a, b, &c.; and in deriving thence the different possible
forms of the projections of these curves.

247. Once more, a quartic may have another kind of
singular point, of which account might be taken 'in the
classification, viz. a point of undulation, that is to say, one
in which the tangent meets the curve in four consecutive
points, The tangent at such a point replaces two stationary
tangents and one ordinary double tangent. A quartic may
have four real points of undulation, as we can see by writing
down the equation wxyz=S" where S is any conic touching
the four lines w, z, y, 2.

248. We have not yet exhausted the list of characteristics
unaltered by projection which would have to be taken into
account in a complete classification of quartics. It will be
remembered that we divided non-singular cubics into unipartite
and bipartite according as all the real points of the curve are
or are not included in one continuous series. It is natural to
suppose, that similar distinctions exist in regard to quartic
curves; and it is easy to obtain superior limits as to the
partitivity of a quartic curve. To make the proofs complete
in form, it might be necessary to distinguish between the
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infinite branches, and the re-entrant branches (or ovals) of the
curve ; but we may provisionally disregard the infinite branches,
and attend only to the ovals. It is at once apparent, that if
we have two ovals, one whelly inside the other, then that this
is the whole real curve ; for if there were any other real point
on the quartic curve, the right line joining this with a point
inside the interior oval would cut the curve in five points.
But we do not hereby exclude the case of more than two ovals.
exterior to each other; if, however, we have four such ovals,
then substituting for the right line & conic, the like reason-
ing will show that the four ovals constitute the whole of the
real curve; viz. if there were any other real point, the conic
drawn through this, and through points inside of the four ovals
respectively would meet the quartic curve in nine points. It
may be inferred that a non-singular quartic curve is at most
quadripartite ; and further, there is no apparent reason why it
should not consist of four ovals exterior to each other. That
it may actually consist of four such ovals appears as well from
the curve (z*—a")"+ (y*=8")"=¢', (c<b) considered, p. 43, as.
from the following illustration given by Pliicker. Consider the
curve =1+ % where

0= -2 -1 (z-1) -2 [ +z(e—2)"

Now the equation Q=0 represents a quartic having three
double points as shown in the dark curve in the annexed
figure; and the equation @ =% denotes
a curve not meeting  in any finite
point, which deviates less from the
form of the curve £ the less we
suppose %k, and which according to
the sign we give % is either altogether
witbin or altogether without the curve
Q. When it is altogether without, the
curve is unipartite; when it is alto-
gether within, the curve may consist
of four meniscus shaped ovals, one in
each of the compartments into which
the curve Q is divided. It will readily
be conceived that, as the value of the constant is supposed to




CURYES OF THE FOURTE ORDER. 213.

change, first one, then another of these ovals might become:
imaginary, so that non-singular quartics might be either unipartite,.
bipartite, tripartite, or quadripartite. By what precedes, a
bipartite quartic, may (so far as appears, and as in fact is the:
case) consist of two ovals, one inside the other; but neither:
a quadripartite nor a tripartite quartic can include as part of .
itself two such ovals. We can in like manner conclude that a
quartic having one double point may be either unipartite,.
bipartite, or tripartite; and one having two double points,
either unipartite or bipartite. It will be understood that this is-
only a very incomplete account of a general theory which has.
not been as yet properly gone into.

It may be remarked that the figure which has served us.
for illustration is used by Pliicker to shew that the twenty-eight
tangents which a non-singular quartic can have (Art. 243)
may be all real. On inspection of the figure of a quartic:
with four ovals, it will be seen that each oval admits of one:
tangent touching it doubly, and besides that any two ovals.
have four common tangents; and there are six pairs of ovals..
Each of the ovals has two real points of inflexion, and there
are eight in all. 1 do not remember to have met an example:
of a quartic having more than eight real points of inflexion,.
and in the case of cubics we know that only one-third of
the entire number of inflexions is real, but I am not in possession
of any general theorems as to the reality of the inflexions.
of quartics.

249. In order to see how quartics might be classified in.
respect of their infinite branches, we observe that the line
infinity may meet a quartic, (a) in four real points, (3) in two-
real and two imaginary, (c) in- four imaginary points, (d) in:
two coincident and two real points, (¢) in two coincident and
two imaginary points, (f) twice in two coincident points, theso
peints being real, or (g) these points being imaginary, (2) in.
three coincident points and one real point, (¢) in four coincident
points. Again, the cases (d), (¢), { f),(g) would have to be further
distinguished according as the line infinity when meeting the
curve in two coincident points is simply a tangent or a line
passing through a double point, which double point may be
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either crunode or acnode, cusp, or one of the special kinds above
mentioned. Similarly in the case (%), the line infinity may be
either an ordinary stationary tangent, or a tangent at a double
point or cusp, or it may pass through a triple point, and in
the case (¢) it may be either a tangent at a point of undulation,
a tangent at a double point of the special kind, or a tangent
at a triple point. Lastly, any of the points which count only as
single intersections of the line infinity with the curve, may be
on the curve a point of inflexion or undulation, and where this
happens a difference in the figure will result which would hawe
to be taken into account in a complete classification of quartics.

250. We have already shewn (p. 55) how to form the
equation of the Hessian of a quartic, which is a curve of the
sixth degree, intersecting the quartic in the twenty-four points
of inflexion. We have also seen (p. 75) that the equation of
the reciprocal of a quartic is of the form §*= T°, where §
represents a curve of the fourth and 7' of the sixth class,
and the form of the equation shows that both are touched by
the twenty-four stationary tangents. We have postponed to
another chapter the solution of the problem to. form the
equation of a curve passing through the points of contact of
double tangents of a given curve. It will there be shewn, that
in the case of the quartic, the equation of such a bitangential
curve may be written in the form © =3H®, where © is the
covariant AL" + &c. as at p. 195; that is to say, L' &c. repre-
sent’ the first differential coeflicients of the Hessian, and 4
denotes bc—f*, where a, b, &ec. are the second differential
coefficients of U. In like manner & denotes Aa’'+ &c. as in
Ex. 1, p. 193.

THE BITANGENTS.

251. It is convenient to commence by studying a more
general theory in which that of the bitangent is included.
Let us then consider first the form UW= V* where U, V, W
represent conics; a form containing implicitly sixteen con-
stants, and therefore one to which the equation of any quartic
may be reduced in a variety of ways, as we shall after-
wards more fully see. The form of the equation shews that
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U and W -each touch the quartic in four points, namely, the
points where they respectively meet V. Now we have already
discussed (see Conics, Art. 270, &c.) the equation UW = V*; when
U, V, W represent right lines, and the results hold good with
the proper alterations when they represent conics. It is merely
necessary to remember, that two conics represented by equations
of the form AU+ puV+vW=0, instead of intersecting in a
single point, intersect in four points; and that if we are given
one point on a conic whose equation is to be of this form,
three other points are necessarily given; for if we "have
AU + uV'+vW'=0, the conic AU+pV+vW=0 will, it is
clear, pass through the four points determined by the equations
ug v W
TV wr
‘Conics just cited, that the quartic UW=7V" may be con-
sidered as the envelope of the variable conic MU+ 2AV+ W=0
where A is variable, and which touches the given quartic in the
four points determined by AU+ V=0,AV+ W=0. The two
sets -of four points in which any two of the enveloping conics
touch the quartic lie on another conic, as appears by writing
the given equation in the form

N T+2AV+W) (wWU+2uV+ W)=ApU+ A+ p) V+ W

In like manner, the properties of poles and polars may be ex-
tended to the curve under consideration. Through any point
(or, if we please, we may say through any set of four points)
may be drawn two conics of the system AU+ 2AV + W, the two
sets of four points of contact lying on a conic UW'+ WU'-2V V',
which may be called the polar of the given point or set of
points, and the symmetry of the equation shews that the polar,
in this sense of the word, of any point on the latter conic
will pass through the given point. Conversely, any conic
aU+bV+ cW meets the quartic in two sets of four points,
through each of which sets a quadruply tangent conic may be
drawn, the two intersecting in a set of points which constitute
in this sense the pole of aU+bV+cW.

It follows then from the discussion in the

252, Tt is useful now to recall the properties established
(Conics, Art. 388, &c.) for a system of conics included in the
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equation aU+ BV +yW=0. In the first place, if this equation
represents a pair of right lines, their intersection lies on a fixed
cubic, the Jacobian of U, ¥V, W; a curve which may also be
defined as the locus of a point, whose polars with respect to
all conics of the system aU+B8V+yW meet in a point.
If we consider two conics included in this system, the
-equation of any conic through their intersections must be
.of similar form ; and hence, the intersection of each of the three
pairs of lines joining the four intersections of the two conics
must lie on the Jacobian. If the two conics touch, two of
‘these three intersections coincide with the point of contact;
and, therefore, if two conics of the system aU+ B8V + o W touch
-each -other, the point of contact lies on the Jacobian.

‘Secondly, the system aU+ B8V +yW may be regarded as
.a-system of polar conics of the variable peint aSy with regard
to a-certain fixed cubic, which has for its Hessian the Jacobian
of ‘the system; and the equation of which can be formed when
those of the three conics are given.

Thirdly, if aU+ 8V + oW represents a pair of right lines,
all such right lines touch a curve-of the third class, the Cayleyan
-of the cubic last mentioned.

253. Hence then, in particnlar, since any enveloping
-conic MU+ 2AV+ W, and the conic through the four points
.of .contact are each included in the form aU+ BV +4W,
if we draw the three pairs of lines connecting the points of
contact of any conic enveloping UW=7V?, the intersections
-of each pair lie on a certain fixed cubic, viz. the Jacobian;
and the lines themselves are all touched by a fixed curve of
the third class, viz. the Cayleyan.

Again, if the two conics AU+ ¥V, AV + W touch each other,
then the conic A*U+2AV + W instead of touching the quartic
in four distinct points, has ordinary contact with it twice and
‘meets it once in four consecutive points. And from what we
‘have just seen, this point of contact of higher order lies on the
Jacobian. We infer then that twelve conics of the system
MU+ 20MV+ W have this higher contact with the quartic,
namely, the twelve passing each through one of the intersec-
tions of the Jacobian with the quartic.
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254. Six conics of the system MU+ 2AV+ W reduce to a
pair of right lines; for the discriminant of this form being a
function of the third degree in its coefficients will be one of
the sixth degree in A, and therefore six values of A can be found
for which it vanishes. When an enveloping conic reduces to
a pair of right lines, the four points of contact lie two on each
line, and each line is therefore a double tangent to the quartic.
It appears from Art. 249, that if ab, cd be any two of these
six pairs of bitangents, the equation of the quartic may be
transformed to abed = V*, the eight points of contact lying on a
conic V. Thus we see that the form AU+ 20V + W includes
six pairs of the bitangents of the quartic, these twelve bitangents
all touching a curve of the third class, viz. the Cayleyan of
the system, and the intersections of each pair lying on the
Jacobian. So again, if the points of contact of any of these
pairs of bitangents be joined directly or transversely, the joining
lines also touch the Cayleyan, and the intersection of each pair
lies on the Jacobian. This may be stated in a slightly
different form by considering the cubic 8, of which U, V, W
are polar conics. Then if the equation of a quartic is a function
of the second degree in U, ¥V, W, since the vanishing of such a
function expresses the condition that the line 2U+yV+2zW=0
should touch a fixed conic, it is easy to see that the quartic
may be defined as the locus of a point whose polar with
respect to S touches a fixed conic, or in other words, the locus
of the poles with respect to S of the tangents of that fixed
conic; or, it will come to the same thing if it be defined
as the envelope of the polar conics of the points of that conic.
The double tangents of the quartic correspond to the points
where the conic meets the Hessian of S.

255. Let us now consider any two of the bitangents of a
quartic, which we take for the lines z, y; then if we make
=0, the equation of the quartic is to reduce to a perfect
square, say (' + ayz + by*)", and if we make y =0, the equation
is to reduce to, say (s#'+cwxz+da’)’. Hence, evidently the
equation of the quartic must be of the form

xyU= (2" + ayz + by* + cxz + dx')’;
FF
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that is to say, of the form ayU= V* which we have just dis-
cussed ; an equation which may also be written

xy NU+2AV +ay)= (zy + AT )~

There are, as we have seen, beside the value A =0, correspond-
ing to the pair of lines zy, five other values of A for which
NU+ 20V + ay will represent a pair of lines; and thus in
five different ways the equation can be reduced to the form
wxyz=V*. Hence, through the four points of contact of any
two bitangents we can describe five comics, each of whick passes
through the four points of contact of two other bitangents.

A non-singular quartic has 28 bitangents; and there are
therefore % (28.27), or 378 pairs of bitangents; each of these
pairs gives rise to five different conics, but each conic may arise
from any one of the six different pairs formed by the four
bitangents which correspond to that conic, hence there are in
all § (378) or 315 conics, eack of which passes through the points
of contact of four bitangents of a quartic.*

256. We have seen that each pair of bitangents combimes
with five other pairs to form a group of six pairs, the points of
contact of any two of which pairs lie on a conic. It follows
that the 378 pairs may be distributed into 63 such groups of six.
The twelve bitangents of each group touch the same curve of
the third class; and this is touched also by the lines joining
directly and transversely the points of contact of each pair.
The intersections of each pair of bitangents, and also those of
each pair of joining lines, lie on a cubic. Corresponding to each
group ‘there are twelve conics, each of which touches the quartic
twice with ordinary contact, and once so as to meet it in four
consecutive points, the twelve points of higher contact lying
on the cubic last mentioned. There being 63 groups, 756 such
conics may in all be drawn.

* Pliicker first noticed the possibility of bringing the equation of any quartic to
the form wzyz = V2 but he hastily inferred that the six points of contact of any
three bitangents lie on a conic, and thence drew an erroneous conclusion as to the
total number of conics passing through eight points of contact of bitangents (see
the Theorie der Algebraischen Curven, p. 246),
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257. We shall shew how to form a scheme of the 315
conics, and for that purpose we denote provisionally the first
26 bitangents by the letters of the alphabet, adding the symbols
¢ and ¥ to denote the other two. We denote by abed the
conic passing through the eight points of contact of the
bitangents a, b, ¢, d. If now abed, abef, be two of the 315
conics, the pairs ab, cd, e¢f belong to the same group, and from
what we have seen, cdef will be another of the conics. This
may also be shewn directly as follows. Let the equation of
the quartic be abed =17, or

ab (cd+ 2AV + N'ad) = (V + Aab)’,
and we can determnine N so that cd+2AV+Nab=ef. Solve

for V from this equation, and substitute in the equation of the
quartic when it becomes

Na'd' + 'd* + ef* — 2N'abed — 2N abef — 2cdef = 0,
or dodef = (cd-+ of = Nab)'

a form which proves the theorem stated. It appears thus, that
given three pairs of lines which are to be pairs of bitangents
of the same group of a quartic, the equation of the quartic will
be of the form [4/(ad)+m #(cd)+n 4/(ef})=0, so that if
two points were given in addition, a single quartic could be
found satisfying the prescribed conditions. Corresponding to
any group there are 13 conics, passing respectively through
the points of contact of each two of the six pairs of which
the group consists. There would thus seem to be 63 x 15 =945
conics; but then every conic abcd is counted three times over,
as belonging to the three groups @b, cd, &c., ac, bd, &c.,
ad, be, &c. ; the total number is therefore 315 as before.

258. Consider any conic abed; then the group ad, cd, &e.,
and the group ac, bd, &c., can have no other bitangent common,
the quartic being supposed to be non-singular. For example,
if abef be a conic of the first group, aceg cannot be a conic of
the second. For (Art. 257) the equation of the conic through
the points of contact of a, b, ¢, d may be written in the form

Nab +5 (ed~ef) =0,
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and if aceg be another conic, this must be identical with the form

1
pac + " (bd— eg) =0.
From this identity we at onee infer
1 1 1
08— pe) (0= 5, 4) =[5/~ 29)-
It follows that e, being identical with one of the factors into -
which the left-hand side breaks up, passes through the inter-
section either of b and ¢ or of @ and d. Baut in either case the
point through which e is thus proved to pass, will be a double
point on
AN'abed = (N'ab + cd —ef ),
and therefore the quartic could not be non-singular.

In precisely the same way we see, that if abef, acmn be two
conics, there is an identity

1 1 1
(AL — pe) (a— md) =iqf—;mn,

and hence the diagonals of the quadrilateral efmn pass one
through ad, the other through &¢c; or in other words, the inter-
sections of each pair of bitangents lie according to a certain
rule, three by three on right lines. When once a scheme of
the 315 conics has been made, there is no difficulty in discri-
minating which diagonal passes throngh ad and which through
be. For example, if it appears that aemu, afnv, aduv are couies
of the system, we infer in like manner that the diagonals of
the quadrilateral emfn pass through ad and wv; and thence we
infer that ad lies on the line joining en, fm. Thus then consider
any conic abed, this belongs to the three groups abd, cd, &ec.,
ac, bd, &c., and ad, be, &c., and it appears now that each of
the sixteen quadrilaterals formed by combining one of the four
other pairs belonging to the group ac, b4 with a pair from
the group ad, bc, will have a diagonal passing through ab.
Now the pair ad belongs te five different conics, and therefore
there are eighty quadrilaterals having a diagonal passing
through ab. But it will be found, as we have intimated, that
these quadrilaterals may be distributed into pairs having a
common diagonal; hence, through each of the 878 points ab
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can be drawn 40 lines, each passing through two others of
these points, and there are in all 5040 such lines.

259. We are now in a position to form a scheme of the
315 tangents, in which nothing but the notation shall be arbi-
trary. Commence by writing down the group ab, cd, ef, gh,
1j, kl; then since the groups ac, bd; ad, bc can have no
bitangent common with the preceding nor with each other,
these groups may be written, ac, bd, mn, op, qr, st; ad, be, uv,
wx, yz, py. Proceed now to write down the group ae, #f;
this must include no bitangent from the group abd; but in each
term one of the bitangents from the group ac will be combined
with one from the group ad. Now since it was free to us
to write down the pairs of each group in any order we pleased,
it is a mere matter of notation, and does not introduce any
geometrical condition, if we take this group to be ae, 3f, mu,
ow, ¢y, s¢. In like manner, it is a mere matter of notation to
suppose that the bitangents have been so lettered, that ag and
mz, ai and mz, ak and mvyr shall respectively belong to the
same group. This being assumed, it will be found that the
group af, be is necessarily nv, px, 7z, t4,, and we can thus
proceed, step by step, to write out the whole system. A table
of the 315 conics was accordingly given in the former edition,
but I do not occupy space with it now, because an algorithm
has been given by Hesse (Crelle, 1855, XLIX, 243), and more
minutely discussed by Professor Cayley (Crelle, 1868, LxVIIT,
176), which exhibits in an easily recognizable form the mutual
relations of the 28 tangents. Hesse's method introduces
considerations from the geometry of three dimensions. He
equates to nothing the discriminant of aU+ BV + oW where
U, V, W denote quadric surfaces. This discriminant being a
function of the fourth degree in a, B, v; if these quantities
be regarded as variables, the equation denotes a plane quartic.
But for any value of a, 8, y for which the discriminant. vanishes,
aU+ BV +o W denotes a cone, so that to every point on the
plane quartic corresponds a point in space, namely, the vertex
of this cone; and Hesse’s method connects the double tangents
-of the plane quartic with the lines connecting each pair of
8 points in space which are the intersections of three quadric
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surfaces. We make no use here of any principles of solid
geometry, but merely borrow the notation which Hesse’s
method suggests.®

260. Take then eight symbols 1, 2, 3, 4, 5, 6,7, 8. Their
combination in pairs gives us 28 symbols 12, 13...78, which
we use to denote the 28 bitangents. This notation, the symbols
being properly applied to the 28 bitangents, enables us cor-
rectly to represent their geometrical relations, though it fails com-
pletely to exhibit the symmetry of the system. In fact, the
notation might suggest that the bitangent 12 was related in a
different manner to the bitangents 13, 14, &c., and to the bitan-
gents 34, 56, &c., whereas actually there is no geometric diffe-
rence between the relations of any pair of bitangents. So again
we suppose the symbols so applied, that 12, 34,56, 78 shall denote
bitangents whose 8 points of contact lie on a conic. The same
property will then belong to every tetrad of bitangents re-
presented by a like set of duads; that is, by any four duads
containing all the eight symbols. But if we count, we shall
find that we can only make 105 arrangements of the 8 symbols
into sets, such as 12, 34, 56, 78. The remaining 210 conics
correspond to four bitangents, whose symbols are such as
12, 23, 84, 41; that is to say, the duads are formed cyclically
from any arrangement of four of the eight symbols, and it
will be found that we can have 210 such tetrads. Thus then
the group belonging to the pair 12, 34, consists of 56, 78;
57, 68; 58, 67; 13,24 ; 14, 23, and the group belonging to a
pair such as 12, 13, is 24, 34; 25, 35; 26, 36 ; 27, 37, 28, 38.
Thus the notation shews completely how the bitangents are
to be combined in groups. It suggests, however, that the 105
conics of the form 12, 34, 56, 78 differ in their properties from
the 210 of the form 12, 23, 34, 41. This is not the case, the
whole 315 tetrads forming an indissoluble system.

* Another mode of connecting the theory of 28 bitangents with Solid Geometry
is used by Geiser, Mathematische Annalen I. 129, as follows: From any point on a
eubic surface can be drawn a quartic cone touching the surface. This will be non-
singular, its bitangent planes being the tangent plane to the cubic at the vertex, and
the planes joining the vertex to the 27 lines on the surface.
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261. Professor Cayley remarks that Hesse's researches
establish the following general rule: A bifid substitution makes
no alteration in the geometrical relations of the bitangents denoted
by any set of symbols. 'What is meant by a bifid substitu-
tion is, that writing down such a symbol of substitution as
1234-5678, we interchange everywhere the duads 12, 34; 13,
24; 14, 23; and again, 56, 78; 57, 68; 58, 67; but leave
unchanged such duads as 15, 36, where one of the first set
of symbols is combined with ene of the second. The number
of possible bifid substitutions is 35, or, if we add unity (viz.
no alteration of any duad) the mumber is 36.

For example, vow if we apply the bifid substitution 1234-5678
to the pair 12, 34, we get the same pair in opposite order;
if we apply it to 12, 13, we get 34, 24, a pair of the same type
as 12,13 ; if we apply it to 12, 15, we get 34, 15, a pair of
apparently a different type, but not different in geometrical
relations. Thus, then, if we apply the same bifid substitution
as before to the tetrad 15, 67, 28, 34, which is one of the set
of 105 already referred to, we get 15, 58, 82, 21, which is one of
the set of 210, and which, according to the rule, possesses the
same geometrical properties.

262. Professor Cayley has exhibited in the following table
the geometrical relations of the bitangents, taken singly in
twos, threes, or fours; and the number of terms belonging to
each type of arrangement of the symbols.

Representative
term,

No of terms. Geometrical character.
I |12 28 28 Bitangents.
V [1213 168 ] ]
Il [12.34 210} 378 | Pairs of bitangents.

L |12.28.34 840
11 [12.84.56 420

A |12.23.31 56 }

Triads of bitangents such that 6

} 1260| . .
points of contact are on conic.

2016 | Triads such that 6 points of con-

VI |12.23.45 1680 .
3976 tact are not on conic.

Vv |12.13.14 280
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term. e No. of terms. Geometrical character.
M| 12.34.56.78| 105 315 | Tetradsof bitangentssuch that the
0 |12.28.34.41] 210 8 points of contact are on conic.

IV |12.34.56.67 2520
U |12.34.45.56 | 5040
U™ |12.23.34.45|3360 |15120
N |12.23.31.14| 840
W |12.13.14.45 | 3360 |

Tetrads such that 6 out of the
8 points of contact are on conic.

[A |12.31.45.53| 560
2 112.13.14.15| 280| 5,0 | Tetrads such that no 6 points of
N/ 112.34.35.36 | 1680 contact are on conic.

VV | 12.18.45.46 | 2520) 30275

In the above, for greater clearness, a geometrical symbol
has been attached to each term, viz. the symbols 1, 2, 3, 4,
5, 6, 7, 8 being regarded as points, when any two of these
are combined into a duad, this is indicated by a line being
drawn to join the two points ; thus A is the symbol of the term
12.23.31. This is very convenient; we can for instance, by
mere inspection, see that the symbol of any partial set in the
set of 15120 terms, contains as part of itself one of the
symbols [ll, [J, viz. that there are among the 8 bitangents
six such that their points of contact lie in a conic; whereas,
contrarywise in the symbols of the partial sets belonging to the
set of 5040, no one of these symbols contains as part of itself
either of the symbols |l|, [I.

To the foregoing may be joined the following two groups
of hexads of bitangents:

Representative term.  No. of terms.

A/ | 12.23.31.45.56.64 280
W || 12.34.35.36.37.38 168} 1008
V| 12.13.14.56.57.58 560

O 12.23.34.45.56.61 1680
V| 12 34 35 36 67.68 2520

1] 12.23 31.14.45.51 840
} 5040
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These 1008 and 5040 hexads have betn studied by Hesse
and Steiner as bitangents whose twelve points of contact lie
on a proper cubic, the former set having no six contacts
on a conic, but the twelve points of contact in the latter
case being divisible into two sets of six lying each on a
conic. It may be added, that the six tangents of each of
the 1008 hexads all touch the same conic, as will appear
from Aronhold’s investigations which will be presently given.
The six tangents of each of the 5040 hexads may be dis-
tributed into three pairs, whose points of intersection lie on
a right line (see Art. 258).

263. We conclude this discussion of the bitangents with
an account of the method by which Aronhold has shewn
(see Berlin Monatsberichte, 1864, p. 499), that when seven
arbitrary lines are given, a quartic can be found having these
lines as bitangents, and of which the other bitangents can be
found by linear constructions. The method depends on pro-
perties of a system of curves of the third class having seven
common tangents, but it seems convenient to state them first
in the reciprocal form with which the reader is more familiar,
viz. as properties of a system of cubics passing through seven
given points. (1) Consider any one cubic of the system, then
if the eighth and ninth points in which. it is intersected by any
other cubic of the system be joined, the joining line passes
through a fixed point on the assumed cubic, viz. the coresidual
of the seven given points (Art. 160). (2) Through any assumed
point 8 can be described one and but one cubic on which
this point shall be the coresidual of the seven given points.
For all cubics of the system through the point 8 pass through
another fixed point 9, and by definition, the coresidual is the
point where the line joining these points meets the curve again.
If, therefore, the coresidual is to coincide with the point 8,
the cubic must be that one which is determined by having the
line 89 as its tangent at the point 8. (3) Four cubics of the
system can be described to touch a given cubic of the system,
the points of contact being obviously the points of contact of
tangents drawn to the given cubic from the coresidual point
on it. (4) If the points 8, 9 coincide, that is to say, if cubics

GG
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that is to say, of the form ayU= V" which we have just dis-
cussed ; an equation which may also be written

xy NU+2AV +ay) = (zy+AT )%

There are, as we have seen, beside the value A =0, correspond-
ing to the pair of lines zy, five other values of A for which
MU+ 20V + axy will represent a pair of lines; and thus in
five different ways the equation can be reduced to the form
wxyz = V*. Hence, through the four points of contact of any
two bitangents we can describe five conics, each of which passes
through the four points of contact of two other bitangents.

A non-singular quartic has 28 bitangents; and there are
therefore § (28.27), or 378 pairs of bitangents; each of these
pairs gives rise to five different conics, but each conic may arise
from any one of the six different pairs formed by the four
bitangents which correspond to that conic, hence there are in
all § (378) or 815 conics, each of which passes through the points
of contact of four bitangents of a quartic.*

256. We have seen that each pair of bitangents combines
with five other pairs to form a group of six pairs, the points of
contact of any two of which pairs lie on a conic. It follows
that the 378 pairs may be distributed into 63 such groups of six.
The twelve bitangents of each group touch the same curve of
the third class; and this is touched also by the lines joining
directly and transversely the points of contact of each pair.
The intersections of each pair of bitangents, and also those of
each pair of joining lines, lie on a cubic. Corresponding to each
group there are twelve conics, each of which touches the quartic
twice with ordinary contact, and once so as to meet it in four
consecutive points, the twelve points of higher contact lying
on the cubic last mentioned. There being 63 groups, 756 such
conics may in all be drawn.

* Pliicker first noticed the possibility of bringing the equation of any quartic to
the form wzyz = V?, but he hastily inferred that the six points of contact of any
three bitangents lie on a conic, and thence drew an erroneous conclusion as to the
total number of conics passing through eight points of contact of bitangents (see
the Theorie der Algebraischen Curven, p. 246),
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257. We shall shew how to form a scheme of the 315
conics, and for that purpose we denote provisionally the first
26 bitangents by the letters of the alphabet, adding the symbols
¢ and 4 to denote the other two. We denote by abcd the
conic passing through the eight points of contact of the
bitangents a, b, ¢, d. If now abcd, abef, be two of the 315
conics, the pairs ab, cd, ¢f belong to the same group, and from
what we have seen, cdef will be another of the conics. This
may also be shewn directly as follows. Let the equation of
the quartic be abed =V, or

ab (cd+ 22V + Nab) = (V + Aab)’,
and we can determine A so that ed+2AV+N'ab=ef. Solve

for V from this equation, and substitute in the equation of the
quartic when it becomes

A'a't' + *d” + €'f” — 2N abed — 2N abef — 2cdef =0,
or dcdef = (cd + ef — N'ab)*,

a form which proves the theorem stated. It appears thus, that
given three pairs of lines which are to be pairs of bitangents
of the same group of a quartic, the equation of the quartic will
be of the form [4/(ab)+m #/(cd)+n 4/(ef})=0, so that if
two points were given in addition, a single quartic could be
found satisfying the prescribed conditions. Corresponding to
any group there are 15 conics, passing respectively through
the points of contact of each two of the six pairs of which
the group consists. There would thus seem to be 63 x 15 =945
conics; but then every conic abcd is counted three times over,
as belonging to the three groups ab, cd, &c., ac, bd, &c.,
ad, be, &c. ; the total number is therefore 315 as before.

258. Consider any conic abcd; then the group ab, cd, &e.,
and the group ac, bd, &c., can have no other bitangent common,
the quartic being supposed to be non-singular. For example,
if abef be a conic of the first group, aceg cannot be a conic of
the second. For (Art. 257) the equation of the conic through
the points of contact of a, b, ¢, d may be written in the form

Nab +3 (ed~ef) =0,
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systems 12345, 67, &c., where 12345 denotes the conic touching the
first 5 lines, and 67 is the point of intersection of the other two.
Now the two systems 12345, 67 and 12346, 57 have obviously
seven common tangents, and the remaining common tangents
are the tangents to 12345 from the point 57, and to 12346 from
67. But Brianchon’s theorem enables us, when one point on a
tangent to a conic is given, to find by linear constructions
the remaining tangent. These two tangents, then, having
been constructed, and their intersection found, the remaining
tangents drawn from it to each of the two conics in ques~
tion, will be the two required coresiduals, and therefore two
of the bitangents. Or otherwise, if we consider the three
systems 12345, 67; 12346, 57; 12347, 56, and determine
in the manner just described the remaining eighth and ninth
tangent common to each pair of systems, the three intersec-
tions of these pairs of tangents will, when joined, give three
of the required bitangents. The bitangent which is the
coresidual for the system 12345, 67 may be called the bitangent
(67); and thus the twenty-one bitangents may be denoted by
combinations of the symbols 1, 2, 3, 4, 5, 6, 7. In addition we
have the seven given lines: and if introducing for symmetry
a new symbol 8, we denote these (18), (28), (38), (48), (58), (68),
(78), we are led by Aronhold’s method to an algorithm identical
with that of Hesse.

266. The intersection of the eighth and ninth tangents
common to any two curves of the system is a point through
which passes the coresidual tangent for each of these curves.
Consider, then, the complex cubic systems 12, 34567 ; 34, 12567,
and one of the common tangents is the line joining the points
12, 34 ; that is to say, in the algorithm just referred to, the line
joining the intersections of the lines (18), (28); (38), (48); and
we now see that this line passes through the intersection of the
coresiduals of the two systems under consideration, that is to say,
through the point (12), (34). In this way we get the theorem
already proved (Art. 258), that the intersections of the lines
(18), (28); (38), (48); (12), (34); are in a xight line; and
Art. 262 shews, that by an ordinary or bifid substitution we
can find 5040 lines possessing the same property.
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267. We conclude with Aronhold’s algebraic investigation
of the equation of the quartic generated according to his method.
Let us use tangential coordinates a, 8, y; and let u, v, w be
any linear functions of them, aa + 58 + ¢y, &c., then the equations

Bv—qu=0, yw—au=0, au —Bv=0,

denote three conics having four tangents common, and of which
each touches one of the sides of the triangle of reference. And

a(Bv - yw) =0, B(yw—au) =0, v (au— Bv) =0,
denote three curves of the third class having seven common
tangents, viz. the four common to the two conics, and the sides

of the triangle of reference. Any other cubic having the same
7 common tangents will be of the form
“wa (Bv—qyw)+ v'B (yw — au) + w'y {au — Bv) =0,

where u', v/, w' are arbitrary constants, which are supposed
to be of the form aa’ + 58’ + ¢y, &c., where a, 8, 7' are the
coordinates of an arbitrary line. Writing the above equation
in the form

u, ', By

v, v, ya | =0,

w, w, af
it is evidently satisfied by the coordinates o’3"y’, which therefore
are those of a tangent to this curve. And further, this tangent
is the coresidual for that curve : for we shall find the other two
tangents through any point in that line, by substituting in the
above Aa' + pa” for a, &c. The equation then is divisible by g,
and after division becomes

’ n ’ ’ ” ' " " 1 ’ ”n 1"
“;u,ﬁ")' u;“)B'Y"'B'Y u,“,B'Y
xs ’U’, vn’ 'ylal +h/l' ‘v,, ‘U"’ 71a1'+'yr:a' +’l:’ vl’ vn’ 'Y”a” =0’
w' wl’ a’B’ w’ w'l a-'ﬁll+ a"Bl w' wl’ al’BlI
) b} ) ? ) b

and the symmetry of the equation shows that the pairs of
tangents are the same which can be drawn from the intersection
of the lines a'8'y', a"B"y" to the curves

"
u, uy By u, u'y By
’ "
v, v, ya | =0, | v, v, ya |=0.
w, v, af w, w"’y a8
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Thus then the tangents o8y, a"8"y” being respectively
the third tangents drawn to each curve from the intersection
of the eighth and ninth tangents common to both, are, by
definition, the coresidual tangents. The two curves will
touch provided that the quadratic equation in A, wm, has
equal roots; or if we write the coefficients of that quad-
ratic P, @, R, provided we have @ =4PR. If we demote by

" ./ ’_ I "’

X, Y, Z, the minor determinants v'w" —v"w’, wu"—w"¥,

III II'

u'v v, we have

P= By X+ Ya'Y+ aBZ,

Q ( 1 "+BII I)X+ ('yl II 7Ilal) Y+ (al3'+a'lﬁl) &

R_ B" IIX+ " ll Y+ a’lﬁ"z
Now for B'v"—B"Y, y'a"'—4"d, aB’ -a"f' we may write

Z, Y, z, these being the point—coordinates of the point of inter-
section of the two lines a'8'y', «”’8"y". The equation @*=4FR
is then equivalent to
X +y' Y+ 22" - 2y2 Y7 — 2202X — 20y XY =0,
or V(@X)+ /(Y )+ /(2Z)=0.
It will be remembered that X stands for v'w” — v"w’, and if we
put for these their values
v =dd +b08 +cy, w =a"d +b"B +c'y
v'=adad" + 08" +cy’, w'=a"d"+0'8"+ c"'y",
we have X=(0'¢"-b"c)z+ (ca"—c"a) y+ (a'd" —a'?) 2.
Similarly Y= (4"c — bc") z+ (c"a — ca”) y + (a"d — ad") 2,
Z=(bc — bc)x+(ca’ — ca)y+(ad — a'd)=.
Thus X, Y, Z represent known lines. They are in fact the
sides of the trlangle whose vertices are represented by u, v, w
It will be observed that the coefficients in X, Y, Z are the
constituents of the determinant reciprocal to that formed by

the ¢ ients of u, v, w; so that if X, ¥, Z had been
oz y given, u, v, w would be found by similar formule.
268. The same investigation would hold if the equations

of the three conics had been law=mBv=mnyw. The values
of X, Y, Z would remain as before, but we should have

P=mnB'yX + nly'a' Y + lma'B'Z, &c.,

II'
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and the equation would be
N (mnxX) + 4/ (nly Y) + &/(lmzZ) = 0.

This is the most general equation of a quartic having three
given pairs of lines 2, X, &c., as pairs of bitangents of the same
group. If we were given a seventh bitangent, then I, m, n
would be completely determined by the equations supposed
to be satisfied by the coordinates of that bitangent, viz.
la'v' =mfB'v' =ny'w', whence mn, nl, Im are respectively pro-
portional to a'u', BV, y'w'. Thus, then, if we are required
to describe a quartic having seven given lines as bitangents,
besides the one quartic determined (Art. 265) on the supposition
that no two of the tangents belong to the same group, we
can describe (7 x 15=) 105 others according to the method of
this article, by leaving out any one of the seven and dividing
the six remaining into three pairs, which can be done in fifteen
different ways.

BINODAL AND BICIRCULAR QUARTICS.

269. Except in connection with the bitangents, the theory
of non-singular quartics has been little studied, and what else
we have to state on this subject will be given in the concluding
section of this chapter, that on the Invariants and Covariants.
In order to complete the theory of the bitangents, we ought
to consider the modifications which that theory receives when
the curve has one or more double points. The case, however,
where the quartic has but one node, has received no attention,
and will not be here discussed. Quartics with two nodes, in
the case where these are at the circular points at infinity, have
been extensively studied under the name of bicircular quartics,*
and some of the principal results obtained will be here given.
All the projective properties obtained for bicircular quartics, may
of course be stated and proved as properties of binodal quartics,
but we shall find it convenient to give several of them intheir

original form, as the reader will have no difficulty in maki
N

the proper generalization. Quartics having the two circu
points as cusps, have also been much studied under the name of

* See, in particular, Dr. Casey’s paper, Transactions of the Royal Irish Academy,
vol. XXIV. p, 457, 1869,

I

’l
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Cartesians,® the properties of which may similarly be gene-
ralized and stated as properties of bicuspidal quartics. If a
quartic have one of the circular points as a casp, and the other
as a node, it cannot be real; consequently, this case has been
little studied, and therefore we have little to state as to the
properties of quartics having one node and one cusp.

270. From each of the two nodes of a binodal quartic may
be drawn four tangents to the curve (Art.79), and we shall
now prove that the anharmonic ratios of these two pencils are
equal. The general equation of a quartic having for nodes
the intersections of the line z with the lines = and y, is
"y + 2xyz (le + my) + 2* (az”+ by* + c2*+ 2fyz + 292z + 2hxy) =0.
The pairs of tangents at the nodes are given by the equations

'+ 2mxz + b2' =0, y* +2lyz + az" =0,
and we lose nothing in generality by supposing ! and m to be
both =0, which is equivalent to assuming, that for the lines z
and y have been taken the harmonic conjugate, with respect to
the pair of tangents at each node, of the line z which joins the
nodes. Arranging now the equation of the quartic
Y (& + b2") + 292" (fz + hx) + 2° (ax® 4 2922 + c2) =0,
we see immediately that the four tangents from the node zx are
given by the equation
(2 + 82%) (ax® +2gzx + ¢2°) =2 (fz + k), ‘
or az'+29z’z+(c +ab— k) 'z*+2(bg — hf ) 2’z + (be — f*) 2'=0.
The invariants of this quartic are
1=abc—af* —bg" + fyh + {5 (c+ ab- B*)?,

6J = (abc — af™ — bg* — 1 fgk) (c + ab — k") — §A* (af™ + bg")

+ 3abfgh + 3 " — 35 (c + ab — &)™
Now these values are symmetrical between @ and b, f and g, and
we see therefore that they are the same as the invariants of the

quartic which corresponds to the pencil of tangents from the
node yz, and that therefore the two pencils are homographic.

