
Hi GDB, this is Python.

0vercl0k aka Souchet Axel.
Email: 0vercl0k@tuxfamily.org

Twitter: @0vercl0k

mailto:0vercl0k@tuxfamily.org
https://twitter.com/0vercl0k

CONTENTS 1

Contents

I Introduction 2

II ”Dump Pointers with Symbols” like 4

1 The WinDbg’s dps command 4

2 Defining a new command 5

3 Dump the stack 5
3.1 Get the content of a CPU register . 5
3.2 Dereference pointers . 6

4 Interesting pointers or not ? 9
4.1 String pointers ? . 9
4.2 Disassemble ? . 10

5 Put it all together! 11

III Conclusion 12

2

Part I

Introduction
Since the version 7 of the Gnu Debugger, I’m pretty sure you already know that, but
the python interpreter is accessible from GDB. The person behind this work is Tom
Tromey: that guy made python available inside GDB, thanks! If you are interested
by the implementation of the API, you should read GDB’s sources, and take a look
at the gdb/python directory (also consultable online here). There are a lot of nice
functions you can use to extend your debugger, they are all documented here: GDB
Python-API. Indeed, with this API you can do things like:

• Define new (prefixed) commands

• Create pretty-printing modules

• Manipulate breakpoints

• Access the stack frames

• Read/Write/Search directly in process memory

• A lot more!

As I said earlier, you can execute python code easily from the gdb shell:

for oneliner

gdb$ python print 42

42

for larger code

gdb$ python

> a = ’SGVsbG8sIFdvcmxkIQ==’.decode(’base64’)

> print a

CTRL+D

Hello, World!

Actually, it is very convenient during exploitation or real debugging sessions to create
GDB scripts that can assist you: for example if you need to search for a specific thing
in the stack, or in the binary. Here is my story: two weeks ago, I was doing a level
of the sm0k’s wargame and to complete my exploit I was supposed to find a specific

http://sourceware.org/cgi-bin/cvsweb.cgi/src/gdb/python/?cvsroot=src
http://sourceware.org/gdb/onlinedocs/gdb/Python-API.html#Python-API
http://sourceware.org/gdb/onlinedocs/gdb/Python-API.html#Python-API
https://sm0k.org/dojo/vanilla.php

3

pointer in the stack. This pointer was very important, because it allowed me to
bypass the ASLR making my exploit completely reliable. When you are researching
things like that in GDB it’s hard: you dump the stack and you pray your eyes will
recognize a libc pointer in this huge amount of data.

With this article and this little problem, I will try to give you a global view of
what the GDB python API offers us, what you can build with it. By the way, the
stuff I will expose in next parts have been only tested with the GDB version 7.4.1.
Our futur GDB command will work like that:

1. Retrieve the two arguments given to the command: the first one is a CPU
register or an address and the second one is the number of pointers to display

2. If the first argument is a CPU register we need to get its content

3. Read the memory pointed by the address

4. Check if the pointer is interesting or not

5. Display the whole information

All those things will be discussed in next parts of this article.

https://fr.wikipedia.org/wiki/Address_space_layout_randomization

4

Part II

”Dump Pointers with Symbols”
like

1 The WinDbg’s dps command

There are a lot of useful commands in WinDbg, and one of them is dps. This function
displays only one DWORD per line, and if the pointer is a known symbol, it displays
the symbol name, almost exactly what I wanted. Here is what you see if you try to
dump the Windows SSDT structure:

lkd> dps nt!KeServiceDescriptorTable l4

8296b9c0 828726f0 nt!KiServiceTable

8296b9c4 00000000

8296b9c8 00000191

8296b9cc 82872d38 nt!KiArgumentTable

The previous dump is organized in three columns, the first one is the address of the
pointer, the second column is the value contained at the address and the last column
(the most interesting) is the symbol. According to this specific dump, we can know
that the function nt!KiServiceTable starts at address 0x828726f0 ; but you cannot
see that easily with a classic dump like this one:

lkd> dd nt!KeServiceDescriptorTable l4

8296b9c0 828726f0 00000000 00000191 82872d38

It’s the same thing in GDB, you have a huge dump with addresses so if you’re looking
for something, it is really hard to spot something that meets your requirements.

