11.2 Les macros pour Build3D()

11.2.1 Les options globales

11.2.2 bdArc

11.2.3 bdAngleD

  1. \begin{texgraph}[name=bdAngleD, file]
  2. Graph image = [
  3. Marges(0,0,0,0), view(-3,3,-3,3),
  4. view3D(-3,3,-3,3,-3,3), size(7.5),
  5. background(full, gray),
  6. B:=M(0,2,0), A:=M(0,0,0),C:=M(0,0,1.5),
  7. Build3D(
  8.  bdAngleD(B,A,C,1, [color:=firebrick,tube:=1]),
  9.  bdDot([A,B,C], [dotstyle:=cube,
  10.          dotscale:=0.85,
  11.          color:=forestgreen]),
  12.  bdArc(B,A,C,2,1,[color:=blue, width:=12,
  13.          arrows:=1,labelarc("$\pi/2$")]),
  14.  bdAxes([0,0], [color:=gold,arrows:=1]),
  15.  bdLabel(B,"$B$",[labelpos:=[0.5,-i]]),
  16.  bdLabel(C,"$C$",[labelpos:=[0.5,-1]]),
  17.     ),
  18. Display3D()
  19. ];
  20. \end{texgraph}

 PIC

bdAngleD

11.2.4 bdAxes

11.2.5 bdCercle

11.2.6 bdCone

11.2.7 bdCurve

11.2.8 bdCylinder

11.2.9 bdDot

11.2.10 bdDroite

11.2.11 bdFacet

11.2.12 bdLabel

  1. \begin{texgraph}[name=texify, file]
  2. Graph image = [
  3. Marges(0,0,0,0),view(-3,3,-3,3),
  4. view3D(-3,3,-3,3,-3,3), size(7.5),
  5. B:=M(0,2,0), A:=M(0,0,0), C:=M(0,0,1.5),
  6. Build3D(
  7.  bdSurf(M(u,-v,sqrt(u^4+v^4)-2),
  8.      [color:=steelblue, u:=[-2,2],
  9.      v:=u, smooth:=1,clip:=1,
  10.      clipwin:=[M(-3,-3,-3),M(3,3,2)]]),
  11.  bdPlan([0,0,1+i,2], [color:=darkseagreen,
  12.             scale:=0.75]),
  13.  bdAxes([0,0], [color:=gold,arrows:=1]),
  14.  bdLabel([0.25*(1+i),2.25],"z=\sqrt{x^4+y^4}-2",
  15.      [TeXify:=1, scale:=0.75])
  16. ),
  17. Display3D()
  18. ];
  19. \end{texgraph}

 PIC

Utilisation de l’option TeXify

11.2.13 bdLine

11.2.14 bdPlan

  1. \begin{texgraph}[name=intersection, file]
  2. Graph image = [
  3. Marges(0,0,0,0), ModelView(central), DistCam(20),
  4. view(-6,6,-6,6), size(7.5),
  5. theta:=-10*deg, phi:=60*deg,
  6. P1:=planEqn([1,1,1,2]),P2:=[Origin, vecK-vecJ],
  7. D:= interPP(P1,P2),
  8. a:=Copy(getdroite(D),1,2),
  9. b:=Copy(getplan(P1,0.75),11,2),
  10. c:=Copy(getplan(P2,0.75),3,2),
  11. Build3D(
  12.  bdPlan(P1, [color:=red, opacity:=0.7,
  13.         scale:=0.75 ]),
  14.  bdPlan(P2, [color:=blue,opacity:=0.7,
  15.        scale:=0.75]),
  16.  bdDroite(D, [color:=darkgreen,
  17.         width:=12]),
  18.  bdAxes([0,0],[color:=gold,
  19.         width:=8, arrows:=1]),
  20.  bdLabel(a,"$D$",[labelpos:=[0.5,-i]]),
  21.  bdLabel(b,"$P_1$",[labelpos:=[0.5,i]]),
  22.  bdLabel(c,"$P_2$",[labelpos:=[0.5,i]])
  23.      ),
  24. Display3D()
  25. ];
  26. \end{texgraph}

 PIC

Intersection de 2 plans

11.2.15 bdPlanEqn

11.2.16 bdPrism

11.2.17 bdPyramid

11.2.18 bdSphere

11.2.19 bdSurf

11.2.20 bdTorus

  1. \begin{texgraph}[name=villarceau, file]
  2. Graph image = [
  3. view(-6,6,-5,5),Marges(0,0,0,0),size(7.5),
  4. $R:=3, $r:=1,
  5. N:=rot3d(vecK,[Origin,vecI],arcsin(r/R)),
  6. view3D(-5,5,-5,5,-5,5),
  7. background(full,lightgray),
  8. Build3D(
  9.  bdPlan([Origin, -N],
  10.   [color:=seagreen, opacity:=0.8]),
  11.  bdTorus( Origin, R, r, vecK,
  12.   [color:=steelblue, smooth:=1]),
  13.  view3D(-5.5,5.5,-5.5,5.5,-5,5),
  14.  bdAxes( Origin,
  15.   [arrows:=1, newxlegend("x"),newylegend("y"),
  16.    newzlegend("z")]),
  17.  bdCercle(M(r,0,0),R,N,[color:=red, tube:=1]),
  18.  bdCercle(M(-r,0,0),R,N,[color:=red, tube:=1])
  19.     ),
  20. Display3D()
  21. ];
  22. \end{texgraph}

 PIC

Cercles de Villarceau