* See Chasles’ Apercu Historique, p. 350; Quetclet, Nouveaur Mémoires de
Bruxelles, tom. v.: Cayley, Livurille, vol. Xv. p. 354,
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271. Tt follows at once, a8 in Art. 168, that a conic can be
drawn passing through the two nodes, and through the four
points where each of the tangents from one node meets the
corresponding tangent from the other; and further, since there
are four orders in which the legs of the second pencil can be
taken without altering the anharmonic ratio, that the sixteen
points of intersection of the first set of tangents with the second
lie on four conics, each passing through the two nodes. When
the quartic is bicircular, that is to say, when the two nodes
are the circular points at infinity, the theorem becomes that the
stxteen foct of a bicircular quartic lie on four circles, four on each
circle® Itisto be noted, that any one of the conics through
the two nodes may degenerate into a right line together with
the line joining the nodes, so that four of the foci of a bicir-
cular quartic may lie on a right line.

272. We have already stated that the equation of any

quartic may, in an infinity of ways, be thrown into the form
a0+ bV +cW*+2fVW+ 29 WU +2RUV =0,

where U, V, W represent three conics. If the quartic is non-
singular, the three conics cannot have a common point, since it
is obvious that any point common to U, ¥, W, must be a double
point on the quartic whose equation we have written. In the
case of binodal quartics, U, V, W may be taken as three conics
passing each through the two nodes, and when these nodes are
the circular points at infinity, U, ¥V, W are three circles. We
lose nothing in generality by confining our attention to the
equation UW= V?* to which, as in the theory of conics, the
preceding equation may in a variety of ways be reduced. It
may for instance be written
(aU+gW+RV)'= (R —ab) V*+2 (gh —~ af ) VW +(g* - ac) W?,
where the right-hand side of the equation breaks up into factors.

Bicircular, therefore, and binodal quartics may be discussed
by considering the form UW= V?, and by regarding the quartic

* In point of fact, this theorem, which is due to Dr. Hart, was first obtained, and
the theorem of Art. 270 thence inferred. The proof given in Art. 270, is in substance
the same as Professor Cayley’s, See his Memoir on Polyzomal Curves, Edinburgh
Trans., 1869.

"R
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as the envelope of N'U+2AV + W=0, where U, V, W are in
the former case circles, and in the latter case conics passing
through the two nodes; and it is only necessary to examine
how this limitation modifies the results already obtained,
Arts. 251, &e.

273. When three conics have two points common, their
Jacobian breaks up into the line joining them, together with a
conic passing through the two points; and when the three
conics are circles, the Jacobian conic is the circle which cuts
them at right angles (Conics, Art. 388, Ex. 38). The Jacobian
being a determinant, the Jacobian of aU+ B8V +yW=0 is the
same as that of U, ¥, W; and when U, V, W are circles all
circles included in this equation have a common orthogonal circle.

If U, V, W are circles, the coordinates of whose centres
are x,y,2, Y72, &Y2, the coordinates of the centre of

MU+ 20V + W will be proportional to
k"a:l + 2Mi + m" x’ 1 + 2Xy! + y" X’zl + 2Mﬁ + za’

and the locus of the centre, as N\ varies, is evidently a conic.
Hence the quartic UW =V"* may be regarded as the envelope
of a circle whose centre moves on a fixed conic* 7, and which
cuts a fixed circle J orthogonally. And in the more general
case of the binodal quartic, where U, ¥, W are conics through
the fixed points, UW — V" is the envelope of the variable conic
MU+ 2\ V+ W, passing through the fixed points, all the
variable conics having a common Jacobian conic, and the pole,
with regard to any, of the line joining the fixed points moving
on a fixed conic F.

_4. The nature of the quartic will be modified if any
special relations exist between the conic F and the Jacobian.
Thus, if F' touch the Jacobian, the point of contact will be an
additional node on the quartic, and if F touches the Jacobian
twice, then each point of contact will be a node; that is, the
quartic will break up into two conics, each passing through the
fixed points. So if F pass through one of the fixed points,

* Dr. Casey has showed that the foci of this fixed conic are the same as the double
foci of the quartic.
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that point instead of being a node of the quartic will be a cusp,
and if F pass through both of the points both will be cusps, and
we have a bicuspidal quartic. Thus, in the case of bicircular
quartics, if the conic F which is the locus of centres be a circle,
the quartic, having the points at infinity as cusps, will be a
Cartesian.

If the conic F touch the line joining the points, that line
becomes part of the quartic. Thus, in the case of bicircular
quartics, if the conic F' be a parabola, the quartic will degenerate
into a circular cubic, together with the line at infinity.

If the centres of U, V, W lie on a right line, the Jacobian
reduces to the line joining the centres.

275. Let us now return to the equation UW=V*. We
have seen that there are in general six values of A, for which
N'U+ 20V + W breaks up into factors, and that the right lines
represented by the several factors are bitangents to the quartic
UW=7V*. Now when U, V, W all pass through fixed points,
MU+ 20V + W which denotes a curve passing through the
same points, must, if it denote right lines, denote two lines
passing one through each of the points, or else the line joining the
points together with another line. In the former case the two
lines are mot proper bitangents to the quartic UW =V, but
ordinary tangents passing through a node (any line passing
through a node being improperly a tangent); in the latter case
one of the two lines is a proper bitangent, the other is the line
joining the nodes. Of the six values of A, only two correspond
to the case of proper bitangents; for if L be the chord common
to U, V, W, then V and W will be of the forms respectively
aU+ LM, bU+ LN; and MU+ 2 \V+ W will have L for a
factor if X be one of the roots of A'+2Xa+b =0. Thus, in the
case of bicircular quartics, when U, V, W all represent circles,
there are evidently two values of A for which the coefficient of
&’ +y' vanishes in MU +20V 4+ W=0, and for each of these
values the equation denotes a right line bitangent to the quartic
UW="V" Or, we may see the same thing geometrically
from the construction in Art. 273. If the circle M*U+ 2AV+ W
becomes a right line, its centre passes to infinity, and must
therefore be the point at infinity on one of the two asymptotes
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of the conic F'; and the two bitangents are therefore the per-
pendiculars let fall from the centre of the Jacobian on these
asymptotes.

In each of the four other cases where the discriminant of
MU+ 20V + W=0 vanishes, the equation denotes a pair of
tangents to the quartic, passing each through one of the circular
points at infinity, and whose intersection therefore is a focus of
the quartic; or, what comes to the same thing, MU+ 2AV + Wis
an infinitely small circle whose centre is the focus, and which
has double contact with the quartic. ' If one of two orthogonal
circles reduce to a point, that point must lie on the other circle;
hence if N'U+ 2MV+ W reduce to a point, that point must be
on the Jacobian circle of U, V, W. We have therefore obvi-
ously four foci, viz. the intersections of this Jacobian circle with
the conic ¥, which is the locus of centres of_circles included in
the equation A'U+2AV + W=0, and which may therefore be
called a focal conic.

The four points in which the Jacobian circle meets the quartic
will be points in which circles of the system AMU+2AV+ W
meet the quartic in four consecutive points (Art. 251).

There are four ways in which the equation of a given
bicircular quartic can be reduced to the form UW=V*; cor-
responding to each there are four foci, two bitangents and foar
cyclic points, or points on the curve where four consecutive
points lie on a circle (see Art. 114); the quartic baving in all
16 foci, 8 bitangents, and 16 cyclic points.

276. If one of the foci of the quartic be taken as origin,
the equation of the quartic must be of the form (2*+°) W= V?,
where V' and W represent circles; and the quartic is the
envelope of &'+ 3"+ 2AV+ X' W=0. Besides the value A=0,
there are three other values of A, for which this variable circle
reduces to a point; and one of these values must be real. We
can then write the equation

@+ (@ +yF+2AV+ N W) = (2 + 5+ AV)?,
or, in other words, when we have a focus we can at once bring
the equation of the quartic to the form AB= V?*, where 4 and

B are point-circles.  Bicircular quartics may be divided into
two classes, according as the other two values of A, for which
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A + 20V +N'B reduces to a point-circle, are real or imaginary,
or, in other words, according as the four real foci do or do not
lie on a circle. In the former case let C' denote one of the two
point-circles, and as in Art. 257, eliminate C between the
equations AB=V"* A+2AV+N'B=C, and we see that
the equation of the quartic may be written in the form
U J(A4)+m y/(B)+n4/(C)=0, that is to say, that the quartic is
the locus of a point whose distances from three fixed points
are connected by the relation lp + mp’ 4 np" =0.

The condition that I4/(4)+m +/(B)+n 4/(C) shall be

touched by Ad.+ uB+vC is (Conics, Art. 130) € + % +2=0;

and when 4, B, C are point-circles, and a, 3, ¢ the lengths of

the lines joining the points, it is easy to verify that the dis-
2 2

criminant of Ad+uB+»0 vanishes if § + 5+ =0, The

two equations just given determine A, w, v, and therefore the

fourth focus.

‘We have seen ( Conics, Art. 94) that if 4, B, C, D be four point-
circles, we have identically bcd. 4 + cda. B+ dab. C+ abc.D =0,
where abc is the area of the triangle whose vertices are a, b, ¢,
&c. Hence, M, u, v are proportional to the areas of the triangles
formed by the fourth focus and each pair of the other three
foci. In the case where the three points a, b, ¢ are in a right
line, it can easily be proved that the squares of the distances
from any point of four points on a right line are connected
by the equation

A B Cc D
ab.ac.ad T babo.bd T cachod T dadbde

Hence we see that the reciprocals of A, u, v are proportional
to ab.ac.ad, ba.bc.bd, ca.ch.cd, and that we have the equation

Pab.ac.ad + m*ba.be.bd + nica.ch.cd = 0.
If we had l'ab.ac + m*ba.bc + nca.cd=0

the fourth focus would be at infinity, and the curve would be a
Cartesian.

277. When we are given four concyclic foci of a bicircular
quartic, two such quartics can be described through any point, and
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these cut each other at right angles. 1f we are given the fourth
focus, we are given the values of A, u, v, for which A4 + uB+v(C

reduces to a point; and evidently two systems of values of
2 2

!, m, n can be found to satisfy the equations l:+ % + 1—:-=0,

A
lp + mp' + np" =0, where p, p', p" or ¥/(4), ¥/(B), ¥(C) denote
the distances from the three foci of a point on the curve sup-
posed to be given.

Two quartics
IV(4)+m N(B)+ny(C)=0, T y(d)+m ¥(B)+="¥(C)=0
will be confocal if

@ (m'n™ — m"n’) + * (n'l* — n°7') + ¢’ (P'm™ = I*m®) =0,
as appears immediately on eliminating A, p, v from the three
equations
2 ] T ” ' ] 2
l-”+’ﬁ +2 =0, E+1”—+"—=o, AL N
i v L .

In oyder next to find the condition that the quartics should
cut at right angles, we first premise, and the reader can verify
without difficulty, that if 4, B, C be point-circles, and a, b, ¢ have
the same meaning as before, the condition that A4 + uB + »C,
MA+p'B+v'C should cut each other at right angles, is

& (W' +p'v) + 8 (VN +VA) + S (A’ + W) =0.
We observe further, that, as at Conics, Art. 130, the quartic
I(A4)+m (B)+n /(C) will be touched at any point for
which the values of /(4), v/(B), ¥(C) are p, p’, p", by the circle
;l, 4+% B+ %, 0=0. Tho conditon that this circle should e

orthogonally the tangent circle to I' v/(4)+m' v/(B) +n' /(C) is
a,mn’+m'n+b,,nl'+n'l+c, m' +U'm -0
PIPH P”P PP' hd

But solving between the two equations

rn

lp+mp'+np"=0, lp+m'p +n'p"=0,
we find p, p', p” respectively proportional to mn'—m'n, nl' - 2'l,
In' —U'm. Substituting in the preceding equation, we find that

the condition that the quartics should be mutually orthogonal, is
a* (m'n* —m®n’) + ' (01* — 2"T) + ¢* (P'm”™ - "m*) =0,
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the same as the condition already found that the quartics should
be confocal ; and the theorem stated is therefore proved. It
does not appear to be necessary to the validity of this proof
that C should be real, and hence the theorem is true that con~
focal quartics cut at right angles, even though the four real
foci should not lie in a circle.

278. The theorem of Art. 277 was originally obtained from
geometrical considerations by Dr. Hart for the case of the
circular cubic. If we seek the locus of a point whose dis-
tances from three fixed points are connected by the relation
lp + mp' +np" =0, the coefficient of («* + »*)* will be found to be

(I+m+n) (m+n—1) (n+1—m) 1+ m—n) .
Consequently, the locus which is ordinarily a bicircular quartic,
reduces to a circalar cubic if /+m +n=0, and the theorems
already here proved are true for circular cubics, which have also
sixteen foci lying in general in four circles. Dr. Hart’s proof,
which was given at length in the former edition, shews that if
O, P, Q be the centres of the quadrangle formed by the four foci
A4, B, C, D, the cubic
must pass through
these points, the tan- Q
gents at any of these
points O being one
of the bisectors of
the angle made by
the intersecting lines - ~
AC, BD, and being
parallel to the real v
asymptote of the cubic; ‘
and that the cubic p N ]
also passes through R !
the centre of the focal /
circle, the tangent
at B being parallel to
the same asymptote.*

Since then O, P, Q, R

* Thus the centres of the four focal circles of a circular cubic are the points of
contact of tangents parallel to the real asymptote.
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are points of contact of tangents from the same point of the
curve, the point where OP meets QR (or the foot of the per-
pendicular from O on QR) is also a point on the curve (Art. 150).
Similarly for the points where 0Q meets PR, and OR, PQ,
and it can be shewn that the tangents at these points also to the
two cubics which pass through them at right angles. Thus
the seven points common to the two eubics having 4, B, C, D
for their foci, are determined by simple constructions, and we
may arrive by projection at theorems, some of which have been
already stated; for instance (see Art. 152) if corresponding
tangents, taken in any order, from two points I, J mutually
intersect in points 4, B, C, D, the centres of the quadrangle
formed by these points will be also points on the cubic, having
for a common tangential point the point where IJ meets the
curve again; and the- point of contact of the fourth tangent
from this point will be the pole of IJ with respect to the conic
through the points 4, B, C, D, 1, J.

279. The method by which Dr. Hart proved these theorems
was by shewing that when the foci are given, the relations
established, Art. 276, combined with the condition I+n=m,
suffice to determine I/, m, n, and that actually, denoting the
distances of O from the four foci by a, b, ¢, d, the curve must
either have the property
(b-+) p(a—b) p'=2(a+0) p'y oF (c=b) pit(a-+5) p"=s(a+0)p"
Each coefficient is given a double sign, because, when the equa-
tion lp+mp' +np”"=0 is cleared of radicals, it only contains
the squares of /, m, n. The two equations answer to two diffe-
rent cubics having the given points as foci; the different signs
answer to different branches of the same cubic. The upper
signs belong to a branch extending to infinity; for then the
equation is satisfied by the values p=p'=p”, which are true
for an infinitely distant point. The centre of the focal circle
obviously lies on this branch. The lower signs belong to an
oval, the equations then not being satisfied by p=p'=p"
The equations being satisfied by the values a, b, ¢ for p, p', p,
we see that O is a point on the cubic.

In like manner we have the relations

"

(e=d)pt(atd)p"=1(a+0)p" or (c+d)p(a—d)p"=4(atc)p",
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whence, combining the equations,
p+p" _ '+p"l.
at+c b+d’

or the two cubics make up the locus of the intersection of two
similar conics whose foci are respectively A and C, B and D.
The similar conics which intersect at O have evidently as a
common tangent one of the bisectors of the angles at O;
these therefore are, as has been stated, the tangents to the
two cubics which constitute the locus, and which therefore cut
at right angles.

280. Bicuspidal quartics may be considered as a limiting case
of binodal quartics. In the case where the two cusps are the
circular points I, J at infinity, the curve is called a Cartesian.
Des Cartes studied this curve (thence known as the oval of
Des Cartes), as the locus of a point O, whose distances from
two fixed points 4, B are connected by the relation lp + mp'=c.
Chasles shewed, and it can be verified without difficulty, that
whenever this relation holds good, a third point C can be
found on the line AB, whose distance from O satisfies a re-
lation of the form lp +np"=c'; in other words, that the oval
possesses, besides the two foci considered by Des Cartes, a third
possessing the same property. We use the word Cartesian
here in a somewhat wider sense. We shall shew that when
a quartic has the two points I, J for cusps, it has three-foci
lying on a right line. When these foci are real, the curve
is the same as that studied by DesCartes; when two are
imaginary we still call the curve a Cartesian, though Des Cartes’
. mode of generation is no longer applicable.

The equation of the Cartesian may generally be brought
to the form S§*=%’L, where S represents a circle and L a right
line, % being a constant (or, what is the same thing, £=0
being the right line at infinity), from which form it is evident
that the intersections of 8 and % are cusps, the cuspidal
tangents meeting in the centre of S, which is therefore the
triple focus of the Cartesian, while L is evidently a bitangent
of the curve®. The curve is then obviously the envelope

* This equation has been studied by Prof. Cayley under the form
(@+y*—a®)?+ 164 (x—m) =0,
RS
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of the variable circle A'%(L + 2AS+/4*=0, the centre of
which obviously moves along a right line perpendicular to
L; and equating the discriminant to zero, there are easily
seen to be three values of A, for which the circle reduces
to a point, and therefore three foci. From the theory already
given, if 4, B, C be any three of the variable -circles,
the equation of the envelope may be written in the form
1 y/(4)+m y/(B)+n4/(C)=0; and therefore we have the property
lp + mp' +np" =0, where p, p', p" denote the distances from the
three foci; or, again, since &' is a circle of the system
answering to the value A =0, we have lp + mp' =nk.

A Cartesian may also be generated as the locus of the
vertex of a triangle, whose base angles move on two fixed
circles, while the two sides pass through the centres of the
circles, and the base passes through a fixed point on the line
joining them,

If any chord meet a Cartesian n four points, the sum of their
distances from any focus 78 constant; for the polar equation,
the focus being pole, is easily seen to be of the form

p'—2(a+bcosw)p+c'=0,
and if we eliminate @ between this and the equation of an
arbitrary line, we get for p, a biquadratic of which — 4a is the '
coefficient of the second term.

When, in the preceding ¢ =0, the equation becomes
p=a+b cosw, and in addition to the two cusps I, J, the curve
has the origin for a node. It is then called Pascal’s lLimagon,
and may evidently be generated by taking a constant length on
the radii vectores to a circle from a point on it. If further
a =1b, the curve becomes tricuspidal, and is called the cardioide,
a curve generated by adding or subtracting a portion equal to
the diameter, on the radii vectores to a circle from a point on it.
The equation may be written in the form p* = m? cos .

281. The focal properties we have been discussing may
be inﬁw@b‘y the method of inversion (Art. 122). It
is easy to shew that to a focus of any curve corresponds
a focus of the inverse curve, and that the origin or centre
of inversion will be a focus if the points Z, J at infinity
are cusps. Thus, for the Cartesian which has three col-
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linear foci, the inverse with regard to any point is a bi-
circular quartic having three foci on a circle passing through -
the origin which is also a focus. In inverting, if O be the
origin, 4, B any two points, a, b the inverse points, then for

the distance AB we are to substitute To any relation

ab
Oa.0b"
then of the form A4 P+ uBP=c, will correspond one of the form
AMap +p'bp=c'Op, and thus by considering the bicircular quartic
as the inverse of a Cartesian we arrive at the fundamental property
of bicircular quartics; and in like manner from any relation of
the form AAP+ uBP+vCP=0 may be deduced a relation
Aap +pu'bp + Vep=0. The inverse of a bicircular quartic from
any point on the curve is a circular cubic which, therefore,
possesses the same focal properties. A circular cubic or bi-
circular quartic is its own inverse with respect to any of the
points O, P, Q, R, (p. 239). The angle at which two curves cut
is not altered by inversion, and therefore the theorem as to
confocal curves cutting at right angles if proved for cubics is
proved also for quartics. The inverse of a conic is a bicircular
quartic having the origin for an additional node, and from
the focal property of conics may be inferred that such quartics
have the property p
a
Oa* 5=

where a and b are two foci and O the node. In like manner,
by inverting the focus and directrix property of conics, we
arrive at another method, given by Dr. Hart, for generating
this kind of quartic. If the radius vector from a fixed point
C to P meet a fixed circle passing through C in E, and if
- A4 be another fixed point, the quartic is the locus of the point
P, for which PA = PE.

282. There exists for the binodal quartic* a theory of the
inscription of polygons, analogous to Poncelet’s theory in
regard to conics. Let 4, B be the nodes: starting from a point
P of the curve, if we join this with 4, the line AP meets the
curve in one other point, say Q; joining this with B the line
BQ meets the curve in one other point, say R; joining this

. * Steiner, Geometrische Lehrsiitze, Crelle, vol. XXX11, p. 184 (1846). .
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again with A4, the line AR meets the curve in one other point,
say S; and so on. We have thus in general an unclosed
polygon PQRS..., of which the alternate sides PQ, RS, ...
pass through A4, and the other alternate sides QR, ... pass
through B. For a binodal quartic taken at random, it is not
possible to find the point P, such that there shall be a closed
polygon of a given even number of sides; for imstance, a
quadrilateral PQRSP of which the sides PQ, RS pass through
A and the sides QR, SP pass through B. But the quartic
may be such that there exists a polygon of the kind in question
(as regards the quadrilateral this is obviously the case since
eonsidering a quadrilateral PQRSP drawn at pleasure and
taking 4 for the intersection of PQ, RS, and B for that of
QR, SP, we can describe a quartic passing through the points
P, @, R, 8 and having the points 4, B for nodes), and when
this is so, that is, when there is one polygon there are an
infinity of polygons; viz. any point P whatever of the curve may
be taken as the first summit, and the polygon, comstructed as
above, will close of itself.

UNICURSAL QUARTICS.

283. Taking the nodes to be at the angular points of the
triangle of reference, the equation of the curve must be of
the form

ay’s + b2 + oy’ + 2fr’yz + 2gy’ex + 2h2'xy =
which may be written

2 3 2
a(2) +5(;) +e(3) +of o+ 29 -+ 2h =0,
z . z yz 2z xy

Thus we see that the quartic may be generated from a conic by
writing, in the equation of the latter, for each coordinate its
reciprocal ; a process which may be called “inversion,” using
the word in a wider sense than that in which we have already
employed it. It is easy to express this transformation by a
geometrical construction. Let the coordinates be proportional
to the perpendicular distances from the sides of the triangle of

reference, and let P, P’ be two points, whose coordinates are
connected by the reciprocal relations

Ziy:z=y 172y &y id=ysi20:2y;
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then we have seen, Conics, Art. 55, that the lines joining P, P’ to
the vertices of the triangle make equal angles with the sides; or
otherwise, Conics, p. 263, that if P be one foeus of a conic touch-
ing z, y, 2, then P’ will be the other focus. In general, in this
method to any position of P corresponds a single definite posi-
tion of P'. If, however, we have «'=0, or P' any where on
the line BC, we have y and z both =0, and P coincides with 4 ;
and reciprocally to 4 corresponds any point on BC. It is to be
remarked, however, that when o' =0, the corresponding values
of y and z, being respectively z'z', 'y, though evanescent, have
to each other the definite ratio 2z': y'; and therefore to any
point P’ on BC corresponds a definite element of direction
through 4. We have, in fact, P indefinitely near to A4, but in
a given definite direction, viz. such that (as in the general case)
AP, AP' make equal angles with the sides. If now P describe
any locus, the other point P’ will describe a corresponding
locus; thus if the locus described by P be the right line
ax+by+cz=0, that descrived by P’ will be the conic
ay'z' + b2'c’ + cx’y’ =0, and vice versd (compare Conics, p. 263);
if a =0, that is to say, if the line pass through A4, the conic
reduces to @' (bz'+ cy’) =0, and leaving out the line z' or BC,
we may say that to the line by+cz corresponds the line bz'+cy';
and, as already mentioned, if the one locus be any conic, the
other will be a trinodal quartic.

284. The correspondence of the conic and quartic may be
examined in detail ; the conic meets each side of the triangle,
say BC in two points; corresponding hereto we have through
A two elements of direction, viz. these are the tangents of the
quartic at its node 4. Hence according as the conic meets.
BC in two imaginary points, touches it, or meets it in two.
real points, the quartic has at 4 an acnode, cusp, or crunode,
and the like for the other sides. Thus if the conic be an
ellipse or, say, a circle, situate wholly within the triangle, the
quartic is a triacnodal curve composed of a trigenoid figure
within the triangle and of the three vertices as acnodes (fig. 1) ;
if the ellipse is inscribed in the triangle, the quartic is tricus-
pidal (fig. 2); if the ellipse cuts each side in two real points,
then the quartic is tricrunodal; viz. if on each side the inter—
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sections are internal we have the fig. 3, whereas if the inter-
sections are external we have the fig. 4. It is to be observed
that in the transition from the one form to the ether the
ellipse must pass successively through the vertices of the tri-
angle; and that when the ellipse passes through a vertex
the corresponding quartic breaks up into a right line and a
cubic; the transition cannot be made (as at first sight it would
appear it might) through a quartic having a triple point.

Fig. (1). Fig. (2)-
Fig. (3). Fig. (4).

&

The complete discussion of the different forms would be
interesting and not difficult ; but it would occupy a good deal
of space; it would be necessary (in the present case of plane
curves) to consider the conics which in each figure correspond
to the line at infinity of the other figure. For the like theory,
as regards spherical figures, there are no such conics, and the
theory is considerably simplified.

285. The foregoing mode of generation of the trinodal
quartic leads at once to various properties of the curve. It
is well known that if a conic cuts the sides BC, CA4, AB of
a triangle, and from each vertex we draw lines to the inter-
sections on the opposite sides, these six lines touch a conic;
and it is easy to shew further that if instead of the two lines
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through each vertex we consider the two inverse lines,. these
meet the opposite sides in six points lying on a conic; and
consequently that the six inverse lines also touch a conic.
In fact, if the lines (x=ay, z=24dYy), (y=PBz, y=FL=)
(2 = yx, z=o'z) meet the sides x =0, y =0, 2z =0 respec-
tively in six points lying on a conic, it is easily seen that
ada'BB'yy =1, a relation which remains unaltered when a, 8, v,
o, B, ' are changed into their reciprocals. Now, if a conic
is transformed into a binodal quartic, then by what precedes
the tangents at a node 4 of the quartic are the inverses of
the lines from A to the intersections of BC with the conic;
hence, the tangents at the nodes A, B, C touch one and the same
conic; a theorem which may also be derived directly from
the equation of the quartic.

286. Similarly, if from the points 4, B, C we draw tangents -
to a conic, then it may be shewn that the six inverse lines are
also tangents to a conic. But transforming the conic into a
binedal quartic, the tangents from 4 to the conic are trans-
formed into the tangents from the node 4 to the quartic (for a
curve of class n, the number of tangents from a node is =n — 4,
and therefore for a binodal quartic it is =2); and we have thus
the theorem, that the six tangents from the three nodes to the
quartic touch ome and the same conic.

287. To the bitangents of the quartic correspond conics
through 4, B, C, having double contact with the conic; and
to the stationary tangents of the quartic correspond conics
through 4, B, C, having stationary contact with the conic.
It can be shewn, that the numbers of such conics are 4 and 6
respectively, agreeing with 7=4, «=6. But the result as to
the bitangents can immediately be obtained from the equation
of the curve, which may be written in the form

{9 V(@) + 52 ¥(8) + 2y VO -
=22yz [{v/(b) = f} 2+ {¥/(ca) — g} y + {¥(ad) - B} ],
where the factor multiplying 2xyz evidently denotes a bitangent,

and by changing the signs of the radicals, we have in all four
bitangents. Write for a moment fx+gy+ hz=3, a ¥/(bc) =1,
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y V(ca)=m, £ /(aB)=n, and if ©=0 denote the equation of
the four bitangents, we have

O=(s-l-m—n)(s—l+m+n)(s+l-—m+n)(s+l+m—n)

=( = I'—m'—n")' — 4 (m"n’ + 2'0 + U'm" + 2lmns)

=( —0-m'—n")—4abcU.
In other words, the equation of the curve may be written

{(fz+ gy + kz)* — bex” — cay® — abe™}* - © =0,
shewing that the eight points of contact of the bitangents lie on
a conic. o
If the four bitangents be denoted by ¢, %, v, w, the equation
of the quartic may be written
dt+ut+olit+ut=0,

or (f+u'+v'+w'—2tu—2tv—26w—2vw —2wu—2uv)” = 64tuvw.

In this form, it is evident that ¢, u, v, w are bitangents whose
points of contact lie on a conic, and it can be verified withoat
much difficulty, that (¢—u, v—w), (t—v, u—w), (¢—w, u—1)
are nodes.

288. We have just shewn how in one way the equation
of the quartic can be reduced to the form UW=V*; and
generally if u, w, and v denote any two tangents to the conic
and their chord of contact, since the equation of the conic can
be written in the form ww=1" that of the quartic is thence
immediately given in the form UW=V?*, where U, V, W are
linear functions of yz, 2z, xy.

In connecting the trinodal quartic as above with a conic,
we have also verified that the curve is unicursal. Since the
coordinates @', ', 2’ of a point on the conic can be expressed
as quadratic functions of a parameter 6, the coordinates y'z,
2’y 'y’ of the corresponding point on the quartic are imme-
diately given as biquadratic functions of the same parameter.

The preceding theory of trinodal quartics extends to the
case when any or all of the singular points are cusps. If all
are cusps the equation of the curve is reducible to the form
@ 4+y 44 278=0, and the tangents at the cusps are z= y=2 which
meet in a point; as we may also see-by reciprocation, the re-
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ciprocal being a cubic whose equation may be written in the form
at+yt+24=0. When the curve has two cusps and a node,
the line joining the two points of inflexion, the line joining
the two cusps, and the bitangent all pass through the same
point. The cases of the higher singularities described Art. 243,
require to be separately treated.

289. The equation of a quartic having a tacnode, as given
Art. 244, is

Y2+ b2’yz + cxy’z + dy’z + ex* + f2ly + g2'y* + hay + iy = 0.

Let it also have a node, and since, in Art. 244, it was only
assumed that the point zy was the tacnode and the line y the
tangent at it, we may take the point zz as the other node.
In order that this point should be a node we must have d, %,
and v=0, and the equation becomes

(y2)' + ba’.yz + cxy . yz + ex* + fo' . xy + gx'y* = 0.
We have written the equation so as to exhibit that it is a
quadratic function of zy, z', y2. Hence, if in the general
equation of a conic we write xy, 2%, yz for @, y, z respectively,
we shall have the equation of a quartic with node and tacnode.
It will be seen that the relations

diyid=ay:a: y2
imply reciprocally =z :y:z=a%y :2":y%7,
g0 that we have a like theory to that which exists for a quartic
with three distinct nodes. The constants may be determined
so that the node shall become a cusp, or the tacnode a node-
cusp, or that both these changes should take place, and the
theory thus extends to quartics having two distinct singular

points, one of them a node or cusp, the other a tacnode or
node-cusp.

290. The equation of a quartic having an oscnode has been
given, Art. 244, as

(yz — ma")* + cwy (yz — ma’) + dy’z + ga'y* + hacy® +iy* =0,
KK
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It is obviously a quadratic function of yz—ma?®, zy, 3*. Now

the relations

2y :d=ay:y: yz—md,
will be found to imply

z:y:z=2y 1 y*: Y7 + ma”,
8o that there is for the present case a theory analogous to that
established for trinodal quartics. The constants may be parti-
cularized, so that the oscnode becomes a tacnode-cusp, and the
theory thus extends to the case of quartics having a tacnode
cusp. In all these foregoing cases, we have expressed the
coordinates z, y, z of any point on the quartic, as quadratic
functions of &, 3/, 2/, a variable point on a conic; and since
the latter coordinates can be expressed as quadratic functions

of a parameter 6, the former coordinates are expressed as
quartic functions of the same parameter.

291. In the remaining case of a quartic curve having a
triple point (general or of any special form), the mode of
treatment used in the last articles is not applicable, but we can
otherwise immediately express the coordinates as rational func-
tions of a parameter. Taking the point y as the triple point,
the equation of the curve is of the form zu,=u,, where u,, u,
are homogeneous functions of the third and fourth degrees
respectively in z, y. If we now substitute y =0z, we get
20,=20,, where ©,, ©, denote cubic and quartic functions of
6; and we have 2, g, z respectively proportional to ©,, 60,, ©,.

The method here employed is exactly that suggested in
Art. 44. A variable line y = 6z drawn through the triple point
meets the curve in but one other point, the coordinates of which
are therefore rationally expressible in terms of 6. And we should
be led to substantially the same results if we employed the
same method in the cases previonsly considered; for example,
if in the case of a trinodal quartic we determine each point
of the quartic as the intersection of the curve with a variable
conic passing through the three nodes, and through another
fixed point on the curve.

The apecial case of a quartic with a triple point 2y = z* may
be particularly noticed as it can be treated by exactly the same
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method as was used (Art. 212). The curve has, beside the
triple point, no singular point but a point of undulation, and
its reciprocal is a curve of like nature.

INVARIANTS AND COVARIANTS OF QUARTICS.

292. When we have occasion to write the equation of a

quartic at length, we shall write it
az' + by + c2* + 6fy'2" + 69z"x" + 6ha’y”

+ 12lz%yz + 12my"zx + 12n2*cy

+4a2’y + 40,22 + 45,5z + 4b Y’z + dc,2°x + 4c 2y = 0.
The concomitant of lowest order in the coefficients is the con-
travariant (Art. 92) of the second order in the coefficients,
whose symbolical expression is (a12)‘, and whose vanishing
expresses that the line ax+ By + 4z cuts the quartic in four
points, for which the invariant S vanishes. We shall call this

contravariant o; it is of the fourth order in the variables
a, B, v, and its coefficients are

A =bc+3f"~ 4be, B=ca+3¢"—4ca,, C=ab+3k'-4ap,
F =af+ghk+ 20' —2an —2am,

G =bg + hf +2m* — 251 — 2bn,

H =ch+fg+ 2n' —2cm —2¢]l,

L = 2fl - mn—gb,— he,+ bic,,

M =2gm — nl - ke, — fa,+ca,,

N =2kn —lm - fa,— gb, + ab,,

A,=3me,— 3nf —cb, +be,, A,=3nb, —3mf—bc, +be,
B,=3na, — 3lg - ac, +ac,, B,= 3lc, - 3ng —ca,+ca

3?

C,= 3, —3mh—ba,+ba, C,=3ma,—3lk—ab,+ap,

293. The contravariant just mentioned is the evectant of
the simplest invariant 4, which is of the third order in the
coefficients, and has for its symbolical expression (123)*; that
is to say, o is found by performing on A the operation

. d d .d . d .
a %+'3‘25+7 zé-l‘ﬂ"y d—f-l-&c.,
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and conversely from the values already given for the coefficients
of o the values of 4 can be inferred. This is
A =abc+3(af"+bg" + ck') — 4 (ab,c, + be,a, + cad,)
+ 12 (fT + gm® + hn®) + 6fgh — 12lmn
- 12 (anf + aynf+ bing + b lg + c;mh + ¢ lk)
+ 12 (Ibc, + mea, + nab,) + 4 (abc +abc,).
If we use the same notation as in Art 223, the value of
A may be written '
7 (d%) + 4 (dea) + 3 (db") — 12 (c*D),
where
(dg) = doJA - 4dldl + 3d9’)
(doa) =a, {dlcl - 3dsca + 3dacx -dcco} +a, {dlco - 3ds°l + 3d,c,- docu}r
(") =dpb' —4dbb, +4db +2dp b, — 4dDb, +db)},
(c’b) = bn (coc: - ct’) - bn (cocs_ cxca) + bo (clcs - c:)’
the invariants (d*), (dca), &c., being all known in the theory
of the binary quantics.

294. The next simplest invariant B is of the sixth order
in the coefficients. It may be formed by taking the six
equations obtained by twice differentiating the given equation
with respect to z, y or 2z, and from these six equations elimi-
nating dialytically 2*, 3, 2%, 22, 2y, yz. We thus have B in
the formn of a determinant
a, by g, Ly ay
ky by fy by m,
9y & o ey
Lidyey f/, m
gy My €y 7y Gy
ay by my m 1,

N

>~ 8 =3

We shall presently give the developed expression for B.
Meanwhile, we remark that Clebsch has used this invariant
to shew that the form

p4+q4+r4+84+t4=0’
where p, g, 7, 8, ¢ are linear functions of the coordinates, is not
one to which the equation of every quartic can be reduced.
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Since p, ¢, &c., each implicitly contain three constants, the
form just written involves fourteen independent constants, and
therefore, at first sight, seems capable of being used as a
canonical form sufficiently general to represent any quartic.
But on forming for the above equation the invariant B, it will
be found to vanish, and, therefore, this form will only represent
quartics for which B=0.*

295. In calculating the value of B, it is convenient to use
the following value for a symmetrical determinant of six rows
and columns, the constituents of which are denoted by 4", ab, ac,
&e., ba, &', be, &c.
a’b'c’'d’elf* — 2a’b'c'd’ (ef )* + 22a’b’c". de.ef . fd + Za'b" (cd )* (ef )*
—23a'V.cd.de.ef fo + 22a" . be. cd . de.ef . fb — 22a® (be)' de.ef. fd
+ 23 (ab)’ cd.de.ef fc — = (ab)* (cd)® (ef ) — 22ab.be.cd . de.ef .fa
+22ab.bc.ca.de.ef. fd.

The expanded value of B is as follows:

abe (fgh —fT' — gm* — kn® + 2Imn)
+be {I'— lgh + 2 (gm — nl) al + 2 (kn — ml) al + (n* - fg) a}
. + (m. - fh) aa' +2 (fl - m”) asaa}
+ ca {m* —m*fh + 2 (f1— mn) bm + 2 (hn —ml) bym + (n* — fg) b
+(I'—gh)b*+2 (gm - nl)bp,}
+ab {n* - nfg + 2 (fl—mn) cn + 2 (gm — In) cn + (m* — f&) c.*
+ (' —gh) ¢} +2 (hn—lm)cc,}
—(af*+ bg* + ch*) (fgh — f1* — gm* — kn* + 4lmn)
+ 3 (afm™n® + bgn'l* + chl'm”)
+ 2af™ (b,gn + ¢ km) + 2bg* (c,hl + a,fr) + 2¢%* (a, fm + bygl)
— 2af (b,0° + ¢, m®) — 2bg (c,P + an%) — 2ck (am® + B,")
+ 2af1(bn" + c;m”) + 2bgm (¢, + an®) — 2chn (am® + b, IY)
—2afmn (b,g + c,k) — 2bgln (ch + a, f) — 2chim (a, f+ b,g)
— 2a (b;mn® + c;m’n) — 26 (c,nl* + a,In°) — 2¢ (a,lm® + b ml*)

* This class of quartics has been studied by Liirotk, Mathematische Annalen,
vol. 1., p. 37 (1870).
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+ a (b'gn® + ¢'hm*) + b (¢,hT + a,* fn®) + ¢ (a,fm* + b,%g")
+ 2af1 (mb,c, + nb.c,) + 2bgm (nc,a, + le,a,) + 2chn (lap, + map,)
+ 2amn (mb,c, + nb,c,) + 2bnl (nc,a, + lc,a,) + 2¢lm (la,h, + mapb,)
— 2af (knb,c, + gmb,c,)— 2bg ( fle,a+ hnc,a,) — 2ck (gma b+ fla},)
+ 2 (fyh+lnn) (abc,+ be,a,+cad,)) —2afTb,c,— 2bgm’e,a,—2chn’ab,
-2 (af"lb,c, + bg*me,a, + eh’na,b,)
— 2abc, (b,gn + c,hm) — 2bc,a, (c,hl + a, fn) — 2cab, (a, fm + bgl)
+ 2ab,c, (c;m” + bn®) + 2bc,a, (an* + ¢ I') + 2cad, (b0 + am®)
— 2al (mb,c;? + ncb,’) — 2bm (nc,a,’ + lac?) — 2cn (a b + b,a,)
+a (kb +gbre)) +b(felar + helal) + ¢ (9a b + ha'bY)
+afb,’c'+bgc’a+cha'b)} + 2alb,e,b o, + 2bme,ae,a, +2cnabab,
- 2ab,c, (mep, + nbc,) — 2bc,a, (nagc, +lc,a,) — 2cab, (lb,a, +mab,)
+2f "R — fgh (fT' + gm® + kn®) + 10fghlmn — ( fT* + gm* + kn®)*
+2lmn (f1* + gm® + kn") — Um’n®

.+ 2 (b gn+ chm) (gm® + kn* — 2fT — fgh — lmn)

" 42(a fr+ cpl) (hn®+ fT —2gm® — fgh — lmn)

+ 2 (a, fm + b,gl) ( fT* + gm® — 2kn* — fgh — Imn})

+(gh = 0)(b,g — ) + (Bf — m')(0,h — a )+ (fy— n')a,f - bg)!