Fortunately, you can create a very similar function with the python API.

http://uninformed.org/index.cgi?v=8&a=2&p=10

2 DEFINING A NEW COMMAND 5

2 Defining a new command

If you want to define a new command accessible from the GDB shell, you must
create a python class that inherits from gdb.command. Next, you must call the
constructor of gdb.command with the name of the command and other arguments
detailed precisely here: gdb.commad. init . Then, you define a method that will
be called when you type the name of your command in the GDB shell ; its name
must be invoke.

We can now write a little HelloWorld to be sure we have well understood the
basics:

c l a s s HelloWorld (gdb .Command) :
”””Greet the whole world . ”””

de f i n i t (s e l f) :
super (HelloWorld , s e l f) . i n i t (” he l l o−world” , gdb .

COMMANDOBSCURE)
de f invoke (s e l f , args , f rom tty) :

p r i n t ”Hel lo , World ! ”
HelloWorld ()

Listing 1: Hello World command from the official documentation

3 Dump the stack

3.1 Get the content of a CPU register

We need to know how to get the content of a CPU register ; the only way to do that
is to use the gdb.parse and eval() method. It takes a string in parameter and tries
to evaluate it in order to return a gdb.Value object. Actually, you can even make
computations, make dereferences, etc. I decided to use it only to get the content of
a register, just like that:

gdb$ python print gdb.parse_and_eval(’$eax’)

0x6e1b68

gdb$ python print gdb.parse_and_eval(’$ax’)

0x1b68

gdb$ python print gdb.parse_and_eval(’$al’)

0x68

http://sourceware.org/gdb/onlinedocs/gdb/Commands-In-Python.html#Commands-In-Python
http://sourceware.org/gdb/onlinedocs/gdb/Commands-In-Python.html#Commands-In-Python

3 DUMP THE STACK 6

3.2 Dereference pointers

As you have seen in the previous part, the first objective of our future command is to
be able to display data contained in a specific memory area: pointed by a CPU regis-
ter or directly by its address.To do that, we can use the method gdb.Value.dereference(),
it returns a new gdb.Value object containing the data. The thing is you cannot call
the gdb.Value.dereference() method from any gdb.Value object, the object must be
considered as a pointer internally by the API. We can see that directly in the C
sources of the API:

/∗ Given a value o f a po in t e r type , apply the C unary ∗ operator to
i t . ∗/

s t r u c t va lue ∗
va lue ind (s t r u c t va lue ∗ arg1)
{

s t r u c t type ∗ base type ;
s t r u c t va lue ∗ arg2 ;

// [. . .]

base type = check typede f (va lue type (arg1)) ;

i f (VALUE LVAL (arg1) == lval computed)
{

// [. . .]
}

i f (TYPE CODE (base type) == TYPE CODE PTR)
{

// [. . .]
}

e r r o r ((”Attempt to take contents o f a non−po in t e r va lue . ”)) ;
r e turn 0 ; /∗ For l i n t −− never reached . ∗/

}

/∗ Given a value o f a po in t e r type , apply the C unary ∗ operator to i t .
∗/

s t a t i c PyObject ∗
va l py de r e f e r en c e (PyObject ∗ s e l f , PyObject ∗ args)
{

s t r u c t va lue ∗ r e s v a l = NULL; /∗ I n i t i a l i z e to appease gcc warning .
∗/

v o l a t i l e s t r u c t gdb except ion except ;

3 DUMP THE STACK 7

TRYCATCH (except , RETURNMASK ALL)
{

r e s v a l = va lue ind (((v a l u e ob j e c t ∗) s e l f)−>value) ;
}

GDB PY HANDLE EXCEPTION (except) ;

r e turn v a l u e t o v a l u e ob j e c t (r e s v a l) ; // r e tu rn s a new Value ob j e c t
with the content de r e f e r enc ed

}

To have a TYPE CODE PTR object, we have to use the gdb.Value.cast() method,
but we must have a gdb.Value instance that represents a pointer somewhere in order
to cast correctly our instance.

