
→ taste training
An open-source tool-chain for embedded software
development

Maxime Perrotin

TEC-SWE

Introduction - what is TASTE ?

● A tool-chain targeting heterogeneous, embedded
systems, using a model-centric development approach

● A laboratory platform for experimenting new software-
related technologies, based on free, open-source
solutions

● A process supporting the creation of systems using
formal models and automatic code generation

● Scope of the course
– We will see how TASTE can be used for

● quick prototyping
● helping review process

– In addition most of TASTE features will be
presented

Ecosystem

● Web entry point : http://taste.tuxfamily.org
● User (public) and developpers (private) mailing lists

→ Register to the user mailing list !

● Bug track system
● SVN repository with all sources (hosted at ESA)

– Stable and trunk branches

● Nightly build and regression testing

http://taste.tuxfamily.org/

Distribution

● Bundled in a virtual machine

→ full Debian Linux installation, with all dependencies
installed

→ Update mechanism triggered from the desktop

● Manual installation is possible (instructions on the
Wiki) – Ask for help.

● Documentation and reference card on the desktop

→ Print the reference card !

● Linux-based, but a Windows GUI prototype exists

Target : reactive and discrete
systems

● Communication :
– Message exchanges between the system and its environment

– Asynchronous and synchronous interactions

● Algorithms, GUIs
● Databases
● Wide range of applications

– Safety and mission-critical communicating systems
– Real-time applications (embedded systems)

● Wide range of architectures
– X86 (Linux, Win32, Xenomai, FreeBSD), SPARC (Leon), ARM

– 32 and 64 bits

TASTE as a support for reviews

● Model the requirements and/or the design
– To help understanding a specification or a design

● What is the system intended to do?
● Who are the actors (scope)?
● What is the expected behaviour?
● What is the data ?

– To get an executable representation of the system
● Early and independent testing → valuable inputs for a review or project

support

– To improve the quality of the specification
● Formal models enable various verifications,
● Detect ambiguities → less risk of having incomplete requirements

Example of ambiguous
requirements

REQ_123 - If during Initialisation it is sensed that both SCs are connected then the
Stack mode shall be entered. In this mode the communication with Ground shall be
established, the SC GNC software of Satellite 1 shall be activated with GNC SW of
Satellite 2 is inactive, and most of the units shall be commissioned.

REQ_124 - When separation of SCs is detected (after Initialisation or in Stack
mode), then the Manual mode shall be entered. In this mode, SC GNC of both SCs
shall be activated and a default configuration and attitude shall be set. In this mode
any operation can be commanded from the Ground segment. Those units not
commissioned in Stack will be done in Manual mode.

Deciphering...using tools

● Build a model, step by step – 50 % of the
issues are found that way.

Shouln't we
Establish

Communication
In BOTH cases ?

Tools help finding many classes of
errors in specifications

● Ambiguities with data – often no shared data dictionnary.
Inconsistencies with namings, semantics, scope...

● Missing interface information (behaviour, off-nominal
handling, parameter constraints...)

● Sequencing (dynamic) issues – what is done in what order,
etc.

● Completeness of paths

TASTE process

1) Describe the system logical architecture and interfaces with ASN.1 and
AADL

2) Generate code skeletons and write the applicative code or models

3) Capture the system hardware and deployment

4) Verify models

5) Build the system and download it on target

6) Monitor and interact with the system at run-time

Architecture and data

Tool packaging - technologies

Modeling

Model analysis

Debugging
& testing

Code generation
& deployment

SMP2

ASN.1 SIMULINK SDL

MSC

AADLSCADEVHDL

C/C++ Ada

Python

CHEDDARMAST

Execution
platform

PolyORB
HI

LinuxRTEMS XenomaiWin32

SQL

Formal languages

● TASTE relies on formal languages :
– ASN.1 and AADL to capture the software architecture and data

– SDL, Simulink, SCADE, C, Ada, VHDL, … to capture the
software behaviour

– MSC and Python to test

● Combine graphical AND textual notations
– If anything goes wrong, human can fix textual syntax
– Diagrams for easier understanding
– But some information is textual by nature

● Avoid languages with weak semantics or syntax

● Architecture Analysis and Design Language,
a standard from SAE

● Used to model the logical and the physical
architecture of the system

● Textual and graphical representations
● Used in TASTE to capture the system

structure, interfaces, hardware and
deployment.