+2a,a, f* (2mn — f1) +2b.b,g"* (2nl — gm) + 2¢c,c * (2lm - kn)

+2lbc, (fgh + lmn + fT — gm* — kn®)

+ 2me,a, (fgh + lmn + gm® — kn® — fT°)

+ 2nabd, (fgh + lmn + kn* - fT' — gm’)

— 2ghmnb c, — 2hfnlc,a, - 2fglmabd,

+ 2 (b,c,gm + bc,hn) (gh+ 20) + 2 (c,a,hn + c,a,f1) (Rf + 2m")

+2(ab, fl+ba,gm) (fg+2n)

-2 (a%, f*m+ba,g'n + b+ a'b, fin + bc,g*l + cla fi’m)

+ 2fmn (a,%c, + a,’b,) + 2g9In (b,%c, + b,’a,) + 2kim (¢, + ¢’a,)

-2 (abe,+abe,) (fT+gm*+ ke + lmn)

- 2fa.a, (c;m* +bn') — 290D, (c,I* + an®) — 2kee, (b0 + am®)

+2 (fl—mn) (gb,c,a,+ ke,ab,) + 2 (gm — nl) (hea.b, + fabc,)

+ 2 (hn — Im) (fad.c, + gbc,a,)
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— (b + m'cla} + n'aD.)
+ 2 (b,c,a, — c,ab,) (b9l + chm + a, fn — chl —a, fn— b gn)
+2(beaga f*+cabb g’ +abgech)
—2gh (blac, + c'ad)) - 2kf (c,'ba, + a,'bc,) — 2fg (a,'cb, + b, c.a,)
+ (4 f1—2mn) c,aa,b, + (4gm — 2nl) a b b,c, + (4hn — 2Im) bcc.a,

+ 2 (a!bﬂcl + asblci) (wlcl + mciaﬁ + Msbs) - (atblcl + aﬂblci)"

296. In the notation of Arts. 223, 293, the value of B is
r (d°) (") —r (d%"D) + r (dc*) — (d°) (ba”) + (d*¢’a”) + 2 (d’cb’a)
| — (3 (@) — 2 (dba) + (de'F) - (),
where (@) =ddd,+2ddd,—dd'—dd’-d},
(d*ct) =0, {c, (dd,—d") +2c,, (dd,—dd,) +2c,c, (dd,—d))
+c'(dd,—d)+2¢cc,(dd, —dd)+c’(dd,—d})}
+, (e} (dd,—d)) +2c., (dd, — dd) +2¢c, (dd,— d)
+c’(dd, - d,) +2cc, (dd,—dd)+ ¢ (dd,—d")}
—2b, {cc, (dd, —d}') +cgc, (dd,— dd,) + cc, (dd,—d,") ‘
+¢r(dd,—dd)+ce,(dd,+dd, —2d))
+¢,c,(dd,— dd)+c}(dd,—-dd)+ce,(dd—d}),
(d*c’a’) is formed from (d°¢°) by writing a ', a*, a,a,, for b, b,, b,
(dc*) =d, (c,e,— ¢,")' — 2d, (c,c,—c.c,) (c.c,—¢)))
+d,{(c,c,— c,6) +2 (ce, - ¢,)(e,e, — e} — 2d, (e —¢ ) (i~ C,)
+d, (cc,— ¢ -
(ba®) =b,a —2baa, + b0,

17071

v

{d’cb’a)=1{bac —b (ac,+agc)+bac)P
+ {boalc - bl (alcl + aocn) + baaocl} Q
+ {boaxcs - bl (alcs + aocs) + beaocs} R7

where P=p, (dd,—d;) b, (dd,—dd,)+b, (dd,~d}),
Q = bo (duds - dld-l) - bl (ds‘ - dodc) + bz (dlds - dods) )
BR=0 (dd,~d})-b (dd,—-dd)+b,(dd,—d}),

(d’b’) = (d2d4 - ds“) bos + (dodd - d:) bt,‘ + (dods - dlg) b:
+ 2bnba (dude - dods) + 2bsbo (dld3 - d:) + 2bob1 (dsds - d|d4)7
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(de'ba) =a, (P (c,0,~ ¢) +@ (o0, = €,¢) + B o, ~ &)}
+a, {P ' (cocs - c,u) +¢ (cxcs - cocs) + B (clca - c:)})
where P =p, (cd,—cd,)+b, (cd,—cd,)+b,(cd —cd),
Q= bo (cads - c’sdn) + bl (cadt - clds) + bs (cldl - csdl)’ .
B = bo (csdc - csds) + bl (csds - cldl) + bs (cldl - cads)’
P= bo (cads - cxd4) + bx (codc - csde) + bs (clds - cods ’
Q= bo (c‘d, - cnda) + bx (cods - csdl) + bs' (cxdn - codn )
B = bo (c:dl - cxds) + bl (cods - csdo) + bs (cldl) - codx)’
(d't*) =@, {c,'b,b," —2¢c,c, (80,5, +b,") + 2¢,,b,'B,
+c¢,' (b5, + 30D — 4c,c,5,0,} + b}
—2d, {¢,’5,’5, — c,c, (B,"5, + 2b,0.%) + c,c,5,°b, +2¢,70,.b, + c,c.b.'D,
— 2,000~} +ced,’
+d, {0} — 2c,c, (5,0, +2b,0,") + 2¢,c, (b,° + b,bb,)
—c,' (b5, +2b0") +2¢.c, (b + 5b,b,)
—2c,0, (5,5, +2b07) — ¢ (5,5, + 2b,0%) +¢.*b."}
—2d, {c,'0,'b, —c,c, (b5, + 2b.D,") + c,e.b.h," + 2¢,"b b, +c.c b’

0271 087071 1707178 17801
—2¢,c5.7b,— b5, + c,ch,}
+a, {c 0,0 — 2c,c, (05,0, +0°) +2¢,c,0,b,+ c,* (b,'5, + 3b,5,%)
- 4coclb:bo* + b:c:},

(c,b) = b2 (coce - clﬂ) - bl (coca - clcn) + bo (ctca - cx’.) .

297. We have seen (Art. 221), that if we had a covariant
quartic, we could, from the invariants already obtained, derive
a series of others. One such covariant can be at once obtained
by forming the equation of the locus of a point whose first
polar is a cubic for which the invariant S vanishes; in other
words, by equating to nothing the S of the polar cubic. The
symbolical expression for this covariant is (123) (234) (314) (124).
The covariant S of the quartic

ax' + by + c2* +du' +ev*=0
is of the form 9+é+g+§+g=0.
T Yy z u w
Hence, as we have already seen, that the first form, though
apparently containing a sufficient number of constants, is a
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special one to which the equation of a quartic cannot in general
be reduced; so is the second form also ome to which the equa-
tion of a quartic cannot be brought unless a certain relation
between its invariants be satisfied.

There are other covariant quartics, but that just described is
of the lowest order in the coefficients. Any other covariant
quartic of the fourth order in the coeflicients must be of the form
8+%AU, where k is a numerical constant, and 4 the first
invariant. This may easily be verified with respect to the
covariant obtained by forming the contravariant of the contra-
variant of Art. 292.

298. The gencral values of the coefficients of S have not
been calculated, nor have any of the higher invariants. I have
thought it worth while, however, to examine the special case

az' +- by' + cz* + 6fy’2" + 6g2"c" + 6hx’y* = 0.

This form only implicitly contains eleven constants, and there-
fore is a very particular case of the general equation of the
quartic; but it lends itself casily to calculation, because the
covariant S is of the same form

az' 4- by* - c2* + 6fy"2" + 6g2°c" 4 6ha'y' =03
and, therefore (Art. 221), from any invariant caa be derived
another by performing on it the operation a dia +b déb-:- &c., an

operation which we shall denotec by the symbol ¢. Although
invariants which exist in general may vanish for the special case
here considered, yet invariants, which in this case are distinct,
will be distinct in general. By calculating the invariants for
the special case, we obtain all the terms of the general in-
variants which contain only the coefficients a, 3, ¢, f, g, k.

The values of the coefficients of S, for the form in question,

- a= 647, b=6Af, =6/,
£ = bogh—f Bg" + ) = F'ghy
g=calf—g (o' +af")~fi'h

h =abfy -k (af* + bg") — foh'.
LL
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It is convenient to remember, that for the same form the
values of the coefficients of the contravariant o, Art. 292, are

A=bc+3f*, B=ca+3g", C=ab+3f?
F=af+gh, G=0bg+hf, H=ck+fg.

299. We find it convenient to use the abbreviations
abe=L, af*+bg'+ ck* =P, beg'h'+ cak’f*+ abf’q* = Q, fgh=R;
then the values of the invariants previously found are, for the
special case we are considering,

A=L+3P+6R, B= LR+2R'- PR; or B=AR—4PR—4R"

The effect of the operation ¢ on these several quantities, are
¢(L)= 6Q, ¢ (P)=6LR—-2PR—4Q+18R",
¢ (Q)=-2PQ-4RQ—-6LR"+ 12PR'+ ALPR,
¢ (R)= Q-2PR-3R,

whenoe ¢ (4)=18B.

We can then obtain a new invariant of the ninth order in
the coefficients by performing on B the operation ¢. The
result is ‘

¢(B)=C,=QL—P+14R)-LR{2P+9R) + R(2P"~3PR— 30F").

The invariant just found is not, however, the only independent
invariant of the ninth order in the coefficients. If we write the
general equation of a quartic w, +us+uz" + w2’ + cz' =0, then
generally the highest power of ¢ which occurs in an invariant
of the ninth order will be the thind, and ¢ will be multiplied by
an invariant of the sixth order in the coefficients of the binary
quartic u,. This latter invariant must be of the form s*+ A#';
aud any assumed invariant of the ninth order can be resolved
te two parts, in one of which ¢ will be multiplied by s*, and
in the other by 7 The former part can be expressed in the
form Tt i AR+ wC, where 4, B, C, are the invariants
already calenlated s for the expression of the latter a new in-
variant is novessary, and we procend te give one of several ways
w which it may be obtained. 1t will first, howerver, be neces-
ATy 0 mention some other covanants and contravariants.
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300. The value of the Hessian for this case is
agha’+ bhfy®+ cfg2®+ (abg + akf — 39k x'y* + (ack+afg—3g'h) 'z
+ (abf+bgh—3f ") y'c*+ (beh+bfg — 3f *h) y'2*+ (caf+ chg — 3fg") '
+ (beg + cfh — 3f7g) 2'y* + (abc — 3af* — 3bg" — 3ch® + 18fgh) w'y’é’.

Again, it has been stated (p. 75) that a quartic has also a
contravariant sextic, the symbol for which is (a12)* (a23)" (a31)".
The value of this, for the case we are considering, is

(bef —f") @+ (cag — §°) B + (abh — ') o

+(beg+6¢fh—3f7g)a' B+ (bch+6bfg—3f*h)a'y*+(acf+6cgh—39'f ) B'a®
+ (ach + 6afg — 3¢"k) B'y" + (abf + 6bgh — 3fR") y'a’

+ (abg + 6afh — 3gR*) B+ {abc— 3 (af T+ bg*+ k) + 48fgh} &’ B'y".
If, introducing differential symbols in either of these, we operate
on the other, the result is 4"+ 576B8. If we operate on the
Hessian with the contravariant o, we get a covariant quadratic
of the fifth order in the coefficients, and if we operate on the
contravariant sextic with the quartic itself, we get a contra-

variant quadratic of the fourth order in the coefficients. The
values of these quadratics are respectively

(afz® + bgy” + ch2®) (L + 3P+ 30R)
+ (gha* + kfy’ + fg2*) (10L — 6 P—12R) — 4(a’f°c* + b’y + °1*2*) 5
(fo’ + 9B + k") (3L + 5P+ 2R) - 8 (af"a’ + bg°B* + ch’y*)
+ 4 (begha® + cahfB* + abfyy®).

If we introduce differential symbols into either of these two
concomitants and operate on the other, the result is a new
invariant
C,=(80L —32P+448R) @+ 3P°-6P'L - 134P°R

+3PL*+128PLR - 60PR’ + 102L*R + 408LR* — 12’

There appears to be for the quartic we are considering no
other independent invariant of the ninth order. If, for ex-
ample, we operate with the contravariant conic on the quartic
itself, the result is expressible in terms of the invariants
already found, being 3C,—80C,—1804B8. We might perhaps
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more simply have taken for the second independent invariant
3 (Cu— 3201)7 or
C,=16QL- PP—2P'L—-66P'R+ PL'-: 64PLR-- 12PR*

+ 34L'R + 232 LR* +- 296 R'.

301. We proceed next to form invariants of the twelfth
order in the coefficients. We can form the cubic invariant of
the quartic S by the help of the formula

L' =216,
P =6{(})-2PQR—AI’ }+2P'R*—2PLR"--APR’+ 6 L°+ 31,
I'=@-2LRQ- PPR*—2PR°*+ I’'R* -+ AL - R'},
whence L'~ 2P -+ 60’ = 6D, where
D,=4Q'+Q(-6PR-2LR - 12R")
4+ 5P~ 6 PLIY* + 10PR° + L'R* + 22 LR° + 44R".
Again, by performing the operation ¢ on C,, we get
D,=24Q+Q (4" - APL - 84PR — 20LR — 248 ")
— AR~ 14P°R* - APL’R + 144PLR® + 444PR*
— 18L° 1" - SALIY +- 21612,
and, by combining these, we have 1), — 6D, = 40),, where
D,=Q(P'~ PL—12PR—2LR - 441°) - P°PR— 11 P°R*
+ PR3- 45PLE -- 96 PR° — 6 L' I* — 54 LI — 12 R,

In terms of these and of the other invariants already given
can he expressed the other invariants of the twelfth order, such
a3 ¢ (C,), and the discriminant of the contravariant conic.

So, again, we can cxpress in terms of the preceding the
invariants of the contravariant quartic; we have

L'=L"+3PL+9Q+21R,

R'=LR+Q+ PR+ E',

P =3P'-5Q+6PR+PL+6LR+ IR,

Q@=3Q0"+Q (3P +4PL+24PR+ [’—-8LR + 6R’)

+12°LR + 18P’ R*+ APL’R + 10PLR*+ 36 PI’— 36 LR* 4 27R,
whence 4'=A4°+12B, B'=4D,+ AC,+ A’B—12B".
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302. It is to be noted, that though there is only one con-
travariant conic of the fourth order in the coefficients, there
are two covariant conics of the fifth, viz., in addition to that
already given, that obtained by vperating with the contravariant
conic on the quartic itself, the result being

(3L + 9P+ 10R) (afx* - bgy" + chz")
+ (10L+ 2P+ 4R) (gha* + hfy* + fy2) — 12(a’f°2* + b'g"y* +- 'B°2),

and if this be combined with that previously given, we can write
it in the simple form

4R (af* + bgy' + chz") + (L — P—2R) (gha* + kfy* + fo7°).
The discriminant of this last conic gives the simplest invariant
of the fifteenth order, viz., writing L — P—2R = M,
E =16MRE'Q +4M''P+ M°E' + 64LR";
or at length,
E =16 (L-P-2R)QR'+ R*(3P°-5P'L + 10P*R
+ PL'—-4PLR+4PR'+ I’ - 6L’R + 16 LR* - 8R’}.

The other three invariants of the system of conics are, of course,
also invariants of the quartic of the same order, besides which
we might also calculate ¢.D,, ¢pD,, &c. All these are expressible
in terms of £ and E,* where

E,=16(L—P-2R) ¢+ 3P~ 5P°'L—6P'R

+PL*— 228 PLR - 2172 PR*+ L’ + 298 [* R+-2636 LE*— 4296 R*) Q
+ B (—12P*+ 44P°L — 52P*L* + 20PL")

+ B* (348 P° — 852 P'L + 308 PL* + 324L7)

+ B* (1320P* — 416 PL + 216L*) + 720 PR* 4 11376 B* — 8G4R".

There are also two independent invariants of the eighteenth
order, the first being the C, of the contravariant quartic, viz.

F,=128 Q*+ Q*(— 48 P"+ 80PL + 368 PR + 32L*~ 528 LR—160R")
4 Q9P —12P°L—-108P°R—2P'L* 4 324 P’LR + 240P°R?
+4PL* + 60PL'R — 288 PLR* + 528 PR* + L' — 20 L’R — 400L**
—2512LR°*—144R')+ 18P°R— 24P'LR + 2T P'R* — 4P'L'R

* The values of these and of the next two following invariants were calculated
for me by Mr. J. J. Walker.
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+ a (bgn® + ¢,'hm*) + b (¢,'h T + a,* fn®) + ¢ (a . fm" + b,’gl")
+ 2af1(mb,c, + nb,c,) + 2bgm (nc,a, + lc,a,) + 2chn (lap, + ma)b,)
+ 2amn (mb,c, + nbc,) + 2bnl (nca, + le,a,) + 2¢lm (la b, + map,)
— 2af (hnb,c, + gmbc,)— 2bg ( fle,a,+ hnc,a,) — 2ck (gmad + flab)
+ 2 (fgh+ lmn) (ab,c,+ be,a,+cabd,) —2afT'bc,—2bgm’e,a,—2chn’ad,
=2 (af"*lb,c, + bg*'mca, + ek’nab,)
— 2ab, (b,gn + ¢ km) — 2bc,a, (chl+ a, fn) — 2cab, (a, fm + bgl)
+ 2ab,c, (c;m® + bn') + 2bc,a, (an” + ¢ I') + 2cad, (b, + am®)
—2al(mbc}? + ncd,’) — 2bm (nca’ + lac”) — 2cn (ab,” + b,a,
+a (kb + gb’c”) + b (fela} + he'al) + ¢ (9a,b,* + ha'b,")
+afb e’ + bgc,'a+chab + 2albe b c, + 2bme,ae,a,+2cnabab,
~ 2ab,c, (meb, + nb,c,) — 2bc,a, (nac, +lc,a,) — 2cab, (b0, + map,)
+2f°g°R* — fgk ( fT' + gm® + kn®) + 10f ghlmn — ( fT + gm* + hn")"
+ 2lmn (f1° + gm® + kn®) — Pm’n’

.+ 2 (bgn + chm) (gm® + kn* — 2fT — fgh — lnn)

" +2(a,fn+ chl) (hn® + fT — 2gm® — fgh — lmn)

+ 2 (e, fm + b,g1) (fT + gm® — 2kn" — fgh — lmn)

+ (gh = P)(Byg — A+ (f — 1Yo h = )+ (fy— n)(a,f — bg)

+2a,a, f* (2mn — f1) + 2b,b,g* (2nl — gm) + 2¢,cf* (2lm — kn)

+20b.c, (fgh + lmn + fT' — gm* — hn®)

+ 2me,a, (fgh + lmn + gm* — hn® — fT°)

+ 2napb, (fgh + lmn + kn' — fT' — gm®)

— 2ghmnbc, — 2hfnlc,a, — 2fglmab,

+ 2 (b,c,gm + bc.hn) (gh+ 21°) + 2 (c,a,hn + c,a, f1) (Rf + 2m")

+ 2 (agd, fl+ b,a,gm) (fg+ 2n°)

=2 (ac f'm+bla,g'n+c’b L+ a’d fin+ blc,g’l + c'a,h’m)

+ 2fmn (a’c, + a,’b,) + 2gln (b,'c, + ba)) + 2kim (¢,’b, + ¢,a,)

-2 (abe, +abe) (fT'+gm’+ kn' + lmn)

—2faa (c;m’ +bn") — 290 b, (c,I' + an”) — 2hee, (B0 + am®)

+2 (fl—mn) (gb,c,a,+ keab,) + 2 (gm —nl) (keab, + fad,c,)

+ 2 (hn — Im) (fab,c, + gb,c,a,)
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— (b %+ m'cla + n'ab))
+ 2 (bea,—cad,) (b9l + c.hm + a fn—chl—a, fn—b gn)
+2(beaa,f*+cabbg +abcch '
—2gh (blac, + ¢’ad)) - 2hf (¢ b,a, + a'be,) — 2fg (a'ch, + b, c,a,)
+ (4f1—2mn) caab, + (4gm —2nl) a b c, + (4hn — 2lm) bcc,a,

+ 2 (a$b'cl + asblcﬂ) (lblcl + mclal + naaba) - (alblcl + alblc!)"

296. In the notation of Arts. 223, 293, the value of B is
r (d°) () —r (d°C"D) + r (dc*) — (d°) (ba*) + (d*¢*a”) + 2 (d'cba)
| — (8) (0% — 2 (deba) + (@) — (),

where (@) =ddd, +2ddd,—dd'—dd’-d?

(%) =b, {c,’ (dd,—d’) +2¢,, (dd,— d d,) + 2cc, (dd,—d,)
+¢' (dd,—d})+2c,c, (dd, —dd,)+c’ (dd,—d,)}

+5, {¢,' (4,4, —d,") +2cg, (dd, - dd)+2¢cc, (dd,— d})
+¢'(dd, - d))+2cc,(dd,—dd)+ c}(dd,—d})}

—2b, {ec, (dd, —d}) + e, (dd,— dd) + ce, (dd,—d) '
+c¢(dd,—dd,)+cc,(dd,+dd, - 2d))
+c,c,(dd,— dd,) + ¢ (dd,~dd,) +ce,(dd—d}),

{d’c’a’) is formed from (d'¢’0) by writing a.', a?, a,a,, for b, b,, b,

(dc') =d, (c,e,— ¢,")" — 2d, (e, — c.c,) (c,c,— &)

+d,{(c,c,— c.e)' +2 (cc, - ¢,)(e,e, — ¢V} — 24, (c,e, — ") (c,e—c,C,)

+d, (c,c,—c), '

(ba®) =ba—2baa +ba’,

17071
D

(d’cb'a) = (ba.c —b, (ac,+agc,)+bac) P
+ {bac,—b, (ac +ac)+bac} Q
+1{ba.c,—b, (ac,+agc,)+ bagcl R,
where P=b (dd,—d;) —b,(dd,—dd,)+b, (dd,~d}),
Q="5,(dd,—dd)-b, (d}-dd) +b,(dd,—dd),
R=b,(dd,—d})-b, (dd,-dd,)+b,(dd,—d}),
(d%") = (dd,—d) b+ (dd,—d) b’ + (dd,—d*) b}
+2bb, (dd,—dd)+2bb, (dd,—d})+2bp, (dd,~ dd,),
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whence, eliminating, we shall have the equation of the curve,

x+\/(2ay-—y’)}.

a—y:acos{ ”

rr ¥

A M B

It is, however, generally more convenient to retain ¢, and to
consider the curve as represented by the two equations given
above. It is easily seen that the form of the curve is that
represented in the figure; and since the circle may roll on
indefinitely in either direction, that the curve consists of am
infinity of similar portions, and that there is a cusp at the poiat
of union of any two such portions.

Let MPN be the peosition of the generating circle correspond-
ing to the highest point of the cycloid, then since Am =arcpm,
AM=MPN, we have Mm=pP=arcPN; or the curve is gene-
rated by producing the ordinates of a circle until the produced
part be equal to the corresponding arc, measured from the extre-
mity of the diameter. Denoting the angle PCN by 6, the curve
referred to the axes AM, MN is represented by the equations

y=a(l+cosf), z=a(0+sinb).

304. We can readily see how to draw a tangent to the curve,
for at any instant of the motion of the generating circle, m (its
lowest point) is at rest, and the motion of every point of the
circle is for the moment the same as if it described a circle
about = ; hence the normal to the locus of p must pass through
m, and its tangent must always be parallel to NP. The same

. . dy _ sing . )
thing appears analytically for i l—cosT;S_COt 1¢; the tan

gent therefore makes with the axis of # an angle the comple-
ment of CNP, which is 1¢.

It is 8o easy to give geometrical proofs of some of the principal
properties of the cycloid that we add them here. T%e area of the
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curve 1s three times the area of the generating circle. For the ele-
ment of the external area (pp'rr’ = pp'tt' = PP’ Q Q') is equal to the
element of the area of the circle; the whole external area, there-
fore, AENFB, is equal to the area of the circle; and therefore
the internal area, ANB, is three times the area of the circle.

The arc Np of the cycloid is double NP the chord of the circle.

For it is easy to see that the triangle PP'L is isosceles, and
therefore that if a perpendicular, MK, be let fall on the base,
PL the increment of the arc of the cycloid, is double PK the
increment of the chord of the circle.

Hence if s denote the arc of the cycloid, 5 the diameter of the
generating circle, x the abscissa NQ from the vertex; then the
equation of the curve is s* = 4bx, a form useful in Mechanics.

The radius of curvature is double the normal.

For the triangle formed by two consecutive normals has its
sides parallel to those of the triangle M/PP’, but the base of the
first triangle is equal to PL, and, as we have just proved, is
double PK| the base of the second; hence the radius of cur-
vature is double MP.

The evolute of the cycloid is an equal cycloid.

For if we suppose a circle touching the base at m, and passing
through R, the centre of curvature, it is equal to the generating
circle, and the arc, nR, is equal to NP=nD; hence the locus of B
is the cycloid described by the circle mEn rolling on the base EF.*

N
p'
P P P’
A my M B
RX
E ) F

* The properties of the cycloid were much studied by the most eminent mathe-
maticians of Europe during the first half of the seventeenth century. Their attention
was first called to these problems by Mersenne ; but Galileo claims to have inde-

M M
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We might also seek the locus of any point in the plane of the
generating circle carried round with it ; when the point is inside
the circle the locus is called the prolate cycloid ; when it is out-
side it is called the curtate cycloid : these loci are by some called
trochoids. There is no difficulty in calculating their equations or-
in ascertaining their figures, but it does not seem worth while to
devote any space to them here. The method of drawing tangents
given for the cycloid applies equally to these curves. These
curves may (as the reader can easily see) be generated by a point
on the circumference of a circle rolling so that the arc pm shall
be in a constant ratio to the line Am.

305. When the properties of the cycloid had been investi
gated, it was a natural extension to discuss the curve traced by a
point connected with a circle rolling on the circumference of
another. When the point is on the circumference of the rolling
circle, the curve generated is called an epicycloid or hypocycloid,
according as the circle rolls on the exterior or interior of the
fixed circle ; if the generating point be not on the circumference,
the curve is called an epitrockoid or kypotrochoid.

Let us take for the axis of « that position of the common
diameter of the two circles which passes through the generating
point; let CO be any other position of it, @ the generating
point; let CN=a, ON=b, NCB=¢, PON=+, 0Q=d;
then since BN = NP, we have
ap=by; OQM=180—($+y);
and the coordinates of @ are
y=(a+b)sing—d sin(¢p+),
x=(a+b)cosp—dcos(p+);
or if a+b=mb, Al

y=mb sind — d sinme,

@ =mb cos ¢ — d cosme.

pendently imagined the description of this carve. Galileo, having failed in obtaining
the quadrature of the curve by geometrical methods, attempted to solve the problem
by weighing the area of the curve against that of the generating circle, and arrived
at the conclusion that the former area was nearly, but not exactly three times the
latter. The problem of the quadrature was correctly solved by Roberval in 1634 ;
the method of drawing tangents was discovered by Des Cartes, the rectification by
‘Wren, the evolute by Huyghens ; several other important properties by Pascal.
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Eliminating ¢ from these equations we obtain the equation
of the curve, which is not necessarily transcendental. In fact,
when the circumferences of the circles are commensurable, after
a certain number of revolutions, the generating point returns to
a former position, the curve is closed, and of finite algebraic
dimensions; but if they be not commensurable, the generating
point will not in any finite number of revolutions return to the
same position, and the curve will be transcendental.

To obtain the equations of the epicycloid we have only te
make d=+5, and we have

y=>5(m sing + sinmg),
y=b(m cose + cosmep) ;

the lower sign answers to the case when the axis of x passes
through the generating point when it is on the fixed circle; the
upper sign, when it is at its greatest distance from it.

306. The coordinates for the case of the hypotrochoid and
hypocycloid are found, as the reader can easily verify, by
changing the sign of b in the equations given above. These will
be included in the equations which we shall use, by giving nega-~
tive values to m, or by supposing m = — n, where n= ﬁ;—b .

The equations given above, if we alter b into mb, and m

into l, become
m
—mb(l a'm¢+sin—l )
y= m 'm¢ )

x=mb (}n cos¢+cos%¢);

and making ¢ =myr, we see that these equations belong to the
same locus as the preceding. We can thus prove that the same
hypocycloid is generated whether we take b=} (c+a). (Euler
de duplici genesi Epicycloidum, Acta Petrop. 1784, referred
to by Peacock, Examples, p. 194.) The hypocycloid, when
the radius of the moving circle is greater than that of the
fixed circle, may also be generated as an epicycloid, for then

' a . LR
m (= - _b_) 18 positive.
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307. Tangents can easily ‘be drawn to these curves, for by
the same reasoning as that used in Art. 304 the line NQ is
normal to the curve. We can thus see also that when a curve is
generated by a point on the circumference of one figure rolling
on another, there must be a cusp at every point where the
generating point meets the fixed curve. For by this construction,
at such a point the generating point approaches the fixed curve
in the direction of its normal, and recedes from it in the same
direction; hence it is a stationary point. An epicycloid then
consists of a number of similar portions, each united to the next
by a cusp; and the extreme radii, from the centre of the fixed

. . S 2bwr
circle to any such portion, are inclined at an angle = -
When the radii of the circles are commensurable and the curve
therefore algebraic, the number of cusps is finite, but when the
curve is transcendental, the number of cusps is infinite. Every
point of the base is in its turn a cusp, and therefore the base
may be said to be the locus of the cusps of the curve; but
obviously consecutive points of the base are not consecutive
points of the locus.

308. These curves have besides, as have epitrochoids in
general, a number of double points crunodal or acnodal, the
number being finite for algebraic curves, and infinite for
transcendental, and all the nodal points being ranged in
circular loci. Consider the equations (Art. 305)

y=mb sing — d sinm¢, x=mb cosd—d cosme,

where ¢ =0 corresponds to what we may regard as the initial
position of the generating point, viz. that where it is in a line
with the two centres, this line being taken as the axis of z, and
the initial distance of the origin from the generating point
being mb—d. But there are other positions of the moving
circle for which the generating point lies on the axis, the
values of ¢ corresponding to these positions being found by
solving the equation mb sing =d sinm¢. And setting aside the
root ¢ =0, the other roots of this equation are obviously dis-
tributable into pairs equal with opposite signs, and for each pair
the value of x, mb cosp —d cosmep, is the same. The corre-
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sponding points are therefore double points on the locus. The
value mb cosp—d cosm¢p may, by means of the condition
mb sinp=d sinme, be written in the form x sinp=d sin(m—1) ¢.
Every time that the generating point returns to a similar
position with regard to the two centres we have a line on
which double points lie, the number of such lines being, as
has been stated, finite for algebraic curves, and infinite for
transcendental.

309. The equations of the tangents to the epi- or hypo-
cycloids admit of being written in a very simple form. For
dy  cosgpicosmd cos}(m+1)d _sin}(m+1)¢
dr ~ —(sinpisinm¢g)  sin}(m+1)¢’ T cosf(m+1)¢”
And attending to the condition that the tangent must pass

through the point whose coordinates have been given in Art. 305,
the equation of the tangent becomes

zcosy (m+1)p+ysing(m+1)p=(m+1)bcos} (m—1) ¢,
when the axis passes through the generating point at its greatest
distance from the centre of the fixed circle ; and
zsind(m+1)p—ycos(m+1)p=(m+1)bsin(m—1)¢,
when the axis of « passes through the generating point at its
least distance from the centre of the fixed circle.
The equation of the normal in the latter case is in the same
manner seen to be
zcost(m+1)p+ysing (m+1)p=(m—1)bcos}(m—1)¢.
Comparing this with the first form of the equation of the

tangent, it follows that the evolute of an epicycloid is a similar
epicycloid, the radii of the circles being altered in the ratio

or else

——z::, and the generating point of the evolute being at its

greatest distance from the centre of the fixed circle when on the
same diameter on which the generating point of the original
curve is at its least distance.

The same remarks, of course, apply to the hypocycloid.

The equation of the tangent to an epitrochoid is in like manner

(b cosp —d cosme) x + (b sin — d sinmep) y .
={mb"'+d" — (m + 1) bd cos(m —1) ¢}.
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" 310. We give examples of some of the simplest cases where
the equations of these curves are algebraic, and can be easily
formed. These cases are, (a) when the equation of the tangent
is included in the form

a co826 + b 8in20 + ¢ cosf + d sinf +e=0,

the envelope of which is given, p. 67; () where the equation of
the tangent is included in the form

a co836 + b 8in30 + 3¢ cos + 3d sin 0 =0,

an envelope, which when treated by the same method as that
Jjust mentioned, is solved by forming the discriminant of a
cubic equation, the result being

(a*+8")'+8(ac~ bd*) — 24cd (ad— bo) =3{c"+ d*)+ 6 (a*+ B7) (" +d7);

(¢) when m is a fraction whose numerator and denominator
differ by one. If we square and add the equations

x=mb cosnd —d cos(n+ 1) ¢, y=mb sinng —d sin(n+1) §,
we have '+ y' =m0’ + &* — 2mbd cos ¢,

and by solving for cos¢ from this equation, and substituting in
the value for , the elimination is performed.

Ex. 1. To find the epitrochoid in general when d = mb. The equations are then

reducible to the form
o =2dsing(m—1) ¢ sin}(m+1) ¢, y=2dsin}(m—1) ¢ cosd (m + 1) ¢,

whence obviously } (m + 1) ¢ is the angle w made by the radius vector with the
axis of y; and the polar equation is p = 2dsin:‘#i w,

Ex. 2. To find the equations of the epitrochoid and epicycloid when the radii
of the circles are equal, and therefore m = 2. Dealing, as in (c), with the equations

x=2bcosp —dcos2¢p, y=2bsin¢p —dsin2¢,

we find (2 4 y% — 26% — d?)? = 482 (B2 + 2d? — 2dx),
the equation of a Cartesian, having, as may be easily verified, y = 0, = d, as a double
point ; the curve is therefore a limagon. We see from the theory already explained

that this point corresponds to the value cos ¢ = g ‘When therefore d is greater than

&; that is to say, when the generating point is outside the moving circle, the node
corresponds to two real positions of the moving circle and is a crunode ; but if the
generating point be inside the moving circle, the node corresponds to no real position
of that circle, and the curve is acnodal.

The case of the epicycloid is obtained by putting d = 4, when we have

(2® + y* — 30?%)% = 4% (86 — 2x).
The double point now becomes a cusp, and the curve is a cardioide. It is plain from
what has been said that the evolute of cardioide is a cardioide.
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Ex. 8. To find the equation of the epicycloid when the radius of the rolling circle

is half that of the fixed circle. The equation of the tangent is
x cos20 + y sin 20 = 45 cos6,
an equation included in the form p. 67, the envelope of which is
(x? + 2 — 46%)3 = 108b4z2.

Ex. 4. To find the hypotrochoid and hypocycloid when the radius of the rolling

circle is half that of the fixed circle. We have m = — 1; the equations are
z=bcosp +dcosgp, y=>bsing —dsing,
and the hypotrochoid is the ellipse
z* ¥
Grap T E-ap N

which reduces to the diameter y in the case of the hypercycloid where b = d.

Ex. 6. To find the hypocycloid when the radius of the fixed circle is three times
that of the moving circle. Here m =— 2, and the equation of the tangent is of

the form
z 008 —y8ing = b cosdg,

and the envelope is, by the form () given above,

(22 + y%)? + 8ba® — 24bzy? + 1852 (22 + y?) = 2784,
the equation of a tricuspidal quartic, the tangents at the cusps meeting at the centre
of the fixed circle.

This curve has been studied by Steiner as the envelope of the line joining the
feet of the three perpendiculars on the sides of a triangle from any point on the
circumscribing circle. In fact, taking the centre of the circle as origin, and the coordi-
nates of the vertices, r cos2a, r sinZa, &c., if the point from which the perpendi-
culars are let fall is r cos2¢, r sin2¢, the equation of the line joining the feet is

zein(a+Bf+y—¢)—ycos(a+B+y—¢)
=3r{sin(a+pB +y—3¢) +ein(8+y—a—¢)+ain(y +a—f—¢)+sin(a + -y - @)},
a form easily reducible to that considered in this example.

Ex. 6, To find the hypocycloid when the radius of the fixed circle is four times
that of the moving circle. We have here m = — 3; the equation of the tangent is

z sing + y cos ¢ = 2b sin2¢, and that of the envelope :-:3+yi = (46)*.

311. The equation of the reciprocal of an epicycloid is
readily obtained, for the tangent being
zcost (m+1)p+ysing(m+1)p=(m+1)bcos}(m—1)¢,
it is plain that the perpendicular on the tangent makes an
angle }(m+1)¢ with the axis of =, and that its length is
(m+1)b cos} (m—1) ¢; the locus, therefore, of the foot of this
perpendicular is

p=(m+1)b cos(m- :.w),

m+
and the reciprocal curve is

p cos (%—_:—: .w) =(m+1)b.
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d|
The radius of curvature is found by the formula R=%I§7 .
In the original curve we have

pr=at 4y =B [ + 1+ 2m cos(m ~1) ¢},

or p'=0"(m—1)"+ 4ml* cos’} (m —1) ¢,
2 3 4m 2

or Pt iyl

Hence im

B=mrp?”

312. Another general expression for the radius of curvature
in roulettes (or curves generated by a point on a rolling curve)
may be found as follows: Let P, P’ be two consecutive points of
the curve, M the point of contact of the rolling with the fixed
curve, and R the centre of curvature; then PP, the element of
the arc of the roulette, is = MP. PMP'; but, by considering the
curves as polygons of an infinite number of sides, we can see that
PMP', the angle through which PM turns, is equal to the sum
(or difference) of the angles between two consecutive tangents to
the fixed and to the rolling curve. Hence, if do be the element
of the arc of the roulette, ds the common element of the arcs of

the fixed and generating curves, p and p' the radius of curvature
of each, we have

b

do=up (2 1+ D)

PP
but this element, do, is also equal to PR, the radius of curvature,
multiplied by the angle between two consecutive normals; and
if we call ¢ the angle OMP, between the normals to the roulette

and to the fixed curve, then the angle between two consecutive
normals to the roulette is

cos ¢pds
MR
MP+MR 1 (1 1
Hence MP.ME ~ cos (;, * ;) ’

* The invention of epicycloids is attributed to the Danish astronomer, Roemer,
who, in the year 1674, was led to consider these curves in examining the best form

for the teeth of wheels. The rectification of these curves was given by Newton,
Principia, Book 1., Prop. 49.
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1 1
and PR = gl (; ! ;') .
MP(.:—’ + ;:—) —cos¢

(See Liouville, Vol. x. p. 150).

313. A large class of transcendental curves is obtained by
taking the ordinate some trigonometrical function of the abscissa.
There is no difficulty in deriving the shape of such curves from
their equation. For example, y = sinz has positive and constantly
increasing ordinates until = §; the erdinates then decrease in
like manner, until z =, when the curve crosses the axis at an
angle of 45°; and has a similar portion on the negative side of the
axis between z == and z=2m. The curve, therefore, consists
of an infinity of similar portions on alternate sides of the axis.

So again, y = tanx represents a curve, of which the ordinates

"imcrease regularly from =0 to =}, when y is infinite, and the
line z = }= an asymptote. For greater values of z, y alters from
negative infinity to 0, when z=m. The curve then consists of
an infinity of infinite branches, having an infinity of asymptotes,
z=}m, z=4m, &c., and, as may be readily seen, points of
inflexion at =0, z ==, z=2n, &e.