Figure 1: gdb.Value.cast() illustration

Actually, we call the magic method gdb.lookup type() to obtain a gdb.Value in-
stance that holds an integer. Next we call the gdb.Value.pointer() method to obtain
an integer pointer. Then, we give this instance in argument to gdb.cast() to cast cor-
rectly our object. After all those operations, we can use the dereference() function.
Check the code below to see those different steps executed:

gdb$ x/dwx $esp

0xbffff7ac: 0xb7e4ee46

gdb$ python

> int_pointer_type = gdb.lookup_type(’int’).pointer()

3 DUMP THE STACK 8

> stack_address = gdb.Value(0xbffff7ac)

> stack_address_pointer = stack_address.cast(int_pointer_type)

> content = long(stack_address_pointer.dereference())

> print hex(content & 0xffffffff)

0xb7e4ee46L

Perfect, even if this way seems a little weird to use, it’s in fact a very convenient
one: you can ensure the x64 portability easily thanks to the long type: when you are
debugging an x86 process inside GDB the size of the long type is 4 bytes, and when
you debug an x64 process the size is 8 bytes. In addition, it raises a gdb.MemoryError
exception if there isn’t any memory where you’re trying to look. You will see in the
tips section this way wasn’t exactly the only one, but I just wanted to play with
gdb.Value. Now we can declare a small function able to dereference a pointer via its
address:

de f de r e f l ong f r om addr (addr) :
’ ’ ’
Get the value pointed by addr
’ ’ ’
p long = gdb . lookup type (’ long ’) . po in t e r ()
va l = gdb . Value (addr) . c a s t (p long) . d e r e f e r en c e ()
re turn long (va l) & 0 x f f f f f f f f

Listing 2: deref long from addr() function

4 INTERESTING POINTERS OR NOT ? 9

4 Interesting pointers or not ?

Now we know how to dump data pointed directly by their addresses or by a CPU
register, we have to deal with those pointers in order to see if they are interesting
or not. They are interesting if they point in a shared-library like the libc (a pointer
ideal to leak for defeating the ASLR) or if they are ASCII string pointers. Yeah, I
know, it’s not really symbols like in the dps command, but anyway it’s relevant to
see those information when you dump data. I’ve created the python command in a
very simple way:

• The pointers references a location where the memory is accessible:

– It’s a pointer on an ASCII string of 3 characters minimum, so we display
the string

– It’s not a string, so we try to disassemble one instruction at this address
and we display it

4.1 String pointers ?

There is a function in gdb.Value class doing exactly what we want: it’s the gdb.Value.string()
method. This method returns the string pointed to by the gdb.Value instance or gen-
erates a gdb.MemoryError exception in the memory isn’t accessible. As you have
seen in previous parts, to do that we have to cast correctly our gdb.Value instance
otherwise we can’t call the gdb.Value.string() method.

gdb$ python print gdb.Value(0xdeadbeef).string()

Traceback (most recent call last):

File "<string>", line 1, in <module>

gdb.error: Trying to read string with inappropriate type ‘long’.

We just have to look for the char type, and to retrieve a pointer as we did for the
long type:

gdb$ python

>char_pointer_type = gdb.lookup_type(’char’).pointer()

>address_str = gdb.Value(0xdeadbeef)

>string_pointer = address_str.cast(char_pointer_type)

>print string_pointer.string()

Traceback (most recent call last):

File "<string>", line 1, in <module>

gdb.MemoryError: Address 0xdeadbeef out of bounds

4 INTERESTING POINTERS OR NOT ? 10

This function is very useful for us, it just does exactly what we wanted: check if a
specific area of memory contains an ASCII NULL terminated string (yeah, it only
works with ASCII string, I guess you will have to define your own function if you
want to recognize UNICODE string).

gdb$ x/s 0x7ffff775861b

0x7ffff775861b: "/bin/sh"

gdb$ python

>char_pointer_type = gdb.lookup_type(’char’).pointer()

>address_str = gdb.Value(0x7ffff775861b)

>address_str_ptr = address_str.cast(char_pointer_type)

>print address_str_ptr.string()

/bin/sh

4.2 Disassemble ?

In this part, we need to be a bit more crafty because the python API doesn’t give
us the possibility to call the internal disassembler of GDB. We only know we can
disassemble some code via the x/i GDB command. Fortunately, there is a useful
function called gdb.execute() and this function is able to execute a GDB command.
In addition, this command allows us to retrieve the result of the command in a string:
we just need to parse the output and to extract exactly the data we want, like the
instruction disassembled and the name of the function where the instruction is. Here
is a little example:

gdb$ python print gdb.execute(’x/i %#.8x’ % 0x420010, to_string=True).split(’:’)

[’=> 0x420010 <main>’, ’\tpush r15\n’]

Remember this function can be really powerful, and it’s sometimes the only way to
accomplish the thing you want. I’ve also used this function to obtain information
concerning the memory mapping of the process. I use the output of the info files
GDB command in order to get the addresses of the shared-libraries sections, and the
binary sections.