TASTE interface view

● Two entities : containers and functions, to
capture the system logical architecture

Function

● A function is a terminal level entity. It has a behaviour that
can be triggered through a set of provided interfaces.

● All interfaces of a function have visibility and control
access on the function's internal data (static data).

● With one exception, the interfaces of a function are
mutually exclusive, and run to completion (it is not possible
to execute concurrently two interfaces of a function, as
they share state data).

Properties of a function

The
implementation

language

Optional
« context

parameters »

Context Parameters

● The « Functional State » tab offers a space for
flexibility :
– Context parameters allow defining constants at model

level and make them accessible from user code
● Support for C, Ada and Simulink (instructs code generator to

generate « tuneable parameters », which are global variables)
● Value can be generated from an external source

– TASTE directives are used to fine-tune the build process
with additional properties (e.g. compilation or link flags
that are specific to a piece of code)

● Used to integrate Simulink code when it requires special
defines (-DRT, -DUSE_RTMODEL)

● When a property proves usefulness, it gains a dedicated entry
in the GUI

Provided and required interfaces
● A provided interface (PI) is a service offered by a function. It

can be
– Periodic, in which case it does not take any parameter, and is used

to handle cyclic tasks

– Sporadic (or asynchronous) and optionally carry a parameter. The
actual execution time is decided by the real-time scheduler (call is
deffered)

– Synchronous, with or without protection and optionally carry
parameters (in and out)

● The protection is a semaphore (in C) or a protected object (in Ada)
preventing concurrent execution of several interfaces of the same function.

● Use unprotected interface to implement e.g. « getter » functions
● Caller blocks on execution (call is immediate) – Just like a direct function call.
● At runtime, synchronous functions execute in the caller's thread space.

Specify all real-time
attributes. They will be used

later for code generation
and system analyis.

Function parameters

Each parameter has a type (from the ASN.1 model),
a direction (in or out), and an encoding protocol :

Native : means memory dump – no special treatment
UPER : compact binary encoding

ACN : user-defined encoding

Exercise 1

● First use of AADL is to describe the system
logical architecute (capture of functions and their
relationships)

● Create an interface view

$ taste-create-interface-view
● Generate function skeletons

$ taste-generate-skeletons

Skeleton example : Simulink

Build script

● A build script for the system is generated
automatically : build-script.sh

● It may need to be tuned to select the runtime
(C or Ada) or for advanced options

● Before calling the script, a deployment
diagram has to be filled

Deployment view

● Map functions on hardware
● Centralized and distributed systems
● Can add buses, drivers.. Extensible (every

component is described in an AADL file)

Exercise

● Create the system deployment view

SDL, MSC and ASN.1

● SDL : Specification and Description Language (ITU-T)
– SDL is intended for unambiguous specification and description of telecom

systems

– SDL has concepts for behaviour and data description as well as for
structuring large systems

● ASN.1 : Abstract Syntax Notation One (ISO and ITU-T)
– Describe data types and constraints

– e.g. My-Integer::= INTEGER (0..255)

– … and data physical representation (e.g. use 8 bits to encode My-Integer)

● MSC : Message Sequence Charts (ITU-T) a.k.a. Sequence
diagrams (UML)
– Is to provide a trace language for the specification and description of hte

communication behaviour of system components and their environment
by means of mesage interchange

ASN.1

● International standard (ISO and ITU-T)
● Simple text notation for precise and complete

data type description
● Real added value : the physical encoding rules

(compact binary encoding, endianness-neutral,
but also XML encoding, legacy encoding
specifications).