In like marner the reader may discuss the figure of y =secx,
which also consists of a number of infinite branches, only that
each branch, instead of crossing the axis, as in the last case, lies
altogether at the same side of it. The branches lie alternately on
the positive and negative sides of the axis of z. To the same
family belongs a curve called the companion to the cycloid. It is
generated by producing the ordinates of a circle, not as in the
case of the cycloid, until the produced part be equal to the arc, but
until the entire be equal to the arc. If then the centre be the
origin, the curve is represented by the equations

y

z=acosb, y=ab, x=a cos® ;

a curve of the same family as the curve of sines.

314. Next after curves depending on trigonometrical, we may
mention those depending on exponential functions. The loga-
rithmic curve is characterized by the property that the abscissa is

NN
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proportional to the logarithm of the ordinate; and its equation
therefore is .

z=m logy, or y=a".
The curve then has the axis of = for an asymptote, since, if
x=-ow, y=0; it cats the axis of y at a distance equal to the
unit of length, and then increases to positive infinity. The sub-
tangent of the logarithmic curve is constant; for its value, being

in general %? , becomes for this curve =m.

Some controversy has arisen as to the proper interpretation
of the equation of this curve, y =¢". Attention was at first only
paid to the branch of the curve on the positive side of the axis
of z, arising from taking the single real positive value of ¢” which
corresponds to every value of . Euler, in his Analysis Infini-
torum, IL. p. 290, contended for the necessity of attending to the
multiplicity of values which the function admits of; and the

. same subject has been more fully developed by M. Vincent.’
(Gergonne’s Annales, vol. xv. p. 1). Thus, if z be any fraction
with an even denominator, ¢” has a real negative as well as a
positive value, and therefore there must be a point corresponding
to this value of = on the negative side of the axis, but there is
no continuous branch on that side of the axis, since, when z is a
fraction with an odd denominator, ¢ can have only a real
positive value. The general expression, including all values of
the ordinate, is found by multiplying the numerical expression
for ¢”, by the imaginary roots of unity, whose general expression
is cos2maxm + ¢ sin 2mxm, where m must be made to receive in
succession every integer value, and 7, as usual, denotes /(—1).
This is equivalent to saying that the equation y=¢" must be
considered as representing not only one real branch, but alse an
infinity of imaginary branches included in the formula gy =¢"***™),
Any one of these imaginary branches contains a number of real
points, where it meets the branch y =¢™**™"™), and which must
be considered as conjugate points on the curve. There are an
infinity of such points, all lying either on the real branch of the
curve, or on the similar branch on the negative side of the axis
of z. The latter branch is curious, since, though every point of
it may be considered as belonging to the logarithmic curve, no
two points of it are consecutive to each other, for two consccu-
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tive points will belong to different branches. There is thus
formed what M. Vincent calls a “courbe pointillée.” In one
point, however, M. Vincent appears to me to have fallen into a
grave error. He says that the points of this branch are to be
carefully distinguished from conjugate points; for that at a con-
jugate point the differential coefficients have imaginary values,
but that at one of these points, on the negative side of the axis,
the differential coefficients, being all equal to ¢7, are all real, and
only differ in sign from those of the corresponding points on the
positive side of the axis. It is truly astonishing that M. Vincent
should have failed to observe, that if the differential coefficients
were all real, it would follow from Taylor’s theorem that the
next consecutive point must be a real point on the curve, and so
that the negative branch would be an ordinary branch of the
curve. But in fact, any one of these negative points must be
considered as belonging to a branch whose equation is of the
form y =™} and the corresponding differential coeffi-
cient will be y {1+ 2mm 4/(—1)}. Considering then an acnode
in general as the intersection of imaginary branches, in the same
manner as a crunode is the intersection of real branches, the
points here in question being points of intersection of imaginary
branches seem properly regarded as acnodal. 'We have already
seen that a transcendental curve may have an infinity of nodes
or acnodes, and in the case of epitrochoids that such points may
be ranged in a discentinuous manner on certain loci.*

315. The catenary is the form assumed by an inelastic chain
of uniform density when left at rest. Very simple mechanical
considerations lead to the property, which we shall take as the
mathematical definition of the curve, viz., that the arc, measured
from the lowest point, is proportional to the tangent of the
angle made with the horizontal tangent, by the tangent at the
upper extremity. 1f then the axes be a vertical through the

. . . d
-lowest point, and a horizontal line, we have s=c (7% Now

* The illustration here used is Dr. Hart’s. Some objections to M. Vincent’s views,
which are worth being considered, will be found in a paper by Mr. Gregory, Cambridge
Mathematical Journal, vol. I. pp. 231, 264.  Prof. Cayley considers that e# (which he
writes by preference exp. z) is a true one-valued function of x, and that there is
nothing else than the real branch.
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to rectangular axes the element of the arc is the base of a
right-angled triangle, of which dr and dy are the sides, or
ds'=dz*+dy'. By the equation of the curve we shall have,
therefore, 3 eds

s+c'=c da:"’ «/(8+ ),

:£=log{s+~/(: +c)},

the eonstant being taken so that s and x shall vanish together.
Hence

T -z 24/(s'+¢ =
e+er __d(sc+c); e°—e°

2s
'g .
Baut in like manner the equation of the curve gives
s'+c  ds' du = sds

. S YTy
Hence y'=s"+¢*, provided we suppose the axes so taken that
when s or =0, y shall be =¢c. This valae of y gives at once
the equation of the curve, viz.:

y =§ (e +¢ ")
A very convenient notation is
3 (€ +€7) =cosha, } (£ —e™)=sinhz,
(read hyperbolic cosine and sine) ; we have then for the catenary

x LT
=ccosh=, s=csinh=.
¢’ c

816. We get from the equation of the curve
dy _Vig'-¢)

[

de = 5 ( —e ) = ',
Hence we are led to the follow-
ing construction. From the foot
of the ordinate M draw the tan-
gent MT to the circle described
with the centre C and radius ¢
then MC=y, CT=c, MT =
N(y*—¢*); tan MOT'= tan MTL
_NEF'-)

c

; hence the tangent
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PS8 is parallel to MT. The same values prove also that
PS=MT=the arc from P to the lowest point. The locus of
the point S is therefore the involute of the catenary, and SN
parallel to 7°C is its tangent, since S must be normal to the
locus of &S, being tangent to its evolute. The involute of the
catenary i3 therefore a curve such that the intercept SN, on
its tangent between the point of contact and a fixed right line,
is constant.®* Such a curve is called the tractriz.

317. The equation of the tractrix can be obtained without
much difficulty. For the length between the foot of the ordinate
from S and the point N is 4/(c*—y*); it also is, by making y =0

in the equation of the tangent, _yd= Hence the differential

dy’
equation of the curve is
YT -y
dy ~ V(e -y,

which at once is made rational by putting 2'=c¢'—3", and gives

cdz

dr= 4 —dz.
c—2

‘We have then . .
z=clog {c__+ '\/(; —Y )} (-3

It will be readily seen that the curve consists of four similar por-
tions, as in the dotted curve on the figure; and the construction
of the last Article shows at once geometrically how to draw a
tangent to the curve.

The syntractriz is the locus of a point @ on the tangent to
the tractrix, which divides into portions of given length the
constant line SN. Let the coordinates of the point on the
tractrix be 'y, of those on the required locus xy ; let the length
QN =d, then we shall have y'd=yc; and

V(=) V(@ -y)=2-2;

* The form of equilibrium of a flexible chain was first investigated by Galileo, who
pronounced the curve to be a parabola. His error was detected experimentally in 1669
by Joachim Jungius, a German geometer ; but the true form of the catenary was only
obtained by James Bernoulli in 1691. Gregory (in his Examples, p. 234) refers to
what would seem to be an interesting memoir by Professor Wallace on this curve
(Edinburgh Transactions, vol. X1V, p. 625).
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and since, by the equation of the tractrix,

& +4/(c" —y") =c log {c + V(;f - y”)}

that of the syntractrix will be
z+ /(@' —y)=clog {d———+ V(j _y,)} .
The tractrix is a particular case of the general problem of
equi-tangential curves, where it is required to find a curve such

that the intercept on the tangent between the curve and a fixed
directrix shall be constant.

b)

318. The problem of curves of pursuit was first presented
in the form—To find the path described by a dog which runs
to overtake its master. It may be stated mathematically as
follows: The point A describes a known curve, and it is re-
quired to find the curve described by the point B, the motion
of which is always directed toward 4. We suppose both
points to move with uniform velocities, and 4 to move along
a right line which we take for axis of y.* The intercept made

by the tangent on this axis of y is y—= Z—% , and By hypothesis
the increment of this is to be proportional to the increment of

the arc, or putting f—g= P

—adp = W(1+") s
logz* +log {p+ (1 +p*)} +logd =0,
2p=A""z™ - A,

= _A_ 1 4™ —h+1
W=C-a® "Eimt

This curve will then be algebraic, except in the case when =1,
~h+1

when we have to substitute logz for — he1

319. The dnvolute of the circle is another transcendental curve
whose equation can be obtained without much difficulty. This

* Sce Bouguer, Memoires de P Acadimie, 1732, Correspondance sur T école polytech-
nique, 11, 275. 8t. Laurent, Gergonne’s Annales, X111, 145,
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is equivalent to the following problem: “If on the tangent at
any point P of a circle there be taken a portion, P@, such that
it shall be equal to the arc AP measured from any fixed point
Aj; to find the locus of Q.” Let the radius of the circle=a,
the centre being C and the radius vector

CQ=p; let PCA=¢, QCA=6. Then \
PQ=4(p*—a"); and it also=a¢d by hy- P
pothesis ; but Q

=04+ cos? 2,
¢ P

Hence the polar equation of the locus is
2 2
‘\L.) = 0 + cos'1 (_l .
a
The involute of the circle is the locus of the intersection of tan-
gents drawn at the points where any ordinate meets a circle and
the corresponding cycloid.

320. We shall conclude this Chapter with some account of
spirals. In these curves referred to polar coordinates, the radius
vector is not a periodic function of the angle, but one which
gives an infinity of different values when we substitute o =0,
w=27+0, =47+ 0, &c. The same right line then meets
the curve in an infinity of points, and the curve is transcendental.
Let us first take the spiral of Archimedes, which is the path
described by a point receding uniformly from the origin, while
the radius vector on which it travels moves also uniformly round
the origin. The polar equation of the curve is then

p=aw.
This spiral is the locus of the foot of the perpendicular on the
tangent to the involute discussed in the last Article. For, from
the nature of evolutes, the tangent to the locus of @ is per-
pendicular to PQ; and the length of the perpendicular on
that tangent from C will = PQ=a¢, and ¢ is the angle this
perpendicular makes with a fixed line. Hence, too, the reci-
procal of the involute is the Ayperbolic spiral pw =a, which we
shall discuss in the next Article. The spiral of Archimedes is
one of a family included in the general equation p =aw", in all
which the tangent approaches more nearly to being perpendicular
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to the radius vector the further the peint recedes from the origin.
For ’—’g;w =;:; therefore (Art. 95) the tangent of the angle made
by the radius vector with the tangent increases as @ increases,
but does not actually become infinite until o is infinite.

321. We have just mentioned the equation of the hyperbolic
spiral pw=a. This spiral has an asymptote parallel to the
line from which o is measured ; for the perpendicular from any

point of the spiral on this line is p sinw = asme

, Which, when

o vanishes, and p becomes infinite, has the finite value a. Or
again, we might calculate the length of the perpendicular from
the origin on the tangent. The tangent of the angle made by

the radius vector with the tangent is %‘i:’ =—wj hence the
perpendicular is v—((lg%,j, which, when p becomes infinite, is

=a. The form of the curve is
then as here given. The polar
subtangent of the hyperbolic spiral
is constant. The arc AB of the
circle described with the radius
04 to any point of the curve is
obviously constant.

Another spiral worth mentioning is the lituus p”w=a’.;
this also has an asymptote, viz., the line from which o is
measured ; for the distance of any point of it from this line,

a® sinw

p sinw= , decreases indefinitely as p increases, and o

consequently diminishes.

322. We shall mention in the last place the logarithmic
spiral, p=a“. In this curve p increases indefinitely with w; when
® i3 0 it =1, and diminishes further for negative values of o,
but it does not vanish until w becomes negative infinity ; hence
the curve has an infinity of convolutions before reaching the
pole. One of the fundamental propertics of this curve is, that

dw
it cuts all the radii vectores at a constant angle, for B%— becomes
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the modulus of the system of logarithms which has a for its
base; the angle, therefore, made by the radius vector with the
tangent always has this modulus for its tangent. From this
property we at once obtain the rectification of the curve; for if
we consider the elementary triangle which has the element of
the arc for its” hypothenuse, and the increment of the radius
vector for one side, we see that the element of the arc is equal
to the increment of the radius vector multiplied by the secant
of this constant angle, and hence that any arcis equal to the
difference of the extreme radii vectores multiplied by the secant
of the same angle. The entire length, measured from any point
P to the pole being p secd, is constructed by erecting at the
pole OQ perpendicular to OP to meet the tangent at P;
PQ will then be the required length. The locus of @ will
evidently be an involute of the curve, but the angles of the
triangle OPQ being constant, OQ is proportional to OP;
and it makes with OP a right angle, the locus of @ is
therefore also a logarithmic spiral, constructed by turning round
the radii vectores of the given curve through a right angle,
and altering them in a fixed ratio. Conversely the evolute
of a logarithmic spiral is a logarithmic spiral. The locus
of the foot of the perpendicular on the tangent is likewise a
logarithmic spiral, for it also bears a fixed ratio to the radius
vector, and makes with it a constant angle. The caustics by
reflexion and refraction, the light being incident from the pole,
are likewise logarithmic spirals.*

* The logarithmic spiral was imagined by Des Cartes, and some of its properties
discovered by him. The properties of its reproducing itself in various ways, as stated
-above, were discovered by James Bernoulli, and excited his warm admiration.

00
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CHAPTER VIIIL

TRANSFORMATION OF CURVES.

323. HavixNg in former parts of this work explained par-
ticular methods by which the properties of one curve may be
derived from those of another, such as the methods of Projection,
of Reciprocal Polars, of Inversion, &c., we purpose in this
chapter to consider the general theory of such methods. In
such methods we have in general to consider the correspondence
of two points P, P’ which may be either in the same plane or in
different planes. In the latter case the two planes may be
regarded as existing in a common space, and the two points
P, P may be connected by geometrical relations in such space.
For example, in the method of Projection the line joining the
points P, P’ is subject to the condition of always passing through
a fixed point 0. Similarly, we should have another system of
transformation if the line PP’ were subject to the condition of
always meeting two fixed lines; and so forth. The development
of such theories belongs to solid geometry; here we consider the
two planes as existing irrespectively of any common space. To
take the simplest example, suppose that we have a pair of axes
in one plane, and another pair of axes in the other plane; and
that the coordinates of P referred to the first pair of axes are to
be always respectively equal to the corresponding coordinates of
P’ referred to the second pair of axes, we have evidently a system
in which to any point P in the first plane corresponds a point P
in the second, and vice versd.

The two planes may be regarded as superimposed one on the
other, and so as forming a single plane. Supposing this done,
there will be theorems dependent on the superimposition of the
two planes; besides these there remain the theorems which
existed when the two planes were distinct, and the theory is not
really altered. Or, to express this otherwise, instead of two
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figures in different planes, we have two figures in the same
plane, where by the word figure is meant any system of points,
lines, or curves; or, it may be, all the points of the plane. The
kind of transformation chiefly studied has been the rational
transformation ; viz., where to a given position of P corresponds
in general a single position of P, and to a single position of P’
a single position of . The most simple instance of this is the
linear or homographic transformation which we proceed to
consider in detail.

LINEAR TRANSFORMATION.

324. Let the coordinates of P referred to any system of
axes in the first plane be z, y, z; and let those of P’ referred
to any system of axes in the other plane be &, 3, 2’; then
the correspondence of the two points is said to be linear if
the latter coordinates are proportional to linear functions of the
former

2y :2d=ar+bytcziac+by+czia"c+by+c'z,

by solving which equations we have evidently also linear
expressions for z, y, z in terms of o, ¥/, 2/,

ziy:2=Ax+By' + 07 : Az +B'y'+ C'2' : A"2'+B"y'+ C"7".
It is easy to see that, properly assuming as welljthe funda-
mental triangles as the ratios of the implicit constants, these
equations may without loss of generality be written in the form
&' 1y :2'=x:y:2 Thus then to any position of either point cor-
responds a single position of the other. If P describes any curve
& (z, y, 2)=0, by substituting in this equation the values of z, g, 2
just written, we obtain the equation of the curve described by
P'. This latter equation is evidently of the same order as the
former ; therefore, to any curve in one plane corresponds a curve
of the same order in the other. In particular, to a right line
in one plane corresponds a right line on the other. If a=0,
B=0, y=0 denote {any three lines in the first plane; and if
by the substitution above-mentioned, a, 8, v become respectively
o, B, o'; then obviously to any line la+mB8+ny=0 in the
first plane corresponds l&'+mfB'+ ny'=0 in the other. It is
also obvious, that to a node or cusp on one curve will answer a
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node or cusp on the other, so that two curves corresponding in
this method will have the same Pliickerian characteristics. Since
Z', y, 2’ expressed in terms of z, y, 2, contain each three con-
stants, there are nine constants employed in this method of
transformation; but since we are only concerned with the
mutual ratios of &, y', 2/, one constant may be divided out, and
the method of homographic transformation is to be regarded as
invelving eight arbitrary constants.

825. To a pencil of four lines meeting in a point corresponds
a pencil whose anharmonic ratio is the same. For it was shewn
(Conics, Art. 59) that the anharmonic ratio of four lines a — k8,
a—1B, a— mB, a—np, is a function only of k, I, m, n, and
therefore is the same as the anharmonic ratio of a"— kg8, &e.
Similarly to four points on a right line correspond four points
whose anharmonic function is the same.

326. Let us now suppose the planes superimposed, and it is
easy to express the relation between corresponding lines and
points by a geometrical construction. Let 4, B, C be the vertices
of the triangle formed by the lines @, y, z; and 4', B’, C’ those
of the triangle formed by the corresponding lines ', 3/, 2’; then
since all lines through A form a system homographic with the
corresponding lines through A’, the locus of the intersection of
corresponding lines is a conic. Or, analytically, since the line
y + kz corresponds to 3’ + kz'; climinating %, the locus of inter-
section is y2'=y'z. In like manner all lines through B and
through C meet the corresponding lines on the fixed conics
zx' —xz'y xy' —yx'. The construction thus assumes that in
addition to three pairs of corresponding points 4, 4'; B, B,
C, C', we are given three fixed conics each passing through a
pair of corresponding points; and the form of the equations
g, = g = 5, , shows that these three conics have also three
common points. In order then to construct the point of the
second system corresponding to any point P of the first, let
the line P4 meet the curve yz'— 2y’ in the point F) then A'F
is the line corresponding to P4 ; similarly let PB, PC meet
respectively the conics 2z’ — 'z, 2y’ — yx' in points G, H; and
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B'Q, C'H will be the respectively corresponding lines. The
three lines A'F, B'G, C'H will have a common point P, which
will be the required point corresponding to P. The line cor-
responding to any given one is constructed by constructing for
the points corresponding to any two points on it.

327. In the foregoing method the relation between two
points is in general not reciprocal ; that is to say, if to P in the
first system corresponds P in the second, it will not be true that
to P considered as a point in the first will correspond P in the
second. In fact, if we consider P as belonging to the second
system, we construct the corresponding point, as in the last
article, by joining P to 4', B, C': let the joining lines meet
the respective conics in F', G, H'; then to PA', PB', PC’ will
correspond lines in the first system AF, BG', CH' meeting in
a point P’ which will ordinarily not be identical with P’

Consider, however, the three points L, M, N which are
common to the three conics y'z—=z'y, 'z —a'z, o'y — y'z, then
the construction shews that to the lines LA, LB, LC, answer
respectively the lines LA', LB’y LC'. 1t follows that the two
systems have common the three points L, M, N; each of these
points, considered as belonging to one system, having itself as
the corresponding point in the other system. In like manner
the lines joining these points are evidently the same for both
systems. And starting with the points L, M, N as given, then
if we have a single pair of corresponding points we can at once,
in virtue of the theorem Art. 325, construct the point in either
system corresponding to any point whatever of the other system.

If we express the equations in trilinear coordinates, assuming
these three lines LM, MN, NL as lines of reference, then since the
equations in the second system, answering to =0, y=0, 2=0 in
the first, are still to represent the same lines, they can only differ
from these by constant multipliers and must be of the form
dz=0, my =0, nz=0. Thus, then, by a suitable choice of lines
of reference, homographic correspondence may always be
expressed in the form that to any point &, ', 2' in the first
system corresponds the point &', my', nz' in the second; and
homographic transformation is then effected by writing in the
equation of any curve lz, my, nz instead of x, y, z respectively.
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We cannot here as in Art. 324 write o’ : y' : 2'=&: y: 2, for
the two figures would then be identical.

328. The method of Projection is a case of this homo-
graphic transformation. In this method the line joining any
two corresponding points passes through a fixed point, viz.,
the vertex of the projecting cone; and any two corresponding
lines intersect on a certain fixed line, viz., the intersection of
the two planes of section. If one of the planes were turned
about this line so as to be brought to coincide with the other,
the figures would still have the property that the line joining
two corresponding points would pass through a fixed point;
for consider the triangles formed by three pairs of corresponding
lines; and since the corresponding sides intersect in a right line,
the lines joining corresponding vertices meet in a point. It is
easy to form the most general equations of such a system. Let
ax+ by +cz=0 be the equation of the line on which the cor-
responding lines intersect, then it is evident that the equations
of «'y'z’ (the lines corresponding to ayz) will be of the form

@=adz+by +cz =0,
yY=ax tby+ce =0,
Z=ax +by +c2=0,

a system involving three constants less than in the general case,
and therefore only five in all.

We shall call the point at which the lines joining corre-
sponding points meet, the pole of the system, and the line on
which corresponding lines intersect, the axis of the system. By
subtracting one from the other successively each pair of the
equations just written, it will be seen that the pole of the system
whose equations we have written is given by the equations

(a=d)x=(b-0)y=(c—C)=

The simplest forms of the equations of projective trans-
formation are derived as follows: Any line passing through the
pole is the same for the new figure; for any two points of
it ‘have corresponding to them two points on the same line.
Hence if the pole be taken at the point xy, the two lines z
and y are unaltered by transformation; and any other line,
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Az 4+ By+ Cz=0, has corresponding to it, Az + By+ C{=0,
the two lines mtersecting on the fixed axis, z—&=0. Any
line Az+By=0 passing through the pole evidently remains
unchanged.

329. Conversely, if two homographic figures in the same
plane have the property that any corresponding lines intersect
on a fixed axis, one of the figures may be considered as a
projection of the other. For let the plane of one of the figures
be turned round this axis, and consider any three pairs of
corresponding points, ABC, abe, the corresponding sides of these
triangles intersecting in L, M, N. Then, when the plane is
turned round, Aa, Bb must still intersect (since the lines 4B,
ab intersect in N, and are therefore in the same plane); and by
the theory of transversals 4a when produced is cut by Bb in the
same ratio as before the figures were turned round. But in
like manner Cc, and the line joining any other pair of cor-
responding points, meets 4a in the very same point.

330. The general homographic method of transformation,
containing three constants more than the projective method,
appears at first sight a more powerful instrument of research,
and we should expect to arrive, by its means, at extensions of
known theorems more general than those with which the method
of Projection had furnished us. It is obvious, however, that
if a figure were transferred bodily to some other position, we
should have a linear transformation, in which to every line of
the first figure would correspond a line of the second figure, but
yet which would give us no new geometrical information. Now
we owe to M. Magnus the remark, that the most general trans-
formation may be reduced to a projective transformation by
turning the figure round a given angle, and then moving it
for a given length along a given direction; these three latter
constants being just the number by which the transformation
appears to be more general than the projective.

To see this, we must first observe, that if a figure be moved
in any direction without twisting, since all lines remain parallel
to their first position, the position of every point at infinity -
remains unaffected by the operation.
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Next, let the whole figure be made to turn round any fized
point, and any system of parallel lines will still remain a system
of parallel lines, although no longer parallel to its former direc-
tion ; hence any point at infinity will still remain at infinity, and
therefore the line at infinity is the same for the figure in both its
positions. Moreover, since any circle will remain a circle, how-
ever it be moved, we see that the two circular points at infinity
will not be disturbed, no matter how the figure be moved.

If then it be required to move a figure 80 as to have a projec-
tive position with a given homographic figure, let the two circular
points be w, ', the two corresponding points of the second figure
0, o', since no motion of the first figure can alter the position of
o and o', the only possible position of the required pole of the
two figures is the point A, where the lines ow, o'’ intersect. Let
then the first figure be moved so as to bring the point 7, which
corresponds to A, to coincide with it. Moreover, let the first
figure be turned about 7 so as to bring m, u (any other pair of
corresponding points) into a line with J; then we say that the
two figures will have a projective position, and the line joining
any other two corresponding points, 7, v, must also pass through /.
For the anharmonic ratio of {l.ww'uv}={l.0o'mn} (Art.325),
and since three lines of the system are the same for both, the
fourth must also be the same for both. M. Magnus’s theorem
has then been proved.

331. There is no difficulty in expressing analytically the
geometrical theory of the last article. Thus if it be required
to find the coordinates of the point / in the case of the general
transformation, we are, first, by the theory just laid down, to
find the line ow joining the point (x + 2y, 2) to

[{oz+by+cz+i(az+by+ez)l, az+by+eel
this will be
(ba - ias) {(am + b.’/ + CZ) + i(a'lx + bry + C‘Z.)}
- {a‘l +b+i(bl - a)} (a2w+bwy+czz) =0,
or (ab,—ab)x+(ab,—ab,)y+ {(ch,— )+ (ca,—ca)}lz
+7 {(albz - bxaa) z+ (abz - azb) y+ (clb2 - bxcs) z+ (acs - ca:) 2 } =0.

The line joining w'o’ will only differ from this in the sign of
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the quantity maultiplying ¢. The point required is therefore the
intersection of the two lines found by putting the real and
imaginary parts of the equation separately = 0.

It is not necessary to dwell on particular species of linear
transformation, such, for example, as similarity. We only men-
tion one kind of homographic relation, in which the area of any
space on the one figure is equal to that of the corresponding
space on the other figure. It is easy to see that such a transfor-
mation is possible. For let the triangle formed by xyz be equal
to that formed by z'y'z’, then, if we take any point O on the first
figure, it will be easy to determine a corresponding point o on the
second, such that Oxy = ox'y’ and Oxz =ox’z'; and therefore that
Oyz=o0y'z'; and the triangle formed by any three points OPQ
will be equal to that formed by opg, the corresponding points
8o determined.

This species of homographic relation differs from orthegonal
projection just as the general collinear relation differs from
projection in general.

INTERCHANGE OF LINE AND POINT COORDINATES.

332. In the method of transformation just described and in
the others to be considered in this chapter, point corresponds to
point, and line to line; but there are transformations where a
point in the one figure corresponds to a curve in the other
figure. We bave such a transformation in the method of
Reciprocal Polars, in which point corresponds to line and wice
versd. And the like is the case in the more general homo-
graphic transformation, or say in the theory of skew re-
ciprocals which is as follows: Let there be any system of
point-coordinates zyz, and a system of line coordinates aBy,
in the same or in a different plane; then a point in the
first system corresponds to a line in the second, if the co-
ordinates x, y, z of the point are respectively proportional to
a, B, v the coordinates of the line. In the same case to
any line Iz + my +nz in the first system corresponds the point
la +mB+ny in the second. Plainly, then, to four points in
a line will correspond a pencil of four lines having the same
anharmonic ratio; for the anharmonic ratio of y — ke, y —mar,

PP
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y—nx, y— pz, is the same function of /, m, n, p whether z and
y denote point- or line-coordinates. The method now described
may be combined with any of the other transformations described
in this chapter; that is to say, in any of them, one of the
systems of coordinates may be supposed to be changed from
point- to line-coordinates; and in this way we can get all
possible transformations in which point answers to line and
line to point.

333. Let us now suppose the two systems to be in the same
plane, and let us endeavour to express the transformation
altogether in point-coordinates. To any point z'y'z’ is to corre-
spond a line whose coordinates referred to a certain system of
line-coordinates aBy are &', ¥, 2. But this is equivalent to
saying that its equation is to be x’X+3y Y +2'Z=0, where
X=0, Y=0,Z=0 denote the lines joining the points repre-
sented by a=0,8=0,y=0. And these being known lines,
the equation of the line answering to the point z'y'z’ must be
of the form.

@ (ex+dy+cz)+y (ax+by+cz)+2 (azx+by+cz2)=0.
This is an equation involving eight constants, and would
coincide with the equation of the polar of a point with regard
to a conic section, only if b, =a, ¢, =a, b,=c,; the equation
in this case involving but five constants,

334. In the general case every point has a different line cor-
responding to it according as the point is considered as belonging
to the first or to the second system. Thus the equation just
written expresses the relation between any point z'y'z’ of the
first system and any point xyz on a corresponding line of the
second system. If now the latter point be fixed, and the former
variable, we have, for the equation of the line of the first
system corresponding to any point of the second,

(a2 +by +c2)z+ (a2 + by +c2')y+ (@' + by + c2') 2 =0.

In the case of reciprocals with regard to a conic, the same
line corresponds to a point, whether that point be considered as
belonging to the first or to the second system.



INTERCHANGE OF LINE AND POINT COORDINATES. 291

335. In order to give, in the general case, a geometric con-
struction for the line corresponding to any point, we shall first
seek for the locus of the points which lie on their corresponding
lines. This is obviously

alw’+ (as+ bn) Ty + b,?/"{' (ba'*'cs) yz+ (aa+cl) wz'*'caz"‘—‘ U= 0,

and is the same conic whether the point be considered as belong-
ing to the first or to the second system. We shall call this the
pole conic.

Next let us seek the envelope of lines which pass through
their corresponding points. The line Az’ + py’' + v2' (where z'y'z’
is a point on the conic just written) touches (see Conics,
Art. 151)

(b, + ¢ +2b,c, — 4bc,) N
+ (4ab, + 4a,c, — 2a,a, — 2a,c, — 2ba, — 2b,c,) pv
+(a+ ¢, +2a,c, — 4ac,) u’
+ (4b,a, + 4bc, —2ab, —2ac, —2bb, — 2b,c,) VA
+ (a)+5+2ap, —4ab)v'
+ (4a,c, + 4b,c, — 2¢c,c, —2ah,—2¢,b, —2¢c,a,) Apu=0.

The envelope is therefore a conic, which we shall call the polar
conic, and which is also the same whether the lines in question
belong to the first or to the second system.

Using now the words pole and polar to express the kind ot
correspondence we are here considering, we have at once the
polar of any point on the pole contc. For from that point draw
two tangents to the polar conic: ome of these is the polar
when the given point i3 considered to belong to the first system ;
the other, when it is considered to belong to the second system.

Or conversely, to find the pole of any tangent to the polar
conic. We have only to take the two points where this line
meets the pole conic, one of these points is its pole in the first,
and the other in the second system.

Let it be required now to find the polar of any point O.
Draw from it two tangents, OT,, OT,, to the polar conic. Let
OT, meet the pole conic in the points 4,4, and let OT, meet
it in the points BB, Then if A, be the point in the first
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system which corresponds to OT), and B, that which corresponds
to OT,, plainly A B, is the line in the first system which
corresponds to O, considered as belonging to the second
system: that is, 4, B, is one of the polars of 0. Similarly,
A_B, is the other polar of O.

Or, to find the pole of a given line meeting the pole conic in
the points A B, from these draw tangents AP, AP, BQ, BQ,
to the polar conic; and if AP, BQ, be the lines in the first
system, which are the polars of 4, B, their intersection gives the
point in the first system, which is the pole of AB. And, in
ltkke manner, the intersection of AP, B(Q, gives the point in
the second system which is the pole of 4B.

The reader will readily see how these constructions reduce
to the ordinary polar reciprocals if a,=b,, b,=c, ¢,=a,. The
pole and polar conic will then coincide, the polar of any point
on that conic is the tangent at that point; and the polar
of any other point is the same for both systems, and is the
line joining the points of contact of tangents from the peint
to the conic.

336. It follows at once from these principles that in the
general case the pole conic and the polar conic have double
contact with each other. For take any point of interseetion,
its two polars coincide with the tangent at that point to the
polar conic; the two poles of this line must therefore coincide,
and therefore the two points where it meets the pole eonic maust
coincide, therefore the tangent to the polar conic at their inter-
section must touch the pole conic also. The same thing is
proved for their other point of intersection. Prof. Cayley has
proved the same thing analytically, by shewing that if U=0
be the equation of the pole conic, that of the polar conie (found
by putting for A, u, v their values, in the equation of the last
Article) may be thrown into the form

{$ (albs - aabl + A0y — amc‘z) t+y (bscl - blcs + bsas - 62“3)
+ 2 (ca,— c,a, 4+ c b, —c b))
+4U. {a: (csbs - bzcs) +a, (bxca - bacl) +a, (bncl - btcs)} = 0)

a form which shews at once that it has double contact with U,
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337. There are, in the general case, three points whose polars
are the same with regard to both systems. For let the equations
of the polars in each system be

A+ py+vz=0, and Nx+ p'y+v2=0,
then the system of equations

is manifestly satisfied for three points. And the theory laid
down in the last Article shews at once what the three points are.
For the two points of contact of the pole and polar conics have
each the same polar in both systems, viz., the common tangents
at these points; and the point at which these tangents intersect
has also the same polar in both systems, viz., the chord of
contact of the conics.

There are then three points whlch have the same polar in
both systems; and two of these points lie on their polars, but
the third does not.

338. It is desirable to shew that in the constructions which
we have given no ambiguity occurs, and that we need be at no
losg to know, of the two poles of a given line, which belongs to
the first, and which to the second system.

Since two conics having double contact may always be pro-
jected into two similar concentric conics, we use these in the
figure for greater simplicity.

Let A, B be the two poles of any
tangent to the polar conic, then of the
two poles of any other tangent 4', B,
A' will belong to the first system, since
if AB were moved round to coincide
with A'B', A would coincide with 4’, and B with B'. The dis-
tinction between the points may be readlly made by the help of
the following theorem: “ 4'B and AB are parallel in the case
of two concentric conics; and by the method of projections, in
the general case, intersect on the chord of contact of the conics.”

Reciprocally, if we draw tangents to the polar conic from two
points on the pole conic, we must so number them, oa,, oa,, pb,,
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pb,, that the line joining the intersection of oa,, pb, to that of oa,,
pb, may pass through the pole of the chord of contact of the

conics.

339. The number of constants in the case of skew recipro-
cals only exceeding by three the number of constants in the case
of reciprocals with regard to a conic, it is natural to inquire
whether the latter does not only differ from the former by
displacement of the figure. It is evident, at any rate, that the
skew reciprocal here considered is only a homographic trans-
formation of the reciprocal with regard to a conic, and that
therefore the use of skew reciprocals can lead to no geometric
theorém, which we might not obtain by combining the use of
ordinary reciprocals with the method of projections.

~ It is very easy to see what must be the first step, if it be
required to move the two figures into such a position that the
polar of every point may be the same, no matter to which system
that point be considered to belong. For since the position of the
line at infinity is unaffected by any displacement of the figure,
we must begin by taking its pole in each system, and then
moving the systems so that these points shall be brought to
coincide. The pole and pelar conics will then become concentric
and similar, this point being their common centre.

340. Now we say, that if by turning the figures round their
common centre O, they can be given such a position that the
polar of any peint, 4, at infinity, shall be the same line, OB, for
both systems ; then if the polar of any other point, C, at infinity,
be the line OD for the first system, it must be also so for the
second system. For the anharmonic ratio of the four points of
the first system, ABCD, is equal to the corresponding pencil
of the second system, viz., 0B.0A.0D.0X; and since three
legs are the same in two pencils, OX must coincide with OC,
or the polar of the point D must be the same whether it belong
to the first or second system ; so also must then the polar of C.

Since now the circular points at infinity are unmoved by any
turning of the figure, we have only to take the two polars of
either of these points, which in general will not pass through
the point, and turn either figure round, so as to bring these
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polars to coincide; -and then, from what has been just preved,
the polars of every other point will coincide.

341. We can readily obtain an expre;sion for the angle
through which the figure is to be turned. The two figures
being in a concentric position, and the origin being the centre,
it is readily seen that the most general equations of the two
polars of any point are

‘ (@@ +by)x+ (ax' +b,5)y+c,=0,
and (a@'+ay)x+ (b +b,y)y+c,=0.
The two polars of the point at infinity, for which y'=ix’, are
(a|+‘3|) x+(a,+t’b,)y=0,
and (a, +£as)w+(bx +1b)y=0;
and the angle through which one of these lines must be turned
to coincide with the other is the difference of the angles whose
tangents are
_a,+1b, _atia,
a,+ 1b, b +1b,’

but this is the real angle whose tangent is a,~ b,

1 3

342, Or the same result may more simply be obtained as
follows: If in general the line of the second system corre-
sponding to the point &'y’ in the first, be

(a2 +by) @+ (ax'+0y) y +c,=0;
then when the second system is turned round an angle 6, the
equation of this line will become

(a2 +by')(x cos0—y sinb) + (a,2'+by')(x sinb + y cosb)+c,=0,
or {(a, cosf + a,sinb) '+ (b, cosd+ b, sinb)y'} =
+{(a, cosf —a, sinf) =’ + (b, cosf — b, sinb) y'} y +¢,= 0.

Baut the locus of points of the first system whose polars pass
through z'y/, that is to say, the line corresponding to z'y’, con-
sidered as belonging to the transformed system, will be

{(a, cos0+ a, sinb) &' + (a, cosf —a, sinb) y'}
+{(b, cos @+, sin ) &' + (b, cos@ — b, sinf) y'} y + ¢, = 0.
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This line will always coincide with the other, if we have
b, cosf+b, sinf=a, cosf —a, sinb;

: a,—b
or, as before, : tanf= 21,
b,+a,
QUADRIC TRANSFORMATIONS. .

343. Before proceeding to the general theory, it will be in-
structive to consider in detail one other special method : viz. when
the coordinates of the point P’ are functions of the second degree
of the coordinates of P, or say in which &' : ' : 2'=U:V: W.
Thus to the lines =0, y=0, 2=0, will answer three conics
U=0, V=0, W=0; and in general to a curve of the ="
order will answer one of the 22", whose equation is found
by substituting U, V, W respectively for z, y, z in the given
equation. We have already used this method, Arts. 252, 272.
A simple example is when the relation between P’ and P is
expressed by the equations 2’ : y' : 2'=2": 3" : 2*; then to any
right line & + my + nz will answer a conic Izt + my? + nzt touch-
ing the sides of the triangle xyz, while to a right line in
the second figure answers also a conic in the first. To a
curve in the first figure (e, b, ¢, f, g, kY=, y, 2)* answers
the quartic

azx + by + ¢z + 2fytzt + 2g2tat + 2haxtyt = 0.
And as the gencral equation of a conic may be written in the
form
z y 2z _((1 a\ , (1 b\, (1 c\ ¥
s G G+ G-z
it follows that the equation of the corresponding quartic may be

written in the form axt+ byt+ czt+dwt=0. It is therefore
trinodal and has the lines x, y, z for bitangents.

344. The method of transformation just described, wherein
Z:y:2=U:V:Wis in general not rational. For given
z, y, z we have &', ¥/, 2’ rationally, but when &', 3/, 2’ are given

then to find z, y, z, we have g = :—;-/,v = :—’,, ; equations which

represent conics having four common intersections, and therefore
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L)

to any position of the point 2'y's’ answer four positions of
the point xyz. If the conics U, V, W had a common point,
this point being independent of the position of the variable

L

point z'y’z’ might be set aside; and to any position of the
one point would answer three of the other. Similarly, it U,
V, W had two common points; and finally, if they have three
common points, the conics -g = Z = ;-W have, besides the three
fixed points, only one other common point. The transformation
is therefore in this case rational, and to any position of either
point answers a single position of the other. It would be a
mere change of coordinates, if instead of the conics, U, V, W
we took three conics of the form {U+ mV +n W, making the
corresponding lines Iz +my+ nz our new lines of reference.
There is therefore no loss of generality if we take for U, V, W
the three line-pairs got by joining each of the fixed points to
the two others. The most general rational quadric transfor-
mation is therefore that which we have already used, Art. 283,
where two corresponding points are connected by the reciprocal
relations

ziyiz=y2:2a' 12y and &' 1y 1 =yz: 22 ay.