5 PUT IT ALL TOGETHER! 11

5 Put it all together!

Here we are, I believe you have now all the materials to build this little command.
You will find mine on my github account, and here is an example on the sm0k’s
wargame:

Figure 2: dps in action

We can clearly see that this view is really adapted when you have to find an ideal
pointer to leak, it can be also cool to see which pointers are pointing on which ASM
instructions.

https://sm0k.org/dojo/vanilla.php
https://sm0k.org/dojo/vanilla.php

12

Part III

Conclusion
I hope you have enjoyed this little paper, I’ve really tried to give you an overview
of the python API in GDB, but if you want to read other documentations and learn
more about the subject, here are some interesting links I found:

• Official documentation

• PythonGdbTutorial, a bunch of examples written by Tom Tromey

• PythonGDB tutorial for reverse engineering - part 1, written by @delroth

• Using Python to debug C and C++ code (using gdb) by David Malcolm ; check
out the talk video.

Also, I wanted to give you some other useful tips:

• Get the pid of the process debugged:

gdb$ python print gdb.selected_inferior().pid

1321

• Read the process memory (this is the other way to dump data without using
gdb.Value objects ; note that you can also write memory thanks to gdb.Inferior.write memory()
and search with gdb.Inferior.search memory()):

gdb$ python

>b = gdb.selected_inferior().read_memory(0x7fffffffe6b8, 10)

>print ’, ’.join(’%#.2x’ % ord(b[i]) for i in range(len(b)))

>0x8d, 0x1c, 0x65, 0xf7, 0xff, 0x7f, 0x00, 0x00, 0x00, 0x00

gdb$ x/10bx $rsp

0x7fffffffe6b8: 0x8d 0x1c 0x65 0xf7 0xff 0x7f 0x00 0x00

0x7fffffffe6c0: 0x00 0x00

• Give an address, and retrieve in which shared library it’s pointing to (NB: it
only works for addresses pointing in shared libraries):

http://sourceware.org/gdb/onlinedocs/gdb/Python-API.html#Python-API
http://sourceware.org/gdb/wiki/PythonGdbTutorial
http://tromey.com/blog/
http://blog.lse.epita.fr/articles/10-pythongdb-tutorial-for-reverse-engineering---part-.html
https://twitter.com/#!/delroth_
http://tinyurl.com/PyCon-US-2011-GdbPython
http://dmalcolm.fedorapeople.org/
https://blip.tv/pycon-us-videos-2009-2010-2011/pycon-2011-using-python-to-debug-c-and-c-code-using-gdb-4895525

13

gdb$ p /x &system

$6 = 0x7ffff76715b0

gdb$ python print gdb.solib_name(0x7ffff76715b0)

/lib/libc.so.6

You will be able to find my different python examples at the end of the post on my
personal blog and by the way, if you have already coded cool stuff with python gdb
feel free to leave comments. Thanks to @Ivanlef0u, sha, @ x86 for the corrections
and @sm0k for the cool discussions we had on this topic. One last thing, if you
enjoy wargames, give a shot at Vanilla.

http://0vercl0k.tuxfamily.org/bl0g/
http://twitter.com/#!/Ivanlef0u
http://twitter.com/#!/__x86
http://twitter.com/#!/sm0k_
https://sm0k.org/dojo/vanilla.php

	I Introduction
	II "Dump Pointers with Symbols" like
	The WinDbg's dps command
	Defining a new command
	Dump the stack
	Get the content of a CPU register
	Dereference pointers

	Interesting pointers or not ?
	String pointers ?
	Disassemble ?

	Put it all together!

	III Conclusion