● Separate the encoding rules from the types
specification

ASN.1 – basic types

INTEGER

→ My-int ::= INTEGER (0..7)
value My-int ::= 5

REAL

→ My-real ::= REAL (10.0 .. 42.0)

BOOLEAN

ENUMERATED

→ My-enum ::= ENUMERATED { hello, world }

OCTET STRING

→ My-string ::= OCTET STRING (SIZE (0..255))
value My-string::= 'DEADBEEF'H

BIT STRING

→ My-bitstring ::= BIT STRING (SIZE (10..12))
value My-bitstring ::= '00111000110'B

ASN.1 – complex types

● SEQUENCE

→ My-seq ::= SEQUENCE {
 x My-int,
 y My-enum OPTIONAL
}
value My-seq::= { x 5 }

● CHOICE

→ My-choice ::= CHOICE {
 choiceA My-real,
 choiceB My-bitstring
}
value My-choice ::= choiceA : 42.0

● SEQUENCE OF

→ My-seq ::= SEQUENCE (SIZE (0..5)) OF BOOLEAN
value My-seq:= { 1, 2 ,3 }

● SET / SET OF

ASN.1 benefits – CFDP example

These fields are not
application
semantics! They
concern the binary
encoding rules of the
PDUs and should
not be mixed with
the protocol useful
information.

CFDP in ASN.1

● Keep only application-semantic data
● Tools will generate encoders and decoders to

add the other fields
Packet-ty ::= SEQUENCE {
 version Version-ty,
 direction Direction-ty,
 transmission-mode Transmission-mode-ty,
 crc-flag CRC-flag-ty,
 source-entity-id Entity-id-ty,
 transaction-sequence-number Transaction-sequence-number-ty,
 destination-entity-id Entity-id-ty,
 data Datafield-ty
}

Version-ty ::= INTEGER (0..7)

Direction-ty ::= ENUMERATED { toward-file-receiver, toward-file-sender
}

ASN.1 : The exoskeleton case study

Communication &
State Management

(SDL/RTDS)

Control law

(Simulink)

Exoskeleton

(Sensors)

Robotic arm

(Actuators)

hardware
interface (1)

hardware
interface (2)

software
interface

Solution : ASN.1 and ACN

+

One logical model for the end user (in ASN.1),
And one separate model describing the encoding

→ No need to worry about endianness, fields ordering, etc.

Our ASN.1 compiler

● Developped by Semantix (now Neuropublic) for ESA
● Free software (LGPL)
● Unique features – no competing tool :

– Generates optimized C code (fast, low memory footprint)

– Or SPARK/Ada code

– No malloc, no system call

– Automatically generates test cases for a given grammar

– Generates ICDs documents in HTML format

– Supports ACN for customized encodings (e.g. PUS format)

● Can be used independently from TASTE
● TASTE includes backends to give access to ASN.1 types to

SDL, Simulink, SCADE, VHDL, SQL, Python

ACN – the basics

● ACN allows to specify legacy encodings
● It can be used to describe the binary format of

PUS packets, leaving the interesting part only
(payload data) in the ASN.1 side.

MySeq ::= SEQUENCE {
alpha INTEGER,
gamma REAL OPTIONAL

}

MySeq[] {
alpha [],
beta BOOLEAN [],
gamma [present-when beta, encoding IEEE754-1985-64]

}

ACN – more examples

COLOR-DATA ::= CHOICE {
green INTEGER (1..10),
red INTEGER (1..1000),
blue IA5String (SIZE(1..20))

}

MySeq ::= SEQUENCE {
colorData COLOR-DATA

}

COLOR-TYPE [encoding pos-int, size 8]

MySeq [] {
activeColor1 COLOR-TYPE [],
activeColor2 COLOR-TYPE [],
colorData <activeColor1, activeColor2> []
}

COLOR-DATA<COLOR-TYPE:type1, COLOR-TYPE:type2> [] {
green [present-when type1==1 type2==10],
red [present-when type1==20 type2==20],
blue [present-when type1==50 type2==20]

}

ACN - documentation

● User manual in the TASTE VM :