345. It was stated, Art. 283, that to the point zy will cor-
respond any point on the line 2'=0, &ec. If we transform
any curve, to each of the n points where it meets the line 2’
will correspond the point zy, which will accordingly be a n-fold
point, or, more strictly, to each of the n points corresponds
the direction of a tangent at the n-fold point. There will be
a coincidence among these tangents should the original curve
touch the line 2. Te a curve therefore of the o™ degree, which
does not pass through any of the three fixed points y'2', 2'z’, z'y/,
will correspond a curve of the 2n™ degree having the three
points yz, 2z, xy as n-fold points. Let us suppose, however,
that the curve passes through the point 3’2/, then the line «
must be part of the corresponding figure, and setting this aside,
the order of the corresponding curve is reduced by unity. Also
since the line 2 passes once through each of the points zz, oy,
the corresponding curve will only pass through each of these
points (n—1) times instead of n. And, in like manner, we

QQ
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sec in general that to a curve of the »™ degree which passes
through the three principal points, as we shall call them,
f, g and % times respectively, will correspond a curve whose -
order n' is 2n— f—g—h, and which passes through the three
principal points on the other figure f', ¢', and %’ times re-

spectively, where f'=n—g—h, g=n—h-f, F'=n—f—g.

346. It is easy to verify that the numbers thus assigned
satisfy the reciprocal relation which exists between the corre-
sponding curves; that is.to say, that we have also

n=gil ~f'~ g~ f=n' ~ g~ ¥, g=n' =K ~f', h=r'—f'~g.
We shall shew also that the two corresponding curves have the
same deficiency. For if a curve pass f times through a point,

this is equivalent to } f(f—- 1) double points (Art. 43). Hence
the deficiency of the first curve is

He-1)(=-2)=f(f~1)~ 9(9—%—“’* 1},
and using the values just obtained for »', ', ¢/, &/, it is easy
to verify that the number just written is equal to

HE-)@-2)-f (f-1)-g(¢-1)-#@*-1)}L

347. A particular case of quadric transformation is the
method of inversion, or transformation by reciprocal radius
vectors, described Art. 122, and Conics, Art. 121 (¢). In this
method we have a fixed point O; and corresponding points P,
P'lie on a line through O, at distances whose product is con-
stant; say OP.OP'=1. Taking O as origin, it is easy to see
that the relations between the rectangular coordinates of P
and P’are

’ x ' _1/

w=w"+y“’ y =:E“+:I/2; x=m:a+y

U ’

But these equations give

! ) 1 U A
x 4y —m—iy’ T —y _w+iy'

Hence writing
X, Y, Z=a—iy, a4iy, 1; X, Y\ Z'=a 4, o iy, 1,
we have X:Y':2'=YZ:ZX: XY,
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or the transformation is of the kind considered in this section.
The point O is called the centre of inversion; and the circle
whose radius is the square root of the given value of OP.OP' is
called the circle of inversion, and if P describe any curve, the
curve described by P’ is called the inverse curve.

In particular, the inverse of a right line is a circle passing
through O; viz. if OA is the perpendicular on the line, and
A’ the point corresponding to 4, the circle is that which has
OA' for its diameter. The point O corresponds to the point at
infinity on the line. Again, the inverse of any circle is a circle
(Conics, p. 114), and in particular, the inverse of a circle C which
cuts at right angles the circle of inversion is this same circle C;
that is to say, the point P’ corresponding to P lies on the same
circle, which is therefore its own inverse. We give this ex-
ample to illustrate a theory which will be more fully considered
in a separate section, where the general theory of transforma-
tion presents itself as a theory of correspondence of points on
a given curve. Here confining our attention to the circle C,
the points P, P’ on it correspond to each other; and in order
to find the point corresponding to a given one P we have
only to join it to a fixed point O, and take the point where
OP meets the circle again.

348. To return to the general theory of inversion, it is
obvious that two pairs of corresponding points 4, 4'; B, B,
lie on a circle which cuts orthogonally the circle of inversion;
and by the property of a quadrilateral inscribed in a circle,
the line joining two points 4, B makes the same angle with
the radius vector OA that the line joining the corresponding
points A, B', makes with the radius vector OB'. In the
limit, if AB be the tangent at any point 4, the corresponding
tangent to the inverse curve makes the same angle with the
radius vector. It follows immediately that the angle which
two curves make with each other at any point is equal to the
angle which the inverse curves make with each other at the
correspondlng pomt

The inverse is 1mmediately formed of curves included in
the cquation p"=a" cosnw. Thus n=2, the lemniscate is the
inverse of the equilateral hyperbola; n =1, the cardioide is the
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inverse of a parabola having the origin for its focus, &o.
The inverse of a conic in general is & trinodal quartic, the
nodes being the origin and the circular points at infinity. If
the origin be the focus of the conic, the inverse is the limagon;
if the origin be on the curve the inverse is a nodal circular
cubic, the origin being the node. Evidently in general to a
circle osculating one curve will correspond a circle osculating
the inverse curve; but if the circle passes through the origin
the inverse will be an inflexional tangent.

Ex, 1. The three points of inflexion of a nodal circular cubic lie on a right line.
Hence, through any point on a conic can be drawn three circles elsewhere osculating
the curve, and their points of contact lie on a circle passing' through the given point.
The three points will be all real when the curve is an ellipse, but if it be a hyperbola,
two will be imaginary.*

Ex. 2. In like manner through any point on a circular cubic er bicircular quartic
ean be described nine circles elsewhere osculating the curve, and of these circles three
will be real and their points of contact will lie on a circle passing through the given
puint,

Ex. 8. “The feet of the perpendiculars on the sides of a triangle from any point
on the cireumseribing circle lie in one right line.” Inversely, if on three chords of &
circle AB, AC, AD, as diameters, circles be deseribed, the points of intersection of these
circles with each other Iie on a right line.

Ex. 4. “The circle circumscribing a triangle whose sides touch a parabola passes
through the focus.” Inversely, if three circles be described through the cusp to touch
a cardioide, their points of intersection with each other lie on a right line.

Ex. 5. “If a right line meet a limagon in four points, the sum: of their distances
from the node is constant.” Inversely, if a circle through the focus meet a conic
in four points the sum of the reciprocals of their distances from the focus is constant.

Ex. 6. To find the envelope of circles passing through a fixed point and whose
centres lie on a given curve. Take the fixed point for centre of inversion, and the
locus of the other extremity of the diameters passing through that point is evidently
a curve similar to the given one. It is easy then to see that the negative pedal
(Art. 121) of the inverse of this last curve is the inverse of the required envelope,
and, therefore (Art. 122), that the envelope is the inverse of the polar reciprocal
of that curve.t

349. It remains to mention the cases of rational quadric
transformation which cannot be reduced to the substitution
x:1y:z=y7 22 +ay. Of the three points common to the
conics U, V, W two may coincide: let the line y be supposed

* This theorem is Steiner’s, see Conics, Art, 244, Ex, 3. The proof here given is
Dr. Ingram's.

t This example is taken from Dr. Stubbs's paper on this method, Phil, May.
Vol. Xx1II. 18,
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to be the common tangent to the conics at the point yz, and
let zz be the third point common to the three conics, then
the equation of each must be of the form ax* + 2fyz + 2hxy =0;
we way take &', yz, zy as the three conics, and the substitution
is that used Art. 289, &' : y': 2’ =ay : o : yz, equations which
imply reciprocally @ : y : z=2y' : ™ : y'z". In this substitution,
as in the other, to the point z'z' corresponds the line y; and
to any curve meeting this line in n points will correspond a
curve baving the point as an n-fold point. To the point 'y’
corresponds the line &, but whatever be the point on this line,
the corresponding direction of tangency will be ' =0. To a
curve therefore meeting the line  in = points, will correspond
a curve baving the point «'y’ as an n-fold point at which all
the tangents coincide. The theory, in short, is substantially
the same as before, only modified by the coincidence of two
of the principal points. Again, let all three points coincide, then
(Conics, Art. 239) the equations of the three conics must be of
the form by" + 2hxy + 2f (y2z — ma*) =0, and we are led to the
substitution used in Art. 290, viz. &' : y' : 2'=xy : ¥ : yz —ma’,
implying reciprocally « : y : 2 =2y : y™ : y'2' + ma"™.

THE GENERAL THEORY OF RATIONAL TRANSFORMATION.

350. The object of this section is to discuss the general
theory of rational transformation, and in particular to shew
that by such transformation the deficiency of a curve is not
altered. It is convenient, however, first to mention, in ex-
tension of what was stated, Art. 347, that the general sub-
stitution of X" YY", Z" for X, Y, Z assumes a simple form
when the line Z is at infinity, and X Y pass through the two
circular points. For transforming to polar coordinates, the
equations of X and Y become

p(cosf+esinf)=0;
and it is obvious that substituting for these functions their n'
powers is equivalent to substituting p" for p, and n6 for 6.
This transformation is not rational, but it may conveniently
be applied to curves of the form p™=da" cosmw, which are
always thus transformed to curves of the same family. For
n=2 a circle becomes a Cassinian, and for n=4 a lLmagon.
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Mr. Roberts has also noticed (Liouville, X111. 209) that the
angle at which two curves intersect is not altered by this
transformation. For the tangent of the angle which the tan-
gent to a curve makes with the radius vector is (Art. 95)

E—d—w and this is unaltered when we substitute ndw for dw

dp
and ﬁg’f for ‘% Thus the theorems given as examples of

inversion, lead each to as many theorems as we choose to give
different values to n. Theorems also concerning the angles at
which curves cut are easily transformed by this method, as, for
instance, the theorems that a circle is the locus of intersection
of two right lines cutting at a fixed angle which each pass
through a fixed point; that a series of concentric circles are
cut orthogonally by lines through the common centre, &c.

351. We come.now to the general theory of the rational
transformation, in which to any system of values of xzyz
corresponds a single system of values of 2'y'z'; for example,
&y :2=U:V:W, where U, V, W are known functions of
x, y, z, which we suppose to be of the n™ order; and, recipro-
cally, to any system of values for «'y'z’ corresponds a single
system of values,z:y:2=U":V': W'. When such mutual
expression is possible, U’, V', W' must be also of the »"™ order
in «'y’2.  For to the n intersections of an arbitrary line
le+my+nz with any curve aU+ bV +c¢W will correspond,
in the other system, the intersections of [U’'+mV'+ 2 W' with
the line ax’ + by + ¢z, which must also be in number n.

352, Let us now examine the conditions that such mutual
expression may be possible. In general, if we are given the
coordinates of a point in one system @' :y':2'=a:b: ¢, there
will correspond in the other system the intersections of the
carves U: V: W=a:0:c; and these will be #* in number
if U, V, 1 are general curves of their order. If, how-
ever, U, V, I have p points common to all three, the curves

U v.w

il tals will always pass through thesc points, and there

a b

will be only #* —p variable points of intersection which will be
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the points in the other system corresponding to the given point.
Finally, if p=n"—1, there is but a single variable point of
intersection; or, in other words, all but one of the intersections
of the curves U: V: W=a: b : ¢, being known, the coordinates
of the remaining intersection are uniquely determinate and will
thus be rational functions of a, b, ¢; that is to say, of ', ¥/, 2/,
and we have expressions of the formz: y: 2=U": V' : W',

353. Thus, then, one condition for rational transformation is,
that the curves U, V, W shall have n»*—1 common intersec-
tions ; but there is a further condition. The system of curves
aU+bV+ cW must be as general as the system of right lines
az’ 4+ by’ + cz' to which they correspond; that is to say, a curve
of the system must not be determinate unless two conditions are
given to determine the two expressed constants a:b:c. The
number of conditions, therefore, which-U, ¥, W can be made to
satisfy, must be at least two less than the number of conditions
necessary to determine a curve of the n™ order. For example,
if U, V, W be cubics, and if we subject them to the condition
of having eight distinct common points, they must also have
a ninth (Art. 29), there would be no variable point of inter-
section, and the construction of Art. 352 would fail. But we
can still satisfy the conditions of the problem, by supposing
the cubics U, ¥, W to have common one point which is a node
on all, and four ordinary points. These are equivalent to but
seven conditions, since to be given a double point is only
equivalent to three conditions (Art. 41), and therefore two more
conditions are necessary to determine any curve aU+bV+ cW.
But the common points amount to eight intersections, since
a point which is a double point on two curves counts for four
intersections. And so, in general, we cannot take U, V, W as
curves of the n™ order having n*'—1 distinct common points,
because then (n being greater than two) they would have another
common point, and no variable point of intersection; but we
can satisfy the conditions of the problem by taking for U, V, W
curves having common @, ordinary points, a, double, o, triple,
&c., in such way that these are equivalent to 2*—1 intersec-
tions, and that the number of conditions implied shall be less
by 2 than the number necessary to determine a curve of the »™



304 THEORY OF RATIONAL TRANSFORMATION.

order. Remembering, then, that to be given a multiple point of
the order r is equivalent to }r(r+ 1) conditions, and that such
a point when common to two curves counts as »* intersections,
we have the two equations

a, +4a,+ 9a, + ... ra,=n"—1 ... (1),

a,+3a,+6a,+...4r (r+1)a,=4n(n+3)—2 ... (2).
Doubling the second equation and subtracting from it the first,
we get an equation which may conveniently be substituted
for (2),

a,+2a,+3a,+ ...7a,=3 (n— 1) cccueeeeeean (3).

‘We have then as many modes of transformation by curves of the
n™ order as there are solutions of these equations by positive
integer values of a,, a,, &c., provided always that the number
of bigher multiple points which the curves are supposed to
possess, is subject to the limitations assigned Art. 43.*

354. The argument of Art. 353, strictly, only shews that in
equation (2) the right-hand side cannot be greater than the
value there written. But we can also shew that it cannot be
less, for add a term — ¢ and subtracting equation (2) from (1),
we get

a,+3a,+..4r(r-1Na=3(n-1)(n-2)+¢.... (4).
Recollecting that a triple point is equivalent to three double
points, and an r-fold multiple point to {r(r—1) double points, we
see that the left-hand side of the equation represents the number
of double points to which all the multiple points of any curve
aU+ bV +cW are equivalent. And since it was shewn (Art. 42)
that this number cannot exceed }(n—1)(n—2), we must have
t=0, and equation (4) asserts, that the curves of the system
aU+bV+cW have each the maximum namber of double
points, or, in other words, that they are unicursal. And itis
otherwise evident that this must be so, since these curves
answer to the right lines of the other system; and not only a
right line, but every unicursal curve will be transformed into a
unicursal curve; for if the coordinates of a point are rational

* This theory is due to Cremona, see his memoirs Sulle trasformazione geometriche
delle figure piane, Mem. di Bologna, t. 11. 1863, and t. V. 1865 ; see also Prof. Cayley’s
paper, Proceedings of the London Mathematical Society, vol. 111. 1870, pp. 127—180.
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functions of a parameter, the coordinates of the corresponding
point being rational functions of these, must also be rational
functions of the same parameter.

355. We have seen that when n is greater than 2, the
equations (1) and (3) cannot be satisfied if the points common
to U, V, W are only simple intersections. We shall now shew
in like manner, that if n is greater than 5, there must be
a multiple point of order higher than the second; and so on
generally. Let r be the highest index ; multiply equation (3)
by r, and subtract from it equation (1), and we have
(r-1)a,+2(r—2)a,+3(r —-3)a, +...(r—1)a,_ =(n—1)(3r—n-1).
Every term on the left-hand side is positive, therefore » cannot
be less than } (z+1). We may take r equal to this mumber
in the case where } (z+ 1) is an integer, that is to say, if n be
of the form 3p — 1, we may take » =p; but if so all the numbers
O,y Gg..ey @,_, MUSE vamsh and the curves can have no common
points but the p-fold pomts, and we have pa,=3(3p—2),
which cannot be satisfied by an integer value of g, if p exceed
3. Except, then, when n=2, 5, or 8, r must be greater
than  (n+ 1).

356. In the same manner is established a theorem from
which we shall presently draw an important inference, viz. that
if we take the three highest in order of the multiple points, the
sum of their orders must exceed n. Let the orders of the
three highest be 7, s, ¢, where s is supposed not greater than 7,
and ¢ not greater than s, then transferring the terms contributed
by the two former to the opposite sides of equations (1) and (3),
these equations become

a + da,+... o, =n* —l—r—s,

a+2a,+...ta,=3n—3—r —s,
and, as before, we have a limit to the lowest admissible value
of ¢ from the consideration that if we multiply the second
equation by ¢ and subtract the first, the remainder is essentially
positive. Our business now is to shew that n —» — s is too low
a value for #, or that, in this case,

n'-1—r"—g">t(8n—-8—-r—3).

RR
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Substituting r + s =n — ¢, this becomes
2r8—1+2nt—'>t(2n—3+¢).

But since, by hypothesis, » and s are not less than ¢, the least
value the first quantity can have is found by putting » and s
both = ¢, when the inequality becomes

¢+ 2nt—1> '+ 2nt — 3¢,
which ia obviously true.

357. Cremona has tabulated as far as n=10 all the ad-
missible solutions of the system of equations we have been
considering. Some of his results will be given presently; but
enough has been said to shew that we can alwaystake U, V, W
functions of the ™ order in zyz, such that the equations

iy :d=U:V:W
-shall represent three curves having common certain fixed points,
equivalent to n'— 1 intersections (which we call the principal

points), and one variable point, the coordinates of which ex-
pressed in terms of #y’z’ give the converse system of equations

' z:y:z2=U0:V":W'

We have already scen that U’, V', W' are functions of the
n™ order in z'y'z, and it is plain that these also must represent
curves having common a number of fixed points satisfying the
conditions (1) and (2) already explained. It does not follow,
however, nor is it always true, that the same solution of the
system of equations is applicable in both cases; in other words,
the system of curves aU+0V+cW which answer to the right
lines of one system, and the system of curves aU'+bV'+ c W'
which answer to the right lines of the other system, have not
in general the same distribution of multiple points.

358. We have seen that, in the quadric transformation, to one
of the three principal points corresponds in the other figure
not a point but a line; and we shall now extend this theorem
by shewing that in general to any of the «, points corresponds
a unicursal curve of the »* order. It is evident that the system

of equations
iy :d=U:V: W
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becomes illusory if we seek the point z'y’z’ corresponding to
any point zyz common to the curves U, ¥, W. Now first let
this be a point of simple intersection; and by proceeding to a
consecutive point we have x'y'z’ respectively proportional to

Upe+ U3y +Upz, V3a+V,3y+V,5e, Wz +Way+W,s,
where U, &c., denote differential coefficients. We have thus
a different point 2'y’z’ corresponding to each element of direc-
tion at the assumed point xyz. But ¢f three curves have a
common point their Jacobian passes through that point; as is
evident by writing the equations U=0, &c., in the form

U+ Uy +Us=0, Vo +Vy+Viz=0, Wa+Wy+Wz=0,
and eliminating yz. We thus see that if we eliminate 8z, 8y
from the values just found for z'y'z', 8z will also disappear, and
all the points corresponding to xyz will lie on the right line

& (V,W, -V, W) +y (WU,-W,U)+= (UV,-0V,)=0.

359. We proceed, in like manner, if the point common to
UVW be a multiple point. Let it, for example, be a double
point; then the values given, Art. 358, for «'y’z’ vanish; but
denoting the second differential coefficients as before by a, b, c,
&ec., we have z'y'z" respectively proportional to .
adz* +b8y*+ 02"+ 21Oy dz+ 29828+ 2h8axdy : o'+ &e. : a" 8z’ + &e.
But the relation of the point xyz to UVW is such as to allow of
the simultaneous elimination from these equations of &8z, 8y, dz.
In fact the above forms in 8z, 8y, 8z are only in appearance
ternary but are really binary. For ax®+by* + c2* + &c. equated
to zero denotes the pair of tangents to the curve U at the
double point and is reducible to the form

a (x —mz)' + 2k (x — m2) (y — nz) + b (y — n2)".
There are, therefore, but two quantities 8z — méz, 8y —ndz to be
eliminated between the equations, and it will practically come
to the same thing if we write 82 =0, and eliminate 3z, Jy.
And so for any multiple point we have &, ', 2’ proportional to
(ay ... X3, 8y); (... X8, &)"; (a"y ... Y0, 8y);
and 3z, 8y are eliminated in the manner explained, Art. 44,

and ', y, # being rational functions of a parameter, are the
coordinates of a point on a unicursal curve of the *” order.
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360. The curves in one system which answer to the prin-
cipal points in the other may be called the principal curves,
and these curves tegether make up the Jacobian of the system
of curves aU+ bV +cW. For the Jacobian is the locus of the
new double point on such of the curves of that system as have
a double point in addition to the multiple principal points common
to all. But since each of these curves has already the maximum
number of double points, it can only acquire a new one by break-
ing up into inferior curves, and this will happen only when the
corresponding right line in the other system passes through
one of the principal points. In that case the curve aU+bV+4+cW
breaks up into the fixed 7l curve corresponding to the principal
point, together with a residual curve variable with the line
through a,. Now in general if we have two unicursal curves, the
sum of whose orders » and #' is n, the aggregate multiplicity
arising from the singularities of the two curves and their in-
tersections is equivalent to } (r— 1) (r—2) + § (' — 1) (' — 2) + 7,
that is, to } (n — 1) (n— 2) + 1 double points. Thus we see that
in the curve we are considering, the complex curve has besides
the principal points one new double point, which will be a point
of intersection of the fixed curve answering to @, with the
residual variable curve; and the locus of such points is therefore
the fixed curve. That the sum of the orders of all these prin-
cipal curves makes up the order of the Jacobian of the system
aU+ bV + cW is expressed in equation (3), viz.

a, + 2a,+ 3a,+...ra, =3 (n — 1).

From the general theory of Jacobians, which will be more fully
entered into in the next chapter, it appears that the system
of principal curves passes through each of the points a, twice,
through each point a, five times, and through each point a,
3r—1 times. There are other theorems which it is sufficient
to indicate as to the disposition of the principal curves with
respect to the principal points. For instance, take a right
line in one system which does not pass through a principal point
a,, then the corresponding curve aU+bV+cW can have no
ordinary point in common with the principal curve «,, and the
intersections of the two curves would be exclusively principal
points. In this way we can scc that every principal right line
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passes through two principal points the sum of whose orders is
n, and every principal conic through five' principal points the
sum of whose orders is 2n.

361. We are now in a position to determine the charac-
teristics of the curve corresponding to a curve of the order %,
which we suppose not to pass through any of the principal
points. Evidently if we write U, V, W for &, 3, 2’ in a
functions of the ™ order, we obtain one of the order nk; and if
the curves U, V, W have a point a in common, the line in the
other figure corresponding to e will meet the curve § in % points,
which will all correspond to a; this will, therefore, be a %-fold
point, and similarly, every one of the principal points a_will be
a rk-fold multiple point. If the original curve have no multiple
points, the transformed curve will have no multiple points other
than the principal points. Thus it appears that the transformed
curve will be of the order nk, the corresponding maximum
number of double points being 4 (nk—1)(nk—2); and the
principal points will be multiple points, and the number of
double points to which they are equivalent will be

fak (k- 1) + 3a2k (2k — 1) +... ark (rk - 1),
or 3% (2, + 4a,+... "a) — }k (o, + 20, +... 7a,),
or in virtue of equations (1) and {3),

1=-1)E-3n-1)k

Substituting, the deficiency of the transformed curve is
Yk (nk—1) - {§ (1) B § (n—1) K}, =3(k—1) (k—2), the
same as the deficiency of the original curve. If the original curve
has multiple points other than the principal points, to these will
correspond in the transformed curves multiple points of the
same order, and the deficiencies of the two curves remain equal.

If the original curve pass through any of the principal points
a,', then for each time of passage the corresponding curve a,
is part of the transformed curve, and the degree of the trans-
formed curve proper will be reduced accordingly. There will
be also a corresponding reduction in the number of passages
of the transformed curve through the principal points through
which a«, passes. The effect of this will still be to preserve
the equality of the deficiencies of the two curves. Thus, for
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example, if the original curve passes through one of the points a,,
the transformed curve will include as part of itself a right line,
and the degree of the residual curve will be reduced from nk
to nk— 1, and there will be a consequent diminution of nk—2
in the maximum number of double points; so if the right
line pass through two points a, @, the number of passages
of the residual curve through these will be each reduced by 1,
and the number of equivalent double points will be reduced
by sk—1 and tk—1, or by nk - 2, since s+¢=n. It is unne-
cessary to enter into more detail, because we shall presently
arrive at the same results by another method.

362. Every Cremona-transformation may be reduced to a
succession of quadric transformations. Consider the most general
transformation in which to the right lines of one figure
answer in the other figure curves of the n™ order having
in common a, ordinary points, a, double points, &c. We have
seen (Art. 356) that there are three of those points the sum of
whose orders exceeds n. Take these as principal points
and effect a quadric transformation, the degree of the trans-
formed curve, being 2n—r—s—¢, is less than n. In like
manner, by a new quadric transformation, we can reduce the
degree of that curve; and so on until we have at length right
lines corresponding to the curves of the »™ order. Since it was
proved (Art. gcg) that the deficiency is not altered by any
quadric transformation the theorem of this article shews that
it is not altered by any Cremona-transformation. The following
particular example will illustrate the method, and will shew how
we can trace the disposition of the principal curves. Consider the
transformation in which right lines are transformed into quintics
having three ordinary points a,a,a,, three double points 4250,
and one triple point ¢. Take cb,b, as principal points, and by a
quadric transformation the quintics become cubics, having 5, as
a double point, and a,'a,a/c’ as ordinary points. Again, take
a/b/c as principal points and apply a new quadric transfor-
mation, when the cubics become conics passing through a,"a,"3,",
and finally a new transformation with these for principal points
brings them to right lines. In like manner we can see how

are transformed the right lines of the first system, or, more
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generally, how are transformed curves of the 2™ order passing
a, times through the point a,, &c. After the first transformation
we have

K =2k-c—b-b,

¢ =k-b-20,

b'=k—c—by, b'=k—c-b, b/ =b,

a'=a, a/=a, a/=a,
After the second transformation in which a,5,c’ are the principal
points, we have

K =38k—2c—a,—b,-b,- b,
¢ =2k-c—a,—b —-b,—b,
b'=k—c—b, b'=k—c—a, b"=k-c-b,

a'=k—c-b, a"=a, a'=a,
Lastly, after the third transformation, the principal points being
aa'b, we have
K" =5k- 3c—2b,—2b —2b,~ a,- a,—a,

" =2k—c—b,-b—b,—a,
a'=2k—c-b—b- b~ a, a"=2k—c—b—b-b,~a, a"=k—c-b,
b, =k-c—b, b''=k—c-b, b " =3k—2c—b,~b~b,—a-a,—a,

And if we put =1, and the other letters =0, we see that right
lines are transformed into quantities having common one triple,
three double, and three single points. Again, in order to trace
the correspondence of the principal points, we see that in the
first transformation to the point ¢ corresponds the line 2/, 5/,
to this in the second transformation corresponds a conic through
c"a,"b,"d,"d,", and finally, to this a cubic having 5" as a double
point, and the remaining six points as ordinary points. The
following tables give the effects of the different kinds of
Cremona transformation as far as n=6. The values also in-
dicate the curves answering to the principal points. Thus, in
Ex. 3, the value ¢'=3k—2c— = (a) indicates that to ¢’ corre-
sponds a cubic having c as a double point, and passing through
the points a.

Ex. 1. (IL) =2, a;=3.
¥=2%-a,—a,—0a;, ' =k—a,—a,, a)=k—-a;—ay, ay=k—a,~a,
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Ex. 2. (III.) n=8, a; =4, ay=1.
K=8k—2b—a,—a;—ay—a, '=2k—-b—a,—a;—ay—a, a’=k—>b—a,é&e:
Ex.8. (IV.1) n=4, =6, a3=0, aq; = 1.
¥=4k-8—-2(a), ¢=8k—2—2(a), a)=k—c—a, &o.
Ex. 4. (IV.2) n=4, a,=38, a;=38.
K=4k—-220)—2(a), ¥'=22%—-2(b)—a;—a, b'=&c, a'=k—0,—b, a =&
Ex.5. (V.1) n=5, a=8, =0, ¢, =0, a,=1.
K=bk—4d-=(a), d=4k—8d—-=(a), a/=k—d—a,.
Ex.6. (V.2) n=5, a;=38, ag=38, ay=1.
K =bk—c—2Z (b)— = (a), /=8k—2c—=(b)—2(a), d'=2k—c—a,—= (), a)’=k—c-b.
Ex.7. (V.3) n=5, ¢, =0, a;=6.
K =56k—2Z (), b =2k—by— by —b, — by — b, &c.
Ex.8. (VI.1) n=6, a; =10, ag=1.
k¥ =6k —be — = (a), ¢ =5k —4e— X (a), 6/ =k —e—a, &c.
Ex.9. (VI.2) n=6, a;=1, ay=4, ay=2.
K=6k—8Z(c)—22 (b)) —a, ¢,/ =8k—2c,—c;— 2 (}) —a,
b'=2% -2 (c)—-by—by—b, a'=k—Z=(c)
Ex.10. (VL.8) n=6, a; =4, ay=1, a;=38.
K=6k-32(c)—26—2(a), & =4k—22 (c)—b— = (a),
b/ =2k~ X (c)—-b—a), b =&c, by =&c., b'=&c., a/'=k—c;—¢, ay=&c., a;=&e.
Ex. 10, (V1.4) n=6, =8, ay=4, a;=0, a; = 1.
K=6k—4d—-22 () — = (a), ¢' =3k —2d— = (b)) — a; — ay, ¢ = &e., ¢’ =&o,
¥=2%—-d-= (), a)) =k—d—-b, a’=&e., a =&ec., a’=&c.

TRANSFORMATION OF A GIVEN CURVE.

363. The conditions assigned in the last section are neces-
sary for the general rational transformation between two planes,
50 that to any point in either plane shall correspond a unique
point in the other. But they are not necessary to rational
transformation, if we consider only the transformation of a
given curve S=0. Let us apply to the curve § a transforma-
tionz' :y :2'=U:V: W, where U, V, W are functions of the
n” degree in x, y, 2, not necessarily satisfying Cremona’s
conditions; then obviously to any point in the first plane will
correspond a single point of the second, since &, ', 2’ are given
as rational functions of @, y, 2. But according to the pre-
ceding theory, if U, ¥V, W have common a, ordinary points,
a, double points, &c., then to any point in the second plane will
correspond n' — a, — 4a, — &c. points in the first plane; and this
number, which we shall call 6, will ordinarily be different from
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unity. The locus of points in the second plane corresponding
to the points of the curve S, will be a curve 8’ corresponding
to 8, and to any point P of the first curve will correspond a de-
finite point P’ of the second. Now, from what we have just said,
it appears that to P’ will correspond in the first figure, besides
the point P, 6 — 1 other points; but these points will ordinarily
not lie on S, and the curve in the first figure corresponding
to S’ will consist of S together with a residuary curve, the
locus of the 6 —1 points. And if we attend only to the points
on the curve S, we see that while to any point P of S cor-
responds a single point P’ on §', so also to any point P’ on &'
corresponds a single definite point P on 8. '

Thus then, though the equations &' :y':'=Us V: W do
not by themselves suffice to give rational expressions for , y, £
in terms of ', y', 2/, it is otherwise when with these we combine
the equation S=0. If from all the equations we eliminate
xyz, we obtain an -equation S'=0, which is the condition for
the co-existence of the system of equations. And when this
condition is satisfied, it was shewn (Higher Algebra, Lesson X.)
that ‘we can in general rationally determine the values for
«, y, = whieh will satisfy all the equations of the system. We
see then that when a given curve S is transformed by the
substitution of 2’ : ' : &'=-U: V': W, we can in general obtain
a rational converse expression z:y : 2=U':V': W'

Ex. Suppose that we ate given o’ : ¢ : 2’ =yz+a? :y2 + 2y 1 yz + az. Here to
right lines in the second plane answer conics in the first, having common only two
points y=z, z ; and therefore to a point in the sécond plane will generally answer two
points in the first plane. The general expressions for z, y, 2 in terms of &', ¢/, ¢’
are easily found by observing that z—y, z— 2 are respectively praportional to
a’ —y, o —2'; the geometrical meaning of which is, that the points zys, z'y’z’
considered as belonging to the same plane, are collinear with the point 1, 1, 1.
In other words, the equations are satisfied by writing =2+ )\, y=g¢ +X,
£=2'+ A\, where \ is determined by the quadratic

M2+ (2 +y +2)N+y72 =0,
and plainly to any system of values for z'y’2’ answer two systems of values for zyz.
But it is otherwise if we consider the transformation of a given curve. Thus, take
a right line in the first plane ax + By + yz; then the relation between any point on
this line and the corresponding point in the second plane is given by the equations
z =2z’ + \, &c., where (a + B+ y) A = — (az’ + By’ + ¥2).

In like manner, if we have any conic S on the first plane, and if by the sub-
gtitution = =2’ + A, &c., S becomes A2+ PA + 8’, then the curve corresponding
to § is the quartic whose equation is obtained by eliminating between

AN+ PA+8 =0, N+ (z'+y +2)A+y2'=0;
|
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and the expression for = in terms of 2’ is obtained by taking for A the common root
of these equations given by the equation 2P — (&' + ¢’ +2)} A + 28 —g'¢' =0,

364. The deficiency of a curve is unmaltered, mot only by
Cremona’s transformation -as already proved, but by any trans-
formation where to a peint on either curve corresponds a
single peint on the ether* This may be shewn as follows:

In the first place, it is to be observed, that in the xational
transformation between two planes, where to a point A corre-
sponds a single point 4, if any curve pass twice through A4 the
corresponding curve must pass twice through 4, or, to a double
point on one curve must correspond a double peint en the
other. But if to 4 correspond more points than one, 4', B, &e.,
then if the second curve pass through both A' and B, the
first curve will pass twice through 4 ; that is to say, a double
point on one curwe aay correspend to a deuble point, but it
may also correspond to a pair of distinct points on the other.
In like manner if the points 4', B’ coincide, we may have a
cusp on ene curve correspending either to a cusp or to a pair
of coincident points on the other.

Let us now consider 1two fixed corresponding points 4, 4/,
one on each of two corresponding curves S, §', whose orders
we suppose to be m and m!, and which we suppose to be in
the same plane ; let us consider alse twe variable corresponding
points M, M'; and let us examine the degree of the locus of
the intersection of the lines AM, A’M'. Now take any fixed
position of the line 4 M, since it meets the first curve in m —1
points distinct from 4, there are m —1 corresponding positions
of the line 4’M’, and therefore AM meets the locus in m—1
points distinct from 4. But if we consider the line 44, it
is easy to see in like manner that it meets the locus in no
other points than the point A ceunted »'—1 times, and 4’
counted m—1 times. Thus we see that the locus is of the

* This theorem was first derived by Riemann from the theory of Abelian
functions ; see Crelle, L1v. 133. The proof here given is substantially the same as that
given by Zeuthen, Mathematische Annalen,1.150; but I am informed by Dr. Fiedler,
that it had been previously given by Bertini, Battaglini Giornale, V1. 105 (1869).
See also a direct proof in Clebsch and Gordan’s Theorie der Abelschen Functionen,
p. b4, for the case where the curves in one system answering to right lines in the
other have common no multiple points higher than the second.
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degree m+m’' —2, the points 4, A4’ being multiple points- of
thre orders respectively m'— 1, m— 1.

Let us next consider in what cases AM touches the locms.
This will be the case when two of the lines A'M" corresponding
to AM coincide, without our having at the same time a coin-
cidence between two of the lines A'M corresponding to A'M’;
for in the latter case the intersection of 4M, A'M' would be
a double point on the locus, and AM would not be an ordinary
tangent. Now (1) if AM touch the carve 8, AM will evidently
also touch the locus. (2) If AM pass through a double point
on 8, then aceording as to that double point there corresponds
on &' a double point or a pair of distinct points, we have
eorresponding on the locus a double point or a pair of distinct
points, but in neither case is8 AM an ordinary tangent. (3) If
AM pass through a cusp on: 8, then aceording as to-that cusp cor-
responds a cusp on S’, ora pair of coincident points, 4M passes
through a cusp on the locus, or else is an ordinary tangent.

It appears from (1) and (3), that the number of ordinary
tangents from 4, together with the number of cusps, is the
same for the locus and' for the curve 8. It is by expressing
this equality that we obtain the relation connecting the two
carves S, §'. It was shewn (Art.79) that the number of
tangents which can be drawn to a curve of the m™ degree from
a- multiple point of the order r is m*—m—r(r+1); or is
less than the class of the curve by 2r. Hence, if N be the
class of the locus curve, the number of tangents which can
be drawn from 4, which is a multiple point of order m'— 1, is
N-2(m'—1); and if we denote the number of cusps on the
locus curve by K, and the class of S by =, the equality we
desire to express is

N-2(m'-1)+ K=n-2+x
In like manner, considering the tangents:from A4',
N-2(m-1)+K=n'"—2+4,
and we have therefore n —2m+ x=n"—2m" + «/,
or writing for = its value m*— m — 28 — 3«,
fm—1)(m—2)—8—k=%(m' - 1) (m'—2)—& - k. Q.ED*

* Zeuthen proves in like manner, that if, instead of the correspondence of the
curves being rational, a points on S correspond to any point on &', end of Winte oo
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365. It is proved,as in Art. 361, that if we transform a curve
8 of the m™ order by the transformation 2’ : 3y :2'=U:V: W,
where U, V, W are functions of the p™ order, then since the
points where an arbitrary line meets the transformed curve
correspond to the points where alU+ 8V + W meets S, the
order of the transformed curve is mp —a, — 2a,, &c., where a,,
a, &c. denote the number of single, double, &c. points common
to. U, ¥, W, and which also. lie on S. Let us now examine
how, by this transformation, we can reduce the order of the
transformed curve as low as possible. As in Art. 353, we
see-that U, ¥V, W may be made to. satisfy two. conditions less
than the number sufficient to. determine a curve of the p™
order; that is to say, 4p(p+3)-2; and we evidently apply
these conditions 8o as most to reduce the order of the transformed
curve, if we make U, V, W pass through as many as possible
of the double points of S. Let the deficiency of S be D, and
the number of its double peints accordingly § (m® —3m) — D +1;
and let us in the first place take p=m—1, in which case
we may make U, V, W pass through } (m"'+m)— 3. points.
We may, therefore, make the curves pass, throngh all the
double points and through 2m + D.—4 other points- on 8.
Writing,, therefore, a, =2m+ D -4, a,=} (m'—3m)—D+1,
p=m-—1, we find for the order of 8', mp —a, —2a,= D +2.

Let us next take p=m—2, which of course implies that m
is greater than 2. Proceeding precisely as before, we see that
we may take a,=} (m*—38m)— D+ 1, a, =m+ D— 4, and that
the order of the transformed curve will still be D+2. Once
more let us take p =m- 3, we may take a, =4 (m'—3m) - D-+1,
a,=D—3, provided always that D is greater than 2; and
we now find for the order of the transformed curve, D+ L.
The transformed curve has, as we have proved, the same
deficiency as the original, so that our result is, that a curve
of order m with deficiency D, or with § (m*— 3m) — D + 1 double
points, may be transformed into a curve of order D+ 2 with de-
ficiency D, that is with }§ (D*- D) double points or, when D is

&' to any point on §; and if ¢ and ¢ denote the number of cases in which two of
these a or a’ points coincide, then

t—t =2 (D~1) -2 (I -1).
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greater than two, into a curve of order D+1 with § (D' —3D)
double points.

Thus then, in particular, a curve may be transformed as
follows:

if D=0 into a cenic,*
D=1 ,, a cubic,
D=2 ,, a quartic with one node,
D=3 ,, a quartic,
D=4 ,, a quintic with two nodes, &c.

366. The case of unicursal curves need not detain us.
Here D=0, and the transformed curve a conic; the ceordinates
a', y', 2 are, as we know, expressible as quadric functions of
a parameter 6; therefore the coordinates x, y, z, which are
expressible as rational functions of &', 7', 2/, can be expressed as
rational functions of 6.

Let us then consider the case D=1. Here the transformed
curve i8 a cubic, and it is to be noted that, however the trans-
formation is effected, the resulting cubic will have always the
same absolute invariant; that ia to say, the anharmonic ratio
of the four tangents from any point on the curve will be the
same (Art. 229). When D=1, the coordinates of any point
on the curve can be expressed as rational functions of a para-
meter 0, and of 4/(®) where © is a quartic function. of 6. It
is sufficient to shew this for the case of a cubic, since z, y, 2
can be expressed as rational functions of 2', 3, z'; and for
the case of the cubic, it appears at once by taking the cubic
to pass through the point 2y, and then writing in the equation
of the curve y =0z, when the ratios = : y : z are immediately
obtained in the form in question. It is moreover clear, that
the values of @ for which @ =0 are precisely those answering
to the four tangents from xy to the cubic.

‘We have thus seen that the coordinates of a point on a curve
for which D =1 can be expressed as rational functions of & and

* Although by the method just described, the case D =0 is only transformed into
a conic, yet by the Cremona transformation, the conic can be further transformed
into a right line.
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#/(©); and by a linear transformation of @ (that is to say, replac-
ing @ by a properly determined function a6 + b <6 + d), we can
bring 4/(©) to the form 4/(1-&)(1-k'¢). If we write
0 =sinamu, this is cosamu Aamu, and we may say that the
coordinates of a curve, whose deficiency is 1, can be expressed
as elliptic functions of a parameter u.

367. There is a like theory where the deficiency is 2, and
where the curve is therefore reducible to- a nodal quartic.
Taking the node of the quartic for the point y and writing
y=0x, we can immediately express the ratios z:y :z as
rational functions of 6 and #/(©), where © is now a sextic
function of 6; and this is equivalent to saying, that the coor-
dinates are expressible as hyper-elliptic functions of the first
kind of a parameter u. For higher values of D, the coordinates
are irrational functions of a parameter, and it is only in special
cases that they can be expressed by radicals.

368. Before quitting this part of the subject, another method
may be mentioned by which the same problem may be studied.
We may start with the equations connecting the coordinates
xyz, «'y'z’; let these be 4=0, B=0, C=0, each equation
being homogeneous both in zyz and in z'y'2’; and being in
those variables of the orders a, b, c; a', ¥’y ¢’ respectively. If
between the three equations we eliminate z'y'z’, we obtain an
equation S=0 of the order ab'c'+bc'a’+ca’d’ in xyz, and if
we eliminate xyz, we obtain an equation 8'=0 of the order
a'bc+bca+cabin 2'y'’2. The conditions §=0, 8'=0 maust
be satisfied in order that the equations 4 =0, B=0, =0 may
co-exist; but for any system of values of xyz satisfying the
equation S=0, we can find a corresponding system of values
of 2y’ satisfying equations 4 =0, B=0, C=0, and therefore
also §'=0. The number of double points on the curve S may
be investigated by the methods explained in Higher Algebra
Lesson XVIII., and the result I have obtained is

jo'c’ (B'c' —1)a*+ica’ (da’ = 1) &' + §a'b’ (a'd' - 1) ¢*
+{(a® —1)(ca'—1)—} (a'— 1) (a'—2)} be
+{('¢—1) (@ -1)=- 3 —1)(0'- 2)} ca
+{(€a =1) (#€ —1) (¢ ~ 1) (¢ — 2)} ab,
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and there is of course a similar expression with interchange of
accented and unaccented letters for the number of double points
-on §'. In either case we find the deficiency to. be } (2 + 2),
‘where

Q=a"t'c' + ¥c'd + c’a'b’' + a"bc + bca + c"ab
+2aa’ (bc' + b'c) +2bb' (ca’ + ¢'a) + 2¢c’ (ab’ + a'd)
—3(ab'¢' +bca’ + ca'd’ +a'be+ b'ca + c'ab) ;
#0 that again we have the theorem that the two curves have
‘the same deficiency.

CORRESPONDENCE OF POINTS ON A GIVEN CURVE.

369. What has been said may sufficiently illustrate the
itheory of rational correspondence; in what follows we consider
‘the general correspondence of two points P, P’ on the same
-curve, such that either determines the other. Suppose that to
.a given position of P there correspond &' positions of P’, and
to a given position of P', a positions of P, the correspon-
dence is said to be an (a, a') correspondence. When a=a'=1,
the correspondence is rational.

As a simple instance of correspondence on a given curve
«of the m™ order, suppose the points P, P’ to be collinear with
-a fixed point O (that is:to say, that the line PP’ passes through
‘0), then if P be given there are m — 1 positions of P’, and
if P’ be given there are m—1 positions of P; or this is an
(m—1, m—1) correspondence. We have already noticed this
wparticular kind of correspondence in the case of the circle (see
Art. 347). This correspondence is evidently rational in the
.case of the conic, or where m =2.

If the point O is on the given curve, then to a given
position of either point there correspond m —2 positions of the
-other point; or, more generally, if O is an a-ple point of
the curve, then to a given position of either point there cor-
respond m — a—1 positions of the other point, viz. the cor-
respondence is a (m — a — 1, m — a— 1) correspondence. Observe
that we have in this way a (1, 1) correspondence of points
on a cubic (by taking O at pleasure on the curve), or on a
nodal quartic (by taking Oat the node), but that we cannot
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thus obtain a (1, 1) correspondence of points on a general
quartic.

370. In the foregoing instance the correspondence has been
a symmetrical one; viz. starting from either point the other
is obtained by the same construction, and of course a=ad.
But as an instance of a non-symmetric correspondence, suppose
that P’ is given as a tangential of P; here P being given, P’
is any one of the intersections of the tangent at P with the
curve (and thus to a given position of P there correspond m —2
positions of P’); but P’ being given, P is any one of the points
of contact of the tangents from P’ to the curve (and thus to
a given position of P’ there cotrespond n — 2 positions of P, if »
be the class of the curve); and we have thus a (n—2, m —2)
correspondence. It is hardly necessary to remark, that we
may have a =a’ without the correspondence being symmetrical.

371. In the case of a unicursal curve, to a given point on
the curve corresponds a single value of the parameter ¢/; and
to a given value of 0, a single point on the curve (or extending
the notion of correspondence we might say that a point on the
curve and the parameter of such point have a (1, 1) corre-
spondence). It at once follows that if the point P has a positions,
its parameter  must be given by an equation of the order a;
whence also, if as above, the points P, P' have an (a, a') corre-
spondence, the relation between their parameters 6, ¢ must be
given by an equation of the form (6, 1)=(¢', 1) =0, viz. 8 being
given the equation will be of the order «' in 8, but 0 being
given it will be of the order a in 6.

372. A point may correspond to itself, and it is then said
to be a united point; thus where the points P, P’ are collinear
with a fixed point O, it is clear that the point of contact of any
tangent from O to the curve is a united point; and if these are
the only united points, their number is = n.

The only other points which it might at first sight appear can
be united points are the nodes and cusps of the curve; in fact,
taking P at a node or a cusp the line OP meets the curve in the
point P, in the same point counting as one of the (m —1) inter-
sections, and in (m —2) other points; or, what is the same thing,
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the line from O to the node or cusp meets the curve in the node
or cusp counting twice, and in (m — 2) other points. But in the
case of the node the two intersections at the node belong to
different branches of the curve, or we may say they are coinci-
dent, but non-consecutive points; in the case of the cusp they
are comsecutive points; the distinction is well seen in the case of
a unicursal curve, here for a node we have two distinct values of
0, for each of which the coordinates have the same values, for
the cusp these two values of @ have become identical : or, what
is the same thing, the line from O to a cusp (although not a
proper tangent of the curve) is a tangent in a sense in which
the line from O to a nede is not a tangent to the curve. The
conclusion is that a node is not a united point; in a special
Sense a cusp is.a united point; and we have, besides, the proper
united points, which are the points of contact from O to the
curve.

Reverting to the unicursal curve and to the -equation
(6, 1)= (¢, 1)¥ =0, at a united point we have 6=6', and for
finding these points we have an equation (8, 1)** =0; that is,
when the points P, P’ have an (a, &) correspondence, the number
of united points is =a+a'.

Applying the theorem to the case where P, P’ arecollinear with
the fixed point O, the correspondence is (m—1, m - 1), or the
number of united points should be =2 (m —1). The number of
points of contact, or proper united points is =, that of the cusps
or special united points is = x ; or we ought to have

n+k=2(m-1),

which is in fact the case for a unicursal curve with x cusps.

In the case where P’ is a tangential of P, it has been seen
that the correspondence was (n—2, m—2); and the number of
united points should be =m+n—4. We have here as proper
united points the inflexions, and as special united points
the cusps; total number =:+«;and the theorem thus is
t+ £=m+n—4, or what is the same thing (=3 (m —2) - 2«;
which is in fact the case for a unicursal curve with x cusps.

373. Consider the point P as given; the geometrical con-
struction for the determination of P’ comes in general to this,
T
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that we have depending on P a certain curve ® which, by its
intersections with the given curve, determines the points P
In some cases P’ is any one of the intersections in question;
but in others a certain number of them will in general coincide
with the given point P, and are to be.excluded. Thus in the
case where P, P’ are collinear with O, the curve © is the line
OP meeting the given curve in the point P counting once (to
be excluded) and in (m — 1) other points. So when P is the
tangential of P the curve © is the tangent at P meeting the
given curve in the point P counting twice (to be excluded) and
in (m — 2) other points, ‘

But further; the curve ©® may meet the given curve in
pointe forming two or more distinct classes, in such wise that
only the points of the one class are positions of the point
P’. Thus in the last preceding instance, interchanging the
points P, P’, or now considering P’ as the point of contact of
-a tangent from P to the curve, the curve © is the system .of
m— 2 tangents from P to the curve; each of these tangents
meets the curve in the point P counting once, in the point of
contact say P counting twice, and in m —3 other points say
P” (which are cotangentials of P, that is PP" touches the curve
at a peint P' distinct from P or P"). Or, what is the same
thing, the curve © of the order n—2 cuts the given curve in
the point P counting »—2 times, in »—2 points P’ counting
each twice, and in (»—2) (m — 3) points P” counting each once.
The correspondence (P, P') as was seen is (m—2,n—2); the

correspondence (P, P") is clearly (n —2 m —3, n—2 m —3).

374. The theorem in regard to a unicursal curve suggests
the theorem that for a curve in general the number of united
points should be =a+ «' + multiple of the deficiency, or say
=a+a +%.2D; but admitting that the curve © presents itself
in the problem, the last instance shews that there is a necessity
for considering the case where the curve ® has with the given
curve distinct classes of intersection. The general theorem
is that if for a given curve of deficiency D, the corresponding
points of P are P, P, ..., and if P, P' have an (a, ') corre-
spondence, and the number of the united points is =a: P, P"
a (B, B') correspondence, and the number of their united points
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isb: &c.; and if the curve ©, which, by its intersections with
the given curve, determines the points P', P" ..., intersects the
given curve in the point P counting % times; in each of the
points P’ counting p times, each of the points P" counting
g times, and so on, then we have

p(a—a—a) +q(b-B-R)+... =k.2D,
where of course in each of the different correspondences the
special united points (if any) must be taken into account.

Thus, in the instances above considered for a unicursal
carve: first, if P, P’ are collinear with O, we have

n+k=2(m—1)+2D....cuccuuuuune. < (1),
Next if P’ is a tangential of P,
t+k=m+n—4+4D ...oiinnnnnnnns 2);

and in the case where P is a tangential of P, and where
b, B, B’ refer to the correspondence P, P" cotangentials,

b-2(m-38)(n—2)+2 (a—a—a)=(n—2)2D,
where, by the example immediately preceding,
a—a—a=t+k—(m+n—4)=4D.
and therefore b—2 (m—3)(n—2)=(n—6)2D.

The proper united points b are here the points of contact of
the double tangents, the number of which is 27; but we have
also as special united points the cusps each: counted n — 3 times
(4t must be assumed that this is s0), and the result is

27=2(m—3)(n—2)+ (n—6)2D— (n—3) x ... (3).

The several equations (1), (2), (3) giving respectively the
class, the number of inflexions and the number of bitangents
of a curve of the order m with & nodes and « cusps agree with
the Pliickerian equations; they are most easily verified by
means of the expressions given, Art. 83, for the several quan-
tities in terms of m, n, and a =3n + «.

375. 1If on any curve the points P, P' have a (1, 1) cor-
respondence, the points (P’, P") a (1, 1) correspondence...and
80 on up to the points PV, P™; then it is clear that the
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points P, P™ have a (1,1) correspondence. And conversely,
the points P, P™ which have a (1, 1) correspondence may be
regarded as connected with each other through the series of
intermediate points P, P"...P™™),

In the case of a unicursal curve, the (1, 1) correspondence
of the points P, P’ implies a like correspondence of the para-
meters 0, ¢ ; viz. this is of the form (6, 1) (¢, 1)=0, or, what
is the same thing, 206 + 560 +cf' +d=0; that is, the para-
meters 0, @' are homographically connected. The transfor-
mation depends upon three arbitrary parameters.

Taking the curve to be a conic, then if the points P, P’
have a (1, 1) correspondence, it is known that the line PP’
envelopes a conic having double contact with the given conicj
such enveloped conic, as satisfying the condition of double
contact, depends on three parameters. But if taking the points
A4, B at pleasure, we take on the conic P, @ collinear with
4, and P’ collinear with B, @, then the points P, P’ will have
a (1, 1) correspondence; this apparently depends upon four
parameters, and it follows that the points 4, B can without
loss of generality be subjected to
a single condition. Thus let the
correspondence P, P’ be given by ’
means of the conic enveloped by
the line PP'; if on the chord of
contact we take at pleasure the point
A, draw PA to meet the conic in €
@, and QP to meet the chord in B, then (1, 1) correspondence
is also given by means of the points 4, B; but here 4 may
be regarded as a determinate point on the chord of contact
(say its intersection with a fixed line), B is then found as
above, and we have the correspondence by means of these two.
points, just as well as if 4 had been assumed at pleasure on
the chord of contact.

A case really included in the foregoing is when the corre-
spondence of P, P' is such that the line PP’ passes through a
fixed point C; viz. the enveloped conic regarded as a line-curve
is here the point C taken twice, regarded as a point-curve
it is the pair of tangents from C to the given conic; that
is, the chord of contact is the polar of C, and the construc-

D
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tion is the same as before, the points- 4y B, C forming, as
it is easy to see, a set of

conjugate points in regard

to the conic; the original

correspondence of P, P’ as

collinear with the given

point C, is here replaced by B
a correspondence by means

of the two points 4 and B

forming with C a system of

conjugate points.

The foregoing properties have reference to the problem: of:
the inscription in a conic of a polygen the sides of which either
pass through given points or touch conics having each of them
double contact with the given conic.

376. On a cubic curve (D=1) we have a (1,1) corre-.
spondence; this depends on a single parameter, but there are
two kinds of such correspondence viz. (1) the points P, P’ are
collinear with a point 4 of the cubic. (2) The points P, P
are such that P, @ are collinear with
a point A of the cubic and @, P ¢ £

collinear with a point B of the cubic;
this apparently depends on two para-. o
meters, but really on a single one; 7 7 X
for taking C' a determinate point on
the cubic, join 4C to meet the cubic

! J e p ]
in O and BO- to meet the cubic in

D; then the same corresponding point P’ will be obtained by
taking P, R collinear with D, and RP’ collinear with C, that
is, by means of the single point D. It is, in fact, evident that
starting with P-and constructing P’ as the intersection of the
lines @B, RC, then the cubic passing through 4, B, C, D,
0, P, @, R will also pass through P, so that the points 4, B
and the points D; C lead to the same point P'.

The theorem involved in the foregoing construction may be
stated "as follows: If on a cubic the points 4, B, C, D are such
that the lines 4 C; BD meet in a point O of the cubic, then we
~ have inscribed in the cubic an infinity of quadrilaterals PQP'R, .
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the sides of which pass through 4, B, C, D respectively; viz
any point P whatever of the cubic may be taken as a vertex of
such quadrilateral.

377. More generally imagine inscribed in the cubic am
unclosed polygon PQ...X of 2n—- 1 sides, the sides of which:
pass through fixed points on the cubic, then the points P, X will
have a (1, 1) correspondence of the first kind, that is the closing
side XP will meet the cubic in a fixed point; that is we have
inscribed in the cubic an infinity of 2n-gons, the sides of which
pass respectively through fixed points of the cubic. And of the
fixed points all but one-are arbitrary, this one bemg determined
by constructing one such polygon.

378. This theory may be illustrated by the expression of
two points in a cubic by means of parameters, Art. 366. 4 (1,1)
correspondence between two points on a cubic implies a rational
expression for the parameters sinamu/, cosamw’, Aamu’, in
terms of sinamu, cosamu, Aamu; and this again implies an
equation of one or other of the forms u+ u = constant,
u—u' =constant. Now when three points P, P’, 4, are col-
linear, we have in general a relation w4+ u'+a=A where A'is
a constant depending on the absolute invariant of the cubic.
A relation, then, of the form u+ »'=constant, implies that P
and P’ are collinear with a fixed point 4. If the relation
be of the form »—u'=constant, say =b—a, we may write
u+v+a=A, v+b+u'=A; and the geometrical meaning is,
that P, @ are collinear with a fixed point 4 and @, P’ with
a fixed point B. We may evidently substitute for the points
A, B, two others D, C, providled we have b—a=c—d, or
a+c=>b+d, that is to say, provided the lines 4C, BD in-
tersect on the cubic. We have thus the results already ob-
“tained.

379. For a binodal quartic (D =1) there is a like theory of
the (1, 1) correspondence; for a nodal quartic (D =2) there is a
(1,1) correspondence not depending on any arbitrary parameter,
viz. the corresponding points P, P’ are collinear with the node.

There is an intcresting theory of the (2, 2) correspondence
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on a unicursdl curve, and in particular on a conic. The para-
meters which determine the position of the two points P, P’ are
here connected by an equation (6, 1)*(¢,1)*=0. As regards
the conic we have Poncelet’s theorems as to the in-and-cir-
cumscribed polygons.
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CHAPTER IX.

GENERAL THEORY OF CURVES.

380. IN this chapter we resume the general theory of curves
in continuation of Chap. II., and commence with the theory of
bitangents of a curve of the n™ order postponed from Art. 78.
We shall explain two methods by which we can form the
eqaation of a curve whose intersections with a given curve shall
determine the points of contact of its bitangents.

The theory of the tangents of a curve was studied (Ast. 64)
by means of the equation A =0, or

MU A RAT + PN AT + &e. =0,
which determines the coordinates of the points in which the
line joining two given points meets the curve. We there saw
that if the point z'y’2’ be on the curve, and ayz anywhere on
the tangent, we must have U'=0, AU'=0, and if the tan-
gent meet in three consecutive points we must have besides
A'U'=0, if in four consecutive points we must have likewise
A*U’=0, and so on. If the tangent at z'y’2’ touch the curve
elsewhere, then making U’=0, AU'=0, in the equation A =0,
the reduced equation of the (n— 2)™ degree must have equal
roots, and therefore if the discriminant of that equation be
Y =0, that relation must be satisfied by the coordinates z'y'7,
ayz. In the case of points of inflexion where we have the two
conditions AU'=0, A*U’=0, the one being of the first degree
and the other of the second in @xyz, and both satisfied for any
point on the tangent, it is evident, as was stated (Art. 74),
that AU’ =0 is the equation of the tangent, and that A*U'=0
must contain AU’ =0 as a factor. In like manner, in the case
of a bitangent, ¥'=0 must contain AU'=0 as a factor, and
by finding the condition that this shall be the case, we find the
condition that x'y'z" shall be a point of contact of a bitangent.
The special method used, Art. 74, not being applicable to
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the general case, we employ the following method due to
Prof. Cayley, and it is convenient to begin with the follow-
ing lemma.

381. Let the equations of two curves contain the variables
xyz in the degrees a, b respectively, and z'y'?’ in the degrees
a', b'; and let the ab points of intersection of the two curves
all coincide with z'y’?’, it is required to find the order of the
further condition that must be fulfilled in order that they may
have other common points, which can only happen when there
is a factor common to U and V. When this is the case any
arbitrary line ax+ By +y2=0 must be sure te have a point
common to U and V; namely, the point or peints where the
arbitrary line meets the curve represented by the commen
factor. It follows that the result of elimination between U=0,
V=0, and the equation of the arbitrary line must, in this case,
vanish. This result contains aBy in the degree ab, z’y's’ in
the degree ad’+a'd, and the coefficients of U, V in the de-
grees b, a respectively. But since the result of elimination
is obtained by multiplying together the results of substituting
in ax+ By + vz the coordinates of each of the intersections of
‘U, V, and since by hypothesis ‘these intersections all coincide
with z'y'¢/, the resultant must be of the form IT (ax'+8y +v2)".
The condition az’ + By’ + 2’ =0 merely indicates that the arbi-
trary line passes through 2'y's’, in which case it passes through
a point common to U and V, whether they have a common
factor or not. Rejecting this factory the remaining condition
=0 is the sought condition that U and ¥V may have a
common factor, and we see that it does not involve aBy, that
it is of the order ad’+a'b—ab in «'y'?', and of the orders &, a
respectively in the coefficients of U and V.

382. When the method just described is applied to the imwves-
tigation of the points of inflexion, that is, to the determination
of the condition that AU", A*U’ may have a common factor,
we havea=1, a'=n—1, =2, b'=n—2, and the formula just
obtained gives 3 (n — 2) for the order of IT in 'y, which is the
order of the Hessian as already found. It appears also that II
is of the second degree in the coefficients of A-U’, and of the

AR
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first in those of A*U’; and since each of these is of the first
degree in the coefficients of the original equation, IT involves
these coefficients in the third degree, which also agrees with
previous resulta.

To proceed then to the case of the double tangents, since the
equation A =0 is reduced to the form §A*U'N"™* +...+ Up"*=0,
a specimen term of its discriminant is (A*U")** U™, whence we
see that Y is of the order (»+2)(n—3) in 2yz, of the order
(n—2)(n—38) in z'y'2’, and of the order 2(n—3) is the coeffi-
cients of the original equation. In the next place we can
show that all the intersections of Y and AU’ coincide with
z'y'?'; for the equation of the system of n*—n—2 tangents
through the point z'y'’z’ found by the method of Art. 78 is of
the form kAU + Y (A’U’)*=0, and this system can evidently
be intersected by AU in no other point than z'y'z'; therefore
making AU =0 in the equation last written, we see that
AU can meet neither Y nor A'U" in any other point than
«y'?. We may then apply the method of Art. 381, writing
a=1,d=n—1,b=(n+2)(n-3), b'=(n-2)(n—3), whence
ab' +a'b=(n"+2n—4) (n-3). We have then for the order of
M in a'y'2, (n+43) (n—2) (n—3). It is of the order (n+2) (n—3)
in the coefficients of AU’, and of the first order in the coeffi-
cients of Y, and therefore of the order (n+4)(n—3) in the
coefficients of the original equation. The bitangential curve
1 =0, meets the original curve U=0 in 2 (n+3) (n—2) (n —3)
points, and since there are two of those points on each bitangent,
the number of bitangents is 4n(n—2)(n"—9) as found other-
wise, Art. 82.

383. The method of Art. 381, not only enables us to de-
termine the order of the required condition IT=0, but by the
actual performance of the operations indicated, to find the con-
dition itself. Thus &', ¥/, 2’ being, as before, the coordinates of
the point on the curve, in the case of points of inflexion we
have to eliminate between ax + By +vz=0, AU =0, A'U' =0,
and the last equations written at length are

Lx + My + Nz=0,
ax’ + by’ + c2* + 2fyz + 2gzx + 2hxy = 0.
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It will be convenient, in order to avoid numerical multipliers, if
we suppose the original equation to have been written with
binomial coefficients, and the common multipliers to be removed
after differentiation, so that L, M, N denote the first differentials
of U’ divided by n; a, b, &c., the second differentials of U’
divided by n(n—1); and the ordinary equations of homo-
geneous functions will be L&'+ My'+ Ne'= U, ax'+hy' +g2'=L,
&e.

Now the condition that two lines shall intersect in a point
on a conic, may be written in the form of a determinant

a ky g, L, a

Ry b, fy, M, B

9 fHo Ny
L, M, N,

a B, v =0,

for it may be verified that this determinant expanded is the

same as the result of substituting in the equation of the conic, the

coordinates of the intersection of the two lines, viz. My — N,

Na— Ly, LB~ Ma. Now, in virtue of the equations of homo-

geneous functions, the above determinant may be reduced by
multiplying successively the first three lines and columns re-

spectively by ', 3/, 2/, and subtracting fromn the fourth. It then

becomes, if we denote ax’ + By + vz’ by R,

a hg, 0 a
kb f, 0 B

Hhhe 0 v
000 -U,-R

a,ﬁ)% "R; o 1, '

ay hy g, a

a kg
or o |y h Bl
‘ Hhhoo 9, fo ¢

) J? )
a By v

After Clebsch we use the abbreviation (:) for the determinant

multiplying U’, in which the matrix of the Hessian is bordered
vertically and horizontally by a, 8, 9. In like manner the de-
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terminant with which we started, in which the same matrix is
twice bordered, by a, 8, v, and by the differential coefficients of

U, would be written (IUT, :) ;, and the equation we have
establjshed is. >

(g ) --v ()-72
?
When z'y’2’ make U’'=0, the equation (IUT: :) =0. reduces. to

H=0, as it ought,

384. In order to. proceed by the same method to. find the
equation of the bitangential curve, we have to find the result of
substituting My—NB, Na— Ly, LB~ Ma for z, y, z respectively
in the discriminant of the equation A=0, (Art 380), and our
course will be first to find the result of that substitution. in the
several coefficients of that equation, viz. 4'U’, A’U’, &c., or as
we shall more briefly write them A*, A% &c. The result of sub-
stitution in A® has been calculated, (Art. 383), and Hesse has
shewn by the following process that the result of substitution
in A* is of the form P,U'+ @, (ax'+ By + )", which when
Z'y'’? is on the curve reduces to Q,(az'+ By ++42). His
method- shews that if this be true for two consecutive A*?, A",
it will be true for A™, and enables us to express P,,,, @,,, in
terms of the corresponding previous coefficients. It will be
remembered, that by definition we have A¥'=A (A}, where
A denotes the operation x (—i‘i,+y d—j+z (—fz, ; but in this.it was
assumed that xyz, «'y'2’ are independent quantities. In the
case now under consideration, where x is supposed to have
the value My— NB, and therefore to be implicitly a function
of z'y’2'; it must therefore be understood, that in the operation
A the differentiation only affects z'y'z’ as far as they appear
explicitly, and not as they are implicitly contained in zyz.

. d d d _.
Let us denote by v the operation x =Y Jy_'-'-z o without

this restriction, then according to the general rule for deriving
differentials with regard to z'y'z’ on the supposition that xyz
are variable from the differentials on the supposition that they
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are constant, we have in operating on any function §,
ds ds ds
v8= A8+ o vz +dyv-"+dz vz.

385. The next step is to calculate the values of vz, vy, v.
The result of operating with vy on any function S-is easily

Sﬂ Ss’ Ss»

seen to be | L, M, N |, and therefore when the function is
2 B, v

a or My — NP the result is

by —gB, by —f8, fy—cB
L, M, N
@y B, v y

where the coefficient (n —1) arises from the condition we: have

introduced, according to which the differentials of L, &c. are

(n—1)a, &c. The determinant just written is then reduced by

the: following process:

1, 9, S ¢ M 9 e
0, ky—gB, by—f8, fy—cB _ B, kb f

(1)

0, L, M, N 0, L, M, N
0, , B, b 0, & B, ¥
% 9 fi e B-od, —ax, — k', —ga'
B, kb f _ B, k, b f
~-(By +2), oy ks g’ | T\ v, g fy e

0, @ B, v 0, B, Y

k b f

=R|g £ o |+<(5)-
a B, v

If we denote (:) by 3, and the halves of its several diffe-

rentials with regard to. a, 8,9, by 3, 3, 3, these last differ
. only in sign from the determinants multiplying R in.the values
of vz, vy, vz, and we have

rimsn-en(s Exgend)

e (e et
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In particular let 8=A*(}"), where ¥ is any fanction of the

’ e L . dS d 1
order ' in z'y'z', then since — =k_l' AY'(V), we have
d d d
PP AR —Ieln — — | A*?
v (A*F)=a"(V)-k(n l)R(z,dt,+2,dy,+2,dz,)A (7

+k(n-1) (Z) (z'd% +y’£—, +2 Eﬁ—) ANV

Since AV is a homogeneous fanction in z'y’z" of the degree
n' — k + 1, the last term reduces to

Em-1) (w0 —k+1)(7) 2 (7).

386. It will be convenient to use the abbreviation ++ for

the operation =, %, +3 4 + 3, diz" and it will be observed

2 dy'
also that

a, by g, V,
ky b, f, V. 14
I’= Y Y J 2 or = .
¥(N »hat, (a)
a By

The result of operating with ¥ on  vanishes, as may easily be
seen by substituting in the last cclumn of this determinant for
V, Vo V,, 0 the values ky — g8, by — 18, fy — cB, By — 8, when
it at once resolves itself into two, each of which vanishes in con-
sequence of having two columns the same. The result then, of
operating, with 4 on any function containing w, y, 3, is the
same, whether or not these be regarded as constants. The
equation of the last article then, as applied to the quantities
A% &c. which we desire to calculate, is

A =y (AY) +k(n—1) By (M) = k(n—1) (n- &k +1) Sak,

387. From the expression just found, we can show that if
we have A =P, U+ Q, R', A*=P,U+ Q R, then A*" must
be of like form. For we have only to substitute these values
for A*, A* in the equation of the last article; and we must
observe that v (U) and vy (B) both vanish, as at once appears
by substituting either L, M, N, or a, B, 4 for S, S, &S, in

3
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. _Hence vy (a)=Uv(P)+R'v(Q) We

Sn Ss’ Sa
L M, N
a B, v

have, by substituting nL, nM, nN, and a, B, v respectively

for 8, S, 8, in (f) » ¥ (U)=—nlIR, ¥ (B)= (:) , and therefore

¥ (a7 =Ty (P,.) + B'¥ (Qu) — P, HE +2E2Q, ,

Collecting then the terms in the expression given for v**
(Art. 386), we have A" = UP,,, + R'Q,,,, where

P, =v(P)-k(r—1)(n—Fk+1)2P,_ +k(n—1) By (P,),
Q= (@) —k(rn—1)(n—k-1)2Q,,
+k(n—1)BY(Q,)—n (n—1) kP, , H.

388. From these formule we are able to form a table of the
values of P, @, &c. Thus to commence, it is obvious that
P, =0, @,=0, and (Art. 383) P,=-3, Q,=—H. Hence

=—A(3), Q=—Aa(H).

‘When the curve is a cubic A® is no other than the cubic func-
tion itself, and the value just given for @, may be geometrically
interpreted as follows: If any line axz+ 8y + ¢z meet a cubic,
and from each of the points of meeting four tangents be drawn
to the curve, the twelve points of contact lie on the quartic
H, &, K,
L, M, N
a, B, o |=0; for this condition must, as we have seen,
be fulfilled by any point of the curve whose tangent intersects
az+ By + vz on the curve. This result also immediately follows
from Art. 183.

Proceeding now to Q,, we have (Art. 387)

Q,=—v(AH)+3(n—1)(n—4) SH-3(n—1) Ry (II)+3n(n-1)SH
=—A(AH)+6(n—1)(n—2) SH-3(n—1) Ry H.

But in conformity with the result at the end of Art., 385, writing
k=1, and denoting by »’ the degree of the Hessian, or 3 (n —2),
V(AH)=a'H—(n— 1) Ry (M) +(n—1)n'SH.

Hence Q,=—aM+(n—1)n'SI[-2(n-1) Ry L.
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389. We have now the materials for forming the equation
of the bitangential curve of a quartic. According to the
method explained (Art. 384) we are first to form the discrimi-

25 2 1 1 At
nant of A=0, or of l_§ AN+ o A’Xp+l234 w'; and
then having substituted My— NB, &ec. for z, &c. we must, by
the help of the equation of the curve, remove &, 8, o. By
making the substitution before forming the discriminant, the
equation becomes

Q +123

whose discnmmant differs only by a numerical factor from
Q,'-30Q,Q,, a function still containing a, B, ¥ in the second
degree, and therefore requiring further reduction. For this
purpose the following formula is useful.

390. If we border the matrix of the Hessian both hori-
zontally and vertically with three rows and columns, the
resulting determinant is clearly the product, with sign changed,
of the two determinants added horizontally and wertically.
Thus in particular if V, W be functions of the orders »', n”
we have — A (V)A (W)=

1 s
QM+ 1535 =0,

a hk g, &, V, L a, k g, o V, 0
hy b f, B VoM hy b f, B V» 0
9 Sy v VyN = 9 S v Vi 0
a, B’ b 4] a, B) Yy 01 0’ -RB
W, Wy Wy Wo Wy W, 0, 0 - n'W
L, M, N 0o 0, 0, —R,—-2'V, -U

or A(V)A(W)

=" VW (:) —n'VR (T) —n" WR (Z) +E (;,) +U(:II;/') '

and when x'y'2’ satisfy the equation U=0, the last term
vanishes. Thus in particular

(avy=nv*(Z)- VB (Z) + B (;;) ,

or in the notation we have before used

Q= (aH) =n"H'S - 2n'HR\p(H)+R‘(

7):
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the last term denoting the result of writing in 3, instead of
a, B, v, the differential coefficients of I1.
In precisely the same way we get a formula -of reduction
for A*V by writing in the preceding determinant
‘i,;‘;,ifm v, ¥V, V, aud for W, W, W,
and supposing the operation to be performed on V. In the
reduction then, we have instead of n'V, and of n"V,
i, d, . d
& Yy &
-and the formula becomes

s , V d,

A V=i (7 =1) V ( )-2(1. ~1R (a)+1z'(d) 7,
where the last symbol denotes the result of substituting in =
-symbols of differentiation instead of a, B, 1y, and operating on V.

Introducing the value thus found for A'H into the value
given for Q, (Art. 388), we have

Q=—1' (0 —n) SH+2 (' —n) Ry (H) - B (Z)H

‘Thus, then, since @,=— H we have in general
=) @2~ Q=T {i—n) (5) -2 (7) B}
and in the case of the quantic, for ‘which n =4, n' =6,
or-30.0-7{(z)-22(}) 2},
and -accordingly the equation of the bitangential curve is
(2)-sn (3) -

z

that is to say, if = written at full length is
Ad’ + BB+ Cy* + 2FBy + 2-‘6‘7&+2Haﬂ,
this equation is

L dE | (A HQH o dHJH o dE JH

AGgtB e tC gt g o1
T, pd H TH pdH oo PR oy P

_w{ T O g O T ly}

a curve of the fourteenth order.
X
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891. The equation just obtained may be tramsformed by
the help of the expression given (Conics, Art. 385, Ex. 1), for
the condition that the polar line of a point, with regard to one
conic, may touch another. We there saw that if az®+ &e,
a'z’ + &ec. be the two conics, we have

(be—f7) (a'z + Ky+ g'2)*+ &e.={a’ (bc - f*)+ &c.} {a'2* + &c.}-F,

where F denotes a conic covariant to the two conics. And,in
like manner, that

(8¢’ - f*)(ax+ hy+ g2)*+ &e. = {a (b'c’ — f7) + &ec.} {az’+ &c.} -F.

Now if a, b, ¢, &c. have the same meaning as before, and if
a', &ec. denote the second differential coefficients of the Hessian,
then, its degree being n', (a'z + A’y +¢'z) &c. are (n'—1) times the
first differential coefficients, and (bc—f*) (a'z+ Ay +g'2)* + &e.
is (n'—1)* times the covariant we have called ©. We may
give the name @' to the corresponding covariant in which
the differential coefficients of the curve and of the Hessian
are interchanged, and whose vanishing expresses the condition
that the polar line of a point with respect to the curve should
touch the polar conic of the same point with regard to the
Hessian. In like manner, a’ (bc — f*) + &c. is ¢ and a'z* + &e.
is n'(n'~1) H. 'We have then the identities

(-170=n"(n-1)H>-F, @=Ud'-F,
(n-1)0-n"(n-1)H>b=0"- UP,
and in the parti(;ular case of the quartic where n' =6,
250 —30Hb=0" -Ud'.

Thus, then, the points of contact of bitangents are the inter-
sections with the curve, not only of © — 3H® as already obtained,
but also of 150 —© or of @' — 45H®; or, again, bitangential
curves might be expressed in terms of the covariant F.

392. Let us now proceed to the fifth order. We have
(Art. 387)

Q=v(Q)-4(n—1)(n-5)2Q,+4n-1) By (Q,)—4n(n—1) HF,;
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and using the value of ), last obtained, and employing the

abbreviations © for (g) and ¢ for (Z‘) H, we have

Q=—n'(n'—n) HA(Z)—n'(n'—n)A(H)+2(n'—n)RAY(H)—-R*A(®)
+4in(n-1)HA(Z)+4(n—1)(n—5)SAH—-4(n—1) By (AH)
=-2(n"-13n+18) HAZ - 2 (n* - 3n + 8) A (H)
+4(n—3)RA (yH)—4(n—1) Ry (AH) - R'A (D).

In particular when n =5, we have
@,=44HA(Z) —363A(H)+ 8RA(VH) -16Ry-(AH) - R'A(P).
In this case we have also

Q,=—36H+8Ry (H)- R'®,

Q=-aH, Q=-1H.

In order to form the bitangential curve of a quintic, the quantity
to be calculated is

(27 Qa Qo -5 Ql Qo)' =5(¢ Qa' - 90: Qo) (5 Qc' —-12 QaQo)’
a quantity containing @By in the sixth order, and which it is
necessary, by the help of the equation of the curve, to shew to
be divisible by R*. Now, in virtue of a formula already ob-
tained, we have
4Q.-9Q,Q,=F' (40 - 9Hd).

It is also easy to shew that 27Q,Q,-5Q,Q, and 5Q.-12Q,Q,
are each divisible by R; but I have not been able to carry the
reduction further.

We shall hereafter shew how all these calculations may be
made by symbolical methods.

393. Another method® of solving the problem of double
tangents is suggested, by what was proved (Arts. 183, 235) that
the point where the tangent to a cubic meets it again is
determined by the intersection of the tangent with the line
aH +yH +2H,=0. It occurs to attempt to form in like
manner the equation of a curve of the order »—2, which shall
pass through the (n—2) points where the tangent to a curve

* I gave this method in the Philosophical Magazine, Oct., 1858, and Quarterly
Journal of Mathematics, Vol. 11, p. 817. See also Memoirs by Prof. Cayley,
Phil. Trans. (1859), p. 193, and (1861), p. 857.
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of the n™ order meets it again. If the equation of this- tan-
gential curve were once formed, then, by forming the condi-
tion that the given tangent should touch this curve, we
should immediately have the equation of the bitangential.
Now, what has been proved already as to the order of the
bitangential, will enable us to see what must be the order of
the tangential curve in «'y'z’ and in the coefficients. The con-
dition that the line Lz+ My+ Nz shall touch a curve of
the (n—2)" order is of the order (n—2)(n—38) in L, M, N,
and of the order 2(n—3) in the coefficients- of that curve.
Consequently, if the coefficients of the tangential curve con-
tain 'y’z’ in the order p, and the coefficients of the ori-
ginal in the order ¢, the bitangential must be of the order
(n—=1)(n—2)(n—3) +2p(n—38) in «'y’z', and of the- order
(n—2)(n—3)+2¢(n~ 3) in the coefficients of the original.
Bat actually the bitangential is of the order (n—2)(n — 3)(n + 3)
in «'y'z, and of the ovder (n+4)(n—3) in the coefficients of
the original (Art. 882). It follows then that p=2(n—2), ¢=3;
that is to say, that the tangential must be of the order 2 (n—2)
in 2'y'7', and of the third order in the coefficients of the original.
Further, we know that if 2'y'z’ be on the Hessian, the tan-
gential must pass through z'y’2', and therefore the substitution
of z'y'2’ for xyz must reduce the tangential to H. This con-
sideration and the known form of the tangential in the case
of the cubic suggests that the tangential in general is the
(n—2)" polar of z'y'z’ with regard to I7 or A"™H, for this is
a curve of the right order in axyz, in z'y'2', and in the. coeffi-
cients, and it will pass through z'y'z’ when this peint is on the
Hessian. Accordingly, in the next article we examine whether
the curve A™ (If) does pass through the points where the
tangent meets the curve again, and though the answer is found
to be in the negative, the process of examination leads to the
true form of the tangential.