/home/assert/tool-src/doc/acn

● Specification and Description Language (standard from ITU-T)
● A formal language for describing state-machines, graphically or textually.
● Easy to use, yet very powerful (manipulation of data, precise and

complete semantics)
● Various mature commercial tools (e.g. RTDS)
● TASTE comes with an integrated SDL editor including an Ada code

generator and natively supporting ASN.1 : OpenGEODE
– Prototype level, under development

– Free software, open source

– Restricted to TASTE scope (embedded, real-time systems)

– TASTE also supports commercial tools (ObjectGEODE, RTDS)

Major SDL elements for behavioural
design

Running

Input

Output

A state

Input (triggers a
transition)

Output (sends a
message)

Decision

Action

Procedure
call

Variables
declaration

Label/Join

Procedure
definition

Typical transition diagram

 Transition body

 Possible inputs
 (and comments)

 State

 Next State

Data manipulation (overview)

Notation is
compliant with
 ASN.1

Native
operators

Start : initialization transition

 Start

 Start
 transition

 First state

● A state machine has exactly
one start transition

● The start transition is executed
at process creation (do not call
required interfaces there)

● The start transition
- Sets the initial state
- May execute initial actions
(initialization of variables)

State / Nextstate

 Multiple
 states

 Any state

● Each state has a name

● In a given state, the process is
expecting to receive messages

 Any state
 except Idle

Shortcuts

Shortcut

 Most recent
 state

● Arrival state
● Unique
● Is the initial state of other

transitions

Composite states

● Hierarchical state machines
● Entry and exit procedures
● Multiple entry and exit points

Input
● Fires a transition : the transition is

executed when the process
consumes the signal

● In a given state, the process can
expect several signals

● May have parameters (use
variables to store their values)

Shortcuts

 All signals not

 explicitely
 mentioned

 a or b

Output

● Transmission of a signal
in TASTE terms : invocation
of a sporadic required interface

● May have a parameter

Task, Procedure call

 informal

 formal ● Elementary action
of process transition

● Informal task

● Task setting a variable to a
given value

● Call an external procedure
In TASTE terms, call a
synchronous required interface
(protected or unprotected)

● Can have input and output
parameters

● Writeln : built-in print function

Decision

● Control structure
To represent conditional action
sequences

● A decision can have more than
two answers

- Multiple answers must be
mutually exclusive

-The last answer can be ELSE

● Useful to build loops

Labels and branches

● Allow rerouting
● Loop description
● « Don't repeat yourself » (DRY)

But do not use to describe
complex algorithms..

Procedures

 Start

 Return

 Transition

● Sequential sub-functions
● Can have parameters (in and in/out)
● Have visibility on the parent variables
● Same constructs as a process
● Local variables
● But no internal states

SDL and ASN.1
● Declare variables of ASN.1 types
● Use strings and arrays

Quality criteria for state machines

● State oriented
– Use variables for storing data, not object states

● Complexity
– Number of states

– Number of transitions per state

– Avoid decisions in waterfall wat

– Minimum of data

● Graphical justification comments
● Use hyperlinks for better traceability

Summary

● SDL includes a complete data model
– Declare and use variables within transition symbols

● Design is complete
– Designers without expertise in programming languages can

build complete executable models

– TASTE allows communication with external code

● Best approach : model behaviour with SDL, algorithms
with Simulink, and drivers with Ada or C

Exercise

● Create an interface view with an SDL block
and a C (or Ada) block

● Fill in the block with a simple behaviour
● Run it

Graphical user interfaces

● Interactive execution
● Use for unit testing

● Edit the interface view :
$ taste-edit-interface-view

● Create a function and set
the language to GUI

● GUI interfaces must always hold
one parameter

● No manual code is required

Result

● Creates an additional binary

The GUI provided
interfaces, data is
updated each time
the interface is called

The GUI required
interfaces, you can fill
data and send the
messages

Useful features

● Plot numerical data (in real-time)
● Record MSC (sequence diagrams)

The built-in MSC editor

● Edit MSC, modify the recorded scenario
● Re-run the recorded scenario

→ Regression testing

● Describe the scenario you want
to see (verify)