394. Take then the origin on the curve, and the axis of
v as the tangent, and let the equation of the curve be
nby + in (n- 1) (c,2’ + 2c,xy + c,y°)

+ }1—3 n(n—1)(n—2)(da’ + 3dz"y + 3day’ + dy") + &e. = 0.
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It is to be observed, and the remark will be useful in the-
sequel, that the several polars of the origin, with regard to.
the curve, are got by writing n—1, n—2, &c., for n in this
equation. Now, in order that a curve may pass through the
tangential points, its equation must be such that when we
make y=0, it will reduce to

in(n- l)c+ n(n—1)(n—2)dz+&c.=0.

23"
Let us form then the equation of the Hessian, and since we
are about to form its polar curves with regard to the origin,
and then te make y =0, we need only concern ourselves with
those terras of the Hessian which do not contain y. The:
second differential coefficients of the given curve are
a=c,+ (n—2)dx+3}(n—2) (n—38) e+ &e,
b=c,+(n—2)dz+} (n—2) (n—3) ez + &c.,
c= 3 (n—2)(n-3)ca"+ &e.,
f=b+n-2)cz+1(n-2)(n-8)dz"+ &e.,
q= (n—2)cx+%(n—2) (n—3)dz*+ &e.,
h=c +(n—2)dz+}(n-2)(n—3)ex"+ &ec.
The equation then of the Hessian is readily found to be
b+ (n—2)dPz+{} (n—2) (n—3)ed' + (rn—1) (n—2) P} 2’
+{E (0-2) (1=3) (=) £F + (n—1) (n—2)" @ |
+(n—1) (n—2) (n—3) B} 2* + &c. = 0,
where for brevity we have written
2P=cc—cc’+2bcd,— 2bcd,, 2Q=dc’~2ccd, +c'd,
3R=cped,—dg+2ebc, —2c.be,,
but the actual values of these quantities are not material to
our purpose. What is important is to notice that the equation
divides itself into groups of terms each having the same function
of » as a numerical coefficient, a0 that if we want to form
the equation of the Hessian of the first, second, &c., polar of
the given curve with regard to the origin we have only to
substitute n — 1, n —2, &c., for n in the above equation.
Now the line polar, with regard to the origin of a curve
of the n™ degree u,+u, +&c.=0 being nu,+u, =0, the line.
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polar of the origin, with regard to the Hessian, which is a
curve of the order 3 (n—2) is, from the preceding equation,
3¢, + dx =0, together with a term in y irrelevant to the present
question; and since this equation does not contain n, we see
that the polar of a point on a curve with respect to the Hessian
of either the curve itself or of its polar curves all meet the
tangent in the same point. In fact, the polar is in every
case the same line. When n=3, 3¢ +dx is the result of
making y=0 in the equation of the curve; that is to say,
the polar with regard to the Hessian is the tadgential, as we
have seen already. '

The equation of the polar conic of the origin with regard
to a curve of the n” order is }n (n—1)u,+(n—1)u, + u,=0;
and therefore the polar conic with regard to the Hessian is

§(n—=2)(Bn—=T)cd'+(n—2)(3n-T7)d b=
+{3(n—2) (= 8) e+ (n— 1) (n—2) P} a*=0,

and it is evident, on inspection, that in the case of the quartic
this polar conic cannot be the tangential, because it contains
the group of terms P which do not similarly occur in: the
equation of the curve. But we can readily form an equation
not containing these terms. Let A’H =0 denote the equation
we have just obtained, and let A®H," denote the polar conic
with respect to the Hessian of the first polar of the origin,
and as we have already seen, A’H, is derived from A'H by
writing n — 1 for n. Then it is easily verified that

(n-2)A’H—(n—1) A’H, = (n— 3) ¥’ {6c, + 4dz + ez}

But when the given curve is of the fourth degree, the right-
hand side is what the equation of the given curve becomes when
we make y=0. It follows then that A*H- 3A’H, is the
required tangential of a quartic.

In precisely the same way the third polar of the origin,
with regard to the Hessian, is found to be

1(3n—6)(3n—17)(3n—8)c "+ 1 (n—2)(3n—T7) (3n—8) d b’z
+4(n—2)(n—38)(3n-8)ebc"+ (n—1) (n—2) (3n— 8) Pz’
+}(n—2)(n—3) (n-4)fb°2’+(n—1)(n- 2)’ Qz°+ (n—1)(n—2)(n—3) R2’,
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and A, A’H,, &c. are found by substituting (n — 1), (» — 2), &e.
for 2. And we can verify that

(n—8)(mn—4)A’H-2(n—1) (n—4) A’H, + (n—1) (n—2) A’H,
=2 (n—4) (10c, + 10d z + 5e " + fr°).
And when n=35 the right-hand side of the equation is what

the original equation becomes when we make in it y=0, and
therefore it follows, as before, that the tangential is

AH—4N°H, + 68°H,=0.
‘When n =6 the tangential is in like manner
A'‘H-540H +10A*H, =0.

I was hence led by induction to the conclusion which
Professor Cayley has verified independently, that the tangential
is in general

A™H—(n—1) A" H, + § (n—1) (n —2) A™H, — &e. = 0.

895. It is easy to establish what has been stated above,
that the polar lines of the origin are the same with regard to
its Hessian, and to the Hessian of any of the polar curves.
‘We have ‘Zg :iiH Z: + &e., or employing the usual abbrevia-

tions 4 for bec—f*, &c., we have
dH _d d’ a4’
&~ ds {Ada:’+Bd H0 T
d’ a’ d'
+2Fd dz+2Gdzdz+2Hd.zd}U
with similar expressions for the differentials with regard to
y and z. It is to be noted that these may be written in
the abbreviated form i _ _d (d') Now the differential
dx dz\d /" ~
coefficients of the first polar &'U, +y U, +2'U, are got from
the corresponding coefficients of the original curve by per-
forming on them the operation 2’ dia:-l- y ‘}i+r jz, which
when we substitute x'y'z’ for zyz is equiva]ent to multiplying
each by the factors n—1, n—2, &c. But the same numerical
factor being common to every term in the expression for H,,
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it is plain that zH + yH, + zH, represents the same line
whether the polar be taken with regard to the Hessian of the
original, or to that of its first polar. And the same argument
applies to the other polar curves.

Let us proceed to the polar conic. If we differentiate the
expressions just given for H, &c., the differential will consist
of two groups of terms, viz. the differential on the supposition
.that A4, B, &c. are constant, together with the terms got by
differentiating these quantities. If we write, for shortness,
£, 1, ¢ to denote the symbols of differentiation with regard to
x, y, 2, we have
EH= AL+ Br'+&e U+l (a(nt' - 7'E)* + B(EE- L )"+ &e T,
it being understood that the accents in the last group of terms
may be dropped after the expansion, the term £E'an'¢”, for
U a’U
dedy drdz*’
be written in the abbrevnated form

er=-¢(5)+ e (55)-

Thus then the equation of the polar conic of any point, with
regard to the Hessian, may be written V+ W=0, where V
denotes a group of terms in each of which a fourth differential
is multiplied by the product of two second differentials, and W
a group in each of which a second differential is multiplied by
the product of two third differentials. Now if we take the
Hessian of the first polar, then, as has been stated above, the
second, third, and fourth differentials become multiplied by
n—2, n—3, n—4 respectively, and the result is

A'H=(n-2)(n—4)V+ (n-3)'W=0,
which when n=4 reduces to the latter group of terms. The
equation of the tangential of a quartic is then evidently of the

form V+kW=0, and may be transformed accordingly. Thus
it may be written in the form

d d d ,
( p ,+ydy,+z£) H

+3( d‘i,+yd§,+ d) (Ad‘i:, +&c) =0,

instance, standing for a - The last equation may
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The equation of the bitangential curve is got by expressing
the condition that the tangent Lz + My + Nz should touch the
conic just written ; and it will evidently consist of three groups
of terms, since the condition that a line should touch S+ k8’ is
of the form =+ k®+ %% =0. What answers here to = is the
covariant called ©'; and I have verified that the other two
groups of terms are also expressible in the form © +kH®.*

POLES AND POLARS.

896. It will be convenient to collect here some properties
of the Jacobian of a system of three curves, stated Higher
Algebra, pp. 69, 146, and elsewhere in this volume. The
Jacobian is the locus of points whose polar lines with regard
to three curves meet in a point, its equation being

Uy Uy Uy
J=|1v, v v, |=0.

0,y W,y 0,

* T attempted in like manner to obtain the bitangential curve of a quintic
by writing down for the curve whose equation is given Art. 894, a covariang
of the right order, and such that the absolute term vanishes if the axis of =
touches the given curve a second time. For instance, if =40 — 9H®, then

2 d? . .
A (%) + &c. and ( E"' + &c) are covariants of the right order. Although I

have not been successful, it may be useful for purposes of reference to give the
values I obtained for the covariants in this case. It will be seen that, without loss
of generality, we may suppose ¢ and ¢, to vanish. We have then
H = b + 882 (dyz + dyy) + 3 (b%, — 4bed,) 2 + B (2b%, — bbed,) xy + 8 (b%, — bedy) y?
+ (8%, — 16bce, + 18c%d,) z* + (3b%f; — 89bce; — 9bd,d, + 9bd,? + 18c3d,) 2%y
+ (— 6b¢f; — 12bdye, + 12beyd,y ~+ 18c%e, + 24cdyd; — 18cd,y?) =* + &c.,
© = 9% {(34d,? + 6b%d,) + (4b4de, + 126%c%e, — 6b%cdyd, — 575%3dy) =
+ (4b4dye, + 128%c?, — 28b%d,d, + 81b%cd,? — 89b%3d,) y
+ (2b%d, f, + 4bte,? + 6b3%c2f, + 6b%cdge, — 48b%cd e, — 105b%cPe, — 298b%%d,dy
+-2695%%d,? + 86bcid;) 2 + &c.},
@ = 6b[(B%,+4b%cd,) +z (b3, — 8bce, — BBbcdy) +y (B3, — 2b%ce,+ 275%(d)? — dod,) — 415c7d, }
+ 22 (— 12b%cf, — 12b%d,e, + 12b%,d, + 6bc%e; — 162bcdyd, + 168bcd,? — 6c3dy) + &c.].
Of the quantities 4, B, &c. the only ones which contain terms independent of z and
y are A =15% F=0bc; so that if any quantity ¥ of the form © + kH® written at
full length be A 4 By + By + Ga® + &c., then the degree of Y being 22, the

absolute term in the covariant A (ﬂ)’ +&o, is 3B} + 44boA B, and in 4 Y 4 ke,

& @t
is 262C, + 426¢B,.
YY
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We have seen, Art. 191, that the Jacobian is the locus of the
double points of curves of the system

Au+ pv+vw=0,

If the three curves have a common point, that point is on
the Jacobian. For, from the equations

xu, + yu, + zu, =mu, xv,+ yv, + 2v, = m'v, 2w, + yw,+2w,=m"v,
(where m, m', m" are the degrees of the three curves respec-
tively), we have
Jz = mu (v, — v,w,) + m'v (w,u, — wu,) + m"w (v, — ©,v,),
which we may write .
Jx=mAu+m'By+m"Cw

whence evidently J vanishes for any values which make u, v, v
to vanish.

If the three curves be of the same degree, this common point
is a double point on the .Jacobian. For differentiating with
respect to x, we have

aJ dd ,dB , dC ) "
J+‘”E:=mu7cl?+mv T m w-d—w+mAul+va,+m Cw,;

but since Au, + By, + Cw, =J, we see that when m=m'=m",
d—J will vanish for any values which make %, v, w and con-
2z

sequently J to vanish. So, again,
dJ d4 , dB , dC , "y
wd—y =mu @+mva—§ +m"w @ + mAu,+ m'Bv,+ m" Cw,
which, since Au,+ Bv,+ Cw,=0, vanishes for any values that
make u, v, w, J to vanish, when m=m'=m". In like manner
the other differential coefficient of J vanishes for the same point.
If only two of the curves be of the same degree, the
Jacobian touches the third curve at the common point. For
the equation written above, when we make m =m’, becomes
d4 dB , dC

df] "
J+x Tp =Y o tm o m wa—v+mJ+(m —m) Cw,,

and for the common point, this reduces to aJ, = (m" - m) Cw,;
and we have, in like manner,

aJ, = (m" —m) Cw,, aJ,=(m"—m) Cw,,
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so that 2/, +yJ,+2J,=0, 2w, +yw,+ 2w,=0,
represent the same right line.

If in this case the common point be a double point on w,
it will also be a double point on J, having the same tangents
as those for the curve w.*

The values just obtained for J,, J,, J, evidently vanish when
w,, w,, w, vanish, Differentiating again, and omitting the
terms which vanish as containing u, v, w, J, J,, or w, we have

dJ dA dB "
xS =m (u1 o %) + (m" —m) Cw,,.

But from the values previously found for 4 and B, we have
dA dB

Y, dr +v, dz =u, (vawla - vswm) +v, (wuua = W,%,),
and by eliminating xyz from the equations
zu, + yu, +2u, =0, v, +yv,+2v,=0, zw, +yw, +20,=0,
we have
Y, (vawxa - vawu) +v, (wuua - wu“a) =—w, (usva - u,v,) == me
or zJ, = (m" - 2m) Cw,,,

and similarly the other second differential coefficients of J are
proportional to those of w; or the two curves have the same
tangents at their common double point.

397. It is proved, as in Art. 190, that there are

(m=1)*+ (m— 1) (m' — 1) + (m’ — 1)*
points, whose polar lines, with respect to two curves u, v, are
the same, and through these points must pass the Jacobian of
%, v, and any third curve. It was shewn (Art. 97) that the
Jacobian intersects u in the points which can be points of
contact of u with curves of the system v+Aw. Hence, it
immediately follows that the locus of points, which can be
points of contact of curves of the system w+ Au' with curves
of the system v+ uv', where u and u’ are of the degree m, and
v and v’ of the degree m' is a curve of the order 2m +2m’ - 3,

* Clebsch and Gordan, Abelschen Functionem, p. 62,
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whose equation may be: written. in. either of the equivalent
forms :*

Uy Uy U, Uy Uy Y

v u'" “'n “'l -v “'n u's’ u’s =01
Yy Yy Y vy vy
”17 vg? vl vx’ vg’ U,

Ul v, v, v, |—u| v, v, v, =0
“t’ us’ Uy, u:ﬂ‘ “!’ﬁ “'&

Again, it appears. from. the preceding that the points in
which curves of the systems u + A/, v+ po',. w+ v, can all
three touch, are among the intersections of two curves of the
degrees respectively 2m + 2m’—3, 2m+2m” —3. But among
these intersections are included the m* points. u, w'; and the
8(m—1)" points.common to the Jacobian. of all curves of the
system %+ Au. Deducting these numbers, we obtain for the
number of points in. which the three curves can.touch

4 (mm' + m'm" + m"m) — 6 (m + m’ + m").+ 6..

398. We have seen (Art. 97) that the order of the.condition
of contact of two curves u, v, or, as we shall call it of their
tact-inpariant, is in.the coefficients of v, m(m + 2m'~ 3) —28 — 3«
or n+2m(m'-1); and,; in like manner, of the order n'+2m’(m—1)
in] the coefficients of . The tact-invariant, in the case of
two conics, was found (Conics, Art. 372) by forming the dis-
criminant of w+Av, and then the discriminant of this. con-
sidered as a function, of A. By similar reasoning to. that
used in the case of conics, it may be shewn that if the same
process be employed in the case of two. curves of the wm"
order, the tact-invariant is a factor in the result. In, fact
if A4 be the tact-invariant, B=0 the condition. that it may
be possible to determine A so that »-+A» may hawe two
double points, and C=0 the.condition that it may be possible
to determine A so that u+ Av- may have a cusp, then: the
discriminant, with respect to A, of the. discriminant of u -+,

* Steiner has remarked that. the number of curves of the system.u + Au', which
osculate curves of the system,v+ uv’ is 8 {(m + m') (m + m’ — 6) + 2mm’ + 5}, Crelle,
Vol. XLVIL, p. 6; It will be remembered that we have seen, Art. 102, that the con-
dition for two curves osculating.is, in addition to the conditions of ordinary contact,

*he ratio of H to L3 shall be the same for both.
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is AB*C®. That B and C are factors appears by taking u as
a curve which has either two double points or a cusp. In
this case, not only the discriminant of u vanishes, but its
differentials, with respect to each of the coefficients of u, (Higher
Algebra, Art. 112); therefore, in the discriminant of u+ v,
the term not containing A and the term containing its first
power both vanish, or A" is a factor in- the discriminant ; therefore
its discriminant considered as a function of A vanishes.

Thus if » and v be cubics, the discriminant of each contains
its coefficients in the twelfth degree, and these coefficients enter
in the one hundred and thirty-second degree into the dis-
criminant with respect to. A. But the tact-invariant contains
the coefficients of each in the degree eighteen ; and the invariants
which vanish when »+ Av can have a cusp, or a pair of double
points, contain the coefficients of each curve in the degrees
twenty-four and twenty-one respectively. For the degree in
the coefficients is the same as the number of curves of the form
u+ A+ pw which have the singularities in question. In the
case of the cusp, this number is found by putting the inva-
riants §=0, T'=0; giving thus an equation of the fourth and
one of the sixth degree to determine A, u, and we have
twenty-four solutions. In the case of the two double points,
we may suppose u, v, w to have seven points common, and
through these points we can have twenty-one systems of a
line and a conic. We have then 132 =18 + 2 (21) + 3 (24).

399. In general the discriminant being of the degree
3(m—1)%, the discriminant with respect to A contains the co-
efficients of each curve in the degree 3(m —1)® (3m® — 6m +2).
Now the tact-invariant contains the coefficients of each in the
degree 3m (m —1), and from considerations afterwards to be
explained, it appears that the order of the condition that
%+ Av may- have a pair of double points; (or, what is the same
thing, the number of curves of the system u+ Av+ uw, which
have two double points), is § (m — 1) (3m® — 9m" — 5m + 22),
and the corresponding number for the case of the cusp is
12(m—1) (m—2); and it may at once be veritied that

8.(m— 1)* (3m* — 6m + 2)
=3m (m— 1)+ 3(m—1) (3m’— Im’— 5m + 22) + 36 (m—1) (m — 2).
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In like manner, having formed the discriminant of Au+ pv+ v,
where u, v, w are curves of the same degree, we may form
the discriminant of this considered as a function of A, u, v;
and this discriminant will contain as factors the resultant of
u, v, w, and the conditions that it may be possible that a curve
Au + pv+ vwo may have three nodes, or may have a node and
cusp, or may have a tacnode; the order of any of these
conditions in the coefficients of any of the curves being the
same as the number of curves of the form Au+ uv+ vw +t=0,
which bave the singularity in question. When the curves
“are all conics, the discriminant, considered as a function of
A, @, v, of the discriminant of Au+ uv +vw, is AB*, where 4
is the resultant of u, v, w, and B=0 is the.condition that
Au+pv+vw=0 may be capable of representing two coin-
- cident right lines: but L am. not in possession of the general
theory.

400. In connection with this subject it may be observed
that, the tact-invariant of a curve and its Hessian being of the
order 3 (mn—2)(5m—9) in the coefficients of the former,. and
in the order m (Tm —15) in the coefficients of the latter, is of
the order 6 (6m*'— 17m +9) in the coefficients of the original.
When m =3, this tact-invariant is the sixth power of the dis-
" criminant; and assuming, therefore, that the sixth power of the
discriminant is always a factor, there remains a factor of the
order 6 (m — 3) (3m — 2), whose vanishing expresses the condition
that the curve has a point of undulation.

Again, take the condition that the curve, its Hessian and
bitangential have a common point; this condition being of
the orders respectively 3 (m—2)* (m*—9), m (m—2) (m"-9),
3m(m—2) in the coefficients of these curves is of the order
3 (m —2) (m — 3) (3m* + 8m — 6) in the coefficients of the original.
When m =4, this invariant seems only capable of being ac-
counted for as the twelfth power of the discriminant multiplied
by the square of the invariant last considered. And assuming
that the same factors are to be found in general, there remains
an invariant of the order 3 (m —4)(3m®+ 5m*— 32m + 18),
which will vanish whenever the curve has an inflexional tangent
which elsewhere touches the curve.
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401. As the Jacobian is the locus of points whose polar ines
with respect to three curves meet in a point, so we might
consider the locus of the points in ‘which these polar lines
meet; or, what is the same thing, the locus of poimts whose
first polars with respect to the three curves have a common
point. We shall confine ourselves to the consideration of the
case when the three curves are the three first polars of a
given curve, in which case the Jacobian is the Hessian of that
curve, and the other locus now mentioned is its Steinerian (see
Art. 70), the theory now to be explained being the generalization
of that given for the cubic* (Art. 175, &c.).

To any point P, then, on the Steinerian corresponds a point
Q on the Hessian; the first polar of P has @ for a double
point, and the polar conic of @ consists of two right lines
intersecting in P. Consider two consecutive points P, P' on
the Steinerian; then, as in Art. 178, the intersection of their
first polars will be the point Q counted twice, together with
the points of contact of the first polar with its envelope. Thus,
then, the polar, with regard to the curve, of any point @ on
the Hessian, is the tangent to the Steinerian at the corre-
sponding point P. In particular, if Q is a point of inflexion
on the curve, its polar will be the tangent at that point; thus
we see that the Steinerian is touched by the 3m (m—2) sta-
tionary tangents of the curve.

402. We have seen, Art. 70, that the orders of the Hessian
and Steinerian respectively are 3 (m—2) and 3 (m- 2)*; the
Hessian ordinarily has no double point, and therefore its
Pliickerian characteristics are

pu=38(m-2), =0, k=0, v=3(m—-2)(3m—7),
=27 (m—-1)(m—2) (m—3)(3m—8), +=9(m—2) (3m—8).
Since there is a (1, 1) correspondence between the Hessian
and Steinerian, the deficiencies of the two curves will be the

* The principal theorems of this section were given by Steiner in a paper read
before the Berlin Academy, 1848, and afterwards reprinted in Crelle, 1854, Vol. XLvII,
The theory, as regards the cubic, was given by me in the former edition of this
work (1852) in ignorance of what Steiner had done, with which I only became
scquainted through Crelle.
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samé. We have also the class of the Steinerian; for any tan-
gent thereof which passes through a fixed point M, must bave
its pole lying on the first polar of M, and since it must also
lie on the Hessian, it must be one of the 3 (m—1)(m-2)
intersections of the two curves. The characteristics, therefore,
of the Steinerian are

p=3(m-2)" v=38(m-1)(m-2),
8=§ (m—2) (m—3) (3m’— 9m ~ 5), k=12 (m—2) (m—3),
7=§(m—2)(m—38)(3m*'—3m—8), ¢=3(m—2) (4m—9).

A point is a double point or cusp on the Steinerian, if it is a
point whose first polar has two double points or a cusp. The
numbers therefore 8 and « just obtained are the number of
first polars of the given curve which have the singularities in
question (see Art. 399).

403. If the first polars of any two points 4, B touch at
a point @, having QP for their tangent, then two of the poles
of the line AB coincide with @Q; and the first polar of any
point on AB (other than the intersection of 4B with PQ)
will also touch QP at Q. The first polar of the excepted
point, or intersection of 4B with PQ, will bave @ for a double
point; @ will be a point on the Hessian, and P the corre-
sponding point on the Steinerian. Thus the Steinerian is the
envelope of lines, two of whose poles coincide; and the Hessian
is the locus of such coincident poles. Steiner has investigated
the envelope of the line P@, which joins two corresponding
points P, @, or which is the common tangent of two first polars
which touch each other. This curve we shall call, as in the
case of cubics (Art. 177), the Cayleyan.®* It has evidently
a (1, 1) correspondence with the Hessian, and with the Steinerian,
and has therefore the same deficiency.

In order to determine its class we use the principle estab-
lished, Art. 372, and Conics, p. 369, that if two points on a
line, or two lines through a point, have a (m, m’) correspon-
dence, there will be m + m' cases of coincidence of these points.

* Professor Cayley himself calls it the Steiner-Hessian,
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Consider, then, the lines joining any assumed point M to
two corresponding points P, Q. Then, since the Steinerian is
a curve of the order 3 (m —2)% if the line MP be fixed there
will be 8 (m —2)" positions of P and as many positions of M Q.
In like manner, to any position of MG correspond 3 (m —2)
positions of P. There are, therefore, 3 (m—2)'+3(m-2) or
3 (m— 1) (m —2) lines which can be drawn through M contain-
ing two corresponding points P, @, and this is therefore the
class of the Cayleyan. It obviously touches the inflexional
‘tangents of the given curve. It has no inflexions, and its
characteristics therefore are

p=38(m—2) (5m-11), v=38(m—1)(m—2),
$=§ (m—2)(5m—13) (5m*— 19m + 16), =18 (m —2)(2m —5),
=§(m—-2)(m'-2m—1), ¢=0.

404. The definitions already given may be further extended,
by considering the double points not only on first polars, but on
any of the system of polar curves. The locus of a point, such
that its 6-polar has a double point, is a curve of the order
86 (m — 6 —1)", which is‘the f-Steinerian; and the locus of the
double point is then a curve of the order 36" (m — 6 — 1), which
is the 6-Hessian. We know that if the -polar of a point P
passes through a point @, then the (m —#6) polar of @ passes
through P; and it is easy to see also that if the f-polar of a
point P has a double point @, then the (m— @ —1) polar of
@ has a double point 2. Hence the 6-Steinerian -is the same
curve as the (m — 6 — 1) Hessian, and the 6-Hessian the same
as the (m— 6 —1) Steinerian. In like manner we might con-
sider the 6-Cayleyan er envelope of the lime joining corre-
sponding points on the @-Steinerian and 6-Hessian, the three
curves having the same deficiency. Except in the case of
0=1 these curves have not been much studied.

405. We have studied (Art. 184) the envelope of the polar
lines, with regard to a cubic, of the points on a right line,
which we have called the polar of that right line. So, in
general, if a point P moves aleng any directing curve S of the
order s, the envelope of its 6-polar, with regard to a given

Zz
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curve U of the order m, will be a curve which may
be called the 6-polar of S, with regard te U. We saw
(Art. 98) that the envelope of a curve, whose equation con-
tains as parameters the coordinates of a point which moves
along a curve S, may be found by considering the parameters
as coordinates, and then expressing the condition that the
moving curve should touch S. Hence, the 6-polar of § is
also the locus of points whose (m — @) polars touch S. Using
then the expression (Art. 97) for the order of a tact-inva-
riant, we see that the f-polar of S is a curve of the order
8(s+ 260 — 3) (m — @), this number to be diminished by 2 (m — 6)
for every double point, and by 3(m—6) for every cusp
on §; or, if the class of § be s, then the 6-polar will be
of the order
(m—6){s+28(0-1)].

It will be of the order 6(2s+6—3) in the coefficients of S.
Thus, in particular, if =1, the envelope of the first polars
of the points of a curve S is the same as the locus of the poles
of the tangents of S, its order being &' (m—1). If in this
case s=1, this order reduces to 0, as it ought, since the
envelope then reduces to the (m —1)* poles of the line S.
In general, it is obvious that each double tangent of S will,
by its (m—1)" poles, give rise to (m—1)" double points on
the envelope, and that each stationary tangent of S will give
rise to (m—1)" cusps on the envelope. We have, therefore,
for the class of the envelope

(m—1)*s—(m—-1)8 —2(m—=1)° =3 (m—1)"¢;
or, since s”—s' — 21 —3c=3, the class of the 1-polar is
(m—1)(m—-2)s'+ (m—1)"s.
If 6=m—1, the envelope of the polar lines of the points
of a curve S, or locus of points whose first polars touch S,
is of the order s(s+2m—35) or s +2s(m—2). And since
the number of these polar lines which pass through an
arbitrary point A is the same as the number of intersections
with S of the first polar of M, the class of the envelope is
(m—1)s. :
In general the number of double points on the f-polar of
S is (m—6)" times the number of (m—1) polars of a point
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which touch the curve twice, and the number of cusps is
(m—6)* times the number of such polars which osculate the
given curve.

406. If the O-polar of a curve S be a curve R, then the
(m - 6) polar of B must include, as part of itself, the curve S.
Thus, for example, if #=m —1, B is the envelope of the polar
line of a point P which moves on S; but since the pole of
this polar line may not only be the point P, but (m—1)"—1
other points besides, it follows that if we seek the locus of
the poles of the tangents of B (or, what is the same thing,
the envelope of the first polars of the points of R), we shall
get the curve S, together with another curve, which is the locus
of points copolar with the points of §; that is to say, having
the same polar lines. In this case, where 8 =m —1, we have
seen that the class of B is s(m—1); therefore, Art. 405, the
envelope of the first polars of the points of B is of the order
8(m—1)*; or, in addition to the curve S, there will be a
companion curve of the order sm (m—2). We have seen that
every point on the Hessian is a point at which coincide two
poles of a tangent to the Steinerian; consequently, the points
in which S meets the Hessian will be points on this companion
curve, which will, besides, meet S in }s (m — 2) (m — 3) pairs of
copolar pointa.

If 6=1, R is the locus of the poles of the tangents of S,
and since a given point has one polar, if we seek the envelope
of the polar lines of the points of R, we must fall back on the
curve S, and it would appear that there can be no companion
curve. It is to be noted, however, that the common tangents
of S, and of the Steinerian, form part of the envelope. In fact,
we have seen that to each of these common tangents there
correspond two coincident points on R, and therefore when
we employ the converse process, to these two points answer
two coincident lines, every point on either of which has a
right-to be counted in the envelope. Further, the curve S
must be reckoned in that envelope (m —1)* times, because to
every tangent of S there answer (m — 1) poles lying on R, and,
therefore, when we take conversely the polars of the points of
R, each tangent of S is counted (m —1)* times. Now we have
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scen that if the order and class of R be r and +', the order of
its (m—1) polar is ' +2 (m —2)r, but
r=(m-1)(m—2)s'+ (m—1)'s, r=8(m—1);

hence, the order of the polar is 3 (m —1)(m—2)s + (m—1)'s,
which agrees with what we have established, since, as the
Steinerian is of the class 3 (m— 1) (m —2), the number of its
common tangents with 'S is 3(m—1)(m—2)s. There must
be a like general theory of the reciprocity when R is the
6-polar of S, and S the (m — @) polar of R, but this has not -
yet been investigated.

OSCULATING CONICS.

407. The form of a curve in the neighbourhood of a point
P thereof is defined by the circle of curvature, but it admits
of a further definition. In fact, drawing parallel to the tangent
at P an infinitesimal chord QR, then if the normal at P meets
this at &V, the arcs PQ, PR, and the lines NQ, NR, regarded as
quantities of the first order, are equal to each other, but they
differ by quantities of the second order; in particular, NQ, NR
differ by a quantity of the second otder; or, what is the same
thing, if L be the middle point of QR, then the distance NL is
of the second order. But observe that PN is also of the
second order; hence the angle LPN, =tan™ LM+ PN is in
general a finjte angle; that is, joining P with the middle point
of the chord QR (parallel to the tangent at P), we have a
line PL inclined at a finite angle to the normal. In the case
of the circle, PL coincides with the normal; hence the angle in
question is a measure of the deviation from the circular form,
or we may call it the “aberrancy,” and the line PL the axis
of aberrancy.*

In the case of a conic, the axis of aberrancy is the diameter
through P, and the aberrancy is the inclination of this diameter
to the normal. And for a given curve, drawing any conic
having therewith a 4-pointic intersection at P, the curve and

* See Transon, “Recherches sur la courbure des lignes et des surfaces,” Liouv.,
t. vI, (1841); his term ‘deviation’ is in the text replaced by the more specific one
“ aberrancy.”
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conic have the same axis of aberrancy; that is, the centres
of all the conics of 4-pointic intersection with the curve at P
lie on the axis of aberrancy at this point. Whence also the
axis of aberrancy at P and the axis of aberrancy at the con-
secutive point of the curve, intersect in a point, say the * centre
of aberrancy,” which is the centre of the conic of 5-pointic
intersection with the curve at P; this conic is completely de-
termined by the conditions that its centre is this point, that
it touches the curve at P, and that it has there a curvature
equal to that of the curve.

It is easy to show that the aberrancy at the point Pis given
by the formula .

(1+p9)r
3¢’
where p, ¢, 7 are the first, second, and third differential coeffi-

cients of y in regard to .

tand=p—

408. Observe that the axis of aberrancy is a line having
reference to the line infinity, but independent of the circular
points at infinity; viz. if instead of these we had any two
points I, J, then the line in question is constructed by means
of the line ZJ without any use of the points I, J themselves;
the chord QR is taken so as to pass through the intersection
O of the tangent at P with the line 1J, and we have then
L the harmonic of O in regard to the points @, B.

The theorem that the centres of the conics of 4-pointic
intersection lie in a line may be presented in a more general
form; the conics have, of course, a 4-pointic intersection with
each other; or, what is the same thing, they are conics having
all of them four common tangents (viz. the tangent at P
taken four times); the general theorem is, that for the
system of conics touching four given lines, the poles of any
line in regard to the several conics of the system lie in a line;
a theorem which is better known under the reciprocal form,
that for the conics passing through four given points, the polars
of any point in regard to the several conics pass all through
one and the same point.

In the case where the circular points at infinity are replaced
by a conic, there is not any analogous theory of aberrancy.
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409. The investigation, Art. 236, of the equation of the
conic of 5-pointic contact at any point on a cubic may be ex-
tended to curves of any degree. Let S represent the polar
conic and 7' the tangent at the point, then the equation of
any conic touching at the same point will be S—PT=0,
where P is le+my+nz; I, m, n being still undetermined.
Then the equation of the lines joining to the point x'y'z', the
intersections of the conic and the curve is obtained by sub-
stituting in the equation of each curve z'+A\x for z, &c., and
eliminating A between the two equations. The result of the sub-
stitution in the first equation is 7'+ {AS +IN'A® + JA*A* + &e.;
and the result of the substitution in the equation of the conic
is 2(n—1)T—P'T+ A\ (8- PT); and if this last be written
0T+ AV, the result of eliminating A between the two equations
becomes divisible by 7, the quotient being

V' —30V™*8+ 30V "°A T - &e. =0,
which represents the 2 (n—1) lines joining the point z'y'z’ to
the 2 (n— 1) other points common to the conic and curve. In
order that the conic should have a 3-pointic contact with the
curve, one of these lines must coincide with 7, or the equation
just written must be divisible by 7, and since every term,
except the two first, is so divisible, this condition is plainly
equivalent to 6=2, which, since 6=2(n—1)—P', implies
P =2(n-2).* Introducing this value of 6, and performing
the division by 7, the equation reduces to

— PV 4+ 3V™°A =4 V"' TA* + &e. =0,
which represents the 2r — 3 lines joining the point «'y’2’ to the
other points of intersection of the curve and conic.

The contact will be 4-pointic if this equation be again
divisible by T} or if $A°— PS be divisible by 7. The con-
dition that this shall be the case is found, as in Art. 382, by
substituting in this quantity the coordinates of an arbitrary point
on 7, viz. My— NB, Na— Ly, LB — Ma when it ought iden-
tically to vanish, and in this way we find immediately that P
( dil  dH

2 dH
must be of the form p7'+ - @ty Zl;+z E) where p

3H

* The problem of finding the circle of curvature at any point on a curve is
evidently that of describing a 8-pointic conic passing through two fixed pointa,
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is still indeterminate. Thus the chord of intersection with the
polar conic of every 4-pointic conic meets the tangent in the
fixed point, noticed Art. 394, where the tangent meets both
the polar cubic, and also the polar line of x'y'2’, with regard
to the Hessian either of the curve itself or of any of the
polar curves.

Let us denote by IT the line %{- (a: % %g %),
and allowing that we have the identical equation A®—1.8=JT,
then, introducing the value for P, 31+ u T, the equation be-
comes divisible by 7), and gives for the equation of the 2n —4
lines, joining to a'y'z’ the other intersections of the curve and
conic

+y - +2

(37 + P* = uS) V™" — § V™A + &e. = 0.

The condition for 5-pointic contact is, that this equation should
be divisible by T, and we determine the value of x correspond-
ing to such contact, by substituting in the terms above written
My — NB, Na— Ly, LB — Ma for z,y, z. From the identical
equation of Art. 235, we can infer what J is, and I have
found that, by the substitution just mentioned, J becomes

-3(n—-1)(n—2)2+ 2(-%—1-) Ry (H), where 2, R, and vH
have the same meaning as in Art.386. The results of substitution
i S, P, and in A are, Q,, 3_21? Q,, and @, respectively. Using
then the values of Art. 390, we have

Wl'=3 (3 (a—1) (~2) SH~2 (n—1) Ry ()}
—4 {9 (n—2)’HE-6(n—2)R«[r(H)+;7R"G}

-g{-s(n-z) (n—3) SH+4 (n— 3) Ry (H) — %R"d)},

whence reducing, u =— 9%—, (4© — 3H®), and the 5-pointic conic

is determined.

410. Prof. Cayley has pursued the enquiry so as to ascertain

what condition must be fulfilled by the coordinates x'y'z' in
order that the contact may be six-pointic (see Phil. Trans., 1865,
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p. 545). The investigation is too long to give here; his result
is that ='y'z’ must satify the equation
(m - 2)(12m —27) HJ (U, H, ) -3 (m - 1) HJ' (U, H, ®)
+40(m—2)'J (U, H, ©) =0,
where by J(U, H, ®) is meant the Jacobian of these three
functions, and by J' is meant that, in taking the Jacobian,
® is to be differentiated on the supposition that the second
differential coefficients of H, which enter into the expression
for &, are constant. The equation here written represents a

curve of the order 12m — 27 whose intersection with U deter-
mines m (12m — 27) sextactic points.

SYSTEMS OF CURVES.

411. The problem to find how many conics can have a six~
pointic contact with a given curve belongs to the class of
questions on which some remarks were made, Conics, p. 368,
We shall here somewhat develope the theory there indicated.
De Jonquitres, Liouville, t. V1. (1861), considered the properties
of a series of curves of the m™ order satisfying im (m +3)—1
conditions, that is to say, one less than the number sufficient
to determine the curve, the series being characterized by its
index N, where N is the number of curves of the series which
can pass through an arbitrary point. Thus, if the equation
of the curve algebraically contains a parameter, N will be
the degree in which that parameter enters.* Chasles, in papers
in the Comptes Rendus, 1864—1867, on the number of conics
which satisfy five conditions, used, instecad of De Jonquidres’
single index, two characteristics, viz. u the rumber of curves
of the series which pass through an arbitrary point, and » the
number of them which touch an arbitrary line. This method
is especially convenient as giving symmetrical results in the

* Prof. Cayley has remarked that it is not true conversely that the equation of
a curve belonging to a series whose index is .V, can be always expressed in this
form. For instance, the index will be plainly N if the equation contain linearly
the coordinates of a paramectric point limited to move on a plane curve of the order
N, and unless the curve be unicursal, the equation cannot, without elevation of
order, be made an algebraic function of a single parameter. Or more generally the
equation may contain lincarly the coordinates of a point limited to move on a curve
in space of 4 dimensions,
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case of conics which are curves of the same order and class.
A sketch of this method is given in Conics, p. 368, and we
shall here repeat a few of the theorems, stating them for a
series of curves of any order.

412, The locus of the poles of a given line, with respect
to curves of the series, is a curve of the degree v. For this
is obviously the number of points in which the line itself can
meet the locus. The envelope of the polars of a given point,
with respect to curves of the system, is, in like manner, a
curve of the class u.

The locus of a point whose polar, with regard to a fixed
curve (whose order and class are m', n'), coincides with its polar,
with respect to some curve of the system, is a curve of the order
v+pu(m'—1). For, in order to determine how many points of
the locus lie on a given line, consider two points 4, A’ on that
line, such that the polar of 4, with regard to the fixed curve,
coincides with the polar of A’ with regard to some curve of
the system, and the problem is to know in how many cases
4 and A4’ can coincide. Now, first, if 4 be fixed, its polar,
with respect to the given curve, i3 also fixed, and the locus
of poles of this last line, with respect to curves of the system,
being by the first theorem of the order v, we see that to any
position of A answer v positions of A'. Secondly, let 4’ be
fixed, and since its polars, with respect to curves of the system,
envelope a curve of the class u, and since the polars, with
respect to the given curve of the points of the given line,
envelope a curve of the class m' —1, Art. 405 ; there are u (m' —1)
common tangents to the two envelopes, and therefore as many
positions of A answering to 4'. The number then of coin-
cidences of the points 4 and A4’ i8 v+ u (m'—1), or this is the
degree of the locus in question. It is obvious that this locus
meets the fixed curve in the points where it is touched by curves
of the system, and therefore that the number of these curves,
which touch the fixed curve, ism' {v + u (m' — 1)}, or is m'v + n'u.

413. In general, the number of curves of the system which
satisfy any other condition will be of the form wa + v8, and the
numbers a, 8, may be taken as the characteristics of this con-

AAA
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dition. If a curve be determined by a sufficient number of
conditions of any kind, and if these characteristics be given for
each condition, we can determine the number of curves satisfying
the prescribed conditions. We exemplify this in the case of
conics. The number of conics determined by five points, by
four points and a tangent, by three points and two tangents,
&e., is
1,2,4,4,2,1,

and consequently the characteristics of the systems determined
by four points, three points and a tangent, &c., are

(1,2), (2,4), (4 4), (4,2), (2, 1)
The number then of conics satisfying the condition whose

characteristics are a, 8, and also passing through four points,
or through three points and touching a line, &c. are

a+2B, 2a+48, 4a+ 48, 4a+23, 2a+ 8.
If we call these numbers u", ¥, p", o', 7" respectively,
we see that they are not independent, but we have
, al’l= 27"', plll . % (VHI + 6”').
The characteristics of the systems formed with the condition

a, B together with three points, or together with two points
and a line, &c. are plainly

m

y”l = 2,‘

" " "

"y V"), (V"3 ")y (p"y @), (™ 7).

And therefore the number of conics of these systems respec-
tively, which satisfy a new condition o', 8 is u"a' +v"f8,
v'a +p"B, &e. Or writing at full length, if we have two
conditions whose characteristics are (a, 8), (o, 8'), and if we
denote by u", V", p”, ¢” the number of conics which satisfy
these two conditions, and also pass through three points, or
pass through two points and touch a line, &c., we have

p'=ad +2(Bd + af) + 488, v'=2ad' +4 (Ba' + aB') + 488,
p' =4ad'+ 4 (B +aB') +2BB, " =4az'+ 2 (Ba'+af3) + BB';
and it is to be noted, that these numbers are connected by

the identical relation

p' =3 +3p"—0o"=0.
In like manner the characteristics of the system of conics
satisfying the two conditions (a, B), (o', 8'), and also passing



SYSTEMS OF CURVES. 363

through two points, or through a point and touching a line,
or touching two lines, are (n", v"), (+v", p"), (p", ¢"), and there-
fore the number of such conics which satisfy a third condition
a’, B, are p"a" ++v'B", &e. Or writing at full length if we
denote by u', ¥, p' the number of conics which satisfy three
conditions (a, 8), («, B8'), (a", B"), and also pass through two
points, or through a point and touch a line, &c., we have

p'=ada’ +23ad'B"+4ZaB'B" + 4BB'B",
V =2ad'a" + 43ad'B" + 42aB'B" + 2BB' A",
p' =4ad'a” + 43aa'B" +22aB'B" + BL'B".
It is evident that the characteristics of the system formed by

adding to these three conditions a fourth, a”, 8", are w'a™ + v'8",
v'a" + p'8", or at full length

= aalaﬂal" + 22aalaIIBI“ +42aal IIBIII + 42aBIBIIBIII+2BﬁIBH III,
y= 2aalallalll + 42aalall III+42aa' IIBI"+22aBIBIIBIII+ BBIBHBIH.
And so finally, if we add a fifth condition, the number of conics

y

satisfying all five is wa" +vB8"", or

ad'a’a”a"" + 2Zad'a"a"B" + 42aa'a"B" 8" + 4Zaa'B"B"L""

+ 238888 + BEE AR

Thus this formula gives the number of conics which touch five
given curves, by writing for a, B, &c. the class and order
of each curve. And in like manner we could find the number
of curves of any order determined by the condition of touching
given curves if we knew the number in each case where the
conditions were only those of passing through points or touch-
ing lines.

414. In the preceding article, the conditions we considered
were each independent of the others, but we may have a con-
dition equivalent to two or more conditions, as for example,
the condition that a conic shall touch a given curve twice
or oftener, the condition that a curve shall osculate a curve
or have with it contact of higher order. A condition equi-
valent to two may be called two inseparable conditions. It
is found that the formule obtained in the last article for in-
dependent conditions are applicable with the necessary modi-
fications to inseparable conditions. Thus, if we have two
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inseparable conditions, the characteristics u”, v’, p”, o”, are
the number of conics determined when we combine with the
given two-fold condition three points, or two points and a
line, &c., and these numbers will be always connected by the
relation p"”— §v"+ §p" — 0" =0. We proceed precisely as in
the last article to find the number of conics determined, when
with the two-fold condition are combined any three others.
In this way we obtain the following formule. If m”, n", »", s"
are the characteristics of a second two-fold condition, then
the characteristics of the system of conics determined by the
pair of two-fold conditions, are

o on ”_n "1 n ”

m # 5" Ilnll+m v )+ (r F +P m )+ %n”yll_ rllv"+ nl'p")’
d"e" g (allrll + 8IIPII) + (v" " + n"q") + %p" I % (p"nll + rllvll)
And if ', v, p' be the characteristics of a three-fold condition,

the number of conics determined by the two-fold and three-
fold condition, is

3’ (26" — ") + 40 (3" = V") + PV’ {5 (" + ") — 6 (" + ).

415. Returning to the two characteristics u, v of a series
of curves of the m™ order, satisfying one condition less than
the number sufficient to determine each curve, we may in-
vestigate as follows the relation between these two charac-
teristics. Consider the points 4, A4', &ec., in which a curve
of ‘the serics meets a given line; then, since u curves of the
scries pass through A, cach meeting the line in m — 1 other
points, it is evident that to each point 4 corresponds u (m —1)
points A4’, and in like manner to cach point 4', w{m — 1) points
A. And the number of united points of the correspon-
dence is thercfore 2u (m —1). This number will be v if the
united points can only arise when a curve of the series touches
the line AA4', but it may happen that a curve of the series
will be a complex containing a portion which counts twice,
and such a curve would give rise to united points which must
be deducted from 2w (m—1) in order to give v the number
of proper tangencies. Thus in the case of conics which we
shall specially consider, let A be the number of conics of the
series which reduce to two coincident right lines, and we
have v=2u - .
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416. A conic considered as a curve of the second order
may degenerate into a pair of lines, or line-pair; in this case
the tangential equation found by the ordinary rule becomes
a perfect square; or, geometrically, every line through the
common point of the line-pair is to be considered as doubly
a tangent to the curve. Similarly, a conic considered as a
curve of the second class may degenerate into a pair of points,
or point-pair; and every point of the common line of the
point-pair may be considered as in.a sense doubly belonging
to the curve. In the latter case, the point-pair may be con-
sidered as the limit of a conic whose transverse axis is fixed,
and which flattens by the gradual diminution of its conjugate
axis, so as to tend to a terminated right line, the tangents of
the conic becoming more nearly lines through two fixed points,
viz. the terminating points of the line.

Thos then, if A be the number of point-pairs in the system,
and = the number of line-pairs, we have

p=2v—w, v=2u~QN, 3u=2A4+w, 3v=2=w 4 A.

In Zeuthen’s researches, concerning systems of conics, the
numbers A, @ are substituted for Chasles’ characteristics u, »,
it being in most cases easier to ascertain the number of conics
of a given system which reduce to line-pairs or point-pairs,
than the number which pass through an arbitrary point or
touch an arbitrary line.

A special case presents itself when the two points of a point-
pair coincide, the line of the pair continuing to exist as a definite
line ; or, the two lines of a line-pair may coincide without
their common point ceasing to exist as a definite point. This
may be called a line-pair-point. '

417. In a system of conics satisfying four conditions of
contact, it is comparatively easy to sce what are the point-
pairs and line-pairs of the system; but in order to find the
values of A and =, each of these pairs has to be counted, not
once, but a proper number of times, and it is in the deter-
mination of these multiplicities that the difficulty of the problem
consists,. For this purpose Zeuthen uses the following con-
siderations: Take the elementary system of a conic determined
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by four points, then evidently the number of line-pairs is
three, and of point-pairs is 0, but since u=1, v =2, we have
A=0, @=3; whence it is inferred that a pair of lines
joining, two by two, four given points counts once among the
number of line-pairs. But take a system of conics determined
by three points and a tangent, here we may have three line-
pairs, viz. the line joining any two of the points, and the
line joining to the third point the intersection of the fixed
tangent with the line joining the first two points. There
are in this case no point-pairs. We have also u =2, v=4,
hence =0, @ =63 and it is inferred that a line-pair counts
for two if it consists of the line joining two given points,
together with the line joining to a third given point the in-
tersection of the first line with a given line.

Lastly, take the system of conics determined by two points
and two tangents, and there can be but a single line-pair, viz.
the pair joining the two points to the intersection of the two
tangents; but since in this case p=4, v=4, A=w =4, it is
inferred that a line-pair counts for four if it joins to two
given points the intersection of two given lines, It is needless
to dwell on the reciprocal singularities.

The movement of a conic which touches a given curve, may
be considered either a rotation round the point of contact ora
slipping along the tangent at that point; and hence it is in-
ferred in the case of a conic determined by touching four
given curves, that we are to count among the line-pairs, once,
(4') a pair consisting of two lines, each being a common
tangent to the curves; that we count twice, (B’) a pair con-
sisting of a common tangent to two curves, and a tangent
drawn to a third curve from a point where this common tangent
meets the fourth curve, and that we count four times, (C') a
pair consisting of tangents drawn to two curves from the in-
tersection of other two. Reciprocally, we count among the point-
pairs once (A4) a line each of whose terminations is the inter-
section of two curves, twice (B) a tangent to a curve terminated
by another curve, and by the interscction of two other curves;
and four times (C) a double tangent to two curves terminated
on two other curves. In these cascs for the intersection of
two curves, may be substituted the interscction of a curve with
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itself or a node, and for a common tangent to two curves
may be substituted a double tangent to a single curve.

418. Thus, for example, to find the number of line-pairs in
the system of conics which touch four given curves. We have

N

nn'n"n"" line-pairs consisting of one of the nn’ common tangents
to the first two, combined with one of the »"n" common
tangents to the other two; and since we can in three ways

rn_

form two pairs out of the four curves, the number 4’ is 3nn'n"n".
Again, there are nn'n"m" pairs consisting of a common tangent
to the first two curves, and a tangent to the third from one
of the points where it meets the fourth; and since we get
the same number if we take a common tangent to the second
and third, or to the first and third we bave B'=3Znn'n"m".
Lastly, there are plainly Snn'm"m™ pairs of tangents of the
kind C'. We have therefore

1o 1 n ’ " mn

w=3nnnn" +6Enn'm" + 4Znnm'm",

and in like manner

1 n_m o

A=43nnm'm" + 6Znm'm"'m"” + 3mm'm"m",

and from these numbers are deduced the same values for u,
and », as we have found already.

419. We proceed in the same way if the conditions of the
problem are, that the conic shall touch the same curve more
than once, or shall have with it contact of higher order. Prof.
Cayley uses the following convenient notation. Let (1) denote
single contact, (1, 1) single contact with the same curve in
two places, (2) contact of the second order or 3-point contact,
and so on. Thus the system we have considered of conics
having single contact with four curves is denoted by (1), (1),
(1), (1). Let us now consider the system (1, 1), (1), (1), that
is to say, when the conics have double contact with a single
curve and touch two others. Then it is seen precisely as
before, that A'=en'n" + nn'.nn". 'We have also
B =1(n'm" +n"'m)+nn' (m - 2)n" +nn" (m - 2)n

U "

+nn'm" (n —1) + nn"m’ (n — 1) + n'n"'m (n - 2),

C' =8n'n"+mm' (n—2) n" +mm” (n—2) 7' + m'm"n (n—1).
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"

Lastly, we must count separately (D) the xn'n" line-pairs,
consisting of a pair of tangents drawn from a cusp of the
first curve to the other two. Zeuthen shows that these last
count each for three, by writing in the formula in the first
instance an unknown multiplier «, and determining 2 by an
examination of the elementary cases where the second and third
curves, reduce to points or lines. Collecting then the numbers
A'+ 2B’ + 4C', and reducing, we find

1"

w=n'n" (n'+6mn — 8n—4m + 7 + 48 + 3«)

+2 (m'n" + m'm') (n* + 2mn - n—4dm +7) +2m'm" n (n - 1),
and there is a corresponding expression for A. From these
we find expressions for u, v., viz.

ne ” ) n_r oy n

p=p"m'm" + p" (m'n" 4+ m"n') + w'n'n",
v=v"m'm" + " (m'n" +m"n')+ vVn'n",
where p o= 2m(m+n—3)+T,
' =v =2m(m+ 2n—35)+27,
p"=v"=2n (2m +n—5) +28,
v'=2n (m+n-3)+38.
And these numbers denote the number of conics determined by
the conditions of touching one curve twice, together with three
points, two points and a tangent, a point and two tangents, and
three tangents, respectively.

It is unnecessary to consider separately the case (1, 1), (1, 1)
sce Art. 413, and the same principles are applicable to the cases -
(3) (1), (4)-

Referring for further details to Zeuthen’s memoir, which
may be most conveniently consulted, Nouvelles Annales, 1866,
and to Prof. Cayley’s memoirs, Pkil. Trans., 1867, we give
the following table in which Prof. Cayley has summed up the
simpler results expressed in terms of m, n, and a (see p. 64).
(1,1,1)  p'=32m’ +2m'n + mn* + }n® — 2mn* — 3mn — {n*

—%n—-%n+a(-3m— §n+13),
V' =3im’ 4+ 2m'n + 2mn® + 4n® — m* — dmn — n*

— 4¥m — 4fn + a (- 3m—3n+ 20),
P = Lim®+m'n+ 2mn* + §n® — ym® — 3mn — 2n®

- Pm— %Pn+a(—$m - 3n+13),
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(1,1,1,1) p=7ym'+ §m’n + m*n* + fmn® + Hym*
— 3m* — 3m’n — 2mn® — in®
—184m" —21mn — 32Pn" + 1§1m + 434n
+a (—§m’ — 3mn —§n’+ 43m + 5Ppn — 351)+ fa’,
' v=gm' + Im’n + m*n* + §mn® + {4t — im’ — 2m'n
— 3mn® — §n® — 329m’ — 21mn — 1§1n* + 493m
+131n+ a (—§m' —3mn —§n’+5Pm +4fn — 2§1)
+ ga',
2) w=a, v'=2a, p"=2a, ¢'=a3
@,1) p=12m+12m+a(@2m+ n—14),
V' =24m + 24n + a (2m + 2n — 24),
p'=12m+12n+ a( m+2n—14),
(2,1,1) p =24m"+ 36mn+ 122° —168m — 168n
+ a(m®+ 2mn + §n* — 25m — 3Pn + 138)—§a’,
v = 12m" + 36mn + 24n* — 168m — 1687 '
+ a (3m' +2mn + n* — 3Pm — 25n + 138)— §a’,
3,2) p =2Tm + 24n —20a + }a’,
v =24m +27n— 20a + {a’,
(3) M =—4m—3n+3a, v =—8m—8n+6a,
p =—3m- 4n+ 3a.
(3, 1) p =—8m"— 12mn—3n"+56m +53n + a(6m + 3n —39),
¥ =—3m’ —12mn —8n*+ 53m + 56n +a (3m + 61— 39).
(4) 4 =—10m —8n + 6a, v=—8m —10n + 6a.

420. It still remains to give formule for the number of
conics satisfying five inseparable conditions, as for example (5)
the number of conics having contact of the fifth order with a
given curve. These numbers are found from an examination
of the case where a curve touched by the conics is a complex
of two other curves. Thus the conics having contact of the
fifth order with a complex of two curves, are made up of the
conics having like contact with the separate curves, and there-

BBB
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fore the expression for (5) must be such a function of m, », 1,
that

¢ (m+m', n+0'y atd)=¢ (m,n, a)+ ¢ (m, ', «),
whence (5) is plainly of the form am +bn+ca. From sym-
metry we must have a=05, and knowing the number of
sextactic conics when m =3, we determine a and ¢, and find
(5) =-15m — 15n + 9a.

So, in like manner, the conics (4, 1) are made up of the
conics having this contact with each of the separate curves,
and of the conics having the contact 4 with one curve and the
contact 1 with the other. The number of these last conics
is found by the formule of the last article, so that we have
¢(m+m'y ntn, at+a)—¢(m n a)—¢ ', 7', a’) a known
function of m, n, a. By the process here indicated Prof. Cayley
establishes the table

(4, 1) =— 8m’— 20mn —8n® + 104 (m +n) + 6a (m +n —11), .
(3,2) = 120(m+n)+a(—4m—4n- 78)+3a’,
(3,2,1) =— §m" — 10m*n — 10mn* — §0° + 1§2m’

+ 116mn + 1§2n" — 434m — 434n
+a(§m' + 6mn+ §n* — Pm— 90 +291) — 2a’,
(2,2,1) =24m* + 54mn + 24n* - 468 (m + n)
+ o (—8m—8n+327) + a* (m+ jn—12),
(2,1, 1, 1) =Gm"+30m"n +30mn®+ 62" —17n(m+ n)"+1320(m +n)
+a (3w’ + w'n+mn®+ 10’ = P’ —26mn —1Pn
+238m 4 238, —960) + o (— §m — §n +28),
(1,1, 1,1, 1) = 135 (m° 4+ 2°) 4+ Fgmn (m® + 0°) + m®n* (m + n)
— 15 (m* +2Y) = gmn (m* + n*) — 2m°n®
— 139 (0 ) = 30 () + 134T ("4 )
+ 593 mn — 359 (m+n) + a (— L’ — 3m’n— 3mn®
— 10* + 29w +23mn+ 2P0’ —33Tm —331n 4 486)
+a* {3 (m+n)—15}.
Zcuthen and Cayley have also investigated formule for the

cases where the conditions include contact with a curve at a
given point; and Cayley’s memoir contains investigations of
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a formula of De Jonquidres, giving the number of curves of
the order » having with a given curve of the order m, ¢ con-
tacts of the order a, &, ¢, &c. and besides passing through p
points on the curve. But the subject is too extensive to be
here further treated of.

NOTE BY PROFESSOR CAYLEY ON ART. 416.

Some remarks may be added as to the analytical theory
of the degenerate forms of curves. As regards conics, a line-
pair can be represented in point-coordinates by an equation
of the form xy=0; and reciprocally a point pair can be re-
presented in line-coordinates by an equation £7=0, but we
have to consider how the point-pair can be represented in
point-coordinates: an equation a*=0, is no adequate repre-
sentation of the point-pair, but merely represents (as a two-
fold or twice repeated line) the line joining the two points
of the point-pair, all traces of the points themselves being
lost in this representation: and it is to be noticed that the
conic, or two-fold line, #*=0, or say (ax+By+v2)'=0is a
conic which, analytically, and (in an improper sense) geome-
trically, satisfies the condition of touching any line whatever :
whereas the only proper tangents of a point-pair are the lines
which pass through one or other of the two points of the
point-pair.

The solution arises out of the motion of a point-pair, con-
sidered as the limit of a conic, or say as an indefinitely flat
conic; we have to consider conics certain of the coeflicients
whereof are infinitesimals, and which when the infinitesimal
coefficients actually vanish reduce themselves to two-fold lines;
and it is, moreover, necessary to consider the evanescent co-
efficients as infinitesimals of different orders. Thus consider
the conics which pass through two given points, and touch two
given lines (four conditions); take y=0, 2=0 for the given
lines, =0 for the line joining the given points, and (z=0,
y—az=0), (£=0, y— Bz =0) for the given points; the equation
of a conic satisfying the required conditions and containing one
arbitrary parameter 6 is

@* + 20xy + 26 (aB) xz + 6" (y — az) (y — Bz) = 0;
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or, what is the same thing, E o
| {e+0y+ 0 y(aB) o) - la+ )y =0;

and this equation, considering therein 6 as an infinitesimal, say
of the first order, represents the flat conic or point-pair composed
of the two given points. Comparing with the general equation

(@ % ¢, f; 9, BYz, 9, 2)* =0,
we have

a=1, b=0, c=0ap, f=—}0 (a+B), g=0 \(aB), k=0,

viz. a being taken to be finite, we have g and % infinitesimals
of the first order, b, ¢, f infinitesimals of the second erder; and
the four ratios #/(8) : ¥/(c) : ¥/(f) : g : & are so determined as to
satisfy the prescribed conditions.

Observe that the flat conic, considered as a conic passing
through the two given points and touching the two given
" lines, is represented by a determinate equation, vis. consider-
ing the condition impesed upon @ (0= infinitesimal) as. a de-
termination of 6, the equation is a completely determinate
one; but eonsidering the flat conic: merely as a conic passing
through the two given points, the equation would contain
two arbitrary parameters, determinable if the flat conic was.
subjected to- the condition of touching two given lines, or to:
any other two conditions.

Generally we may consider the equation of a curve of
the order n; such equation containing certain infinitesimal
coefficients, and when these vanish reducing itself to a composite
equation P*@¥... = 0; the equation in its original form represents
a curve whieh may be called the penultimate curve. Consider
the tangents from an arbitrary point to the penultimate curve;
when this breaks up, the system of tangents reduces itself to
(1) the tangents from the fixed point to the several component
curves P=0, @=0, &c. respectively; (2) the lines through
the singular points of these same curves respectively; (3) the
lines through the points of intersection P=0y @ =0, &c. of each
two of the component curves; these points, each reckoned a
proper number of times, are called “fixed summits;” (4) the
lines from the fixed point to certain determinate points
called “free summits” on the several component curves P=0,
@ =0, &c. respectively. We have thus a degenerate form
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of the n-thic curve, which may be regarded as conmsisting of
the component curves, each its proper number of times, and
of the foregoing points called summits, and is consequently
enly inadequately represented by the ultimate equation
P=@f...=0; the number and distribution of the summits
is not arbitrary but is regulated by laws arising from the
consideration of the penultimate curve, and there are of
- course for any given value of n various forms of degenerate
curve, according to the different ultimate forms P*@¥ ...=0,
and to the number and distribution of the summits on the
different component curves. . The case of a quartic curve
baving the ultimate form «'y'=0 has been considered by
Cayley, Comptes Rendus, t. LXXIV., p. 708 (March, 1872),
who states his conclusion as follows: ‘there exists a quartic
curve the penultimate of ’y’=0, with nine free summits, three
of them on one of the lines (say the line y=0), and which are
~ three of the intersections of the quartic by this line (the fourth
intersection being indefinitely near to the point =0, y=0),
six situate at pleasure on the other line #=0; and three fixed
summits at the intersection of the two lines.”” Other forms
have been considered by Dr. Zeuthen, Comptes Rendus, t. LXXV.,
pPp- 703 and 950 (September and October, 1872), and some
other forms by Zeuthen; the whole question of the degenerate
forms of curves is one well deserving further investigation.

The question of the number of cubic curves satisfying given
elementary conditions (depending as it does on the consideration
of the degenerate forms of these curves) has been solved by
Maillard and Zeuthen; that of the number of quartic curves
has been solved by Dr. Zeuthen.
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Aberrancy of curvature, 94, 356.
Absolute invariant of a cubic, 141, 162,
Acnode, 23, 126.
of cubic constructed when stationary
tangents are given, 184,
Angle made by tangents with axis, 34.
with radius vector, 76.
sum of, given which tangents from a
point make with fixed line, 120.
between focal radii and tangent, 122.
Angle at which curves cut, unaltered by
certain transformations, 302.
Anharmonic, theorems of conics, their
analogues in cubics, 137.
ratio constant of pencil of tangents
from point on cubic, 141.
this ratio expressed in terms of fun-
damental invariants, 192.
ratio unaltered by linear transforma-
tion, 284.
ratios equal of tangents from two nodes
of quartic, 232.
Antipoints, 119,
Arc of evolute, length of, 84.
Archimedes, spiral of, 279.
Aronhold’s invariants of cubics. 184:
diszczussion of bitangents of quartics,
DD 5.

Asymptotes, their equation how found,
38, 110.

, 110.
of cubic, 167.
Atkins on caustics, 98,
Bernoulli, on lemniscate, catenary and
logarithmic spiral, 42, 277, 281.
Bertini on rational transformation, 814.
Bicircular quartics, 123, 139, 231,
Bifid substitution, 223.
Biflecnodes, 210.
Bipartite cubics, 165, 175.
Bitangents, general theory of, 828, &c.
of quartics, 108, 216, &c.
Bita.nggntial curve, of quartic, 214, 837,
44

Canonical form, of equation of cubic,
82, 189
general equation of cubic how reduced
to, 191.

Cardioide, 43, 212, 270.
Carnot, theorem of transversals, 106.
Cartesians, 98, 101, 123, 232, 235, 241.
Cartesian coordinates, how related to
trilinear, 6.
Casey, on bicircular quartics, 231.
Cassini's ovals, 42, 123,
Catenary, 275,
Caustics, 95, &c.
of parabola, 104.
Cayleyl on intersections of two curves,
, 20,
on equivalence of higher singularities
to a union of simpler, 47.
modification of Plicker's equations,

on envelope of equation containing
independent parameters, 71.

on quasi evolutes, 83,

on characteristics of parallel curves,

99.

on problem of negative pedals, 104.

on foci, 117.

on involution, and classification of
cubies, 159, 176.

his notation for equation of cubic, 182,

algorithm for bitangents of quartics,
221, 223.

on tangents from nodes of binodal
quartic, 233.

on cartesians, 241.

on logarithmic curve, 275.

on skew reciprocals, 292,

on transformation of curves, 304.

solution of problem of bitangents,
329, 339, 343,

on sextactic points, 359.

on systems of curves, 360, 365.

on degencrate forms of curves, 371,

Cayleyan gf cubic, different definitions of,
14

its equation, 183.
in point coordinates, 196.
of a system of conics, 216.
of a curve in general, 352.
Centres, 112.
Central cubics, 161.
Centre of mean distances, 109.
of contacts of parallel tangents, 116,
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Characteristics of reciprocal, 63.
of evolute, 90.
of parallel, 99,
of inverse curve and pedals, 103,
of system of conics, 360.
Chaaleni %n contact of parallel tangents,
16.

on projection of cubics into central
cubics, 161,
on Cartesians, 232, 241,
on systems of curves, 360.
Circular points at infinity, 1, 79, 86, 121.
their coordinates when fundamental
triangle is equilateral, 5.
normal at, 90.
cubic, 123, 139, 239,
Circular coordinates, 6.
Cissoid, 80, 179.
Class of a curve how connected with its
order, 52.
Clebacl;,sgn canonical form of a quartic,

on Jacobians, 847.
on symbolical notation, 331.
Clifford, on Miquel’s theorem, 125,
Conchoid of Nicomedes, 42.
Condition that curve should have a double
point, 54,
a cusp, 56.
& point of undulation, 850.
that two curves should touch, 76.
that four consecutive points on curve
should lie in a circle, 93,
that cubic should be sum of three
cubes, 190.
should represent three lines, 190,
a conic and a line, 202,
that quartic should be sum of five
fourth powers, 253.
Contact of conics with cubics, 132, 200,
with curves in general, 356.
Contravariants of cubic, 183, 196.
of quartic, 251, 259, 261.
Coresiduals, 131,
Correspondence of two points on a cubic,
129.
on Hessian, 146.
genceral theory of, 245, 312, 319.
Cotes, theorem of harmonic means, 112,
Covariants of cubics, 183, 193.
of quartics, 256, 259, 261.
Cr:).mcr2 0on intersections of two curves,

on points of visible inflexion, 85.
on tracing of curves, 41.
Cremona, on Cayleyans, 148,
on transformation of curves, 304.
Critic centres of system of cubics, 157,
170, 175.
of cubic and Hessian, 193.
Crunodes, 22, 126.
Curvature, centre and radius of, 81, 83.
of roulettes, 272,
aberrancy of, 356,
Cusps, 22, 46, 56.
curvature at, 84,
Cuspidal cubics, 177,
Cycloid, 262,

INDEX.

Dandelin on caustics, 96.
Deficiency of a curve defined, 28.
same for curve and its reciprocal, 64,
or for any curve connected with it by
linear correspondence, 93.
unaltered by Cremona transforma-
tion, 309. .
orsggy rational transformation, 312,

Degenerate forms of curves, 365, 371.
De Jox;}qviiéres on systems of ct'u-vm, 365,
71,
De Morgan on Newton’s process for find-
ing figure of curve at multiple
in

point, 44. .
Des Cartes on the cycloid, 266.
on the logarithmic spiral, 281.
Descriptive properties, 1, 79,
Diameters, 109.
Diocles, the cissoid, 179.
Discriminant of a curve defined, 54.
of a cubic expressed in terms of
{m;damentaﬂ invariants, 156, 189,
92.
expressed as a determinant, 203.
Diven mpmmm %61, 168, 170, 173
ivergent 161, 168, 170, 173.
Double points, their species, 22.
equivalent to how many conditions,
2

limit to their numbez, 26.
Duality, geometrical, 9.

Envelopes, general theory of, 65.
of line whose equar{ion is algebraic
function of parameter, 68.
of line whose intercept between two
lines is constant, 99, (see also 67,
80), 271.
of line joining feet of perpendiculars
from point on circle on sides of
inscribed triangle, 271.
of line joining corresponding points
on cubic, 130.
Equitangential curve, 278.
Epicycloids, 266.
Euler, on intersections of two curves, 20.
on epicycloids, 267,
on logarithmic curve, 274.
Evectants of invariants S and T, 184, 187,
Evolutes of conics, 40, 79.
of curves generally, 79.
tangential equation of, 86.
characteristics of, 90
confocal with curve, 121.

Flecnodes, 210.
Foci, general theory of, 116.
locus of foci under certain conditions,
124, 125,
of circular cubic lie on circles, 239.
of bicircular quartic, 233.

Galileo, on the cycloid, 265.

on the catenary, 277.
Geiser, on bitangents of quartics, 222.
Gergonne, on intersections of two curves,



INDEX.

Gregory, on tracing of curves, 41.
on logarithmic curve, 275.
Groups, of cubics, Pliicker's, 175.

Harmonic mean of radii, 113.
pencil b iy chords of cubic, 130.
polar of point of inflexion of cubic,
143, 196.
Hart, construction for ninth point common
b% ;.ll cubics passing &ough eight,
1

theorem that foci of a circular cubic
lie on circles, 141.
proof of Hesse's theorem on inflexions
of cubics, 145.
on foci of bicircular quartic, 233.
theorem that confocals cut at right
angles, 239.
on logarithmic curve, 275.
Hesse, his theorem that inflexions of cubic
inflexions of Hessian, 145.
algonthm for bitangents of a quartic,
221, 225.
reduction of bitangential of quartic,
832.
Hessian, defined, 55.
pags_&s 3t;hrough points of inflexion,
7, 83,
of cubic, its equation, 183.
of quartic, 214.
of Hessian of cubic, 214.
of UV, 204.
I{omographlc, tangents from nodes of a
binodal quartic are, 232,
transformation, 283.
Huyghens, on evolutes, 84.
on the cycloid, 268.
Hyperbolas, cubical, 167, 168, 169.
Hyperbolism of any curve, 175.
Hyperelliptic integrals, 318.

Identical equation for cubic, 198.
Independent parameters, envelope with, 71.
Infinity, pole of, 114.

normal at, 90.

satellite of, 128.

polar5 conic of, with respect to cubic,

Inflexion, points of, 32.
tangent at it double, 82.
curve there crosses tangent, 88.
number of, 57.
three inflexions of cubics lie on a
right line, 107, 128,
mv;:rsfe of this th;:orem, 300.
real for acnodal cubics, ima,
for crunodal, 181. ’ ginary
of quartics, how many real, 218,
Inflexional tangents of cubic touch Hes-
sian, 149.
equatlon of system of, 196.
Ingram, on inversion, 300,
Interscendental curves, 243.
Intersections of curves, 14.
Inversion, 103.
characteristics of inverse curves, 103.
of parabola, 180,
applied to obtain focal properties, 242.
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Inversion in wider sense of word, 244.
a case of quadric transformation, 298.
applications of the method, 299.
Involute of circle, 278,

Jacobi, on intersection of two curves, 20.
Jacobian of three curves, 147,
of a system of conics, 216.
common point of three curves of same
degree is double point on, 157, 346.
roperties, of, 345, &c.
J imsthal, his method of determining
point where line meets curve, 47.
Jungius, on catenary, 277.

Keratoid cusps, 46.
Kirkman, on Pascal’s hexagon, 17.

Leibnitz, on mtetsoendenta.l curves, 263.

Lemniscate,

Limagon, 43 96 242, 270.

Line ooordumtes, 7.

Linear transformation, 283.

Lituus, 280.

Locus, of common vertex of two triangles
whose bases are given, and vertical
angles have given difference, 139

of point whence tangents to a curve
have given invariant relation, 75

whence tangents make with fixed
line angles whose sum is given, 120,

of nodes of all nodal cubics through
seven fixed points, 157.

Logarithmic curve, 274,
spiral, 280.

Lurot on special class of quartics, 253.

MacLs.unns, general theorem on curves,

114.

theory of correspondence of points on
a cubic, 13).
on harmonic polars of inflexions of
cubic, 143.
Magnusy on reduction of homographic
transformation to projection, 287.
Maillard, on number of cubics satlsfymg
elementary conditions, 373.
Mersenne, on cycloid, 265.
Metrical theorems defined 1, 105.
Ml uel’s theorem, 125.
txple(z)g)ombs, equivalent to how many

how related to polar curves, 50.

how affect points of inflexion, 58.

number of tangents from, 61.
Multiple tangents, 31, 50.

Newton’s process for finding figure of

curve at multiple point, 44.

theorem of ratio of rectangles, 105.

on diameters, 109.

on intercept between curve and
asymptotes, 110.

theorem that a cubic may be projected
into one of the five parabolas, 161.

classification of cubics, 173.

description of cissoid by continuous
motion, 179,

ccce
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Newton's rectification of epicycloids, 272.
Nicomedes, conchoid of, 42.

Node cusps, 207.
Normal, 86
of point at infinity, 90
anbers of terms in geneml equation,
1
of conditions which determine a
curve, 13.
of tangents to & curve from a given
point, 52.
of conics which touch five given
curves, 363.
satisfying any five conditions of con-
tact, 370.
Oscnodes, 207

Osculating conics, 856, &c.
Oval, no real tangents can be drawn to
cubic from, 164,
a quartic may have four, 212.

Parabola, cubical and semicubical, 79,
17

3.
divergent of the third degree, 161.
Parallel curve to a conic, equation of,
b8.
tangential equation of, 10.
characteristics in general, 99.
Parallel tangents, have fixed point as
centre of mean distance of their
contacts, 116.
Parametric expression of point on cubic,
. 817, 826.
on nodal quartic, 315.
Partitivity of cubics, 165.
of quartics, 212.
Pascal, theorem of hexagon derived from
theory of cubics, 17.
limagon, 43, 96.
on cycloid, 266.
Pedal, of a curve, 96, 102,
negative, 102, 104,

Perpendicularity, extension of welation,.

79, 89, 109,
Pippian of cubic, 148.
Pliicker on intersection of curves, 20.
on degree of reciprocal, 53.
his equations conneeting reciprocal
singularities, 63.
on theorem of transversals, 106.
on foci, 116.
classification of cubics, 158, 175.
on forms of quartics, 212,
on bitangents of quartics, 218.
Poles and poiz
general theory of, 47, 112, 345, &c.
in case of cubics, 139.
polar of point with regard to triangle,
4, 140,
of infinity with regard to a curve of
the n'" class, 115,
first, polar contains points of contact
of tangents, 51.
polar conic of line with regard to
cubic, 153.
Polar coordinates, problems discussed in,
21, 76, 84, 105, 109, 113.
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Polygons, problem of inscription of, in
conics, 243, 825.
in cubics, 148 326.
in quartics 243.
Poncelet, on number of tangents to &
curve fiom an {pom t, 52.
on2u;scnp .ion of polygons in curves,
4
Projectlon, of cubics, 166.
a homographic transformation, 286.
Pursuit, curves of, 278.

Quadrangle formed by contacts of tangents

from point on cubic, 129, 199.
Quasi evolutes and quasi normals, 86, 179
Quetelet on caustics, 95.

Ramphoid cusps, 46. 207.
Rational expression for coordinates of
point on unicursal curve, 28.
transformation, 296.
Reciprocal of a curve, its degree, 52.
characteristics of, 62.
mothod of ﬁndmg equation of 65, 73,

of a cubxc, 74, 155.
of a quartic, 75 214.
in polar coordma.tes, 76.
skew reclg rocals, 293,
Residuation, Sylvester’s theory of, 181.
for cuspldal cubics, 177
Riema.nna‘ on constancy of deficiency,

31
Roberts on problem of parallels and
negative pedals, 102.
on transformation of curves, 802.
Roberval on the (c:fclmd, 266.
Roemer on epicycloids, 272,
Roulettes, 272.

Satellite of a line with respect to a cubic,

127,

of line infinity, 128.

envelope of, 157.

used in clmwlﬁcatlon, 170, 175.
Sextactic points on cubics, 132

on curves in general, 359
Signs of coordinates, how determined, 3.
Singularities, higher equivalent to a union

of simpler, 47.

which to be counted ordinary, 62.
Sinusoid, 273.
Skew reciprocals, 293,
Spinodes, 23.
Spirals, 279.
Stationary points, 23.

tangents, 32.

of cubic touch Hessian, 149.

equation of system, 196,
Steiner, on hexagon, 17.

on inscription of polygons in quartics,

243,

on bitangents of quartics, 225,

on curve enveloping line joining feet
of three perpendiculars, 271.

on circles osculating conic and pass-
ing through given point, 800.

on systems of curves, 348.
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Steinerian defined, 55.
identical with Hessian in case of

cubic, 147.
its properties, 851.
Steiner-Hessian, 352.

Stubbs, on inversion, 300.

Sylvmters theory of residuation, 131.

Symbolical form of equation of reciprocal,
74.

of locus of points, whence tangents
satisfy invariant relation, 75.
Systems of curves, 360.
Syntractrix, 277.

Tacnode, 23, 207.
cusp, 207.
Tact-invariant of two curves, 76, 348,
Tangent, at origin, equation of, 21.
from any point, points of contact,
how determined, 51.
how specmlly related in case of cubic,

equatlon of system, 59, 75.

from a multiple point, 61.

locus of point if sum of angles made
with by a fixed line be constant. 120.

if tangents fulfilinvariant relation, 75.

Tangential coordinates, 7.

particular cases of, 8.

equation of evolutes, 86.

of a point with respect to a cubic,
127, 177, 199.

its coordinates, how found, 153.

points of a curve, how related, 37.

cuge, mode of finding its equation,
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%‘racmg of curves, 110.

ractrix, 27

Transformatlon of curves, 282.

Transon, aberrancy of curvature, 356.

Tncuspldal quartics, 228.

Trident, 17

Trinodal quartic, properties of, 244.
ta.ngents at or from nodes touch conic

%e pomts their species, 25,
Tschirhausen on caustics, 95.
Twinpair sheet of cones, 162,

Undulation, point of, 85.
in case of quartics, 211.
general conditisn for, 350,
Unicursal curve, defined, 29, 67, 104.
cubics, 165, 178,
quartics, 244.
correspondence of points on, 820.
Unipartite cubics, 165, 175.
United points of con'espondenoe. 820.

Vincent, on loga.rithmic curve, 274.

‘Walker on invariants of quartics, 261.

Waring on number of tangents to a curve
from any point, 52.

Wallace on catenary, 276.

‘Wren on cycloid, 266.

Zeuthen, proof that deficiency is unaltered

by rational transformation, 814.
on systems of curves, 365, 368.
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