● Execute it against the running
binary

● If message ordering or parameters
are different than the expected
scenario, an error will be raised

Ultimate testing power : Python

● MSC scenarii are translated to Python
● Edit one of these Python scripts to get a

template, and write full-featured test suites

● Example of application : unit testing of a
control law developed with Simulink

Python API (1)

● Write a scenario using Python decorators
● Parallel scenarii can run concurrently

Python API (2)

● Send a message
● Wait for a specific message

● Wait for any message

Case study : GNC Unit test

● We want to verify the Control part of a GNC
● Input : navigation and guidance, comes from a

Simulink model (csv file with 3200 samples)
● Output : torques – we want to check the curves

● Interactive GUI is not adapted – needs
automated processing. Plotting can be
postponed

TASTE model (interface view)

SDL

Simulink

GUI

Control_Scheduler SDL block

 Test script

● Open CSV file and map columns
to the input vector

● Send each input, wait for
the output, and store it

● Plot the output using Matplotlib

Result... Neat !

More TASTE features

● Support for FPGA development
● Import/Export of components
● PeekPoke to tweak internal data at runtime
● Blackbox devices to write drivers
● MAST, Cheddar and Marzhin for scheduling analysis
● Coverage, Profiling
● Windows GUI
● SMP2 import/export mechanism to work with satellite simulators

(Simsat, Basiles, Eurosim)

→ Work in progress, will be delivered early 2013

FPGA support


Specify a function in the

interface view and set the
implementation language to

VHDL


Specify the function parameters

using ASN.1 data types

VHDL Generated interface

Code skeleton to be filled by the
user

Glue code generated by TASTE

● Glue in VHDL (IP cores to read/write data on
the PCI bus)

● Glue code on the Leon side

Import-Export components

● Right click in the Interface view to import or
export components

● Example : the PeekPoke component
● Used to monitor runtime data (e.g. Simulink

tuneable parameters) without user code
modification.

● Allow to modify data in memory at runtime
● Useful to tune algorithms

ASN.1 to SQL / Working with
databases

ASN.1
data model

C, Ada, Spark

SDL,
Matlab,
Scade,
VHDL

Python HTML SQL

TASTE relies on ASN.1 to ensure consistency of data at each level of the process :
Engineering, processing, testing, documentation, communication, data storage and
retrieval.

ASN.1 to SQL magic

● Use the same ASN.1 model to create SQL schemas
→ keep consistency (one SQL table per ASN.1 data
type is created by the toolchain, automatically)

● Use case : telecommand/telemetry storage
– Describe TM/TC data format in ASN.1 and ACN

– Use C/Ada binary encoder/decoders in flight code

– Use ICD generator to document format at binary level

– Pick TC/Store TM in the SQL database for post-processing
– field format is correct by construction

● Very flexible : using SQLAlchemy to be compatible
with Oracle, SQLite, PostgreSQL...

● Python interface

A simple API

Can work with any DB. Here is an example with PostgreSQL
engine = create_engine(
 'postgresql+psycopg2://taste:tastedb@localhost/test', echo=False)

Create data using the ASN.1 Python API
a = MyInt()
a.Set(5)

Add the value to the SQL table called MyInt
aa1 = MyInt_SQL(a)
aid1 = aa1.save(session)

MyInt ::= INTEGER (0..20)

A simple API – Retrieve data

Data is retrieved using SQL queries, or SQLAlchemy API

Retrieve ALL records in the MyInt table
all_values = self.session.query(MyInt_SQL)

for record in all_values:
 # The magic : data is transparently converted back to ASN.1
 print record.asn1.Get()

Query data with the full power of databases. It will be converted
automatically to ASN.1 structures.

Use case :
Query all TC with type=XX and subtype=YY (1 line of code)
Select the ones you are interested in
Encode them with ASN.1/ACN to a PUS packet (1 line of code)
Send them to the satellite (1 line of code)

Check the results

● Demo of the complete features in
/home/assert/tool-src/DMT/tests-sqlalchemy

● Run make (password for the db is tastedb)
● Run pgadmin3

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80

